Gary, Charlotte; Hérard, Anne-Sophie; Hanss, Zoé; Dhenain, Marc
2018-01-01
Accumulation of amyloid-β (Aβ) peptides in the brain is a critical early event in the pathogenesis of Alzheimer's disease (AD), the most common age-related neurodegenerative disorder. There is increasing interest in measuring levels of plasma Aβ since this could help in diagnosis of brain pathology. However, the value of plasma Aβ in such a diagnosis is still controversial and factors modulating its levels are still poorly understood. The mouse lemur ( Microcebus murinus ) is a primate model of cerebral aging which can also present with amyloid plaques and whose Aβ is highly homologous to humans'. In an attempt to characterize this primate model and to evaluate the potential of plasma Aβ as a biomarker for brain alterations, we measured plasma Aβ 40 concentration in 21 animals aged from 5 to 9.5 years. We observed an age-related increase in plasma Aβ 40 levels. We then evaluated the relationships between plasma Aβ 40 levels and cerebral atrophy in these mouse lemurs. Voxel-based analysis of cerebral MR images (adjusted for the age/sex/brain size of the animals), showed that low Aβ 40 levels are associated with atrophy of several white matter and subcortical brain regions. These results suggest that low Aβ 40 levels in middle-aged/old animals are associated with brain deterioration. One special feature of mouse lemurs is that their metabolic and physiological parameters follow seasonal changes strictly controlled by illumination. We evaluated seasonal-related variations of plasma Aβ 40 levels and found a strong effect, with higher plasma Aβ 40 concentrations in winter conditions compared to summer. This question of seasonal modulation of Aβ plasma levels should be addressed in clinical studies. We also focused on the amplitude of the difference between plasma Aβ 40 levels during the two seasons and found that this amplitude increases with age. Possible mechanisms leading to these seasonal changes are discussed.
Circulating Neprilysin Clears Brain Amyloid
Liu, Yinxing; Studzinski, Christa; Beckett, Tina; Murphy, M. Paul; Klein, Ronald L.; Hersh, Louis B.
2010-01-01
The use of the peptidase neprilysin (NEP) as a therapeutic for lowering brain amyloid burden is receiving increasing attention. We have previously demonstrated that peripheral expression of NEP on the surface of hindlimb muscle lowers brain amyloid burden in a transgenic mouse model of Alzheimer’s disease. In this study we now show that using adeno-associated virus expressing a soluble secreted form of NEP (secNEP-AAV8), NEP secreted into plasma is effective in clearing brain Aβ. Soluble NEP expression in plasma was sustained over the 3-month time period it was measured. Secreted NEP decreased plasma Aβ by 30%, soluble brain Aβ by ~28%, insoluble brain Aβ by ~55%, and Aβ oligomers by 12%. This secNEP did not change plasma levels of substance P or bradykinin, nor did it alter blood pressure. No NEP was detected in CSF, nor did the AAV virus produce brain expression of NEP. Thus the lowering of brain Aβ was due to plasma NEP which altered blood-brain Aβ transport dynamics. Expressing NEP in plasma provides a convenient way to monitor enzyme activity during the course of its therapeutic testing. PMID:20558294
Altered transition metal homeostasis in Niemann-Pick disease, Type C1
Hung, Ya Hui; Faux, Noel G.; Killilea, David W.; Yanjanin, Nicole; Firnkes, Sally; Volitakis, Irene; Ganio, George; Walterfang, Mark; Hastings, Caroline; Porter, Forbes D.; Ory, Daniel S.; Bush, Ashley I.
2014-01-01
The loss of NPC1 protein function is the predominant cause of Niemann-Pick type C1 disease (NP-C1), a systemic and neurodegenerative disorder characterized by late-endosomal/lysosomal accumulation of cholesterol and other lipids. Limited evidence from post-mortem human tissues, an Npc1−/− mouse model, and cell culture studies also suggest failure of metal homeostasis in NP-C1. To investigate these findings, we performed a comprehensive transition metal analysis of cerebrospinal fluid (CSF), plasma and tissue samples from human NP-C1 patients and an Npc1−/− mouse model. NPC1 deficiency in the Npc1−/− mouse model resulted in a perturbation of transition metal homeostasis in the plasma and key organs (brain, liver, spleen, heart, lungs, and kidneys). Analysis of human patient CSF, plasma and post-mortem brain tissues also indicated disrupted metal homeostasis. There was a disparity in the direction of metal changes between the human and the Npc1−/− mouse samples, which may reflect species-specific metal metabolism. Nevertheless, common to both species is brain zinc accumulation. Furthermore, treatment with the glucosylceramide synthase inhibitor miglustat, the only drug shown in a controlled clinical trial to have some efficacy for NP-C1, did not correct the alterations in CSF and plasma transition metal and ceruloplasmin (CP) metabolism in NP-C1 patients. These findings highlight the importance of NPC1 function in metal homeostasis, and indicate that metal-targeting therapy may be of value as a treatment for NP-C. PMID:24343124
Circulating neprilysin clears brain amyloid.
Liu, Yinxing; Studzinski, Christa; Beckett, Tina; Murphy, M Paul; Klein, Ronald L; Hersh, Louis B
2010-10-01
The use of the peptidase neprilysin (NEP) as a therapeutic for lowering brain amyloid burden is receiving increasing attention. We have previously demonstrated that peripheral expression of NEP on the surface of hindlimb muscle lowers brain amyloid burden in a transgenic mouse model of Alzheimer's disease. In this study we now show that using adeno-associated virus expressing a soluble secreted form of NEP (secNEP-AAV8), NEP secreted into plasma is effective in clearing brain Abeta. Soluble NEP expression in plasma was sustained over the 3-month time period it was measured. Secreted NEP decreased plasma Abeta by 30%, soluble brain Abeta by approximately 28%, insoluble brain Abeta by approximately 55%, and Abeta oligomersby 12%. This secNEP did not change plasma levels of substance P or bradykinin, nor did it alter blood pressure. No NEP was detected in CSF, nor did the AAV virus produce brain expression of NEP. Thus the lowering of brain Abeta was due to plasma NEP which altered blood-brain Abeta transport dynamics. Expressing NEP in plasma provides a convenient way to monitor enzyme activity during the course of its therapeutic testing. Copyright 2010 Elsevier Inc. All rights reserved.
Three-dimensional atlas of iron, copper, and zinc in the mouse cerebrum and brainstem.
Hare, Dominic J; Lee, Jason K; Beavis, Alison D; van Gramberg, Amanda; George, Jessica; Adlard, Paul A; Finkelstein, David I; Doble, Philip A
2012-05-01
Atlases depicting molecular and functional features of the brain are becoming an integral part of modern neuroscience. In this study we used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS) to quantitatively measure iron (Fe), copper (Cu), and zinc (Zn) levels in a serially sectioned C57BL/6 mouse brain (cerebrum and brainstem). Forty-six sections were analyzed in a single experiment of approximately 158 h in duration. We constructed a 46-plate reference atlas by aligning quantified images of metal distribution with corresponding coronal sections from the Allen Mouse Brain Reference Atlas. The 46 plates were also used to construct three-dimensional models of Fe, Cu, and Zn distribution. This atlas represents the first reconstruction of quantitative trace metal distribution through the brain by LA-ICPMS and will facilitate the study of trace metals in the brain and help to elucidate their role in neurobiology.
Liddelow, Shane A.; Dzięgielewska, Katarzyna M.; Møllgård, Kjeld; Whish, Sophie C.; Noor, Natassya M.; Wheaton, Benjamin J.; Gehwolf, Renate; Wagner, Andrea; Traweger, Andreas; Bauer, Hannelore; Bauer, Hans-Christian; Saunders, Norman R.
2014-01-01
To maintain the precise internal milieu of the mammalian central nervous system, well-controlled transfer of molecules from periphery into brain is required. Recently the soluble and cell-surface albumin-binding glycoprotein SPARC (secreted protein acidic and rich in cysteine) has been implicated in albumin transport into developing brain, however the exact mechanism remains unknown. We postulate that SPARC is a docking site for albumin, mediating its uptake and transfer by choroid plexus epithelial cells from blood into cerebrospinal fluid (CSF). We used in vivo physiological measurements of transfer of endogenous (mouse) and exogenous (human) albumins, in situ Proximity Ligation Assay (in situ PLA), and qRT-PCR experiments to examine the cellular mechanism mediating protein transfer across the blood–CSF interface. We report that at all developmental stages mouse albumin and SPARC gave positive signals with in situ PLAs in plasma, CSF and within individual plexus cells suggesting a possible molecular interaction. In contrast, in situ PLA experiments in brain sections from mice injected with human albumin showed positive signals for human albumin in the vascular compartment that were only rarely identifiable within choroid plexus cells and only at older ages. Concentrations of both endogenous mouse albumin and exogenous (intraperitoneally injected) human albumin were estimated in plasma and CSF and expressed as CSF/plasma concentration ratios. Human albumin was not transferred through the mouse blood–CSF barrier to the same extent as endogenous mouse albumin, confirming results from in situ PLA. During postnatal development Sparc gene expression was higher in early postnatal ages than in the adult and changed in response to altered levels of albumin in blood plasma in a differential and developmentally regulated manner. Here we propose a possible cellular route and mechanism by which albumin is transferred from blood into CSF across a sub-population of specialised choroid plexus epithelial cells. PMID:25211495
Bednarek, Nathalie; Svedin, Pernilla; Garnotel, Roselyne; Favrais, Géraldine; Loron, Gauthier; Schwendiman, Leslie; Hagberg, Henrik; Morville, Patrice; Mallard, Carina; Gressens, Pierre
2012-01-01
To implement neuroprotective strategies in newborns, sensitive and specific biomarkers are needed for identifying those who are at risk for brain damage. We evaluated the effectiveness of matrix metalloproteinases (MMPs) and their naturally occurring tissue inhibitors of metalloproteinases (TIMPs) in predicting neonatal encephalopathy (NE) damage in newborns. Plasma MMP-9 and TIMP-1 levels were upregulated as early as 1 h after the HI insult but not did not show such elevations after other types of injury (ibotenate-induced excitotoxicity, hypoxia, lipopolysaccharide-induced inflammation), and brain levels reflected this increase soon thereafter. We confirmed these results by carrying out plasma MMP-9 and TIMP-1 measurements in human newborns with NE. In these infants, protein levels of MMP-9 and TIMP-1 were found to be elevated during a short window up to 6 h after birth. This feature is particularly useful in identifying newborns in need of neuroprotection. A second peak observed 72 h after birth is possibly related to the second phase of energy failure after a HI insult. Our data, although preliminary, support the use of MMP-9 and TIMP-1 as early biomarkers for the presence and extent of perinatal brain injury in human term newborns. We first used a mouse model of neonatal HI injury to explore mechanistic aspects such as the time course of these markers after the hypoxia-ischemia event, and the correlation between the levels of these candidate markers in brain and plasma.
Metabonomic Profiling of TASTPM Transgenic Alzheimer's Disease Mouse Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zeping; Browne, Edward R.; Liu, Tao
2012-12-07
Identification of molecular mechanisms underlying early stage Alzheimer’s disease (AD) is important for the development of new therapies against and diagnosis of AD. In this study, non-targeted metabotyping of TASTPM transgenic AD mice was performed. The metabolic profiles of both brain and plasma of TASTPM mice were characterized using gas chromatography-mass spectrometry and compared to those of wild type C57BL/6J mice. TASTPM mice were metabolically distinct compared to wild type mice (Q28 Y = 0.587 and 0.766 for PLS-DA models derived from brain and plasma, respectively). A number of metabolites were found to be perturbed in TASTPM mice in bothmore » brain (D11 fructose, L-valine, L-serine, L-threonine, zymosterol) and plasma (D-glucose, D12 galactose, linoleic acid, arachidonic acid, palmitic acid and D-gluconic acid). In addition, enzyme immunoassay confirmed that selected endogenous steroids were significantly perturbed in brain (androstenedione and 17-OH-progesterone) and plasma (cortisol and testosterone) of TASTPM mice. Ingenuity pathway analysis revealed that perturbations related to amino acid metabolism (brain), steroid biosynthesis (brain), linoleic acid metabolism (plasma) and energy metabolism (plasma) accounted for the differentiation of TASTPM and wild-type« less
Human umbilical cord plasma proteins revitalize hippocampal function in aged mice
Castellano, Joseph M.; Mosher, Kira I.; Abbey, Rachelle J.; McBride, Alisha A.; James, Michelle L.; Berdnik, Daniela; Shen, Jadon C.; Zou, Bende; Xie, Xinmin S.; Tingle, Martha; Hinkson, Izumi V.; Angst, Martin S.; Wyss-Coray, Tony
2017-01-01
Ageing drives changes in neuronal and cognitive function, the decline of which is a major feature of many neurological disorders. The hippocampus, a brain region subserving roles of spatial and episodic memory and learning, is sensitive to the detrimental effects of ageing at morphological and molecular levels. With advancing age, synapses in various hippocampal subfields exhibit impaired long-term potentiation1, an electrophysiological correlate of learning and memory. At the molecular level, immediate early genes are among the synaptic plasticity genes that are both induced by long-term potentiation2, 3, 4 and downregulated in the aged brain5, 6, 7, 8. In addition to revitalizing other aged tissues9, 10, 11, 12, 13, exposure to factors in young blood counteracts age-related changes in these central nervous system parameters14, 15, 16, although the identities of specific cognition-promoting factors or whether such activity exists in human plasma remains unknown17. We hypothesized that plasma of an early developmental stage, namely umbilical cord plasma, provides a reservoir of such plasticity-promoting proteins. Here we show that human cord plasma treatment revitalizes the hippocampus and improves cognitive function in aged mice. Tissue inhibitor of metalloproteinases 2 (TIMP2), a blood-borne factor enriched in human cord plasma, young mouse plasma, and young mouse hippocampi, appears in the brain after systemic administration and increases synaptic plasticity and hippocampal-dependent cognition in aged mice. Depletion experiments in aged mice revealed TIMP2 to be necessary for the cognitive benefits conferred by cord plasma. We find that systemic pools of TIMP2 are necessary for spatial memory in young mice, while treatment of brain slices with TIMP2 antibody prevents long-term potentiation, arguing for previously unknown roles for TIMP2 in normal hippocampal function. Our findings reveal that human cord plasma contains plasticity-enhancing proteins of high translational value for targeting ageing- or disease-associated hippocampal dysfunction. PMID:28424512
Li, Hongyun; Ruberu, Kalani; Karl, Tim; Garner, Brett
2016-01-01
Recent studies have shown that cerebral apoD levels increase with age and in Alzheimer's disease (AD). In addition, loss of cerebral apoD in the mouse increases sensitivity to lipid peroxidation and accelerates AD pathology. Very little data are available, however, regarding the expression of apoD protein levels in different brain regions. This is important as both brain lipid peroxidation and neurodegeneration occur in a region-specific manner. Here we addressed this using western blotting of seven different regions (olfactory bulb, hippocampus, frontal cortex, striatum, cerebellum, thalamus and brain stem) of the mouse brain. Our data indicate that compared to most brain regions, the hippocampus is deficient in apoD. In comparison to other major organs and tissues (liver, spleen, kidney, adrenal gland, heart and skeletal muscle), brain apoD was approximately 10-fold higher (corrected for total protein levels). Our analysis also revealed that brain apoD was present at a lower apparent molecular weight than tissue and plasma apoD. Utilising peptide N-glycosidase-F and neuraminidase to remove N-glycans and sialic acids, respectively, we found that N-glycan composition (but not sialylation alone) were responsible for this reduction in molecular weight. We extended the studies to an analysis of human brain regions (hippocampus, frontal cortex, temporal cortex and cerebellum) where we found that the hippocampus had the lowest levels of apoD. We also confirmed that human brain apoD was present at a lower molecular weight than in plasma. In conclusion, we demonstrate apoD protein levels are variable across different brain regions, that apoD levels are much higher in the brain compared to other tissues and organs, and that cerebral apoD has a lower molecular weight than peripheral apoD; a phenomenon that is due to the N-glycan content of the protein.
Lu, Zhen; Marks, Eileen; Chen, Jianfang; Moline, Jenna; Barrows, Lorraine; Raisbeck, Merl; Volitakis, Irene; Cherny, Robert A; Chopra, Vanita; Bush, Ashley I; Hersch, Steven; Fox, Jonathan H
2014-11-01
Disruption of redox homeostasis is a prominent feature in the pathogenesis of Huntington's disease (HD). Selenium an essential element nutrient that modulates redox pathways and has been reported to provide protection against both acute neurotoxicity (e.g. methamphetamine) and chronic neurodegeneration (e.g. tauopathy) in mice. The objective of our study was to investigate the effect of sodium selenite, an inorganic form of selenium, on behavioral, brain degeneration and biochemical outcomes in the N171-82Q Huntington's disease mouse model. HD mice, which were supplemented with sodium selenite from 6 to 14 weeks of age, demonstrated increased motor endurance, decreased loss of brain weight, decreased mutant huntingtin aggregate burden and decreased brain oxidized glutathione levels. Biochemical studies revealed that selenite treatment reverted HD-associated changes in liver selenium and plasma glutathione in N171-82Q mice and had effects on brain selenoprotein transcript expression. Further, we found decreased brain selenium content in human autopsy brain. Taken together, we demonstrate a decreased selenium phenotype in human and mouse HD and additionally show some protective effects of selenite in N171-82Q HD mice. Modification of selenium metabolism results in beneficial effects in mouse HD and thus may represent a therapeutic strategy. Copyright © 2014 Elsevier Inc. All rights reserved.
Amylin Enhances Amyloid-β Peptide Brain to Blood Efflux Across the Blood-Brain Barrier
Mohamed, Loqman A.; Zhu, Haihao; Mousa, Youssef M.; Wang, Erming; Qiu, Wei Qiao; Kaddoumi, Amal
2017-01-01
Findings from Alzheimer’s disease (AD) mouse models showed that amylin treatment improved AD pathology and enhanced amyloid-β (Aβ) brain to blood clearance; however, the mechanism was not investigated. Using the Tg2576 AD mouse model, a single intraperitoneal injection of amylin significantly increased Aβ serum levels, and the effect was abolished by AC253, an amylin receptor antagonist, suggesting that amylin effect could be mediated by its receptor. Subsequent mechanistic studies showed amylin enhanced Aβ transport across a cell-based model of the blood-brain barrier (BBB), an effect that was abolished when the amylin receptor was inhibited by two amylin antagonists and by siRNA knockdown of amylin receptor Ramp3. To explain this finding, amylin effect on Aβ transport proteins expressed at the BBB was evaluated. Findings indicated that cells treated with amylin induced LRP1 expression, a major receptor involved in brain Aβ efflux, in plasma membrane fraction, suggesting intracellular translocation of LRP1 from the cytoplasmic pool. Increased LRP1 in membrane fraction could explain, at least in part, the enhanced uptake and transport of Aβ across the BBB. Collectively, our findings indicated that amylin induced Aβ brain to blood clearance through amylin receptor by inducing LRP1 subcellular translocation to the plasma membrane of the BBB endothelium. PMID:28059785
Sumbria, Rachita K; Zhou, Qing-Hui; Hui, Eric Ka-Wai; Lu, Jeff Zhiqiang; Boado, Ruben J; Pardridge, William M
2013-04-01
Tumor necrosis factor (TNF)-α is a proinflammatory cytokine active in the brain. Etanercept, the TNF decoy receptor (TNFR), does not cross the blood-brain barrier (BBB). The TNFR was re-engineered for BBB penetration as a fusion protein with a chimeric monoclonal antibody (mAb) against the mouse transferrin receptor (TfR), and this fusion protein is designated cTfRMAb-TNFR. The cTfRMAb domain of the fusion protein acts as a molecular Trojan horse and mediates transport via the endogenous BBB TfR. To support future chronic treatment of mouse models of neural disease with daily administration of the cTfRMAb-TNFR fusion protein, a series of pharmacokinetics and brain uptake studies in the mouse was performed. The cTfRMAb-TNFR fusion protein was radiolabeled and injected into mice via the intravenous, intraperitoneal (IP), or subcutaneous (SQ) routes of administration at doses ranging from 0.35 to 10 mg/kg. The distribution of the fusion protein into plasma following the IP or SQ routes was enhanced by increasing the injection dose from 3 to 10 mg/kg. The fusion protein demonstrated long circulation times with high metabolic stability following the IP or SQ routes of injection. The IP or SQ routes produced concentrations of the cTfRMAb-TNFR fusion protein in the brain that exceed by 20- to 50-fold the concentration of TNFα in pathologic conditions of the brain. The SQ injection is the preferred route of administration, as the level of cTfRMAb fusion protein produced in the brain is comparable to that generated with intravenous injection, and at a much lower plasma area under the concentration curve of the fusion protein as compared to IP administration.
High homocysteine induces betaine depletion
Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J.
2015-01-01
Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI—LC–MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte. PMID:26182429
High homocysteine induces betaine depletion.
Imbard, Apolline; Benoist, Jean-François; Esse, Ruben; Gupta, Sapna; Lebon, Sophie; de Vriese, An S; de Baulny, Helene Ogier; Kruger, Warren; Schiff, Manuel; Blom, Henk J
2015-04-28
Betaine is the substrate of the liver- and kidney-specific betaine-homocysteine (Hcy) methyltransferase (BHMT), an alternate pathway for Hcy remethylation. We hypothesized that BHMT is a major pathway for homocysteine removal in cases of hyperhomocysteinaemia (HHcy). Therefore, we measured betaine in plasma and tissues from patients and animal models of HHcy of genetic and acquired cause. Plasma was collected from patients presenting HHcy without any Hcy interfering treatment. Plasma and tissues were collected from rat models of HHcy induced by diet and from a mouse model of cystathionine β-synthase (CBS) deficiency. S-adenosyl-methionine (AdoMet), S-adenosyl-homocysteine (AdoHcy), methionine, betaine and dimethylglycine (DMG) were quantified by ESI-LC-MS/MS. mRNA expression was quantified using quantitative real-time (QRT)-PCR. For all patients with diverse causes of HHcy, plasma betaine concentrations were below the normal values of our laboratory. In the diet-induced HHcy rat model, betaine was decreased in all tissues analysed (liver, brain, heart). In the mouse CBS deficiency model, betaine was decreased in plasma, liver, heart and brain, but was conserved in kidney. Surprisingly, BHMT expression and activity was decreased in liver. However, in kidney, BHMT and SLC6A12 expression was increased in CBS-deficient mice. Chronic HHcy, irrespective of its cause, induces betaine depletion in plasma and tissues (liver, brain and heart), indicating a global decrease in the body betaine pool. In kidney, betaine concentrations were not affected, possibly due to overexpression of the betaine transporter SLC6A12 where betaine may be conserved because of its crucial role as an osmolyte. © 2015 Author(s).
Anti-tau antibody administration increases plasma tau in transgenic mice and patients with tauopathy
Yanamandra, Kiran; Patel, Tirth K.; Jiang, Hong; Schindler, Suzanne; Ulrich, Jason D.; Boxer, Adam L.; Miller, Bruce L.; Kerwin, Diana R.; Gallardo, Gilbert; Stewart, Floy; Finn, Mary Beth; Cairns, Nigel J.; Verghese, Philip B.; Fogelman, Ilana; West, Tim; Braunstein, Joel; Robinson, Grace; Keyser, Jennifer; Roh, Joseph; Knapik, Stephanie S.; Hu, Yan; Holtzman, David M.
2017-01-01
Tauopathies are a group of disorders in which the cytosolic protein tau aggregates and accumulates in cells within the brain, resulting in neurodegeneration. A promising treatment being explored for tauopathies is passive immunization with anti-tau antibodies. We previously found that administration of an anti-tau antibody to human tau transgenic mice increased the concentration of plasma tau. We further explored the effects of administering an anti-tau antibody on plasma tau. After peripheral administration of an anti-tau antibody to human patients with tauopathy and to mice expressing human tau in the central nervous system, there was a dose-dependent increase in plasma tau. In mouse plasma, we found that tau had a short half-life of 8 min that increased to more than 3 hours after administration of anti-tau antibody. As tau transgenic mice accumulated insoluble tau in the brain, brain soluble and interstitial fluid tau decreased. Administration of anti-tau antibody to tau transgenic mice that had decreased brain soluble tau and interstitial fluid tau resulted in an increase in plasma tau, but this increase was less than that observed in tau transgenic mice without these brain changes. Tau transgenic mice subjected to acute neuronal injury using 3-nitropropionic acid showed increased interstitial fluid tau and plasma tau. These data suggest that peripheral administration of an anti-tau antibody results in increased plasma tau, which correlates with the concentration of extracellular and soluble tau in the brain. PMID:28424326
Li, Wenlong; Sparidans, Rolf W; Wang, Yaogeng; Lebre, Maria C; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H
2018-05-09
Lorlatinib (PF-06463922) is a promising oral anaplastic lymphoma kinase (ALK) and ROS1 inhibitor currently in Phase III clinical trials for treatment of non-small cell lung cancer (NSCLC) containing an ALK rearrangement. With therapy-resistant brain metastases a major concern in NSCLC, lorlatinib was designed to have high membrane and blood-brain barrier permeability. We investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, and the multispecific drug-metabolizing enzyme CYP3A in plasma pharmacokinetics and tissue distribution of lorlatinib using genetically modified mouse strains. In vitro, human ABCB1 and mouse Abcg2 modestly transported lorlatinib. Following oral lorlatinib administration (at 10 mg/kg), brain accumulation of lorlatinib, while relatively high in wild-type mice, was still 4-fold increased in Abcb1a/1b -/- and Abcb1a/1b;Abcg2 -/- mice, but not in single Abcg2 -/- mice. Lorlatinib plasma levels were not altered. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar increased the brain accumulation of lorlatinib in wild-type mice 4-fold, i.e. to the same level as in Abcb1a/1b;Abcg2 -/- mice, without altering plasma exposure. Similar results were obtained for lorlatinib testis accumulation. In Cyp3a -/- mice, the plasma exposure of lorlatinib was increased 1.3-fold, but was then 2-fold reduced upon transgenic over-expression of human CYP3A4 in liver and intestine, whereas relative tissue distribution of lorlatinib remained unaltered. Our data indicate that lorlatinib brain accumulation is substantially limited by P-glycoprotein in the blood-brain barrier, but this can be effectively reversed by elacridar coadministration. Moreover, oral availability of lorlatinib is markedly restricted by CYP3A4 activity. These insights may be used in optimizing the therapeutic application of lorlatinib. This article is protected by copyright. All rights reserved. © 2018 UICC.
In-Source Fragmentation and the Sources of Partially Tryptic Peptides in Shotgun Proteomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong-Seo; Monroe, Matthew E.; Camp, David G.
2013-02-01
Partially tryptic peptides are often identified in shotgun proteomics using trypsin as the proteolytic enzyme; however, it has been controversial regarding the sources of such partially tryptic peptides. Herein we investigate the impact of in-source fragmentation on shotgun proteomics using three biological samples, including a standard protein mixture, a mouse brain tissue homogenate, and a mouse plasma sample. Since the in-source fragments of a peptide retain the same elution time with its parent fully tryptic peptide, the partially tryptic peptides from in-source fragmentation can be distinguished from the other partially tryptic peptides by plotting the observed retention times against themore » computationally predicted retention times. Most partially tryptic in-source fragmentation artifacts were misaligned from the linear distribution of fully tryptic peptides. The impact of in-source fragmentation on peptide identifications was clearly significant in a less complex sample such as a standard protein digest, where ~60 % of unique peptides were observed as partially tryptic peptides from in-source fragmentation. In mouse brain or mouse plasma samples, in-source fragmentation contributed to 1-3 % of all identified peptides. The other major source of partially tryptic peptides in complex biological samples is presumably proteolytic processing by endogenous proteases in the samples. By filtering out the in-source fragmentation artifacts from the identified partially tryptic or non-tryptic peptides, it is possible to directly survey in-vivo proteolytic processing in biological samples such as blood plasma.« less
Paul, Rajib; Borah, Anupom
2017-12-20
There exists an intricate relationship between hypercholesterolemia (elevated plasma cholesterol) and brain functions. The present study aims to understand the impact of hypercholesterolemia on pathological consequences in mouse brain. A chronic mouse model of hypercholesterolemia was induced by giving high-cholesterol diet for 12 weeks. The hypercholesterolemic mice developed cognitive impairment as evident from object recognition memory test. Cholesterol accumulation was observed in four discrete brain regions, such as cortex, striatum, hippocampus and substantia nigra along with significantly damaged blood-brain barrier by hypercholesterolemia. The crucial finding is the loss of acetylcholinesterase activity with mitochondrial dysfunction globally in the brain of hypercholesterolemic mice, which is related to the levels of cholesterol. Moreover, the levels of hydroxyl radical were elevated in the regions of brain where the activity of mitochondrial complexes was found to be reduced. Intriguingly, elevations of inflammatory stress markers in the cholesterol-rich brain regions were observed. As cognitive impairment, diminished brain acetylcholinesterase activity, mitochondrial dysfunctions, and inflammation are the prima facie pathologies of neurodegenerative diseases, the findings impose hypercholesterolemia as potential risk factor towards brain dysfunction.
Poulin, Patrick; Hop, Cornelis Eca; Salphati, Laurent; Liederer, Bianca M
2013-04-01
Understanding drug distribution and accumulation in tumors would be informative in the assessment of efficacy in targeted therapy; however, existing methods for predicting tissue drug distribution focus on normal tissues and do not incorporate tumors. The main objective of this study was to describe the relationships between tissue-plasma concentration ratios (Kp ) of normal tissues and those of subcutaneous xenograft tumors under nonsteady-state conditions, and establish regression equations that could potentially be used for the prediction of drug levels in several human tumor xenografts in mouse, based solely on a Kp value determined in a normal tissue (e.g., muscle). A dataset of 17 compounds was collected from the literature and from Genentech. Tissue and plasma concentration data in mouse were obtained following oral gavage or intraperitoneal administration. Linear regression analyses were performed between Kp values in several normal tissues (muscle, lung, liver, or brain) and those in human tumor xenografts (CL6, EBC-1, HT-29, PC3, U-87, MCF-7-neo-Her2, or BT474M1.1). The tissue-plasma ratios in normal tissues reasonably correlated with the tumor-plasma ratios in CL6, EBC-1, HT-29, U-87, BT474M1.1, and MCF-7-neo-Her2 xenografts (r(2) in the range 0.62-1) but not with the PC3 xenograft. In general, muscle and lung exhibited the strongest correlation with tumor xenografts, followed by liver. Regression coefficients from brain were low, except between brain and the glioblastoma U-87 xenograft (r(2) in the range 0.62-0.94). Furthermore, reasonably strong correlations were observed between muscle and lung and between muscle and liver (r(2) in the range 0.67-0.96). The slopes of the regressions differed depending on the class of drug (strong vs. weak base) and type of tissue (brain vs. other tissues and tumors). Overall, this study will contribute to our understanding of tissue-plasma partition coefficients for tumors and facilitate the use of physiologically based pharmacokinetics (PBPK) modeling for chemotherapy in oncology studies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:1355-1369, 2013. Copyright © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin Zhoumeng; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602; Fisher, Jeffrey W.
Atrazine (ATR) is a chlorotriazine herbicide that is widely used and relatively persistent in the environment. In laboratory rodents, excessive exposure to ATR is detrimental to the reproductive, immune, and nervous systems. To better understand the toxicokinetics of ATR and to fill the need for a mouse model, a physiologically based pharmacokinetic (PBPK) model for ATR and its main chlorotriazine metabolites (Cl-TRIs) desethyl atrazine (DE), desisopropyl atrazine (DIP), and didealkyl atrazine (DACT) was developed for the adult male C57BL/6 mouse. Taking advantage of all relevant and recently made available mouse-specific data, a flow-limited PBPK model was constructed. The ATR andmore » DACT sub-models included blood, brain, liver, kidney, richly and slowly perfused tissue compartments, as well as plasma protein binding and red blood cell binding, whereas the DE and DIP sub-models were constructed as simple five-compartment models. The model adequately simulated plasma levels of ATR and Cl-TRIs and urinary dosimetry of Cl-TRIs at four single oral dose levels (250, 125, 25, and 5 mg/kg). Additionally, the model adequately described the dose dependency of brain and liver ATR and DACT concentrations. Cumulative urinary DACT amounts were accurately predicted across a wide dose range, suggesting the model's potential use for extrapolation to human exposures by performing reverse dosimetry. The model was validated using previously reported data for plasma ATR and DACT in mice and rats. Overall, besides being the first mouse PBPK model for ATR and its Cl-TRIs, this model, by analogy, provides insights into tissue dosimetry for rats. The model could be used in tissue dosimetry prediction and as an aid in the exposure assessment to this widely used herbicide.« less
Wong, Wen Mai; Durakoglugil, Murat S.; Wasser, Catherine R.; Jiang, Shan; Xian, Xunde
2016-01-01
Alzheimer's disease (AD) is the most common form of dementia in individuals over the age of 65 years. The most prevalent genetic risk factor for AD is the ε4 allele of apolipoprotein E (ApoE4), and novel AD treatments that target ApoE are being considered. One unresolved question in ApoE biology is whether ApoE is necessary for healthy brain function. ApoE knock-out (KO) mice have synaptic loss and cognitive dysfunction; however, these findings are complicated by the fact that ApoE knock-out mice have highly elevated plasma lipid levels, which may independently affect brain function. To bypass the effect of ApoE loss on plasma lipids, we generated a novel mouse model that expresses ApoE normally in peripheral tissues, but has severely reduced ApoE in the brain, allowing us to study brain ApoE loss in the context of a normal plasma lipid profile. We found that these brain ApoE knock-out (bEKO) mice had synaptic loss and dysfunction similar to that of ApoE KO mice; however, the bEKO mice did not have the learning and memory impairment observed in ApoE KO mice. Moreover, we found that the memory deficit in the ApoE KO mice was specific to female mice and was fully rescued in female bEKO mice. Furthermore, while the AMPA/NMDA ratio was reduced in ApoE KO mice, it was unchanged in bEKO mice compared with controls. These findings suggest that plasma lipid levels can influence cognition and synaptic function independent of ApoE expression in the brain. SIGNIFICANCE STATEMENT One proposed treatment strategy for Alzheimer's disease (AD) is the reduction of ApoE, whose ε4 isoform is the most common genetic risk factor for the disease. A major concern of this strategy is that an animal model of ApoE deficiency, the ApoE knock-out (KO) mouse, has reduced synapses and cognitive impairment; however, these mice also develop dyslipidemia and severe atherosclerosis. Here, we have shown that genetic restoration of plasma ApoE to wild-type levels normalizes plasma lipids in ApoE KO mice. While this does not rescue synaptic loss, it does completely restore learning and memory in the mice, suggesting that both CNS and plasma ApoE are independent parameters that affect brain health. PMID:27683909
Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases.
Kodama, Tatsushi; Hasegawa, Masami; Takanashi, Kenji; Sakurai, Yuji; Kondoh, Osamu; Sakamoto, Hiroshi
2014-11-01
The clinical efficacy of the anaplastic lymphoma kinase (ALK) inhibitor crizotinib has been demonstrated in ALK fusion-positive non-small cell lung cancer (NSCLC); however, brain metastases are frequent sites of initial failure in patients due to poor penetration of the central nervous system by crizotinib. Here, we examined the efficacy of a selective ALK inhibitor alectinib/CH5424802 in preclinical models of intracranial tumors. We established intracranial tumor implantation mouse models of EML4-ALK-positive NSCLC NCI-H2228 and examined the antitumor activity of alectinib in this model. Plasma distribution and brain distribution of alectinib were examined by quantitative whole-body autoradiography administrating a single oral dose of (14)C-labeled alectinib to rats. The drug permeability of alectinib was evaluated in Caco-2 cell. Alectinib resulted in regression of NCI-H2228 tumor in mouse brain and provided a survival benefit. In a pharmacokinetic study using rats, alectinib showed a high brain-to-plasma ratio, and in an in vitro drug permeability study using Caco-2 cells, alectinib was not transported by P-glycoprotein efflux transporter that is a key factor in blood-brain barrier penetration. We established intracranial tumor implantation models of EML4-ALK-positive NSCLC. Alectinib showed potent efficacy against intracranial EML4-ALK-positive tumor. These results demonstrated that alectinib might provide therapeutic opportunities for crizotinib-treated patients with brain metastases.
Lu, Yanmei; Hoyte, Kwame; Montgomery, William H; Luk, Wilman; He, Dongping; Meilandt, William J; Zuchero, Y Joy Yu; Atwal, Jasvinder K; Scearce-Levie, Kimberly; Watts, Ryan J; DeForge, Laura E
2016-05-01
Transgenic mice that overexpress human amyloid precursor protein with Swedish or London (APPswe or APPlon) mutations have been widely used for preclinical Alzheimer's disease (AD) drug development. AD patients, however, rarely possess these mutations or overexpress APP. We developed a sensitive ELISA that specifically and accurately measures low levels of endogenous Aβ40 in mouse plasma, brain and CSF. In wild-type mice treated with a bispecific anti-TfR/BACE1 antibody, significant Aβ reductions were observed in the periphery and the brain. APPlon transgenic mice showed a slightly less reduction, whereas APPswe mice did not have any decrease. This sensitive and well-characterized mouse Aβ40 assay enables the use of wild-type mice for preclinical PK/PD and efficacy studies of potential AD therapeutics.
Hampton, Caryn; Rosa, Raymond; Szeto, Daphne; Forrest, Gail; Campbell, Barry; Kennan, Richard; Wang, Shubing; Huang, Chin-Hu; Gichuru, Loise; Ping, Xiaoli; Shen, Xiaolan; Small, Kersten; Madwed, Jeffrey; Lynch, Joseph J
2017-01-01
Introduction: Despite the widespread use of the mouse transverse aortic constriction heart failure model, there are no reports on the characterization of the standard-of-care agent carvedilol in this model. Methods: Left ventricular pressure overload was produced in mice by transverse aortic constriction between the innominate and left common carotid arteries. Carvedilol was administered at multiple dose levels (3, 10 and 30 mg/kg/day per os; yielding end-study mean plasma concentrations of 0.002, 0.015 and 0.044 µM, respectively) in a therapeutic design protocol with treatment initiated after the manifestation of left ventricular remodeling at 3 weeks post transverse aortic constriction and continued for 10 weeks. Results: Carvedilol treatment in transverse aortic constriction mice significantly decreased heart rate and left ventricular dP/dt (max) at all dose levels consistent with β-adrenoceptor blockade. The middle dose of carvedilol significantly decreased left ventricular weight, whereas the higher dose decreased total heart, left and right ventricular weight and wet lung weight compared to untreated transverse aortic constriction mice. The higher dose of carvedilol significantly increased cardiac performance as measured by ejection fraction and fractional shortening and decreased left ventricular end systolic volume consistent with the beneficial effect on cardiac function. End-study plasma sST-2 and Gal-3 levels did not differ among sham, transverse aortic constriction control and transverse aortic constriction carvedilol groups. Plasma brain natriuretic peptide concentrations were elevated significantly in transverse aortic constriction control animals (~150%) compared to shams in association with changes in ejection fraction and heart weight and tended to decrease (~30%, p = 0.10–0.12) with the mid- and high-dose carvedilol treatment. Conclusion: A comparison of carvedilol hemodynamic and structural effects in the mouse transverse aortic constriction model versus clinical use indicates a strong agreement in effect profiles preclinical versus clinical, providing important translational validation for this widely used animal model. The present plasma brain natriuretic peptide biomarker findings support the measurement of plasma natriuretic peptides in the mouse transverse aortic constriction model to extend the translational utility of the model. PMID:28491305
2015-10-01
collegiate football players: the NCAA Concussion Study. JAMA 290, 2549-2555. Hinkebein, J.H., Martin, T.A., Callahan, C.D., and Johnstone, B. (2003). Concept...al., 2014). We have also developed a novel mouse model of mild TBI (mTBI)/ concussion in which we have demonstrated cognitive dysfunction at 6, 12...2010). Boxing-acute complications and late sequelae: from concussion to dementia. Dtsch Arztebl Int 107, 835-839. Gaetz, M., and Weinberg, H
Baxter, Laura L.; Marugan, Juan J.; Xiao, Jingbo; Incao, Art; McKew, John C.; Zheng, Wei; Pavan, William J.
2012-01-01
Vitamin E isoforms are essential nutrients that are widely used as dietary supplements and therapeutic agents for a variety of diseases. However, their pharmacokinetic (PK) properties remain poorly characterized, and high dosage animal studies may provide further information on their in vivo functions and pharmacological effects. In this study, alpha-tocopherol (α-toc) and delta-tocopherol (δ-toc) levels were measured in mouse plasma and tissues following their high dosage dietary supplementation. Average α-toc levels at 5, 10 and 20 g α-toc/kg diet increased over baseline levels 6-fold in plasma, 1.6-fold in brain, and 4.9-fold in liver. These elevated α-toc concentrations remained constant from 5 to 20 g α-toc/kg diet, rather than showing further increases across these dosages. No α-toc-related toxicity occurred at these high dosages, and strain-specific differences in liver and brain α-toc levels between Balb/cJ and C57Bl/6J mice were observed. Relatively high-dosage administration of dietary δ-toc for 1 or 4 weeks resulted in 6–30-fold increases in plasma and liver levels between dosages of 0.33 and 1.67 g δ-toc/kg diet. Co-administration of sesamin with δ-toc further increased δ-toc levels between 1.3- and 14-fold in plasma, liver, and brain. These results provide valuable PK information on high dosage α-toc and δ-toc in mouse and show that supplementation of sesamin with δ-toc further increases δ-toc levels over those seen with δ-toc supplementation alone. PMID:22822447
Jeppsson, Fredrik; Eketjäll, Susanna; Janson, Juliette; Karlström, Sofia; Gustavsson, Susanne; Olsson, Lise-Lotte; Radesäter, Ann-Cathrine; Ploeger, Bart; Cebers, Gvido; Kolmodin, Karin; Swahn, Britt-Marie; von Berg, Stefan; Bueters, Tjerk; Fälting, Johanna
2012-11-30
β-Site amyloid precursor protein cleaving enzyme1 (BACE1) is one of the key enzymes involved in the processing of the amyloid precursor protein (APP) and formation of amyloid β peptide (Aβ) species. Because cerebral deposition of Aβ species might be critical for the pathogenesis of Alzheimer disease, BACE1 has emerged as a key target for the treatment of this disease. Here, we report the discovery and comprehensive preclinical characterization of AZD3839, a potent and selective inhibitor of human BACE1. AZD3839 was identified using fragment-based screening and structure-based design. In a concentration-dependent manner, AZD3839 inhibited BACE1 activity in a biochemical fluorescence resonance energy transfer (FRET) assay, Aβ and sAPPβ release from modified and wild-type human SH-SY5Y cells and mouse N2A cells as well as from mouse and guinea pig primary cortical neurons. Selectivity against BACE2 and cathepsin D was 14 and >1000-fold, respectively. AZD3839 exhibited dose- and time-dependent lowering of plasma, brain, and cerebrospinal fluid Aβ levels in mouse, guinea pig, and non-human primate. Pharmacokinetic/pharmacodynamic analyses of mouse and guinea pig data showed a good correlation between the potency of AZD3839 in primary cortical neurons and in vivo brain effects. These results suggest that AZD3839 effectively reduces the levels of Aβ in brain, CSF, and plasma in several preclinical species. It might, therefore, have disease-modifying potential in the treatment of Alzheimer disease and related dementias. Based on the overall pharmacological profile and its drug like properties, AZD3839 has been progressed into Phase 1 clinical trials in man.
Jeppsson, Fredrik; Eketjäll, Susanna; Janson, Juliette; Karlström, Sofia; Gustavsson, Susanne; Olsson, Lise-Lotte; Radesäter, Ann-Cathrine; Ploeger, Bart; Cebers, Gvido; Kolmodin, Karin; Swahn, Britt-Marie; von Berg, Stefan; Bueters, Tjerk; Fälting, Johanna
2012-01-01
β-Site amyloid precursor protein cleaving enzyme1 (BACE1) is one of the key enzymes involved in the processing of the amyloid precursor protein (APP) and formation of amyloid β peptide (Aβ) species. Because cerebral deposition of Aβ species might be critical for the pathogenesis of Alzheimer disease, BACE1 has emerged as a key target for the treatment of this disease. Here, we report the discovery and comprehensive preclinical characterization of AZD3839, a potent and selective inhibitor of human BACE1. AZD3839 was identified using fragment-based screening and structure-based design. In a concentration-dependent manner, AZD3839 inhibited BACE1 activity in a biochemical fluorescence resonance energy transfer (FRET) assay, Aβ and sAPPβ release from modified and wild-type human SH-SY5Y cells and mouse N2A cells as well as from mouse and guinea pig primary cortical neurons. Selectivity against BACE2 and cathepsin D was 14 and >1000-fold, respectively. AZD3839 exhibited dose- and time-dependent lowering of plasma, brain, and cerebrospinal fluid Aβ levels in mouse, guinea pig, and non-human primate. Pharmacokinetic/pharmacodynamic analyses of mouse and guinea pig data showed a good correlation between the potency of AZD3839 in primary cortical neurons and in vivo brain effects. These results suggest that AZD3839 effectively reduces the levels of Aβ in brain, CSF, and plasma in several preclinical species. It might, therefore, have disease-modifying potential in the treatment of Alzheimer disease and related dementias. Based on the overall pharmacological profile and its drug like properties, AZD3839 has been progressed into Phase 1 clinical trials in man. PMID:23048024
Copine1 regulates neural stem cell functions during brain development.
Kim, Tae Hwan; Sung, Soo-Eun; Cheal Yoo, Jae; Park, Jae-Yong; Yi, Gwan-Su; Heo, Jun Young; Lee, Jae-Ran; Kim, Nam-Soon; Lee, Da Yong
2018-01-01
Copine 1 (CPNE1) is a well-known phospholipid binding protein in plasma membrane of various cell types. In brain cells, CPNE1 is closely associated with AKT signaling pathway, which is important for neural stem cell (NSC) functions during brain development. Here, we investigated the role of CPNE1 in the regulation of brain NSC functions during brain development and determined its underlying mechanism. In this study, abundant expression of CPNE1 was observed in neural lineage cells including NSCs and immature neurons in human. With mouse brain tissues in various developmental stages, we found that CPNE1 expression was higher at early embryonic stages compared to postnatal and adult stages. To model developing brain in vitro, we used primary NSCs derived from mouse embryonic hippocampus. Our in vitro study shows decreased proliferation and multi-lineage differentiation potential in CPNE1 deficient NSCs. Finally, we found that the deficiency of CPNE1 downregulated mTOR signaling in embryonic NSCs. These data demonstrate that CPNE1 plays a key role in the regulation of NSC functions through the activation of AKT-mTOR signaling pathway during brain development. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Wynne Q.; Smolik, Corey M.; Barba-Escobedo, Priscilla A.; Gamez, Monica; Sanchez, Jesus J.; Javors, Martin A.; Daws, Lynette C.; Gould, Georgianna G.
2014-01-01
Clinical evidence indicates brain serotonin (5-HT) stores and neurotransmission may be inadequate in subpopulations of individuals with autism, and this may contribute to characteristically impaired social behaviors. Findings that depletion of the 5-HT precursor tryptophan (TRP) worsens autism symptoms support this hypothesis. Yet dietetic studies show and parents report that many children with autism consume less TRP than peers. To measure the impact of dietary TRP content on social behavior, we administered either diets devoid of TRP, with standard TRP (0.2 gm%), or with 1% added TRP (1.2 gm%) overnight to three mouse strains. Of these, BTBRT+Itpr3tf/J and 129S1/SvImJ consistently exhibit low preference for social interaction relative to C57BL/6. We found that TRP depletion reduced C57BL/6 and 129S social interaction preference, while TRP enhancement improved BTBR sociability (p < 0.05; N= 8–10). Subsequent marble burying was similar regardless of grouping. After behavior tests, brain TRP levels and plasma corticosterone were higher in TRP enhanced C57BL/6 and BTBR, while 5-HT levels were reduced in all strains by TRP depletion (p <0.05; N= 4 −10). Relative hyperactivity of BTBR and hypoactivity of 129S, evident in self-grooming and chamber entries during sociability tests, were uninfluenced by dietary TRP. Our findings demonstrate mouse sociability and brain 5-HT turnover are reduced by acute TRP depletion, and can be enhanced by TRP supplementation. This outcome warrants further basic and/or clinical studies employing biomarker combinations such as TRP metabolism and 5-HT regulated hormones to characterize the conditions wherein TRP supplementation can best ameliorate sociability deficits. PMID:25445490
Knapman, A; Heinzmann, J-M; Hellweg, R; Holsboer, F; Landgraf, R; Touma, C
2010-07-01
Cognitive deficits are a common feature of major depression (MD), with largely unknown biological underpinnings. In addition to the affective and cognitive symptoms of MD, a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is commonly observed in these patients. Increased plasma glucocorticoid levels are known to render the hippocampus susceptible to neuronal damage. This structure is important for learning and memory, creating a potential link between HPA axis dysregulation and cognitive deficits in depression. In order to further elucidate how altered stress responsiveness may contribute to the etiology of MD, three mouse lines with high (HR), intermediate (IR), or low (LR) stress reactivity were generated by selective breeding. The aim of the present study was to investigate whether increased stress reactivity is associated with deficits in hippocampus-dependent memory tests. To this end, we subjected mice from the HR, IR, and LR breeding lines to tests of recognition memory, spatial memory, and depression-like behavior. In addition, measurements of brain-derived neurotrophic factor (BDNF) in the hippocampus and plasma of these animals were conducted. Our results demonstrate that HR mice exhibit hippocampus-dependent memory deficits along with decreased hippocampal, but not plasma, BDNF levels. Thus, the stress reactivity mouse lines are a promising animal model of the cognitive deficits in MD with the unique feature of a genetic predisposition for an altered HPA axis reactivity, which provides the opportunity to explore the progression of the symptoms of MD, predisposing genetic factors as well as new treatment strategies. Copyright 2009 Elsevier Ltd. All rights reserved.
Hagl, Stephanie; Kocher, Alexa; Schiborr, Christina; Kolesova, Natalie; Frank, Jan; Eckert, Gunter P
2015-10-01
Curcumin, a polyphenolic compound abundant in the rhizome of Curcuma longa, has been reported to have various beneficial biological and pharmacological activities. Recent research revealed that curcumin might be valuable in the prevention and therapy of numerous disorders including neurodegenerative diseases like Alzheimer's disease. Due to its low absorption and quick elimination from the body, curcumin bioavailability is rather low which poses major problems for the use of curcumin as a therapeutic agent. There are several approaches to ameliorate curcumin bioavailability after oral administration, amongst them simultaneous administration with secondary plant compounds, micronization and micellation. We examined bioavailability in vivo in NMRI mice and the effects of native curcumin and a newly developed curcumin micelles formulation on mitochondrial function in vitro in PC12 cells and ex vivo in isolated mouse brain mitochondria. We found that curcumin micelles improved bioavailability of native curcumin around 10- to 40-fold in plasma and brain of mice. Incubation with native curcumin and curcumin micelles prevented isolated mouse brain mitochondria from swelling, indicating less mitochondrial permeability transition pore (mPTP) opening and prevention of injury. Curcumin micelles proved to be more efficient in preventing mitochondrial swelling in isolated mouse brain mitochondria and protecting PC12 cells from nitrosative stress than native curcumin. Due to their improved effectivity, curcumin micelles might be a suitable formulation for the prevention of mitochondrial dysfunction in brain aging and neurodegeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Victorino, Daniella B; Bederman, Ilya R; Costa, Alberto C S
2017-11-01
Memantine is a drug approved for the treatment of moderate-to-severe Alzheimer's disease (AD), and there is ongoing research on the potential expansion of its clinical applicability. Published data on the pharmacokinetics of memantine in the mouse are still incomplete, particularly for chronic administration regimens and mouse models of specific genetic disorders. Down's syndrome (DS) is a genetic disorder known to affect multiple organs and systems, with the potential to alter significantly drug pharmacokinetics. Here, we describe a simple, efficient and sensitive GC/MS-based procedure for the determination of memantine concentrations in murine blood and tissue samples. We analysed pharmacokinetic properties of memantine, particularly its distribution in blood, brain and liver in the Ts65Dn mouse model of DS and euploid F1 hybrid mice after single intraperitoneal administrations of increasing doses of this drug. We also determined steady-state memantine concentrations in plasma, brain and liver after chronic oral administration of this drug in adult male Ts65Dn mice, euploid littermate controls and nursing or pregnant Ts65Dn mice. Our results revalidated the acute dose of memantine used in previously published work, determined the appropriate amount of memantine to be mixed into mouse chow to achieve steady and pharmacologically relevant plasma and tissue levels of this drug and demonstrated that memantine can be transferred from mother to offspring via maternal milk and placenta. Most of these findings are potentially applicable not only to the study of DS but also to other neurodevelopmental and neurodegenerative disorders. © 2017 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Wityak, John; McGee, Kevin F; Conlon, Michael P; Song, Ren Hua; Duffy, Bryan C; Clayton, Brent; Lynch, Michael; Wang, Gwen; Freeman, Emily; Haber, James; Kitchen, Douglas B; Manning, David D; Ismail, Jiffry; Khmelnitsky, Yuri; Michels, Peter; Webster, Jeff; Irigoyen, Macarena; Luche, Michele; Hultman, Monica; Bai, Mei; Kuok, IokTeng D; Newell, Ryan; Lamers, Marieke; Leonard, Philip; Yates, Dawn; Matthews, Kim; Ongeri, Lynette; Clifton, Steve; Mead, Tania; Deupree, Susan; Wheelan, Pat; Lyons, Kathy; Wilson, Claire; Kiselyov, Alex; Toledo-Sherman, Leticia; Beconi, Maria; Muñoz-Sanjuan, Ignacio; Bard, Jonathan; Dominguez, Celia
2015-04-09
Through medicinal chemistry lead optimization studies focused on calculated properties and guided by X-ray crystallography and computational modeling, potent pan-JNK inhibitors were identified that showed submicromolar activity in a cellular assay. Using in vitro ADME profiling data, 9t was identified as possessing favorable permeability and a low potential for efflux, but it was rapidly cleared in liver microsomal incubations. In a mouse pharmacokinetics study, compound 9t was brain-penetrant after oral dosing, but exposure was limited by high plasma clearance. Brain exposure at a level expected to support modulation of a pharmacodynamic marker in mouse was achieved when the compound was coadministered with the pan-cytochrome P450 inhibitor 1-aminobenzotriazole.
Roy, Maggie; Cardoso, Cécile; Dorieux, Olène; Malgorn, Carole; Epelbaum, Stephane; Petit, Fanny; Kraska, Audrey; Brouillet, Emmanuel; Delatour, Benoît; Perret, Martine; Aujard, Fabienne; Dhenain, Marc
2014-01-01
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Amyloid-β peptide (Aβ) deposition in the brain is one of its hallmarks and the measure of plasma Aβ is considered to be a biomarker for anti-amyloid drug efficacy in animal models of AD. However, age-associated plasmatic Aβ modulation in animal models is practically never addressed in the literature. Mouse lemur primates are used as a model of normal and AD-like cerebral aging. Here, we studied the effect of age on plasmatic Aβ in 58 mouse lemurs aged from 1 to 10 years. A subset of animals presented high plasmatic Aβ and the proportion of animals with high plasmatic Aβ was higher in aged animals as compared to young ones. Histological evaluation of the brain of some of these animals was carried out to assess extracellular and intracellular amyloid load. In aged lemurs, plasmatic Aβ was negatively correlated with the density of neurons accumulating deposits of Aβ. PMID:25131002
Sankaranarayanan, Sethu; Holahan, Marie A; Colussi, Dennis; Crouthamel, Ming-Chih; Devanarayan, Viswanath; Ellis, Joan; Espeseth, Amy; Gates, Adam T; Graham, Samuel L; Gregro, Allison R; Hazuda, Daria; Hochman, Jerome H; Holloway, Katharine; Jin, Lixia; Kahana, Jason; Lai, Ming-tain; Lineberger, Janet; McGaughey, Georgia; Moore, Keith P; Nantermet, Philippe; Pietrak, Beth; Price, Eric A; Rajapakse, Hemaka; Stauffer, Shaun; Steinbeiser, Melissa A; Seabrook, Guy; Selnick, Harold G; Shi, Xiao-Ping; Stanton, Matthew G; Swestock, John; Tugusheva, Katherine; Tyler, Keala X; Vacca, Joseph P; Wong, Jacky; Wu, Guoxin; Xu, Min; Cook, Jacquelynn J; Simon, Adam J
2009-01-01
beta-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic A beta 42 peptides in Alzheimer's disease. Although previous mouse studies have shown brain A beta lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of A beta in cerebrospinal fluid (CSF) and plasma could be evaluated. TC-1, a potent inhibitor (IC(50) approximately 0.4 nM), has excellent passive membrane permeability, low susceptibility to P-glycoprotein transport, and lowered brain A beta levels in a mouse model. Intravenous infusion of TC-1 led to a significant but transient lowering of CSF and plasma A beta levels in conscious rhesus monkeys because it underwent CYP3A4-mediated metabolism. Oral codosing of TC-1 with ritonavir, a potent CYP3A4 inhibitor, twice daily over 3.5 days in rhesus monkeys led to sustained plasma TC-1 exposure and a significant and sustained reduction in CSF sAPP beta, A beta 40, A beta 42, and plasma A beta 40 levels. CSF A beta 42 lowering showed an EC(50) of approximately 20 nM with respect to the CSF [TC-1] levels, demonstrating excellent concordance with its potency in a cell-based assay. These results demonstrate the first in vivo proof of concept of CSF A beta lowering after oral administration of a BACE1 inhibitor in a nonhuman primate.
Sagare, Abhay P.; Bell, Robert D.; Srivastava, Alaka; Sengillo, Jesse D.; Singh, Itender; Nishida, Yoichiro; Chow, Nienwen; Zlokovic, Berislav V.
2013-01-01
Soluble low density lipoprotein receptor-related protein-1 (sLRP1) binds ∼70% of amyloid β-peptide (Aβ) in human plasma. In Alzheimer disease (AD) and individuals with mild cognitive impairment converting to AD, plasma sLRP1 levels are reduced and sLRP1 is oxidized, which results in diminished Aβ peripheral binding and higher levels of free Aβ in plasma. Experimental studies have shown that free circulating Aβ re-enters the brain and that sLRP1 and/or its recombinant wild type cluster IV (WT-LRPIV) prevent Aβ from entering the brain. Treatment of Alzheimer APPsw+/0 mice with WT-LRPIV has been shown to reduce brain Aβ pathology. In addition to Aβ, LRPIV binds multiple ligands. To enhance LRPIV binding for Aβ relative to other LRP1 ligands, we generated a library of LRPIV-derived fragments and full-length LRPIV variants with glycine replacing aspartic acid residues 3394, 3556, and 3674 in the calcium binding sites. Compared with WT-LRPIV, a lead LRPIV-D3674G mutant had 1.6- and 2.7-fold higher binding affinity for Aβ40 and Aβ42 in vitro, respectively, and a lower binding affinity for other LRP1 ligands (e.g. apolipoprotein E2, E3, and E4 (1.3–1.8-fold), tissue plasminogen activator (2.7-fold), matrix metalloproteinase-9 (4.1-fold), and Factor Xa (3.8-fold)). LRPIV-D3674G cleared mouse endogenous brain Aβ40 and Aβ42 25–27% better than WT-LRPIV. A 3-month subcutaneous treatment of APPsw+/0 mice with LRPIV-D3674G (40 μg/kg/day) reduced Aβ40 and Αβ42 levels in the hippocampus, cortex, and cerebrospinal fluid by 60–80% and improved cerebral blood flow responses and hippocampal function at 9 months of age. Thus, LRPIV-D3674G is an efficient new Aβ clearance therapy. PMID:23580652
Tan, Jianlong; Li, Min; Zhong, Wen; Hu, Chengping; Gu, Qihua; Xie, Yali
2017-11-17
Brain metastasis is an increasing problem in non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs), including gefitinib, erlotinib, and icotinib, are reported to be effective in patients with brain metastases. However, direct comparative studies of the pharmacokinetics and efficacy of these three drugs in treating brain metastases are lacking. In the present investigation, we found that gefitinib penetrated the blood-tumor barrier and was distributed to brain metastases more effectively than erlotinib or icotinib in a nude mouse model. The 1-h ratio of brain metastases to plasma concentration for gefitinib, erlotinib, and icotinib was 9.82±1.03%, 4.83±0.25%, and 2.62±0.21%, respectively. The 2-h ratio of brain metastases to plasma concentration for gefitinib, erlotinib, and icotinib was 15.11±2.00%, 5.73±1.31%, and 2.69±0.31%, respectively. Gefitinib exhibited the strongest antitumor activity ( p gefitinib vs. erlotinib =0.005; p gefitinib vs. icotinib =0.002). Notably, erlotinib exhibited a better treatment efficacy than icotinib ( p =0.037). Consistently, immunohistochemical data showed that TKIs differentially inhibit the proliferation of metastatical tumor cells. Gefitinib and erlotinib markedly inhibited the proliferation of tumor cells, while there were more ki-67-positive tumor cells in the icotinib group. Additionally, gefitinib inhibited the phosphorylation of EGFR better than the other drugs, whereas pEGFR expression levels in erlotinib groups were lower than levels in the icotinib group ( p gefitinib vs. erlotinib =0.995; p gefitinib vs. icotinib =0.028; p erlotinib vs. icotinib =0.042).Altogether, our findings suggest that gefitinib and erlotinib can inhibit the growth of PC-9-luc brain tumors. Gefitinib demonstrated better antitumor activity and penetration rate in brain metastases than erlotinib or icotinib.
Tan, Jianlong; Li, Min; Zhong, Wen; Hu, Chengping; Gu, Qihua; Xie, Yali
2017-01-01
Brain metastasis is an increasing problem in non-small cell lung cancer (NSCLC) patients. Tyrosine kinase inhibitors (TKIs), including gefitinib, erlotinib, and icotinib, are reported to be effective in patients with brain metastases. However, direct comparative studies of the pharmacokinetics and efficacy of these three drugs in treating brain metastases are lacking. In the present investigation, we found that gefitinib penetrated the blood-tumor barrier and was distributed to brain metastases more effectively than erlotinib or icotinib in a nude mouse model. The 1-h ratio of brain metastases to plasma concentration for gefitinib, erlotinib, and icotinib was 9.82±1.03%, 4.83±0.25%, and 2.62±0.21%, respectively. The 2-h ratio of brain metastases to plasma concentration for gefitinib, erlotinib, and icotinib was 15.11±2.00%, 5.73±1.31%, and 2.69±0.31%, respectively. Gefitinib exhibited the strongest antitumor activity (pgefitinib vs. erlotinib=0.005; pgefitinib vs. icotinib=0.002). Notably, erlotinib exhibited a better treatment efficacy than icotinib (p=0.037). Consistently, immunohistochemical data showed that TKIs differentially inhibit the proliferation of metastatical tumor cells. Gefitinib and erlotinib markedly inhibited the proliferation of tumor cells, while there were more ki-67-positive tumor cells in the icotinib group. Additionally, gefitinib inhibited the phosphorylation of EGFR better than the other drugs, whereas pEGFR expression levels in erlotinib groups were lower than levels in the icotinib group (pgefitinib vs. erlotinib=0.995; pgefitinib vs. icotinib=0.028; perlotinib vs. icotinib=0.042).Altogether, our findings suggest that gefitinib and erlotinib can inhibit the growth of PC-9-luc brain tumors. Gefitinib demonstrated better antitumor activity and penetration rate in brain metastases than erlotinib or icotinib. PMID:29228726
Tisdall, Martin; Petzold, Axel
2012-10-24
In a case study, the authors report an increase in phosphorylated neurofilament heavy chain, a marker of neuroaxonal damage, in the plasma of a blast-exposed patient immediately after injury. They suggest that this phosphoprotein may be a useful body fluid indicator of acute blast traumatic brain injury.
Optical imaging of cell death in traumatic brain injury using a heat shock protein-90 alkylator
Xie, B-W; Park, D; Van Beek, E R; Blankevoort, V; Orabi, Y; Que, I; Kaijzel, E L; Chan, A; Hogg, P J; Löwik, C W G M
2013-01-01
Traumatic brain injury is a major public health concern and is characterised by both apoptotic and necrotic cell death in the lesion. Anatomical imaging is usually used to assess traumatic brain injuries and there is a need for imaging modalities that provide complementary cellular information. We sought to non-invasively image cell death in a mouse model of traumatic brain injury using a near-infrared fluorescent conjugate of a synthetic heat shock protein-90 alkylator, 4-(N-(S-glutathionylacetyl) amino) phenylarsonous acid (GSAO). GSAO labels both apoptotic and necrotic cells coincident with loss of plasma membrane integrity. The optical GSAO specifically labelled apoptotic and necrotic cells in culture and did not accumulate in healthy organs or tissues in the living mouse body. The conjugate is a very effective imager of cell death in brain lesions. The optical GSAO was detected by fluorescence intensity and GSAO bound to dying/dead cells was detected from prolongation of the fluorescence lifetime. An optimal signal-to-background ratio was achieved as early as 3 h after injection of the probe and the signal intensity positively correlated with both lesion size and probe concentration. This optical GSAO offers a convenient and robust means to non-invasively image apoptotic and necrotic cell death in brain and other lesions. PMID:23348587
Norman, Andrew B; Tabet, Michael R; Norman, Mantana K; Buesing, William R; Pesce, Amadeo J; Ball, William J
2007-01-01
The predominantly human sequence, high-affinity anticocaine monoclonal antibody (mAb) 2E2 was cleared slowly from mouse blood by a first-order process with an elimination t(1/2) of 8.1 days. Infused 2E2 also produced a dramatic dose-dependent increase in plasma cocaine concentrations and a concomitant decrease in the brain cocaine concentrations produced by an i.v. injection of cocaine HCl (0.56 mg/kg). At the highest dose of 2E2 tested (3:1, mAb/drug), cocaine was not detectable in the brain. Pharmacokinetic studies showed that the normal disappearance of cocaine from plasma was described by a two-compartment pharmacokinetic model with distribution t(1/2alpha) and terminal elimination t(1/2beta) values of 1.9 and 26.1 min, respectively. In the presence of an equimolar dose of mAb 2E2, there was a 26-fold increase in the area under the plasma cocaine concentration-time curve (AUC) relative to the AUC in the absence of 2E2. Consequently, 2E2 decreased the volume of distribution of cocaine from 6.0 to 0.20 l/kg, which approximated that of 2E2 (0.28 l/kg). However, cocaine was still rapidly cleared from plasma, and its elimination was now described by a single-compartment model with an elimination t(1/2) of 17 min. Importantly, 2E2 also produced a 4.5-fold (78%) decrease in the cocaine AUC in the brain. Therefore, the effect of 2E2 on plasma and brain cocaine concentrations was predominantly caused by a change in the distribution of cocaine with negligible effects on its rate of clearance. These data support the concept of immunotherapy for drug abuse.
Rietz, Anne; Li, Hongxia; Quist, Kevin M; Cherry, Jonathan J; Lorson, Christian L; Burnett, Barrington G; Kern, Nicholas L; Calder, Alyssa N; Fritsche, Melanie; Lusic, Hrvoje; Boaler, Patrick J; Choi, Sungwoon; Xing, Xuechao; Glicksman, Marcie A; Cuny, Gregory D; Androphy, Elliot J; Hodgetts, Kevin J
2017-06-08
Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro properties and a promising mouse PK profile, making it suitable for in vivo testing. This series post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy inhibition, revealing a novel therapeutic mechanism that should complement other modalities for treatment of SMA.
Cloning and expression of hepatic synaptotagmin 1 in mouse.
Sancho-Knapik, Sara; Guillén, Natalia; Osada, Jesús
2015-05-15
Mouse hepatic synaptotagmin 1 (SYT1) cDNA was cloned, characterized and compared to the brain one. The hepatic transcript was 1807 bp in length, smaller than the brain, and only encoded by 9 of 11 gene exons. In this regard, 5'-and 3'-untranslated regions were 66 and 476 bp, respectively; the open reading frame of 1266 bp codified for a protein of 421 amino acids, identical to the brain, with a predicted molecular mass of 47.4 kDa and highly conserved across different species. Immunoblotting of protein showed two isoforms of higher molecular masses than the theoretical prediction based on amino acid sequence suggesting posttranslational modifications. Subcellular distribution of protein isoforms corresponded to plasma membrane, lysosomes and microsomes and was identical between the brain and liver. Nonetheless, the highest molecular weight isoform was smaller in the liver, irrespective of subcellular location. Quantitative mRNA tissue distribution showed that it was widely expressed and that the highest values corresponded to the brain, followed by the liver, spleen, abdominal fat, intestine and skeletal muscle. These findings indicate tissue-specific splicing of the gene and posttranslational modification and the variation in expression in the different tissues might suggest a different requirement of SYT1 for the specific function in each organ. Copyright © 2015 Elsevier B.V. All rights reserved.
Cherdyntseva, Nadezda V; Ivanova, Anna A; Ivanov, Vladimir V; Cherdyntsev, Evgeny; Nair, Cherupally Krishnan Krishnan; Kagiya, Tsutomu V
2013-01-01
To investigate the potential of the anti-oxidant ascorbic acid glucoside (AA-2G) to modulate neurotoxicity induced by high doses of nitrotriazole radiosensitizer. Male and female C56Bl/6xCBA hybrid mice aged 8-14 weeks (weight 18-24 g) were used. Nitrotriazole drug radiosensitizer sanazole at a high dose of 2, 1 g/kg was per os administered to induce neurotoxicity at mice. Ascorbic acid glucoside was given 30 min before the sanazole administration. Serum ascorbic acid, brain glutathione level, as well as behavioral performance using open field apparatus were measured. Administration of high (non-therapeutic) doses of the nitrotriazole drug sanazole results in neurotoxicity in mice as evidenced from behavioral performance, emotional activity and depletion of the cellular antioxidant, glutathione, in the brain. The serum levels of ascorbic acid was also found reduced in high dose sanazole treated animals. Per os administration of ascorbic acid glucoside significantly reduced the neurotoxicity. This effect was associated with the prevention of glutathione depletion in mouse brain and restoring the ascorbic acid level in serum. Administration of ascorbic acid glucoside, but not ascorbic acid, before sanazole administration protected from sanazole-induced neurotoxicity by preventing the decrease in the brain reduced glutathione level and providing high level of ascorbic acid in plasma.
Courret, Nathalie; Darche, Sylvie; Sonigo, Pierre; Milon, Geneviève; Buzoni-Gâtel, Dominique; Tardieux, Isabelle
2006-01-01
The protozoan parasite Toxoplasma gondii enters hosts through the intestinal mucosa and colonizes distant tissues such as the brain, where its progeny persists for a lifetime. We investigated the role of CD11c- and CD11b-expressing leukocytes in T gondii transport during the early step of parasitism from the mouse small intestine and during subsequent parasite localization in the brain. Following intragastric inoculation of cyst-containing parasites in mice, CD11c+ dendritic cells from the intestinal lamina propria, the Peyer patches, and the mesenteric lymph nodes were parasitized while in the blood, parasites were associated with the CD11c- CD11b+ monocytes. Using adoptive transfer experiments, we demonstrated that these parasitized cells triggered a parasitic process in the brain of naive recipient mice. Ex vivo analysis of parasitized leukocytes showed that single tachyzoites remained at the cell periphery, often surrounded by the host cell plasma membrane, but did not divide. Using either a dye that labels circulating leukocytes or an antibody known to prevent CD11b+ circulating leukocytes from leaving the microvascular bed lumen, and chimeric mice in which the hematopoietic cells expressed the green fluorescent protein, we established that T gondii zoites hijacked CD11b+ leukocytes to reach the brain extravascular space. PMID:16051744
Chew, Wai Kit; Ambu, Stephen; Mak, Joon Wah
2012-01-01
Toxoplasma gondii is a parasite that generates latent cysts in the brain; reactivation of these cysts may lead to fatal toxoplasmic encephalitis, for which treatment remains unsuccessful. We assessed spiramycin pharmacokinetics coadministered with metronidazole, the eradication of brain cysts and the in vitro reactivation. Male BALB/c mice were fed 1,000 tachyzoites orally to develop chronic toxoplasmosis. Four weeks later, infected mice underwent different treatments: (i) infected untreated mice (n = 9), which received vehicle only; (ii) a spiramycin-only group (n = 9), 400 mg/kg daily for 7 days; (iii) a metronidazole-only group (n = 9), 500 mg/kg daily for 7 days; and (iv) a combination group (n = 9), which received both spiramycin (400 mg/kg) and metronidazole (500 mg/kg) daily for 7 days. An uninfected control group (n = 10) was administered vehicle only. After treatment, the brain cysts were counted, brain homogenates were cultured in confluent Vero cells, and cysts and tachyzoites were counted after 1 week. Separately, pharmacokinetic profiles (plasma and brain) were assessed after a single dose of spiramycin (400 mg/kg), metronidazole (500 mg/kg), or both. Metronidazole treatment increased the brain spiramycin area under the concentration-time curve from 0 h to ∞ (AUC0–∞) by 67% without affecting its plasma disposition. Metronidazole plasma and brain AUC0–∞ values were reduced 9 and 62%, respectively, after spiramycin coadministration. Enhanced spiramycin brain exposure after coadministration reduced brain cysts 15-fold (79 ± 23 for the combination treatment versus 1,198 ± 153 for the untreated control group [P < 0.05]) and 10-fold versus the spiramycin-only group (768 ± 125). Metronidazole alone showed no effect (1,028 ± 149). Tachyzoites were absent in the brain. Spiramycin reduced in vitro reactivation. Metronidazole increased spiramycin brain penetration, causing a significant reduction of T. gondii brain cysts, with potential clinical translatability for chronic toxoplasmosis treatment. PMID:22271863
Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina
2017-04-01
Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O 2 , 6 h; postnatal day 7 , P7) at P14. Exposure to hypoxia led to reduced body weight ( P < 0.001) and length ( P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH ( P < 0.01) and IGF-1 ( P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain. Copyright © 2017 the American Physiological Society.
Proceedings of the 2016 National Toxicology Program Satellite Symposium
Elmore, Susan A.; Chen, Vivian S.; Hayes-Bouknight, Schantel; Hoane, Jessica S.; Janardhan, Kyathanahalli; Kooistra, Linda H.; Nolte, Thomas; Szabo, Kathleen A.; Willson, Gabrielle A.; Wolf, Jeffrey C.; Malarkey, David E.
2016-01-01
The 2016 annual National Toxicology Program (NTP) Satellite Symposium, entitled “Pathology Potpourri” was held in San Diego, California, at the Society of Toxicologic Pathology’s (STP) 35th annual meeting. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers’ talks, along with select images that were used by the audience for voting and discussion. Some lesions and topics covered during the symposium included malignant glioma and histiocytic sarcoma in the rodent brain; a new statistical method designed for histopathology data evaluation; uterine stromal/glandular polyp in a rat; malignant plasma cell tumor in a mouse brain; Schwann cell proliferative lesions in rat hearts; axillary schwannoma in a cat; necrosis and granulomatous inflammation in a rat brain; adenoma/carcinoma in a rat adrenal gland; hepatocyte maturation defect and liver/spleen hematopoietic defects in an embryonic mouse; distinguishing malignant glioma, malignant mixed glioma and malignant oligodendroglioma in the rat; comparison of mammary gland whole mounts and histopathology from mice; and discussion of the International Harmonization of Nomenclature and Diagnostic Criteria (INHAND) collaborations. PMID:27821709
Proceedings of the 2016 National Toxicology Program Satellite Symposium.
Elmore, Susan A; Chen, Vivian S; Hayes-Bouknight, Schantel; Hoane, Jessica S; Janardhan, Kyathanahalli; Kooistra, Linda H; Nolte, Thomas; Szabo, Kathleen A; Willson, Gabrielle A; Wolf, Jeffrey C; Malarkey, David E
2017-01-01
The 2016 annual National Toxicology Program Satellite Symposium, entitled "Pathology Potpourri" was held in San Diego, CA, at the Society of Toxicologic Pathology's (STP) 35th annual meeting. The goal of this symposium was to present and discuss challenging diagnostic pathology and/or nomenclature issues. This article presents summaries of the speakers' talks, along with select images that were used by the audience for voting and discussion. Some lesions and topics covered during the symposium included malignant glioma and histiocytic sarcoma in the rodent brain; a new statistical method designed for histopathology data evaluation; uterine stromal/glandular polyp in a rat; malignant plasma cell tumor in a mouse brain; Schwann cell proliferative lesions in rat hearts; axillary schwannoma in a cat; necrosis and granulomatous inflammation in a rat brain; adenoma/carcinoma in a rat adrenal gland; hepatocyte maturation defect and liver/spleen hematopoietic defects in an embryonic mouse; distinguishing malignant glioma, malignant mixed glioma, and malignant oligodendroglioma in the rat; comparison of mammary gland whole mounts and histopathology from mice; and discussion of the International Harmonization of Nomenclature and Diagnostic Criteria collaborations.
Mouse d-Amino-Acid Oxidase: Distribution and Physiological Substrates
Koga, Reiko; Miyoshi, Yurika; Sakaue, Hiroaki; Hamase, Kenji; Konno, Ryuichi
2017-01-01
d-Amino-acid oxidase (DAO) catalyzes the oxidative deamination of d-amino acids. DAO is present in a wide variety of organisms and has important roles. Here, we review the distribution and physiological substrates of mouse DAO. Mouse DAO is present in the kidney, brain, and spinal cord, like DAOs in other mammals. However, in contrast to other animals, it is not present in the mouse liver. Recently, DAO has been detected in the neutrophils, retina, and small intestine in mice. To determine the physiological substrates of mouse DAO, mutant mice lacking DAO activity are helpful. As DAO has wide substrate specificity and degrades various d-amino acids, many d-amino acids accumulate in the tissues and body fluids of the mutant mice. These amino acids are d-methionine, d-alanine, d-serine, d-leucine, d-proline, d-phenylalanine, d-tyrosine, and d-citrulline. Even in wild-type mice, administration of DAO inhibitors elevates D-serine levels in the plasma and brain. Among the above d-amino acids, the main physiological substrates of mouse DAO are d-alanine and d-serine. These two d-amino acids are most abundant in the tissues and body fluids of mice. d-Alanine derives from bacteria and produces bactericidal reactive oxygen species by the action of DAO. d-Serine is synthesized by serine racemase and is present especially in the central nervous system, where it serves as a neuromodulator. DAO is responsible for the metabolism of d-serine. Since DAO has been implicated in the etiology of neuropsychiatric diseases, mouse DAO has been used as a representative model. Recent reports, however, suggest that mouse DAO is different from human DAO with respect to important properties. PMID:29255714
Giri, Nagdeep; Shaik, Naveed; Pan, Guoyu; Terasaki, Tetsuya; Mukai, Chisato; Kitagaki, Shinji; Miyakoshi, Naoki; Elmquist, William F.
2016-01-01
Many anti-human immunodeficiency virus 1 nucleoside reverse-transcriptase inhibitors have low central nervous system (CNS) distribution due in part to active efflux transport at the blood-brain barrier. We have previously shown that zidovudine (AZT) and abacavir (ABC) are in vitro substrates for the efflux transport protein breast cancer resistance protein (Bcrp) 1. We evaluated the influence of Bcrp1 on plasma pharmacokinetics and brain penetration of zidovudine and abacavir in wild-type and Bcrp1-deficient (Bcrp1−/−) FVB mice. There was no difference in either area under the concentration-time profiles for plasma (AUCplasma) or brain (AUCbrain) for zidovudine between the wild-type and Bcrp1−/− mice. The AUCplasma of abacavir was 20% lower in the Bcrp1−/− mice, whereas the AUCbrain was 20% greater. This difference resulted in a 1.5-fold increase in abacavir brain exposure in the Bcrp1−/− mice. The effect of selective and nonselective transport inhibitors on the ABC brain/plasma ratio at a single time point was evaluated. 3-(6-Isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1′,2′:1,6]pyrido[3,4-b]indol-3-yl)-propionicacid tert-butyl ester (Ko143), N[4[2-(6, 7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]phenyl]-5-methoxy-9-oxo-10H-acridine-4-carboxamide (GF120918), probenecid, and Pluronic P85 increased abacavir plasma concentrations in the wild-type mice. Abacavir plasma concentrations in Bcrp1−/− mice were increased by (R)-4-((1aR,6R,10bS)-1,2-difluoro-1,1a,6,10b-tetrahydrodibenzo(a,e)cyclopropa(c)cycloheptan-6-yl)-α-((5-quinoloyloxy)methyl)-1-piperazineethanol trihydrochloride (LY335979), GF120918, and probenecid, but not by Ko143. Brain/plasma concentration ratios in both the wild-type and Bcrp1−/− mice were increased by the P-glycoprotein inhibitors LY335979 and GF120918, but not by BCRP-selective inhibitors. These data indicate that deletion of Bcrp1 has little influence on the pharmacokinetics or brain penetration of AZT. However, for abacavir, deletion of Bcrp1 reduces plasma exposure and enhances brain penetration. These findings suggest that Bcrp1 does not play a significant role in limiting the CNS distribution of zidovudine and abacavir; however, brain penetration of abacavir is dependent on P-glycoprotein-mediated efflux. PMID:18443033
Enalapril and captopril enhance glutathione-dependent antioxidant defenses in mouse tissues.
de Cavanagh, E M; Inserra, F; Ferder, L; Fraga, C G
2000-03-01
The effect of enalapril and captopril on total glutathione content (GSSG + GSH) and selenium-dependent glutathione peroxidase (Se-GPx) and glutathione reductase (GSSG-Rd) activities was investigated in mouse tissues. CF-1 mice (4-mo-old females) received water containing enalapril (20 mg/l) or captopril (50 mg/l) for 11 wk. Enalapril increased GSSG + GSH content (P < 0.05) in erythrocytes (147%), brain (112%), and lung (67%), and captopril increased GSSG + GSH content in erythrocytes (190%) and brain (132%). Enalapril enhanced Se-GPx activity in kidney cortex (42%) and kidney medulla (23%) and captopril in kidney cortex (30%). GSSG-Rd activity was enhanced by enalapril in erythrocytes (21%), brain (21%), liver (18%), and kidney cortex (53%) and by captopril in erythrocytes (25%), brain (19%), and liver (34%). In vitro erythrocyte oxidant stress was evaluated by thiobarbituric acid-reactive substances (TBARS) production (control 365 +/- 11, enalapril 221 +/- 26, captopril 206 +/- 17 nmol TBARS x g Hb(-1) x h(-1); both P < 0.05 vs. control) and phenylhydrazine-induced methemoglobin (MetHb) formation (control 66.5 +/- 3.5, enalapril 52.9 +/- 0.4, captopril: 56.4 +/- 2.9 micromol MetHb/g Hb; both P < 0.05 vs. control). Both angiotensin-converting enzyme inhibitor treatments were associated with increased nitric oxide production, as assessed by plasma NO-(3) + NO-(2) level determination (control 9.22 +/- 0.64, enalapril 13.7 +/- 1.9, captopril 17.3 +/- 3.0 micromol NO-(3) + NO-(2)/l plasma; both P < 0.05 vs. control). These findings support our previous reports on the enalapril- and captopril-induced enhancement of endogenous antioxidant defenses and include new data on glutathione-dependent defenses, thus furthering current knowledge on the association of ACE inhibition and antioxidants.
Li, H; Sun, J; Du, J; Wang, F; Fang, R; Yu, C; Xiong, J; Chen, W; Lu, Z; Liu, J
2018-05-01
Traumatic brain injury (TBI) is a common occurrence following gastrointestinal dysfunction. Recently, more and more attentions are being focused on gut microbiota in brain and behavior. Glucagon-like peptide-1 (GLP-1) is considered as a mediator that links the gut-brain axis. The aim of this study was to explore the neuroprotective effects of Clostridium butyricum (Cb) on brain damage in a mouse model of TBI. Male C57BL/6 mice were subjected to a model of TBI-induced by weight-drop impact head injury and were treated intragastrically with Cb. The cognitive deficits, brain water content, neuronal death, and blood-brain barrier (BBB) permeability were evaluated. The expression of tight junction (TJ) proteins, Bcl-2, Bax, GLP-1 receptor (GLP-1R), and phosphorylation of Akt (p-Akt) in the brain were also measured. Moreover, the intestinal barrier permeability, the expression of TJ protein and GLP-1, and IL-6 level in the intestine were detected. Cb treatment significantly improved neurological dysfunction, brain edema, neurodegeneration, and BBB impairment. Meanwhile, Cb treatment also significantly increased the expression of TJ proteins (occludin and zonula occluden-1), p-Akt and Bcl-2, but decreased expression of Bax. Moreover, Cb treatment exhibited more prominent effects on decreasing the levels of plasma d-lactate and colonic IL-6, upregulating expression of Occludin, and protecting intestinal barrier integrity. Furthermore, Cb-treated mice showed increased the secretion of intestinal GLP-1 and upregulated expression of cerebral GLP-1R. Our findings demonstrated the neuroprotective effect of Cb in TBI mice and the involved mechanisms were partially attributed to the elevating GLP-1 secretion through the gut-brain axis. © 2017 John Wiley & Sons Ltd.
Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe
2017-01-01
Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.
Hampton, Caryn; Rosa, Raymond; Szeto, Daphne; Forrest, Gail; Campbell, Barry; Kennan, Richard; Wang, Shubing; Huang, Chin-Hu; Gichuru, Loise; Ping, Xiaoli; Shen, Xiaolan; Small, Kersten; Madwed, Jeffrey; Lynch, Joseph J
2017-01-01
Despite the widespread use of the mouse transverse aortic constriction heart failure model, there are no reports on the characterization of the standard-of-care agent carvedilol in this model. Left ventricular pressure overload was produced in mice by transverse aortic constriction between the innominate and left common carotid arteries. Carvedilol was administered at multiple dose levels (3, 10 and 30 mg/kg/day per os ; yielding end-study mean plasma concentrations of 0.002, 0.015 and 0.044 µM, respectively) in a therapeutic design protocol with treatment initiated after the manifestation of left ventricular remodeling at 3 weeks post transverse aortic constriction and continued for 10 weeks. Carvedilol treatment in transverse aortic constriction mice significantly decreased heart rate and left ventricular dP/dt (max) at all dose levels consistent with β-adrenoceptor blockade. The middle dose of carvedilol significantly decreased left ventricular weight, whereas the higher dose decreased total heart, left and right ventricular weight and wet lung weight compared to untreated transverse aortic constriction mice. The higher dose of carvedilol significantly increased cardiac performance as measured by ejection fraction and fractional shortening and decreased left ventricular end systolic volume consistent with the beneficial effect on cardiac function. End-study plasma sST-2 and Gal-3 levels did not differ among sham, transverse aortic constriction control and transverse aortic constriction carvedilol groups. Plasma b rain natriuretic peptide concentrations were elevated significantly in transverse aortic constriction control animals (~150%) compared to shams in association with changes in ejection fraction and heart weight and tended to decrease (~30%, p = 0.10-0.12) with the mid- and high-dose carvedilol treatment. A comparison of carvedilol hemodynamic and structural effects in the mouse transverse aortic constriction model versus clinical use indicates a strong agreement in effect profiles preclinical versus clinical, providing important translational validation for this widely used animal model. The present plasma brain natriuretic peptide biomarker findings support the measurement of plasma natriuretic peptides in the mouse transverse aortic constriction model to extend the translational utility of the model.
Becker, J Sabine; Matusch, Andreas; Palm, Christoph; Salber, Dagmar; Morton, Kathryn A; Becker, J Susanne
2010-02-01
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed and established as an emerging technique in the generation of quantitative images of metal distributions in thin tissue sections of brain samples (such as human, rat and mouse brain), with applications in research related to neurodegenerative disorders. A new analytical protocol is described which includes sample preparation by cryo-cutting of thin tissue sections and matrix-matched laboratory standards, mass spectrometric measurements, data acquisition, and quantitative analysis. Specific examples of the bioimaging of metal distributions in normal rodent brains are provided. Differences to the normal were assessed in a Parkinson's disease and a stroke brain model. Furthermore, changes during normal aging were studied. Powerful analytical techniques are also required for the determination and characterization of metal-containing proteins within a large pool of proteins, e.g., after denaturing or non-denaturing electrophoretic separation of proteins in one-dimensional and two-dimensional gels. LA-ICP-MS can be employed to detect metalloproteins in protein bands or spots separated after gel electrophoresis. MALDI-MS can then be used to identify specific metal-containing proteins in these bands or spots. The combination of these techniques is described in the second section.
Brain Region-Specific Trafficking of the Dopamine Transporter
Block, Ethan R.; Nuttle, Jacob; Balcita-Pedicino, Judith Joyce; Caltagarone, John; Watkins, Simon C.
2015-01-01
The dopamine (DA) transporter (DAT) controls dopaminergic neurotransmission by removing extracellular DA. Although DA reuptake is proposed to be regulated by DAT traffic to and from the cell surface, the membrane trafficking system involved in the endocytic cycling of DAT in the intact mammalian brain has not been characterized. Hence, we performed immunolabeling and quantitative analysis of the subcellular and regional distribution of DAT using the transgenic knock-in mouse expressing hemagglutinin (HA) epitope-tagged DAT (HA-DAT) and by using a combination of electron microscopy and a novel method for immunofluorescence labeling of HA-DAT in acute sagittal brain slices. Both approaches demonstrated that, in midbrain somatodendritic regions, HA-DAT was present in the plasma membrane, endoplasmic reticulum, and Golgi complex, with a small fraction in early and recycling endosomes and an even smaller fraction in late endosomes and lysosomes. In the striatum and in axonal tracts between the midbrain and striatum, HA-DAT was detected predominantly in the plasma membrane, and quantitative analysis revealed increased DAT density in striatal compared with midbrain plasma membranes. Endosomes were strikingly rare and lysosomes were absent in striatal axons, in which there was little intracellular HA-DAT. Acute administration of amphetamine in vivo (60 min) or to slices ex vivo (10–60 min) did not result in detectable changes in DAT distribution. Altogether, these data provide evidence for regional differences in DAT plasma membrane targeting and retention and suggest a surprisingly low level of endocytic trafficking of DAT in the striatum along with limited DAT endocytic activity in somatodendritic areas. SIGNIFICANCE STATEMENT The dopamine transporter (DAT) is the key regulator of the dopamine neurotransmission in the CNS. In the present study, we developed a new approach for studying DAT localization and dynamics in intact neurons in acute sagittal brain slices from the knock-in mouse expressing epitope-tagged DAT. For the first time, the fluorescence imaging analysis of DAT was combined with the immunogold labeling of DAT and quantitative electron microscopy. In contrast to numerous studies of DAT trafficking in heterologous expression systems and dissociated cultured neurons, studies in intact neurons revealed a surprisingly low amount of endocytic trafficking of DAT at steady state and after acute amphetamine treatment and suggested that non-vesicular transport could be the main mechanism establishing DAT distribution within the dopaminergic neuron. PMID:26377471
Yan, Jian; Ginsberg, Stephen D; Powers, Brian; Alldred, Melissa J; Saltzman, Arthur; Strupp, Barbara J; Caudill, Marie A
2014-10-01
Maternal choline supplementation (MCS) induces lifelong cognitive benefits in the Ts65Dn mouse, a trisomic mouse model of Down syndrome and Alzheimer's disease. To gain insight into the mechanisms underlying these beneficial effects, we conducted a study to test the hypothesis that MCS alters choline metabolism in adult Ts65Dn offspring. Deuterium-labeled methyl-d9-choline was administered to adult Ts65Dn and disomic (2N) female littermates born to choline-unsupplemented or choline-supplemented Ts65Dn dams. Enrichment of d9-choline metabolites (derived from intact choline) and d3 + d6-choline metabolites [produced when choline-derived methyl groups are used by phosphatidylethanolamine N-methyltransferase (PEMT)] was measured in harvested tissues. Adult offspring (both Ts65Dn and 2N) of choline-supplemented (vs. choline-unsupplemented) dams exhibited 60% greater (P≤0.007) activity of hepatic PEMT, which functions in de novo choline synthesis and produces phosphatidylcholine (PC) enriched in docosahexaenoic acid. Higher (P<0.001) enrichment of PEMT-derived d3 and d6 metabolites was detected in liver, plasma, and brain in both genotypes but to a greater extent in the Ts65Dn adult offspring. MCS also yielded higher (P<0.05) d9 metabolite enrichments in liver, plasma, and brain. These data demonstrate that MCS exerts lasting effects on offspring choline metabolism, including up-regulation of the hepatic PEMT pathway and enhanced provision of choline and PEMT-PC to the brain. © FASEB.
Villanueva, Ernesto; DeMaio, William; Watanyar, Adiba; Chinnasamy, Ramesh; Arterburn, Jeffrey B.; Perez, Ruth G.
2016-01-01
Parkinson’s disease (PD) is a neurodegenerative aging disorder in which postmortem PD brain exhibits neuroinflammation, as well as synucleinopathy-associated protein phosphatase 2A (PP2A) enzymatic activity loss. Based on our translational research, we began evaluating the PD-repurposing-potential of an anti-inflammatory, neuroprotective, and PP2A stimulatory oral drug that is FDA-approved for multiple sclerosis, FTY720 (fingolimod, Gilenya®). We also designed two new FTY720 analogues, FTY720-C2 and FTY720-Mitoxy, with modifications that affect drug potency and mitochondrial localization, respectively. Herein, we describe the metabolic stability and metabolic profiling of FTY720-C2 and FTY720-Mitoxy in liver microsomes and hepatocytes. Using mouse, rat, dog, monkey, and human liver microsomes the intrinsic clearance of FTY720-C2 was 22.5, 79.5, 6.0, 20.2 and 18.3 μL/min/mg; and for FTY720-Mitoxy was 1.8, 7.8, 1.4, 135.0 and 17.5 μL/min/mg, respectively. In hepatocytes, both FTY720-C2 and FTY720-Mitoxy were metabolized from the octyl side chain, generating a series of carboxylic acids similar to the parent FTY720, but without phosphorylated metabolites. To assess absorption and distribution, we gave equivalent single intravenous (IV) or oral doses of FTY720-C2 or FTY720-Mitoxy to C57BL/6 mice, with two mice per time point evaluated. After IV delivery, both FTY720-C2 and FTY720-Mitoxy were rapidly detected in plasma and brain; and reached peak concentrations at the first sampling time points. After oral dosing, FTY720-C2 was present in plasma and brain, although FTY720-Mitoxy was not orally bioavailable. Brain-to-plasma ratio of both compounds increased time-dependently, suggesting a preferential partitioning to the brain. PP2A activity in mouse adrenal gland increased ~2-fold after FTY720-C2 or FTY720-Mitoxy, as compared to untreated controls. In summary, FTY720-C2 and FTY720-Mitoxy both (i) crossed the blood-brain-barrier; (ii) produced metabolites similar to FTY720, except without phosphorylated species that cause S1P1-mediated-immunosuppression; and (iii) stimulated in vivo PP2A activity, all of which encourage additional preclinical assessment. PMID:27611691
Hare, Dominic J.; Kysenius, Kai; Paul, Bence; Knauer, Beate; Hutchinson, Robert W.; O'Connor, Ciaran; Fryer, Fred; Hennessey, Tom P.; Bush, Ashley I.; Crouch, Peter J.; Doble, Philip A.
2017-01-01
Metals are found ubiquitously throughout an organism, with their biological role dictated by both their chemical reactivity and abundance within a specific anatomical region. Within the brain, metals have a highly compartmentalized distribution, depending on the primary function they play within the central nervous system. Imaging the spatial distribution of metals has provided unique insight into the biochemical architecture of the brain, allowing direct correlation between neuroanatomical regions and their known function with regard to metal-dependent processes. In addition, several age-related neurological disorders feature disrupted metal homeostasis, which is often confined to small regions of the brain that are otherwise difficult to analyze. Here, we describe a comprehensive method for quantitatively imaging metals in the mouse brain, using laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) and specially designed image processing software. Focusing on iron, copper and zinc, which are three of the most abundant and disease-relevant metals within the brain, we describe the essential steps in sample preparation, analysis, quantitative measurements and image processing to produce maps of metal distribution within the low micrometer resolution range. This technique, applicable to any cut tissue section, is capable of demonstrating the highly variable distribution of metals within an organ or system, and can be used to identify changes in metal homeostasis and absolute levels within fine anatomical structures. PMID:28190025
Role of DHA in aging-related changes in mouse brain synaptic plasma membrane proteome.
Sidhu, Vishaldeep K; Huang, Bill X; Desai, Abhishek; Kevala, Karl; Kim, Hee-Yong
2016-05-01
Aging has been related to diminished cognitive function, which could be a result of ineffective synaptic function. We have previously shown that synaptic plasma membrane proteins supporting synaptic integrity and neurotransmission were downregulated in docosahexaenoic acid (DHA)-deprived brains, suggesting an important role of DHA in synaptic function. In this study, we demonstrate aging-induced synaptic proteome changes and DHA-dependent mitigation of such changes using mass spectrometry-based protein quantitation combined with western blot or messenger RNA analysis. We found significant reduction of 15 synaptic plasma membrane proteins in aging brains including fodrin-α, synaptopodin, postsynaptic density protein 95, synaptic vesicle glycoprotein 2B, synaptosomal-associated protein 25, synaptosomal-associated protein-α, N-methyl-D-aspartate receptor subunit epsilon-2 precursor, AMPA2, AP2, VGluT1, munc18-1, dynamin-1, vesicle-associated membrane protein 2, rab3A, and EAAT1, most of which are involved in synaptic transmission. Notably, the first 9 proteins were further reduced when brain DHA was depleted by diet, indicating that DHA plays an important role in sustaining these synaptic proteins downregulated during aging. Reduction of 2 of these proteins was reversed by raising the brain DHA level by supplementing aged animals with an omega-3 fatty acid sufficient diet for 2 months. The recognition memory compromised in DHA-depleted animals was also improved. Our results suggest a potential role of DHA in alleviating aging-associated cognitive decline by offsetting the loss of neurotransmission-regulating synaptic proteins involved in synaptic function. Published by Elsevier Inc.
Differential plasma microvesicle and brain profiles of microRNA in experimental cerebral malaria.
Cohen, Amy; Zinger, Anna; Tiberti, Natalia; Grau, Georges E R; Combes, Valery
2018-05-11
Cerebral malaria (CM) is a fatal complication of Plasmodium infection, mostly affecting children under the age of five in the sub-Saharan African region. CM pathogenesis remains incompletely understood, although sequestered infected red blood cells, inflammatory cells aggregating in the cerebral blood vessels, and the microvesicles (MV) that they release in the circulation, have been implicated. Plasma MV numbers increase in CM patients and in the murine model, where blocking their release, genetically or pharmacologically, protects against brain pathology, suggesting a role of MV in CM neuropathogenesis. In this work, the microRNA (miRNA) cargo of MV is defined for the first time during experimental CM with the overarching hypothesis that this characterization could help understand CM pathogenesis. The change in abundance of miRNA was studied following infection of CBA mice with Plasmodium berghei ANKA strain (causing experimental CM), and Plasmodium yoelii, which causes severe malaria without cerebral complications, termed non-CM (NCM). miRNA expression was analyzed using microarrays to compare MV from healthy (NI) and CM mice, yielding several miRNA of interest. The differential expression profiles of these selected miRNA (miR-146a, miR-150, miR-193b, miR-205, miR-215, miR-467a, and miR-486) were analyzed in mouse MV, MV-free plasma, and brain tissue by quantitative reverse transcription PCR (RT-qPCR). Two miRNA-miR-146a and miR-193b-were confirmed as differentially abundant in MV from CM mice, compared with NCM and NI mice. These miRNA have been shown to play various roles in inflammation, and their dysregulation during CM may be critical for triggering the neurological syndrome via regulation of their potential downstream targets. These data suggest that, in the mouse model at least, miRNA may have a regulatory role in the pathogenesis of severe malaria.
Peng, Zhanglong; Pati, Shibani; Fontaine, Magali J; Hall, Kelly; Herrera, Anthony V; Kozar, Rosemary A
2016-11-01
Clinical studies have demonstrated that the early and empiric use of plasma improves survival after hemorrhagic shock. We have demonstrated in rodent models of hemorrhagic shock that resuscitation with plasma is protective to the lungs compared with lactated Ringer's solution. As our long-term objective is to determine the molecular mechanisms that modulate plasma's protective effects in injured bleeding patients, we have used human plasma in a mouse model of hemorrhagic shock. The goal of the current experiments is to determine if there are significant adverse effects on lung injury when using human versus mouse plasma in an established murine model of hemorrhagic shock and laparotomy. Mice underwent laparotomy and 90 minutes of hemorrhagic shock to a mean arterial pressure (MAP) of 35 ± 5 mm Hg followed by resuscitation at 1× shed blood using either mouse fresh frozen plasma (FFP), human FFP, or human lyophilized plasma. Mean arterial pressure was recorded during shock and for the first 30 minutes of resuscitation. After 3 hours, animals were killed, and lungs collected for analysis. There was a significant increase in early MAP when mouse FFP was used to resuscitate animals compared with human FFP or human lyophilized plasma. However, despite these differences, analysis of the mouse lungs revealed no significant differences in pulmonary histopathology, lung permeability, or lung edema between all three plasma groups. Analysis of neutrophil infiltration in the lungs revealed that mouse FFP decreased neutrophil influx as measured by neutrophil staining; however, myeloperoxidase immunostaining revealed no significant differences in between groups. The study of human plasma in a mouse model of hemorrhagic shock is feasible but does reveal some differences compared with mouse plasma-based resuscitation in physiologic measures such as MAP postresuscitation. Measures of end organ function such as lung injury appear to be comparable in this acute model of hemorrhagic shock and resuscitation.
Honda, Shin-Ichiro; Wakatsuki, Toru; Harada, Nobuhiro
2011-01-01
Aromatase in the mouse brain is expressed only in the nerve cells of specific brain regions with a transient peak during the neonatal period when sexual behaviors become organized. The aromatase-knockout (ArKO) mouse, generated to shed light on the physiological functions of estrogen in the brain, exhibited various abnormal behaviors, concomitant with undetectable estrogen and increased androgen in the blood. To further elucidate the effects of neurosteroidal estrogens on behavioral phenotypes, we first prepared an brain-specific aromatase transgenic (bsArTG) mouse by introduction of a human aromatase transgene controlled under a −6.5 kb upstream region of the brain-specific promoter of the mouse aromatase gene into fertilized mouse eggs, because the −6.5 kb promoter region was previously shown to contain the minimal essential element responsible for brain-specific spatiotemporal expression. Then, an ArKO mouse expressing the human aromatase only in the brain was generated by crossing the bsArTG mouse with the ArKO mouse. The resulting mice (ArKO/bsArTG mice) nearly recovered from abnormal sexual, aggressive, and locomotive (exploratory) behaviors, in spite of having almost the same serum levels of estrogen and androgen as the adult ArKO mouse. These results suggest that estrogens locally synthesized in the specific neurons of the perinatal mouse brain directly act on the neurons and play crucial roles in the organization of neuronal networks participating in the control of sexual, aggressive, and locomotive (exploratory) behaviors. PMID:22654807
Chen, Xiaomei; Keep, Richard F; Liang, Yan; Zhu, Hao-Jie; Hammarlund-Udenaes, Margareta; Hu, Yongjun; Smith, David E
2017-05-01
Peptide transporter 2 (PEPT2) is a high-affinity low-capacity transporter belonging to the proton-coupled oligopeptide transporter family. Although many aspects of PEPT2 structure-function are known, including its localization in choroid plexus and neurons, its regional activity in brain, especially extracellular fluid (ECF), is uncertain. In this study, the pharmacokinetics and regional brain distribution of cefadroxil, a β-lactam antibiotic and PEPT2 substrate, were investigated in wildtype and Pept2 null mice using in vivo intracerebral microdialysis. Cefadroxil was infused intravenously over 4h at 0.15mg/min/kg, and samples obtained from plasma, brain ECF, cerebrospinal fluid (CSF) and brain tissue. A permeability-surface area experiment was also performed in which 0.15mg/min/kg cefadroxil was infused intravenously for 10min, and samples obtained from plasma and brain tissues. Our results showed that PEPT2 ablation significantly increased the brain ECF and CSF levels of cefadroxil (2- to 2.5-fold). In contrast, there were no significant differences between wildtype and Pept2 null mice in the amount of cefadroxil in brain cells. The unbound volume of distribution of cefadroxil in brain was 60% lower in Pept2 null mice indicating an uptake function for PEPT2 in brain cells. Finally, PEPT2 did not affect the influx clearance of cefadroxil, thereby, ruling out differences between the two genotypes in drug entry across the blood-brain barriers. These findings demonstrate, for the first time, the impact of PEPT2 on brain ECF as well as the known role of PEPT2 in removing peptide-like drugs, such as cefadroxil, from the CSF to blood. Copyright © 2017 Elsevier Inc. All rights reserved.
Preclinical Evaluation of 18F-JNJ64349311, a Novel PET Tracer for Tau Imaging.
Declercq, Lieven; Rombouts, Frederik; Koole, Michel; Fierens, Katleen; Mariën, Jonas; Langlois, Xavier; Andrés, José Ignacio; Schmidt, Mark; Macdonald, Gregor; Moechars, Diederik; Vanduffel, Wim; Tousseyn, Thomas; Vandenberghe, Rik; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy
2017-06-01
In this study, we have synthesized and evaluated 18 F-JNJ64349311, a tracer with high affinity for aggregated tau (inhibition constant value, 8 nM) and high (≥500×) in vitro selectivity for tau over β-amyloid, in comparison with the benchmark compound 18 F-AV1451 ( 18 F-T807) in mice, rats, and a rhesus monkey. Methods: In vitro binding characteristics were determined for Alzheimer's disease, progressive supranuclear palsy, and corticobasal degeneration patient brain tissue slices using autoradiography studies. Ex vivo biodistribution studies were performed in mice. Radiometabolites were quantified in the brain and plasma of mice and in the plasma of a rhesus monkey using high-performance liquid chromatography. Dynamic small-animal PET studies were performed in rats and a rhesus monkey to evaluate tracer pharmacokinetics in the brain. Results: Mouse biodistribution studies showed moderate initial brain uptake and rapid brain washout. Radiometabolite analyses after injection of 18 F-JNJ64349311 in mice showed the presence of a polar radiometabolite in plasma, but not in the brain. Semiquantitative autoradiography studies on postmortem tissue sections of human Alzheimer's disease brains showed highly displaceable binding to tau-rich regions. No specific binding was, however, found on human progressive supranuclear palsy and corticobasal degeneration brain slices. Small-animal PET scans of Wistar rats revealed moderate initial brain uptake (SUV, ∼1.5 at 1 min after injection) and rapid brain washout. Gradual bone uptake was, however, also observed. Blocking and displacement did not affect brain time-activity curves, suggesting no off-target specific binding of the tracer in the healthy rat brain. A small-animal PET scan of a rhesus monkey revealed moderate initial brain uptake (SUV, 1.9 at 1 min after injection) with a rapid washout. In the monkey, no bone uptake was detected during the 120-min scan. Conclusion: This biologic evaluation suggests that 18 F-JNJ64349311 is a promising tau PET tracer candidate, with a favorable pharmacokinetic profile, as compared with 18 F-AV1451. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Identification of a set of genes showing regionally enriched expression in the mouse brain
D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa LC; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven JM
2008-01-01
Background The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. Results We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Conclusion Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression. PMID:18625066
Identification of a set of genes showing regionally enriched expression in the mouse brain.
D'Souza, Cletus A; Chopra, Vikramjit; Varhol, Richard; Xie, Yuan-Yun; Bohacec, Slavita; Zhao, Yongjun; Lee, Lisa L C; Bilenky, Mikhail; Portales-Casamar, Elodie; He, An; Wasserman, Wyeth W; Goldowitz, Daniel; Marra, Marco A; Holt, Robert A; Simpson, Elizabeth M; Jones, Steven J M
2008-07-14
The Pleiades Promoter Project aims to improve gene therapy by designing human mini-promoters (< 4 kb) that drive gene expression in specific brain regions or cell-types of therapeutic interest. Our goal was to first identify genes displaying regionally enriched expression in the mouse brain so that promoters designed from orthologous human genes can then be tested to drive reporter expression in a similar pattern in the mouse brain. We have utilized LongSAGE to identify regionally enriched transcripts in the adult mouse brain. As supplemental strategies, we also performed a meta-analysis of published literature and inspected the Allen Brain Atlas in situ hybridization data. From a set of approximately 30,000 mouse genes, 237 were identified as showing specific or enriched expression in 30 target regions of the mouse brain. GO term over-representation among these genes revealed co-involvement in various aspects of central nervous system development and physiology. Using a multi-faceted expression validation approach, we have identified mouse genes whose human orthologs are good candidates for design of mini-promoters. These mouse genes represent molecular markers in several discrete brain regions/cell-types, which could potentially provide a mechanistic explanation of unique functions performed by each region. This set of markers may also serve as a resource for further studies of gene regulatory elements influencing brain expression.
Janson, Juliette; Eketjäll, Susanna; Tunblad, Karin; Jeppsson, Fredrik; Von Berg, Stefan; Niva, Camilla; Radesäter, Ann-Cathrin; Fälting, Johanna; Visser, Sandra A G
2014-03-01
The aims were to quantify the in vivo time-course between the oral dose, the plasma and brain exposure and the inhibitory effect on Amyloid β (Aβ) in brain and cerebrospinal fluid, and to establish the correlation between in vitro and in vivo potency of novel β-secretase (BACE1) inhibitors. BACE1-mediated inhibition of Aβ was quantified in in vivo dose- and/or time-response studies and in vitro in SH-SY5Y cells, N2A cells, and primary cortical neurons (PCN). An indirect response model with inhibition on Aβ production rate was used to estimate unbound in vivo IC 50 in a population pharmacokinetic-pharmacodynamic modeling approach. Estimated in vivo inhibitory potencies varied between 1 and 1,000 nM. The turnover half-life of Aβ40 in brain was predicted to be 0.5 h in mouse and 1 h in guinea pig. An excellent correlation between PCN and in vivo potency was observed. Moreover, a strong correlation in potency was found between human SH-SY5Y cells and mouse PCN, being 4.5-fold larger in SH-SY5Y cells. The strong in vivo-in vitro correlation increased the confidence in using human cell lines for screening and optimization of BACE1 inhibitors. This can optimize the design and reduce the number of preclinical in vivo effect studies.
Chen, Sujuan; Ren, Qian; Zhang, Jinfei; Ye, Yangjing; Zhang, Zhen; Xu, Yijiao; Guo, Min; Ji, Haiyan; Xu, Chong; Gu, Chenjian; Gao, Wei; Huang, Shile; Chen, Long
2014-01-01
Aims This study explores the neuroprotective effects and mechanisms of N-acetyl-L-cysteine (NAC) in mice exposed to cadmium (Cd). Methods NAC (150 mg/kg) was intraperitoneally administered to mice exposed to Cd (10-50 mg/L) in drinking water for 6 weeks. The changes of cell damage and death, reactive oxygen species (ROS), antioxidant enzymes, as well as Akt/mammalian target of rapamycin (mTOR) signaling pathway in brain neurons were assessed. To verify the role of mTOR activation in Cd-induced neurotoxicity, mice also received a subacute regimen of intraperitoneally administered Cd (1 mg/kg) with/without rapamycin (7.5 mg/kg) for 11 days. Results Chronic exposure of mice to Cd induced brain damage or neuronal cell death, due to ROS induction. Co-administration of NAC significantly reduced Cd levels in the plasma and brain of the animals. NAC prevented Cd-induced ROS and significantly attenuated Cd-induced brain damage or neuronal cell death. The protective effect of NAC was mediated, at least partially, by elevating the activities of Cu/Zn-superoxide dismutase, catalase and glutathione peroxidase, as well as the level of glutathione in the brain. Furthermore, Cd-induced activation of Akt/mTOR pathway in the brain was also inhibited by NAC. Rapamycin in vitro and in vivo protected against Cd-induced neurotoxicity. Conclusions NAC protects against Cd-induced neuronal apoptosis in mouse brain partially by inhibiting ROS-dependent activation of Akt/mTOR pathway. The findings highlight that NAC may be exploited for prevention and treatment of Cd-induced neurodegenerative diseases. PMID:24299490
Loss of serum IGF-I input to the brain as an early biomarker of disease onset in Alzheimer mice
Trueba-Sáiz, A; Cavada, C; Fernandez, A M; Leon, T; González, D A; Fortea Ormaechea, J; Lleó, A; Del Ser, T; Nuñez, A; Torres-Aleman, I
2013-01-01
Circulating insulin-like growth factor I (IGF-I) enters the brain and promotes clearance of amyloid peptides known to accumulate in Alzheimer's disease (AD) brains. Both patients and mouse models of AD show decreased level of circulating IGF-I enter the brain as evidenced by a lower ratio of cerebrospinal fluid/plasma IGF-I. Importantly, in presymptomatic AD mice this reduction is already manifested as a decreased brain input of serum IGF-I in response to environmental enrichment. To explore a potential diagnostic use of this early loss of IGF-I input, we monitored electrocorticogram (ECG) responses to systemic IGF-I in mice. Whereas control mice showed enhanced ECG activity after IGF-I, presymptomatic AD mice showed blunted ECG responses. Because nonhuman primates showed identically enhanced electroencephalogram (EEG) activity in response to systemic IGF-I, loss of the EEG signature of serum IGF-I may be exploited as a disease biomarker in AD patients. PMID:24301648
Running-Induced Systemic Cathepsin B Secretion Is Associated with Memory Function.
Moon, Hyo Youl; Becke, Andreas; Berron, David; Becker, Benjamin; Sah, Nirnath; Benoni, Galit; Janke, Emma; Lubejko, Susan T; Greig, Nigel H; Mattison, Julie A; Duzel, Emrah; van Praag, Henriette
2016-08-09
Peripheral processes that mediate beneficial effects of exercise on the brain remain sparsely explored. Here, we show that a muscle secretory factor, cathepsin B (CTSB) protein, is important for the cognitive and neurogenic benefits of running. Proteomic analysis revealed elevated levels of CTSB in conditioned medium derived from skeletal muscle cell cultures treated with AMP-kinase agonist AICAR. Consistently, running increased CTSB levels in mouse gastrocnemius muscle and plasma. Furthermore, recombinant CTSB application enhanced expression of brain-derived neurotrophic factor (BDNF) and doublecortin (DCX) in adult hippocampal progenitor cells through a mechanism dependent on the multifunctional protein P11. In vivo, in CTSB knockout (KO) mice, running did not enhance adult hippocampal neurogenesis and spatial memory function. Interestingly, in Rhesus monkeys and humans, treadmill exercise elevated CTSB in plasma. In humans, changes in CTSB levels correlated with fitness and hippocampus-dependent memory function. Our findings suggest CTSB as a mediator of effects of exercise on cognition. Published by Elsevier Inc.
Menet, Marie-Claude; Baron, Stephanie; Taghi, Meryam; Diestra, Remi; Dargère, Delphine; Laprévote, Olivier; Nivet-Antoine, Valérie; Beaudeux, Jean-Louis; Bédarida, Tatiana; Cottart, Charles-Henry
2017-08-01
Trans-resveratrol is widely studied for its potentially beneficial effects on numerous disorders. It is rapidly metabolized and its metabolites can exhibit biological activity. The present study aimed to investigate whether acute or sustained trans-resveratrol administration impacted on the distribution of trans-resveratrol and its metabolites in brain, heart, and liver. We used ultra-HPLC quadrupole-TOF (UHPLC-Q-TOF) in a full-scan mode to identify and assess large numbers of resveratrol metabolites. For acute intake, mice were overfed with a single dose of trans-resveratrol (150 mg/kg) and organs were collected after 30 and 60 min. For sustained intake, trans-resveratrol was given in the chow (0.04% w/w corresponding to 40 mg/kg/day), and plasma and the organs were collected after 3 months of this resveratrol diet. We found that trans-resveratrol-3-O-glucuronide and resveratrol-3-sulfate were the main metabolites found after acute intake, and free trans-resveratrol (in the brain and heart) and dihydroresveratrol derivatives were found after sustained administration CONCLUSIONS: Our results show notable differences between acute and sustained administration of trans-resveratrol and distribution of trans-resveratrol and its metabolites in mouse heart, brain, and liver. The results suggest a strategy for development of galenic forms of resveratrol. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yan, Jian; Ginsberg, Stephen D.; Powers, Brian; Alldred, Melissa J.; Saltzman, Arthur; Strupp, Barbara J.; Caudill, Marie A.
2014-01-01
Maternal choline supplementation (MCS) induces lifelong cognitive benefits in the Ts65Dn mouse, a trisomic mouse model of Down syndrome and Alzheimer's disease. To gain insight into the mechanisms underlying these beneficial effects, we conducted a study to test the hypothesis that MCS alters choline metabolism in adult Ts65Dn offspring. Deuterium-labeled methyl-d9-choline was administered to adult Ts65Dn and disomic (2N) female littermates born to choline-unsupplemented or choline-supplemented Ts65Dn dams. Enrichment of d9-choline metabolites (derived from intact choline) and d3 + d6-choline metabolites [produced when choline-derived methyl groups are used by phosphatidylethanolamine N-methyltransferase (PEMT)] was measured in harvested tissues. Adult offspring (both Ts65Dn and 2N) of choline-supplemented (vs. choline-unsupplemented) dams exhibited 60% greater (P≤0.007) activity of hepatic PEMT, which functions in de novo choline synthesis and produces phosphatidylcholine (PC) enriched in docosahexaenoic acid. Higher (P<0.001) enrichment of PEMT-derived d3 and d6 metabolites was detected in liver, plasma, and brain in both genotypes but to a greater extent in the Ts65Dn adult offspring. MCS also yielded higher (P<0.05) d9 metabolite enrichments in liver, plasma, and brain. These data demonstrate that MCS exerts lasting effects on offspring choline metabolism, including up-regulation of the hepatic PEMT pathway and enhanced provision of choline and PEMT-PC to the brain.—Yan, J., Ginsberg, S. D., Powers, B., Alldred, M. J., Saltzman, A., Strupp, B. J., Caudill, M. A. Maternal choline supplementation programs greater activity of the phosphatidylethanolamine N-methyltransferase (PEMT) pathway in adult Ts65Dn trisomic mice. PMID:24963152
Systemic Correction of Murine Glycogen Storage Disease Type IV by an AAV-Mediated Gene Therapy.
Yi, Haiqing; Zhang, Quan; Brooks, Elizabeth D; Yang, Chunyu; Thurberg, Beth L; Kishnani, Priya S; Sun, Baodong
2017-03-01
Deficiency of glycogen branching enzyme (GBE) causes glycogen storage disease type IV (GSD IV), which is characterized by the accumulation of a less branched, poorly soluble form of glycogen called polyglucosan (PG) in multiple tissues. This study evaluates the efficacy of gene therapy with an adeno-associated viral (AAV) vector in a mouse model of adult form of GSD IV (Gbe1 ys/ys ). An AAV serotype 9 (AAV9) vector containing a human GBE expression cassette (AAV-GBE) was intravenously injected into 14-day-old Gbe1 ys/ys mice at a dose of 5 × 10 11 vector genomes per mouse. Mice were euthanized at 3 and 9 months of age. In the AAV-treated mice at 3 months of age, GBE enzyme activity was highly elevated in heart, which is consistent with the high copy number of the viral vector genome detected. GBE activity also increased significantly in skeletal muscles and the brain, but not in the liver. The glycogen content was reduced to wild-type levels in muscles and significantly reduced in the liver and brain. At 9 months of age, though GBE activity was only significantly elevated in the heart, glycogen levels were significantly reduced in the liver, brain, and skeletal muscles of the AAV-treated mice. In addition, the AAV treatment resulted in an overall decrease in plasma activities of alanine transaminase, aspartate transaminase, and creatine kinase, and a significant increase in fasting plasma glucose concentration at 9 months of age. This suggests an alleviation of damage and improvement of function in the liver and muscles by the AAV treatment. This study demonstrated a long-term benefit of a systemic injection of an AAV-GBE vector in Gbe1 ys/ys mice.
Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul
2013-01-01
An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain. PMID:23440889
Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul
2013-01-01
An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emoto, Miho C.; Department of Neurology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556; Matsuoka, Yuta
Glutathione (GSH) is the most abundant non-protein thiol that buffers reactive oxygen species in the brain. GSH does not reduce nitroxides directly, but in the presence of ascorbates, addition of GSH increases ascorbate-induced reduction of nitroxides. In this study, we used electron paramagnetic resonance (EPR) imaging and the nitroxide imaging probe, 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), to non-invasively obtain spatially resolved redox data from mouse brains depleted of GSH with diethyl maleate compared to control. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index ofmore » the redox status in vivo and mapped as a “redox map”. The obtained redox maps from control and GSH-depleted mouse brains showed a clear change in the brain redox status, which was due to the decreased levels of GSH in brains as measured by a biochemical assay. We observed a linear relationship between the reduction rate constant of MCP and the level of GSH for both control and GSH-depleted mouse brains. Using this relationship, the GSH level in the brain can be estimated from the redox map obtained with EPR imaging. - Highlights: • Redox status of glutathione-depleted mouse brain was examined with EPR imaging. • Redox status of mouse brain changed depending on glutathione (GSH) levels in brains. • Linear relationship between GSH levels and redox status in brains was found. • Using this relation, estimation of GSH levels in brains is possible from EPR images.« less
NASA Astrophysics Data System (ADS)
Jayasena, T.; Poljak, A.; Braidy, N.; Zhong, L.; Rowlands, B.; Muenchhoff, J.; Grant, R.; Smythe, G.; Teo, C.; Raftery, M.; Sachdev, P.
2016-10-01
Sirtuin proteins have a variety of intracellular targets, thereby regulating multiple biological pathways including neurodegeneration. However, relatively little is currently known about the role or expression of the 7 mammalian sirtuins in the central nervous system. Western blotting, PCR and ELISA are the main techniques currently used to measure sirtuin levels. To achieve sufficient sensitivity and selectivity in a multiplex-format, a targeted mass spectrometric assay was developed and validated for the quantification of all seven mammalian sirtuins (SIRT1-7). Quantification of all peptides was by multiple reaction monitoring (MRM) using three mass transitions per protein-specific peptide, two specific peptides for each sirtuin and a stable isotope labelled internal standard. The assay was applied to a variety of samples including cultured brain cells, mammalian brain tissue, CSF and plasma. All sirtuin peptides were detected in the human brain, with SIRT2 being the most abundant. Sirtuins were also detected in human CSF and plasma, and guinea pig and mouse tissues. In conclusion, we have successfully applied MRM mass spectrometry for the detection and quantification of sirtuin proteins in the central nervous system, paving the way for more quantitative and functional studies.
Arnold, W. David; Duque, Sandra; Iyer, Chitra C.; Zaworski, Phillip; McGovern, Vicki L.; Taylor, Shannon J.; von Herrmann, Katharine M.; Kobayashi, Dione T.; Chen, Karen S.; Kolb, Stephen J.; Paushkin, Sergey V.; Burghes, Arthur H. M.
2016-01-01
Introduction and Objective Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disorder. SMA is caused by homozygous loss of the SMN1 gene and retention of the SMN2 gene resulting in reduced levels of full length SMN protein that are insufficient for motor neuron function. Various treatments that restore levels of SMN are currently in clinical trials and biomarkers are needed to determine the response to treatment. Here, we sought to investigate in SMA mice a set of plasma analytes, previously identified in patients with SMA to correlate with motor function. The goal was to determine whether levels of plasma markers were altered in the SMNΔ7 mouse model of SMA and whether postnatal SMN restoration resulted in normalization of the biomarkers. Methods SMNΔ7 and control mice were treated with antisense oligonucleotides (ASO) targeting ISS-N1 to increase SMN protein from SMN2 or scramble ASO (sham treatment) via intracerebroventricular injection on postnatal day 1 (P1). Brain, spinal cord, quadriceps muscle, and liver were analyzed for SMN protein levels at P12 and P90. Ten plasma biomarkers (a subset of biomarkers in the SMA-MAP panel available for analysis in mice) were analyzed in plasma obtained at P12, P30, and P90. Results Of the eight plasma biomarkers assessed, 5 were significantly changed in sham treated SMNΔ7 mice compared to control mice and were normalized in SMNΔ7 mice treated with ASO. Conclusion This study defines a subset of the SMA-MAP plasma biomarker panel that is abnormal in the most commonly used mouse model of SMA. Furthermore, some of these markers are responsive to postnatal SMN restoration. These findings support continued clinical development of these potential prognostic and pharmacodynamic biomarkers. PMID:27907033
Tsang, V C; Wyatt, C R; Damian, R T
1979-06-01
The functional capabilities of a thermometric clot-timer have been demonstrated in a comparative study of human and mouse plasma coagulation. The influence of some variables on coagulation times of mouse and human plasmas were examined in activated partial thromboplastin time, one-stage prothrombin time, and Russell's viper venom time assays. Mouse plasma coagulation times were generally shorter and more reproducible than those of human plasma. Optimal assay conditions are also described.
Kim, So-Hyun; K. Cho, Somi; Min, Tae-Sun; Kim, Yujin; Yang, Seung-Ok; Kim, Hee-Su; Hyun, Sun-Hee; Kim, Hana; Kim, Young-Suk; Choi, Hyung-Kyoon
2011-01-01
The ameliorating effects of Mango (Mangifera indica L.) flesh and peel samples on plasma ethanol level were investigated using a mouse model. Mango fruit samples remarkably decreased mouse plasma ethanol levels and increased the activities of alcohol dehydrogenase and acetaldehyde dehydrogenase. The 1H-NMR-based metabolomic technique was employed to investigate the differences in metabolic profiles of mango fruits, and mouse plasma samples fed with mango fruit samples. The partial least squares-discriminate analysis of 1H-NMR spectral data of mouse plasma demonstrated that there were clear separations among plasma samples from mice fed with buffer, mango flesh and peel. A loading plot demonstrated that metabolites from mango fruit, such as fructose and aspartate, might stimulate alcohol degradation enzymes. This study suggests that mango flesh and peel could be used as resources for functional foods intended to decrease plasma ethanol level after ethanol uptake. PMID:21562641
Circulatory miR-34a as an RNA-based, noninvasive biomarker for brain aging
Li, Xiaoli; Khanna, Amit; Li, Na; Wang, Eugenia
2011-01-01
MicroRNAs in blood samples have been identified as an important class of biomarkers, which can reflect physiological changes from cancer to brain dysfunction. In this report we identify concordant increases in levels of expression of miR-34a in brain and two components of mouse blood samples, peripheral blood mononuclear cells (PBMCs) and plasma, from 2 day old neonates through young adulthood and mid-life to old age at 25 months. Levels of this microRNA's prime target, silent information regulator 1 (SIRT1), in brain and the two blood-derived specimens decrease with age inversely to miR-34a, starting as early as 4 months old, when appreciable tissue aging has not yet begun. Our results suggest that: 1. Increased miR-34a and the reciprocal decrease of its target, SIRT1, in blood specimens are the accessible biomarkers for age-dependent changes in brain; and 2. these changes are predictors of impending decline in brain function, as early as in young adult mice. PMID:22064828
4D MEMRI atlas of neonatal FVB/N mouse brain development.
Szulc, Kamila U; Lerch, Jason P; Nieman, Brian J; Bartelle, Benjamin B; Friedel, Miriam; Suero-Abreu, Giselle A; Watson, Charles; Joyner, Alexandra L; Turnbull, Daniel H
2015-09-01
The widespread use of the mouse as a model system to study brain development has created the need for noninvasive neuroimaging methods that can be applied to early postnatal mice. The goal of this study was to optimize in vivo three- (3D) and four-dimensional (4D) manganese (Mn)-enhanced MRI (MEMRI) approaches for acquiring and analyzing data from the developing mouse brain. The combination of custom, stage-dependent holders and self-gated (motion-correcting) 3D MRI sequences enabled the acquisition of high-resolution (100-μm isotropic), motion artifact-free brain images with a high level of contrast due to Mn-enhancement of numerous brain regions and nuclei. We acquired high-quality longitudinal brain images from two groups of FVB/N strain mice, six mice per group, each mouse imaged on alternate odd or even days (6 3D MEMRI images at each day) covering the developmental stages between postnatal days 1 to 11. The effects of Mn-exposure, anesthesia and MRI were assessed, showing small but significant transient effects on body weight and brain volume, which recovered with time and did not result in significant morphological differences when compared to controls. Metrics derived from deformation-based morphometry (DBM) were used for quantitative analysis of changes in volume and position of a number of brain regions. The cerebellum, a brain region undergoing significant changes in size and patterning at early postnatal stages, was analyzed in detail to demonstrate the spatiotemporal characterization made possible by this new atlas of mouse brain development. These results show that MEMRI is a powerful tool for quantitative analysis of mouse brain development, with great potential for in vivo phenotype analysis in mouse models of neurodevelopmental diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Salphati, Laurent; Lee, Leslie B; Pang, Jodie; Plise, Emile G; Zhang, Xiaolin
2010-09-01
2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of the phosphatidylinositol 3-kinase (PI3K) pathway currently evaluated in the clinic as an anticancer agent. The objectives of this study were to determine in vitro whether GDC-0941 was a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp1) and to investigate the impact of these transporters on the pharmacokinetics, brain penetration, and activity of GDC-0941 in FVBn mice (wild-type) and Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)/Bcrp1(-/-) knockout mice. Studies with Madin-Darby canine kidney cells transfected with P-gp or Bcrp1 established that this compound was a substrate of both transporters. After administrations to mice, GDC-0941 brain-to-plasma ratio ranged from 0.02 to 0.06 in the wild-type and Bcrp1(-/-) mice and was modestly higher in the Mdr1a/b(-/-) mice, ranging from 0.08 to 0.11. In contrast, GDC-0941 brain-to-plasma ratio in Mdr1a/b(-/-)/Bcrp1(-/-) triple knockout mice was 30-fold higher than in the wild-type mice. The plasma clearance of GDC-0941 was similar in wild-type and all knockout mice, ranging from 15 to 25 ml/(min . kg) in the wild-type mice and from 18 to 35 ml/(min . kg) in the knockout mice. Exposure after oral administration was comparable in the four strains of mice. The PI3K pathway was markedly inhibited in the brain of Mdr1a/b(-/-)/Bcrp1(-/-) mice for up to 6 h postdose, as evidenced by a 60% suppression of the phosphorylated Akt signal, whereas no inhibition was detected in the brain of wild-type mice. The concerted effects of P-gp and Bcrp1 in restricting GDC-0941 access and pathway modulation in mouse brain may have implications for the treatment of patients with brain tumors.
Peptidomics of Cpefat/fat mouse brain regions: Implications for neuropeptide processing
Zhang, Xin; Che, Fa-Yun; Berezniuk, Iryna; Sonmez, Kemal; Toll, Lawrence; Fricker, Lloyd D.
2009-01-01
SUMMARY Quantitative peptidomics was used to compare levels of peptides in wild type and Cpefat/fat mice, which lack carboxypeptidase E (CPE) activity due to a point mutation. Six different brain regions were analyzed: amygdala, hippocampus, hypothalamus, prefrontal cortex, striatum, and thalamus. Altogether, 111 neuropeptides or other peptides derived from secretory pathway proteins were identified in wild type mouse brain extracts by tandem mass spectrometry, and another 47 peptides were tentatively identified based on mass and other criteria. Most secretory pathway peptides were much lower in Cpefat/fat mouse brain, relative to wild type mouse brain, indicating that CPE plays a major role in their biosynthesis. Other peptides were only partially reduced in the Cpefat/fat mice, indicating that another enzyme (presumably carboxypeptidase D) contributes to their biosynthesis. Approximately 10% of the secretory pathway peptides were present in the Cpefat/fat mouse brain at levels similar to those in wild type mouse brain. Many peptides were greatly elevated in the Cpefat/fat mice; these peptide processing intermediates with C-terminal Lys and/or Arg were generally not detectable in wild type mice. Taken together, these results indicate that CPE contributes, either directly or indirectly, to the production of the majority of neuropeptides. PMID:19014391
Fu, Zhenrong; Lin, Lan; Tian, Miao; Wang, Jingxuan; Zhang, Baiwen; Chu, Pingping; Li, Shaowu; Pathan, Muhammad Mohsin; Deng, Yulin; Wu, Shuicai
2017-11-01
The development of genetically engineered mouse models for neuronal diseases and behavioural disorders have generated a growing need for small animal imaging. High-resolution magnetic resonance microscopy (MRM) provides powerful capabilities for noninvasive studies of mouse brains, while avoiding some limits associated with the histological procedures. Quantitative comparison of structural images is a critical step in brain imaging analysis, which highly relies on the performance of image registration techniques. Nowadays, there is a mushrooming growth of human brain registration algorithms, while fine-tuning of those algorithms for mouse brain MRMs is rarely addressed. Because of their topology preservation property and outstanding performance in human studies, diffeomorphic transformations have become popular in computational anatomy. In this study, we specially tuned five diffeomorphic image registration algorithms [DARTEL, geodesic shooting, diffeo-demons, SyN (Greedy-SyN and geodesic-SyN)] for mouse brain MRMs and evaluated their performance using three measures [volume overlap percentage (VOP), residual intensity error (RIE) and surface concordance ratio (SCR)]. Geodesic-SyN performed significantly better than the other methods according to all three different measures. These findings are important for the studies on structural brain changes that may occur in wild-type and transgenic mouse brains. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Ex vivo mouse brain microscopy at 15T with loop-gap RF coil.
Cohen, Ouri; Ackerman, Jerome L
2018-04-18
The design of a loop-gap-resonator RF coil optimized for ex vivo mouse brain microscopy at ultra high fields is described and its properties characterized using simulations, phantoms and experimental scans of mouse brains fixed in 10% formalin containing 4 mM Magnevist™. The RF (B 1 ) and magnetic field (B 0 ) homogeneities are experimentally quantified and compared to electromagnetic simulations of the coil. The coil's performance is also compared to a similarly sized surface coil and found to yield double the sensitivity. A three-dimensional gradient-echo (GRE) sequence is used to acquire high resolution mouse brain scans at (47 μm) 3 resolution in 1.8 h and a 20 × 20 × 19 μm 3 resolution in 27 h. The high resolution obtained permitted clear visualization and identification of multiple structures in the ex vivo mouse brain and represents, to our knowledge, the highest resolution ever achieved for a whole mouse brain. Importantly, the coil design is simple and easy to construct. Copyright © 2018 Elsevier Inc. All rights reserved.
Survival of adult neurons lacking cholesterol synthesis in vivo.
Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin
2007-01-02
Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.
Sershen, Henry; Hashim, Audrey; Dunlop, David S.; Suckow, Raymond F.; Cooper, Tom B.; Javitt, Daniel C.
2016-01-01
Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol®) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor sodium benzoate (NaB) (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level, arguing against a DAAO-mediated effect. However, NaB reduced plasma L-serine and based on reports that NaB also elevates various plasma metabolites, for example aminoisobutyric acid (AIB), a potential effect via the System A amino acid carrier may be involved in the regulation of synaptic glycine level to modulate NMDAR function needs to be investigated. Acute ascorbic acid (300 mg/kg) also inhibited PCP-induced locomotor activity, which was further attenuated in the presence of D-serine (600 mg/kg). Ascorbic acid may have an action at the dopamine membrane carrier and/or altering redox mechanisms that modulate NMDARs, but this needs to be further investigated. The findings support an effect of D-serine on PCP-induced hyperactivity. They also offer suggestions on an interaction of NaB via an unknown mechanism, other than DAAO inhibition, perhaps through metabolomic changes, and find unexpected synergy between D-serine and ascorbic acid that supports combined NMDA glycine- and redox-site intervention. Although mechanisms of these specific agents need to be determined, overall it supports continued glutamatergic drug development. PMID:26857796
Cisternino, Salvatore; Chapy, Hélène; André, Pascal; Smirnova, Maria; Debray, Marcel; Scherrmann, Jean-Michel
2013-04-01
Nicotine, the main tobacco alkaloid leading to smoking dependence, rapidly crosses the blood-brain barrier (BBB) to become concentrated in the brain. Recently, it has been shown that nicotine interacts with some organic cation transporters (OCT), but their influence at the BBB has not yet been assessed in vivo. In this study, we characterized the transport of nicotine at the mouse luminal BBB by in situ brain perfusion. Its influx was saturable and followed the Michaelis-Menten kinetics (K(m)=2.60 mM, V(max)=37.60 nmol/s/g at pH 7.40). At its usual micromolar concentrations in the plasma, most (79%) of the net transport of nicotine at the BBB was carrier-mediated, while passive diffusion accounted for 21%. Studies on knockout mice showed that the OCT Oct1-3, P-gp, and Bcrp did not alter [(3)H]-nicotine transport at the BBB. Neither did inhibiting the transporters Mate1, Octn, or Pmat. The in vivo manipulation of intracellular and/or extracellular pH, the chemical inhibition profile, and the trans-stimulation experiments demonstrated that the nicotine transporter at the BBB shared the properties of the clonidine/proton antiporter. The molecular features of this proton-coupled antiporter have not yet been identified, but it also transports diphenhydramine and tramadol and helps nicotine cross the BBB at a faster rate and to a greater extent. The pharmacological inhibition of this nicotine/proton antiporter could represent a new strategy to reduce nicotine uptake by the brain and thus help curb addiction to smoking.
Kallem, Rajareddy; Kulkarni, Chetan P; Patel, Dakshay; Thakur, Megha; Sinz, Michael; Singh, Sheelendra P; Mahammad, S Shahe; Mandlekar, Sandhya
2012-06-01
In the present study we have developed a simple, time, and cost effective in vivo rodent protocol to screen the susceptibility of a test compound for P-glycoprotein (P-gp) mediated efflux at the blood brain barrier (BBB) during early drug discovery. We used known P-gp substrates as test compounds (quinidine, digoxin, and talinolol) and elacridar (GF120918) as a chemical inhibitor to establish the model. The studies were carried out in both mice and rats. Elacridar was dosed intravenously at 5 mg/kg, 0.5 h prior to probe substrate administration. Plasma and brain samples were collected and analyzed using UPLC-MS/MS. In the presence of elacridar, the ratio of brain to plasma area under the curve (B/P) in mouse increased 2, 4, and 38-fold, respectively, for talinolol, digoxin, and quinidine; whereas in rat, a 70-fold increase was observed for quinidine. Atenolol, a non P-gp substrate, exhibited poor brain penetration in the presence or absence of elacridar in both species (B/P ratio ~ 0.1). Elacridar had no significant effect on the systemic clearance of digoxin or quinidine; however, a trend towards increasing volume of distribution and half life was observed. Our results support the utility of elacridar in evaluation of the influence of P-gp mediated efflux on drug distribution to the brain. Our protocol employing a single intravenous dose of elacridar and test compound provides a cost effective alternative to expensive P-gp knockout mice models during early drug discovery.
Shi, Meiqing; Li, Shu Shun; Zheng, Chunfu; Jones, Gareth J.; Kim, Kwang Sik; Zhou, Hong; Kubes, Paul; Mody, Christopher H.
2010-01-01
Infectious meningitis and encephalitis is caused by invasion of circulating pathogens into the brain. It is unknown how the circulating pathogens dynamically interact with brain endothelium under shear stress, leading to invasion into the brain. Here, using intravital microscopy, we have shown that Cryptococcus neoformans, a yeast pathogen that causes meningoencephalitis, stops suddenly in mouse brain capillaries of a similar or smaller diameter than the organism, in the same manner and with the same kinetics as polystyrene microspheres, without rolling and tethering to the endothelial surface. Trapping of the yeast pathogen in the mouse brain was not affected by viability or known virulence factors. After stopping in the brain, C. neoformans was seen to cross the capillary wall in real time. In contrast to trapping, viability, but not replication, was essential for the organism to cross the brain microvasculature. Using a knockout strain of C. neoformans, we demonstrated that transmigration into the mouse brain is urease dependent. To determine whether this could be amenable to therapy, we used the urease inhibitor flurofamide. Flurofamide ameliorated infection of the mouse brain by reducing transmigration into the brain. Together, these results suggest that C. neoformans is mechanically trapped in the brain capillary, which may not be amenable to pharmacotherapy, but actively transmigrates to the brain parenchyma with contributions from urease, suggesting that a therapeutic strategy aimed at inhibiting this enzyme could help prevent meningitis and encephalitis caused by C. neoformans infection. PMID:20424328
Sangaraju, Dewakar; Shahidi-Latham, Sheerin K; Burgess, Braydon L; Dean, Brian; Ding, Xiao
2017-06-05
A multi-matrix hydrophilic interaction liquid chromatography tandem mass spectrometric method (HILIC-MS/MS) was developed for the quantitation of N-Acetyl Aspartic acid (NAA) using stable isotope labeled internal standard, D3-NAA in various biological matrices such as human plasma, human CSF, mouse plasma, brain and spinal cord. A high throughput 96-well plate format supported liquid extraction (SLE) procedure was developed and used for sample preparation. Mass spectrometric analysis of NAA was performed using selected reaction monitoring transitions in positive electrospray ionization mode. As NAA is endogenously present, a surrogate matrix approach was used for quantitation of NAA and the method was qualified over linear calibration curve range of 0.01-10μg/mL. Intra and inter assay precision indicated by percent relative standard deviation (%RSD) was less than 7.1% for low, medium, medium high and high QCs. The accuracy of the method ranged from 92.6-107.0% of nominal concentration for within-run and between-run for the same QCs. Extraction recovery of NAA and D3-NAA was greater than 76%. Stability of NAA was established in the above biological matrices under bench top (RT, 5h), freeze thaw (-20±10°C, 3 cycles) and moues/human plasma sample collection (Wet ice, RT) conditions. HILIC-MS/MS method was then used to quantify and compare the NAA levels in human plasma and CSF of ALS patients versus control human subjects. NAA CSF levels in control human subjects (73.3±31.0ng/mL,N=10) were found to be slightly higher than ALS patients (46.1±22.6ng/mL, N=10) (P=0.04). No differences were observed in NAA plasma levels in human control subjects (49.7±13.8ng/mL,N=9) as compared to ALS patients (49.6±8.1ng/mL, N=10) (P=0.983). NAA endogenous concentrations in mouse plasma, brain and spinal cord were found to be 243.8±56.8ng/mL (N=6), 1029.8±115.2μg/g tissue weight (N=5) and 487.6±178.4μg/g tissue weight (N=5) respectively. Copyright © 2017 Elsevier B.V. All rights reserved.
Vesicular monoamine transporter-1 (VMAT-1) mRNA and immunoreactive proteins in mouse brain.
Ashe, Karen M; Chiu, Wan-Ling; Khalifa, Ahmed M; Nicolas, Antoine N; Brown, Bonnie L; De Martino, Randall R; Alexander, Clayton P; Waggener, Christopher T; Fischer-Stenger, Krista; Stewart, Jennifer K
2011-01-01
Vesicular monoamine transporter 1 (VMAT-1) mRNA and protein were examined (1) to determine whether adult mouse brain expresses full-length VMAT-1 mRNA that can be translated to functional transporter protein and (2) to compare immunoreactive VMAT-1 proteins in brain and adrenal. VMAT-1 mRNA was detected in mouse brain with RT-PCR. The cDNA was sequenced, cloned into an expression vector, transfected into COS-1 cells, and cell protein was assayed for VMAT-1 activity. Immunoreactive proteins were examined on western blots probed with four different antibodies to VMAT-1. Sequencing confirmed identity of the entire coding sequences of VMAT-1 cDNA from mouse medulla oblongata/pons and adrenal to a Gen-Bank reference sequence. Transfection of the brain cDNA into COS-1 cells resulted in transporter activity that was blocked by the VMAT inhibitor reserpine and a proton ionophore, but not by tetrabenazine, which has a high affinity for VMAT-2. Antibodies to either the C- or N- terminus of VMAT-1 detected two proteins (73 and 55 kD) in transfected COS-1 cells. The C-terminal antibodies detected both proteins in extracts of mouse medulla/pons, cortex, hypothalamus, and cerebellum but only the 73 kD protein and higher molecular weight immunoreactive proteins in mouse adrenal and rat PC12 cells, which are positive controls for rodent VMAT-1. These findings demonstrate that a functional VMAT-1 mRNA coding sequence is expressed in mouse brain and suggest processing of VMAT-1 protein differs in mouse adrenal and brain.
Hur, S J; Lee, S J; Kim, D H; Chun, S C; Lee, S K
2013-12-01
This study investigated the effects of onion (Allium cepa, L.) extract on the antioxidant activity of lipids in low-and high-fat-fed mouse brain lipids and its structural change during in vitro human digestion. The onion extracts were passed through an in vitro human digestion model that simulated the composition of the mouth, stomach, and small intestine juice. The brain lipids were collected from low- and high-fat-fed mouse brain and then incubated with the in vitro-digested onion extracts to determine the lipid oxidation. The results confirmed that the main phenolics of onion extract were kaempferol, myricetin, quercetin, and quercitrin. The quercetin content increased with digestion of the onion extract. Antioxidant activity was strongly influenced by in vitro human digestion of both onion extract and quercetin standard. After digestion by the small intestine, the antioxidant activity values were dramatically increased, whereas the antioxidant activity was less influenced by digestion in the stomach for both onion extract and quercetin standard. The inhibitory effect of lipid oxidation of onion extract in mouse brain lipids increased after digestion in the stomach. The inhibitory effect of lipid oxidation of onion extract was higher in the high-fat-fed mouse brain lipids than that in the low-fat-fed mouse brain lipids. The major study finding is that the antioxidative effect of onion extract may be higher in high-fat-fed mouse brain lipids than that in low-fat-fed mouse brain lipids. Thus, dietary onion may have important applications as a natural antioxidant agent in a high-fat diet.
Bagga, Puneet; Behar, Kevin L; Mason, Graeme F; De Feyter, Henk M; Rothman, Douglas L; Patel, Anant B
2014-01-01
13C Nuclear Magnetic Resonance (NMR) studies of rodent and human brain using [1-13C]/[1,6-13C2]glucose as labeled substrate have consistently found a lower enrichment (∼25% to 30%) of glutamine-C4 compared with glutamate-C4 at isotopic steady state. The source of this isotope dilution has not been established experimentally but may potentially arise either from blood/brain exchange of glutamine or from metabolism of unlabeled substrates in astrocytes, where glutamine synthesis occurs. In this study, the contribution of the former was evaluated ex vivo using 1H-[13C]-NMR spectroscopy together with intravenous infusion of [U-13C5]glutamine for 3, 15, 30, and 60 minutes in mice. 13C labeling of brain glutamine was found to be saturated at plasma glutamine levels >1.0 mmol/L. Fitting a blood–astrocyte–neuron metabolic model to the 13C enrichment time courses of glutamate and glutamine yielded the value of glutamine influx, VGln(in), 0.036±0.002 μmol/g per minute for plasma glutamine of 1.8 mmol/L. For physiologic plasma glutamine level (∼0.6 mmol/L), VGln(in) would be ∼0.010 μmol/g per minute, which corresponds to ∼6% of the glutamine synthesis rate and rises to ∼11% for saturating blood glutamine concentrations. Thus, glutamine influx from blood contributes at most ∼20% to the dilution of astroglial glutamine-C4 consistently seen in metabolic studies using [1-13C]glucose. PMID:25074745
Tridecanoin is anticonvulsant, antioxidant, and improves mitochondrial function
Tan, Kah Ni; Carrasco-Pozo, Catalina; McDonald, Tanya S; Puchowicz, Michelle
2016-01-01
The hypothesis that chronic feeding of the triglycerides of octanoate (trioctanoin) and decanoate (tridecanoin) in “a regular non-ketogenic diet” is anticonvulsant was tested and possible mechanisms of actions were subsequently investigated. Chronic feeding of 35E% of calories from tridecanoin, but not trioctanoin, was reproducibly anticonvulsant in two acute CD1 mouse seizure models. The levels of beta-hydroxybutyrate in plasma and brain were not significantly increased by either treatment relative to control diet. The respective decanoate and octanoate levels are 76 µM and 33 µM in plasma and 1.17 and 2.88 nmol/g in brain. Tridecanoin treatment did not alter the maximal activities of several glycolytic enzymes, suggesting that there is no reduction in glycolysis contributing to anticonvulsant effects. In cultured astrocytes, 200 µM of octanoic and decanoic acids increased basal respiration and ATP turnover, suggesting that both medium chain fatty acids are used as fuel. Only decanoic acid increased mitochondrial proton leak which may reduce oxidative stress. In mitochondria isolated from hippocampal formations, tridecanoin increased respiration linked to ATP synthesis, indicating that mitochondrial metabolic functions are improved. In addition, tridecanoin increased the plasma antioxidant capacity and hippocampal mRNA levels of heme oxygenase 1, and FoxO1. PMID:27418037
Blank, Marissa C.; Roman, Brian B.; Henkelman, R. Mark; Millen, Kathleen J.
2012-01-01
The mammalian brain and skull develop concurrently in a coordinated manner, consistently producing a brain and skull that fit tightly together. It is common that abnormalities in one are associated with related abnormalities in the other. However, this is not always the case. A complete characterization of the relationship between brain and skull phenotypes is necessary to understand the mechanisms that cause them to be coordinated or divergent and to provide perspective on the potential diagnostic or prognostic significance of brain and skull phenotypes. We demonstrate the combined use of magnetic resonance imaging and microcomputed tomography for analysis of brain and skull phenotypes in the mouse. Co-registration of brain and skull images allows comparison of the relationship between phenotypes in the brain and those in the skull. We observe a close fit between the brain and skull of two genetic mouse models that both show abnormal brain and skull phenotypes. Application of these three-dimensional image analyses in a broader range of mouse mutants will provide a map of the relationships between brain and skull phenotypes generally and allow characterization of patterns of similarities and differences. PMID:22947655
Wu, Xianying; Zhou, Xue; Zhang, Shuxian; Zhang, Yan; Deng, Aifang; Han, Jie; Zhu, Lin; Kung, Hank F; Qiao, Jinping
2015-07-01
9-[(18)F]Fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]AV-133) is a new PET imaging agent targeting vesicular monoamine transporter type II (VMAT2). To shorten the preparation of [(18)F]AV-133 and to make it more widely available, a simple and rapid purification method using solid-phase extraction (SPE) instead of high-pressure liquid chromatography (HPLC) was developed. The SPE method produced doses containing the non-radioactive pseudo-carrier 9-hydroxypropyl-(+)-dihydrotetrabenazine (AV-149). The objectives of this study were to evaluate the brain uptake of AV-149 by UPLC-MS/MS and its effect on the biodistribution of [(18)F]AV-133 in the brains of mice. The mice were injected with a bolus including [(18)F]AV-133 and different doses of AV-149. Brain tissue and blood samples were harvested. The effect of different amounts of AV-149 on [(18)F]AV-133 was evaluated by quantifying the brain distribution of radiolabelled tracer [(18)F]AV-133. The concentrations of AV-149 in the brain and plasma were analyzed using a UPLC-MS/MS method. The concentrations of AV-149 in the brain and plasma exhibited a good linear relationship with the doses. The receptor occupancy curve was fit, and the calculated ED50 value was 8.165mg/kg. The brain biodistribution and regional selectivity of [(18)F]AV-133 had no obvious differences at AV-149 doses lower than 0.1mg/kg. With increasing doses of AV-149, the brain biodistribution of [(18)F]AV-133 changed significantly. The results are important to further support that the improved radiolabelling procedure of [(18)F]AV-133 using an SPE method may be suitable for routine clinical application. Copyright © 2015 Elsevier Inc. All rights reserved.
Vitamin E Supplementation Reduces Cellular Loss in the Brain of a Premature Aging Mouse Model.
La Fata, G; van Vliet, N; Barnhoorn, S; Brandt, R M C; Etheve, S; Chenal, E; Grunenwald, C; Seifert, N; Weber, P; Hoeijmakers, J H J; Mohajeri, M H; Vermeij, W P
2017-01-01
Aging is a highly complex biological process driven by multiple factors. Its progression can partially be influenced by nutritional interventions. Vitamin E is a lipid-soluble anti-oxidant that is investigated as nutritional supplement for its ability to prevent or delay the onset of specific aging pathologies, including neurodegenerative disorders. We aimed here to investigate the effect of vitamin E during aging progression in a well characterized mouse model for premature aging. Xpg-/- animals received diets with low (~2.5 mg/kg feed), medium (75 mg/kg feed) or high (375 mg/kg feed) vitamin E concentration and their phenotype was monitored during aging progression. Vitamin E content was analyzed in the feed, for stability reasons, and in mouse plasma, brain, and liver, for effectiveness of the treatment. Subsequent age-related changes were monitored for improvement by increased vitamin E or worsening by depletion in both liver and nervous system, organs sensitive to oxidative stress. Mice supplemented with high levels of vitamin E showed a delayed onset of age-related body weight decline and appearance of tremors when compared to mice with a low dietary vitamin E intake. DNA damage resulting in liver abnormalities such as changes in polyploidy, was considerably prevented by elevated amounts of vitamin E. Additionally, immunohistochemical analyses revealed that high intake of vitamin E, when compared with low and medium levels of vitamin E in the diet, reduces the number of p53-positive cells throughout the brain, indicative of a lower number of cells dying due to DNA damage accumulated over time. Our data underline a neuroprotective role of vitamin E in the premature aging animal model used in this study, likely via a reduction of oxidative stress, and implies the importance of improved nutrition to sustain health.
Herbst, Eric A F; Holloway, Graham P
2015-02-15
Mitochondrial function in the brain is traditionally assessed through analysing respiration in isolated mitochondria, a technique that possesses significant tissue and time requirements while also disrupting the cooperative mitochondrial reticulum. We permeabilized brain tissue in situ to permit analysis of mitochondrial respiration with the native mitochondrial morphology intact, removing the need for isolation time and minimizing tissue requirements to ∼2 mg wet weight. The permeabilized brain technique was validated against the traditional method of isolated mitochondria and was then further applied to assess regional variation in the mouse brain with ischaemia-reperfusion injuries. A transgenic mouse model overexpressing catalase within mitochondria was applied to show the contribution of mitochondrial reactive oxygen species to ischaemia-reperfusion injuries in different brain regions. This technique enhances the accessibility of addressing physiological questions in small brain regions and in applying transgenic mouse models to assess mechanisms regulating mitochondrial function in health and disease. Mitochondria function as the core energy providers in the brain and symptoms of neurodegenerative diseases are often attributed to their dysregulation. Assessing mitochondrial function is classically performed in isolated mitochondria; however, this process requires significant isolation time, demand for abundant tissue and disruption of the cooperative mitochondrial reticulum, all of which reduce reliability when attempting to assess in vivo mitochondrial bioenergetics. Here we introduce a method that advances the assessment of mitochondrial respiration in the brain by permeabilizing existing brain tissue to grant direct access to the mitochondrial reticulum in situ. The permeabilized brain preparation allows for instant analysis of mitochondrial function with unaltered mitochondrial morphology using significantly small sample sizes (∼2 mg), which permits the analysis of mitochondrial function in multiple subregions within a single mouse brain. Here this technique was applied to assess regional variation in brain mitochondrial function with acute ischaemia-reperfusion injuries and to determine the role of reactive oxygen species in exacerbating dysfunction through the application of a transgenic mouse model overexpressing catalase within mitochondria. Through creating accessibility to small regions for the investigation of mitochondrial function, the permeabilized brain preparation enhances the capacity for examining regional differences in mitochondrial regulation within the brain, as the majority of genetic models used for unique approaches exist in the mouse model. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Sánchez-Marín, Laura; Ladrón de Guevara-Miranda, David; Mañas-Padilla, M Carmen; Alén, Francisco; Moreno-Fernández, Román D; Díaz-Navarro, Caridad; Pérez-Del Palacio, José; García-Fernández, María; Pedraza, Carmen; Pavón, Francisco J; Rodríguez de Fonseca, Fernando; Santín, Luis J; Serrano, Antonia; Castilla-Ortega, Estela
2018-05-01
The systemic administration of lysophosphatidic acid (LPA) LPA 1/3 receptor antagonists is a promising clinical tool for cancer, sclerosis and fibrosis-related diseases. Since LPA 1 receptor-null mice engage in increased ethanol consumption, we evaluated the effects of systemic administration of an LPA 1/3 receptor antagonist (intraperitoneal ki16425, 20 mg/kg) on ethanol-related behaviors as well as on brain and plasma correlates. Acute administration of ki16425 reduced motivation for ethanol but not for saccharine in ethanol self-administering Wistar rats. Mouse experiments were conducted in two different strains. In Swiss mice, ki16425 treatment reduced both ethanol-induced sedation (loss of righting reflex, LORR) and ethanol reward (escalation in ethanol consumption and ethanol-induced conditioned place preference, CPP). Furthermore, in the CPP-trained Swiss mice, ki16425 prevented the effects of ethanol on basal c-Fos expression in the medial prefrontal cortex and on adult neurogenesis in the hippocampus. In the c57BL6/J mouse strain, however, no effects of ki16425 on LORR or voluntary drinking were observed. The c57BL6/J mouse strain was then evaluated for ethanol withdrawal symptoms, which were attenuated when ethanol was preceded by ki16425 administration. In these animals, ki16425 modulated the expression of glutamate-related genes in brain limbic regions after ethanol exposure; and peripheral LPA signaling was dysregulated by either ki16425 or ethanol. Overall, these results suggest that LPA 1/3 receptor antagonists might be a potential new class of drugs that are suitable for treating or preventing alcohol use disorders. A pharmacokinetic study revealed that systemic ki16425 showed poor brain penetration, suggesting the involvement of peripheral events to explain its effects. Copyright © 2018 Elsevier Ltd. All rights reserved.
HUPO BPP pilot study: a proteomics analysis of the mouse brain of different developmental stages.
Wang, Jing; Gu, Yong; Wang, Lihong; Hang, Xingyi; Gao, Yan; Wang, Hangyan; Zhang, Chenggang
2007-11-01
This study is a part of the HUPO Brain Proteome Project (BPP) pilot study, which aims at obtaining a reliable database of mouse brain proteome, at the comparison of techniques, laboratories, and approaches as well as at preparing subsequent proteome studies of neurologic diseases. The C57/Bl6 mouse brains of three developmental stages at embryonic day 16 (E16), postnatal day 7 (P7), and 8 wk (P56) (n = 5 in each group) were provided by the HUPO BPP executive committee. The whole brain proteins of each animal were individually prepared using 2-DE coupled with PDQuest software analysis. The protein spots representing developmentally related or stably expressed proteins were then prepared with in-gel digestion followed with MALDI-TOF/TOF MS/MS and analyzed using the MASCOT search engines to search the Swiss-Prot or NCBInr database. The 2-DE gel maps of the mouse brains of all of the developmental stages were obtained and submitted to the Data Collection Centre (DCC). The proteins alpha-enolase, stathmin, actin, C14orf166 homolog, 28,000 kDa heat- and acid-stable phosphoprotein, 3-mercaptopyruvate sulfurtransferase and 40 S ribosomal protein S3a were successfully identified. A further Western blotting analysis demonstrated that enolase is a protein up-regulated in the mouse brain from embryonic stage to adult stage. These data are helpful for understanding the proteome changes in the development of the mouse brain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zgoda-Pols, Joanna R., E-mail: joanna.pols@merck.com; Chowdhury, Swapan; Wirth, Mark
2011-08-15
An investigative renal toxicity study using metabolomics was conducted with a potent nicotinic acid receptor (NAR) agonist, SCH 900424. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were used to identify small molecule biomarkers of acute kidney injury (AKI) that could aid in a better mechanistic understanding of SCH 900424-induced AKI in mice. The metabolomics study revealed 3-indoxyl sulfate (3IS) as a more sensitive marker of SCH 900424-induced renal toxicity than creatinine or urea. An LC-MS assay for quantitative determination of 3IS in mouse matrices was also developed. Following treatment with SCH 900424, 3IS levels were markedly increasedmore » in murine plasma and brain, thereby potentially contributing to renal- and central nervous system (CNS)-related rapid onset of toxicities. Furthermore, significant decrease in urinary excretion of 3IS in those animals due to compromised renal function may be associated with the elevation of 3IS in plasma and brain. These data suggest that 3IS has a potential to be a marker of renal and CNS toxicities during chemically-induced AKI in mice. In addition, based on the metabolomic analysis other statistically significant plasma markers including p-cresol-sulfate and tryptophan catabolites (kynurenate, kynurenine, 3-indole-lactate) might be of toxicological importance but have not been studied in detail. This comprehensive approach that includes untargeted metabolomic and targeted bioanalytical sample analyses could be used to investigate toxicity of other compounds that pose preclinical or clinical development challenges in a pharmaceutical discovery and development. - Research Highlights: > Nicotinic acid receptor agonist, SCH 900424, caused acute kidney injury in mice. > MS-based metabolomics was conducted to identify potential small molecule markers of renal toxicity. > 3-indoxyl-sulfate was found to be as a more sensitive marker of renal toxicity than creatinine or urea. > 3-IS levels were increased not only in murine plasma but also in the brain. > 3-IS potentially contributes to renal-and CNS-related rapid onset of toxicities.« less
Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Jeffrey, F. Mark; Malloy, Craig R.; Pascual, Juan M.
2011-01-01
Glucose readily supplies the brain with the majority of carbon needed to sustain neurotransmitter production and utilization., The rate of brain glucose metabolism can be computed using 13C nuclear magnetic resonance (NMR) spectroscopy by detecting changes in 13C contents of products generated by cerebral metabolism. As previously observed, scalar coupling between adjacent 13C carbons (multiplets) can provide additional information to 13C contents for the computation of metabolic rates. Most NMR studies have been conducted in large animals (often under anesthesia) because the mass of the target organ is a limiting factor for NMR. Yet, despite the challengingly small size of the mouse brain, NMR studies are highly desirable because the mouse constitutes a common animal model for human neurological disorders. We have developed a method for the ex vivo resolution of NMR multiplets arising from the brain of an awake mouse after the infusion of [1,6-13C2]glucose. NMR spectra obtained by this method display favorable signal-to-noise ratios. With this protocol, the 13C multiplets of glutamate, glutamine, GABA and aspartate achieved steady state after 150 min. The method enables the accurate resolution of multiplets over time in the awake mouse brain. We anticipate that this method can be broadly applicable to compute brain fluxes in normal and transgenic mouse models of neurological disorders. PMID:21946227
A regulatory toolbox of MiniPromoters to drive selective expression in the brain.
Portales-Casamar, Elodie; Swanson, Douglas J; Liu, Li; de Leeuw, Charles N; Banks, Kathleen G; Ho Sui, Shannan J; Fulton, Debra L; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J; Babyak, Nazar; Black, Sonia F; Bonaguro, Russell J; Brauer, Erich; Candido, Tara R; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C Y; Chopra, Vik; Docking, T Roderick; Dreolini, Lisa; D'Souza, Cletus A; Flynn, Erin K; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y; Lim, Jonathan S; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L; Schmouth, Jean-François; Swanson, Magdalena I; Tam, Bonny; Ticoll, Amy; Turner, Jenna L; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F; Wilson, Gary; Wong, Bibiana K Y; Wong, Siaw H; Wong, Tony Y T; Yang, George S; Ypsilanti, Athena R; Jones, Steven J M; Holt, Robert A; Goldowitz, Daniel; Wasserman, Wyeth W; Simpson, Elizabeth M
2010-09-21
The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination "knockins" in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5' of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type-specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies.
Poisson, Laila M.; Suhail, Hamid; Singh, Jaspreet; Datta, Indrani; Denic, Aleksandar; Labuzek, Krzysztof; Hoda, Md Nasrul; Shankar, Ashray; Kumar, Ashok; Cerghet, Mirela; Elias, Stanton; Mohney, Robert P.; Rodriguez, Moses; Rattan, Ramandeep; Mangalam, Ashutosh K.; Giri, Shailendra
2015-01-01
We performed untargeted metabolomics in plasma of B6 mice with experimental autoimmune encephalitis (EAE) at the chronic phase of the disease in search of an altered metabolic pathway(s). Of 324 metabolites measured, 100 metabolites that mapped to various pathways (mainly lipids) linked to mitochondrial function, inflammation, and membrane stability were observed to be significantly altered between EAE and control (p < 0.05, false discovery rate <0.10). Bioinformatics analysis revealed six metabolic pathways being impacted and altered in EAE, including α-linolenic acid and linoleic acid metabolism (PUFA). The metabolites of PUFAs, including ω-3 and ω-6 fatty acids, are commonly decreased in mouse models of multiple sclerosis (MS) and in patients with MS. Daily oral administration of resolvin D1, a downstream metabolite of ω-3, decreased disease progression by suppressing autoreactive T cells and inducing an M2 phenotype of monocytes/macrophages and resident brain microglial cells. This study provides a proof of principle for the application of metabolomics to identify an endogenous metabolite(s) possessing drug-like properties, which is assessed for therapy in preclinical mouse models of MS. PMID:26546682
MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil
NASA Astrophysics Data System (ADS)
Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin
2015-07-01
Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.
Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging
Wong, Michael D.; Dazai, Jun; Altaf, Maliha; Mark Henkelman, R.; Lerch, Jason P.; Nieman, Brian J.
2012-01-01
The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ∼10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm3) with ∼5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs. PMID:22718750
Gelman, Julia S.; Sironi, Juan; Castro, Leandro M.; Ferro, Emer S.; Fricker, Lloyd D.
2010-01-01
Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpefat/fat mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpefat/fat mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is upregulated in some but not all Cpefat/fat mouse brain regions. PMID:20202081
An Anatomically Resolved Mouse Brain Proteome Reveals Parkinson Disease-relevant Pathways *
Choi, Jong Min; Rousseaux, Maxime W. C.; Malovannaya, Anna; Kim, Jean J.; Kutzera, Joachim; Wang, Yi; Huang, Yin; Zhu, Weimin; Maity, Suman; Zoghbi, Huda Yahya; Qin, Jun
2017-01-01
Here, we present a mouse brain protein atlas that covers 17 surgically distinct neuroanatomical regions of the adult mouse brain, each less than 1 mm3 in size. The protein expression levels are determined for 6,500 to 7,500 gene protein products from each region and over 12,000 gene protein products for the entire brain, documenting the physiological repertoire of mouse brain proteins in an anatomically resolved and comprehensive manner. We explored the utility of our spatially defined protein profiling methods in a mouse model of Parkinson's disease. We compared the proteome from a vulnerable region (substantia nigra pars compacta) of wild type and parkinsonian mice with that of an adjacent, less vulnerable, region (ventral tegmental area) and identified several proteins that exhibited both spatiotemporal- and genotype-restricted changes. We validated the most robustly altered proteins using an alternative profiling method and found that these modifications may highlight potential new pathways for future studies. This proteomic atlas is a valuable resource that offers a practical framework for investigating the molecular intricacies of normal brain function as well as regional vulnerability in neurological diseases. All of the mouse regional proteome profiling data are published on line at http://mbpa.bprc.ac.cn/. PMID:28153913
Wood, JodiAnne T.; Smith, Dustin M.; Janero, David R.; Zvonok, Alexander M.; Makriyannis, Alexandros
2012-01-01
Aims AM-1241, a novel, racemic cannabinoid-2 receptor (CB2) ligand, is the primary experimental agonist used to characterize the role of CB2-mediated lipid signaling in health and disease, including substance abuse disorders. In vivo pharmacological effects have been used as indirect proxies for AM-1241 biotransformation processes that could modulate activity. We report the initial pre-clinical characterization of AM-1241 biotransformation and in vivo distribution. Main methods AM-1241 metabolism was characterized in a variety of predictive in vitro systems (Caco-2 cells, mouse, rat and human microsomes) and in the mouse in vivo. Liquid chromatography and mass spectrometry techniques were used to quantify AM-1241 tissue distribution and metabolic conversion. Key findings AM-1241 bound extensively to plasma protein/albumin. A pharmacological AM-1241 dose (25 mg/kg, i.v.) was administered to mice for direct determination of its plasma half-life (37 min), following which AM-1241 was quantified in brain, spleen, liver, and kidney. After p.o. administration, AM-1241 was detected in plasma, spleen, and kidney; its oral bioavailability was ~21%. From Caco-2 permeability studies and microsomal-based hepatic clearance estimates, in vivo AM-1241 absorption was moderate. Hepatic microsomal metabolism of AM-1241 in vitro generated hydroxylation and demethylation metabolites. Species-dependent differences were discovered in AM-1241’s predicted hepatic clearance. Our data demonstrate that AM-1241 has the following characteristics: a) short plasma half-life; b) limited oral bioavailability; c) extensive plasma/albumin binding; d) metabolic substrate for hepatic hydroxylation and demethylation; e) moderate hepatic clearance. Significance These results should help inform the design, optimization, and pre-clinical profiling of CB2 ligands as pharmacological tools and medicines. PMID:22749867
Multiscale Imaging of the Mouse Cortex Using Two-Photon Microscopy and Wide-Field Illumination
NASA Astrophysics Data System (ADS)
Bumstead, Jonathan R.
The mouse brain can be studied over vast spatial scales ranging from microscopic imaging of single neurons to macroscopic measurements of hemodynamics acquired over the majority of the mouse cortex. However, most neuroimaging modalities are limited by a fundamental trade-off between the spatial resolution and the field-of-view (FOV) over which the brain can be imaged, making it difficult to fully understand the functional and structural architecture of the healthy mouse brain and its disruption in disease. My dissertation has focused on developing multiscale optical systems capable of imaging the mouse brain at both microscopic and mesoscopic spatial scales, specifically addressing the difference in spatial scales imaged with two-photon microscopy (TPM) and optical intrinsic signal imaging (OISI). Central to this work has been the formulation of a principled design strategy for extending the FOV of the two-photon microscope. Using this design approach, we constructed a TPM system with subcellular resolution and a FOV area 100 times greater than a conventional two-photon microscope. To image the ellipsoidal shape of the mouse cortex, we also developed the microscope to image arbitrary surfaces within a single frame using an electrically tunable lens. Finally, to address the speed limitations of the TPM systems developed during my dissertation, I also conducted research in large-scale neural phenomena occurring in the mouse brain imaged with high-speed OISI. The work conducted during my dissertation addresses some of the fundamental principles in designing and applying optical systems for multiscale imaging of the mouse brain.
Joshi, Elizabeth M; Need, Anne; Schaus, John; Chen, Zhaogen; Benesh, Dana; Mitch, Charles; Morton, Stuart; Raub, Thomas J; Phebus, Lee; Barth, Vanessa
2014-12-17
Positron emission tomography (PET) imaging has become a useful noninvasive technique to explore molecular biology within living systems; however, the utility of this method is limited by the availability of suitable radiotracers to probe specific targets and disease biology. Methods to identify potential areas of improvement in the ability to predict small molecule performance as tracers prior to radiolabeling would speed the discovery of novel tracers. In this retrospective analysis, we characterized the brain penetration or peak SUV (standardized uptake value), binding potential (BP), and brain exposure kinetics across a series of known, nonradiolabeled PET ligands using in vivo LC-MS/MS (liquid chromatography coupled to mass spectrometry) and correlated these parameters with the reported PET ligand performance in nonhuman primates and humans available in the literature. The PET tracers studied included those reported to label G protein-coupled receptors (GPCRs), intracellular enzymes, and transporters. Additionally, data for each tracer was obtained from a mouse brain uptake assay (MBUA), previously published, where blood-brain barrier (BBB) penetration and clearance parameters were assessed and compared against similar data collected on a broad compound set of central nervous system (CNS) therapeutic compounds. The BP and SUV identified via nonradiolabeled LC-MS/MS, while different from the published values observed in the literature PET tracer data, allowed for an identification of initial criteria values we sought to facilitate increased potential for success from our early discovery screening paradigm. Our analysis showed that successful, as well as novel, clinical PET tracers exhibited BP of greater than 1.5 and peak SUVs greater than approximately 150% at 5 min post dose in rodents. The brain kinetics appeared similar between both techniques despite differences in tracer dose, suggesting linearity across these dose ranges. The assessment of tracers in a CNS exposure model, the mouse brain uptake assessment (MBUA), showed that those compound with initial brain-to-plasma ratios >2 and unbound fraction in brain homogenate >0.01 were more likely to be clinically successful PET ligands. Taken together, early incorporation of a LC/MS/MS cold tracer discovery assay and a parallel MBUA can be an useful screening paradigm to prioritize and rank order potential novel PET radioligands during early tracer discovery efforts. Compounds considered for continued in vivo PET assessments can be identified quickly by leveraging in vitro affinity and selectivity measures, coupled with data from a MBUA, primarily the 5 min brain-to-plasma ratio and unbound fraction data. Coupled utilization of these data creates a strategy to efficiently screen for the identification of appropriate chemical space to invest in for radiotracer discovery.
Targeting Phosphatidylserine for Radioimmunotherapy of Breast Cancer Brain Metastasis
2015-12-01
response. e. Correlate imaging findings with histological studies of vascular damage, tumor cell and endothelial cell apoptosis or necrosis and vascular ...phosphatidylserine (PS) is exposed exclusively on tumor vascular endothelium of brain metastases in mouse models. A novel PS-targeting antibody, PGN635... vascular endothelial cells in multi-focal brain metastases throughout the whole mouse brain. Vascular endothelium in normal brain tissues is negative
Williard, Robin L; Middaugh, Lawrence D; Zhu, Hao-Jie B; Patrick, Kennerly S
2007-02-01
Ethylphenidate is formed by metabolic transesterification of methylphenidate and ethanol. Study objectives were to (a) establish that ethylphenidate is formed in C57BL/6 (B6) mice; (b) compare the stimulatory effects of ethylphenidate and methylphenidate enantiomers; (c) determine methylphenidate and ethylphenidate plasma and brain distribution and (d) establish in-vitro effects of methylphenidate and ethylphenidate on monoamine transporter systems. Experimental results were that: (a) coadministration of ethanol with the separate methylphenidate isomers enantioselectively produced l-ethylphenidate; (b) d and dl-forms of methylphenidate and ethylphenidate produced dose-responsive increases in motor activity with stimulation being less for ethylphenidate; (c) plasma and whole-brain concentrations were greater for ethylphenidate than methylphenidate and (d) d and DL-methylphenidate and ethylphenidate exhibited comparably potent low inhibition of the dopamine transporter, whereas ethylphenidate was a less potent norepinephrine transporter inhibitor. These experiments establish the feasibility of the B6 mouse model for examining the interactive effects of ethanol and methylphenidate. As reported for humans, concurrent exposure of B6 mice to methylphenidate and ethanol more readily formed l-ethylphenidate than d-ethylphenidate, and the l-isomers of both methylphenidate and ethylphenidate were biologically inactive. The observed reduced stimulatory effect of d-ethylphenidate relative to d-methylphenidate appears not to be the result of brain dispositional factors, but rather may be related to its reduced inhibition of the norepinephrine transporter, perhaps altering the interaction of dopaminergic and noradrenergic neural systems.
Diffusion tensor imaging using multiple coils for mouse brain connectomics.
Nouls, John C; Badea, Alexandra; Anderson, Robert B J; Cofer, Gary P; Allan Johnson, G
2018-06-01
The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity matrix integrity, studies may seek to clarify how measurement variability, post-processing techniques and biological variability impact mouse brain connectomics. Copyright © 2018 John Wiley & Sons, Ltd.
Fasting and Fast Food Diet Play an Opposite Role in Mice Brain Aging.
Castrogiovanni, Paola; Li Volti, Giovanni; Sanfilippo, Cristina; Tibullo, Daniele; Galvano, Fabio; Vecchio, Michele; Avola, Roberto; Barbagallo, Ignazio; Malaguarnera, Lucia; Castorina, Sergio; Musumeci, Giuseppe; Imbesi, Rosa; Di Rosa, Michelino
2018-01-20
Fasting may be exploited as a possible strategy for prevention and treatment of several diseases such as diabetes, obesity, and aging. On the other hand, high-fat diet (HFD) represents a risk factor for several diseases and increased mortality. The aim of the present study was to evaluate the impact of fasting on mouse brain aging transcriptome and how HFD regulates such pathways. We used the NCBI Gene Expression Omnibus (GEO) database, in order to identify suitable microarray datasets comparing mouse brain transcriptome under fasting or HFD vs aged mouse brain transcriptome. Three microarray datasets were selected for this study, GSE24504, GSE6285, and GSE8150, and the principal molecular mechanisms involved in this process were evaluated. This analysis showed that, regardless of fasting duration, mouse brain significantly expressed 21 and 30 upregulated and downregulated genes, respectively. The involved biological processes were related to cell cycle arrest, cell death inhibition, and regulation of cellular metabolism. Comparing mouse brain transcriptome under fasting and aged conditions, we found out that the number of genes in common increased with the duration of fasting (222 genes), peaking at 72 h. In addition, mouse brain transcriptome under HFD resembles for the 30% the one of the aged mice. Furthermore, several molecular processes were found to be shared between HFD and aging. In conclusion, we suggest that fasting and HFD play an opposite role in brain transcriptome of aged mice. Therefore, an intermittent diet could represent a possible clinical strategy to counteract aging, loss of memory, and neuroinflammation. Furthermore, low-fat diet leads to the inactivation of brain degenerative processes triggered by aging.
Emoto, M C; Yamato, M; Sato-Akaba, H; Yamada, K; Matsuoka, Y; Fujii, H G
2015-01-01
Methamphetamine (METH)-induced neurotoxicity is associated with mitochondrial dysfunction and enhanced oxidative stress. The aims of the present study conducted in the mouse brain repetitively treated with METH were to (1) examine the redox status using the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethylpiperidine-1-oxyl (MCP) and (2) non-invasively visualize the brain redox status with electron paramagnetic resonance (EPR) imaging. The rate of reduction of MCP was measured from a series of temporal EPR images of mouse heads, and this rate was used to construct a two-dimensional map of rate constants called a "redox map." The obtained redox map clearly illustrated the change in redox balance in the METH-treated mouse brain that is a known result of oxidative damage. Biochemical assays also showed that the level of thiobarbituric acid-reactive substance, an index of lipid peroxidation, was increased in mouse brains by METH. The enhanced reduction in MCP observed in mouse brains was remarkably suppressed by treatment with the dopamine synthase inhibitor, α-methyl-p-tyrosine, suggesting that enhancement of the reduction reaction of MCP resulted from enzymatic reduction in the mitochondrial respiratory chain. Furthermore, magnetic resonance imaging (MRI) of METH-treated mice using a blood-brain barrier (BBB)-impermeable paramagnetic contrast agent revealed BBB dysfunction after treatment with METH for 7 days. MRI also indicated that the impaired BBB recovered after withdrawal of METH. EPR imaging and MRI are useful tools not only for following changes in the redox status and BBB dysfunction in mouse brains repeatedly administered METH, but also for tracing the drug effect after withdrawal of METH.
Tsikas, Dimitrios; Evans, Christopher E.; Denton, Travis T.; Mitschke, Anja; Gutzki, Frank-Mathias; Pinto, John T.; Khomenko, Tetyana; Szabo, Sandor; Cooper, Arthur J.L.
2012-01-01
Aminoethylcysteine ketimine decarboxylated dimer [AECK-DD; systematic name: 1,2–3,4–5,6–7,8-octahydro-1,8a-diaza-4,6-dithiafluoren-9(8aH)-one] is a previously described metabolite of cysteamine that has been reported to be present in mammalian brain, urine, plasma, cells in culture and vegetables, and to possess potent anti-oxidative properties. Here, we describe a stable-isotope GC-MS/MS method for specific and sensitive determination of AECK-DD in biological samples. 13C2-AECK-DD was synthesized and used as the internal standard. Derivatization was carried out by N-pentafluorobenzylation with pentafluorobenzyl bromide in acetonitrile. Quantification was performed by selected-reaction monitoring of the mass transitions m/z 328 to m/z 268 for AECK-DD and m/z 330 to m/z 270 for 13C2-AECK-DD in the electron-capture negative-ion chemical ionization mode. The procedure was systematically validated for human plasma and urine samples. AECK-DD was not detectable in human plasma above ~ 4 nM, but was present in urine samples of healthy humans at a maximal concentration of 46 nM. AECK-DD was detectable in rat brain at very low levels of about 8 pmol/g wet weight. Higher levels of AECK-DD were detected in mouse brain (~1 nmol/g wet weight). Among nine dietary vegetables evaluated, only shallots were found to contain trace amounts of AECK-DD (~ 6.8 pmol/g fresh tissue). PMID:22858756
Tsikas, Dimitrios; Evans, Christopher E; Denton, Travis T; Mitschke, Anja; Gutzki, Frank-Mathias; Pinto, John T; Khomenko, Tetyana; Szabo, Sandor; Cooper, Arthur J L
2012-11-01
Aminoethylcysteine ketimine decarboxylated dimer (AECK-DD; systematic name: 1,2-3,4-5,6-7,8-octahydro-1,8a-diaza-4,6-dithiafluoren-9(8aH)-one) is a previously described metabolite of cysteamine that has been reported to be present in mammalian brain, urine, plasma, and cells in culture and vegetables and to possess potent antioxidative properties. Here, we describe a stable isotope gas chromatography-tandem mass spectrometry (GC-MS/MS) method for specific and sensitive determination of AECK-DD in biological samples. (13)C(2)-labeled AECK-DD was synthesized and used as the internal standard. Derivatization was carried out by N-pentafluorobenzylation with pentafluorobenzyl bromide in acetonitrile. Quantification was performed by selected reaction monitoring of the mass transitions m/z 328 to 268 for AECK-DD and m/z 330 to 270 for [(13)C(2)]AECK-DD in the electron capture negative ion chemical ionization mode. The procedure was systematically validated for human plasma and urine samples. AECK-DD was not detectable in human plasma above approximately 4nM but was present in urine samples of healthy humans at a maximal concentration of 46nM. AECK-DD was detectable in rat brain at very low levels of approximately 8pmol/g wet weight. Higher levels of AECK-DD were detected in mouse brain (∼1nmol/g wet weight). Among nine dietary vegetables evaluated, only shallots were found to contain trace amounts of AECK-DD (∼6.8pmol/g fresh tissue). Copyright © 2012 Elsevier Inc. All rights reserved.
Menuet, Clément; Khemiri, Hanan; de la Poëze d'Harambure, Théodora; Gestreau, Christian
2016-05-15
Changes in arterial Po2, Pco2, and pH are the strongest stimuli sensed by peripheral and central chemoreceptors to adjust ventilation to the metabolic demand. Erythropoietin (Epo), the main regulator of red blood cell production, increases the hypoxic ventilatory response, an effect attributed to the presence of Epo receptors in both carotid bodies and key brainstem structures involved in integration of peripheral inputs and control of breathing. However, it is not known whether Epo also has an effect on the hypercapnic chemoreflex. In a first attempt to answer this question, we tested the hypothesis that Epo alters the ventilatory response to increased CO2 levels. Basal ventilation and hypercapnic ventilatory response (HCVR) were recorded from control mice and from two transgenic mouse lines constitutively expressing high levels of human Epo in brain only (Tg21) or in brain and plasma (Tg6), the latter leading to polycythemia. To tease apart the potential effects of polycythemia and levels of plasma Epo in the HCVR, control animals were injected with an Epo analog (Aranesp), and Tg6 mice were treated with the hemolytic agent phenylhydrazine after splenectomy. Ventilatory parameters measured by plethysmography in conscious mice were consistent with data from electrophysiological recordings in anesthetized animals and revealed a blunted HCVR in Tg6 mice. Polycythemia alone and increased levels of plasma Epo blunt the HCVR. In addition, Tg21 mice with an augmented level of cerebral Epo also had a decreased HCVR. We discuss the potential implications of these findings in several physiopathological conditions. Copyright © 2016 the American Physiological Society.
OAT3-mediated extrusion of the 99mTc-ECD metabolite in the mouse brain
Kikuchi, Tatsuya; Okamura, Toshimitsu; Wakizaka, Hidekatsu; Okada, Maki; Odaka, Kenichi; Yui, Joji; Tsuji, Atsushi B; Fukumura, Toshimitsu; Zhang, Ming-Rong
2014-01-01
After administration of the 99mTc complex with N,N'-1,2-ethylenediylbis-L-cysteine diethyl ester (99mTc-ECD), a brain perfusion imaging agent, the radioactive metabolite is trapped in primate brain, but not in mouse and rat. Here, we investigate the involvement of metabolite extrusion by organic anion transporter 3 (OAT3), which is highly expressed at the blood–brain barrier in mice, in this species difference. The efflux rate of radioactivity in the cerebrum of Oat3−/− mice at later phase was 20% of that of control mice. Thus, organic anion transporters in mouse brain would be involved in the low brain retention of radioactivity after 99mTc-ECD administration. PMID:24496177
Emoto, Miho C; Matsuoka, Yuta; Yamada, Ken-Ichi; Sato-Akaba, Hideo; Fujii, Hirotada G
2017-04-15
Glutathione (GSH) is the most abundant non-protein thiol that buffers reactive oxygen species in the brain. GSH does not reduce nitroxides directly, but in the presence of ascorbates, addition of GSH increases ascorbate-induced reduction of nitroxides. In this study, we used electron paramagnetic resonance (EPR) imaging and the nitroxide imaging probe, 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), to non-invasively obtain spatially resolved redox data from mouse brains depleted of GSH with diethyl maleate compared to control. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of the redox status in vivo and mapped as a "redox map". The obtained redox maps from control and GSH-depleted mouse brains showed a clear change in the brain redox status, which was due to the decreased levels of GSH in brains as measured by a biochemical assay. We observed a linear relationship between the reduction rate constant of MCP and the level of GSH for both control and GSH-depleted mouse brains. Using this relationship, the GSH level in the brain can be estimated from the redox map obtained with EPR imaging. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of Bisphenol A on glucose homeostasis and brain insulin signaling pathways in male mice.
Fang, Fangfang; Chen, Donglong; Yu, Pan; Qian, Wenyi; Zhou, Jing; Liu, Jingli; Gao, Rong; Wang, Jun; Xiao, Hang
2015-02-01
The potential effects of Bisphenol A (BPA) on peripheral insulin resistance have recently gained more attention, however, its functions on brain insulin resistance are still unknown. The aim of the present study was to investigate the effects of BPA on insulin signaling and glucose transport in mouse brain. The male mice were administrated of 100 μg/kg/day BPA or vehicle for 15 days then challenged with glucose and insulin tolerance tests. The insulin levels were detected with radioimmunoassay (RIA), and the insulin signaling pathways were investigated by Western blot. Our results revealed that BPA significantly increased peripheral plasma insulin levels, and decreased the insulin signals including phosphorylated insulin receptor (p-IR), phosphorylated insulin receptor substrate 1 (p-IRS1), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular regulated protein kinases (p-ERK1/2) in the brain, though insulin expression in both hippocampus and profrontal cortex was increased. In parallel, BPA exposure might contribute to glucose transport disturbance in the brain since the expression of glucose transporters were markedly decreased. In conclusion, BPA exposure perturbs the insulin signaling and glucose transport in the brain, therefore, it might be a risk factor for brain insulin resistance. Copyright © 2015 Elsevier Inc. All rights reserved.
Localization of PPAR isotypes in the adult mouse and human brain
Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B.; Mayfield, R. Dayne; Harris, R. Adron
2016-01-01
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain. PMID:27283430
Localization of PPAR isotypes in the adult mouse and human brain.
Warden, Anna; Truitt, Jay; Merriman, Morgan; Ponomareva, Olga; Jameson, Kelly; Ferguson, Laura B; Mayfield, R Dayne; Harris, R Adron
2016-06-10
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that act as ligand-activated transcription factors. PPAR agonists have well-documented anti-inflammatory and neuroprotective roles in the central nervous system. Recent evidence suggests that PPAR agonists are attractive therapeutic agents for treating neurodegenerative diseases as well as addiction. However, the distribution of PPAR mRNA and protein in brain regions associated with these conditions (i.e. prefrontal cortex, nucleus accumbens, amygdala, ventral tegmental area) is not well defined. Moreover, the cell type specificity of PPARs in mouse and human brain tissue has yet to be investigated. We utilized quantitative PCR and double immunofluorescence microscopy to determine that both PPAR mRNA and protein are expressed ubiquitously throughout the adult mouse brain. We found that PPARs have unique cell type specificities that are consistent between species. PPARα was the only isotype to colocalize with all cell types in both adult mouse and adult human brain tissue. Overall, we observed a strong neuronal signature, which raises the possibility that PPAR agonists may be targeting neurons rather than glia to produce neuroprotection. Our results fill critical gaps in PPAR distribution and define novel cell type specificity profiles in the adult mouse and human brain.
CCL11 promotes migration and proliferation of mouse neural progenitor cells.
Wang, Feifei; Baba, Nobuyasu; Shen, Yuan; Yamashita, Tatsuyuki; Tsuru, Emi; Tsuda, Masayuki; Maeda, Nagamasa; Sagara, Yusuke
2017-02-07
Neonatal hypoxia-ischemia induces massive brain damage during the perinatal period, resulting in long-term consequences to central nervous system structural and functional maturation. Although neural progenitor cells (NPCs) migrate through the parenchyma and home in to injury sites in the rodent brain, the molecular mechanisms are unknown. We examined the role of chemokines in mediating NPC migration after neonatal hypoxic-ischemic brain injury. Nine-day-old mice were exposed to a 120-minute hypoxia following unilateral carotid occlusion. Chemokine levels were quantified in mouse brain extract. Migration and proliferation assays were performed using embryonic and infant mouse NPCs. The neonatal hypoxic-ischemic brain injury resulted in an ipsilateral lesion, which was extended to the cortical and striatal areas. NPCs migrated toward an injured area, where a marked increase of CC chemokines was detected. In vitro studies showed that incubation of NPCs with recombinant mouse CCL11 promoted migration and proliferation. These effects were partly inhibited by a CCR3 antagonist, SB297006. Our data implicate an important effect of CCL11 for mouse NPCs. The effective activation of NPCs may offer a promising strategy for neuroregeneration in neonatal hypoxic-ischemic brain injury.
Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models
NASA Astrophysics Data System (ADS)
Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.
2014-05-01
Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.
Vora, Shreya R; Patil, Rahul B; Pillai, Meena M
2009-05-01
With an aim to examine the effect of ethanolic extract of P. crispum (Parsley) leaves on the D-galactose-induced oxidative stress in the brain of mouse, the activities of antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase) involved in oxygen radical (OR)-detoxification and antiperoxidative defense were measured in conjunction with an index of lipid peroxidation in mitochondrial fraction of various regions of the mouse brain. A significant decrease in superoxide dismutase and glutathione peroxidase activity was observed in D-galactose-stressed mice, while catalase activity was increased. Treatment of D-galactose-stressed mice with the ethanolic extract of P. crispum showed protection against the induced oxidative stress in brain regions. Concentration of thiobarbituric acid-reactive product was greatly elevated in D-galactose stress-induced mice and was significantly reduced in the brain regions of these mice upon treatment with P. crispum. It is postulated that parsley shows a protective effect against mitochondrial oxidative damage in the mouse brain.
Beurel, Eléonore; Mines, Marjelo A; Song, Ling; Jope, Richard S
2012-01-01
Objectives Dysregulated glycogen synthase kinase-3 (GSK3) may contribute to the pathophysiology of mood disorders and other diseases, and appears to be a target of certain therapeutic drugs. The growing recognition of heightened vulnerability during development to many psychiatric diseases, including mood disorders, led us to test if there are developmental changes in mouse brain GSK3 and its regulation by phosphorylation and by therapeutic drugs. Methods GSK3 levels and phosphorylation were measured at seven ages of development in mouse cerebral cortex and hippocampus. Results Two periods of rapid transitions in GSK3 levels were identified, a large rise between postnatal day 1 and two to three weeks of age, where GSK3 levels were as high as four-fold adult mouse brain levels, and a rapid decline between two to four and eight weeks of age, when adult levels were reached. Inhibitory serine-phosphorylation of GSK3, particularly GSK3β, was extremely high in one-day postnatal mouse brain, and rapidly declined thereafter. These developmental changes in GSK3 were equivalent in male and female cerebral cortex, and differed from other signaling kinases, including Akt, ERK1/2, JNK, and p38 levels and phosphorylation. In contrast to adult mouse brain, where administration of lithium or fluoxetine rapidly and robustly increased serine-phosphorylation of GSK3, in young mice these responses were blunted or absent. Conclusions High brain levels of GSK3 and large fluctuations in its levels and phosphorylation in juvenile and adolescent mouse brain raise the possibility that they may contribute to destabilized mood regulation induced by environmental and genetic factors. PMID:23167932
A regulatory toolbox of MiniPromoters to drive selective expression in the brain
Portales-Casamar, Elodie; Swanson, Douglas J.; Liu, Li; de Leeuw, Charles N.; Banks, Kathleen G.; Ho Sui, Shannan J.; Fulton, Debra L.; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J.; Babyak, Nazar; Black, Sonia F.; Bonaguro, Russell J.; Brauer, Erich; Candido, Tara R.; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C. Y.; Chopra, Vik; Docking, T. Roderick; Dreolini, Lisa; D'Souza, Cletus A.; Flynn, Erin K.; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G.; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y.; Lim, Jonathan S.; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J.; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L.; Schmouth, Jean-François; Swanson, Magdalena I.; Tam, Bonny; Ticoll, Amy; Turner, Jenna L.; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F.; Wilson, Gary; Wong, Bibiana K. Y.; Wong, Siaw H.; Wong, Tony Y. T.; Yang, George S.; Ypsilanti, Athena R.; Jones, Steven J. M.; Holt, Robert A.; Goldowitz, Daniel; Wasserman, Wyeth W.; Simpson, Elizabeth M.
2010-01-01
The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination “knockins” in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5′ of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type–specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies. PMID:20807748
Survival of adult neurons lacking cholesterol synthesis in vivo
Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin
2007-01-01
Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system. PMID:17199885
Chen, Zu-Lin; Revenko, Alexey S; Singh, Pradeep; MacLeod, A Robert; Norris, Erin H; Strickland, Sidney
2017-05-04
Vascular abnormalities and inflammation are found in many Alzheimer disease (AD) patients, but whether these changes play a causative role in AD is not clear. The factor XII (FXII) -initiated contact system can trigger both vascular pathology and inflammation and is activated in AD patients and AD mice. We have investigated the role of the contact system in AD pathogenesis. Cleavage of high-molecular-weight kininogen (HK), a marker for activation of the inflammatory arm of the contact system, is increased in a mouse model of AD, and this cleavage is temporally correlated with the onset of brain inflammation. Depletion of FXII in AD mice inhibited HK cleavage in plasma and reduced neuroinflammation, fibrinogen deposition, and neurodegeneration in the brain. Moreover, FXII-depleted AD mice showed better cognitive function than untreated AD mice. These results indicate that FXII-mediated contact system activation contributes to AD pathogenesis, and therefore this system may offer novel targets for AD treatment. © 2017 by The American Society of Hematology.
A Multiscale Parallel Computing Architecture for Automated Segmentation of the Brain Connectome
Knobe, Kathleen; Newton, Ryan R.; Schlimbach, Frank; Blower, Melanie; Reid, R. Clay
2015-01-01
Several groups in neurobiology have embarked into deciphering the brain circuitry using large-scale imaging of a mouse brain and manual tracing of the connections between neurons. Creating a graph of the brain circuitry, also called a connectome, could have a huge impact on the understanding of neurodegenerative diseases such as Alzheimer’s disease. Although considerably smaller than a human brain, a mouse brain already exhibits one billion connections and manually tracing the connectome of a mouse brain can only be achieved partially. This paper proposes to scale up the tracing by using automated image segmentation and a parallel computing approach designed for domain experts. We explain the design decisions behind our parallel approach and we present our results for the segmentation of the vasculature and the cell nuclei, which have been obtained without any manual intervention. PMID:21926011
Mapping social behavior-induced brain activation at cellular resolution in the mouse
Kim, Yongsoo; Venkataraju, Kannan Umadevi; Pradhan, Kith; Mende, Carolin; Taranda, Julian; Turaga, Srinivas C.; Arganda-Carreras, Ignacio; Ng, Lydia; Hawrylycz, Michael J.; Rockland, Kathleen; Seung, H. Sebastian; Osten, Pavel
2014-01-01
Understanding how brain activation mediates behaviors is a central goal of systems neuroscience. Here we apply an automated method for mapping brain activation in the mouse in order to probe how sex-specific social behaviors are represented in the male brain. Our method uses the immediate early gene c-fos, a marker of neuronal activation, visualized by serial two-photon tomography: the c-fos-GFP-positive neurons are computationally detected, their distribution is registered to a reference brain and a brain atlas, and their numbers are analyzed by statistical tests. Our results reveal distinct and shared female and male interaction-evoked patterns of male brain activation representing sex discrimination and social recognition. We also identify brain regions whose degree of activity correlates to specific features of social behaviors and estimate the total numbers and the densities of activated neurons per brain areas. Our study opens the door to automated screening of behavior-evoked brain activation in the mouse. PMID:25558063
Large-scale topology and the default mode network in the mouse connectome
Stafford, James M.; Jarrett, Benjamin R.; Miranda-Dominguez, Oscar; Mills, Brian D.; Cain, Nicholas; Mihalas, Stefan; Lahvis, Garet P.; Lattal, K. Matthew; Mitchell, Suzanne H.; David, Stephen V.; Fryer, John D.; Nigg, Joel T.; Fair, Damien A.
2014-01-01
Noninvasive functional imaging holds great promise for serving as a translational bridge between human and animal models of various neurological and psychiatric disorders. However, despite a depth of knowledge of the cellular and molecular underpinnings of atypical processes in mouse models, little is known about the large-scale functional architecture measured by functional brain imaging, limiting translation to human conditions. Here, we provide a robust processing pipeline to generate high-resolution, whole-brain resting-state functional connectivity MRI (rs-fcMRI) images in the mouse. Using a mesoscale structural connectome (i.e., an anterograde tracer mapping of axonal projections across the mouse CNS), we show that rs-fcMRI in the mouse has strong structural underpinnings, validating our procedures. We next directly show that large-scale network properties previously identified in primates are present in rodents, although they differ in several ways. Last, we examine the existence of the so-called default mode network (DMN)—a distributed functional brain system identified in primates as being highly important for social cognition and overall brain function and atypically functionally connected across a multitude of disorders. We show the presence of a potential DMN in the mouse brain both structurally and functionally. Together, these studies confirm the presence of basic network properties and functional networks of high translational importance in structural and functional systems in the mouse brain. This work clears the way for an important bridge measurement between human and rodent models, enabling us to make stronger conclusions about how regionally specific cellular and molecular manipulations in mice relate back to humans. PMID:25512496
2017-10-01
mouse genetic breeding, provided genotyping, immunostaining, histological analysis, and molecular expertise. Funding Support NIH/NHLBI Name: Bert...AWARD NUMBER: W81XWH-16-1-0665 TITLE: RBPJ and EphrinB2 as Molecular Targets to Treat Brain Arteriovenous Malformation in Notch4-Induced Mouse...2016 - 29 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER RBPJ and EphrinB2 as Molecular Targets to Treat Brain Arteriovenous Malformation in
Emoto, Miho C; Sato-Akaba, Hideo; Hirata, Hiroshi; Fujii, Hirotada G
2014-09-01
Electron paramagnetic resonance (EPR) imaging using nitroxides as redox-sensitive probes is a powerful, noninvasive method that can be used under various physiological conditions to visualize changes in redox status that result from oxidative damage. Two blood-brain barrier-permeative nitroxides, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP) and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MCP), have been widely used as redox-sensitive probes in the brains of small animals, but their in vivo distribution and properties have not yet been analyzed in detail. In this study, a custom-made continuous-wave three-dimensional (3D) EPR imager was used to obtain 3D EPR images of mouse heads using MCP or HMP. This EPR imager made it possible to take 3D EPR images reconstructed from data from 181 projections acquired every 60s. Using this improved EPR imager and magnetic resonance imaging, the distribution and reduction time courses of HMP and MCP were examined in mouse heads. EPR images of living mice revealed that HMP and MCP have different distributions and different time courses for entering the brain. Based on the pharmacokinetics of the reduction reactions of HMP and MCP in the mouse head, the half-lives of HMP and MCP were clearly and accurately mapped pixel by pixel. An ischemic mouse model was prepared, and the half-life of MCP was mapped in the mouse head. Compared to the half-life in control mice, the half-life of MCP in the ischemic model mouse brain was significantly increased, suggesting a shift in the redox balance. This in vivo EPR imaging method using BBB-permeative MCP is a useful noninvasive method for assessing changes in the redox status in mouse brains under oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.
Kanamitsu, Kayoko; Arakawa, Ryosuke; Sugiyama, Yuichi; Suhara, Tetsuya; Kusuhara, Hiroyuki
2016-12-01
The effect of drugs in the central nervous system (CNS) is closely related to occupancy of their target receptor. In this study, we integrated plasma concentrations, in vitro/in vivo data for receptor or protein binding, and in silico data, using a physiologically based pharmacokinetic model, to examine the predictability of receptor occupancy in humans. The occupancy of the dopamine D2 receptor and the plasma concentrations of the antipsychotic drugs quetiapine and perospirone in humans were collected from the literature or produced experimentally. Association and dissociation rate constants and unbound fractions in the serum and brain were determined in vitro/in vivo using human D2 receptor-expressing membrane fractions, human serum and mouse brain. The permeability of drugs across the blood-brain barrier was estimated based on their physicochemical properties. The effect of a metabolite of perospirone, ID-15036, was also considered. The time profiles of D2 receptor occupancy following oral dose of quetiapine and perospirone predicted were similar to the observed values. This approach could assist in the design of clinical studies for drug development and the prediction of the impact of drug-drug interactions on CNS function in clinical settings. Copyright © 2016 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
Matsuda, Junko; Vanier, Marie T.; Popa, Iuliana; Portoukalian, Jacques; Suzuki, Kunihiko
2006-01-01
Gangliosides in the brain of the knockout mouse deficient in the activity of β1,4 N-acetylgalactosaminyl transferase (β1,4 GalNAc-T)(GM2 synthase) consisted of nearly exclusively of GM3- and GD3-gangliosides as expected from the known substrate specificity of the enzyme and in confirmation of the initial reports from two laboratories that generated the mutant mouse experimentally. The total molar amount of gangliosides was approximately 30% higher in the mutant mouse brain than that in the wild-type brain. However, contrary to the initial reports, one-fourth of total GD3-ganglioside was O-acetylated. It reacted positively with an anti-O-acetylated GD3 monoclonal antibody and disappeared with a corresponding increase in GD3-ganglioside after mild alkaline treatment. The absence of O-acetylated GD3 in the initial reports can be explained by the saponification step included in their analytical procedures. Although quantitatively much less and identification tentative, we also detected GT3 and O-acetylated GT3. Anti-GD3 and anti-O-acetylated GD3 monoclonal antibodies gave positive reactions in the brain of mutant mouse as expected from the analytical results. Either antibody barely stained wild-type brain except for immunoreactivity of GD3 in the cerebellar Purkinje cells. The distributions of GD3 and O-acetylated GD3 in the brain of mutant mouse were similar but differential localization was noted in the cerebellar Purkinje cells and cerebral cortex. PMID:25792782
A high resolution spatiotemporal atlas of gene expression of the developing mouse brain
Thompson, Carol L.; Ng, Lydia; Menon, Vilas; Martinez, Salvador; Lee, Chang-Kyu; Glattfelder, Katie; Sunkin, Susan M.; Henry, Alex; Lau, Christopher; Dang, Chinh; Garcia-Lopez, Raquel; Martinez-Ferre, Almudena; Pombero, Ana; Rubenstein, John L.R.; Wakeman, Wayne B.; Hohmann, John; Dee, Nick; Sodt, Andrew J.; Young, Rob; Smith, Kimberly; Nguyen, Thuc-Nghi; Kidney, Jolene; Kuan, Leonard; Jeromin, Andreas; Kaykas, Ajamete; Miller, Jeremy; Page, Damon; Orta, Geri; Bernard, Amy; Riley, Zackery; Smith, Simon; Wohnoutka, Paul; Hawrylycz, Mike; Puelles, Luis; Jones, Allan R.
2015-01-01
SUMMARY To provide a temporal framework for the genoarchitecture of brain development, in situ hybridization data were generated for embryonic and postnatal mouse brain at 7 developmental stages for ~2100 genes, processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, 7 reference atlases, an ontogenetic ontology, and tools to explore co-expression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (developingmouse.brain-map.org). PMID:24952961
Speth, Robert C.; Carrera, Eduardo J.; Bretón, Catalina; Linares, Andrea; Gonzalez-Reiley, Luz; Swindle, Jamala D.; Santos, Kira L.; Schadock, Ines; Bader, Michael; Karamyan, Vardan T.
2014-01-01
The recent identification of a novel binding site for angiotensin (Ang) II as the peptidase neurolysin (E.C. 3.4.24.16) has implications for the renin-angiotensin system (RAS). This report describes the distribution of specific binding of 125I-Sarcosine1, Isoleucine8 Ang II (125I-SI Ang II) in neurolysin knockout mouse brains compared to wild-type mouse brains using quantitative receptor autoradiography. In the presence of p-chloromercuribenzoic acid (PCMB), which unmasks the novel binding site, widespread distribution of specific (3 µM Ang II displaceable) 125I-SI Ang II binding in 32 mouse brain regions was observed. Highest levels of binding >700 fmol/g initial wet weight were seen in hypothalamic, thalamic and septal regions, while the lowest level of binding <300 fmol/g initial wet weight was in the mediolateral medulla. 125I-SI Ang II binding was substantially higher by an average of 85% in wild-type mouse brains compared to neurolysin knockout brains, suggesting the presence of an additional non-AT1, non-AT2, non-neurolysin Ang II binding site in the mouse brain. Binding of 125I-SI Ang II to neurolysin in the presence of PCMB was highest in hypothalamic and ventral cortical brain regions, but broadly distributed across all regions surveyed. Non-AT1, non-AT2, non-neurolysin binding was also highest in the hypothalamus but had a different distribution than neurolysin. There was a significant reduction in AT2 receptor binding in the neurolysin knockout brain and a trend towards decreased AT1 receptor binding. In the neurolysin knockout brains, the size of the lateral ventricles was increased by 56% and the size of the mid forebrain (−2.72 to +1.48 relative to Bregma) was increased by 12%. These results confirm the identity of neurolysin as a novel Ang II binding site, suggesting that neurolysin may play a significant role in opposing the pathophysiological actions of the brain RAS and influencing brain morphology. PMID:25147932
Perinatal western-type diet and associated gestational weight gain alter postpartum maternal mood.
Bolton, Jessica L; Wiley, Melanie G; Ryan, Bailey; Truong, Samantha; Strait, Melva; Baker, Dana Creighton; Yang, Nancy Y; Ilkayeva, Olga; O'Connell, Thomas M; Wroth, Shelley W; Sánchez, Cristina L; Swamy, Geeta; Newgard, Christopher; Kuhn, Cynthia; Bilbo, Staci D; Simmons, Leigh Ann
2017-10-01
The role of perinatal diet in postpartum maternal mood disorders, including depression and anxiety, remains unclear. We investigated whether perinatal consumption of a Western-type diet (high in fat and branched-chain amino acids [BCAA]) and associated gestational weight gain (GWG) cause serotonin dysregulation in the central nervous system (CNS), resulting in postpartum depression and anxiety (PPD/A). Mouse dams were fed one of four diets (high-fat/high BCAA, low-fat/high BCAA, high-fat, and low-fat) prior to mating and throughout gestation and lactation. Postpartum behavioral assessments were conducted, and plasma and brain tissues assayed. To evaluate potential clinical utility, we conducted preliminary human studies using data from an extant sample of 17 primiparous women with high GWG, comparing across self-reported postpartum mood symptoms using the Edinburgh Postnatal Depression Scale (EPDS) for percent GWG and plasma amino acid levels. Mouse dams fed the high-fat/high BCAA diet gained more weight per kcal consumed, and BCAA-supplemented dams lost weight more slowly postpartum. Dams on BCAA-supplemented diets exhibited increased PPD/A-like behavior, decreased dopaminergic function, and decreased plasma tyrosine and histidine levels when assessed on postnatal day (P)8. Preliminary human data showed that GWG accounted for 29% of the variance in EPDS scores. Histidine was also lower in women with higher EPDS scores. These findings highlight the role of perinatal diet and excess GWG in the development of postpartum mood disorders.
Curzon, G; Fernando, J C
1976-12-01
1 Aminophylline and other methylxanthines increase brain tryptophan and hence 5-hydroxytryptamine turnover. The mechanism of this effect of aminophylline was investigated. 2 At lower doses (greater than 100 mg/kg i.p.) the brain tryptophan increase could be explained by the lipolytic action of the drug, i.e. increased plasma unesterified fatty acid freeing plasma tryptophan from protein binding so that it became available to the brain. 3 Plasma unesterified fatty acid did not increase when aminophylline (109 mg/kg i.p.) was given to nicotinamide-treated rats but as both plasma total and free tryptophan rose, a tryptophan increase in the brain still occurred. 4 The rise in brain tryptophan concentration following the injection of a higher dose of the drug (150 mg/kg i.p.) could no longer be explained by a rise of plasma free tryptophan as the ratio of brain tryptophan to plasma free tryptophan rose considerably. Plasma total tryptophan fell and the plasma insulin concentration rose. 5 The increase of brain tryptophan concentration after injection of 150 mg/kg aminophylline appeared specific for this amino acid as brain tyrosine and phenyllanine did not increase. However as their plasma concentrations fell the brain/plasma ratio for all three amino acids rose. 6 The higher dose of aminophylline increased the muscle concentration of tryptophan but that of tyrosine fell and that of phenylalanine remained unaltered. The liver concentrations were not affected. 7 The aminophylline-induced increase of the ratio of brain tryptophan of plasma free tryptophan no longer occurred when the drug was given to animals injected with the beta-adrenoreceptor blocking agent propranolol or the diabetogenic agent streptozotocin. 8 The changes in brain tryptophan upon aminophylline injection may be explained by (a) increased availability of plasma tryptophan to the brain due to increased lipolysis and (b) increased effectiveness of uptake of tryptophan by the brain due to increased insulin secretion.
Amuzie, Chidozie J.; Islam, Zahidul; Kim, Jae Kyung; Seo, Ji-Hyun; Pestka, James J.
2010-01-01
Intranasal exposure of mice to satratoxin G (SG), a macrocyclic trichothecene produced by the indoor air mold Stachybotrys chartarum, selectively induces apoptosis in olfactory sensory neurons (OSNs) of the nose and brain. The purpose of this study was to measure the kinetics of distribution and clearance of SG in the mouse. Following intranasal instillation of female C57B16 mice with SG (500 μg/kg bw), the toxin was detectable from 5 to 60 min in blood and plasma, with the highest concentrations, 30 and 19 ng/ml, respectively, being observed at 5 min. SG clearance from plasma was rapid and followed single-compartment kinetics (t1/2 = 20 min) and differed markedly from that of other tissues. SG concentrations were maximal at 15–30 min in nasal turbinates (480 ng/g), kidney (280 ng/g), lung (250 ng/g), spleen (200 ng/g), liver (140 ng/g), thymus (90 ng/g), heart (70 ng/g), olfactory bulb (14 ng/g), and brain (3 ng/g). The half-lives of SG in the nasal turbinate and thymus were 7.6 and 10.1 h, respectively, whereas in other organs, these ranged from 2.3 to 4.4 h. SG was detectable in feces and urine, but cumulative excretion over 5 days via these routes accounted for less than 0.3% of the total dose administered. Taken together, SG was rapidly taken up from the nose, distributed to tissues involved in respiratory, immune, and neuronal function, and subsequently cleared. However, a significant amount of the toxin was retained in the nasal turbinate, which might contribute to SG’s capacity to evoke OSN death. PMID:20466779
Zhang, Wei; Fan, Li-mei; Li, Lin-lin; Peng, Zheng-yu
2014-01-01
To investigate the expression of neural salient serine/arginine-rich protein 1 (NSSR1) in the development of mouse brain. Brain samples were collected from mice with different developmental stages: 9, 12, 14 d before birth (E9, E12, E14) and 1 d, 3 weeks and 3 months after birth. The expression of NSSR1 in mouse brain at different developmental stages was detected by Western blot and the distribution of NSSR1 was analyzed by immunohistochemical staining. The expression and distribution of NSSR1 in mouse brain were compared among embryos, neonatal and adult animals. During embryogenesis, the expression of NSSR1 proteins increases significantly from 0.186(E9) to 0.445(E14) and reached a high level after birth. Immunohistochemical analysis showed that in E12 embryos, NSSR1 was specifically distributed in the marginal and mantle layers. The expression of NSSR1 in hippocampus was very low in neonatal animals but stronger in adults. In cerebellar cortex, NSSR1 was widely expressed in purkinje and granule cells of adult animals, but mainly expressed in Purkinje cells in neonates. The expression of NSSR1 is regulated by the development of mouse brain and presents dynamic changes.
Anitua, Eduardo; Pascual, Consuelo; Antequera, Desiree; Bolos, Marta; Padilla, Sabino; Orive, Gorka; Carro, Eva
2014-07-01
Impaired growth factor function is thought to drive many of the alterations observed in Alzheimer's disease (AD) patients. Endogenous regenerative technology, PRGF (plasma rich in growth factor)-Endoret, is designed for the delivery of a complex pool of patient's own active morphogens that may stimulate tissue regeneration. We obtained and characterized PRGF-Endoret preparations from human blood. We used, as experimental approach in vivo, APP/PS1 mice, characterized by age-dependent brain amyloid-β (Aβ) accumulation. Intranasal administration of PRGF-Endoret to APP/PS1 mice resulted in an important decrease in brain Aβ deposition and tau phosphorylation. PRGF-Endoret-treated APP/PS1 mice also showed decreased astrocyte reactivity, and prevented protein synaptic loss. In vitro approaches demonstrated that PRGF-Endoret treatment modulated astrocyte activation, reducing inflammatory responses, and promoted Aβ degradation. Furthermore, PRGF-Endoret stimulated global improvements in anxiety, learning, and memory behaviors. Our findings show that PRGF-Endoret exerts multifunctional and complementary effects that result in the reversal of the broad range of cognitive deficits in AD, suggesting that PRGF-Endoret may hold promise as an innovative therapy in AD. Copyright © 2014 Elsevier Inc. All rights reserved.
Plasma non-esterified docosahexaenoic acid is the major pool supplying the brain
Chen, Chuck T.; Kitson, Alex P.; Hopperton, Kathryn E.; Domenichiello, Anthony F.; Trépanier, Marc-Olivier; Lin, Lauren E.; Ermini, Leonardo; Post, Martin; Thies, Frank; Bazinet, Richard P.
2015-01-01
Despite being critical for normal brain function, the pools that supply docosahexaenoic acid (DHA) to the brain are not agreed upon. Using multiple kinetic models in free-living adult rats, we first demonstrate that DHA uptake from the plasma non-esterified fatty acid (NEFA) pool predicts brain uptake of DHA upon oral administration, which enters the plasma NEFA pool as well as multiple plasma esterified pools. The rate of DHA loss by the brain is similar to the uptake from the plasma NEFA pool. Furthermore, upon acute iv administration, although more radiolabeled lysophosphatidylcholine (LPC)-DHA enters the brain than NEFA-DHA, this is due to the longer plasma half-life and exposure to the brain. Direct comparison of the uptake rate of LPC-DHA and NEFA-DHA demonstrates that uptake of NEFA-DHA into the brain is 10-fold greater than LPC-DHA. In conclusion, plasma NEFA-DHA is the major plasma pool supplying the brain. PMID:26511533
Brain Glucose Transporter (Glut3) Haploinsufficiency Does Not Impair Mouse Brain Glucose Uptake
Stuart, Charles A.; Ross, Ian R.; Howell, Mary E. A.; McCurry, Melanie P.; Wood, Thomas G.; Ceci, Jeffrey D.; Kennel, Stephen J.; Wall, Jonathan
2011-01-01
Mouse brain expresses three principle glucose transporters. Glut1 is an endothelial marker and is the principal glucose transporter of the blood-brain barrier. Glut3 and Glut6 are expressed in glial cells and neural cells. A mouse line with a null allele for Glut3 has been developed. The Glut3−/− genotype is intrauterine lethal by seven days post-coitis, but the heterozygous (Glut3+/−) littermate survives, exhibiting rapid post-natal weight gain, but no seizures or other behavioral aberrations. At twelve weeks of age, brain uptake of tail vein-injected 3H-2-deoxy glucose in Glut3+/− mice was not different from Glut3+/+ littermates, despite 50% less Glut3 protein expression in the brain. The brain uptake of injected 18F-2-fluoro-2-deoxy glucose was similarly not different from Glut3+/− littermates in the total amount, time course, or brain imaging in the Glut3+/− mice. Glut1 and Glut6 protein expressions evaluated by immunoblots were not affected by the diminished Glut3 expression in the Glut3+/− mice. We conclude that a 50% decrease in Glut3 is not limiting for the uptake of glucose into the mouse brain, since Glut3 haploinsufficiency does not impair brain glucose uptake or utilization. PMID:21316350
Castillo-Pichardo, Linette; Dharmawardhane, Suranganie; Rodríguez-Orengo, José F
2014-12-01
The objective of this study was to develop a rapid and sensitive method for the quantification of resveratrol, a polyphenolic compound with multiple health beneficial effects, in mouse plasma. We used reversed-phase ultra high pressure-liquid chromatography with tandem mass spectrometry detection for the determination of resveratrol levels in mouse plasma. An Agilent Zorbax Eclipse Plus C18 column (2.1 mm x 50 mm, 1.8 μm) was used as the stationary phase. The mobile phase consisted of a gradient formed using 1 mM ammonium fluoride and methanol. Using this improved method, we obtained a retention time of 2.2 min and a total run time of 5 min, for resveratrol. The calibration curve for resveratrol showed a linear range from 0.5 to 100 ng/mL. The average coefficient of variation was 6% for interday variation and 4% for intraday variation. The recovery for resveratrol in mouse plasma was 85 ± 10% (mean ± standard deviation). The method presented herein allows a rapid and very sensitive quantification of resveratrol in mouse plasma at concentrations as low as 500 ppt.
Danhier, Pierre; Magat, Julie; Levêque, Philippe; De Preter, Géraldine; Porporato, Paolo E; Bouzin, Caroline; Jordan, Bénédicte F; Demeur, Gladys; Haufroid, Vincent; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard
2015-03-01
Cell tracking could be useful to elucidate fundamental processes of cancer biology such as metastasis. The aim of this study was to visualize, using MRI, and to quantify, using electron paramagnetic resonance (EPR), the entrapment of murine breast cancer cells labeled with superparamagnetic iron oxide particles (SPIOs) in the mouse brain after intracardiac injection. For this purpose, luciferase-expressing murine 4 T1-luc breast cancer cells were labeled with fluorescent Molday ION Rhodamine B SPIOs. Following intracardiac injection, SPIO-labeled 4 T1-luc cells were imaged using multiple gradient-echo sequences. Ex vivo iron oxide quantification in the mouse brain was performed using EPR (9 GHz). The long-term fate of 4 T1-luc cells after injection was characterized using bioluminescence imaging (BLI), brain MRI and immunofluorescence. We observed hypointense spots due to SPIO-labeled cells in the mouse brain 4 h after injection on T2 *-weighted images. Histology studies showed that SPIO-labeled cancer cells were localized within blood vessels shortly after delivery. Ex vivo quantification of SPIOs showed that less than 1% of the injected cells were taken up by the mouse brain after injection. MRI experiments did not reveal the development of macrometastases in the mouse brain several days after injection, but immunofluorescence studies demonstrated that these cells found in the brain established micrometastases. Concerning the metastatic patterns of 4 T1-luc cells, an EPR biodistribution study demonstrated that SPIO-labeled 4 T1-luc cells were also entrapped in the lungs of mice after intracardiac injection. BLI performed 6 days after injection of 4 T1-luc cells showed that this cell line formed macrometastases in the lungs and in the bones. Conclusively, EPR and MRI were found to be complementary for cell tracking applications. MRI cell tracking at 11.7 T allowed sensitive detection of isolated SPIO-labeled cells in the mouse brain, whereas EPR allowed the assessment of the number of SPIO-labeled cells in organs shortly after injection. Copyright © 2015 John Wiley & Sons, Ltd.
Toonen, Lodewijk J A; Overzier, Maurice; Evers, Melvin M; Leon, Leticia G; van der Zeeuw, Sander A J; Mei, Hailiang; Kielbasa, Szymon M; Goeman, Jelle J; Hettne, Kristina M; Magnusson, Olafur Th; Poirel, Marion; Seyer, Alexandre; 't Hoen, Peter A C; van Roon-Mom, Willeke M C
2018-06-22
Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by expansion of the polyglutamine repeat in the ataxin-3 protein. Expression of mutant ataxin-3 is known to result in transcriptional dysregulation, which can contribute to the cellular toxicity and neurodegeneration. Since the exact causative mechanisms underlying this process have not been fully elucidated, gene expression analyses in brains of transgenic SCA3 mouse models may provide useful insights. Here we characterised the MJD84.2 SCA3 mouse model expressing the mutant human ataxin-3 gene using a multi-omics approach on brain and blood. Gene expression changes in brainstem, cerebellum, striatum and cortex were used to study pathological changes in brain, while blood gene expression and metabolites/lipids levels were examined as potential biomarkers for disease. Despite normal motor performance at 17.5 months of age, transcriptional changes in brain tissue of the SCA3 mice were observed. Most transcriptional changes occurred in brainstem and striatum, whilst cerebellum and cortex were only modestly affected. The most significantly altered genes in SCA3 mouse brain were Tmc3, Zfp488, Car2, and Chdh. Based on the transcriptional changes, α-adrenergic and CREB pathways were most consistently altered for combined analysis of the four brain regions. When examining individual brain regions, axon guidance and synaptic transmission pathways were most strongly altered in striatum, whilst brainstem presented with strongest alterations in the pi-3 k cascade and cholesterol biosynthesis pathways. Similar to other neurodegenerative diseases, reduced levels of tryptophan and increased levels of ceramides, di- and triglycerides were observed in SCA3 mouse blood. The observed transcriptional changes in SCA3 mouse brain reveal parallels with previous reported neuropathology in patients, but also shows brain region specific effects as well as involvement of adrenergic signalling and CREB pathway changes in SCA3. Importantly, the transcriptional changes occur prior to onset of motor- and coordination deficits.
Elmeliegy, Mohamed A; Carcaboso, Angel M; Tagen, Michael; Bai, Feng; Stewart, Clinton F
2011-01-01
To study the role of drug transporters in central nervous system (CNS) penetration and cellular accumulation of erlotinib and its metabolite, OSI-420. After oral erlotinib administration to wild-type and ATP-binding cassette (ABC) transporter-knockout mice (Mdr1a/b(-/-), Abcg2(-/-), Mdr1a/b(-/-)Abcg2(-/-), and Abcc4(-/-)), plasma was collected and brain extracellular fluid (ECF) was sampled using intracerebral microdialysis. A pharmacokinetic model was fit to erlotinib and OSI-420 concentration-time data, and brain penetration (P(Brain)) was estimated by the ratio of ECF-to-unbound plasma area under concentration-time curves. Intracellular accumulation of erlotinib was assessed in cells overexpressing human ABC transporters or SLC22A solute carriers. P(Brain) in wild-type mice was 0.27 ± 0.11 and 0.07 ± 0.02 (mean ± SD) for erlotinib and OSI-420, respectively. Erlotinib and OSI-420 P(Brain) in Abcg2(-/-) and Mdr1a/b(-/-)Abcg2(-/-) mice were significantly higher than in wild-type mice. Mdr1a/b(-/-) mice showed similar brain ECF penetration as wild-type mice (0.49 ± 0.37 and 0.04 ± 0.02 for erlotinib and OSI-420, respectively). In vitro, erlotinib and OSI-420 accumulation was significantly lower in cells overexpressing breast cancer resistance protein (BCRP) than in control cells. Only OSI-420, not erlotinib, showed lower accumulation in cells overexpressing P-glycoprotein (P-gp) than in control cells. The P-gp/BCRP inhibitor elacridar increased erlotinib and OSI-420 accumulation in BCRP-overexpressing cells. Erlotinib uptake was higher in OAT3- and OCT2-transfected cells than in empty vector control cells. Abcg2 is the main efflux transporter preventing erlotinib and OSI-420 penetration in mouse brain. Erlotinib and OSI-420 are substrates for SLC22A family members OAT3 and OCT2. Our findings provide a mechanistic basis for erlotinib CNS penetration, cellular uptake, and efflux mechanisms. ©2010 AACR.
Cabral, Agustina; Valdivia, Spring; Fernandez, Gimena; Reynaldo, Mirta; Perello, Mario
2014-01-01
Ghrelin is an octanoylated peptide hormone that potently and rapidly increases food intake. The orexigenic action of ghrelin involves the hypothalamic arcuate nucleus (ARC), which is accessible to plasma ghrelin and expresses high levels of the ghrelin receptor. Local administration of ghrelin in a variety of other brain nuclei also increases food intake. It is currently unclear, however, if these non-ARC ghrelin brain targets are impacted by physiological increases of plasma ghrelin. Thus, the current study was designed to clarify which ghrelin brain targets participate in the short-term orexigenic actions of ghrelin. First, c-Fos induction into mouse brains centrally or peripherally treated with ghrelin was analyzed. It was confirmed that peripherally administered ghrelin dose dependently increases food intake and mainly activates c-Fos in ARC neurons. In contrast, centrally administered ghrelin activates c-Fos in a larger number of brain nuclei. To determine which nuclei are directly accessible to ghrelin, mice were centrally or peripherally injected with a fluorescent ghrelin tracer. It was found that peripherally injected tracer mainly accesses the ARC while centrally injected tracer reaches most brain areas known to express ghrelin receptors. Following that, ghrelin effects in ARC-ablated mice were tested and it was found that these mice failed to increase food intake in response to peripherally administered ghrelin but fully responded to centrally administered ghrelin. ARC-ablated mice showed similar patterns of ghrelin-induced c-Fos expression as seen in control mice with the exception of the ARC, where no c-Fos was found. Thus, peripheral ghrelin mainly accesses the ARC, which is required for the orexigenic effects of the hormone. Central ghrelin accesses a variety of nuclei, which can mediate the orexigenic effects of the hormone even in the absence of an intact ARC. PMID:24888783
Bessel beam OCM for analysis of global ischemia in mouse brain
NASA Astrophysics Data System (ADS)
Rapolu, Mounika; Dolezyczek, Hubert; Tamborski, Szymon; Malinowska, Monika; Wilczynski, Grzegorz; Szkulmowski, Maciej; Wojtkowski, Maciej
2017-07-01
We present the in-vivo imaging of the global mouse brain ischemia using Bessel beam optical coherence microscopy. This method allows to monitor changes in brain structure with extra control of blood flow during the process of artery occlusion. The results show the capability and sensitivity of OCM system with Bessel beam to analyze brain plasticity after severe injury within a period of 8 days.
Kusinski, L.C.; Jones, C.J.P.; Baker, P.N.; Sibley, C.P.; Glazier, J.D.
2010-01-01
Placental amino acid transport is essential for optimal fetal growth and development, with a reduced fetal provision of amino acids being implicated as a potential cause of fetal growth restriction (FGR). Understanding placental insufficiency related FGR has been aided by the development of mouse models that have features of the human disease. However, to take maximal advantage of these, methods are required to study placental function in the mouse. Here, we report a method to isolate plasma membrane vesicles from mouse placenta near-term and have used these to investigate two amino acid transporters, systems A and β, the activities of which are reduced in human placental microvillous plasma membrane (MVM) vesicles from FGR pregnancies. Plasma membrane vesicles were isolated at embryonic day 18 by a protocol involving homogenisation, MgCl2 precipitation and centrifugation. Vesicles were enriched 11.3 ± 0.5-fold in alkaline phosphatase activity as compared to initial homogenate, with minimal intracellular organelle contamination as judged by marker analyses. Cytochemistry revealed alkaline phosphatase was localised between trophoblast layers I and II, with intense reaction product deposited on the maternal-facing plasma membrane of layer II, suggesting that vesicles were derived from this trophoblast membrane. System A and system β activity in mouse placental vesicles, measured as Na+-dependent uptake of 14C-methylaminoisobutyric acid (MeAIB) and 3H-taurine respectively confirmed localisation of these transporters to the maternal-facing plasma membrane of layer II. Comparison to human placental MVM showed that system A activity was comparable at initial rate between species whilst system β activity was significantly lower in mouse. This mirrored the lower expression of TAUT observed in mouse placental vesicles. We conclude that syncytiotrophoblast layer II-derived plasma membrane vesicles can be isolated and used to examine transporter function. PMID:19954844
Li, Li; Zhang, Jinhui; Shaik, Ahmad Ali; Zhang, Yong; Wang, Lei; Xing, Chengguo; Kim, Sung-Hoon; Lü, Junxuan
2012-02-01
The pyranocoumarin compound decursin and its isomer decursinol angelate (DA) are the major hydrophobic phytochemicals in the root of Angelica gigas Nakai (AGN, Korean Angelica), a major traditional medicinal herb. The ethanol extract of AGN and especially the purified decursin and DA have been shown to exhibit antitumor activities by our collaborative team and others. Although decursinol has been identified as a major hydrolysis metabolite of decursin and DA in vivo in previous pharmacokinetic studies with mouse and rat, other recently published results sharply disputed this conclusion. In this study, we set up a practical method for the concurrent analysis of decursin, DA, and decursinol in mouse plasma and tumor tissues by liquid-liquid extraction and HPLC-UV and applied the method to several animal experiments. Plasma or tumor homogenate was extracted directly with ethyl acetate. The extraction efficiency for decursin/DA (quantitated together) and decursinol was between 82-95 % in both mouse plasma and tumor homogenate. The lower limit of quantitation (LLOQ) was approximately 0.25 µg/mL for decursin/DA and 0.2 µg/mL for decursinol in mouse plasma. In a pilot pharmacokinetic study, male C57BL/6 mice were given a single dose of 4.8 mg decursin/DA mixture (~240 mg/kg) per mouse either by oral gavage or intraperitoneal injection. Maximum plasma concentrations for decursin/DA and decursinol were 11.2 and 79.7 µg/mL, respectively, when decursin/DA was administered via intraperitoneal injection, and 0.54 and 14.9 µg/mL via oral gavage. Decursin/DA and decursinol contents in the tumor tissues from nude mouse xenografts correlated very well with those in plasma. Overall, our results confirm the conclusion that the majority of decursin/DA hydrolyze to decursinol in rodent models with a tiny fraction remaining as the intact compounds administered. © Georg Thieme Verlag KG Stuttgart · New York.
Host response to intravenous injection of epsilon toxin in mouse model: a proteomic view.
Kumar, Bhoj; Alam, Syed Imteyaz; Kumar, Om
2013-01-01
Epsilon toxin (ETX) is an extremely potent pore-forming toxin and a category B biological agent. ETX is a major virulence determinant of Clostridium perfringens toxinotypes B and D, and is implicated in pathogenesis of rapidly fatal economically important pulpy kidney disease in lambs caused by toxinotype D. Despite being a toxin, ETX can be utilized as a tool to target glutamatergic neurons and for drug delivery into the CNS. 2DE-MS approach was employed to elucidate the host response to ETX following intravenous injection in mouse model. In total, 136 proteins were identified either differentially expressed in brain (18) and kidney (33); showing specific interaction with ETX from lysates of brain (4), kidney (21), or from plasma (42); and urine markers (18) of intoxication. Differentially expressed proteins in kidney included those involved in calcium homeostasis and cytoskeletal organization. Proteins involved in ER and oxidative stress and energy metabolism also showed differential levels in the target tissue after ETX treatment. The known functions of the proteins differentially expressed and those interacting with ETX indicate involvement of interlinked pathways. This study provides first proteomic account of host response to ETX exposure providing clues to mechanism of toxicity and potential therapeutic targets. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2012-01-01
NUMBER activates BDNF expression in mouse brain 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Pizarro, JM, Chang, WE, Bah, MJ...of the Organophosphorus Compound VX Activates BDNF Expression in Mouse Brain Jose M. Pizarro,*,† Wenling E. Chang,†,‡ Mariama J. Bah,† Linnzi K. M...triphosphate and UTP, and 2 ll modified cytidine triphosphate solution [2mM]), 33P-UTP (specific activity of 5 3 109 cpm/lg), 2 ll RNA polymerase, 2 ll of
Cheng, Cuilin; Baranenko, Denis; Wang, Jiaping; Li, Yongzhi; Lu, Weihong
2018-01-01
The active compounds in Acanthopanax senticosus (AS) have different pharmacokinetic characteristics in mouse models. Cmax and AUC of Acanthopanax senticosus polysaccharides (ASPS) were significantly reduced in radiation-injured mice, suggesting that the blood flow of mouse was blocked or slowed, due to the pathological state of ischemia and hypoxia, which are caused by radiation. In contrast, the ability of various metabolizing enzymes to inactivate, capacity of biofilm transport decrease, and lessening of renal blood flow accounts for radiation, resulting in the accumulation of syringin and eleutheroside E in the irradiated mouse. Therefore, there were higher pharmacokinetic parameters—AUC, MRT, and t1/2 of the two compounds in radiation-injured mouse, when compared with normal mouse. In order to investigate the intrinsic mechanism of AS on radiation injury, AS extract’s protective effects on brain, the main part of mouse that suffered from radiation, were explored. The function of AS extract in repressing expression changes of radiation response proteins in prefrontal cortex (PFC) of mouse brain included tubulin protein family (α-, β-tubulin subunits), dihydropyrimidinase-related protein 2 (CRMP2), γ-actin, 14-3-3 protein family (14-3-3ζ, ε), heat shock protein 90β (HSP90β), and enolase 2. The results demonstrated the AS extract had positive effects on nerve cells’ structure, adhesion, locomotion, fission, and phagocytosis, through regulating various action pathways, such as Hippo, phagosome, PI3K/Akt (phosphatidylinositol 3 kinase/protein kinase B), Neurotrophin, Rap1 (Ras-related protein RAP-1A), gap junction glycolysis/gluconeogenesis, and HIF-1 (Hypoxia-inducible factor 1) signaling pathways to maintain normal mouse neurological activity. All of the results indicated that AS may be a promising alternative medicine for the treatment of radiation injury in mouse brain. It would be tested that whether the bioactive ingredients of AS could be effective through the blood–brain barrier in the future. PMID:29342911
SU-F-T-668: Irradiating Mouse Brain with a Clinical Linear Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Torres, C
Purpose: To design and construct a “mouse jig” device that would allow for irradiation of the mouse brain with a clinical Varian 6 MeV Linear Accelerator. This device must serve as a head immobilizer, gaseous anesthesia delivery, and radiation bolus concurrently. Methods: The mouse jig was machined out of nylon given that it is inexpensive, easy to machine, and has similar electron density to water. A cylindrical opening with diameter of 16 mm and 40 mm depth was drilled into a nylon block sized 56×56×50 mm (width, length, depth). Additional slots were included in the block for ear bars andmore » a tooth bar to serve as a three-point immobilization device as well as for anesthesia delivery and scavenging. For ease of access when loading the mouse into the holder, there is a removable piece at the top of the block that is 15 mm in depth. This serves a dual purpose, as with the proper extra shielding, the mouse jig could be used with lower linear energy transfer photons with this piece removed. A baseplate was then constructed with five square slots where the mouse jig can securely be inserted plus additional slots that would allow the baseplate to be mounted on a standard lock bar in the treatment couch. This maximizes the reproducibility of placement between imaging and treatment and between treatment sessions. Results: CT imaging and radiation treatment planning was performed that showed acceptable coverage and uniformity of radiation dose in the mouse brain while sparing the throat and eyes. Conclusion: We have designed and manufactured a device that fulfills our criteria allowing us to selectively irradiate the mouse brain with a clinical linear accelerator. This setup will be used for generating mouse models of radiation-induced brain injury.« less
Polyamines and Their Metabolites as Diagnostic Markers of Human Diseases
Park, Myung Hee; Igarashi, Kazuei
2013-01-01
Polyamines, putrescine, spermidine and spermine, are ubiquitous in living cells and are essential for eukaryotic cell growth. These polycations interact with negatively charged molecules such as DNA, RNA, acidic proteins and phospholipids and modulate various cellular functions including macromolecular synthesis. Dysregulation of the polyamine pathway leads to pathological conditions including cancer, inflammation, stroke, renal failure and diabetes. Increase in polyamines and polyamine synthesis enzymes is often associated with tumor growth, and urinary and plasma contents of polyamines and their metabolites have been investigated as diagnostic markers for cancers. Of these, diacetylated derivatives of spermidine and spermine are elevated in the urine of cancer patients and present potential markers for early detection. Enhanced catabolism of cellular polyamines by polyamine oxidases (PAO), spermine oxidase (SMO) or acetylpolyamine oxidase (AcPAO), increases cellular oxidative stress and generates hydrogen peroxide and a reactive toxic metabolite, acrolein, which covalently incorporates into lysine residues of cellular proteins. Levels of protein-conjuagated acrolein (PC-Acro) and polyamine oxidizing enzymes were increased in the locus of brain infarction and in plasma in a mouse model of stroke and also in the plasma of stroke patients. When the combined measurements of PC-Acro, interleukin 6 (IL-6), and C-reactive protein (CRP) were evaluated, even silent brain infarction (SBI) was detected with high sensitivity and specificity. Considering that there are no reliable biochemical markers for early stage of stroke, PC-Acro and PAOs present promising markers. Thus the polyamine metabolites in plasma or urine provide useful tools in early diagnosis of cancer and stroke. PMID:24009852
BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR.
Makani, Vishruti; Jang, Yong-Gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua
2016-01-01
An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer's disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB-permeability, long plasma half-life, and strong neuroprotective and neurotrophic effects has a great therapeutic potential for the treatment of neurodegenerative diseases, especially AD.
BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR
Makani, Vishruti; Jang, Yong-gil; Christopher, Kevin; Judy, Wesley; Eckstein, Jacob; Hensley, Kenneth; Chiaia, Nicolas; Kim, Dong-Shik; Park, Joshua
2016-01-01
An enormous amount of efforts have been poured to find an effective therapeutic agent for the treatment of neurodegenerative diseases including Alzheimer’s disease (AD). Among those, neurotrophic peptides that regenerate neuronal structures and increase neuron survival show a promise in slowing neurodegeneration. However, the short plasma half-life and poor blood-brain-barrier (BBB)-permeability of neurotrophic peptides limit their in vivo efficacy. Thus, an alternative neurotrophic agent that has longer plasma half-life and better BBB-permeability has been sought for. Based on the recent findings of neuroprotective polysaccharides, we searched for a BBB-permeable neuroprotective polysaccharide among natural polysaccharides that are approved for human use. Then, we discovered midi-GAGR, a BBB-permeable, long plasma half-life, strong neuroprotective and neurotrophic polysaccharide. Midi-GAGR is a 4.7kD cleavage product of low acyl gellan gum that is approved by FDA for human use. Midi-GAGR protected rodent cortical neurons not only from the pathological concentrations of co-/post-treated free reactive radicals and Aβ42 peptide but also from activated microglial cells. Moreover, midi-GAGR showed a good neurotrophic effect; it enhanced neurite outgrowth and increased phosphorylated cAMP-responsive element binding protein (pCREB) in the nuclei of primary cortical neurons. Furthermore, intra-nasally administered midi-GAGR penetrated the BBB and exerted its neurotrophic effect inside the brain for 24 h after one-time administration. Midi-GAGR appears to activate fibroblast growth factor receptor 1 (FGFR1) and its downstream neurotrophic signaling pathway for neuroprotection and CREB activation. Additionally, 14-day intranasal administration of midi-GAGR not only increased neuronal activity markers but also decreased hyperphosphorylated tau, a precursor of neurofibrillary tangle, in the brains of the AD mouse model, 3xTg-AD. Taken together, midi-GAGR with good BBB-permeability, long plasma half-life, and strong neuroprotective and neurotrophic effects has a great therapeutic potential for the treatment of neurodegenerative diseases, especially AD. PMID:26939023
Chauderlier, Alban; Delattre, Lucie; Buée, Luc; Galas, Marie-Christine
2017-01-01
Oxidative damage is an early event in neurodegenerative disorders such as Alzheimer disease. To increase oxidative stress in AD-related mouse models is essential to study early mechanisms involved in the physiopathology of these diseases. In this chapter, we describe an experimental mouse model of transient and acute hyperthermic stress to induce in vivo an increase of oxidative stress in the brain of any kind of wild-type or transgenic mouse.
A versatile new technique to clear mouse and human brain
NASA Astrophysics Data System (ADS)
Costantini, Irene; Di Giovanna, Antonino Paolo; Allegra Mascaro, Anna Letizia; Silvestri, Ludovico; Müllenbroich, Marie Caroline; Sacconi, Leonardo; Pavone, Francesco S.
2015-07-01
Large volumes imaging with microscopic resolution is limited by light scattering. In the last few years based on refractive index matching, different clearing approaches have been developed. Organic solvents and water-based optical clearing agents have been used for optical clearing of entire mouse brain. Although these methods guarantee high transparency and preservation of the fluorescence, though present other non-negligible limitations. Tissue transformation by CLARITY allows high transparency, whole brain immunolabelling and structural and molecular preservation. This method however requires a highly expensive refractive index matching solution limiting practical applicability. In this work we investigate the effectiveness of a water-soluble clearing agent, the 2,2'-thiodiethanol (TDE) to clear mouse and human brain. TDE does not quench the fluorescence signal, is compatible with immunostaining and does not introduce any deformation at sub-cellular level. The not viscous nature of the TDE make it a suitable agent to perform brain slicing during serial two-photon (STP) tomography. In fact, by improving penetration depth it reduces tissue slicing, decreasing the acquisition time and cutting artefacts. TDE can also be used as a refractive index medium for CLARITY. The potential of this method has been explored by imaging a whole transgenic mouse brain with the light sheet microscope. Moreover we apply this technique also on blocks of dysplastic human brain tissue transformed with CLARITY and labeled with different antibody. This clearing approach significantly expands the application of single and two-photon imaging, providing a new useful method for quantitative morphological analysis of structure in mouse and human brain.
Terahertz spectroscopy of brain tissue from a mouse model of Alzheimer's disease
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Shumyatsky, Pavel; Rodríguez-Contreras, Adrián; Alfano, Robert
2016-01-01
The terahertz (THz) absorption and index of refraction of brain tissues from a mouse model of Alzheimer's disease (AD) and a control wild-type (normal) mouse were compared using THz time-domain spectroscopy (THz-TDS). Three dominating absorption peaks associated to torsional-vibrational modes were observed in AD tissue, at about 1.44, 1.8, and 2.114 THz, closer to the peaks of free tryptophan molecules than in normal tissue. A possible reason is that there is more free tryptophan in AD brain tissue, while in normal brain tissue more tryptophan is attached to other molecules. Our study suggests that THz-absorption modes may be used as an AD biomarker fingerprint in brain, and that THz-TDS is a promising technique for early diagnosis of AD.
Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T
NASA Astrophysics Data System (ADS)
Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.
2017-02-01
The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.
In vivo three-photon microscopy of subcortical structures within an intact mouse brain
NASA Astrophysics Data System (ADS)
Horton, Nicholas G.; Wang, Ke; Kobat, Demirhan; Clark, Catharine G.; Wise, Frank W.; Schaffer, Chris B.; Xu, Chris
2013-03-01
Two-photon fluorescence microscopy enables scientists in various fields including neuroscience, embryology and oncology to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of two-photon fluorescence microscopy to the cortical layer within mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue or the insertion of optical probes. Here, we demonstrate non-invasive, high-resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein-labelled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher-order nonlinear excitation overcomes the limitations of two-photon fluorescence microscopy, enabling biological investigations to take place at a greater depth within tissue.
Izpisua Belmonte, Juan Carlos; Callaway, Edward M; Caddick, Sarah J; Churchland, Patricia; Feng, Guoping; Homanics, Gregg E; Lee, Kuo-Fen; Leopold, David A; Miller, Cory T; Mitchell, Jude F; Mitalipov, Shoukhrat; Moutri, Alysson R; Movshon, J Anthony; Okano, Hideyuki; Reynolds, John H; Ringach, Dario; Sejnowski, Terrence J; Silva, Afonso C; Strick, Peter L; Wu, Jun; Zhang, Feng
2015-05-06
One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators, and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive, and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward. Copyright © 2015 Elsevier Inc. All rights reserved.
Belmonte, Juan Carlos Izpisua; Callaway, Edward M.; Churchland, Patricia; Caddick, Sarah J.; Feng, Guoping; Homanics, Gregg E.; Lee, Kuo-Fen; Leopold, David A.; Miller, Cory T.; Mitchell, Jude F.; Mitalipov, Shoukhrat; Moutri, Alysson R.; Movshon, J. Anthony; Okano, Hideyuki; Reynolds, John H.; Ringach, Dario; Sejnowski, Terrence J.; Silva, Afonso C.; Strick, Peter L.; Wu, Jun; Zhang, Feng
2015-01-01
One of the great strengths of the mouse model is the wide array of genetic tools that have been developed. Striking examples include methods for directed modification of the genome, and for regulated expression or inactivation of genes. Within neuroscience, it is now routine to express reporter genes, neuronal activity indicators and opsins in specific neuronal types in the mouse. However, there are considerable anatomical, physiological, cognitive and behavioral differences between the mouse and the human that, in some areas of inquiry, limit the degree to which insights derived from the mouse can be applied to understanding human neurobiology. Several recent advances have now brought into reach the goal of applying these tools to understanding the primate brain. Here we describe these advances, consider their potential to advance our understanding of the human brain and brain disorders, discuss bioethical considerations, and describe what will be needed to move forward. PMID:25950631
Xie, Ran; Dong, Lu; Du, Yifei; Zhu, Yuntao; Hua, Rui; Zhang, Chen; Chen, Xing
2016-01-01
Mammalian brains are highly enriched with sialoglycans, which have been implicated in brain development and disease progression. However, in vivo labeling and visualization of sialoglycans in the mouse brain remain a challenge because of the blood−brain barrier. Here we introduce a liposome-assisted bioorthogonal reporter (LABOR) strategy for shuttling 9-azido sialic acid (9AzSia), a sialic acid reporter, into the brain to metabolically label sialoglycoconjugates, including sialylated glycoproteins and glycolipids. Subsequent bioorthogonal conjugation of the incorporated 9AzSia with fluorescent probes via click chemistry enabled fluorescence imaging of brain sialoglycans in living animals and in brain sections. Newly synthesized sialoglycans were found to widely distribute on neuronal cell surfaces, in particular at synaptic sites. Furthermore, large-scale proteomic profiling identified 140 brain sialylated glycoproteins, including a wealth of synapse-associated proteins. Finally, by performing a pulse−chase experiment, we showed that dynamic sialylation is spatially regulated, and that turnover of sialoglycans in the hippocampus is significantly slower than that in other brain regions. The LABOR strategy provides a means to directly visualize and monitor the sialoglycan biosynthesis in the mouse brain and will facilitate elucidating the functional role of brain sialylation. PMID:27125855
In vivo biodistribution of CNTs using a BALB/c mouse experimental model.
Fufă, Mariana Oana Mihaela; Mihaiescu, Dan Eduard; Mogoantă, Laurenţiu; Bălşeanu, Tudor Adrian; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Bolocan, Alexandra
2015-01-01
Due to their unique behaviors, carbon nanotubes (CNTs)-based systems meet essential requirements for modern applications, such as electronics, optics, photovoltaics, fuel cells, aerospace engineering, military and biomedical applications. CNTs biocompatibility and toxic effects were assessed both in vitro and in vivo, in terms of hemocompatibility, cytocompatibility, immunoreactions and genetic behavior. The aim of this paper is to evaluate the in vivo biodistribution and biocompatibility of carbon nanopowder synthesized by plasma processing, using a BALB/c mouse experimental model. Three months old BALB/c mice were aseptically injected with 100 μL of 1 mg/mL dispersions. The obtained carbon-based nano-systems were dispersed in saline solution and subsequently sterilized by using a 30 minutes treatment with UV irradiation. The reference mice were injected with 100 μL of saline. The mice were kept under standard conditions of light, temperature, humidity, food and water (ad libitum) before the vital organ harvest. The animal welfare was daily monitored. At two and 10 days after the inoculation, the animals were euthanized under general anesthesia, for the sampling of internal organs (brain, myocardium, pancreas, liver, lung, kidney and spleen). No animal died during the experiment. Brain, myocardium and pancreas were histologically normal, with no tissue damage, inflammatory infiltrate or inorganic deposits. CNTs were evidenced only in hepatic, renal, pulmonary and spleen tissue samples. Increased amounts of inorganic granular structures were reported after 10 days of treatment, when compared to the short-term (two days) inoculation. Our BALB/c mouse experimental model was found to be useful for the in vivo assessment of biodistribution and biocompatibility of CNTs.
Chang, Mengqi; Lv, Hongyi; Zhang, Weilong; Ma, Chunhui; He, Xue; Zhao, Shunli; Zhang, Zhi-Wei; Zeng, Yi-Xin; Song, Shuhui; Niu, Yamei; Tong, Wei-Min
2017-09-01
N 6 -methyladenosine (m 6 A) is the most abundant epitranscriptomic mark found on mRNA and has important roles in various physiological processes. Despite the relatively high m 6 A levels in the brain, its potential functions in the brain remain largely unexplored. We performed a transcriptome-wide methylation analysis using the mouse brain to depict its region-specific methylation profile. RNA methylation levels in mouse cerebellum are generally higher than those in the cerebral cortex. Heterogeneity of RNA methylation exists across different brain regions and different types of neural cells including the mRNAs to be methylated, their methylation levels and methylation site selection. Common and region-specific methylation have different preferences for methylation site selection and thereby different impacts on their biological functions. In addition, high methylation levels of fragile X mental retardation protein (FMRP) target mRNAs suggest that m 6 A methylation is likely to be used for selective recognition of target mRNAs by FMRP in the synapse. Overall, we provide a region-specific map of RNA m 6 A methylation and characterize the distinct features of specific and common methylation in mouse cerebellum and cerebral cortex. Our results imply that RNA m 6 A methylation is a newly identified element in the region-specific gene regulatory network in the mouse brain. © 2017 The Authors.
¹H MRS characterization of neurochemical profiles in orthotopic mouse models of human brain tumors.
Hulsey, Keith M; Mashimo, Tomoyuki; Banerjee, Abhishek; Soesbe, Todd C; Spence, Jeffrey S; Vemireddy, Vamsidhara; Maher, Elizabeth A; Bachoo, Robert M; Choi, Changho
2015-01-01
Glioblastoma (GBM), the most common primary brain tumor, is resistant to currently available treatments. The development of mouse models of human GBM has provided a tool for studying mechanisms involved in tumor initiation and growth as well as a platform for preclinical investigation of new drugs. In this study we used (1) H MR spectroscopy to study the neurochemical profile of a human orthotopic tumor (HOT) mouse model of human GBM. The goal of this study was to evaluate differences in metabolite concentrations in the GBM HOT mice when compared with normal mouse brain in order to determine if MRS could reliably differentiate tumor from normal brain. A TE =19 ms PRESS sequence at 9.4 T was used for measuring metabolite levels in 12 GBM mice and 8 healthy mice. Levels for 12 metabolites and for lipids/macromolecules at 0.9 ppm and at 1.3 ppm were reliably detected in all mouse spectra. The tumors had significantly lower concentrations of total creatine, GABA, glutamate, total N-acetylaspartate, aspartate, lipids/macromolecules at 0.9 ppm, and lipids/macromolecules at 1.3 ppm than did the brains of normal mice. The concentrations of glycine and lactate, however, were significantly higher in tumors than in normal brain. Copyright © 2014 John Wiley & Sons, Ltd.
Mouse brain magnetic resonance microscopy: Applications in Alzheimer disease.
Lin, Lan; Fu, Zhenrong; Xu, Xiaoting; Wu, Shuicai
2015-05-01
Over the past two decades, various Alzheimer's disease (AD) trangenetic mice models harboring genes with mutation known to cause familial AD have been created. Today, high-resolution magnetic resonance microscopy (MRM) technology is being widely used in the study of AD mouse models. It has greatly facilitated and advanced our knowledge of AD. In this review, most of the attention is paid to fundamental of MRM, the construction of standard mouse MRM brain template and atlas, the detection of amyloid plaques, following up on brain atrophy and the future applications of MRM in transgenic AD mice. It is believed that future testing of potential drugs in mouse models with MRM will greatly improve the predictability of drug effect in preclinical trials. © 2015 Wiley Periodicals, Inc.
Gao, Zhonghong; Xu, Huibi; Huang, Kaixun
2002-09-01
The effect of rutin on total antioxidant status as well as on trace elements such as iron, copper, and zinc in mouse liver and brain were studied. Mice were administrated with 0.75 g/kg or 2.25 g/kg P. O. of rutin for 30 d consecutively. Following the treatment, the activity of total antioxidant status, catalase, Cu,Zn-superoxide dismutase, Mn-superoxide dismutase, zinc, copper, and iron were measured in mouse liver and brain. The results showed that rutin significantly increased the antioxidant status and Mn-superoxide dismutase activities in mouse liver, but it had no effect on these variables in the brain. Treatment with a higher concentration of rutin significantly decreased catalase activity and iron, zinc, and copper contents in mouse liver; it also resulted in a slower weight gain for the first 20 d. These results indicate that rutin taken in proper amount can effectively improve antioxidant status, whereas at an increased dosage, it may cause trace element (such as iron, zinc, and copper) deficiencies and a decrease in the activities of related metal-containing enzymes.
Structured Illumination Diffuse Optical Tomography for Mouse Brain Imaging
NASA Astrophysics Data System (ADS)
Reisman, Matthew David
As advances in functional magnetic resonance imaging (fMRI) have transformed the study of human brain function, they have also widened the divide between standard research techniques used in humans and those used in mice, where high quality images are difficult to obtain using fMRI given the small volume of the mouse brain. Optical imaging techniques have been developed to study mouse brain networks, which are highly valuable given the ability to study brain disease treatments or development in a controlled environment. A planar imaging technique known as optical intrinsic signal (OIS) imaging has been a powerful tool for capturing functional brain hemodynamics in rodents. Recent wide field-of-view implementations of OIS have provided efficient maps of functional connectivity from spontaneous brain activity in mice. However, OIS requires scalp retraction and is limited to imaging a 2-dimensional view of superficial cortical tissues. Diffuse optical tomography (DOT) is a non-invasive, volumetric neuroimaging technique that has been valuable for bedside imaging of patients in the clinic, but previous DOT systems for rodent neuroimaging have been limited by either sparse spatial sampling or by slow speed. My research has been to develop diffuse optical tomography for whole brain mouse neuroimaging by expanding previous techniques to achieve high spatial sampling using multiple camera views for detection and high speed using structured illumination sources. I have shown the feasibility of this method to perform non-invasive functional neuroimaging in mice and its capabilities of imaging the entire volume of the brain. Additionally, the system has been built with a custom, flexible framework to accommodate the expansion to imaging multiple dynamic contrasts in the brain and populations that were previously difficult or impossible to image, such as infant mice and awake mice. I have contributed to preliminary feasibility studies of these more advanced techniques using OIS, which can now be carried out using the structured illumination diffuse optical tomography technique to perform longitudinal, non-invasive studies of the whole volume of the mouse brain.
Adenosine transport systems on dissociated brain cells from mouse, guinea-pig, and rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, M.E.; Geiger, J.D.
1990-09-01
The kinetics and sodium dependence of adenosine transport were determined using an inhibitor-stop method on dissociated cell body preparations obtained from mouse, guinea-pig and rat brain. Transport affinity (KT) values for the high affinity adenosine transport systems KT(H) were significantly different between these three species; mean +/- SEM values were 0.34 +/- 0.1 in mouse, 0.9 +/- 0.2 in rat, and 1.5 +/- 0.5 microM in guinea-pig. The KT values for the low affinity transport system KT(L) were not different between the three species. Brain cells from rat displayed a significantly greater maximal capacity to accumulate (3H)adenosine (Vmax) than didmore » mouse or guinea-pig for the high affinity system, or than did mouse for the low affinity system. When sodium chloride was replaced in the transport medium with choline chloride, the KT(H) values for guinea-pig and rat were both increased by approximately 100%; only in rat did the change reach statistical significance. The sodium-dependence of adenosine transport in mouse brain was clearly absent. The differences between KT(H) values in mouse and those in guinea-pig or rat were accentuated in the absence of sodium. The differences in kinetic values, ionic requirements, and pharmacological characteristics between adenosine transporters in CNS tissues of mouse, guinea-pig and rat may help account for some of the variability noted among species in terms of their physiological responses to adenosine.« less
Multi-Coil Shimming of the Mouse Brain
Juchem, Christoph; Brown, Peter B.; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.
2011-01-01
MR imaging and spectroscopy allow the non-invasive measurement of brain function and physiology, but excellent magnetic field homogeneity is required for meaningful results. The homogenization of the magnetic field distribution in the mouse brain (i.e. shimming) is a difficult task due to complex susceptibility-induced field distortions combined with the small size of the object. To date, the achievement of satisfactory whole brain shimming in the mouse remains a major challenge. The magnetic fields generated by a set of 48 circular coils (diameter 13 mm) that were arranged in a cylinder-shaped pattern of 32 mm diameter and driven with individual dynamic current ranges of ±1 A are shown to be capable of substantially reducing the field distortions encountered in the mouse brain at 9.4 Tesla. Static multi-coil shim fields allowed the reduction of the standard deviation of Larmor frequencies by 31% compared to second order spherical harmonics shimming and a 66% narrowing was achieved with the slice-specific application of the multi-coil shimming with a dynamic approach. For gradient echo imaging, multi-coil shimming minimized shim-related signal voids in the brain periphery and allowed overall signal gains of up to 51% compared to spherical harmonics shimming. PMID:21442653
A mesoscale connectome of the mouse brain
Oh, Seung Wook; Harris, Julie A.; Ng, Lydia; Winslow, Brent; Cain, Nicholas; Mihalas, Stefan; Wang, Quanxin; Lau, Chris; Kuan, Leonard; Henry, Alex M.; Mortrud, Marty T.; Ouellette, Benjamin; Nguyen, Thuc Nghi; Sorensen, Staci A.; Slaughterbeck, Clifford R.; Wakeman, Wayne; Li, Yang; Feng, David; Ho, Anh; Nicholas, Eric; Hirokawa, Karla E.; Bohn, Phillip; Joines, Kevin M.; Peng, Hanchuan; Hawrylycz, Michael J.; Phillips, John W.; Hohmann, John G.; Wohnoutka, Paul; Gerfen, Charles R.; Koch, Christof; Bernard, Amy; Dang, Chinh; Jones, Allan R.; Zeng, Hongkui
2016-01-01
Comprehensive knowledge of the brain’s wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease. PMID:24695228
NASA Astrophysics Data System (ADS)
Volkov, Boris; Mathews, Marlon S.; Abookasis, David
2015-03-01
Multispectral imaging has received significant attention over the last decade as it integrates spectroscopy, imaging, tomography analysis concurrently to acquire both spatial and spectral information from biological tissue. In the present study, a multispectral setup based on projection of structured illumination at several near-infrared wavelengths and at different spatial frequencies is applied to quantitatively assess brain function before, during, and after the onset of traumatic brain injury in an intact mouse brain (n=5). For the production of head injury, we used the weight drop method where weight of a cylindrical metallic rod falling along a metal tube strikes the mouse's head. Structured light was projected onto the scalp surface and diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse head. Following data analysis, we were able to concurrently show a series of hemodynamic and morphologic changes over time including higher deoxyhemoglobin, reduction in oxygen saturation, cell swelling, etc., in comparison with baseline measurements. Overall, results demonstrates the capability of multispectral imaging based structured illumination to detect and map of brain tissue optical and physiological properties following brain injury in a simple noninvasive and noncontact manner.
Functional connectivity in the mouse brain imaged by B-mode photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Nasiriavanaki, Mohammadreza; Xing, Wenxin; Xia, Jun; Wang, Lihong V.
2014-03-01
The increasing use of mouse models for human brain disease studies, coupled with the fact that existing functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing acoustic-resolution photoacoustic microscopy (AR-PAM), we imaged spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images were acquired noninvasively in B-scan mode with a fast frame rate, a large field of view, and a high spatial resolution. At a location relative to the bregma 0, correlations were investigated inter-hemispherically between bilaterally homologous regions, as well as intra-hemispherically within the same functional regions. The functional connectivity in different functional regions was studied. The locations of these regions agreed well with the Paxinos mouse brain atlas. The functional connectivity map obtained in this study can then be used in the investigation of brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy. Our experiments show that photoacoustic microscopy is capable to detect connectivities between different functional regions in B-scan mode, promising a powerful functional imaging modality for future brain research.
A systematic survey of lipids across mouse tissues
Jain, Mohit; Ngoy, Soeun; Sheth, Sunil A.; Swanson, Raymond A.; Rhee, Eugene P.; Liao, Ronglih; Clish, Clary B.; Mootha, Vamsi K.
2014-01-01
Lipids are a diverse collection of macromolecules essential for normal physiology, but the tissue distribution and function for many individual lipid species remain unclear. Here, we report a mass spectrometry survey of lipid abundance across 18 mouse tissues, detecting ∼1,000 mass spectrometry features, of which we identify 179 lipids from the glycerolipids, glycerophospholipids, lysophospholipids, acylcarnitines, sphingolipids, and cholesteryl ester classes. Our data reveal tissue-specific organization of lipids and can be used to generate testable hypotheses. For example, our data indicate that circulating triglycerides positively and negatively associated with future diabetes in humans are enriched in mouse adipose tissue and liver, respectively, raising hypotheses regarding the tissue origins of these diabetes-associated lipids. We also integrate our tissue lipid data with gene expression profiles to predict a number of substrates of lipid-metabolizing enzymes, highlighting choline phosphotransferases and sterol O-acyltransferases. Finally, we identify several tissue-specific lipids not present in plasma under normal conditions that may be of interest as biomarkers of tissue injury, and we show that two of these lipids are released into blood following ischemic brain injury in mice. This resource complements existing compendia of tissue gene expression and may be useful for integrative physiology and lipid biology. PMID:24518676
Enhanced expression by the brain matrix of P-glycoprotein in brain capillary endothelial cells.
Tatsuta, T; Naito, M; Mikami, K; Tsuruo, T
1994-10-01
P-glycoprotein (PGP), an active efflux pump of antitumor agents in multidrug-resistant tumor cells, exists in brain capillary endothelium and could be functionally involved in the blood-brain barrier. To study the regulatory mechanism of PGP expression in brain capillary endothelium, various mouse tissue matrices were tested for their abilities to enhance the expression of PGP in mouse brain capillary endothelial cells (MBEC), which express relatively small amounts of PGP. Of the four tissue matrices we examined, PGP expression in MBEC cultured on the brain matrix increased 2.0-fold. The PGP-inducing activity was similarly detected in bovine brain matrix, and the activity was enriched in the fraction of pl 9.0 by isoelectric focusing. The fraction, named PIC-fraction (PGP-inducing component), increased the PGP expression in MBEC 3.5-fold. By Northern blot analysis, a 3.3-fold enhancement of mdr gene expression was observed in MBEC cultured on the PIC-fraction. The PGP-inducing activity of the PIC-fraction was reduced by the treatment with trypsin but not with collagenase, suggesting that a proteinaceous factor distinct from type I collagen might be responsible for the PGP-inducing activity of PIC-fraction. Although the PIC-fraction increased the PGP expression in other mouse brain capillary endothelial cells, the PIC-fraction did not increase PGP expression in mouse aortic endothelial cells and KB carcinoma cell lines expressing various amounts of PGP. These observations suggest that PGP expression in brain capillary endothelium is specifically regulated by a tissue-specific factor in the brain matrix.
Design of a superconducting volume coil for magnetic resonance microscopy of the mouse brain
NASA Astrophysics Data System (ADS)
Nouls, John C.; Izenson, Michael G.; Greeley, Harold P.; Johnson, G. Allan
2008-04-01
We present the design process of a superconducting volume coil for magnetic resonance microscopy of the mouse brain at 9.4 T. The yttrium barium copper oxide coil has been designed through an iterative process of three-dimensional finite-element simulations and validation against room temperature copper coils. Compared to previous designs, the Helmholtz pair provides substantially higher B1 homogeneity over an extended volume of interest sufficiently large to image biologically relevant specimens. A custom-built cryogenic cooling system maintains the superconducting probe at 60 ± 0.1 K. Specimen loading and probe retuning can be carried out interactively with the coil at operating temperature, enabling much higher through-put. The operation of the probe is a routine, consistent procedure. Signal-to-noise ratio in a mouse brain increased by a factor ranging from 1.1 to 2.9 as compared to a room-temperature solenoid coil optimized for mouse brain microscopy. We demonstrate images encoded at 10 × 10 × 20 μm for an entire mouse brain specimen with signal-to-noise ratio of 18 and a total acquisition time of 16.5 h, revealing neuroanatomy unseen at lower resolution. Phantom measurements show an effective spatial resolution better than 20 μm.
Design of a superconducting volume coil for magnetic resonance microscopy of the mouse brain.
Nouls, John C; Izenson, Michael G; Greeley, Harold P; Johnson, G Allan
2008-04-01
We present the design process of a superconducting volume coil for magnetic resonance microscopy of the mouse brain at 9.4T. The yttrium barium copper oxide coil has been designed through an iterative process of three-dimensional finite-element simulations and validation against room temperature copper coils. Compared to previous designs, the Helmholtz pair provides substantially higher B(1) homogeneity over an extended volume of interest sufficiently large to image biologically relevant specimens. A custom-built cryogenic cooling system maintains the superconducting probe at 60+/-0.1K. Specimen loading and probe retuning can be carried out interactively with the coil at operating temperature, enabling much higher through-put. The operation of the probe is a routine, consistent procedure. Signal-to-noise ratio in a mouse brain increased by a factor ranging from 1.1 to 2.9 as compared to a room-temperature solenoid coil optimized for mouse brain microscopy. We demonstrate images encoded at 10x10x20mum for an entire mouse brain specimen with signal-to-noise ratio of 18 and a total acquisition time of 16.5h, revealing neuroanatomy unseen at lower resolution. Phantom measurements show an effective spatial resolution better than 20mum.
Hierarchical organization of functional connectivity in the mouse brain: a complex network approach.
Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano
2016-08-18
This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.
Hierarchical organization of functional connectivity in the mouse brain: a complex network approach
NASA Astrophysics Data System (ADS)
Bardella, Giampiero; Bifone, Angelo; Gabrielli, Andrea; Gozzi, Alessandro; Squartini, Tiziano
2016-08-01
This paper represents a contribution to the study of the brain functional connectivity from the perspective of complex networks theory. More specifically, we apply graph theoretical analyses to provide evidence of the modular structure of the mouse brain and to shed light on its hierarchical organization. We propose a novel percolation analysis and we apply our approach to the analysis of a resting-state functional MRI data set from 41 mice. This approach reveals a robust hierarchical structure of modules persistent across different subjects. Importantly, we test this approach against a statistical benchmark (or null model) which constrains only the distributions of empirical correlations. Our results unambiguously show that the hierarchical character of the mouse brain modular structure is not trivially encoded into this lower-order constraint. Finally, we investigate the modular structure of the mouse brain by computing the Minimal Spanning Forest, a technique that identifies subnetworks characterized by the strongest internal correlations. This approach represents a faster alternative to other community detection methods and provides a means to rank modules on the basis of the strength of their internal edges.
Geometry Processing of Conventionally Produced Mouse Brain Slice Images.
Agarwal, Nitin; Xu, Xiangmin; Gopi, M
2018-04-21
Brain mapping research in most neuroanatomical laboratories relies on conventional processing techniques, which often introduce histological artifacts such as tissue tears and tissue loss. In this paper we present techniques and algorithms for automatic registration and 3D reconstruction of conventionally produced mouse brain slices in a standardized atlas space. This is achieved first by constructing a virtual 3D mouse brain model from annotated slices of Allen Reference Atlas (ARA). Virtual re-slicing of the reconstructed model generates ARA-based slice images corresponding to the microscopic images of histological brain sections. These image pairs are aligned using a geometric approach through contour images. Histological artifacts in the microscopic images are detected and removed using Constrained Delaunay Triangulation before performing global alignment. Finally, non-linear registration is performed by solving Laplace's equation with Dirichlet boundary conditions. Our methods provide significant improvements over previously reported registration techniques for the tested slices in 3D space, especially on slices with significant histological artifacts. Further, as one of the application we count the number of neurons in various anatomical regions using a dataset of 51 microscopic slices from a single mouse brain. To the best of our knowledge the presented work is the first that automatically registers both clean as well as highly damaged high-resolutions histological slices of mouse brain to a 3D annotated reference atlas space. This work represents a significant contribution to this subfield of neuroscience as it provides tools to neuroanatomist for analyzing and processing histological data. Copyright © 2018 Elsevier B.V. All rights reserved.
Fluorescent-Protein Stabilization and High-Resolution Imaging of Cleared, Intact Mouse Brains
Schwarz, Martin K.; Scherbarth, Annemarie; Sprengel, Rolf; Engelhardt, Johann; Theer, Patrick; Giese, Guenter
2015-01-01
In order to observe and quantify long-range neuronal connections in intact mouse brain by light microscopy, it is first necessary to clear the brain, thus suppressing refractive-index variations. Here we describe a method that clears the brain and preserves the signal from proteinaceous fluorophores using a pH-adjusted non-aqueous index-matching medium. Successful clearing is enabled through the use of either 1-propanol or tert-butanol during dehydration whilst maintaining a basic pH. We show that high-resolution fluorescence imaging of entire, structurally intact juvenile and adult mouse brains is possible at subcellular resolution, even following many months in clearing solution. We also show that axonal long-range projections that are EGFP-labelled by modified Rabies virus can be imaged throughout the brain using a purpose-built light-sheet fluorescence microscope. To demonstrate the viability of the technique, we determined a detailed map of the monosynaptic projections onto a target cell population in the lateral entorhinal cortex. This example demonstrates that our method permits the quantification of whole-brain connectivity patterns at the subcellular level in the uncut brain. PMID:25993380
Henninger, Nils; Bouley, James; Sikoglu, Elif M; An, Jiyan; Moore, Constance M; King, Jean A; Bowser, Robert; Freeman, Marc R; Brown, Robert H
2016-04-01
Axonal degeneration is a critical, early event in many acute and chronic neurological disorders. It has been consistently observed after traumatic brain injury, but whether axon degeneration is a driver of traumatic brain injury remains unclear. Molecular pathways underlying the pathology of traumatic brain injury have not been defined, and there is no efficacious treatment for traumatic brain injury. Here we show that mice lacking the mouse Toll receptor adaptor Sarm1 (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) gene, a key mediator of Wallerian degeneration, demonstrate multiple improved traumatic brain injury-associated phenotypes after injury in a closed-head mild traumatic brain injury model. Sarm1(-/-) mice developed fewer β-amyloid precursor protein aggregates in axons of the corpus callosum after traumatic brain injury as compared to Sarm1(+/+) mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phophorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after traumatic brain injury. Strikingly, whereas wild-type mice exibited a number of behavioural deficits after traumatic brain injury, we observed a strong, early preservation of neurological function in Sarm1(-/-) animals. Finally, using in vivo proton magnetic resonance spectroscopy we found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1(-/-) mice compared to controls immediately following traumatic brain injury. Our results indicate that the SARM1-mediated prodegenerative pathway promotes pathogenesis in traumatic brain injury and suggest that anti-SARM1 therapeutics are a viable approach for preserving neurological function after traumatic brain injury. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Transplantation of human dental pulp-derived stem cells protects against heatstroke in mice.
Tseng, Ling-Shu; Chen, Sheng-Hsien; Lin, Mao-Tsun; Lin, Ying-Chu
2015-01-01
Stem cells from human exfoliated deciduous tooth pulp (SHED) is a promising approach for the treatment of stroke and spinal cord injury. In this study, we investigated the therapeutic effects of SHED for the treatment of multiple organ (including brain, particularly hypothalamus) injury in heatstroke mice. ICR male mice were exposed to whole body heating (WBH; 41.2°C, relative humidity 50-55%, for 1 h) and then returned to normal room temperature (26°C). We observed that intravenous administration of SHED immediately post-WBH exhibited the following therapeutic benefits for recovery after heatstroke: (a) inhibition of WBH-induced neurologic and thermoregulatory deficits; (b) reduction of WBH-induced ischemia, hypoxia, and oxidative damage to the brain (particularly the hypothalamus); (c) attenuation of WBH-induced increased plasma levels of systemic inflammatory response molecules, such as tumor necrosis factor-α and intercellular adhesion molecule-1; (d) improvement of WBH-induced hypothalamo-pituitary-adrenocortical (HPA) axis activity (as reflected by enhanced plasma levels of both adrenocorticotrophic hormone and corticosterone); and (e) attenuation of WBH-induced multiple organ apoptosis as well as lethality. In conclusion, post-WBH treatment with SHED reduced induction of proinflammatory cytokines and oxidative radicals, enhanced plasma induction of both adrenocorticotrophic hormone and corticosterone, and improved lethality in mouse heatstroke. The protective effect of SHED may be related to a decreased inflammatory response, decreased oxidative stress, and an increased HPA axis activity following the WBH injury.
Lu, Wen; He, Lang Chong; Zeng, Xian-Ming
2008-01-07
Taspine is a bioactive aporphine alkaloid, which has many potent pharmacological effects. A simple, rapid HPLC method to quantify taspine in mouse plasma and tissue homogenates containing either taspine solution or liposome was developed and validated. Sample preparation was achieved by liquid-liquid extraction with acetoacetate. Taspine was separated on a C(18) reversed phase HPLC column, and quantified by its absorbance at 245 nm. The pharmacokinetics and tissue distribution after intravenous administrations of taspine liposome (L-Ta) and taspine solution (Ta) to ICR mice were then compared. The area under the plasma concentration-time curve (AUC) was higher for L-Ta than for Ta. In contrast, the total body clearance (CL), apparent volume of distribution V(c) and plasma half-life for the distribution (t(1/2 alpha)) and elimination phase (t(1/2 beta)) were lower for L-Ta, in comparison to the respective parameter of Ta. The AUC values were higher in the lung than in other organs for both L-Ta and Ta. The AUC in the spleen, kidney and liver of L-Ta were higher than those of Ta. However, the heart and brain AUC of Ta was higher than that of L-Ta. It can thus be concluded that incorporation into liposomes prolonged taspine retention within the systemic circulation, increased its distribution to the spleen and liver but reduced its distribution to the heart and brain.
Cholera Toxin Subunit B Enabled Multifunctional Glioma-Targeted Drug Delivery.
Guan, Juan; Zhang, Zui; Hu, Xuefeng; Yang, Yang; Chai, Zhilan; Liu, Xiaoqin; Liu, Jican; Gao, Bo; Lu, Weiyue; Qian, Jun; Zhan, Changyou
2017-12-01
Glioma is among the most formidable brain cancers due to location in the brain. Cholera toxin subunit B (CTB) is investigated to facilitate multifunctional glioma-targeted drug delivery by targeting the glycosphingolipid GM1 expressed in the blood-brain barrier (BBB), neovasulature, and glioma cells. When modified on the surface of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CTB-NPs), CTB fully retains its bioactivity after 24 h incubation in the fresh mouse plasma. The formed protein corona (PC) of CTB-NP and plain PLGA nanoparticles (NP) after incubation in plasma is analyzed using liquid chromatography tandem massspectrometry (nano-LC-MS/MS). CTB modification does not alter the protein components of the formed PC, macrophage phagocytosis, or pharmacokinetic profiles. CTB-NP can efficiently penetrate the in vitro BBB model and target glioma cells and human umbilical vascular endothelial cells. Paclitaxel is loaded in NP (NP/PTX) and CTB-NP (CTB-NP/PTX), and their antiglioma effects are assessed in nude mice bearing intracranial glioma. CTB-NP/PTX can efficiently induce apoptosis of intracranial glioma cells and ablate neovasulature in vivo, resulting in significant prolongation of survival of nude mice bearing intracranial glioma (34 d) in comparison to those treated with NP/PTX (29 d), Taxol (24 d), and saline (21 d). The present study suggests a potential multifunctional glioma-targeted drug delivery system enabled by cholera toxin subunit B. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Qosa, Hisham; Abuasal, Bilal S; Romero, Ignacio A; Weksler, Babette; Couraud, Pierre-Oliver; Keller, Jeffrey N; Kaddoumi, Amal
2014-04-01
Alzheimer's disease (AD) has a characteristic hallmark of amyloid-β (Aβ) accumulation in the brain. This accumulation of Aβ has been related to its faulty cerebral clearance. Indeed, preclinical studies that used mice to investigate Aβ clearance showed that efflux across blood-brain barrier (BBB) and brain degradation mediate efficient Aβ clearance. However, the contribution of each process to Aβ clearance remains unclear. Moreover, it is still uncertain how species differences between mouse and human could affect Aβ clearance. Here, a modified form of the brain efflux index method was used to estimate the contribution of BBB and brain degradation to Aβ clearance from the brain of wild type mice. We estimated that 62% of intracerebrally injected (125)I-Aβ40 is cleared across BBB while 38% is cleared by brain degradation. Furthermore, in vitro and in silico studies were performed to compare Aβ clearance between mouse and human BBB models. Kinetic studies for Aβ40 disposition in bEnd3 and hCMEC/D3 cells, representative in vitro mouse and human BBB models, respectively, demonstrated 30-fold higher rate of (125)I-Aβ40 uptake and 15-fold higher rate of degradation by bEnd3 compared to hCMEC/D3 cells. Expression studies showed both cells to express different levels of P-glycoprotein and RAGE, while LRP1 levels were comparable. Finally, we established a mechanistic model, which could successfully predict cellular levels of (125)I-Aβ40 and the rate of each process. Established mechanistic model suggested significantly higher rates of Aβ uptake and degradation in bEnd3 cells as rationale for the observed differences in (125)I-Aβ40 disposition between mouse and human BBB models. In conclusion, current study demonstrates the important role of BBB in the clearance of Aβ from the brain. Moreover, it provides insight into the differences between mouse and human BBB with regards to Aβ clearance and offer, for the first time, a mathematical model that describes Aβ clearance across BBB. Copyright © 2014 Elsevier Ltd. All rights reserved.
Qosa, Hisham; Abuasal, Bilal S.; Romero, Ignacio A.; Weksler, Babette; Couraud, Pierre-Oliver; Keller, Jeffrey N.; Kaddoumi, Amal
2014-01-01
Alzheimer’s disease (AD) has a characteristic hallmark of amyloid-β (Aβ) accumulation in the brain. This accumulation of Aβ has been related to its faulty cerebral clearance. Indeed, preclinical studies that used mice to investigate Aβ clearance showed that efflux across blood-brain barrier (BBB) and brain degradation mediate efficient Aβ clearance. However, the contribution of each process to Aβ clearance remains unclear. Moreover, it is still uncertain how species differences between mouse and human could affect Aβ clearance. Here, a modified form of the brain efflux index method was used to estimate the contribution of BBB and brain degradation to Aβ clearance from the brain of wild type mice. We estimated that 62% of intracerebrally injected 125I-Aβ40 is cleared across BBB while 38% is cleared by brain degradation. Furthermore, in vitro and in silico studies were performed to compare Aβ clearance between mouse and human BBB models. Kinetic studies for Aβ40 disposition in bEnd3 and hCMEC/D3 cells, representative in vitro mouse and human BBB models, respectively, demonstrated 30-fold higher rate of 125I-Aβ40 uptake and 15-fold higher rate of degradation by bEnd3 compared to hCMEC/D3 cells. Expression studies showed both cells to express different levels of P-glycoprotein and RAGE, while LRP1 levels were comparable. Finally, we established a mechanistic model, which could successfully predict cellular levels of 125I-Aβ40 and the rate of each process. Established mechanistic model suggested significantly higher rates of Aβ uptake and degradation in bEnd3 cells as rationale for the observed differences in 125I-Aβ40 disposition between mouse and human BBB models. In conclusion, current study demonstrates the important role of BBB in the clearance of Aβ from the brain. Moreover, it provides insight into the differences between mouse and human BBB with regards to Aβ clearance and offer, for the first time, a mathematical model that describes Aβ clearance across BBB. PMID:24467845
Ennis, Kathleen; Lusczek, Elizabeth; Rao, Raghavendra
2017-07-13
Treatment of hypoglycemia in children is currently based on plasma glucose measurements. This approach may not ensure neuroprotection since plasma glucose does not reflect the dynamic state of cerebral energy metabolism. To determine whether cerebral metabolic changes during hypoglycemia could be better characterized using plasma metabolomic analysis, insulin-induced acute hypoglycemia was induced in 4-week-old rats. Brain tissue and concurrent plasma samples were collected from hypoglycemic (N=7) and control (N=7) rats after focused microwave fixation to prevent post-mortem metabolic changes. The concentration of 29 metabolites in brain and 34 metabolites in plasma were determined using 1 H NMR spectroscopy at 700MHz and examined using partial least squares-discriminant analysis. The sensitivity of plasma glucose for detecting cerebral energy failure was assessed by determining its relationship to brain phosphocreatine. The brain and plasma metabolite profiles of the hypoglycemia group were distinct from the control group (brain: R 2 =0.92, Q 2 =0.31; plasma: R 2 =0.95, Q 2 =0.74). Concentration differences in glucose, ketone bodies and amino acids were responsible for the intergroup separation. There was 45% concordance between the brain and plasma metabolite profiles. Brain phosphocreatine correlated with brain glucose (control group: R 2 =0.86; hypoglycemia group: R 2 =0.59; p<0.05), but not with plasma glucose. The results confirm that plasma glucose is an insensitive biomarker of cerebral energy changes during hypoglycemia and suggest that a plasma metabolite profile is superior for monitoring cerebral metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.
Novel Genetic Models to Study the Role of Inflammation in Brain Injury-Induced Alzheimer’s Pathology
2015-12-01
Clinic. (2013) “Opposing Acute and Chronic Effects of Traumatic Brain Injury in a Mouse Model of Alzheimer’s Disease” Kokiko-Cochran, O.N. Annual...nanosymposium, Washington, D.C. (2014) “ Traumatic brain injury induces a distinct macrophage response at acute and chronic time points in a mouse model...SUPPLEMENTARY NOTES 14. ABSTRACT Individuals exposed to traumatic brain injury (TBI) are at a greatly increased risk for developing a number of
Gritsenko, Pavlo; Leenders, William; Friedl, Peter
2017-10-01
Diffuse invasion of glioma cells into the brain parenchyma leads to nonresectable brain tumors and poor prognosis of glioma disease. In vivo, glioma cells can adopt a range of invasion strategies and routes, by moving as single cells, collective strands and multicellular networks along perivascular, perineuronal and interstitial guidance cues. Current in vitro assays to probe glioma cell invasion, however, are limited in recapitulating the modes and adaptability of glioma invasion observed in brain parenchyma, including collective behaviours. To mimic in vivo-like glioma cell invasion in vitro, we here applied three tissue-inspired 3D environments combining multicellular glioma spheroids and reconstituted microanatomic features of vascular and interstitial brain structures. Radial migration from multicellular glioma spheroids of human cell lines and patient-derived xenograft cells was monitored using (1) reconstituted basement membrane/hyaluronan interfaces representing the space along brain vessels; (2) 3D scaffolds generated by multi-layered mouse astrocytes to reflect brain interstitium; and (3) freshly isolated mouse brain slice culture ex vivo. The invasion patterns in vitro were validated using histological analysis of brain sections from glioblastoma patients and glioma xenografts infiltrating the mouse brain. Each 3D assay recapitulated distinct aspects of major glioma invasion patterns identified in mouse xenografts and patient brain samples, including individually migrating cells, collective strands extending along blood vessels, and multicellular networks of interconnected glioma cells infiltrating the neuropil. In conjunction, these organotypic assays enable a range of invasion modes used by glioma cells and will be applicable for mechanistic analysis and targeting of glioma cell dissemination.
Cifuentes, Diana; Poittevin, Marine; Dere, Ekrem; Broquères-You, Dong; Bonnin, Philippe; Benessiano, Joëlle; Pocard, Marc; Mariani, Jean; Kubis, Nathalie; Merkulova-Rainon, Tatyana; Lévy, Bernard I
2015-01-01
Cerebrovascular impairment is frequent in patients with Alzheimer disease and is believed to influence clinical manifestation and severity of the disease. Cardiovascular risk factors, especially hypertension, have been associated with higher risk of developing Alzheimer disease. To investigate the mechanisms underlying the hypertension, Alzheimer disease cross talk, we established a mouse model of dual pathology by infusing hypertensive doses of angiotensin II into transgenic APPPS1 mice overexpressing mutated human amyloid precursor and presenilin 1 proteins. At 4.5 months, at the early stage of disease progression, only hypertensive APPPS1 mice presented impairment of temporal order memory performance in the episodic-like memory task. This cognitive deficit was associated with an increased number of cortical amyloid deposits (223±5 versus 207±5 plaques/mm(2); P<0.05) and a 2-fold increase in soluble amyloid levels in the brain and in plasma. Hypertensive APPPS1 mice presented several cerebrovascular alterations, including a 25% reduction in cerebral microvessel density and a 30% to 40% increase in cerebral vascular amyloid deposits, as well as a decrease in vascular endothelial growth factor A expression in the brain, compared with normotensive APPPS1 mice. Moreover, the brain levels of nitric oxide synthase 1 and 3 and the nitrite/nitrate levels were reduced in hypertensive APPPS1 mice (by 49%, 34%, and 33%, respectively, compared with wild-type mice; P<0.05). Our results indicate that hypertension accelerates the development of Alzheimer disease-related structural and functional alterations, partially through cerebral vasculature impairment and reduced nitric oxide production. © 2014 American Heart Association, Inc.
Namdee, Katawut; Sobczynski, Daniel J; Onyskiw, Peter J; Eniola-Adefeso, Omolola
2015-12-16
Vascular-targeted carrier (VTC) interaction with human plasma is known to reduce targeted adhesion efficiency in vitro. However, the role of plasma proteins on the adhesion efficiency of VTCs in laboratory animals remains unknown. Here, in vitro blood flow assays are used to explore the effects of plasma from mouse, rabbit, and porcine on VTC adhesion. Porcine blood exhibited a strong negative plasma effect on VTC adhesion while no significant plasma effect was found with rabbit and mouse blood. A brush density poly(ethylene glycol) (PEG) on VTCs was effective at improving adhesion of microsized, but not nanosized, VTCs in porcine blood. Overall, the results suggest that porcine models, as opposed to mouse, can serve as better models in preclinical research for predicting the in vivo functionality of VTCs for use in humans. These considerations hold great importance for the design of various pharmaceutical products and development of reliable drug delivery systems.
Ali, Anjum A; Dale, Anders M; Badea, Alexandra; Johnson, G Allan
2005-08-15
We present the automated segmentation of magnetic resonance microscopy (MRM) images of the C57BL/6J mouse brain into 21 neuroanatomical structures, including the ventricular system, corpus callosum, hippocampus, caudate putamen, inferior colliculus, internal capsule, globus pallidus, and substantia nigra. The segmentation algorithm operates on multispectral, three-dimensional (3D) MR data acquired at 90-microm isotropic resolution. Probabilistic information used in the segmentation is extracted from training datasets of T2-weighted, proton density-weighted, and diffusion-weighted acquisitions. Spatial information is employed in the form of prior probabilities of occurrence of a structure at a location (location priors) and the pairwise probabilities between structures (contextual priors). Validation using standard morphometry indices shows good consistency between automatically segmented and manually traced data. Results achieved in the mouse brain are comparable with those achieved in human brain studies using similar techniques. The segmentation algorithm shows excellent potential for routine morphological phenotyping of mouse models.
Breloy, Isabelle; Pacharra, Sandra; Aust, Christina; Hanisch, Franz-Georg
2012-08-01
We developed a gel-based global O-glycomics method applicable for highly complex protein mixtures entrapped in discontinuous gradient gel layers. The protocol is based on in-gel proteolysis with pronase followed by (glyco)peptide elution and off-gel reductive β-elimination. The protocol offers robust performance with sensitivity in the low picomolar range, is compatible with gel-based proteomics, and shows superior performance in global applications in comparison with workflows eliminating glycans in-gel or from electroblotted glycoproteins. By applying this method, we analyzed the O-glycome of human myoblasts and of the mouse brain O-glycoproteome. After semipreparative separation of mouse brain proteins by one-dimensional SDS gel electrophoresis, the O-glycans from proteins in different mass ranges were characterized with a focus on O-mannose-based glycans. The relative proportion of the latter, which generally represent a rare modification, increases to comparatively high levels in the mouse brain proteome in dependence of increasing protein masses.
Newman, Amy E. M.; Soma, Kiran K.
2010-01-01
Prolonged increases in plasma glucocorticoids can exacerbate neurodegeneration. In rats, these neurodegenerative effects can be reduced by dehydroepiandrosterone (DHEA), an androgen precursor with anti-glucocorticoid actions. In song sparrows, season and acute restraint stress affect circulating levels of corticosterone and DHEA, and the effects of stress differ in plasma collected from the brachial and jugular veins. Jugular plasma is an indirect index of the neural steroidal milieu. Here, we directly measured corticosterone and DHEA in several brain regions and jugular plasma, and examined the effects of season and acute restraint stress (30 min) (n = 571 samples). Corticosterone levels were up to 10× lower in brain than in jugular plasma. In contrast, DHEA levels were up to 5× higher in brain than in jugular plasma and were highest in the hippocampus. Corticosterone and DHEA concentrations were strongly seasonally regulated in plasma but, surprisingly, not seasonally regulated in brain. Acute stress increased corticosterone levels in plasma and brain, except during the molt, when stress unexpectedly decreased corticosterone levels in the hippocampus. Acute stress increased DHEA levels in plasma during the molt but had no effects on DHEA levels in brain. This is the first study to measure (i) corticosterone or DHEA levels in the brain of adult songbirds and (ii) seasonal changes in corticosterone or DHEA levels in the brain of any species. These results highlight several critical differences between systemic and local steroid concentrations and the difficulty of using circulating steroid levels to infer local steroid levels within the brain. PMID:19473242
NASA Astrophysics Data System (ADS)
Liu, Xin; Gan, Lu; Ma, Mingyu; Zhang, Song; Liu, Jingjing; Chen, Hongxiang; Liu, Dawei; Lu, Xinpei
2018-02-01
To improve the depth of plasma active species in the skin, it is very important to develop skin disease treatment using plasma. In this article, an air plasma source was used to work directly with the skin of a mouse. A tortuous pathway, hair follicles, electroporation and a microneedle do not aid the transdermal delivery of gaseous plasma active species, therefore these gaseous plasma active species cannot penetrate mouse skin with a thickness of ~0.75 mm. The plasma activated water (PAW) produced by the air plasma source was used to study the transdermal penetration of the aqueous plasma activated species. This aqueous plasma activated species can penetrate the skin through hair follicles, intercellular and transcellular routes. The pH of the PAW did not affect the penetration efficiency of the aqueous plasma active species.
Convection Enhanced Delivery of Recombinant Adeno-associated Virus into the Mouse Brain.
Nash, Kevin R; Gordon, Marcia N
2016-01-01
Recombinant adeno-associated virus (rAAV) has become an extremely useful tool for the study of gene over expression or knockdown in the central nervous system of experimental animals. One disadvantage of intracranial injections of rAAV vectors into the brain parenchyma has been restricted distribution to relatively small volumes of the brain. Convection enhanced delivery (CED) is a method for delivery of clinically relevant amounts of therapeutic agents to large areas of the brain in a direct intracranial injection procedure. CED uses bulk flow to increase the hydrostatic pressure and thus improve volume distribution. The CED method has shown robust gene transfer and increased distribution within the CNS and can be successfully used for different serotypes of rAAV for increased transduction of the mouse CNS. This chapter details the surgical injection of rAAV by CED into a mouse brain.
aMAP is a validated pipeline for registration and segmentation of high-resolution mouse brain data
Niedworok, Christian J.; Brown, Alexander P. Y.; Jorge Cardoso, M.; Osten, Pavel; Ourselin, Sebastien; Modat, Marc; Margrie, Troy W.
2016-01-01
The validation of automated image registration and segmentation is crucial for accurate and reliable mapping of brain connectivity and function in three-dimensional (3D) data sets. While validation standards are necessarily high and routinely met in the clinical arena, they have to date been lacking for high-resolution microscopy data sets obtained from the rodent brain. Here we present a tool for optimized automated mouse atlas propagation (aMAP) based on clinical registration software (NiftyReg) for anatomical segmentation of high-resolution 3D fluorescence images of the adult mouse brain. We empirically evaluate aMAP as a method for registration and subsequent segmentation by validating it against the performance of expert human raters. This study therefore establishes a benchmark standard for mapping the molecular function and cellular connectivity of the rodent brain. PMID:27384127
Zhou, Zhi-Wei; Chen, Xiao; Liang, Jun; Yu, Xi-Yong; Wen, Jing-Yuan; Zhou, Shu-Feng
2007-08-01
Tanshinone IIB (TSB) is a major constituent of Salvia miltiorrhiza, which is widely used in treatment of cardiovascular and central nervous system (CNS) diseases such as coronary heart disease and stroke. This study aimed to investigate the role of various drug transporters in the brain penetration of TSB using several in vitro and in vivo mouse and rat models. The uptake and efflux of TSB in rat primary microvascular endothelial cells (RBMVECs) were ATP-dependent and significantly altered in the presence of a P-glycoprotein (P-gp) or multidrug resistance associated protein (Mrp1/2) inhibitor. A polarized transport of TSB was found in RBMVEC monolayers with facilitated efflux from the abluminal to luminal side. Addition of a P-gp inhibitor (e.g. verapamil) in both abluminal and luminal sides attenuated the polarized transport. In an in situ rat brain perfusion model, TSB crossed the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier at a greater rate than that for sucrose, and the brain penetration was increased in the presence of a P-gp or Mrp1/2 inhibitor. The brain levels of TSB were only about 30% of that in the plasma and it could be increased to up to 72% of plasma levels when verapamil, quinidine, or probenecid was co-administered in rats. The entry of TSB to CNS increased by 67-97% in rats subjected to middle cerebral artery occlusion or treatment with the neurotoxin, quinolinic acid, compared to normal rats. Furthermore, The brain levels of TSB in mdr1a(-/-) and mrp1(-/-) mice were 28- to 2.6-fold higher than those in the wild-type mice. TSB has limited brain penetration through the BBB due to the contribution of P-gp and to a lesser extent of Mrp1 in rodents. Further studies are needed to confirm whether these corresponding transporters in humans are involved in limiting the penetration of TSB across the BBB and the clinical relevance.
NASA Astrophysics Data System (ADS)
Choi, Woo June; Qin, Wan; Qi, Xiaoli; Wang, Ruikang K.
2016-03-01
Traumatic brain injury (TBI) is a form of brain injury caused by sudden impact on brain by an external mechanical force. Following the damage caused at the moment of injury, TBI influences pathophysiology in the brain that takes place within the minutes or hours involving alterations in the brain tissue morphology, cerebral blood flow (CBF), and pressure within skull, which become important contributors to morbidity after TBI. While many studies for the TBI pathophysiology have been investigated with brain cortex, the effect of trauma on intracranial tissues has been poorly studied. Here, we report use of high-resolution optical microangiography (OMAG) to monitor the changes in cranial meninges beneath the skull of mouse after TBI. TBI is induced on a brain of anesthetized mouse by thinning the skull using a soft drill where a series of drilling exert mechanical stress on the brain through the skull, resulting in mild brain injury. Intracranial OMAG imaging of the injured mouse brain during post-TBI phase shows interesting pathophysiological findings in the meningeal layers such as widening of subdural space as well as vasodilation of subarachnoid vessels. These processes are acute and reversible within hours. The results indicate potential of OMAG to explore mechanism involved following TBI on small animals in vivo.
NASA Astrophysics Data System (ADS)
Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.
2014-03-01
Consumption of alcohol during pregnancy can be severely detrimental to the development of the brain in fetuses. This study explores the usage of optical coherence tomography (OCT) to the study the effects of maternal consumption of ethanol on brain development in mouse fetuses. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde. A swept-source OCT (SSOCT) system was used to acquire 3D images of the brain of ethanol-exposed and control fetuses. The volume of right and left brain ventricles were measured and used to compare between ethanol-exposed and control fetuses. A total of 5 fetuses were used for each of the two groups. The average volumes of the right and left ventricles were measured to be 0.35 and 0.15 mm3 for ethanol-exposed and control fetuses, respectively. The results demonstrated that there is an alcohol-induced developmental delay in mouse fetal brains.
Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A; Abookasis, David
2017-11-10
Heat stress (HS) is a medical emergency defined by abnormally elevated body temperature that causes biochemical, physiological, and hematological changes. The goal of the present research was to detect variations in optical properties (absorption, reduced scattering, and refractive index coefficients) of mouse brain tissue during HS by using near-infrared (NIR) spatial light modulation. NIR spatial patterns with different spatial phases were used to differentiate the effects of tissue scattering from those of absorption. Decoupling optical scattering from absorption enabled the quantification of a tissue's chemical constituents (related to light absorption) and structural properties (related to light scattering). Technically, structured light patterns at low and high spatial frequencies of six wavelengths ranging between 690 and 970 nm were projected onto the mouse scalp surface while diffuse reflected light was recorded by a CCD camera positioned perpendicular to the mouse scalp. Concurrently to pattern projection, brain temperature was measured with a thermal camera positioned slightly off angle from the mouse head while core body temperature was monitored by thermocouple probe. Data analysis demonstrated variations from baseline measurements in a battery of intrinsic brain properties following HS.
Liddelow, Shane A.; Temple, Sally; Møllgård, Kjeld; Gehwolf, Renate; Wagner, Andrea; Bauer, Hannelore; Bauer, Hans-Christian; Phoenix, Timothy N.; Dziegielewska, Katarzyna M.; Saunders, Norman R.
2012-01-01
Exchange mechanisms across the blood–cerebrospinal fluid (CSF) barrier in the choroid plexuses within the cerebral ventricles control access of molecules to the central nervous system, especially in early development when the brain is poorly vascularised. However, little is known about their molecular or developmental characteristics. We examined the transcriptome of lateral ventricular choroid plexus in embryonic day 15 (E15) and adult mice. Numerous genes identified in the adult were expressed at similar levels at E15, indicating substantial plexus maturity early in development. Some genes coding for key functions (intercellular/tight junctions, influx/efflux transporters) changed expression during development and their expression patterns are discussed in the context of available physiological/permeability results in the developing brain. Three genes: Secreted protein acidic and rich in cysteine (Sparc), Glycophorin A (Gypa) and C (Gypc), were identified as those whose gene products are candidates to target plasma proteins to choroid plexus cells. These were investigated using quantitative- and single-cell-PCR on plexus epithelial cells that were albumin- or total plasma protein-immunopositive. Results showed a significant degree of concordance between plasma protein/albumin immunoreactivity and expression of the putative transporters. Immunohistochemistry identified SPARC and GYPA in choroid plexus epithelial cells in the embryo with a subcellular distribution that was consistent with transport of albumin from blood to cerebrospinal fluid. In adult plexus this pattern of immunostaining was absent. We propose a model of the cellular mechanism in which SPARC and GYPA, together with identified vesicle-associated membrane proteins (VAMPs) may act as receptors/transporters in developmentally regulated transfer of plasma proteins at the blood–CSF interface. PMID:22457777
NASA Astrophysics Data System (ADS)
Hayami, Hajime; Takehara, Hiroaki; Nagata, Kengo; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun
2016-04-01
Intra body communication technology allows the fabrication of compact implantable biomedical sensors compared with RF wireless technology. In this paper, we report the fabrication of an implantable image sensor of 625 µm width and 830 µm length and the demonstration of wireless image-data transmission through a brain tissue of a living mouse. The sensor was designed to transmit output signals of pixel values by pulse width modulation (PWM). The PWM signals from the sensor transmitted through a brain tissue were detected by a receiver electrode. Wireless data transmission of a two-dimensional image was successfully demonstrated in a living mouse brain. The technique reported here is expected to provide useful methods of data transmission using micro sized implantable biomedical sensors.
Kadakkuzha, Beena M.; Liu, Xin-An; McCrate, Jennifer; Shankar, Gautam; Rizzo, Valerio; Afinogenova, Alina; Young, Brandon; Fallahi, Mohammad; Carvalloza, Anthony C.; Raveendra, Bindu; Puthanveettil, Sathyanarayanan V.
2015-01-01
Despite the importance of the long non-coding RNAs (lncRNAs) in regulating biological functions, the expression profiles of lncRNAs in the sub-regions of the mammalian brain and neuronal populations remain largely uncharacterized. By analyzing RNASeq datasets, we demonstrate region specific enrichment of populations of lncRNAs and mRNAs in the mouse hippocampus and pre-frontal cortex (PFC), the two major regions of the brain involved in memory storage and neuropsychiatric disorders. We identified 2759 lncRNAs and 17,859 mRNAs in the hippocampus and 2561 lncRNAs and 17,464 mRNAs expressed in the PFC. The lncRNAs identified correspond to ~14% of the transcriptome of the hippocampus and PFC and ~70% of the lncRNAs annotated in the mouse genome (NCBIM37) and are localized along the chromosomes as varying numbers of clusters. Importantly, we also found that a few of the tested lncRNA-mRNA pairs that share a genomic locus display specific co-expression in a region-specific manner. Furthermore, we find that sub-regions of the brain and specific neuronal populations have characteristic lncRNA expression signatures. These results reveal an unexpected complexity of the lncRNA expression in the mouse brain. PMID:25798087
Semi-automated quantification and neuroanatomical mapping of heterogeneous cell populations.
Mendez, Oscar A; Potter, Colin J; Valdez, Michael; Bello, Thomas; Trouard, Theodore P; Koshy, Anita A
2018-07-15
Our group studies the interactions between cells of the brain and the neurotropic parasite Toxoplasma gondii. Using an in vivo system that allows us to permanently mark and identify brain cells injected with Toxoplasma protein, we have identified that Toxoplasma-injected neurons (TINs) are heterogeneously distributed throughout the brain. Unfortunately, standard methods to quantify and map heterogeneous cell populations onto a reference brain atlas are time consuming and prone to user bias. We developed a novel MATLAB-based semi-automated quantification and mapping program to allow the rapid and consistent mapping of heterogeneously distributed cells on to the Allen Institute Mouse Brain Atlas. The system uses two-threshold background subtraction to identify and quantify cells of interest. We demonstrate that we reliably quantify and neuroanatomically localize TINs with low intra- or inter-observer variability. In a follow up experiment, we show that specific regions of the mouse brain are enriched with TINs. The procedure we use takes advantage of simple immunohistochemistry labeling techniques, use of a standard microscope with a motorized stage, and low cost computing that can be readily obtained at a research institute. To our knowledge there is no other program that uses such readily available techniques and equipment for mapping heterogeneous populations of cells across the whole mouse brain. The quantification method described here allows reliable visualization, quantification, and mapping of heterogeneous cell populations in immunolabeled sections across whole mouse brains. Copyright © 2018 Elsevier B.V. All rights reserved.
Zhao, H P; Gao, Y F; Xia, D; Zhao, Z Q; Wu, S; Wang, X H; Liu, H X; Xiao, C; Xing, X M; He, Y
2018-05-06
Objective: To establish the immortalized mouse brain microvascular pericytes model and to apply to the cerebrovascular toxicants screening study. Methods: Brain pericytes were isolated from 3 weeks of mice by tissue digestion. Immortalized pericyte cell line was constructed by infecting with LT retrovirus. Monoclone was selected to purify the immortalized pericyte cell line. The pericyte characteristics and purity were explored by immunocytochemistry. Cell proliferation was measured by using the Pomega MTS cell Proliferation Colorimetric Assay Kit. Pericytes were treated with 0, 160, 320, 640, 1 280, 2 560 μmol/L lead acetate, 0, 5, 10, 20, 40, 80 μmol/L cadmium chloride and 0, 5, 10, 20, 40, 80 μmol/L sodium arsenite in 24 hours. Cell toxicity of each group was determined by MTS assay, median lethal dose (LD(50)) was calculated in linear regression. Results: Mouse brain pericytes were successfully isolated by tissue separation and enzyme digestion method. After immortalized by LT retroviruses, monoclone was selected and expanded to establish pericyte cell line. The brain pericytes exhibited typical long spindle morphology and positive staining for α-SMA and Vimentin. The proliferation of brain pericytes cell lines was very slowly, and the doubling time was about 48 hours. The proliferation of immortalized brain pericytes cell lines was very quickly, and the doubling time was about 24 hours. After lead acetate, cadmium chloride and sodium arsenite treatment for 24 hours respectively, gradual declines in cell viability were observed. The LD(50) of lead acetate was 2 025.0 μmol/L, the LD(50) of cadmium chloride was 36.6 μmol/L, and the LD(50) of sodium arsenite was 33.2 μmol/L. Conclusion: The immortalized mouse brain microvascular pericyte model is established successfully by infecting with LT retrovirus, and can be applied to screen cerebrovascular toxicants. The toxicity of these toxicants to immortalized mouse brain microvascular pericyte is in sequence: sodium arsenite,cadmium chloride, lead acetate.
High-throughput isotropic mapping of whole mouse brain using multi-view light-sheet microscopy
NASA Astrophysics Data System (ADS)
Nie, Jun; Li, Yusha; Zhao, Fang; Ping, Junyu; Liu, Sa; Yu, Tingting; Zhu, Dan; Fei, Peng
2018-02-01
Light-sheet fluorescence microscopy (LSFM) uses an additional laser-sheet to illuminate selective planes of the sample, thereby enabling three-dimensional imaging at high spatial-temporal resolution. These advantages make LSFM a promising tool for high-quality brain visualization. However, even by the use of LSFM, the spatial resolution remains insufficient to resolve the neural structures across a mesoscale whole mouse brain in three dimensions. At the same time, the thick-tissue scattering prevents a clear observation from the deep of brain. Here we use multi-view LSFM strategy to solve this challenge, surpassing the resolution limit of standard light-sheet microscope under a large field-of-view (FOV). As demonstrated by the imaging of optically-cleared mouse brain labelled with thy1-GFP, we achieve a brain-wide, isotropic cellular resolution of 3μm. Besides the resolution enhancement, multi-view braining imaging can also recover complete signals from deep tissue scattering and attenuation. The identification of long distance neural projections across encephalic regions can be identified and annotated as a result.
2014-01-01
Background Repetitive Transcranial Magnetic Stimulation (rTMS)/ Deep-brain Magnetic Stimulation (DMS) is an effective therapy for various neuropsychiatric disorders including major depression disorder. The molecular and cellular mechanisms underlying the impacts of rTMS/DMS on the brain are not yet fully understood. Results Here we studied the effects of deep-brain magnetic stimulation to brain on the molecular and cellular level. We examined the adult hippocampal neurogenesis and hippocampal synaptic plasticity of rodent under stress conditions with deep-brain magnetic stimulation treatment. We found that DMS promotes adult hippocampal neurogenesis significantly and facilitates the development of adult new-born neurons. Remarkably, DMS exerts anti-depression effects in the learned helplessness mouse model and rescues hippocampal long-term plasticity impaired by restraint stress in rats. Moreover, DMS alleviates the stress response in a mouse model for Rett syndrome and prolongs the life span of these animals dramatically. Conclusions Deep-brain magnetic stimulation greatly facilitates adult hippocampal neurogenesis and maturation, also alleviates depression and stress-related responses in animal models. PMID:24512669
Li, Li; Shaik, Ahmad Ali; Zhang, Jinhui; Nhkata, Katai; Wang, Lei; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Lü, Junxuan
2011-02-20
The gallotannin penta-O-galloyl-beta-D-glucose (PGG) has many biological activities including in vivo anti-cancer efficacy. We present in this paper a scaled-up protocol for its preparation in high purity from tannic acid by acidic methanolysis with typical yield of 15%. We also describe a method for the analysis of PGG in mouse plasma by HPLC and its application in preliminary pharmacokinetic studies. A liquid-liquid extraction (LLE) protocol was optimized for the extraction of PGG from mouse plasma. The extraction efficiency for PGG at 1 μg/mL in mouse plasma was 70.0±1.3% (n=5). The limit of detection (LOD) for PGG was approximately 0.2 μg/mL. Preliminary pharmacokinetic parameters of PGG following a single i.p. injection with 5% ethanol/saline vehicle in mice were established. The peak plasma PGG concentrations (C(max)) were approximately 3-4 μM at a dose of 0.5 mg per mouse (∼20 mg/kg) at 2 h post-injection (T(max)). Copyright © 2010 Elsevier B.V. All rights reserved.
Kulikov, A V; Osipova, D V; Naumenko, V S; Terenina, E; Mormède, P; Popova, N K
2012-07-15
The neurotransmitter serotonin (5-HT) is involved in the regulation of mouse intermale aggression. Previously, it was shown that intensity of mouse intermale aggression was positively associated with activity of the key enzyme of 5-HT synthesis - tryptophan hydroxylase 2 (TPH2) in mouse brain. The aim of the present study was to investigate the effect of pharmacological activation or inhibition of 5-HT synthesis in the brain on intermale aggression in two mouse strains differing in the TPH2 activity: C57BL/6J (B6, high TPH2 activity, high aggressiveness) and CC57BR/Mv (BR, low TPH2 activity, low aggressiveness). Administration of 5-HT precursor L-tryptophan (300 mg/kg, i.p.) to BR mice significantly increased the 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels in the midbrain as well as the number of attacks and their duration in the resident-intruder test. And vice versa, administration of TPH2 inhibitor p-chlorophenylalanine (pCPA) (300 mg/kg, i.p., for 3 consecutive days) to B6 mice dramatically reduced the 5-HT and 5-HIAA contents in brain structures and attenuated the frequency and the duration of aggressive attacks. At the same time, L-tryptophan or pCPA did not influence the percentage of aggressive mice and the attack latency reflecting the threshold of aggressive reaction. This result indicated that the intensity of intermale aggression, but not the threshold of aggressive reaction is positively dependent on 5-HT metabolism in mouse brain. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipton, C; Lamba, M; Qi, Z
Purpose: Cognitive impairment from radiation therapy to the brain may be linked to the loss of total blood volume in the brain. To account for brain injury, it is crucial to develop an understanding of blood volume loss as a result of radiation therapy. This study investigates µCT based quantification of mouse brain vasculature, focusing on the effect of acquisition technique and contrast material. Methods: Four mice were scanned on a µCT scanner (Siemens Inveon). The reconstructed voxel size was 18µm3 and all protocols were Hounsfield Unit (HU) calibrated. The mice were injected with 40mg of gold nanoparticles (MediLumine) ormore » 100µl of Exitron 12000 (Miltenyi Biotec). Two acquisition techniques were also performed. A single kVp technique scanned the mouse once using an x-ray beam of 80kVp and segmentation was completed based on a threshold of HU values. The dual kVp technique scanned the mouse twice using 50kVp and 80kVp, this segmentation was based on the ratio of the HU value of the two kVps. After image reconstruction and segmentation, the brain blood volume was determined as a percentage of the total brain volume. Results: For the single kVp acquisition at 80kVp, the brain blood volume had an average of 3.5% for gold and 4.0% for Exitron 12000. Also at 80kVp, the contrast-noise ratio was significantly better for images acquired with the gold nanoparticles (2.0) than for those acquired with the Exitron 12000 (1.4). The dual kVp acquisition shows improved separation of skull from vasculature, but increased image noise. Conclusion: In summary, the effects of acquisition technique and contrast material for quantification of mouse brain vasculature showed that gold nanoparticles produced more consistent segmentation of brain vasculature than Exitron 12000. Also, dual kVp acquisition may improve the accuracy of brain vasculature quantification, although the effect of noise amplification warrants further study.« less
Browne, Caroline A; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F; Yilmazer-Hanke, Deniz
2014-12-01
Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 min after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or post-traumatic stress disorder.
Browne, Caroline A.; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F.; Yilmazer-Hanke, Deniz
2015-01-01
Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus, and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 minutes after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or posttraumatic stress disorder. PMID:25117886
Mitsuuchi, Y; Powell, D R; Gallo, J M
2006-02-09
A second generation genetically-engineered cell-based drug delivery system, referred to as apoptotic-induced drug delivery (AIDD), was developed using endothelial cells (ECs) that undergo apoptosis upon binding of vascular endothelial growth factor (VEGF) to a Flk-1:Fas fusion protein (FF). This new AIDD was redesigned using mouse brain derived ECs, bEnd3 cells, and an adenovirus vector in order to enhance and control the expression of FF. The FF was tagged with a HA epitope (FFHA) and designed to be coexpressed with green fluorescence protein (GFP) by the regulation of cytomegalovirus promoters in the adenovirus vector. bEnd3 cells showed favorable coexpression of FFHA and GFP consistent with the multiplicity of infection of the adenovirus. Immunofluorescence analysis demonstrated that FFHA was localized at the plasma membrane, whereas GFP was predominantly located in the cytoplasm of ECs. Cell death was induced by VEGF, but not by platelet derived growth factor or fibroblast growth factor in a dose-dependent manner (range 2-20 ng/ml), and revealed caspase-dependent apoptotic profiles. The FFHA expressing bEnd3 cells underwent apoptosis when cocultured with a glioma cell (SF188V+) line able to overexpress VEGF. The combined data indicated that the FFHA adenovirus system can induce apoptotic signaling in ECs in response to VEGF, and thus, is an instrumental modification to the development of AIDD.
Wang, Li; Almeida, Luis E F; Spornick, Nicholas A; Kenyon, Nicholas; Kamimura, Sayuri; Khaibullina, Alfia; Nouraie, Mehdi; Quezado, Zenaide M N
2015-12-01
Accumulating evidence implicates the nicotinic cholinergic system in autism spectrum disorder (ASD) pathobiology. Neuropathologic studies suggest that nicotinic acetylcholine (ACh) receptor (nAChR) subtypes are altered in brain of autistic individuals. In addition, strategies that increase ACh, the neurotransmitter for nicotinic and muscarinic receptors, appear to improve cognitive deficits in neuropsychiatric disorders and ASD. The aim of this study is to examine the role of the nicotinic cholinergic system on social and repetitive behavior abnormalities and exploratory physical activity in a well-studied model of autism, the BTBR T(+) Itpr3 (tf) /J (BTBR) mouse. Using a protocol known to up-regulate expression of brain nAChR subtypes, we measured behavior outcomes before and after BTBR and C57BL/6J (B6) mice were treated (4 weeks) with vehicle or nicotine (50, 100, 200, or 400 μg/ml). Increasing nicotine doses were associated with decreases in water intake, increases in plasma cotinine levels, and at the higher dose (400 μg/ml) with weight loss in BTBR mice. At lower (50, 100 μg/ml) but not higher (200, 400 μg/ml) doses, nicotine increased social interactions in BTBR and B6 mice and at higher, but not lower doses, it decreased repetitive behavior in BTBR. In the open-field test, nicotine at 200 and 400 μg/ml, but not 100 μg/ml compared with vehicle, decreased overall physical activity in BTBR mice. These findings support the hypotheses that the nicotinic cholinergic system modulates social and repetitive behaviors and may be a therapeutic target to treat behavior deficits in ASD. Further, the BTBR mouse may be valuable for investigations of the role of nAChRs in social deficits and repetitive behavior.
Combination radiotherapy in an orthotopic mouse brain tumor model.
Kramp, Tamalee R; Camphausen, Kevin
2012-03-06
Glioblastoma multiforme (GBM) are the most common and aggressive adult primary brain tumors. In recent years there has been substantial progress in the understanding of the mechanics of tumor invasion, and direct intracerebral inoculation of tumor provides the opportunity of observing the invasive process in a physiologically appropriate environment. As far as human brain tumors are concerned, the orthotopic models currently available are established either by stereotaxic injection of cell suspensions or implantation of a solid piece of tumor through a complicated craniotomy procedure. In our technique we harvest cells from tissue culture to create a cell suspension used to implant directly into the brain. The duration of the surgery is approximately 30 minutes, and as the mouse needs to be in a constant surgical plane, an injectable anesthetic is used. The mouse is placed in a stereotaxic jig made by Stoetling (figure 1). After the surgical area is cleaned and prepared, an incision is made; and the bregma is located to determine the location of the craniotomy. The location of the craniotomy is 2 mm to the right and 1 mm rostral to the bregma. The depth is 3 mm from the surface of the skull, and cells are injected at a rate of 2 μl every 2 minutes. The skin is sutured with 5-0 PDS, and the mouse is allowed to wake up on a heating pad. From our experience, depending on the cell line, treatment can take place from 7-10 days after surgery. Drug delivery is dependent on the drug composition. For radiation treatment the mice are anesthetized, and put into a custom made jig. Lead covers the mouse's body and exposes only the brain of the mouse. The study of tumorigenesis and the evaluation of new therapies for GBM require accurate and reproducible brain tumor animal models. Thus we use this orthotopic brain model to study the interaction of the microenvironment of the brain and the tumor, to test the effectiveness of different therapeutic agents with and without radiation.
Multicolor Fluorescence Imaging of Traumatic Brain Injury in a Cryolesion Mouse Model
2012-01-01
Traumatic brain injury is characterized by initial tissue damage, which then can lead to secondary processes such as cell death and blood-brain-barrier disruption. Clinical and preclinical studies of traumatic brain injury typically employ anatomical imaging techniques and there is a need for new molecular imaging methods that provide complementary biochemical information. Here, we assess the ability of a targeted, near-infrared fluorescent probe, named PSS-794, to detect cell death in a brain cryolesion mouse model that replicates certain features of traumatic brain injury. In short, the model involves brief contact of a cold rod to the head of a living, anesthetized mouse. Using noninvasive whole-body fluorescence imaging, PSS-794 permitted visualization of the cryolesion in the living animal. Ex vivo imaging and histological analysis confirmed PSS-794 localization to site of brain cell death. The nontargeted, deep-red Tracer-653 was validated as a tracer dye for monitoring blood-brain-barrier disruption, and a binary mixture of PSS-794 and Tracer-653 was employed for multicolor imaging of cell death and blood-brain-barrier permeability in a single animal. The imaging data indicates that at 3 days after brain cryoinjury the amount of cell death had decreased significantly, but the integrity of the blood-brain-barrier was still impaired; at 7 days, the blood-brain-barrier was still three times more permeable than before cryoinjury. PMID:22860222
Structural connectome topology relates to regional BOLD signal dynamics in the mouse brain
NASA Astrophysics Data System (ADS)
Sethi, Sarab S.; Zerbi, Valerio; Wenderoth, Nicole; Fornito, Alex; Fulcher, Ben D.
2017-04-01
Brain dynamics are thought to unfold on a network determined by the pattern of axonal connections linking pairs of neuronal elements; the so-called connectome. Prior work has indicated that structural brain connectivity constrains pairwise correlations of brain dynamics ("functional connectivity"), but it is not known whether inter-regional axonal connectivity is related to the intrinsic dynamics of individual brain areas. Here we investigate this relationship using a weighted, directed mesoscale mouse connectome from the Allen Mouse Brain Connectivity Atlas and resting state functional MRI (rs-fMRI) time-series data measured in 184 brain regions in eighteen anesthetized mice. For each brain region, we measured degree, betweenness, and clustering coefficient from weighted and unweighted, and directed and undirected versions of the connectome. We then characterized the univariate rs-fMRI dynamics in each brain region by computing 6930 time-series properties using the time-series analysis toolbox, hctsa. After correcting for regional volume variations, strong and robust correlations between structural connectivity properties and rs-fMRI dynamics were found only when edge weights were accounted for, and were associated with variations in the autocorrelation properties of the rs-fMRI signal. The strongest relationships were found for weighted in-degree, which was positively correlated to the autocorrelation of fMRI time series at time lag τ = 34 s (partial Spearman correlation ρ = 0.58 ), as well as a range of related measures such as relative high frequency power (f > 0.4 Hz: ρ = - 0.43 ). Our results indicate that the topology of inter-regional axonal connections of the mouse brain is closely related to intrinsic, spontaneous dynamics such that regions with a greater aggregate strength of incoming projections display longer timescales of activity fluctuations.
Xue, Songchao; Gong, Hui; Jiang, Tao; Luo, Weihua; Meng, Yuanzheng; Liu, Qian; Chen, Shangbin; Li, Anan
2014-01-01
The topology of the cerebral vasculature, which is the energy transport corridor of the brain, can be used to study cerebral circulatory pathways. Limited by the restrictions of the vascular markers and imaging methods, studies on cerebral vascular structure now mainly focus on either observation of the macro vessels in a whole brain or imaging of the micro vessels in a small region. Simultaneous vascular studies of arteries, veins and capillaries have not been achieved in the whole brain of mammals. Here, we have combined the improved gelatin-Indian ink vessel perfusion process with Micro-Optical Sectioning Tomography for imaging the vessel network of an entire mouse brain. With 17 days of work, an integral dataset for the entire cerebral vessels was acquired. The voxel resolution is 0.35×0.4×2.0 µm3 for the whole brain. Besides the observations of fine and complex vascular networks in the reconstructed slices and entire brain views, a representative continuous vascular tracking has been demonstrated in the deep thalamus. This study provided an effective method for studying the entire macro and micro vascular networks of mouse brain simultaneously. PMID:24498247
Valenti, Daniela; de Bari, Lidia; De Filippis, Bianca; Ricceri, Laura; Vacca, Rosa Anna
2014-01-01
Studies of mitochondrial bioenergetics in brain pathophysiology are often precluded by the need to isolate mitochondria immediately after tissue dissection from a large number of brain biopsies for comparative studies. Here we present a procedure of cryopreservation of small brain areas from which mitochondrial enriched fractions (crude mitochondria) with high oxidative phosphorylation efficiency can be isolated. Small mouse brain areas were frozen and stored in a solution containing glycerol as cryoprotectant. Crude mitochondria were isolated by differential centrifugation from both cryopreserved and freshly explanted brain samples and were compared with respect to their ability to generate membrane potential and produce ATP. Intactness of outer and inner mitochondrial membranes was verified by polarographic ascorbate and cytochrome c tests and spectrophotometric assay of citrate synthase activity. Preservation of structural integrity and oxidative phosphorylation efficiency was successfully obtained in crude mitochondria isolated from different areas of cryopreserved mouse brain samples. Long-term cryopreservation of small brain areas from which intact and phosphorylating mitochondria can be isolated for the study of mitochondrial bioenergetics will significantly expand the study of mitochondrial defects in neurological pathologies, allowing large comparative studies and favoring interlaboratory and interdisciplinary analyses. Copyright © 2013 Elsevier Inc. All rights reserved.
Spencer, Brian; Verma, Inder; Desplats, Paula; Morvinski, Dinorah; Rockenstein, Ed; Adame, Anthony; Masliah, Eliezer
2014-01-01
Alzheimer disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-β peptide (Aβ) in the neuropil and around the blood vessels, and formation of neurofibrillary tangles. The endopeptidase neprilysin has been successfully used to reduce the accumulation of Aβ following intracranial viral vector delivery or ex vivo manipulated intracranial delivery. These therapies have relied on direct injections into the brain, whereas a clinically desirable therapy would involve i.v. infusion of a recombinant enzyme. We previously characterized a recombinant neprilysin that contained a 38-amino acid brain-targeting domain. Recombinant cell lines have been generated expressing this brain-targeted enzyme (ASN12). In this report, we characterize the ASN12 recombinant protein for pharmacology in a mouse as well as efficacy in two APPtg mouse models of AD. The recombinant ASN12 transited to the brain with a t½ of 24 h and accumulated to 1.7% of injected dose at 24 h following i.v. delivery. We examined pharmacodynamics in the tg2576 APPtg mouse with the prion promoter APP695 SWE mutation and in the Line41 mThy1 APP751 mutation mouse. Treatment of either APPtg mouse resulted in reduced Aβ, increased neuronal synapses, and improved learning and memory. In addition, the Line41 APPtg mice showed increased levels of C-terminal neuropeptide Y fragments and increased neurogenesis. These results suggest that the recombinant brain-targeted neprilysin, ASN12, may be an effective treatment for AD and warrant further investigation in clinical trials. PMID:24825898
NASA Astrophysics Data System (ADS)
Hariri, Ali; Bely, Nicholas; Chen, Chen; Nasiriavanaki, Mohammadreza
2016-03-01
The increasing use of mouse models for human brain disease studies, coupled with the fact that existing high-resolution functional imaging modalities cannot be easily applied to mice, presents an emerging need for a new functional imaging modality. Utilizing both mechanical and optical scanning in the photoacoustic microscopy, we can image spontaneous cerebral hemodynamic fluctuations and their associated functional connections in the mouse brain. The images is going to be acquired noninvasively with a fast frame rate, a large field of view, and a high spatial resolution. We developed an optical resolution photoacoustic microscopy (OR-PAM) with diode laser. Laser light was raster scanned due to XY-stage movement. Images from ultra-high OR-PAM can then be used to study brain disorders such as stroke, Alzheimer's, schizophrenia, multiple sclerosis, autism, and epilepsy.
NASA Astrophysics Data System (ADS)
Yamaguchi, Takahiro; Takehara, Hiroaki; Sunaga, Yoshinori; Haruta, Makito; Motoyama, Mayumi; Ohta, Yasumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun
2016-04-01
A self-reset pixel of 15 × 15 µm2 with high signal-to-noise ratio (effective peak SNR ≃64 dB) for an implantable image sensor has been developed for intrinsic signal detection arising from hemodynamic responses in a living mouse brain. For detecting local conversion between oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) in brain tissues, an implantable imaging device was fabricated with our newly designed self-reset image sensor and orange light-emitting diodes (LEDs; λ = 605 nm). We demonstrated imaging of hemodynamic responses in the sensory cortical area accompanied by forelimb stimulation of a living mouse. The implantable imaging device for intrinsic signal detection is expected to be a powerful tool to measure brain activities in living animals used in behavioral analysis.
2013-08-01
We next tested the utility of the construct to accumulate in tumors expressing EGFR using an orthotopic mouse model for brain tumors. Glioma cells...filament tumor marker, identified implanted cells within the orthotopic mouse model which were of human origin, i.e. Gli36Δ5 cells, and demonstrated that...forward into in vivo animal tumor model studies. • In vivo imaging of EGFR targeted-complex in orthotopic mouse model of brain tumor. • Ex vivo validation
Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain
Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich
2014-01-01
The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior–posterior, dorsal–ventral and medial– lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson’s disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. Database URL: http://mouseidgenes.helmholtz-muenchen.de. PMID:25145340
Mouse IDGenes: a reference database for genetic interactions in the developing mouse brain.
Matthes, Michaela; Preusse, Martin; Zhang, Jingzhong; Schechter, Julia; Mayer, Daniela; Lentes, Bernd; Theis, Fabian; Prakash, Nilima; Wurst, Wolfgang; Trümbach, Dietrich
2014-01-01
The study of developmental processes in the mouse and other vertebrates includes the understanding of patterning along the anterior-posterior, dorsal-ventral and medial- lateral axis. Specifically, neural development is also of great clinical relevance because several human neuropsychiatric disorders such as schizophrenia, autism disorders or drug addiction and also brain malformations are thought to have neurodevelopmental origins, i.e. pathogenesis initiates during childhood and adolescence. Impacts during early neurodevelopment might also predispose to late-onset neurodegenerative disorders, such as Parkinson's disease. The neural tube develops from its precursor tissue, the neural plate, in a patterning process that is determined by compartmentalization into morphogenetic units, the action of local signaling centers and a well-defined and locally restricted expression of genes and their interactions. While public databases provide gene expression data with spatio-temporal resolution, they usually neglect the genetic interactions that govern neural development. Here, we introduce Mouse IDGenes, a reference database for genetic interactions in the developing mouse brain. The database is highly curated and offers detailed information about gene expressions and the genetic interactions at the developing mid-/hindbrain boundary. To showcase the predictive power of interaction data, we infer new Wnt/β-catenin target genes by machine learning and validate one of them experimentally. The database is updated regularly. Moreover, it can easily be extended by the research community. Mouse IDGenes will contribute as an important resource to the research on mouse brain development, not exclusively by offering data retrieval, but also by allowing data input. http://mouseidgenes.helmholtz-muenchen.de. © The Author(s) 2014. Published by Oxford University Press.
Matrix Metalloproteinase (MMP) 9 Transcription in Mouse Brain Induced by Fear Learning*
Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek
2013-01-01
Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, −42/-50- and −478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning. PMID:23720741
Matrix metalloproteinase (MMP) 9 transcription in mouse brain induced by fear learning.
Ganguly, Krishnendu; Rejmak, Emilia; Mikosz, Marta; Nikolaev, Evgeni; Knapska, Ewelina; Kaczmarek, Leszek
2013-07-19
Memory formation requires learning-based molecular and structural changes in neurons, whereas matrix metalloproteinase (MMP) 9 is involved in the synaptic plasticity by cleaving extracellular matrix proteins and, thus, is associated with learning processes in the mammalian brain. Because the mechanisms of MMP-9 transcription in the brain are poorly understood, this study aimed to elucidate regulation of MMP-9 gene expression in the mouse brain after fear learning. We show here that contextual fear conditioning markedly increases MMP-9 transcription, followed by enhanced enzymatic levels in the three major brain structures implicated in fear learning, i.e. the amygdala, hippocampus, and prefrontal cortex. To reveal the role of AP-1 transcription factor in MMP-9 gene expression, we have used reporter gene constructs with specifically mutated AP-1 gene promoter sites. The constructs were introduced into the medial prefrontal cortex of neonatal mouse pups by electroporation, and the regulation of MMP-9 transcription was studied after contextual fear conditioning in the adult animals. Specifically, -42/-50- and -478/-486-bp AP-1 binding motifs of the mouse MMP-9 promoter sequence have been found to play a major role in MMP-9 gene activation. Furthermore, increases in MMP-9 gene promoter binding by the AP-1 transcription factor proteins c-Fos and c-Jun have been demonstrated in all three brain structures under investigation. Hence, our results suggest that AP-1 acts as a positive regulator of MMP-9 transcription in the brain following fear learning.
Different modes of herpes simplex virus type 1 spread in brain and skin tissues.
Tsalenchuck, Yael; Tzur, Tomer; Steiner, Israel; Panet, Amos
2014-02-01
Herpes simplex virus type 1 (HSV-1) initially infects the skin and subsequently spreads to the nervous system. To investigate and compare HSV-1 mode of propagation in the two clinically relevant tissues, we have established ex vivo infection models, using native tissues of mouse and human skin, as well as mouse brain, maintained in organ cultures. HSV-1, which is naturally restricted to the human, infects and spreads in the mouse and human skin tissues in a similar fashion, thus validating the mouse model. The spread of HSV-1 in the skin was concentric to form typical plaques of limited size, predominantly of cytopathic cells. By contrast, HSV-1 spread in the brain tissue was directed along specific neuronal networks with no apparent cytopathic effect. Two additional differences were noted following infection of the skin and brain tissues. First, only a negligible amount of extracellular progeny virus was produced of the infected brain tissues, while substantial quantity of infectious progeny virus was released to the media of the infected skin. Second, antibodies against HSV-1, added following the infection, effectively restricted viral spread in the skin but have no effect on viral spread in the brain tissue. Taken together, these results reveal that HSV-1 spread within the brain tissue mostly by direct transfer from cell to cell, while in the skin the progeny extracellular virus predominates, thus facilitating the infection to new individuals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.
1984-10-01
The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portionmore » of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.« less
Elizabeth de Sousa Rodrigues, Maria; Bekhbat, Mandakh; Houser, Madelyn C.; Chang, Jianjun; Walker, Douglas I.; Jones, Dean P.; Oller do Nascimento, Claudia M.P.; Barnum, Christopher J.; Tansey, Malú G.
2016-01-01
The mechanisms underlying the association between chronic psychological stress, development of metabolic syndrome (MetS), and behavioral impairment in obesity are poorly understood. The aim of the present study was to assess the effects of mild chronic psychological stress on metabolic, inflammatory, and behavioral profiles in a mouse model of diet-induced obesity. We hypothesized that (1) high-fat high-fructose diet (HFHF) and psychological stress would synergize to mediate the impact of inflammation on the central nervous system in the presence of behavioral dysfunction, and that (2) HFHF and stress interactions would impact insulin and lipid metabolism. C57Bl/6 male mice underwent a combination of HFHF and two weeks of chronic psychological stress. MetS-related conditions were assessed using untargeted plasma metabolomics, and structural and immune changes in the gut and liver were evaluated. Inflammation was measured in plasma, liver, gut, and brain. Our results show a complex interplay of diet and stress on gut alterations, energetic homeostasis, lipid metabolism, and plasma insulin levels. Psychological stress and HFHF diet promoted changes in intestinal tight junctions proteins and increases in insulin resistance and plasma cholesterol, and impacted the RNA expression of inflammatory factors in the hippocampus. Stress promoted an adaptive anti-inflammatory profile in the hippocampus that was abolished by diet treatment. HFHF increased hippocampal and hepatic Lcn2 mRNA expression as well as LCN2 plasma levels. Behavioral changes were associated with HFHF and stress. Collectively, these results suggest that diet and stress as pervasive factors exacerbate MetS-related conditions through an inflammatory mechanism that ultimately can impact behavior. This rodent model may prove useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders. PMID:27592562
de Sousa Rodrigues, Maria Elizabeth; Bekhbat, Mandakh; Houser, Madelyn C; Chang, Jianjun; Walker, Douglas I; Jones, Dean P; Oller do Nascimento, Claudia M P; Barnum, Christopher J; Tansey, Malú G
2017-01-01
The mechanisms underlying the association between chronic psychological stress, development of metabolic syndrome (MetS), and behavioral impairment in obesity are poorly understood. The aim of the present study was to assess the effects of mild chronic psychological stress on metabolic, inflammatory, and behavioral profiles in a mouse model of diet-induced obesity. We hypothesized that (1) high-fat high-fructose diet (HFHF) and psychological stress would synergize to mediate the impact of inflammation on the central nervous system in the presence of behavioral dysfunction, and that (2) HFHF and stress interactions would impact insulin and lipid metabolism. C57Bl/6 male mice underwent a combination of HFHF and two weeks of chronic psychological stress. MetS-related conditions were assessed using untargeted plasma metabolomics, and structural and immune changes in the gut and liver were evaluated. Inflammation was measured in plasma, liver, gut, and brain. Our results show a complex interplay of diet and stress on gut alterations, energetic homeostasis, lipid metabolism, and plasma insulin levels. Psychological stress and HFHF diet promoted changes in intestinal tight junctions proteins and increases in insulin resistance and plasma cholesterol, and impacted the RNA expression of inflammatory factors in the hippocampus. Stress promoted an adaptive anti-inflammatory profile in the hippocampus that was abolished by diet treatment. HFHF increased hippocampal and hepatic Lcn2 mRNA expression as well as LCN2 plasma levels. Behavioral changes were associated with HFHF and stress. Collectively, these results suggest that diet and stress as pervasive factors exacerbate MetS-related conditions through an inflammatory mechanism that ultimately can impact behavior. This rodent model may prove useful for identification of possible biomarkers and therapeutic targets to treat metabolic syndrome and mood disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
MACF1 Controls Migration and Positioning of Cortical GABAergic Interneurons in Mice.
Ka, Minhan; Moffat, Jeffrey J; Kim, Woo-Yang
2017-12-01
GABAergic interneurons develop in the ganglionic eminence in the ventral telencephalon and tangentially migrate into the cortical plate during development. However, key molecules controlling interneuron migration remain poorly identified. Here, we show that microtubule-actin cross-linking factor 1 (MACF1) regulates GABAergic interneuron migration and positioning in the developing mouse brain. To investigate the role of MACF1 in developing interneurons, we conditionally deleted the MACF1 gene in mouse interneuron progenitors and their progeny using Dlx5/6-Cre-IRES-EGFP and Nkx2.1-Cre drivers. We found that MACF1 deletion results in a marked reduction and defective positioning of interneurons in the mouse cerebral cortex and hippocampus, suggesting abnormal interneuron migration. Indeed, the speed and mode of interneuron migration were abnormal in the MACF1-mutant brain, compared with controls. Additionally, MACF1-deleted interneurons showed a significant reduction in the length of their leading processes and dendrites in the mouse brain. Finally, loss of MACF1 decreased microtubule stability in cortical interneurons. Our findings suggest that MACF1 plays a critical role in cortical interneuron migration and positioning in the developing mouse brain. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Automated segmentation of the actively stained mouse brain using multi-spectral MR microscopy.
Sharief, Anjum A; Badea, Alexandra; Dale, Anders M; Johnson, G Allan
2008-01-01
Magnetic resonance microscopy (MRM) has created new approaches for high-throughput morphological phenotyping of mouse models of diseases. Transgenic and knockout mice serve as a test bed for validating hypotheses that link genotype to the phenotype of diseases, as well as developing and tracking treatments. We describe here a Markov random fields based segmentation of the actively stained mouse brain, as a prerequisite for morphological phenotyping. Active staining achieves higher signal to noise ratio (SNR) thereby enabling higher resolution imaging per unit time than obtained in previous formalin-fixed mouse brain studies. The segmentation algorithm was trained on isotropic 43-mum T1- and T2-weighted MRM images. The mouse brain was segmented into 33 structures, including the hippocampus, amygdala, hypothalamus, thalamus, as well as fiber tracts and ventricles. Probabilistic information used in the segmentation consisted of (a) intensity distributions in the T1- and T2-weighted data, (b) location, and (c) contextual priors for incorporating spatial information. Validation using standard morphometric indices showed excellent consistency between automatically and manually segmented data. The algorithm has been tested on the widely used C57BL/6J strain, as well as on a selection of six recombinant inbred BXD strains, chosen especially for their largely variant hippocampus.
Regulation by commensal bacteria of neurogenesis in the subventricular zone of adult mouse brain.
Sawada, Naoki; Kotani, Takenori; Konno, Tasuku; Setiawan, Jajar; Nishigaito, Yuka; Saito, Yasuyuki; Murata, Yoji; Nibu, Ken-Ichi; Matozaki, Takashi
2018-04-15
In the mouse olfactory bulb (OB), interneurons such as granule cells and periglomerular cells are continuously replaced by adult-born neurons, which are generated in the subventricular zone (SVZ) of the brain. We have now investigated the role of commensal bacteria in regulation of such neuronal cell turnover in the adult mouse brain. Administration of mixture of antibiotics to specific pathogen-free (SPF) mice markedly attenuated the incorporation of bromodeoxyuridine (BrdU) into the SVZ cells. The treatment with antibiotics also reduced newly generated BrdU-positive neurons in the mouse OB. In addition, the incorporation of BrdU into the SVZ cells of germ-free (GF) mice was markedly reduced compared to that apparent for SPF mice. In contrast, the reduced incorporation of BrdU into the SVZ cells of GF mice was recovered by their co-housing with SPF mice, suggesting that commensal bacteria promote the incorporation of BrdU into the SVZ cells. Finally, we found that administration of ampicillin markedly attenuated the incorporation of BrdU into the SVZ cells of SPF mice. Our results thus suggest that ampicillin-sensitive commensal bacteria regulate the neurogenesis in the SVZ of adult mouse brain. Copyright © 2018 Elsevier Inc. All rights reserved.
Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza; Benyhe, Sándor; Gaspar, Robert; Matifas, Audrey; Kieffer, Brigitte L; Metaxas, Athanasios; Kitchen, Ian; Bailey, Alexis
2017-03-16
Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear. This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [ 3 H]oxymorphone revealed high affinity binding sites in mouse brain displaying Kd of 1.7nM and Bmax of 147fmol/mg. Furthermore, we performed quantitative autoradiography binding studies using [ 3 H]oxymorphone in mouse brain. The distribution of [ 3 H]oxymorphone binding sites was found to be similar to the selective MOP agonist [ 3 H]DAMGO in the mouse brain. [ 3 H]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [ 3 H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP, and not the DOP or the KOP is the main high affinity binding target for oxymorphone. Copyright © 2017 Elsevier B.V. All rights reserved.
Ohba, Seigo; Sumita, Yoshinori; Umebayashi, Mayumi; Yoshimura, Hitoshi; Yoshida, Hisato; Matsuda, Shinpei; Kimura, Hideki; Asahina, Izumi; Sano, Kazuo
2016-01-01
The aim of this study was to assess newly formed onlay bone on mouse calvarial bone using a new artificial bone material, a hydroxyapatite/collagen composite, with total blood or platelet-rich plasma. The hydroxyapatite/collagen composite material with normal saline, total blood or platelet-rich plasma was transplanted on mouse calvarial bone. The mice were sacrificed and the specimens were harvested four weeks after surgery. The newly formed bone area was measured on hematoxylin and eosin stained specimens using Image J software. The hydroxyapatite/collagen composite materials with total blood or platelet-rich plasma induced a significantly greater amount of newly formed bone than that with normal saline. Moreover, bone marrow was observed four weeks after surgery in the transplanted materials with total blood or platelet-rich plasma but not with normal saline. However, there were no significant differences in the amount of newly formed bone between materials used with total blood versus platelet-rich plasma. The hydroxyapatite/collagen composite material was valid for onlay bone augmentation and this material should be soaked in total blood or platelet-rich plasma prior to transplantation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Transcripts with in silico predicted RNA structure are enriched everywhere in the mouse brain
2012-01-01
Background Post-transcriptional control of gene expression is mostly conducted by specific elements in untranslated regions (UTRs) of mRNAs, in collaboration with specific binding proteins and RNAs. In several well characterized cases, these RNA elements are known to form stable secondary structures. RNA secondary structures also may have major functional implications for long noncoding RNAs (lncRNAs). Recent transcriptional data has indicated the importance of lncRNAs in brain development and function. However, no methodical efforts to investigate this have been undertaken. Here, we aim to systematically analyze the potential for RNA structure in brain-expressed transcripts. Results By comprehensive spatial expression analysis of the adult mouse in situ hybridization data of the Allen Mouse Brain Atlas, we show that transcripts (coding as well as non-coding) associated with in silico predicted structured probes are highly and significantly enriched in almost all analyzed brain regions. Functional implications of these RNA structures and their role in the brain are discussed in detail along with specific examples. We observe that mRNAs with a structure prediction in their UTRs are enriched for binding, transport and localization gene ontology categories. In addition, after manual examination we observe agreement between RNA binding protein interaction sites near the 3’ UTR structures and correlated expression patterns. Conclusions Our results show a potential use for RNA structures in expressed coding as well as noncoding transcripts in the adult mouse brain, and describe the role of structured RNAs in the context of intracellular signaling pathways and regulatory networks. Based on this data we hypothesize that RNA structure is widely involved in transcriptional and translational regulatory mechanisms in the brain and ultimately plays a role in brain function. PMID:22651826
O'Brien, Fionn E; O'Connor, Richard M; Clarke, Gerard; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F
2013-01-01
Despite the clinical prevalence of the antidepressant escitalopram, over 30% of escitalopram-treated patients fail to respond to treatment. Recent gene association studies have highlighted a potential link between the drug efflux transporter P-glycoprotein (P-gp) and response to escitalopram. The present studies investigated pharmacokinetic and pharmacodynamic interactions between P-gp and escitalopram. In vitro bidirectional transport studies revealed that escitalopram is a transported substrate of human P-gp. Microdialysis-based pharmacokinetic studies demonstrated that administration of the P-gp inhibitor cyclosporin A resulted in increased brain levels of escitalopram without altering plasma escitalopram levels in the rat, thereby showing that P-gp restricts escitalopram transport across the blood–brain barrier (BBB) in vivo. The tail suspension test (TST) was carried out to elucidate the pharmacodynamic impact of P-gp inhibition on escitalopram effect in a mouse model of antidepressant activity. Pre-treatment with the P-gp inhibitor verapamil enhanced the response to escitalopram in the TST. Taken together, these data indicate that P-gp may restrict the BBB transport of escitalopram in humans, potentially resulting in subtherapeutic brain concentrations in certain patients. Moreover, by verifying that increasing escitalopram delivery to the brain by P-gp inhibition results in enhanced antidepressant-like activity, we suggest that adjunctive treatment with a P-gp inhibitor may represent a beneficial approach to augment escitalopram therapy in depression. PMID:23670590
Agrawal, Sonal; Fox, Julia; Thyagarajan, Baskaran; Fox, Jonathan H
2018-05-20
Mitochondrial bioenergetic dysfunction is involved in neurodegeneration in Huntington's disease (HD). Iron is critical for normal mitochondrial bioenergetics but can also contribute to pathogenic oxidation. The accumulation of iron in the brain occurs in mouse models and in human HD. Yet the role of mitochondria-related iron dysregulation as a contributor to bioenergetic pathophysiology in HD is unclear. We demonstrate here that human HD and mouse model HD (12-week R6/2 and 12-month YAC128) brains accumulated mitochondrial iron and showed increased expression of iron uptake protein mitoferrin 2 and decreased iron-sulfur cluster synthesis protein frataxin. Mitochondria-enriched fractions from mouse HD brains had deficits in membrane potential and oxygen uptake and increased lipid peroxidation. In addition, the membrane-permeable iron-selective chelator deferiprone (1 μM) rescued these effects ex-vivo, whereas hydrophilic iron and copper chelators did not. A 10-day oral deferiprone treatment in 9-week R6/2 HD mice indicated that deferiprone removed mitochondrial iron, restored mitochondrial potentials, decreased lipid peroxidation, and improved motor endurance. Neonatal iron supplementation potentiates neurodegeneration in mouse models of HD by unknown mechanisms. We found that neonatal iron supplementation increased brain mitochondrial iron accumulation and potentiated markers of mitochondrial dysfunction in HD mice. Therefore, bi-directional manipulation of mitochondrial iron can potentiate and protect against markers of mouse HD. Our findings thus demonstrate the significance of iron as a mediator of mitochondrial dysfunction and injury in mouse models of human HD and suggest that targeting the iron-mitochondrial pathway may be protective. Copyright © 2018 Elsevier Inc. All rights reserved.
Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain.
Kosi, Nina; Alić, Ivan; Kolačević, Matea; Vrsaljko, Nina; Jovanov Milošević, Nataša; Sobol, Margarita; Philimonenko, Anatoly; Hozák, Pavel; Gajović, Srećko; Pochet, Roland; Mitrečić, Dinko
2015-02-09
The nucleolar protein 2 gene encodes a protein specific for the nucleolus. It is assumed that it plays a role in the synthesis of ribosomes and regulation of the cell cycle. Due to its link to cell proliferation, higher expression of Nop2 indicates a worse tumor prognosis. In this work we used Nop2(gt1gaj) gene trap mouse strain. While lethality of homozygous animals suggested a vital role of this gene, heterozygous animals allowed the detection of expression of Nop2 in various tissues, including mouse brain. Histochemistry, immunohistochemistry and immunoelectron microscopy techniques, applied to a mature mouse brain, human brain and on mouse neural stem cells revealed expression of Nop2 in differentiating cells, including astrocytes, as well as in mature neurons. Nop2 was detected in various regions of mouse and human brain, mostly in large pyramidal neurons. In the human, Nop2 was strongly expressed in supragranular and infragranular layers of the somatosensory cortex and in layer III of the cingulate cortex. Also, Nop2 was detected in CA1 and the subiculum of the hippocampus. Subcellular analyses revealed predominant location of Nop2 within the dense fibrillar component of the nucleolus. To test if Nop2 expression correlates to cell proliferation occurring during tissue regeneration, we induced strokes in mice by middle cerebral artery occlusion. Two weeks after stroke, the number of Nop2/nestin double positive cells in the region affected by ischemia and the periventricular zone substantially increased. Our findings suggest a newly discovered role of Nop2 in both mature neurons and in cells possibly involved in the regeneration of nervous tissue. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
A Diffusion MRI Tractography Connectome of the Mouse Brain and Comparison with Neuronal Tracer Data
Calabrese, Evan; Badea, Alexandra; Cofer, Gary; Qi, Yi; Johnson, G. Allan
2015-01-01
Interest in structural brain connectivity has grown with the understanding that abnormal neural connections may play a role in neurologic and psychiatric diseases. Small animal connectivity mapping techniques are particularly important for identifying aberrant connectivity in disease models. Diffusion magnetic resonance imaging tractography can provide nondestructive, 3D, brain-wide connectivity maps, but has historically been limited by low spatial resolution, low signal-to-noise ratio, and the difficulty in estimating multiple fiber orientations within a single image voxel. Small animal diffusion tractography can be substantially improved through the combination of ex vivo MRI with exogenous contrast agents, advanced diffusion acquisition and reconstruction techniques, and probabilistic fiber tracking. Here, we present a comprehensive, probabilistic tractography connectome of the mouse brain at microscopic resolution, and a comparison of these data with a neuronal tracer-based connectivity data from the Allen Brain Atlas. This work serves as a reference database for future tractography studies in the mouse brain, and demonstrates the fundamental differences between tractography and neuronal tracer data. PMID:26048951
NASA Astrophysics Data System (ADS)
Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.
2013-02-01
We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.
Omics analysis of mouse brain models of human diseases.
Paban, Véronique; Loriod, Béatrice; Villard, Claude; Buee, Luc; Blum, David; Pietropaolo, Susanna; Cho, Yoon H; Gory-Faure, Sylvie; Mansour, Elodie; Gharbi, Ali; Alescio-Lautier, Béatrice
2017-02-05
The identification of common gene/protein profiles related to brain alterations, if they exist, may indicate the convergence of the pathogenic mechanisms driving brain disorders. Six genetically engineered mouse lines modelling neurodegenerative diseases and neuropsychiatric disorders were considered. Omics approaches, including transcriptomic and proteomic methods, were used. The gene/protein lists were used for inter-disease comparisons and further functional and network investigations. When the inter-disease comparison was performed using the gene symbol identifiers, the number of genes/proteins involved in multiple diseases decreased rapidly. Thus, no genes/proteins were shared by all 6 mouse models. Only one gene/protein (Gfap) was shared among 4 disorders, providing strong evidence that a common molecular signature does not exist among brain diseases. The inter-disease comparison of functional processes showed the involvement of a few major biological processes indicating that brain diseases of diverse aetiologies might utilize common biological pathways in the nervous system, without necessarily involving similar molecules. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Jusik; Choi, Inseo; Lee, Youngsoo
2017-11-01
Maintenance of genomic integrity is one of the critical features for proper neurodevelopment and inhibition of neurological diseases. The signals from both ATM and ATR to TP53 are well-known mechanisms to remove neural cells with DNA damage during neurogenesis. Here we examined the involvement of Atm and Atr in genomic instability due to Terf2 inactivation during mouse brain development. Selective inactivation of Terf2 in neural progenitors induced apoptosis, resulting in a complete loss of the brain structure. This neural loss was rescued partially in both Atm and Trp53 deficiency, but not in an Atr-deficient background in the mouse. Atm inactivation resulted in incomplete brain structures, whereas p53 deficiency led to the formation of multinucleated giant neural cells and the disruption of the brain structure. These giant neural cells disappeared in Lig4 deficiency. These data demonstrate ATM and TP53 are important for the maintenance of telomere homeostasis and the surveillance of telomere dysfunction during neurogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laig-Webster, M.; Lim, M.E.; Chehab, F.F.
1994-09-01
The molecular defect underlying an autosomal recessive form of genetic obesity in a classical mouse model C57 BL/6J-ob/ob has not yet been elucidated. Whereas metabolic and physiological disturbances such as diabetes and hypertension are associated with obesity, the site of expression and the nature of the primary lesion responsible for this cascade of events remains elusive. Our efforts aimed at the positional cloning of the ob gene by YAC contig mapping and gene identification have resulted in the cloning of a brain-specific gene cluster from the ob critical region. The expression of this gene cluster is remarkably complex owing tomore » the multitude of brain-specific mRNA transcripts detected on Northern blots. cDNA cloning of these transcripts suggests that they are expressed from different genes as well as by alternate splicing mechanisms. Furthermore, the genomic organization of the cluster appears to consist of at least two identical promoters displaying CpG islands characteristic of housekeeping genes, yet clearly involving tissue-specific expression. Sense and anti-sense synthetic RNA probes were derived from a common DNA sequence on 3 cDNA clones and hybridized to 8-16 days mouse embryonic stages and mouse adult brain sections. Expression in development was noticeable as of the 11th day of gestation and confined to the central nervous system mainly in the telencephalon and spinal cord. Coronal and sagittal sections of the adult mouse brain showed expression only in 3 different regions of the brain stem. In situ hybridization to mouse hypothalamus sections revealed the presence of a localized and specialized group of cells expressing high levels of mRNA, suggesting that this gene cluster may also be involved in the regulation of hypothalamic activities. The hypothalamus has long been hypothesized as a primary candidate tissue for the expression of the obesity gene mainly because of its well-established role in the regulation of energy metabolism and food intake.« less
Igarashi, Atsushi; Itoh, Kie; Yamada, Tatsuya; Adachi, Yoshihiro; Kato, Takashi; Murata, Daisuke; Sesaki, Hiromi; Iijima, Miho
2018-06-15
Defects in phosphatase and tensin homolog (PTEN) are associated with neurological disorders and tumors. PTEN functions at two primary intracellular locations: the plasma membrane and the nucleus. At the membrane, PTEN functions as a phosphatidylinositol (3,4,5)-trisphosphate phosphatase and suppresses PI 3-kinase signaling that drives cell growth and tumorigenesis. However, the in vivo function of nuclear PTEN is unclear. Here, using CRISPR/Cas9, we generated a mouse model in which PTEN levels in the nucleus are decreased. Nuclear PTEN-deficient mice were born with microcephaly and maintained a small brain during adulthood. The size of neuronal soma was significantly smaller in the cerebellum, cerebral cortex, and hippocampus. Also, these mice were prone to seizure. No changes in PI 3-kinase signaling were observed. By contrast, the size of other organs was unaffected. Therefore, nuclear PTEN is essential for the health of the brain by promoting the growth of neuronal soma size during development. © 2018 Igarashi et al.
Zarghami, Niloufar; Jensen, Michael D; Talluri, Srikanth; Foster, Paula J; Chambers, Ann F; Dick, Frederick A; Wong, Eugene
2015-11-01
Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. A mouse head holder was designed for a microCT couch using cad software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate the precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14±0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2°±1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarghami, Niloufar, E-mail: nzargham@uwo.ca; Jensen, Michael D.; Talluri, Srikanth
Purpose: Small animal immobilization devices facilitate positioning of animals for reproducible imaging and accurate focal radiation therapy. In this study, the authors demonstrate the use of three-dimensional (3D) printing technology to fabricate a custom-designed mouse head restraint. The authors evaluate the accuracy of this device for the purpose of mouse brain irradiation. Methods: A mouse head holder was designed for a microCT couch using CAD software and printed in an acrylic based material. Ten mice received half-brain radiation while positioned in the 3D-printed head holder. Animal placement was achieved using on-board image guidance and computerized asymmetric collimators. To evaluate themore » precision of beam localization for half-brain irradiation, mice were sacrificed approximately 30 min after treatment and brain sections were stained for γ-H2AX, a marker for DNA breaks. The distance and angle of the γ-H2AX radiation beam border to longitudinal fissure were measured on histological samples. Animals were monitored for any possible trauma from the device. Results: Visualization of the radiation beam on ex vivo brain sections with γ-H2AX immunohistochemical staining showed a sharp radiation field within the tissue. Measurements showed a mean irradiation targeting error of 0.14 ± 0.09 mm (standard deviation). Rotation between the beam axis and mouse head was 1.2° ± 1.0° (standard deviation). The immobilization device was easily adjusted to accommodate different sizes of mice. No signs of trauma to the mice were observed from the use of tooth block and ear bars. Conclusions: The authors designed and built a novel 3D-printed mouse head holder with many desired features for accurate and reproducible radiation targeting. The 3D printing technology was found to be practical and economical for producing a small animal imaging and radiation restraint device and allows for customization for study specific needs.« less
miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma
2012-01-01
Background MicroRNAs (miRNAs) and their role during tumor development have been studied in great detail during the last decade, albeit their expression pattern and regulation during normal development are however not so well established. Previous studies have shown that miRNAs are differentially expressed in solid human tumors. Platelet-derived growth factor (PDGF) signaling is known to be involved in normal development of the brain as well as in malignant primary brain tumors, gliomas, but the complete mechanism is still lacking. We decided to investigate the expression of the oncogenic miR-21 during normal mouse development and glioma, focusing on PDGF signaling as a potential regulator of miR-21. Methods We generated mouse glioma using the RCAS/tv-a system for driving PDGF-BB expression in a cell-specific manner. Expression of miR-21 in mouse cell cultures and mouse brain were assessed using Northern blot analysis and in situ hybridization. Immunohistochemistry and Western blot analysis were used to investigate SOX2 expression. LNA-modified siRNA was used for irreversible depletion of miR-21. For inhibition of PDGF signaling Gleevec (imatinib mesylate), Rapamycin and U0126, as well as siRNA were used. Statistical significance was calculated using double-sided unpaired Student´s t-test. Results We identified miR-21 to be highly expressed during embryonic and newborn brain development followed by a gradual decrease until undetectable at postnatal day 7 (P7), this pattern correlated with SOX2 expression. Furthermore, miR-21 and SOX2 showed up-regulation and overlapping expression pattern in RCAS/tv-a generated mouse brain tumor specimens. Upon irreversible depletion of miR-21 the expression of SOX2 was strongly diminished in both mouse primary glioma cultures and human glioma cell lines. Interestingly, in normal fibroblasts the expression of miR-21 was induced by PDGF-BB, and inhibition of PDGF signaling in mouse glioma primary cultures resulted in suppression of miR-21 suggesting that miR-21 is indeed regulated by PDGF signaling. Conclusions Our data show that miR-21 and SOX2 are tightly regulated already during embryogenesis and define a distinct population with putative tumor cell of origin characteristics. Furthermore, we believe that miR-21 is a mediator of PDGF-driven brain tumors, which suggests miR-21 as a promising target for treatment of glioma. PMID:22931209
Brain perfusion SPECT in the mouse: normal pattern according to gender and age.
Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph
2012-12-01
Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1.7%, p=0.000) and at young adult age (AI=2.4 ± 1.7%, p=0.000). Gender had no effect on asymmetry. Voxel-wise testing confirmed the ROI-based findings. In conclusion, high-resolution HMPAO SPECT is a promising technique for measuring rCBF in preclinical research. It indicates lateral asymmetry of rCBF in the mouse brain as well as age-related changes during late maturation. ECD is not suitable as tracer for brain SPECT in the mouse because of its fast clearance from tissue indicating an interspecies difference in esterase activity between mice and humans. Copyright © 2012 Elsevier Inc. All rights reserved.
Growth of melanoma brain tumors monitored by photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Staley, Jacob; Grogan, Patrick; Samadi, Abbas K.; Cui, Huizhong; Cohen, Mark S.; Yang, Xinmai
2010-07-01
Melanoma is a primary malignancy that is known to metastasize to the brain and often causes death. The ability to image the growth of brain melanoma in vivo can provide new insights into its evolution and response to therapies. In our study, we use a reflection mode photoacoustic microscopy (PAM) system to detect the growth of melanoma brain tumor in a small animal model. The melanoma tumor cells are implanted in the brain of a mouse at the beginning of the test. Then, PAM is used to scan the region of implantation in the mouse brain, and the growth of the melanoma is monitored until the death of the animal. It is demonstrated that PAM is capable of detecting and monitoring the brain melanoma growth noninvasively in vivo.
Blossom, Sarah J.; Melnyk, Stepan; Cooney, Craig A.; Gilbert, Kathleen M.; James, S. Jill
2012-01-01
Previous studies have shown that continuous exposure throughout gestation until the juvenile period to environmentally-relevant doses of trichloroethylene (TCE) in the drinking water of MRL+/+ mice promoted adverse behavior associated with glutathione depletion in the cerebellum indicating increased sensitivity to oxidative stress. The purpose of this study was to extend our findings and further characterize the impact of TCE exposure on redox homeostasis and biomarkers of oxidative stress in the hippocampus, a brain region prone to oxidative stress. Instead of a continuous exposure, the mice were exposed to water only or two environmentally relevant doses of TCE in the drinking water postnatally from birth until 6 weeks of age. Biomarkers of plasma metabolites in the transsulfuration pathway and the transmethylation pathway of the methionine cycle were also examined. Gene expression of neurotrophins was examined to investigate a possible relationship between oxidative stress, redox imbalance and neurotrophic factor expression with TCE exposure. Our results show that hippocampi isolated from male mice exposed to TCE showed altered glutathione redox homeostasis indicating a more oxidized state. Also observed was a significant, dose dependent increase in glutathione precursors. Plasma from the TCE treated mice showed alterations in metabolites in the transsulfuration and transmethylation pathways indicating redox imbalance and altered methylation capacity. 3-Nitrotyrosine, a biomarker of protein oxidative stress, was also significantly higher in plasma and hippocampus of TCE-exposed mice compared to controls. In contrast, expression of key neurotrophic factors in the hippocampus (BDNF, NGF, and NT-3) was significantly reduced compared to controls. Our results demonstrate that low-level postnatal and early life TCE exposure modulates neurotrophin gene expression in the mouse hippocampus and may provide a mechanism for TCE-mediated neurotoxicity. PMID:22421312
Orbe, J; Alexandru, N; Roncal, C; Belzunce, M; Bibiot, P; Rodriguez, J A; Meijers, J C M; Georgescu, A; Paramo, J A
2015-08-01
Thrombin-activatable fibrinolysis inhibitor (TAFI) plays an important role in coagulation and fibrinolysis. Whereas TAFI deficiency may lead to a haemorrhagic tendency, data from TAFI knockout mice (TAFI-/-) are controversial and no differences have been reported in these animals after ischemic stroke. There are also no data regarding the role of circulating microparticles (MPs) in TAFI-/-. to examine the effect of tPA on the rate of intracranial haemorrhage (ICH) and on MPs generated in a model of ischemic stroke in TAFI-/- mice. Thrombin was injected into the middle cerebral artery (MCA) to analyse the effect of tPA (10mg/Kg) on the infarct size and haemorrhage in the absence of TAFI. Immunofluorescence for Fluoro-Jade C was performed on frozen brain slides to analyse neuronal degeneration after ischemia. MPs were isolated from mouse blood and their concentrations calculated by flow cytometry. Compared with saline, tPA significantly increased the infarct size in TAFI-/- mice (p<0.05). Although plasma fibrinolytic activity (fibrin plate assay) was higher in these animals, no macroscopic or microscopic ICH was detected. A positive signal for apoptosis and degenerating neurons was observed in the infarct area, being significantly higher in tPA treated TAFI-/- mice (p<0.05). Interestingly, higher numbers of MPs were found in TAFI-/- plasma as compared to wild type, after stroke (p<0.05). TAFI deficiency results in increased brain damage in a model of thrombolysis after ischemic stroke, which was not associated with bleeding but with neuronal degeneration and MP production. Copyright © 2015 Elsevier Ltd. All rights reserved.
Protective Effect of Different Anti-Rabies Virus VHH Constructs against Rabies Disease in Mice
Terryn, Sanne; Francart, Aurélie; Lamoral, Sophie; Hultberg, Anna; Rommelaere, Heidi; Wittelsberger, Angela; Callewaert, Filip; Stohr, Thomas; Meerschaert, Kris; Ottevaere, Ingrid; Stortelers, Catelijne; Vanlandschoot, Peter; Kalai, Michael; Van Gucht, Steven
2014-01-01
Rabies virus causes lethal brain infection in about 61000 people per year. Each year, tens of thousands of people receive anti-rabies prophylaxis with plasma-derived immunoglobulins and vaccine soon after exposure. Anti-rabies immunoglobulins are however expensive and have limited availability. VHH are the smallest antigen-binding functional fragments of camelid heavy chain antibodies, also called Nanobodies. The therapeutic potential of anti-rabies VHH was examined in a mouse model using intranasal challenge with a lethal dose of rabies virus. Anti-rabies VHH were administered directly into the brain or systemically, by intraperitoneal injection, 24 hours after virus challenge. Anti-rabies VHH were able to significantly prolong survival or even completely rescue mice from disease. The therapeutic effect depended on the dose, affinity and brain and plasma half-life of the VHH construct. Increasing the affinity by combining two VHH with a glycine-serine linker into bivalent or biparatopic constructs, increased the neutralizing potency to the picomolar range. Upon direct intracerebral administration, a dose as low as 33 µg of the biparatopic Rab-E8/H7 was still able to establish an anti-rabies effect. The effect of systemic treatment was significantly improved by increasing the half-life of Rab-E8/H7 through linkage with a third VHH targeted against albumin. Intraperitoneal treatment with 1.5 mg (2505 IU, 1 ml) of anti-albumin Rab-E8/H7 prolonged the median survival time from 9 to 15 days and completely rescued 43% of mice. For comparison, intraperitoneal treatment with the highest available dose of human anti-rabies immunoglobulins (65 mg, 111 IU, 1 ml) only prolonged survival by 2 days, without rescue. Overall, the therapeutic benefit seemed well correlated with the time of brain exposure and the plasma half-life of the used VHH construct. These results, together with the ease-of-production and superior thermal stability, render anti-rabies VHH into valuable candidates for development of alternative post exposure treatment drugs against rabies. PMID:25347556
Kyono, Yasuhiro; Sachs, Laurent M.; Bilesimo, Patrice; Wen, Luan
2016-01-01
Thyroid hormone is essential for normal development in vertebrates. In amphibians, T3 controls metamorphosis by inducing tissue-specific gene regulation programs. A hallmark of T3 action is the modification of chromatin structure, which underlies changes in gene transcription. We found that mRNA for the de novo DNA methyltransferase (DNMT) dnmt3a, but not dnmt1, increased in the brain of Xenopus tadpoles during metamorphosis in parallel with plasma [T3]. Addition of T3 to the rearing water caused a time-dependent increase in dnmt3a mRNA in tadpole brain, tail, and hind limb. By analyzing data from a genome-wide analysis of T3 receptor (TR) binding in tadpole tail, we identified several putative T3 response elements (TREs) within the dnmt3a locus. Using in vitro DNA binding, transient transfection-reporter, and chromatin immunoprecipitation assays for TRs, we identified two functional TREs at −7.1 kb and +5.1 kb relative to the dnmt3a transcription start site. Sequence alignment showed that these TREs are conserved between two related frog species, X. laevis and X. tropicalis, but not with amniotes. Our previous findings showed that this gene is directly regulated by liganded TRs in mouse brain, and whereas the two mouse TREs are conserved among Eutherian mammals, they are not conserved in Xenopus species. Thus, although T3 regulation of dnmt3a may be an ancient pathway in vertebrates, the genomic sites responsible for hormone regulation may have diverged or arisen by convergent evolution. We hypothesize that direct T3 regulation of dnmt3a may be an important mechanism for modulating global changes in DNA methylation. PMID:27779916
Garcia-Diaz, Beatriz; Garone, Caterina; Barca, Emanuele; Mojahed, Hamed; Gutierrez, Purification; Pizzorno, Giuseppe; Tanji, Kurenai; Arias-Mendoza, Fernando; Quinzii, Caterina M.
2014-01-01
Balanced pools of deoxyribonucleoside triphosphate precursors are required for DNA replication, and alterations of this balance are relevant to human mitochondrial diseases including mitochondrial neurogastrointestinal encephalopathy. In this disease, autosomal recessive TYMP mutations cause severe reductions of thymidine phosphorylase activity; marked elevations of the pyrimidine nucleosides thymidine and deoxyuridine in plasma and tissues, and somatic multiple deletions, depletion and site-specific point mutations of mitochondrial DNA. Thymidine phosphorylase and uridine phosphorylase double knockout mice recapitulated several features of these patients including thymidine phosphorylase activity deficiency, elevated thymidine and deoxyuridine in tissues, mitochondrial DNA depletion, respiratory chain defects and white matter changes. However, in contrast to patients with this disease, mutant mice showed mitochondrial alterations only in the brain. To test the hypothesis that elevated levels of nucleotides cause unbalanced deoxyribonucleoside triphosphate pools and, in turn, pathogenic mitochondrial DNA instability, we have stressed double knockout mice with exogenous thymidine and deoxyuridine, and assessed clinical, neuroradiological, histological, molecular, and biochemical consequences. Mutant mice treated with exogenous thymidine and deoxyuridine showed reduced survival, body weight, and muscle strength, relative to untreated animals. Moreover, in treated mutants, leukoencephalopathy, a hallmark of the disease, was enhanced and the small intestine showed a reduction of smooth muscle cells and increased fibrosis. Levels of mitochondrial DNA were depleted not only in the brain but also in the small intestine, and deoxyribonucleoside triphosphate imbalance was observed in the brain. The relative proportion, rather than the absolute amount of deoxyribonucleoside triphosphate, was critical for mitochondrial DNA maintenance. Thus, our results demonstrate that stress of exogenous pyrimidine nucleosides enhances the mitochondrial phenotype of our knockout mice. Our mouse studies provide insights into the pathogenic role of thymidine and deoxyuridine imbalance in mitochondrial neurogastrointestinal encephalopathy and an excellent model to study new therapeutic approaches. PMID:24727567
Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia
NASA Astrophysics Data System (ADS)
Gjedde, Albert; Crone, Christian
1981-10-01
Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.
Spencer, Brian; Verma, Inder; Desplats, Paula; Morvinski, Dinorah; Rockenstein, Ed; Adame, Anthony; Masliah, Eliezer
2014-06-20
Alzheimer disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-β peptide (Aβ) in the neuropil and around the blood vessels, and formation of neurofibrillary tangles. The endopeptidase neprilysin has been successfully used to reduce the accumulation of Aβ following intracranial viral vector delivery or ex vivo manipulated intracranial delivery. These therapies have relied on direct injections into the brain, whereas a clinically desirable therapy would involve i.v. infusion of a recombinant enzyme. We previously characterized a recombinant neprilysin that contained a 38-amino acid brain-targeting domain. Recombinant cell lines have been generated expressing this brain-targeted enzyme (ASN12). In this report, we characterize the ASN12 recombinant protein for pharmacology in a mouse as well as efficacy in two APPtg mouse models of AD. The recombinant ASN12 transited to the brain with a t½ of 24 h and accumulated to 1.7% of injected dose at 24 h following i.v. delivery. We examined pharmacodynamics in the tg2576 APPtg mouse with the prion promoter APP695 SWE mutation and in the Line41 mThy1 APP751 mutation mouse. Treatment of either APPtg mouse resulted in reduced Aβ, increased neuronal synapses, and improved learning and memory. In addition, the Line41 APPtg mice showed increased levels of C-terminal neuropeptide Y fragments and increased neurogenesis. These results suggest that the recombinant brain-targeted neprilysin, ASN12, may be an effective treatment for AD and warrant further investigation in clinical trials. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Short-term fasting and prolonged semistarvation have opposite effects on 2-AG levels in mouse brain.
Hanus, Lumír; Avraham, Yosefa; Ben-Shushan, Dikla; Zolotarev, Olga; Berry, Elliot M; Mechoulam, Raphael
2003-09-05
2-Arachidonoyl glycerol (2-AG) levels in whole mouse brain and two of its regions-hippocampus and hypothalamus-were determined after diet restriction (between 60 and 40%) lasting 12 days. The diet restriction lowered the level of 2-AG, which in the hypothalamus depended on the severity of the diet restriction, while the level in the hippocampus was not dependent on the diet regimen. As these observations differ from previously published data showing elevation of 2-AG levels in rat brain after 24 h of severe food restriction, we measured 2-AG levels in whole mouse brain after a comparable period of full starvation (fasting). We confirmed the elevation of 2-AG levels. It seems possible that these time-dependent variations of 2-AG levels may be of importance as a general coping strategy by animals during periods of starvation.
Murakami, Tatsuya C; Mano, Tomoyuki; Saikawa, Shu; Horiguchi, Shuhei A; Shigeta, Daichi; Baba, Kousuke; Sekiya, Hiroshi; Shimizu, Yoshihiro; Tanaka, Kenji F; Kiyonari, Hiroshi; Iino, Masamitsu; Mochizuki, Hideki; Tainaka, Kazuki; Ueda, Hiroki R
2018-04-01
A three-dimensional single-cell-resolution mammalian brain atlas will accelerate systems-level identification and analysis of cellular circuits underlying various brain functions. However, its construction requires efficient subcellular-resolution imaging throughout the entire brain. To address this challenge, we developed a fluorescent-protein-compatible, whole-organ clearing and homogeneous expansion protocol based on an aqueous chemical solution (CUBIC-X). The expanded, well-cleared brain enabled us to construct a point-based mouse brain atlas with single-cell annotation (CUBIC-Atlas). CUBIC-Atlas reflects inhomogeneous whole-brain development, revealing a significant decrease in the cerebral visual and somatosensory cortical areas during postnatal development. Probabilistic activity mapping of pharmacologically stimulated Arc-dVenus reporter mouse brains onto CUBIC-Atlas revealed the existence of distinct functional structures in the hippocampal dentate gyrus. CUBIC-Atlas is shareable by an open-source web-based viewer, providing a new platform for whole-brain cell profiling.
James, J H; Ziparo, V; Jeppsson, B; Fischer, J E
1979-10-13
It is proposed that hyperammonaemia in liver cirrhosis or after portacaval shunt contributes to plasma neutral aminoacid imbalance and to increased activity of the blood-brain neutral amino-acid transport system. Plasma neutral aminoacid concentrations are deranged, partly, but not completely, because ammonia stimulates glucagon secretion; a high rate of gluconeogenesis and hyperinsulinaemia follow. Brain uptake of neutral aminoacids rises because ammonia stimulates brain-glutamine synthesis, which results in rapid exchange of brain glutamine for plasma neutral aminoacids. Hyperammonaemia therefore contributes to encephalopathy indirectly, by raising the brain concentration of neutral aminoacids which after neurotransmitter metabolism, rather than directly, by toxic effects on neuronal metabolism.
Hosonaga, Mari; Koya, Ikuko
2017-01-01
Metastasis is the main cause of treatment failure and death in cancer patients. Metastasis of tumor cells to the brain occurs frequently in individuals with breast cancer, non–small cell lung cancer, or melanoma. Despite recent advances in our understanding of the causes and in the treatment of primary tumors, the biological and molecular mechanisms underlying the metastasis of cancer cells to the brain have remained unclear. Metastasizing cancer cells interact with their microenvironment in the brain to establish metastases. We have now developed mouse models of brain metastasis based on intracardiac injection of human breast cancer or melanoma cell lines, and we have performed RNA sequencing analysis to identify genes in mouse brain tissue and the human cancer cells whose expression is associated specifically with metastasis. We found that the expressions of the mouse genes Tph2, Sspo, Ptprq, and Pole as well as those of the human genes CXCR4, PLLP, TNFSF4, VCAM1, SLC8A2, and SLC7A11 were upregulated in brain tissue harboring metastases. Further characterization of such genes that contribute to the establishment of brain metastases may provide a basis for the development of new therapeutic strategies and consequent improvement in the prognosis of cancer patients. PMID:28210624
Tochitani, Shiro; Kondo, Shigeaki
2013-01-01
Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain development. γ-aminobutyric acid (GABA) is a neurotransmitter which appears first during development and works as a diffusible factor to regulate the properties of neural progenitors. In this study, we examined whether GABA can be released from the meninges and the choroid plexus in the developing mouse brain. Immunohistochemical analyses showed that glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67), both of which are GABA-synthesizing enzymes, are expressed in the meninges. The epithelial cells in the choroid plexus express GAD65. GABA immunoreactivity could be observed beneath the basal membrane of the meninge and in the epithelial cells of the choroid plexus. Expression analyses on Bestrophin-1, which is known as a GABA-permeable channel in differentiated glial cells, suggested that the cells in the meninges and the epithelial cells in the choroid plexus have the channels able to permeate non-synaptic GABA into the extracellular space. Further studies showed that GAD65/67-expressing meningeal cells appear in a manner with rostral to caudal and lateral to dorsal gradient to cover the entire neocortex by E14.5 during development, while the cells in the choroid plexus in the lateral ventricle start to express GAD65 on E11-E12, the time when the choroid plexus starts to develop in the developing brain. These results totally suggest that the meninges and the choroid plexus can work as non-neuronal sources for ambient GABA which can modulate the properties of neural progenitors during neocortical development.
Tochitani, Shiro; Kondo, Shigeaki
2013-01-01
Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain development. γ-aminobutyric acid (GABA) is a neurotransmitter which appears first during development and works as a diffusible factor to regulate the properties of neural progenitors. In this study, we examined whether GABA can be released from the meninges and the choroid plexus in the developing mouse brain. Immunohistochemical analyses showed that glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67), both of which are GABA-synthesizing enzymes, are expressed in the meninges. The epithelial cells in the choroid plexus express GAD65. GABA immunoreactivity could be observed beneath the basal membrane of the meninge and in the epithelial cells of the choroid plexus. Expression analyses on Bestrophin-1, which is known as a GABA-permeable channel in differentiated glial cells, suggested that the cells in the meninges and the epithelial cells in the choroid plexus have the channels able to permeate non-synaptic GABA into the extracellular space. Further studies showed that GAD65/67-expressing meningeal cells appear in a manner with rostral to caudal and lateral to dorsal gradient to cover the entire neocortex by E14.5 during development, while the cells in the choroid plexus in the lateral ventricle start to express GAD65 on E11–E12, the time when the choroid plexus starts to develop in the developing brain. These results totally suggest that the meninges and the choroid plexus can work as non-neuronal sources for ambient GABA which can modulate the properties of neural progenitors during neocortical development. PMID:23437266
Yang, Bin; Liang, Ge; Khojasteh, Soorena; Wu, Zhen; Yang, Wenqiong; Joseph, Donald; Wei, Huafeng
2014-01-01
While previous studies have demonstrated neuronal apoptosis and associated cognitive impairment after isoflurane or propofol exposure in neonatal rodents, the effects of these two anesthetics have not been directly compared. Here, we compare and contrast the effectiveness of isoflurane and propofol to cause neurodegeneration in the developing brain and associated cognitive dysfunction. Seven-day-old mice were used. Mice in the isoflurane treatment group received 6 h of 1.5% isoflurane, while mice in propofol treatment group received one peritoneal injection (150 mg/kg), which produced persistent anesthesia with loss of righting for at least 6 h. Mice in control groups received carrying gas or a peritoneal injection of vehicle (intralipid). At 6 h after anesthetic treatment, a subset of each group was sacrificed and examined for evidence of neurodegeneration, using plasma levels of S100β, and apoptosis using caspase-3 immunohistochemistry in the cerebral cortex and hippocampus and Western blot assays of the cortex. In addition, biomarkers for inflammation (interleukin-1, interleukin-6, and tumor necrosis factor alpha) were examined with Western blot analyses of the cortex. In another subset of mice, learning and memory were assessed 32 days after the anesthetic exposures using the Morris water maze. Isoflurane significantly increased plasma S100β levels compared to controls and propofol. Both isoflurane and propofol significantly increased caspase-3 levels in the cortex and hippocampus, though isoflurane was significantly more potent than propofol. However, there were no significant differences in the inflammatory biomarkers in the cortex or in subsequent learning and memory between the experimental groups. Both isoflurane and propofol caused significant apoptosis in the mouse developing brain, with isoflurane being more potent. Isoflurane significantly increased levels of the plasma neurodegenerative biomarker, S100β. However, these neurodegenerative effects of isoflurane and propofol in the developing brain were not associated with effects on inflammation or with cognitive dysfunction in later life.
Cui, Weina; Zhu, Xiao-Hong; Vollmers, Manda L; Colonna, Emily T; Adriany, Gregor; Tramm, Brandon; Dubinsky, Janet M; Öz, Gülin
2013-01-01
To assess cerebral energetics in transgenic mouse models of neurologic disease, a robust, efficient, and practical method for quantification of cerebral oxygen consumption is needed. 17O magnetic resonance spectroscopy (MRS) has been validated to measure cerebral metabolic rate of oxygen (CMRO2) in the rat brain; however, mice present unique challenges because of their small size. We show that CMRO2 measurements with 17O MRS in the mouse brain are highly reproducible using 16.4 Tesla and a newly designed oxygen delivery system. The method can be utilized to measure mitochondrial function in mice quickly and repeatedly, without oral intubation, and has numerous potential applications to study cerebral energetics. PMID:24064490
Integration of Brain and Skull in Prenatal Mouse Models of Apert and Crouzon Syndromes
Motch Perrine, Susan M.; Stecko, Tim; Neuberger, Thomas; Jabs, Ethylin W.; Ryan, Timothy M.; Richtsmeier, Joan T.
2017-01-01
The brain and skull represent a complex arrangement of integrated anatomical structures composed of various cell and tissue types that maintain structural and functional association throughout development. Morphological integration, a concept developed in vertebrate morphology and evolutionary biology, describes the coordinated variation of functionally and developmentally related traits of organisms. Syndromic craniosynostosis is characterized by distinctive changes in skull morphology and perceptible, though less well studied, changes in brain structure and morphology. Using mouse models for craniosynostosis conditions, our group has precisely defined how unique craniosynostosis causing mutations in fibroblast growth factor receptors affect brain and skull morphology and dysgenesis involving coordinated tissue-specific effects of these mutations. Here we examine integration of brain and skull in two mouse models for craniosynostosis: one carrying the FGFR2c C342Y mutation associated with Pfeiffer and Crouzon syndromes and a mouse model carrying the FGFR2 S252W mutation, one of two mutations responsible for two-thirds of Apert syndrome cases. Using linear distances estimated from three-dimensional coordinates of landmarks acquired from dual modality imaging of skull (high resolution micro-computed tomography and magnetic resonance microscopy) of mice at embryonic day 17.5, we confirm variation in brain and skull morphology in Fgfr2cC342Y/+ mice, Fgfr2+/S252W mice, and their unaffected littermates. Mutation-specific variation in neural and cranial tissue notwithstanding, patterns of integration of brain and skull differed only subtly between mice carrying either the FGFR2c C342Y or the FGFR2 S252W mutation and their unaffected littermates. However, statistically significant and substantial differences in morphological integration of brain and skull were revealed between the two mutant mouse models, each maintained on a different strain. Relative to the effects of disease-associated mutations, our results reveal a stronger influence of the background genome on patterns of brain-skull integration and suggest robust genetic, developmental, and evolutionary relationships between neural and skeletal tissues of the head. PMID:28790902
Wabuyele, Simuli L; Wald, David; Xu, Yan
2014-06-01
(-)-Securinine (SE) is a major alkaloid found in plant Securinega suffruticosa, which has a wide range of pharmacological activities including anticancer, anti-parasitic and central nervous system stimulating effects, etc. To aid the pharmacological study of SE, we developed an LC-MS/MS method for quantitative determination of SE in mouse plasma. In this method, plasma samples were first prepared with salting-out assisted liquid-liquid extraction using cold acetonitrile (-20°C) and 2.00 M ammonium acetate. Separation of SE and the internal standard (IS) from sample matrix was achieved on a Gemini Nx C18 column using 40% acetonitrile and 60% 10.0mM ammonium acetate at a flow rate of 0.200 mL min(-1). Quantification of SE was accomplished with positive electrospray ionization tandem mass spectrometry using mass transitions m/z 218.1→84.1 for SE, and m/z 204.1→70.2 for the IS. This method has a lower limit of quantitation (LLOQ) of 0.600 ng mL(-1) and a linear calibration range up to 600 ng mL(-1) in mouse plasma. The intra- and inter-run accuracy (%RE) and precision (%CV) were ≤ ± 6% and 6%, respectively. The IS normalized matrix factors from six lots of plasma matrices ranged 0.92-1.07, and the recoveries of plasma SE were 99-109%. The validated method has been applied to the measurement of SE in plasma samples of a mouse study. Copyright © 2014 Elsevier B.V. All rights reserved.
Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baba, Justin S; Endres, Christopher; Foss, Catherine
2013-01-01
We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained frommore » CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.« less
Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.
2013-06-01
We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained frommore » CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.« less
Fuchino, Kouki; Mitsuoka, Yasunori; Masui, Moriyasu; Kurose, Noriyuki; Yoshida, Shuhei; Komano, Kazuo; Yamamoto, Takahiko; Ogawa, Masayoshi; Unemura, Chie; Hosono, Motoko; Ito, Hisanori; Sakaguchi, Gaku; Ando, Shigeru; Ohnishi, Shuichi; Kido, Yasuto; Fukushima, Tamio; Miyajima, Hirofumi; Hiroyama, Shuichi; Koyabu, Kiyotaka; Dhuyvetter, Deborah; Borghys, Herman; Gijsen, Harrie J M; Yamano, Yoshinori; Iso, Yasuyoshi; Kusakabe, Ken-Ichi
2018-05-23
Accumulation of Aβ peptides is a hallmark of Alzheimer's disease (AD) and is considered a causal factor in the pathogenesis of AD. β-Secretase (BACE1) is a key enzyme responsible for producing Aβ peptides, and thus agents that inhibit BACE1 should be beneficial for disease-modifying treatment of AD. Here we describe the discovery and optimization of novel oxazine-based BACE1 inhibitors by lowering amidine basicity with the incorporation of a double bond to improve brain penetration. Starting from a 1,3-dihydrooxazine lead 6 identified by a hit-to-lead SAR following HTS, we adopted a p K a lowering strategy to reduce the P-gp efflux and the high hERG potential leading to the discovery of 15 that produced significant Aβ reduction with long duration in pharmacodynamic models and exhibited wide safety margins in cardiovascular safety models. This compound improved the brain-to-plasma ratio relative to 6 by reducing P-gp recognition, which was demonstrated by a P-gp knockout mouse model.
Song, Yingshi; Yan, Huiyu; Xu, Jingbo; Ma, Hongxi
2017-09-01
A rapid and sensitive liquid chromatography tandem mass spectrometry detection using selected reaction monitoring in positive ionization mode was developed and validated for the quantification of nodakenin in rat plasma and brain. Pareruptorin A was used as internal standard. A single step liquid-liquid extraction was used for plasma and brain sample preparation. The method was validated with respect to selectivity, precision, accuracy, linearity, limit of quantification, recovery, matrix effect and stability. Lower limit of quantification of nodakenin was 2.0 ng/mL in plasma and brain tissue homogenates. Linear calibration curves were obtained over concentration ranges of 2.0-1000 ng/mL in plasma and brain tissue homogenates for nodakenin. Intra-day and inter-day precisions (relative standard deviation, RSD) were <15% in both biological media. This assay was successfully applied to plasma and brain pharmacokinetic studies of nodakenin in rats after intravenous administration. Copyright © 2017 John Wiley & Sons, Ltd.
Connors, Susan L; Matteson, Karla J; Sega, Gary A; Lozzio, Carmen B; Carroll, Roger C; Zimmerman, Andrew W
2006-09-01
Serotonin is necessary for normal fetal brain development. Administration of serotonin inhibitors to pregnant rats results in offspring with abnormal behaviors, brain morphology, and serotonin receptor numbers. Low maternal plasma serotonin may contribute to abnormal brain development in autism. In this study, plasma serotonin levels in autism mothers and control mothers of typically developing children were compared, and plasma serotonin levels in children with autism (n = 17) and their family members were measured. Plasma serotonin levels in autism mothers were significantly lower than in mothers of normal children (P = 0.002). Plasma serotonin levels correlated between autism mothers and their children, but differed between autistic children and their fathers (P = 0.028) and siblings (P = 0.063). Low maternal plasma serotonin may be a risk factor for autism through effects on fetal brain development.
Singh, H; Li, M; Hall, L; Chen, S; Sukur, S; Lu, R; Caputo, A; Meredith, A L; Stefani, E; Toro, L
2016-03-11
Large conductance voltage and calcium-activated potassium (MaxiK) channels are activated by membrane depolarization and elevated cytosolic Ca(2+). In the brain, they localize to neurons and astrocytes, where they play roles such as resetting the membrane potential during an action potential, neurotransmitter release, and neurovascular coupling. MaxiK channels are known to associate with several modulatory proteins and accessory subunits, and each of these interactions can have distinct physiological consequences. To uncover new players in MaxiK channel brain physiology, we applied a directed proteomic approach and obtained MaxiK channel pore-forming α subunit brain interactome using specific antibodies. Controls included immunoprecipitations with rabbit immunoglobulin G (IgG) and with anti-MaxiK antibodies in wild type and MaxiK channel knockout mice (Kcnma1(-/-)), respectively. We have found known and unreported interactive partners that localize to the plasma membrane, extracellular space, cytosol and intracellular organelles including mitochondria, nucleus, endoplasmic reticulum and Golgi apparatus. Localization of MaxiK channel to mitochondria was further confirmed using purified brain mitochondria colabeled with MitoTracker. Independent proof of MaxiK channel interaction with previously unidentified partners is given for GABA transporter 3 (GAT3) and heat shock protein 60 (HSP60). In human embryonic kidney 293 cells containing SV40 T-antigen (HEK293T) cells, both GAT3 and HSP60 coimmunoprecipitated and colocalized with MaxiK channel; colabeling was observed mainly at the cell periphery with GAT3 and intracellularly with HSP60 with protein proximity indices of ∼ 0.6 and ∼ 0.4, respectively. In rat primary hippocampal neurons, colocalization index was identical for GAT3 (∼ 0.6) and slightly higher for HSP60 (∼ 0.5) association with MaxiK channel. The results of this study provide a complete interactome of MaxiK channel the mouse brain, further establish the localization of MaxiK channel in the mouse brain mitochondria and demonstrate the interaction of MaxiK channel with GAT3 and HSP60 in neurons. The interaction of MaxiK channel with GAT3 opens the possibility of a role of MaxiK channel in GABA homeostasis and signaling. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
NKTR-102 Efficacy versus irinotecan in a mouse model of brain metastases of breast cancer.
Adkins, Chris E; Nounou, Mohamed I; Hye, Tanvirul; Mohammad, Afroz S; Terrell-Hall, Tori; Mohan, Neel K; Eldon, Michael A; Hoch, Ute; Lockman, Paul R
2015-10-13
Brain metastases are an increasing problem in women with invasive breast cancer. Strategies designed to treat brain metastases of breast cancer, particularly chemotherapeutics such as irinotecan, demonstrate limited efficacy. Conventional irinotecan distributes poorly to brain metastases; therefore, NKTR-102, a PEGylated irinotecan conjugate should enhance irinotecan and its active metabolite SN38 exposure in brain metastases leading to brain tumor cytotoxicity. Female nude mice were intracranially or intracardially implanted with human brain seeking breast cancer cells (MDA-MB-231Br) and dosed with irinotecan or NKTR-102 to determine plasma and tumor pharmacokinetics of irinotecan and SN38. Tumor burden and survival were evaluated in mice treated with vehicle, irinotecan (50 mg/kg), or NKTR-102 low and high doses (10 mg/kg, 50 mg/kg respectively). NKTR-102 penetrates the blood-tumor barrier and distributes to brain metastases. NKTR-102 increased and prolonged SN38 exposure (>20 ng/g for 168 h) versus conventional irinotecan (>1 ng/g for 4 h). Treatment with NKTR-102 extended survival time (from 35 days to 74 days) and increased overall survival for NKTR-102 low dose (30 % mice) and NKTR-102 high dose (50 % mice). Tumor burden decreased (37 % with 10 mg/kg NKTR-102 and 96 % with 50 mg/kg) and lesion sizes decreased (33 % with 10 mg/kg NKTR-102 and 83 % with 50 mg/kg NKTR-102) compared to conventional irinotecan treated animals. Elevated and prolonged tumor SN38 exposure after NKTR-102 administration appears responsible for increased survival in this model of breast cancer brain metastasis. Further, SN38 concentrations observed in this study are clinically achieved with 145 mg/m(2) NKTR-102, such as those used in the BEACON trial, underlining translational relevance of these results.
Hawkes, Cheryl A; Gatherer, Maureen; Sharp, Matthew M; Dorr, Adrienne; Yuen, Ho Ming; Kalaria, Rajesh; Weller, Roy O; Carare, Roxana O
2013-04-01
Development of cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD) is associated with failure of elimination of amyloid-β (Aβ) from the brain along perivascular basement membranes that form the pathways for drainage of interstitial fluid and solutes from the brain. In transgenic APP mouse models of AD, the severity of cerebral amyloid angiopathy is greater in the cerebral cortex and hippocampus, intermediate in the thalamus, and least in the striatum. In this study we test the hypothesis that age-related regional variation in (1) vascular basement membranes and (2) perivascular drainage of Aβ contribute to the different regional patterns of CAA in the mouse brain. Quantitative electron microscopy of the brains of 2-, 7-, and 23-month-old mice revealed significant age-related thickening of capillary basement membranes in cerebral cortex, hippocampus, and thalamus, but not in the striatum. Results from Western blotting and immunocytochemistry experiments showed a significant reduction in collagen IV in the cortex and hippocampus with age and a reduction in laminin and nidogen 2 in the cortex and striatum. Injection of soluble Aβ into the hippocampus or thalamus showed an age-related reduction in perivascular drainage from the hippocampus but not from the thalamus. The results of the study suggest that changes in vascular basement membranes and perivascular drainage with age differ between brain regions, in the mouse, in a manner that may help to explain the differential deposition of Aβ in the brain in AD and may facilitate development of improved therapeutic strategies to remove Aβ from the brain in AD. © 2013 The Authors Aging Cell © 2013 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.
Computational Modeling of Micrometastatic Breast Cancer Radiation Dose Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Daniel L.; Debeb, Bisrat G.; Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas
Purpose: Prophylactic cranial irradiation (PCI) involves giving radiation to the entire brain with the goals of reducing the incidence of brain metastasis and improving overall survival. Experimentally, we have demonstrated that PCI prevents brain metastases in a breast cancer mouse model. We developed a computational model to expand on and aid in the interpretation of our experimental results. Methods and Materials: MATLAB was used to develop a computational model of brain metastasis and PCI in mice. Model input parameters were optimized such that the model output would match the experimental number of metastases per mouse from the unirradiated group. Anmore » independent in vivo–limiting dilution experiment was performed to validate the model. The effect of whole brain irradiation at different measurement points after tumor cells were injected was evaluated in terms of the incidence, number of metastases, and tumor burden and was then compared with the corresponding experimental data. Results: In the optimized model, the correlation between the number of metastases per mouse and the experimental fits was >95. Our attempt to validate the model with a limiting dilution assay produced 99.9% correlation with respect to the incidence of metastases. The model accurately predicted the effect of whole-brain irradiation given 3 weeks after cell injection but substantially underestimated its effect when delivered 5 days after cell injection. The model further demonstrated that delaying whole-brain irradiation until the development of gross disease introduces a dose threshold that must be reached before a reduction in incidence can be realized. Conclusions: Our computational model of mouse brain metastasis and PCI correlated strongly with our experiments with unirradiated mice. The results further suggest that early treatment of subclinical disease is more effective than irradiating established disease.« less
NASA Astrophysics Data System (ADS)
Silvestri, Ludovico; Rudinskiy, Nikita; Paciscopi, Marco; Müllenbroich, Marie Caroline; Costantini, Irene; Sacconi, Leonardo; Frasconi, Paolo; Hyman, Bradley T.; Pavone, Francesco S.
2016-03-01
Mapping neuronal activity patterns across the whole brain with cellular resolution is a challenging task for state-of-the-art imaging methods. Indeed, despite a number of technological efforts, quantitative cellular-resolution activation maps of the whole brain have not yet been obtained. Many techniques are limited by coarse resolution or by a narrow field of view. High-throughput imaging methods, such as light sheet microscopy, can be used to image large specimens with high resolution and in reasonable times. However, the bottleneck is then moved from image acquisition to image analysis, since many TeraBytes of data have to be processed to extract meaningful information. Here, we present a full experimental pipeline to quantify neuronal activity in the entire mouse brain with cellular resolution, based on a combination of genetics, optics and computer science. We used a transgenic mouse strain (Arc-dVenus mouse) in which neurons which have been active in the last hours before brain fixation are fluorescently labelled. Samples were cleared with CLARITY and imaged with a custom-made confocal light sheet microscope. To perform an automatic localization of fluorescent cells on the large images produced, we used a novel computational approach called semantic deconvolution. The combined approach presented here allows quantifying the amount of Arc-expressing neurons throughout the whole mouse brain. When applied to cohorts of mice subject to different stimuli and/or environmental conditions, this method helps finding correlations in activity between different neuronal populations, opening the possibility to infer a sort of brain-wide 'functional connectivity' with cellular resolution.
Zucker, Birgit; Ludin, Dagmar E; Gerds, Thomas A; Lücking, Carl H; Landwehrmeyer, G Bernhard; Feuerstein, Thomas J
2004-08-01
Gabapentin (GBP), an anti-convulsant widely used in the treatment of neuropathic pain syndromes, has been suggested to have neuroprotective properties. There is evidence, however, that the neuroprotective properties attributed to GBP are rather associated with a derivative of GBP, gabapentin-lactam (GBP-L), which opens mitochondrial ATP-dependent K+ channels, in contrast to GBP. We explored whether GBP and GBP-L may attenuate the course of a monogenetic autosomal neurodegenerative disorder, Huntington's disease (HD), using a transgenic mouse model. R6/2 mice treated with GBP-L performed walking on a narrow beam better than mice receiving no treatment, vehicle or GBP, suggesting a beneficial effect of GBP-L on motor function. In addition, a marked reduction of neuronal nuclear and cytoplasmic inclusions was observed in brains of mice treated with GBP-L. The pharmacokinetics of GBP-L yielded a mean plasma concentration near the EC50 of GBP-L to open mitochondrial ATP-dependent K+ channels. These findings support the role of GBP-L as a novel neuroprotective substance in vivo.
Valine entry into rat brain after diet-induced changes in plasma amino acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tews, J.K.; Greenwood, J.; Pratt, O.E.
1987-01-01
Passage of amino acids across the blood-brain barrier is assumed to be modified by amino acid composition of the blood. To gain a better understanding of the effects of protein intake on brain amino acid uptake, the authors examined associations among diet, plasma amino acid patterns, and the rate of entry of valine into the brain. Rats were fed diets containing 6, 18, or 50% casein before receiving one meal of a diet containing 0, 6, 18, or 50% casein. After 4-7 h, they were anesthetized and infused intravenously with (/sup 14/C)valine for 5 min before plasma and brain samplesmore » were taken for determination of radioactivity and content of individual amino acids. As protein content of the meal was increased from 0 to 50% casein, plasma and brain concentrations of valine and most other large neutral amino acid (LNAA) increased severalfold; also the ratio of (/sup 14/C)valine in brain to that in plasma decreased by >50%, and the rate of valine entry into the brain increased 3.5-fold. The increase in valine flux slowed as plasma levels of LNAA, competitors for valine transport, increased. The results were far more dependent on protein content of the final meal than on that of the adaptation diet; thus changes in protein intake, as reflected in altered plasma amino acid patterns, markedly altered valine entry into the brain.« less
Chang, Ronald; Folkerson, Lindley E; Sloan, Duncan; Tomasek, Jeffrey S; Kitagawa, Ryan S; Choi, H Alex; Wade, Charles E; Holcomb, John B
2017-02-01
Plasma-based resuscitation improves outcomes in trauma patients with hemorrhagic shock, while large-animal and limited clinical data suggest that it also improves outcomes and is neuroprotective in the setting of combined hemorrhage and traumatic brain injury. However, the choice of initial resuscitation fluid, including the role of plasma, is unclear for patients after isolated traumatic brain injury. We reviewed adult trauma patients admitted from January 2011 to July 2015 with isolated traumatic brain injury. "Early plasma" was defined as transfusion of plasma within 4 hours. Purposeful multiple logistic regression modeling was performed to analyze the relationship of early plasma and inhospital survival. After testing for interaction, subgroup analysis was performed based on the pattern of brain injury on initial head computed tomography: epidural hematoma, intraparenchymal contusion, subarachnoid hemorrhage, subdural hematoma, or multifocal intracranial hemorrhage. Of the 633 isolated traumatic brain injury patients included, 178 (28%) who received early plasma were injured more severely coagulopathic, hypoperfused, and hypotensive on admission. Survival was similar in the early plasma versus no early plasma groups (78% vs 84%, P = .08). After adjustment for covariates, early plasma was not associated with improved survival (odds ratio 1.18, 95% confidence interval 0.71-1.96). On subgroup analysis, multifocal intracranial hemorrhage was the largest subgroup with 242 patients. Of these, 61 (25%) received plasma within 4 hours. Within-group logistic regression analysis with adjustment for covariates found that early plasma was associated with improved survival (odds ratio 3.34, 95% confidence interval 1.20-9.35). Although early plasma transfusion was not associated with improved in-hospital survival for all isolated traumatic brain injury patients, early plasma was associated with increased in-hospital survival in those with multifocal intracranial hemorrhage. Copyright © 2016 Elsevier Inc. All rights reserved.
Colovic, Milena; Caccia, Silvio
2003-07-05
An isocratic reversed-phase high-performance liquid chromatographic procedure was developed for the determination of minocycline in rat plasma and brain and applied to brain-to-blood (plasma) distribution studies. The procedure is based on isolation of the compound and the internal standard (either demeclocycline or tetracycline may be used) from plasma and brain constituents using the Oasis HLB cartridge, with satisfactory recovery and specificity, and separation on a Symmetry Shield RP8 (15 cm x 4.6 mm, 3.5 microm) column coupled with a UV detector set at 350 nm. The assay was linear over a wide range, with a lower limit of quantification of 50 ng ml(-1) or g(-1), using 0.2 ml of plasma and about 200 mg of brain tissue. Precision and accuracy were acceptable. In the rat minocycline crossed the blood-brain barrier slowly, achieving mean brain concentrations between 30 and 40% of the equivalent systemic exposure, regardless of the dose and route of administration.
Suzuki, Toyofumi; Fukami, Toshiro; Tomono, Kazuo
2015-03-01
The purpose of this study was to characterize the brain-to-blood efflux transport of amantadine across the blood-brain barrier (BBB). The apparent in vivo efflux rate constant for [(3) H]amantadine from the rat brain (keff ) was found to be 1.53 × 10(-2) min(-1) after intracerebral microinjection using the brain efflux index method. The efflux of [(3) H]amantadine was inhibited by 1-methyl-4-phenylpyridinium (MPP(+) ), a cationic neurotoxin, suggesting that amantadine transport from the brain to the blood across the BBB potentially involves the rat plasma membrane monoamine transporter (rPMAT). On the other hand, other selected substrates for organic cation transporters (OCTs) and organic anion transporters (OATs), as well as inhibitors of P-glycoprotein (P-gp), did not affect the efflux transport of [(3) H]amantadine. In addition, in vitro studies using an immortalized rat brain endothelial cell line (GPNT) showed that the uptake and retention of [(3) H]amantadine by the cells was not changed by the addition of cyclosporin, which is an inhibitor of P-gp. However, cyclosporin affected the uptake and retention of rhodamine123. Finally, the initial brain uptake of [(3) H]amantadine was determined using an in situ mouse brain perfusion technique. Notably, the brain uptake clearance for [(3) H]amantadine was significantly decreased with the co-perfusion of quinidine or verapamil, which are cationic P-gp inhibitors, while MPP(+) did not have a significant effect. It is thus concluded that while P-gp is not involved, it is possible that rPMAT and the cationic drug-sensitive transport system participate in the brain-to-blood efflux and the blood-to-brain influx of amantadine across the BBB, respectively. Copyright © 2014 John Wiley & Sons, Ltd.
2012-09-01
patched-1-deficient mouse medulloblastoma . Cancer Res. 2009;69:4682-4690. 14. Mao XG, Zhang X, Xue XY, et al. Brain Tumor Stem-Like Cells Identified by...propagating cells in a mouse model of medulloblastoma . Cancer Cell. 2009;15:135-147. 16. Yagi H, Yanagisawa M, Suzuki Y, et al. HNK-1 epitope-carrying
Ashbrook, David G; Williams, Robert W; Lu, Lu; Stein, Jason L; Hibar, Derrek P; Nichols, Thomas E; Medland, Sarah E; Thompson, Paul M; Hager, Reinmar
2014-10-03
Variation in hippocampal volume has been linked to significant differences in memory, behavior, and cognition among individuals. To identify genetic variants underlying such differences and associated disease phenotypes, multinational consortia such as ENIGMA have used large magnetic resonance imaging (MRI) data sets in human GWAS studies. In addition, mapping studies in mouse model systems have identified genetic variants for brain structure variation with great power. A key challenge is to understand how genetically based differences in brain structure lead to the propensity to develop specific neurological disorders. We combine the largest human GWAS of brain structure with the largest mammalian model system, the BXD recombinant inbred mouse population, to identify novel genetic targets influencing brain structure variation that are linked to increased risk for neurological disorders. We first use a novel cross-species, comparative analysis using mouse and human genetic data to identify a candidate gene, MGST3, associated with adult hippocampus size in both systems. We then establish the coregulation and function of this gene in a comprehensive systems-analysis. We find that MGST3 is associated with hippocampus size and is linked to a group of neurodegenerative disorders, such as Alzheimer's.
Luna, Rayana Leal; Kay, Vanessa R; Rätsep, Matthew T; Khalaj, Kasra; Bidarimath, Mallikarjun; Peterson, Nichole; Carmeliet, Peter; Jin, Albert; Croy, B Anne
2016-02-01
Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf (-/-) mice. Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf (-/-) brains. At E14.5, Pgf (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. Since Pgf (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF deficiency on cerebrovascular development cannot be separated. However, as PGF was strongly expressed in the developing brain at all timepoints, we suggest that local PGF has a more important role than distant maternal or placental sources. Full PGF loss is not expected in PE pregnancies, predicting that the effects of PGF deficiency identified in this model will be more severe than any effects in PE-offspring. These studies provoke the question of whether PGF expression is decreased and cerebral vascular maldevelopment occurs in fetuses who experience a preeclamptic gestation. These individuals have already been reported to have elevated risk for stroke and cognitive impairments. N/A. This work was supported by awards from the Natural Sciences and Engineering Research Council, the Canada Research Chairs Program and the Canadian Foundation for Innovation to B.A.C. and by training awards from the Universidade Federal de Pernambuco and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil to R.L.L.; Queen's University to V.R.K. and the Canadian Institutes of Health Research to M.T.R. The work of P.C. is supported by the Belgian Science Policy BELSPO-IUAP7/03, Structural funding by the Flemish Government-Methusalem funding, and the Flemish Science Fund-FWO grants. There were no competing interests. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hamilton, Amanda M; Foster, Paula J
2017-02-01
Triple negative breast cancer (TNBC), when associated with poor outcome, is aggressive in nature with a high incidence of brain metastasis and the shortest median overall patient survival after brain metastasis development compared to all other breast cancer subtypes. As therapies that control primary cancer and extracranial metastatic sites improve, the incidence of brain metastases is increasing and the management of patients with breast cancer brain metastases continues to be a significant clinical challenge. Mouse models have been developed to permit in depth evaluation of breast cancer metastasis to the brain. In this study, we compare the efficiency and metastatic potential of two experimental mouse models of TNBC. Longitudinal MRI analysis and end point histology were used to quantify initial cell arrest as well as the number and volume of metastases that developed in mouse brain over time. We showed significant differences in MRI appearance, tumor progression and model efficiency between the syngeneic 4T1-BR5 model and the xenogeneic 231-BR model. Since TNBC does not respond to many standard breast cancer treatments and TNBC brain metastases lack effective targeted therapies, these preclinical TNBC models represent invaluable tools for the assessment of novel systemic therapeutic approaches. Further pursuits of therapeutics designed to bypass the blood tumor barrier and permit access to the brain parenchyma and metastatic cells within the brain will be paramount in the fight to control and treat lethal metastatic cancer.
Expression of the ADHD candidate gene Diras2 in the brain.
Grünewald, Lena; Becker, Nils; Camphausen, Annika; O'Leary, Aet; Lesch, Klaus-Peter; Freudenberg, Florian; Reif, Andreas
2018-06-01
The distinct subgroup of the Ras family member 2 (DIRAS2) gene has been found to be associated with attention-deficit/hyperactivity disorder (ADHD) in one of our previous studies. This gene is coding for a small Ras GTPase with unknown function. DIRAS2 is highly expressed in the brain. However, the exact neural expression pattern of this gene was unknown so far. Therefore, we investigated the expressional profile of DIRAS2 in the human and murine brain. In the present study, qPCR analyses in the human and in the developing mouse brain, immunocytological double staining on murine hippocampal primary cells and RNA in situ hybridization (ISH) on brain sections of C57BL/6J wild-type mice, have been used to reveal the expression pattern of DIRAS2 in the brain. We could show that DIRAS2 expression in the human brain is the highest in the hippocampus and the cerebral cortex, which is in line with the ISH results in the mouse brain. During mouse brain development, Diras2 levels strongly increase from prenatal to late postnatal stages. Co-expression studies indicate Diras2 expression in glutamatergic and catecholaminergic neurons. Our findings support the idea of DIRAS2 as a candidate gene for ADHD as the timeline of its expression as well as the brain regions and cell types that show Diras2 expression correspond to those assumed to underlie the pathomechanisms of the disease.
ANTIRABIES ANTIBODY RESPONSE IN MAN TO VACCINE MADE FROM INFECTED SUCKLING-MOUSE BRAINS.
FUENZALIDA, E; PALACIOS, R; BORGONO, J M
1964-01-01
Antirabies vaccines produced from infected brains of adult mammals have always had the potentiality of causing post-vaccinal paralysis or allergic encephalitis in man. Attempts in recent years either to remove the paralytic factor from brain-tissue vaccines or to use as the virus source infected tissue other than nervous tissue (e.g., chick embryos) have usually resulted in a substantial reduction of the specific antirabies potency.The authors' laboratory had previously developed a vaccine made from infected suckling-mouse brains in which the virus was inactivated by ultraviolet irradiation. This vaccine was found highly potent in animal tests and low in organ-specific antigens. Others have found the brains of newborn mammals to be free of the allergic encephalitic factor. The studies reported in this paper show that the antirabies antibody responses to a 14-dose course of this suckling-mouse-brain vaccine in children are at a high level even when the vaccine is used at a 1% tissue concentration. There was no evidence of deleterious reactions to this treatment in 31 children.It is concluded that these results justify a long-term trial of this vaccine for antirabies prophylaxis in man.
Antirabies antibody response in man to vaccine made from infected suckling-mouse brains
Fuenzalida, E.; Palacios, R.; Borgoño, J. M.
1964-01-01
Antirabies vaccines produced from infected brains of adult mammals have always had the potentiality of causing post-vaccinal paralysis or allergic encephalitis in man. Attempts in recent years either to remove the paralytic factor from brain-tissue vaccines or to use as the virus source infected tissue other than nervous tissue (e.g., chick embryos) have usually resulted in a substantial reduction of the specific antirabies potency. The authors' laboratory had previously developed a vaccine made from infected suckling-mouse brains in which the virus was inactivated by ultraviolet irradiation. This vaccine was found highly potent in animal tests and low in organ-specific antigens. Others have found the brains of newborn mammals to be free of the allergic encephalitic factor. The studies reported in this paper show that the antirabies antibody responses to a 14-dose course of this suckling-mouse-brain vaccine in children are at a high level even when the vaccine is used at a 1% tissue concentration. There was no evidence of deleterious reactions to this treatment in 31 children. It is concluded that these results justify a long-term trial of this vaccine for antirabies prophylaxis in man. PMID:14163964
Wippel, Carolin; Maurer, Jana; Förtsch, Christina; Hupp, Sabrina; Bohl, Alexandra; Ma, Jiangtao; Mitchell, Timothy J.; Bunkowski, Stephanie; Brück, Wolfgang; Nau, Roland; Iliev, Asparouh I.
2013-01-01
Streptococcus pneumoniae (pneumococcal) meningitis is a common bacterial infection of the brain. The cholesterol-dependent cytolysin pneumolysin represents a key factor, determining the neuropathogenic potential of the pneumococci. Here, we demonstrate selective synaptic loss within the superficial layers of the frontal neocortex of post-mortem brain samples from individuals with pneumococcal meningitis. A similar effect was observed in mice with pneumococcal meningitis only when the bacteria expressed the pore-forming cholesterol-dependent cytolysin pneumolysin. Exposure of acute mouse brain slices to only pore-competent pneumolysin at disease-relevant, non-lytic concentrations caused permanent dendritic swelling, dendritic spine elimination and synaptic loss. The NMDA glutamate receptor antagonists MK801 and D-AP5 reduced this pathology. Pneumolysin increased glutamate levels within the mouse brain slices. In mouse astrocytes, pneumolysin initiated the release of glutamate in a calcium-dependent manner. We propose that pneumolysin plays a significant synapto- and dendritotoxic role in pneumococcal meningitis by initiating glutamate release from astrocytes, leading to subsequent glutamate-dependent synaptic damage. We outline for the first time the occurrence of synaptic pathology in pneumococcal meningitis and demonstrate that a bacterial cytolysin can dysregulate the control of glutamate in the brain, inducing excitotoxic damage. PMID:23785278
Orellana-Paucar, Adriana Monserrath; Afrikanova, Tatiana; Thomas, Joice; Aibuldinov, Yelaman K; Dehaen, Wim; de Witte, Peter A M; Esguerra, Camila V
2013-01-01
In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, α-, β-turmerone and α-atlantone) in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ). In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic effects of ar-turmerone were evaluated using the beam walking test to assess mouse motor function and balance. In addition, determination of the concentration-time profile of ar-turmerone was carried out for a more extended evaluation of its bioavailability in the mouse brain. Ar-turmerone displayed anticonvulsant properties in both acute seizure models in mice and modulated the expression patterns of two seizure-related genes (c-fos and brain-derived neurotrophic factor [bdnf]) in zebrafish. Importantly, no effects on motor function and balance were observed in mice after treatment with ar-turmerone even after administering a dose 500-fold higher than the effective dose in the 6-Hz model. In addition, quantification of its concentration in mouse brains revealed rapid absorption after i.p. administration, capacity to cross the BBB and long-term brain residence. Hence, our results provide additional information on the anticonvulsant properties of ar-turmerone and support further evaluation towards elucidating its mechanism of action, bioavailability, toxicity and potential clinical application.
Orellana-Paucar, Adriana Monserrath; Afrikanova, Tatiana; Thomas, Joice; Aibuldinov, Yelaman K.; Dehaen, Wim; de Witte, Peter A. M.; Esguerra, Camila V.
2013-01-01
In a previous study, we uncovered the anticonvulsant properties of turmeric oil and its sesquiterpenoids (ar-turmerone, α-, β-turmerone and α-atlantone) in both zebrafish and mouse models of chemically-induced seizures using pentylenetetrazole (PTZ). In this follow-up study, we aimed at evaluating the anticonvulsant activity of ar-turmerone further. A more in-depth anticonvulsant evaluation of ar-turmerone was therefore carried out in the i.v. PTZ and 6-Hz mouse models. The potential toxic effects of ar-turmerone were evaluated using the beam walking test to assess mouse motor function and balance. In addition, determination of the concentration-time profile of ar-turmerone was carried out for a more extended evaluation of its bioavailability in the mouse brain. Ar-turmerone displayed anticonvulsant properties in both acute seizure models in mice and modulated the expression patterns of two seizure-related genes (c-fos and brain-derived neurotrophic factor [bdnf]) in zebrafish. Importantly, no effects on motor function and balance were observed in mice after treatment with ar-turmerone even after administering a dose 500-fold higher than the effective dose in the 6-Hz model. In addition, quantification of its concentration in mouse brains revealed rapid absorption after i.p. administration, capacity to cross the BBB and long-term brain residence. Hence, our results provide additional information on the anticonvulsant properties of ar-turmerone and support further evaluation towards elucidating its mechanism of action, bioavailability, toxicity and potential clinical application. PMID:24349101
Yadav, Satyndra Kumar; Prakash, Jay; Chouhan, Shikha; Singh, Surya Pratap
2013-06-01
Parkinson's disease (PD) is a neurodegenerative disease which causes rigidity, resting tremor and postural instability. Treatment for this disease is still under investigation. Mucuna pruriens (L.), is a traditional herbal medicine, used in India since 1500 B.C., as a neuroprotective agent. In this present study, we evaluated the therapeutic effects of aqueous extract of M. pruriens (Mp) seed in Parkinsonian mouse model developed by chronic exposure to paraquat (PQ). Results of our study revealed that the nigrostriatal portion of Parkinsonian mouse brain showed significantly increased levels of nitrite, malondialdehyde (MDA) and reduced levels of catalase compared to the control. In the Parkinsonian mice hanging time was decreased, whereas narrow beam walk time and foot printing errors were increased. Treatment with aqueous seed extract of Mp significantly increased the catalase activity and decreased the MDA and nitrite level, compared to untreated Parkinsonian mouse brain. Mp treatment also improved the behavioral abnormalities. It increased hanging time, whereas it decreased narrow beam walk time and foot printing error compared to untreated Parkinsonian mouse brain. Furthermore, we observed a significant reduction in tyrosine hydroxylase (TH) immunoreactivity in the substantia nigra (SN) and striatum region of the brain, after treatment with PQ which was considerably restored by the use of Mp seed extract. Our result suggested that Mp seed extract treatment significantly reduced the PQ induced neurotoxicity as evident by decrease in oxidative damage, physiological abnormalities and immunohistochemical changes in the Parkinsonian mouse. Copyright © 2013 Elsevier Ltd. All rights reserved.
An atlas of the prenatal mouse brain: gestational day 14.
Schambra, U B; Silver, J; Lauder, J M
1991-11-01
A prenatal atlas of the mouse brain is presently unavailable and is needed for studies of normal and abnormal development, using techniques including immunocytochemistry and in situ hybridization. This atlas will be especially useful for researchers studying transgenic and mutant mice. This collection of photomicrographs and corresponding drawings of Gestational Day (GD) 14 mouse brain sections is an excerpt from a larger atlas encompassing GD 12-18. In composing this atlas, available published studies on the developing rodent brain were consulted to aid in the detailed labeling of embryonic brain structures. C57Bl/6J mice were mated for 1 h, and the presence of a copulation plug was designated as GD 0. GD 14 embryos were perfused transcardially with 4% paraformaldehyde in 0.1 M phosphate buffer and embedded in paraffin. Serial sections (10 microns thickness) were cut through whole heads in sagittal and horizontal planes. They were stained with hematoxylin and eosin and photographed. Magnifications were 43X and 31X for the horizontal and sagittal sections, respectively. Photographs were traced and line drawings prepared using an Adobe Illustrator on a Macintosh computer.
Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi
2015-01-01
We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639
Lucchetti, Jacopo; Marino, Marianna; Papa, Simonetta; Tortarolo, Massimo; Guiso, Giovanna; Pozzi, Silvia; Bonetto, Valentina; Caccia, Silvio; Beghi, Ettore; Bendotti, Caterina; Gobbi, Marco
2013-01-01
Oxidative stress and mitochondrial impairment are the main pathogenic mechanisms of Amyotrophic Lateral Sclerosis (ALS), a severe neurodegenerative disease still lacking of effective therapy. Recently, the coenzyme-Q (CoQ) complex, a key component of mitochondrial function and redox-state modulator, has raised interest for ALS treatment. However, while the oxidized form ubiquinone10 was ineffective in ALS patients and modestly effective in mouse models of ALS, no evidence was reported on the effect of the reduced form ubiquinol10, which has better bioavailability and antioxidant properties. In this study we compared the effects of ubiquinone10 and a new stabilized formulation of ubiquinol10 on the disease course of SOD1G93A transgenic mice, an experimental model of fALS. Chronic treatments (800 mg/kg/day orally) started from the onset of disease until death, to mimic the clinical trials that only include patients with definite ALS symptoms. Although the plasma levels of CoQ10 were significantly increased by both treatments (from <0.20 to 3.0–3.4 µg/mL), no effect was found on the disease progression and survival of SOD1G93A mice. The levels of CoQ10 in the brain and spinal cord of ubiquinone10- or ubiquinol10-treated mice were only slightly higher (≤10%) than the endogenous levels in vehicle-treated mice, indicating poor CNS availability after oral dosing and possibly explaining the lack of pharmacological effects. To further examine this issue, we measured the oxidized and reduced forms of CoQ9/10 in the plasma, brain and spinal cord of symptomatic SOD1G93A mice, in comparison with age-matched SOD1WT. Levels of ubiquinol9/10, but not ubiquinone9/10, were significantly higher in the CNS, but not in plasma, of SOD1G93A mice, suggesting that CoQ redox system might participate in the mechanisms trying to counteract the pathology progression. Therefore, the very low increases of CoQ10 induced by oral treatments in CNS might be not sufficient to provide significant neuroprotection in SOD1G93A mice. PMID:23936040
Römermann, Kerstin; Fedrowitz, Maren; Hampel, Philip; Kaczmarek, Edith; Töllner, Kathrin; Erker, Thomas; Sweet, Douglas H; Löscher, Wolfgang
2017-05-01
There is accumulating evidence that bumetanide, which has been used over decades as a potent loop diuretic, also exerts effects on brain disorders, including autism, neonatal seizures, and epilepsy, which are not related to its effects on the kidney but rather mediated by inhibition of the neuronal Na-K-Cl cotransporter isoform NKCC1. However, following systemic administration, brain levels of bumetanide are typically below those needed to inhibit NKCC1, which critically limits its clinical use for treating brain disorders. Recently, active efflux transport at the blood-brain barrier (BBB) has been suggested as a process involved in the low brain:plasma ratio of bumetanide, but it is presently not clear which transporters are involved. Understanding the processes explaining the poor brain penetration of bumetanide is needed for developing strategies to improve the brain delivery of this drug. In the present study, we administered probenecid and more selective inhibitors of active transport carriers at the BBB directly into the brain of mice to minimize the contribution of peripheral effects on the brain penetration of bumetanide. Furthermore, in vitro experiments with mouse organic anion transporter 3 (Oat3)-overexpressing Chinese hamster ovary cells were performed to study the interaction of bumetanide, bumetanide derivatives, and several known inhibitors of Oats on Oat3-mediated transport. The in vivo experiments demonstrated that the uptake and efflux of bumetanide at the BBB is much more complex than previously thought. It seems that both restricted passive diffusion and active efflux transport, mediated by Oat3 but also organic anion-transporting polypeptide (Oatp) Oatp1a4 and multidrug resistance protein 4 explain the extremely low brain concentrations that are achieved after systemic administration of bumetanide, limiting the use of this drug for targeting abnormal expression of neuronal NKCC1 in brain diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Understanding mental retardation in Down's syndrome using trisomy 16 mouse models.
Galdzicki, Z; Siarey, R J
2003-06-01
Mental retardation in Down's syndrome, human trisomy 21, is characterized by developmental delays, language and memory deficits and other cognitive abnormalities. Neurophysiological and functional information is needed to understand the mechanisms of mental retardation in Down's syndrome. The trisomy mouse models provide windows into the molecular and developmental effects associated with abnormal chromosome numbers. The distal segment of mouse chromosome 16 is homologous to nearly the entire long arm of human chromosome 21. Therefore, mice with full or segmental trisomy 16 (Ts65Dn) are considered reliable animal models of Down's syndrome. Ts65Dn mice demonstrate impaired learning in spatial tests and abnormalities in hippocampal synaptic plasticity. We hypothesize that the physiological impairments in the Ts65Dn mouse hippocampus can model the suboptimal brain function occuring at various levels of Down's syndrome brain hierarchy, starting at a single neuron, and then affecting simple and complex neuronal networks. Once these elements create the gross brain structure, their dysfunctional activity cannot be overcome by extensive plasticity and redundancy, and therefore, at the end of the maturation period the mind inside this brain remains deficient and delayed in its capabilities. The complicated interactions that govern this aberrant developmental process cannot be rescued through existing compensatory mechanisms. In summary, overexpression of genes from chromosome 21 shifts biological homeostasis in the Down's syndrome brain to a new less functional state.
A viscoelastic analysis of the P56 mouse brain under large-deformation dynamic indentation.
MacManus, David B; Pierrat, Baptiste; Murphy, Jeremiah G; Gilchrist, Michael D
2017-01-15
The brain is a complex organ made up of many different functional and structural regions consisting of different types of cells such as neurons and glia, as well as complex anatomical geometries. It is hypothesized that the different regions of the brain exhibit significantly different mechanical properties which may be attributed to the diversity of cells within individual brain regions. The regional viscoelastic properties of P56 mouse brain tissue, up to 70μm displacement, are presented and discussed in the context of traumatic brain injury, particularly how the different regions of the brain respond to mechanical loads. Force-relaxation data obtained from micro-indentation measurements were fit to both linear and quasi-linear viscoelastic models to determine the time and frequency domain viscoelastic response of the pons, cortex, medulla oblongata, cerebellum, and thalamus. The damping ratio of each region was also determined. Each region was found to have a unique mechanical response to the applied displacement, with the pons and thalamus exhibiting the largest and smallest force-response, respectively. All brain regions appear to have an optimal frequency for the dissipation of energies which lies between 1 and 10Hz. We present the first mechanical characterization of the viscoelastic response for different regions of mouse brain. Force-relaxation tests are performed under large strain dynamic micro-indentation, and viscoelastic models are used subsequently, providing time-dependent mechanical properties of brain tissue under loading conditions comparable to what is experienced in TBI. The unique mechanical properties of different brain regions are highlighted, with substantial variations in the viscoelastic properties and damping ratio of each region. Cortex and pons were the stiffest regions, while the thalamus and medulla were most compliant. The cerebellum and thalamus had highest damping ratio values and those of the medulla were lowest. The reported material parameters can be implemented into finite element computer models of the mouse to investigate the effects of trauma on individual brain regions. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Orthotopic Patient-Derived Glioblastoma Xenografts in Mice.
Xu, Zhongye; Kader, Michael; Sen, Rajeev; Placantonakis, Dimitris G
2018-01-01
Patient-derived xenografts (PDX) provide in vivo glioblastoma (GBM) models that recapitulate actual tumors. Orthotopic tumor xenografts within the mouse brain are obtained by injection of GBM stem-like cells derived from fresh surgical specimens. These xenografts reproduce GBM's histologic complexity and hallmark biological behaviors, such as brain invasion, angiogenesis, and resistance to therapy. This method has become essential for analyzing mechanisms of tumorigenesis and testing the therapeutic effect of candidate agents in the preclinical setting. Here, we describe a protocol for establishing orthotopic tumor xenografts in the mouse brain with human GBM cells.
2013-06-01
Psychiatry, 2008. 13(1): p. 4-26. 2. McFarlane, H.G., et al., Autism -like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav, 2008. 7(2): p. 152...63. 3. Brodkin, E.S., BALB/c mice: low sociability and other phenotypes that may be relevant to autism . Behav Brain Res, 2007. 176(1): p. 53-65. 4...S.S., et al., Development of a mouse test for repetitive, restricted behaviors: relevance to autism . Behav Brain Res, 2008. 188(1): p. 178-94. 6
Jung, Jong-Min; Lee, Jechan; Kim, Ki-Hyun; Jang, In Geon; Song, Jae Gwang; Kang, Kyeongjin; Tack, Filip M G; Oh, Jeong-Ik; Kwon, Eilhann E; Kim, Hyung-Wook
2017-03-01
We performed toxicological study of mice exposed to lead by quantifying fatty acids in brain of the mice. This study suggests that the introduced analytical method had an extremely high tolerance against impurities such as water and extractives; thus, it led to the enhanced resolution in visualizing the spectrum of fatty acid profiles in animal brain. Furthermore, one of the biggest technical advantages achieved in this study was the quantitation of fatty acid methyl ester profiles of mouse brain using a trace amount of sample (e.g., 100 μL mixture). Methanol was screened as the most effective extraction solvent for mouse brain. The behavioral test of the mice before and after lead exposure was conducted to see the effect of lead exposure on fatty acid composition of the mice' brain. The lead exposure led to changes in disease-related behavior of the mice. Also, the lead exposure induced significant alterations of fatty acid profile (C16:0, C 18:0, and C 18:1) in brain of the mice, implicated in pathology of psychiatric diseases. The alteration of fatty acid profile of brain of the mice suggests that the derivatizing technique can be applicable to most research fields associated with the environmental neurotoxins with better resolution in a short time, as compared to the current protocols for lipid analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chapouly, Candice; Tadesse Argaw, Azeb; Horng, Sam; Castro, Kamilah; Zhang, Jingya; Asp, Linnea; Loo, Hannah; Laitman, Benjamin M.; Mariani, John N.; Straus Farber, Rebecca; Zaslavsky, Elena; Nudelman, German; Raine, Cedric S.
2015-01-01
In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood–brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood–brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood–brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood–brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood–brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood–brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an astrocyte-derived permeability factor, and suggest TYMP and VEGFA together promote blood–brain barrier breakdown. PMID:25805644
Zarghami, Niloufar; Murrell, Donna H; Jensen, Michael D; Dick, Frederick A; Chambers, Ann F; Foster, Paula J; Wong, Eugene
2018-06-01
Brain metastasis is becoming increasingly prevalent in breast cancer due to improved extra-cranial disease control. With emerging availability of modern image-guided radiation platforms, mouse models of brain metastases and small animal magnetic resonance imaging (MRI), we examined brain metastases' responses from radiotherapy in the pre-clinical setting. In this study, we employed half brain irradiation to reduce inter-subject variability in metastases dose-response evaluations. Half brain irradiation was performed on a micro-CT/RT system in a human breast cancer (MDA-MB-231-BR) brain metastasis mouse model. Radiation induced DNA double stranded breaks in tumors and normal mouse brain tissue were quantified using γ-H2AX immunohistochemistry at 30 min (acute) and 11 days (longitudinal) after half-brain treatment for doses of 8, 16 and 24 Gy. In addition, tumor responses were assessed volumetrically with in-vivo longitudinal MRI and histologically for tumor cell density and nuclear size. In the acute setting, γ-H2AX staining in tumors saturated at higher doses while normal mouse brain tissue continued to increase linearly in the phosphorylation of H2AX. While γ-H2AX fluorescence intensities returned to the background level in the brain 11 days after treatment, the residual γ-H2AX phosphorylation in the radiated tumors remained elevated compared to un-irradiated contralateral tumors. With radiation, MRI-derived relative tumor growth was significantly reduced compared to the un-irradiated side. While there was no difference in MRI tumor volume growth between 16 and 24 Gy, there was a significant reduction in tumor cell density from histology with increasing dose. In the longitudinal study, nuclear size in the residual tumor cells increased significantly as the radiation dose was increased. Radiation damages to the DNAs in the normal brain parenchyma are resolved over time, but remain unrepaired in the treated tumors. Furthermore, there is a radiation dose response in nuclear size of surviving tumor cells. Increase in nuclear size together with unrepaired DNA damage indicated that the surviving tumor cells post radiation had continued to progress in the cell cycle with DNA replication, but failed cytokinesis. Half brain irradiation provides efficient evaluation of dose-response for cancer cell lines, a pre-requisite to perform experiments to understand radio-resistance in brain metastases.
T cell–derived interleukin (IL)-21 promotes brain injury following stroke in mice
Clarkson, Benjamin D.S.; Ling, Changying; Shi, Yejie; Harris, Melissa G.; Rayasam, Aditya; Sun, Dandan; Salamat, M. Shahriar; Kuchroo, Vijay; Lambris, John D.; Sandor, Matyas
2014-01-01
T lymphocytes are key contributors to the acute phase of cerebral ischemia reperfusion injury, but the relevant T cell–derived mediators of tissue injury remain unknown. Using a mouse model of transient focal brain ischemia, we report that IL-21 is highly up-regulated in the injured mouse brain after cerebral ischemia. IL-21–deficient mice have smaller infarcts, improved neurological function, and reduced lymphocyte accumulation in the brain within 24 h of reperfusion. Intracellular cytokine staining and adoptive transfer experiments revealed that brain-infiltrating CD4+ T cells are the predominant IL-21 source. Mice treated with decoy IL-21 receptor Fc fusion protein are protected from reperfusion injury. In postmortem human brain tissue, IL-21 localized to perivascular CD4+ T cells in the area surrounding acute stroke lesions, suggesting that IL-21–mediated brain injury may be relevant to human stroke. PMID:24616379
Curzon, G.; Knott, P.J.
1974-01-01
1 The effects on tryptophan distribution and metabolism of drugs altering plasma unesterified fatty acid (UFA) concentration were investigated in the rat. 2 UFA and plasma free (i.e. ultrafilterable) tryptophan altered in the same direction. 3 Catecholamines and L-DOPA increased both plasma UFA and free tryptophan. L-DOPA also increased brain tryptophan and 5-hydroxyindoleacetic acid (5-HIAA) but decreased brain 5-hydroxytryptamine (5-HT). 4 Aminophylline increased plasma UFA and free tryptophan and also brain tryptophan, 5-HT and 5-HIAA. Food deprivation had qualitatively similar effects. 5 Insulin decreased plasma UFA and free tryptophan in both fed and food-deprived rats. However, while in fed rats these changes were associated with small decreases of brain indoles, in food-deprived animals small increases occurred. 6 Nicotinic acid had only small effects in fed rats but it opposed both the UFA and indole changes in food-deprived animals. Total plasma tryptophan increased in nicotinic acid treated, food-deprived rats. 7 There was a tendency towards inverse relations between changes of plasma free and total tryptophan. 8 The results suggest that drugs which influence plasma UFA through actions on cyclic AMP thereby alter the binding of tryptophan to plasma protein and that this leads to altered distribution and metabolism of tryptophan. PMID:4371899
Spuler, Martin
2015-08-01
A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.
Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo
NASA Astrophysics Data System (ADS)
Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.
2013-03-01
To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.
Genét, Gustav Folmer; Bentzer, Peter; Ostrowski, Sisse Rye; Johansson, Pär Ingemar
2017-03-01
Traumatic brain injury and hemorrhagic shock is associated with blood-brain barrier (BBB) breakdown and edema formation. Recent animal studies have shown that fresh frozen plasma (FFP) resuscitation reduces brain swelling and improves endothelial function compared to isotonic NaCl (NS). The aim of this study was to investigate whether pooled and pathogen-reduced plasma (OctaplasLG ® [OCTA]; Octapharma, Stockholm, Sweden) was comparable to FFP with regard to effects on brain water content, BBB permeability, and plasma biomarkers of endothelial glycocalyx shedding and cell damage. After fluid percussion brain injury, hemorrhage (20 mL/kg), and 90-min shock, 48 male Sprague-Dawley rats were randomized to resuscitation with OCTA, FFP, or NS (n = 16/group). Brain water content (wet/dry weight) and BBB permeability (transfer constant for 51 Cr-EDTA) were measured at 24 h. Plasma osmolality, oncotic pressure, and biomarkers of systemic glycocalyx shedding (syndecan-1) and cell damage (histone-complexed DNA) were measured at 0 and 23 h. At 24 h, brain water content was 80.44 ± 0.39%, 80.82 ± 0.82%, and 81.15 ± 0.86% in the OCTA, FFP, and NS groups (lower in OCTA vs. NS; p = 0.026), with no difference in BBB permeability. Plasma osmolality and oncotic pressures were highest in FFP and OCTA resuscitated, and osmolality was further highest in OCTA versus FFP (p = 0.027). In addition, syndecan-1 was highest in FFP and OCTA resuscitated (p = 0.010). These results suggest that pooled solvent-detergent (SD)-treated plasma attenuates the post-traumatic increase in brain water content, and that this effect may, in part, be explained by a high crystalloid and colloid osmotic pressure in SD-treated plasma.
van Vliet, Danique; Bruinenberg, Vibeke M; Mazzola, Priscila N; van Faassen, Martijn Hjr; de Blaauw, Pim; Pascucci, Tiziana; Puglisi-Allegra, Stefano; Kema, Ido P; Heiner-Fokkema, M Rebecca; van der Zee, Eddy A; van Spronsen, Francjan J
2016-11-01
Phenylketonuria treatment consists mainly of a Phe-restricted diet, which leads to suboptimal neurocognitive and psychosocial outcomes. Supplementation of large neutral amino acids (LNAAs) has been suggested as an alternative dietary treatment strategy to optimize neurocognitive outcome in phenylketonuria and has been shown to influence 3 brain pathobiochemical mechanisms in phenylketonuria, but its optimal composition has not been established. In order to provide additional pathobiochemical insight and develop optimal LNAA treatment, several targeted LNAA supplements were investigated with respect to all 3 biochemical disturbances underlying brain dysfunction in phenylketonuria. Pah-enu2 (PKU) mice received 1 of 5 different LNAA-supplemented diets beginning at postnatal day 45. Control groups included phenylketonuria mice receiving an isonitrogenic and isocaloric high-protein diet or the AIN-93M diet, and wild-type mice receiving the AIN-93M diet. After 6 wk, brain and plasma amino acid profiles and brain monoaminergic neurotransmitter concentrations were measured. Brain Phe concentrations were most effectively reduced by supplementation of LNAAs, such as Leu and Ile, with a strong affinity for the LNAA transporter type 1. Brain non-Phe LNAAs could be restored on supplementation, but unbalanced LNAA supplementation further reduced brain concentrations of those LNAAs that were not (sufficiently) included in the LNAA supplement. To optimally ameliorate brain monoaminergic neurotransmitter concentrations, LNAA supplementation should include Tyr and Trp together with LNAAs that effectively reduce brain Phe concentrations. The requirement for Tyr supplementation is higher than it is for Trp, and the relative effect of brain Phe reduction is higher for serotonin than it is for dopamine and norepinephrine. The study shows that all 3 biochemical disturbances underlying brain dysfunction in phenylketonuria can be targeted by specific LNAA supplements. The study thus provides essential information for the development of optimal LNAA supplementation as an alternative dietary treatment strategy to optimize neurocognitive outcome in patients with phenylketonuria. © 2016 American Society for Nutrition.
Marin-Valencia, Isaac; Good, Levi B; Ma, Qian; Malloy, Craig R; Pascual, Juan M
2013-01-01
It has been postulated that triheptanoin can ameliorate seizures by supplying the tricarboxylic acid cycle with both acetyl-CoA for energy production and propionyl-CoA to replenish cycle intermediates. These potential effects may also be important in other disorders associated with impaired glucose metabolism because glucose supplies, in addition to acetyl-CoA, pyruvate, which fulfills biosynthetic demands via carboxylation. In patients with glucose transporter type I deficiency (G1D), ketogenic diet fat (a source only of acetyl-CoA) reduces seizures, but other symptoms persist, providing the motivation for studying heptanoate metabolism. In this work, metabolism of infused [5,6,7-13C3]heptanoate was examined in the normal mouse brain and in G1D by 13C-nuclear magnetic resonance spectroscopy, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography-mass spectrometry (LC-MS). In both groups, plasma glucose was enriched in 13C, confirming gluconeogenesis from heptanoate. Acetyl-CoA and glutamine levels became significantly higher in the brain of G1D mice relative to normal mice. In addition, brain glutamine concentration and 13C enrichment were also greater when compared with glutamate in both animal groups, suggesting that heptanoate and/or C5 ketones are primarily metabolized by glia. These results enlighten the mechanism of heptanoate metabolism in the normal and glucose-deficient brain and encourage further studies to elucidate its potential antiepileptic effects in disorders of energy metabolism. PMID:23072752
Pathak, B G; Neumann, J C; Croyle, M L; Lingrel, J B
1994-01-01
The Na,K-ATPase is an integral plasma membrane protein consisting of alpha and beta subunits, each of which has discrete isoforms expressed in a tissue-specific manner. Of the three functional alpha isoform genes, the one encoding the alpha 3 isoform is the most tissue-restricted in its expression, being found primarily in the brain. To identify regions of the alpha 3 isoform gene that are involved in directing expression in the brain, a 1.6 kb 5'-flanking sequence was attached to a reporter gene, chloramphenicol acetyltransferase (CAT). The alpha 3-CAT chimeric gene construct was microinjected into fertilized mouse eggs, and transgenic mice were produced. Analysis of adult transgenic mice from different lines revealed that the transgene is expressed primarily in the brain. To further delineate regions that are needed for conferring expression in this tissue, systematic deletions of the 5'-flanking sequence of the alpha 3-CAT fusion constructs were made and analyzed, again using transgenic mice. The results from these analyses indicate that DNA sequences required for mediating brain-specific expression of the alpha 3 isoform gene are present within 210 bp upstream of the transcription initiation site. alpha 3-CAT promoter constructs containing scanning mutations in this region were also assayed in transgenic mice. These studies have identified both a functional neural-restrictive silencer element as well as a positively acting cis element. Images PMID:7984427
Kilsgård, Ola; Karlsson, Christofer; Malmström, Erik; Malmström, Johan
2016-11-01
Streptococcus pyogenes is an important human pathogen responsible for substantial morbidity and mortality worldwide. Although S. pyogenes is a strictly human pathogen with no other known animal reservoir, several murine infection models exist to explore different aspects of the bacterial pathogenesis. Inoculating mice with wild-type S. pyogenes strains can result in the generation of new bacterial phenotypes that are hypervirulent compared to the original inoculum. In this study, we used a serial mass spectrometry based proteomics strategy to investigate if these hypervirulent strains have an altered distribution of virulence proteins across the intracellular, surface associated and secreted bacterial compartments and if any change in compartmentalization can alter the protein-protein interaction network between bacteria and host proteins. Quantitative analysis of the S. pyogenes surface and secreted proteomes revealed that animal passaged strains are associated with significantly higher amount of virulence factors on the bacterial surface and in the media. This altered virulence factor compartmentalization results in increased binding of several mouse plasma proteins to the bacterial surface, a trend that was consistent for mouse plasma from several different mouse strains. In general, both the wild-type strain and animal passaged strain were capable of binding high amounts of human plasma proteins. However, compared to the non-passaged strains, the animal passaged strains displayed an increased ability to bind mouse plasma proteins, in particular for M protein binders, indicating that the increased affinity for mouse blood plasma proteins is a consequence of host adaptation of this pathogen to a new host. In conclusion, plotting the total amount of virulence factors against the total amount of plasma proteins associated to the bacterial surface could clearly separate out animal passaged strains from wild type strains indicating a virulence model that could predict the virulence of a S. pyogenes strain in mice and which could be used to identify key aspects of this bacteria's pathogenesis. Copyright © 2016 Elsevier GmbH. All rights reserved.
Naumenko, V S; Kondaurova, E M; Bazovkina, D V; Tsybko, A S; Tikhonova, M A; Kulikov, A V; Popova, N K
2012-07-12
The effect of brain-derived neurotrophic factor (BDNF) on depressive-like behavior and serotonin (5-HT) system in the brain of antidepressant sensitive cataleptics (ASC)/Icg mouse strain, characterized by depressive-like behavior, in comparison with the parental nondepressive CBA/Lac mouse strain was examined. Significant decrease of catalepsy and tail suspension test (TST) immobility was shown 17days after acute central BDNF administration (300ng i.c.v.) in ASC mice. In CBA mouse strain, BDNF moderately decreased catalepsy without any effect on TST immobility time. Significant difference between ASC and CBA mice in the effect of BDNF on 5-HT system was revealed. It was shown that central administration of BDNF led to increase of 5-HT(1A) receptor gene expression but not 5-HT(1A) functional activity in ASC mice. Increased tryptophan hydroxylase-2 (Tph-2) and 5-HT(2A) receptor genes expression accompanied by 5-HT(2A) receptor sensitization was shown in BDNF-treated ASC but not in CBA mouse strain, suggesting BDNF-induced increase of the brain 5-HT system functional activity and activation of neurogenesis in "depressive" ASC mice. There were no changes found in the 5-HT transporter mRNA level in BDNF-treated ASC and CBA mice. In conclusion, central administration of BDNF produced prolonged ameliorative effect on depressive-like behavior accompanied by increase of the Tph-2, 5-HT(1A) and 5-HT(2A) genes expression and 5-HT(2A) receptor functional activity in animal model of hereditary behavior disorders. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
A prior feature SVM – MRF based method for mouse brain segmentation
Wu, Teresa; Bae, Min Hyeok; Zhang, Min; Pan, Rong; Badea, Alexandra
2012-01-01
We introduce an automated method, called prior feature Support Vector Machine- Markov Random Field (pSVMRF), to segment three-dimensional mouse brain Magnetic Resonance Microscopy (MRM) images. Our earlier work, extended MRF (eMRF) integrated Support Vector Machine (SVM) and Markov Random Field (MRF) approaches, leading to improved segmentation accuracy; however, the computation of eMRF is very expensive, which may limit its performance on segmentation and robustness. In this study pSVMRF reduces training and testing time for SVM, while boosting segmentation performance. Unlike the eMRF approach, where MR intensity information and location priors are linearly combined, pSVMRF combines this information in a nonlinear fashion, and enhances the discriminative ability of the algorithm. We validate the proposed method using MR imaging of unstained and actively stained mouse brain specimens, and compare segmentation accuracy with two existing methods: eMRF and MRF. C57BL/6 mice are used for training and testing, using cross validation. For formalin fixed C57BL/6 specimens, pSVMRF outperforms both eMRF and MRF. The segmentation accuracy for C57BL/6 brains, stained or not, was similar for larger structures like hippocampus and caudate putamen, (~87%), but increased substantially for smaller regions like susbtantia nigra (from 78.36% to 91.55%), and anterior commissure (from ~50% to ~80%). To test segmentation robustness against increased anatomical variability we add two strains, BXD29 and a transgenic mouse model of Alzheimer’s Disease. Segmentation accuracy for new strains is 80% for hippocampus, and caudate putamen, indicating that pSVMRF is a promising approach for phenotyping mouse models of human brain disorders. PMID:21988893
A prior feature SVM-MRF based method for mouse brain segmentation.
Wu, Teresa; Bae, Min Hyeok; Zhang, Min; Pan, Rong; Badea, Alexandra
2012-02-01
We introduce an automated method, called prior feature Support Vector Machine-Markov Random Field (pSVMRF), to segment three-dimensional mouse brain Magnetic Resonance Microscopy (MRM) images. Our earlier work, extended MRF (eMRF) integrated Support Vector Machine (SVM) and Markov Random Field (MRF) approaches, leading to improved segmentation accuracy; however, the computation of eMRF is very expensive, which may limit its performance on segmentation and robustness. In this study pSVMRF reduces training and testing time for SVM, while boosting segmentation performance. Unlike the eMRF approach, where MR intensity information and location priors are linearly combined, pSVMRF combines this information in a nonlinear fashion, and enhances the discriminative ability of the algorithm. We validate the proposed method using MR imaging of unstained and actively stained mouse brain specimens, and compare segmentation accuracy with two existing methods: eMRF and MRF. C57BL/6 mice are used for training and testing, using cross validation. For formalin fixed C57BL/6 specimens, pSVMRF outperforms both eMRF and MRF. The segmentation accuracy for C57BL/6 brains, stained or not, was similar for larger structures like hippocampus and caudate putamen, (~87%), but increased substantially for smaller regions like susbtantia nigra (from 78.36% to 91.55%), and anterior commissure (from ~50% to ~80%). To test segmentation robustness against increased anatomical variability we add two strains, BXD29 and a transgenic mouse model of Alzheimer's disease. Segmentation accuracy for new strains is 80% for hippocampus, and caudate putamen, indicating that pSVMRF is a promising approach for phenotyping mouse models of human brain disorders. Copyright © 2011 Elsevier Inc. All rights reserved.
Allergen challenge-induced extravasation of plasma in mouse airways.
Erjefält, J S; Andersson, P; Gustafsson, B; Korsgren, M; Sonmark, B; Persson, C G
1998-08-01
Mouse models are extensively used to study genetic and immunological mechanisms of potential importance to inflammatory airway diseases, e.g. asthma. However, the airway pathophysiology in allergic mice has received less attention. For example, plasma extravasation and the ensuing tissue-deposition of plasma proteins, which is a hallmark of inflammation, has not been examined in allergic mice. This study aims to examine the vascular permeability and the distribution of plasma proteins in mouse airways following exposure to allergen and serotonin. Extravasated plasma was quantified by a dual isotop technique using intravascular (131I-albumin) and extrasvascular (125I-albumin) plasma tracers. Histological visualization of fibrinogen and colloidal gold revealed the tissue distribution of extravasated plasma. Allergen aerosol exposure (3% OVA, 15min) of sensitized animals resulted in a marked plasma extravasation response in the trachea (P < 0.01) and the bronchi but not in the lung parenchyma. A similar extravasation response was induced by serotonin (P<0.001). Extravasating vessels (assessed by Monastral blue dye) were identified as intercartilaginous venules. Extravasated plasma abounded in the subepithelial tissue but was absent in the epithelium and airway lumen. The allergen-induced response was dose-dependently inhibited by iv administration of formoterol (P < 0.001), a vascular antipermeability agent. The present study demonstrates that serotonin and allergen challenge of sensitized mice increase airway venular permeability to cause transient extravasation and lamina propria distribution of plasma in the large airways. We suggest that the extravasation response is a useful measure of the intensity and the distribution of active inflammation
Fluconazole penetration in cerebral parenchyma in humans at steady state.
Thaler, F; Bernard, B; Tod, M; Jedynak, C P; Petitjean, O; Derome, P; Loirat, P
1995-01-01
We studied fluconazole penetration in the brain in five patients who had a deep cerebral tumor whose removal required the excision of healthy brain tissue. Plasma and brain samples were simultaneously obtained after oral ingestion of 400 mg of fluconazole daily for 4 days (90% of steady state). Fluconazole penetration in healthy cerebral parenchyma was determined. Plasma and brain samples were assayed by high-pressure liquid chromatography. Concentrations in plasma and brain tissue were 13.5 +/- 5.5 micrograms/ml and 17.6 +/- 6.6 micrograms/g, respectively. The average ratio of concentrations in the brain and plasma (four patients) was 1.33 (range, 0.70 to 2.39). Despite the lack of data concerning the penetration of fluconazole in brain abscesses, these results should permit the use of a daily dose of 400 mg of fluconazole in prospective clinical studies that evaluate the effectiveness of this drug in the treatment of brain abscesses due to susceptible species of fungi. PMID:7625804
Genetic mouse models of brain ageing and Alzheimer's disease.
Bilkei-Gorzo, Andras
2014-05-01
Progression of brain ageing is influenced by a complex interaction of genetic and environmental factors. Analysis of genetically modified animals with uniform genetic backgrounds in a standardised, controlled environment enables the dissection of critical determinants of brain ageing on a molecular level. Human and animal studies suggest that increased load of damaged macromolecules, efficacy of DNA maintenance, mitochondrial activity, and cellular stress defences are critical determinants of brain ageing. Surprisingly, mouse lines with genetic impairment of anti-oxidative capacity generally did not show enhanced cognitive ageing but rather an increased sensitivity to oxidative challenge. Mouse lines with impaired mitochondrial activity had critically short life spans or severe and rapidly progressing neurodegeneration. Strains with impaired clearance in damaged macromolecules or defects in the regulation of cellular stress defences showed alterations in the onset and progression of cognitive decline. Importantly, reduced insulin/insulin-like growth factor signalling generally increased life span but impaired cognitive functions revealing a complex interaction between ageing of the brain and of the body. Brain ageing is accompanied by an increased risk of developing Alzheimer's disease. Transgenic mouse models expressing high levels of mutant human amyloid precursor protein showed a number of symptoms and pathophysiological processes typical for early phase of Alzheimer's disease. Generally, therapeutic strategies effective against Alzheimer's disease in humans were also active in the Tg2576, APP23, APP/PS1 and 5xFAD lines, but a large number of false positive findings were also reported. The 3xtg AD model likely has the highest face and construct validity but further studies are needed. Copyright © 2013 Elsevier Inc. All rights reserved.
Martínez-Cerdeño, Veronica; Barrilleaux, Bonnie L; McDonough, Ashley; Ariza, Jeanelle; Yuen, Benjamin T K; Somanath, Priyanka; Le, Catherine T; Steward, Craig; Horton-Sparks, Kayla; Knoepfler, Paul S
2017-10-01
Human pluripotent stem cells (hPSC) have great clinical potential through the use of their differentiated progeny, a population in which there is some concern over risks of tumorigenicity or other unwanted cellular behavior due to residual hPSC. Preclinical studies using human stem cells are most often performed within a xenotransplant context. In this study, we sought to measure how undifferentiated hPSC behave following xenotransplant. We directly transplanted undifferentiated human induced pluripotent stem cells (hIPSC) and human embryonic stem cells (hESC) into the adult mouse brain ventricle and analyzed their fates. No tumors or precancerous lesions were present at more than one year after transplantation. This result differed with the tumorigenic capacity we observed after allotransplantation of mouse ESC into the mouse brain. A substantial population of cellular derivatives of undifferentiated hESC and hIPSC engrafted, survived, and migrated within the mouse brain parenchyma. Within brain structures, transplanted cell distribution followed a very specific pattern, suggesting the existence of distinct microenvironments that offer different degrees of permissibility for engraftment. Most of the transplanted hESC and hIPSC that developed into brain cells were NeuN+ neuronal cells, and no astrocytes were detected. Substantial cell and nuclear fusion occurred between host and transplanted cells, a phenomenon influenced by microenvironment. Overall, hIPSC appear to be largely functionally equivalent to hESC in vivo. Altogether, these data bring new insights into the behavior of stem cells without prior differentiation following xenotransplantation into the adult brain.
Yu, Rosie Z; Grundy, John S; Henry, Scott P; Kim, Tae-Won; Norris, Daniel A; Burkey, Jennifer; Wang, Yanfeng; Vick, Andrew; Geary, Richard S
2015-01-20
Evaluation of species differences and systemic exposure multiples (or ratios) in toxicological animal species versus human is an ongoing exercise during the course of drug development. The systemic exposure ratios are best estimated by directly comparing area under the plasma concentration-time curves (AUCs), and sometimes by comparing the dose administered, with the dose being adjusted either by body surface area (BSA) or body weight (BW). In this study, the association between AUC ratio and the administered dose ratio from animals to human were studied using a retrospective data-driven approach. The dataset included nine antisense oligonucleotides (ASOs) with 2'-O-(2-methoxyethyl) modifications, evaluated in two animal species (mouse and monkey) following single and repeated parenteral administrations. We found that plasma AUCs were similar between ASOs within the same species, and are predictable to human exposure using a single animal species, either mouse or monkey. Between monkey and human, the plasma exposure ratio can be predicted directly based on BW-adjusted dose ratios, whereas between mouse and human, the exposure ratio would be nearly fivefold lower in mouse compared to human based on BW-adjusted dose values. Thus, multiplying a factor of 5 for the mouse BW-adjusted dose would likely provide a reasonable AUC exposure estimate in human at steady-state.
NASA Astrophysics Data System (ADS)
Castonguay, Alexandre; Lefebvre, Joël; Pouliot, Philippe; Lesage, Frédéric
2018-01-01
An automated serial histology setup combining optical coherence tomography (OCT) imaging with vibratome sectioning was used to image eight wild type mouse brains. The datasets resulted in thousands of volumetric tiles resolved at a voxel size of (4.9×4.9×6.5) μm3 stitched back together to give a three-dimensional map of the brain from which a template OCT brain was obtained. To assess deformation caused by tissue sectioning, reconstruction algorithms, and fixation, OCT datasets were compared to both in vivo and ex vivo magnetic resonance imaging (MRI) imaging. The OCT brain template yielded a highly detailed map of the brain structure, with a high contrast in white matter fiber bundles and was highly resemblant to the in vivo MRI template. Brain labeling using the Allen brain framework showed little variation in regional brain volume among imaging modalities with no statistical differences. The high correspondence between the OCT template brain and its in vivo counterpart demonstrates the potential of whole brain histology to validate in vivo imaging.
Wirth, Eva K; Roth, Stephan; Blechschmidt, Cristiane; Hölter, Sabine M; Becker, Lore; Racz, Ildiko; Zimmer, Andreas; Klopstock, Thomas; Gailus-Durner, Valerie; Fuchs, Helmut; Wurst, Wolfgang; Naumann, Thomas; Bräuer, Anja; de Angelis, Martin Hrabé; Köhrle, Josef; Grüters, Annette; Schweizer, Ulrich
2009-07-29
Thyroid hormone transport into cells requires plasma membrane transport proteins. Mutations in one of these, monocarboxylate transporter 8 (MCT8), have been identified as underlying cause for the Allan-Herndon-Dudley syndrome, an X-linked mental retardation in which the patients also present with abnormally high 3',3,5-triiodothyronine (T(3)) plasma levels. Mice deficient in Mct8 replicate the thyroid hormone abnormalities observed in the human condition. However, no neurological deficits have been described in mice lacking Mct8. Therefore, we subjected Mct8-deficient mice to a comprehensive immunohistochemical, neurological, and behavioral screen. Several behavioral abnormalities were found in the mutants. Interestingly, some of these behavioral changes are compatible with hypothyroidism, whereas others rather indicate hyperthyroidism. We thus hypothesized that neurons exclusively dependent on Mct8 are in a hypothyroid state, whereas neurons expressing other T(3) transporters become hyperthyroid, if they are exposed directly to the high plasma T(3). The majority of T(3) uptake in primary cortical neurons is mediated by Mct8, but pharmacological inhibition suggested functional expression of additional T(3) transporter classes. mRNAs encoding six T(3) transporters, including L-type amino acid transporters (LATs), were coexpressed with Mct8 in isolated neurons. We then demonstrated Lat2 expression in cultured neurons and throughout murine brain development. In contrast, LAT2 is expressed in microglia in the developing human brain during gestation, but not in neurons. We suggest that lack of functional complementation by alternative thyroid hormone transporters in developing human neurons precipitates the devastating neurodevelopmental phenotype in MCT8-deficient patients, whereas Mct8-deficient mouse neurons are functionally complemented by other transporters, for possibly Lat2.
Mbye, Lamin H; Keles, Eyup; Tao, Luyang; Zhang, Jimmy; Chung, Joonyong; Larvie, Mykol; Koppula, Rajani; Lo, Eng H; Whalen, Michael J
2012-03-01
Loss of plasma membrane integrity is a feature of acute cellular injury/death in vitro and in vivo. Plasmalemma-resealing agents are protective in acute central nervous system injury models, but their ability to reseal cell membranes in vivo has not been reported. Using a mouse controlled cortical impact (CCI) model, we found that propidium iodide-positive (PI+) cells pulse labeled at 6, 24, or 48 hours maintained a degenerative phenotype and disappeared from the injured brain by 7 days, suggesting that plasmalemma permeability is a biomarker of fatal cellular injury after CCI. Intravenous or intracerebroventricular administration of Kollidon VA64, poloxamer P188, or polyethylene glycol 8000 resealed injured cell membranes in vivo (P<0.05 versus vehicle or poloxamer P407). Kollidon VA64 (1 mmol/L, 500 μL) administered intravenously to mice 1 hour after CCI significantly reduced acute cellular degeneration, chronic brain tissue damage, brain edema, blood-brain barrier damage, and postinjury motor deficits (all P<0.05 versus vehicle). However, VA64 did not rescue pulse-labeled PI+ cells from eventual demise. We conclude that PI permeability within 48 hours of CCI is a biomarker of eventual cell death/loss. Kollidon VA64 reduces secondary damage after CCI by mechanisms other than or in addition to resealing permeable cells.
Abi-Saab, Walid M; Maggs, David G; Jones, Tim; Jacob, Ralph; Srihari, Vinod; Thompson, James; Kerr, David; Leone, Paola; Krystal, John H; Spencer, Dennis D; During, Matthew J; Sherwin, Robert S
2002-03-01
Brain levels of glucose and lactate in the extracellular fluid (ECF), which reflects the environment to which neurons are exposed, have never been studied in humans under conditions of varying glycemia. The authors used intracerebral microdialysis in conscious human subjects undergoing electrophysiologic evaluation for medically intractable epilepsy and measured ECF levels of glucose and lactate under basal conditions and during a hyperglycemia-hypoglycemia clamp study. Only measurements from nonepileptogenic areas were included. Under basal conditions, the authors found the metabolic milieu in the brain to be strikingly different from that in the circulation. In contrast to plasma, lactate levels in brain ECF were threefold higher than glucose. Results from complementary studies in rats were consistent with the human data. During the hyperglycemia-hypoglycemia clamp study the relationship between plasma and brain ECF levels of glucose remained similar, but changes in brain ECF glucose lagged approximately 30 minutes behind changes in plasma. The data demonstrate that the brain is exposed to substantially lower levels of glucose and higher levels of lactate than those in plasma; moreover, the brain appears to be a site of significant anaerobic glycolysis, raising the possibility that glucose-derived lactate is an important fuel for the brain.
NASA Astrophysics Data System (ADS)
Grange, Pascal
2015-09-01
The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.
Naked mole-rat cortical neurons are resistant to acid-induced cell death.
Husson, Zoé; Smith, Ewan St John
2018-05-09
Regulation of brain pH is a critical homeostatic process and changes in brain pH modulate various ion channels and receptors and thus neuronal excitability. Tissue acidosis, resulting from hypoxia or hypercapnia, can activate various proteins and ion channels, among which acid-sensing ion channels (ASICs) a family of primarily Na + permeable ion channels, which alongside classical excitotoxicity causes neuronal death. Naked mole-rats (NMRs, Heterocephalus glaber) are long-lived, fossorial, eusocial rodents that display remarkable behavioral/cellular hypoxia and hypercapnia resistance. In the central nervous system, ASIC subunit expression is similar between mouse and NMR with the exception of much lower expression of ASIC4 throughout the NMR brain. However, ASIC function and neuronal sensitivity to sustained acidosis has not been examined in the NMR brain. Here, we show with whole-cell patch-clamp electrophysiology of cultured NMR and mouse cortical and hippocampal neurons that NMR neurons have smaller voltage-gated Na + channel currents and more hyperpolarized resting membrane potentials. We further demonstrate that acid-mediated currents in NMR neurons are of smaller magnitude than in mouse, and that all currents in both species are reversibly blocked by the ASIC antagonist benzamil. We further demonstrate that NMR neurons show greater resistance to acid-induced cell death than mouse neurons. In summary, NMR neurons show significant cellular resistance to acidotoxicity compared to mouse neurons, contributing factors likely to be smaller ASIC-mediated currents and reduced NaV activity.
Ewald, Erin R.; Wand, Gary S.; Seifuddin, Fayaz; Yang, Xiaoju; Tamashiro, Kellie L.; Potash, James B.; Zandi, Peter; Lee, Richard S.
2014-01-01
Summary Background Epigenetic studies that utilize peripheral tissues to identify molecular substrates of neuropsychiatric disorders rely on the assumption that disease-relevant, cellular alterations that occur in the brain are mirrored and detectable in peripheral tissues such as blood. We sought to test this assumption by using a mouse model of Cushing’s disease and asking whether epigenetic changes induced by glucocorticoids can be correlated between these tissue types. Methods Mice were treated with different doses of glucocorticoids in their drinking water for four weeks to assess gene expression and DNA methylation (DNAm) changes in the stress response gene Fkbp5. Results Significant linear relationships were observed between DNAm and four-week mean plasma corticosterone levels for both blood (R2 = 0.68, P = 7.1×10−10) and brain (R2 = 0.33, P = 0.001). Further, degree of methylation change in blood correlated significantly with both methylation (R2 = 0.49, P = 2.7×10−5) and expression (R2 = 0.43, P = 3.5×10−5) changes in hippocampus, with the notable observation that methylation changes occurred at different intronic regions between blood and brain tissues. Conclusion Although our findings are limited to several intronic CpGs in a single gene, our results demonstrate that DNA from blood can be used to assess dynamic, glucocorticoid-induced changes occurring in the brain. However, for such correlation analyses to be effective, tissue-specific locations of these epigenetic changes may need to be considered when investigating brain-relevant changes in peripheral tissues. PMID:24767625
Ewald, Erin R; Wand, Gary S; Seifuddin, Fayaz; Yang, Xiaoju; Tamashiro, Kellie L; Potash, James B; Zandi, Peter; Lee, Richard S
2014-06-01
Epigenetic studies that utilize peripheral tissues to identify molecular substrates of neuropsychiatric disorders rely on the assumption that disease-relevant, cellular alterations that occur in the brain are mirrored and detectable in peripheral tissues such as blood. We sought to test this assumption by using a mouse model of Cushing's disease and asking whether epigenetic changes induced by glucocorticoids can be correlated between these tissue types. Mice were treated with different doses of glucocorticoids in their drinking water for four weeks to assess gene expression and DNA methylation (DNAm) changes in the stress response gene Fkbp5. Significant linear relationships were observed between DNAm and four-week mean plasma corticosterone levels for both blood (R(2)=0.68, P=7.1×10(-10)) and brain (R(2)=0.33, P=0.001). Further, degree of methylation change in blood correlated significantly with both methylation (R(2)=0.49, P=2.7×10(-5)) and expression (R(2)=0.43, P=3.5×10(-5)) changes in hippocampus, with the notable observation that methylation changes occurred at different intronic regions between blood and brain tissues. Although our findings are limited to several intronic CpGs in a single gene, our results demonstrate that DNA from blood can be used to assess dynamic, glucocorticoid-induced changes occurring in the brain. However, for such correlation analyses to be effective, tissue-specific locations of these epigenetic changes may need to be considered when investigating brain-relevant changes in peripheral tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Researchers Find Essential Brain Circuit in Visual Development
... Release Monday, August 26, 2013 Researchers find essential brain circuit in visual development NIH-funded study could ... shows the connections from the eyes to the brain in a mouse. The right image shows the ...
Bayés, Àlex; Collins, Mark O.; Croning, Mike D. R.; van de Lagemaat, Louie N.; Choudhary, Jyoti S.; Grant, Seth G. N.
2012-01-01
Direct comparison of protein components from human and mouse excitatory synapses is important for determining the suitability of mice as models of human brain disease and to understand the evolution of the mammalian brain. The postsynaptic density is a highly complex set of proteins organized into molecular networks that play a central role in behavior and disease. We report the first direct comparison of the proteome of triplicate isolates of mouse and human cortical postsynaptic densities. The mouse postsynaptic density comprised 1556 proteins and the human one 1461. A large compositional overlap was observed; more than 70% of human postsynaptic density proteins were also observed in the mouse postsynaptic density. Quantitative analysis of postsynaptic density components in both species indicates a broadly similar profile of abundance but also shows that there is higher abundance variation between species than within species. Well known components of this synaptic structure are generally more abundant in the mouse postsynaptic density. Significant inter-species abundance differences exist in some families of key postsynaptic density proteins including glutamatergic neurotransmitter receptors and adaptor proteins. Furthermore, we have identified a closely interacting set of molecules enriched in the human postsynaptic density that could be involved in dendrite and spine structural plasticity. Understanding synapse proteome diversity within and between species will be important to further our understanding of brain complexity and disease. PMID:23071613
Wilcock, Donna M.; Colton, Carol A.
2009-01-01
Therapeutic approaches to the treatment of Alzheimer's disease are focused primarily on the Aß peptide which aggregates to form amyloid deposits in the brain. The amyloid hypothesis states that amyloid is the precipitating factor that results in the other pathologies of Alzheimer's, namely neurofibrillary tangles and neurodegeneration, as well as the clinical dementia. One such therapy that has attracted significant attention is anti-Aß immunotherapy. First described in 1999, immunotherapy uses anti-Aß antibodies to lower brain amyloid levels. Active immunization, in which Aß is combined with an adjuvant to stimulate an immune response producing antibodies and passive immunization, in which antibodies are directly injected, were shown to lower brain amyloid levels and improve cognition in multiple transgenic mouse models. Mechanisms of action were studied in these mice and revealed a complex set of mechanisms that depended on the type of antibody used. When active immunization advanced to clinical trials a subset of patients developed meningoencephalitis; an event not predicted in mouse studies. However, it was suspected that a T-cell response due to the type of adjuvant used was the cause of the meningoencephalitis and studies in mice indicated alternative methods of vaccination. Passive immunization has also advanced to phase III clinical trials on the basis of successful transgenic mouse studies. Reports from the active immunization clinical trial indicated that, indeed, amyloid levels in brain were reduced. While APP transgenic mouse models are useful in studying amyloid pathology these mice do not generate significant tau pathology or neuron loss. Continued development of new mouse models that do generate all of these pathologies will be critical in more accurately testing therapeutics and predicting the clinical outcome of such therapeutics. PMID:19096156
Ray, Surjyendu; Tzeng, Ruei-Ying; DiCarlo, Lisa M; Bundy, Joseph L; Vied, Cynthia; Tyson, Gary; Nowakowski, Richard; Arbeitman, Michelle N
2015-11-23
The developmental transition to motherhood requires gene expression changes that alter the brain to drive the female to perform maternal behaviors. We broadly examined the global transcriptional response in the mouse maternal brain, by examining four brain regions: hypothalamus, hippocampus, neocortex, and cerebellum, in virgin females, two pregnancy time points, and three postpartum time points. We find that overall there are hundreds of differentially expressed genes, but each brain region and time point shows a unique molecular signature, with only 49 genes differentially expressed in all four regions. Interestingly, a set of "early-response genes" is repressed in all brain regions during pregnancy and postpartum stages. Several genes previously implicated in underlying postpartum depression change expression. This study serves as an atlas of gene expression changes in the maternal brain, with the results demonstrating that pregnancy, parturition, and postpartum maternal experience substantially impact diverse brain regions. Copyright © 2016 Ray et al.
NASA Astrophysics Data System (ADS)
Mann, Aman P.; Scodeller, Pablo; Hussain, Sazid; Joo, Jinmyoung; Kwon, Ester; Braun, Gary B.; Mölder, Tarmo; She, Zhi-Gang; Kotamraju, Venkata Ramana; Ranscht, Barbara; Krajewski, Stan; Teesalu, Tambet; Bhatia, Sangeeta; Sailor, Michael J.; Ruoslahti, Erkki
2016-06-01
Traumatic brain injury (TBI) is a major health and socio-economic problem, but no pharmacological agent is currently approved for the treatment of acute TBI. Thus, there is a great need for advances in this field. Here, we describe a short peptide (sequence CAQK) identified by in vivo phage display screening in mice with acute brain injury. The CAQK peptide selectively binds to injured mouse and human brain, and systemically injected CAQK specifically homes to sites of brain injury in mouse models. The CAQK target is a proteoglycan complex upregulated in brain injuries. Coupling to CAQK increased injury site accumulation of systemically administered molecules ranging from a drug-sized molecule to nanoparticles. CAQK-coated nanoparticles containing silencing oligonucleotides provided the first evidence of gene silencing in injured brain parenchyma by systemically administered siRNA. These findings present an effective targeting strategy for the delivery of therapeutics in clinical management of acute brain injuries.
Medina, Christopher S; Manifold-Wheeler, Brett; Gonzales, Aaron; Bearer, Elaine L
2017-07-05
Magnetic resonance (MR) imaging provides a method to obtain anatomical information from the brain in vivo that is not typically available by optical imaging because of this organ's opacity. MR is nondestructive and obtains deep tissue contrast with 100-µm 3 voxel resolution or better. Manganese-enhanced MRI (MEMRI) may be used to observe axonal transport and localized neural activity in the living rodent and avian brain. Such enhancement enables researchers to investigate differences in functional circuitry or neuronal activity in images of brains of different animals. Moreover, once MR images of a number of animals are aligned into a single matrix, statistical analysis can be done comparing MR intensities between different multi-animal cohorts comprising individuals from different mouse strains or different transgenic animals, or at different time points after an experimental manipulation. Although preprocessing steps for such comparisons (including skull stripping and alignment) are automated for human imaging, no such automated processing has previously been readily available for mouse or other widely used experimental animals, and most investigators use in-house custom processing. This protocol describes a stepwise method to perform such preprocessing for mouse. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Ng, David C; Tamura, Hideki; Tokuda, Takashi; Yamamoto, Akio; Matsuo, Masamichi; Nunoshita, Masahiro; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun
2006-09-30
The aim of the present study is to demonstrate the application of complementary metal-oxide semiconductor (CMOS) imaging technology for studying the mouse brain. By using a dedicated CMOS image sensor, we have successfully imaged and measured brain serine protease activity in vivo, in real-time, and for an extended period of time. We have developed a biofluorescence imaging device by packaging the CMOS image sensor which enabled on-chip imaging configuration. In this configuration, no optics are required whereby an excitation filter is applied onto the sensor to replace the filter cube block found in conventional fluorescence microscopes. The fully packaged device measures 350 microm thick x 2.7 mm wide, consists of an array of 176 x 144 pixels, and is small enough for measurement inside a single hemisphere of the mouse brain, while still providing sufficient imaging resolution. In the experiment, intraperitoneally injected kainic acid induced upregulation of serine protease activity in the brain. These events were captured in real time by imaging and measuring the fluorescence from a fluorogenic substrate that detected this activity. The entire device, which weighs less than 1% of the body weight of the mouse, holds promise for studying freely moving animals.
Rizzi, Sandra; Schwarzer, Christoph; Kremser, Leopold; Lindner, Herbert H; Knaus, Hans-Günther
2015-12-01
The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.
CD38-dependent ADP-ribosyl cyclase activity in developing and adult mouse brain.
Ceni, Claire; Pochon, Nathalie; Brun, Virginie; Muller-Steffner, Hélène; Andrieux, Annie; Grunwald, Didier; Schuber, Francis; De Waard, Michel; Lund, Frances; Villaz, Michel; Moutin, Marie-Jo
2003-01-01
CD38 is a transmembrane glycoprotein that is expressed in many tissues throughout the body. In addition to its major NAD+-glycohydrolase activity, CD38 is also able to synthesize cyclic ADP-ribose, an endogenous calcium-regulating molecule, from NAD+. In the present study, we have compared ADP-ribosyl cyclase and NAD+-glycohydrolase activities in protein extracts of brains from developing and adult wild-type and Cd38 -/- mice. In extracts from wild-type brain, cyclase activity was detected spectrofluorimetrically, using nicotinamide-guanine dinucleotide as a substrate (GDP-ribosyl cyclase activity), as early as embryonic day 15. The level of cyclase activity was similar in the neonate brain (postnatal day 1) and then increased greatly in the adult brain. Using [14C]NAD+ as a substrate and HPLC analysis, we found that ADP-ribose is the major product formed in the brain at all developmental stages. Under the same experimental conditions, neither NAD+-glycohydrolase nor GDP-ribosyl cyclase activity could be detected in extracts of brains from developing or adult Cd38 -/- mice, demonstrating that CD38 is the predominant constitutive enzyme endowed with these activities in brain at all developmental stages. The activity measurements correlated with the level of CD38 transcripts present in the brains of developing and adult wild-type mice. Using confocal microscopy we showed, in primary cultures of hippocampal cells, that CD38 is expressed by both neurons and glial cells, and is enriched in neuronal perikarya. Intracellular NAD+-glycohydrolase activity was measured in hippocampal cell cultures, and CD38-dependent cyclase activity was higher in brain fractions enriched in intracellular membranes. Taken together, these results lead us to speculate that CD38 might have an intracellular location in neural cells in addition to its plasma membrane location, and may play an important role in intracellular cyclic ADP-ribose-mediated calcium signalling in brain tissue. PMID:12403647
Resting-state functional connectivity imaging of the mouse brain using photoacoustic tomography
NASA Astrophysics Data System (ADS)
Nasiriavanaki, Mohammadreza; Xia, Jun; Wan, Hanlin; Bauer, Adam Q.; Culver, Joseph P.; Wang, Lihong V.
2014-03-01
Resting-state functional connectivity (RSFC) imaging is an emerging neuroimaging approach that aims to identify spontaneous cerebral hemodynamic fluctuations and their associated functional connections. Clinical studies have demonstrated that RSFC is altered in brain disorders such as stroke, Alzheimer's, autism, and epilepsy. However, conventional neuroimaging modalities cannot easily be applied to mice, the most widely used model species for human brain disease studies. For instance, functional magnetic resonance imaging (fMRI) of mice requires a very high magnetic field to obtain a sufficient signal-to-noise ratio and spatial resolution. Functional connectivity mapping with optical intrinsic signal imaging (fcOIS) is an alternative method. Due to the diffusion of light in tissue, the spatial resolution of fcOIS is limited, and experiments have been performed using an exposed skull preparation. In this study, we show for the first time, the use of photoacoustic computed tomography (PACT) to noninvasively image resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight regions, as well as several subregions. These findings agreed well with the Paxinos mouse brain atlas. This study showed that PACT is a promising, non-invasive modality for small-animal functional brain imaging.
Selenoprotein W expression and regulation in mouse brain and neurons
Raman, Arjun V; Pitts, Matthew W; Seyedali, Ali; Hashimoto, Ann C; Bellinger, Frederick P; Berry, Marla J
2013-01-01
Background Selenoprotein W (Sepw1) is a selenium-containing protein that is abundant in brain and muscle of vertebrate animals. Muscular expression of Sepw1 is reduced by dietary selenium (Se) deficiency in mammals, whereas brain expression is maintained. However, expression of Sepw1 depends on the Se transporter selenoprotein P (Sepp1). Methods We assessed the regional and cellular expression of Sepw1 in the mouse brain and neuronal cultures. Results We found that Sepw1 is widespread in neurons and neuropil of mouse brain and appears in both the soma and processes of neurons in culture. Pyramidal neurons of cortex and hippocampus express high levels of Sepw1. It is also abundant in Purkinje neurons and their dendritic arbors in the cerebellum. Analysis of synaptosome fractions prepared from mice brains indicated that Sepw1 is present at synapses, as were several proteins involved in selenoprotein synthesis. Synaptic expression of Sepw1 expression is reduced in mice lacking Sepp1 compared with control mice, although selenoprotein synthesis factors were similarly expressed in both genotypes. Lastly, Sepw1 mRNA coimmunoprecipitates with Staufen 2 protein in a human neuronal cell line. Conclusions Our results suggest that Sepw1 may be locally synthesized in distal compartments of neurons including synapses. PMID:24392277
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eun, Jung Woo; Kwack, Seung Jun; Noh, Ji Heon
The amphetamine derivative ({+-})-3,4-methylenedioxymethamphetamine (MDMA or ecstasy) is a synthetic amphetamine analogue used recreationally to obtain an enhanced affiliative emotional response. MDMA is a potent monoaminergic neurotoxin with the potential to damage brain serotonin and/or dopamine neurons. As the majority of MDMA users are young adults, the risk that users may expose the fetus to MDMA is a concern. However, the majority of studies on MDMA have investigated the effects on adult animals. Here, we investigated whether long-term exposure to MDMA, especially in adolescence, could induce comprehensive transcriptional changes in mouse brain. Transcriptomic analysis of mouse brain regions demonstrated significantmore » gene expression changes in the cerebral cortex. Supervised analysis identified 1028 genes that were chronically dysregulated by long-term exposure to MDMA in adolescent mice. Functional categories most represented by this MDMA characteristic signature are intracellular molecular signaling pathways of neurotoxicity, such as, the MAPK signaling pathway, the Wnt signaling pathway, neuroactive ligand-receptor interaction, long-term potentiation, and the long-term depression signaling pathway. Although these resultant large-scale molecular changes remain to be studied associated with functional brain damage caused by MDMA, our observations delineate the possible neurotoxic effects of MDMA on brain function, and have therapeutic implications concerning neuro-pathological conditions associated with MDMA abuse.« less
Plasma brain-derived neurotrophic factor in women after bariatric surgery: a pilot study.
Merhi, Zaher O; Minkoff, Howard; Lambert-Messerlian, Geralyn M; Macura, Jerzy; Feldman, Joseph; Seifer, David B
2009-04-01
Eighteen morbidly obese women had plasma brain-derived neurotrophic factor (BDNF) measured before bariatric surgery and 3 months postoperatively. We analyzed plasma BDNF levels in all the participants then subdivided according to menopausal status and type of surgery. Brain-derived neurotrophic factor decreased significantly in all the participants and in the premenopausal group when looked at in isolation.
Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines.
Witter, Lauren E; Gruber, Erika J; Lean, Fabian Z X; Stokol, Tracy
2017-01-01
OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor-replete or specific coagulation factor-deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X-deficient plasma; residual thrombin generation in factor VII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma.
Evaluation of procoagulant tissue factor expression in canine hemangiosarcoma cell lines
Witter, Lauren E.; Gruber, Erika J.; Lean, Fabian Z. X.; Stokol, Tracy
2017-01-01
OBJECTIVE To evaluate expression of procoagulant tissue factor (TF) by canine hemangiosarcoma cells in vitro. SAMPLES 4 canine hemangiosarcoma cell lines (SB-HSA [mouse-passaged cutaneous tumor], Emma [primary metastatic brain tumor], and Frog and Dal-1 [primary splenic tumors]) and 1 nonneoplastic canine endothelial cell line (CnAoEC). PROCEDURES TF mRNA and TF antigen expression were evaluated by quantitative real-time PCR assay and flow cytometry, respectively. Thrombin generation was measured in canine plasma and in coagulation factor–replete or specific coagulation factor–deficient human plasma by calibrated automated thrombography. Corn trypsin inhibitor and annexin V were used to examine contributions of contact activation and membrane-bound phosphatidylserine, respectively, to thrombin generation. RESULTS All cell lines expressed TF mRNA and antigen, with significantly greater expression of both products in SB-HSA and Emma cells than in CnAoEC. A greater percentage of SB-HSA cells expressed TF antigen, compared with other hemangiosarcoma cell lines. All hemangiosarcoma cell lines generated significantly more thrombin than did CnAoEC in canine or factor-replete human plasma. Thrombin generation induced by SB-HSA cells was significantly lower in factor VII-deficient plasma than in factor-replete plasma and was abolished in factor X–deficient plasma; residual thrombin generation in FVII-deficient plasma was abolished by incubation of cells with annexin V. Thrombin generation by SB-HSA cells was unaffected by the addition of corn trypsin inhibitor. CONCLUSIONS AND CLINICAL RELEVANCE Hemangiosarcoma cell lines expressed procoagulant TF in vitro. Further research is needed to determine whether TF can be used as a biomarker for hemostatic dysfunction in dogs with hemangiosarcoma. PMID:28029283
Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease
Cook, Travis J.; Bullock, Kristin M.; Zhao, Yanchun; Ginghina, Carmen; Li, Yanfei; Aro, Patrick; Dator, Romel; He, Chunmei; Hipp, Michael J.; Zabetian, Cyrus P.; Peskind, Elaine R.; Hu, Shu-Ching; Quinn, Joseph F.; Galasko, Douglas R.; Banks, William A.; Zhang, Jing
2014-01-01
Extracellular α-synuclein is important in the pathogenesis of Parkinson disease (PD) and also as a potential biomarker when tested in the cerebrospinal fluid (CSF). The performance of blood plasma or serum α-synuclein as a biomarker has been found to be inconsistent and generally ineffective, largely due to the contribution of peripherally derived α-synuclein. In this study, we discovered, via an intracerebroventricular injection of radiolabeled α-synuclein into mouse brain, that CSF α-synuclein was readily transported to blood, with a small portion being contained in exosomes that are relatively specific to the central nervous system (CNS). Consequently, we developed a technique to evaluate the levels of α-synuclein in these exosomes in individual plasma samples. When applied to a large cohort of clinical samples (267 PD, 215 controls), we found that in contrast to CSF α-synuclein concentrations, which are consistently reported to be lower in PD patients compared to controls, the levels of plasma exosomal α-synuclein were substantially higher in PD patients, suggesting an increased efflux of the protein to the peripheral blood of these patients. Furthermore, although no association was observed between plasma exosomal and CSF α-synuclein, a significant correlation between plasma exosomal α-synuclein and disease severity (r=0.176, p=0.004) was observed, and the diagnostic sensitivity and specificity achieved by plasma exosomal α-synuclein were comparable to those determined by CSF α-synuclein. Further studies are clearly needed to elucidate the mechanism involved in the transport of CNS α-synuclein to the periphery, which may lead to a more convenient and robust assessment of PD clinically. PMID:24997849
Calorie restriction as an anti-invasive therapy for malignant brain cancer in the VM mouse.
Shelton, Laura M; Huysentruyt, Leanne C; Mukherjee, Purna; Seyfried, Thomas N
2010-07-23
GBM (glioblastoma multiforme) is the most aggressive and invasive form of primary human brain cancer. We recently developed a novel brain cancer model in the inbred VM mouse strain that shares several characteristics with human GBM. Using bioluminescence imaging, we tested the efficacy of CR (calorie restriction) for its ability to reduce tumour size and invasion. CR targets glycolysis and rapid tumour cell growth in part by lowering circulating glucose levels. The VM-M3 tumour cells were implanted intracerebrally in the syngeneic VM mouse host. Approx. 12-15 days post-implantation, brains were removed and both ipsilateral and contralateral hemispheres were imaged to measure bioluminescence of invading tumour cells. CR significantly reduced the invasion of tumour cells from the implanted ipsilateral hemisphere into the contralateral hemisphere. The total percentage of Ki-67-stained cells within the primary tumour and the total number of blood vessels was also significantly lower in the CR-treated mice than in the mice fed ad libitum, suggesting that CR is anti-proliferative and anti-angiogenic. Our findings indicate that the VM-M3 GBM model is a valuable tool for studying brain tumour cell invasion and for evaluating potential therapeutic approaches for managing invasive brain cancer. In addition, we show that CR can be effective in reducing malignant brain tumour growth and invasion.
3D culture of murine neural stem cells on decellularized mouse brain sections.
De Waele, Jorrit; Reekmans, Kristien; Daans, Jasmijn; Goossens, Herman; Berneman, Zwi; Ponsaerts, Peter
2015-02-01
Transplantation of neural stem cells (NSC) in diseased or injured brain tissue is widely studied as a potential treatment for various neurological pathologies. However, effective cell replacement therapy relies on the intrinsic capacity of cellular grafts to overcome hypoxic and/or immunological barriers after transplantation. In this context, it is hypothesized that structural support for grafted NSC will be of utmost importance. With this study, we present a novel decellularization protocol for 1.5 mm thick mouse brain sections, resulting in the generation of acellular three-dimensional (3D) brain sections. Next, the obtained 3D brain sections were seeded with murine NSC expressing both the eGFP and luciferase reporter proteins (NSC-eGFP/Luc). Using real-time bioluminescence imaging, the survival and growth of seeded NSC-eGFP/Luc cells was longitudinally monitored for 1-7 weeks in culture, indicating the ability of the acellular brain sections to support sustained ex vivo growth of NSC. Next, the organization of a 3D maze-like cellular structure was examined using confocal microscopy. Moreover, under mitogenic stimuli (EGF and hFGF-2), most cells in this 3D culture retained their NSC phenotype. Concluding, we here present a novel protocol for decellularization of mouse brain sections, which subsequently support long-term 3D culture of undifferentiated NSC. Copyright © 2014 Elsevier Ltd. All rights reserved.
Comparison of seven optical clearing methods for mouse brain
NASA Astrophysics Data System (ADS)
Wan, Peng; Zhu, Jingtan; Yu, Tingting; Zhu, Dan
2018-02-01
Recently, a variety of tissue optical clearing techniques have been developed to reduce light scattering for imaging deeper and three-dimensional reconstruction of tissue structures. Combined with optical imaging techniques and diverse labeling methods, these clearing methods have significantly promoted the development of neuroscience. However, most of the protocols were proposed aiming for specific tissue type. Though there are some comparison results, the clearing methods covered are limited and the evaluation indices are lack of uniformity, which made it difficult to select a best-fit protocol for clearing in practical applications. Hence, it is necessary to systematically assess and compare these clearing methods. In this work, we evaluated the performance of seven typical clearing methods, including 3DISCO, uDISCO, SeeDB, ScaleS, ClearT2, CUBIC and PACT, on mouse brain samples. First, we compared the clearing capability on both brain slices and whole-brains by observing brain transparency. Further, we evaluated the fluorescence preservation and the increase of imaging depth. The results showed that 3DISCO, uDISCO and PACT posed excellent clearing capability on mouse brains, ScaleS and SeeDB rendered moderate transparency, while ClearT2 was the worst. Among those methods, ScaleS was the best on fluorescence preservation, and PACT achieved the highest increase of imaging depth. This study is expected to provide important reference for users in choosing most suitable brain optical clearing method.
Maldonado-Devincci, Antoniette M.; Beattie, Matthew C.; Morrow, Danielle H.; McKinley, Raechel E.; Cook, Jason B.; O’Buckley, Todd K.
2014-01-01
Rationale Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, and GABAergic neuroactive steroids contribute to homeostatic regulation of this circuitry. Acute forced swim stress (FSS) increases plasma, cortical, and hypothalamic (3α,5α)-3-hydroxy-pregnan-20-one (3α,5α-THP) levels in rats. However, there have not been systemic investigations of acute stress on changes in plasma and brain levels of 3α,5α-THP in mouse models. Objectives The present experiments aimed to assess circulating and local brain levels of 3α,5α-THP following acute FSS in C57BL/6J mice. Methods Mice were exposed to FSS (10 min), and 50 min later, blood and brains were collected. Circulating pregnenolone and 3α,5α-THP levels were assessed in serum. Free-floating brain sections (40 µm, four to five sections/region) were immunostained and analyzed in cortical and limbic brain structures. Results FSS decreased circulating 3α,5α-THP (−41.6± 10.4 %) and reduced 3α,5α-THP immunolabeling in the paraventricular nucleus of the hypothalamus (−15.2±5.7 %), lateral amygdala (LA, −31.1±13.4 %), and nucleus accumbens (NAcc) shell (−31.9±14.6). Within the LA, vesicular glutamate transporter 1 (VGLUT1) and vesicular GABA transporter were localized in 3α,5α-THP-positively stained cells, while in the NAcc shell, only VGLUT1 was localized in 3α,5α-THP-positively stained cells, suggesting that both glutamatergic and GABAergic cells within the LA are 3α,5α-THP-positive, while in the NAcc shell, 3α,5α-THP only localizes to glutamatergic cells. Conclusions The decrease in circulating and brain levels of 3α,5α-THP may be due to alterations in the biosynthesis/ metabolism or changes in the regulation of the HPA axis following FSS. Changes in GABAergic neuroactive steroids in response to stress likely mediate functional adaptations in neuronal activity. This may provide a potential targeted therapeutic avenue to address maladaptive stress responsivity. PMID:24744202
Ishihara, Keiichi
2017-01-01
Down syndrome, caused by the triplication of human chromosome 21, is the most frequent genetic cause of mental retardation. Mice with a segmental trisomy for mouse chromosome 16, which is orthologous to human chromosome 21, exhibit abnormalities similar to those in individuals with Down syndrome and therefore offer the opportunity for a genotype-phenotype correlation. In the current review, I present several mouse lines with trisomic regions of various lengths and discuss their usefulness for elucidating the mechanisms underlying Down syndrome-associated developmental cognitive disabilities. In addition, our recent comprehensive study attempting to identify molecules with disturbed expression in the brain of a mouse model of Down syndrome in order to develop a pharmacologic therapy for Down syndrome is described.
NASA Astrophysics Data System (ADS)
Li, Lei; Zhang, Pengfei; Wang, Lihong V.
2018-02-01
Photoacoustic computed tomography (PACT) is a non-invasive imaging technique offering high contrast, high resolution, and deep penetration in biological tissues. We report a photoacoustic computed tomography (PACT) system equipped with a high frequency linear array for anatomical and functional imaging of the mouse whole brain. The linear array was rotationally scanned in the coronal plane to achieve the full-view coverage. We investigated spontaneous neural activities in the deep brain by monitoring the hemodynamics and observed strong interhemispherical correlations between contralateral regions, both in the cortical layer and in the deep regions.
MRI as a tool to study brain structure from mouse models for mental retardation
NASA Astrophysics Data System (ADS)
Verhoye, Marleen; Sijbers, Jan; Kooy, R. F.; Reyniers, E.; Fransen, E.; Oostra, B. A.; Willems, Peter; Van der Linden, Anne-Marie
1998-07-01
Nowadays, transgenic mice are a common tool to study brain abnormalities in neurological disorders. These studies usually rely on neuropathological examinations, which have a number of drawbacks, including the risk of artefacts introduced by fixation and dehydration procedures. Here we present 3D Fast Spin Echo Magnetic Resonance Imaging (MRI) in combination with 2D and 3D segmentation techniques as a powerful tool to study brain anatomy. We set up MRI of the brain in mouse models for the fragile X syndrome (FMR1 knockout) and Corpus callosum hypoplasia, mental Retardation, Adducted thumbs, Spastic paraplegia and Hydrocephalus (CRASH) syndrome (L1CAM knockout). Our major goal was to determine qualitative and quantitative differences in specific brain structures. MRI of the brain of fragile X and CRASH patients has revealed alterations in the size of specific brain structures, including the cerebellar vermis and the ventricular system. In the present MRI study of the brain from fragile X knockout mice, we have measured the size of the brain, cerebellum and 4th ventricle, which were reported as abnormal in human fragile X patients, but found no evidence for altered brain regions in the mouse model. In CRASH syndrome, the most specific brain abnormalities are vermis hypoplasia and abnormalities of the ventricular system with some degree of hydrocephalus. With the MRI study of L1CAM knockout mice we found vermis hypoplasia, abnormalities of the ventricular system including dilatation of the lateral and the 4th ventricles. These subtle abnormalities were not detected upon standard neuropathological examination. Here we proved that this sensitive MRI technique allows to measure small differences which can not always be detected by means of pathology.
Metabolic drift in the aging brain.
Ivanisevic, Julijana; Stauch, Kelly L; Petrascheck, Michael; Benton, H Paul; Epstein, Adrian A; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E; Boska, Michael D; Gendelman, Howard E; Fox, Howard S; Siuzdak, Gary
2016-05-01
Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energymetabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication.
Lowe, Xiu R; Bhattacharya, Sanchita; Marchetti, Francesco; Wyrobek, Andrew J
2009-01-01
Understanding the cognitive and behavioral consequences of brain exposures to low-dose ionizing radiation has broad relevance for health risks from medical radiation diagnostic procedures, radiotherapy and environmental nuclear contamination as well as for Earth-orbit and space missions. Analyses of transcriptome profiles of mouse brain tissue after whole-body irradiation showed that low-dose exposures (10 cGy) induced genes not affected by high-dose radiation (2 Gy) and that low-dose genes were associated with unique pathways and functions. The low-dose response had two major components: pathways that are consistently seen across tissues and pathways that were specific for brain tissue. Low-dose genes clustered into a saturated network (P < 10(-53)) containing mostly down-regulated genes involving ion channels, long-term potentiation and depression, vascular damage, etc. We identified nine neural signaling pathways that showed a high degree of concordance in their transcriptional response in mouse brain tissue after low-dose irradiation, in the aging human brain (unirradiated), and in brain tissue from patients with Alzheimer's disease. Mice exposed to high-dose radiation did not show these effects and associations. Our findings indicate that the molecular response of the mouse brain within a few hours after low-dose irradiation involves the down-regulation of neural pathways associated with cognitive dysfunctions that are also down-regulated in normal human aging and Alzheimer's disease.
Serotonin signaling in the brain of adult female mice is required for sexual preference
Zhang, Shasha; Liu, Yan; Rao, Yi
2013-01-01
A role for serotonin in male sexual preference was recently uncovered by our finding that male mutant mice lacking serotonin have lost sexual preference. Here we show that female mouse mutants lacking either central serotonergic neurons or serotonin prefer female over male genital odors when given a choice, and displayed increased female–female mounting when presented either with a choice of a male and a female target or only with a female target. Pharmacological manipulations and genetic rescue experiments showed that serotonin is required in adults. Behavioral changes caused by deficient serotonergic signaling were not due to changes in plasma concentrations of sex hormones. We demonstrate that a genetic manipulation reverses sexual preference without involving sex hormones. Our results indicate that serotonin controls sexual preference. PMID:23716677
NASA Astrophysics Data System (ADS)
Funane, Tsukasa; Hou, Steven S.; Zoltowska, Katarzyna Marta; van Veluw, Susanne J.; Berezovska, Oksana; Kumar, Anand T. N.; Bacskai, Brian J.
2018-05-01
We have developed an imaging technique which combines selective plane illumination microscopy with time-domain fluorescence lifetime imaging microscopy (SPIM-FLIM) for three-dimensional volumetric imaging of cleared mouse brains with micro- to mesoscopic resolution. The main features of the microscope include a wavelength-adjustable pulsed laser source (Ti:sapphire) (near-infrared) laser, a BiBO frequency-doubling photonic crystal, a liquid chamber, an electrically focus-tunable lens, a cuvette based sample holder, and an air (dry) objective lens. The performance of the system was evaluated with a lifetime reference dye and micro-bead phantom measurements. Intensity and lifetime maps of three-dimensional human embryonic kidney (HEK) cell culture samples and cleared mouse brain samples expressing green fluorescent protein (GFP) (donor only) and green and red fluorescent protein [positive Förster (fluorescence) resonance energy transfer] were acquired. The results show that the SPIM-FLIM system can be used for sample sizes ranging from single cells to whole mouse organs and can serve as a powerful tool for medical and biological research.
Atay, Stefan M.; Kroenke, Christopher D.; Sabet, Arash; Bayly, Philip V.
2008-01-01
In this study, the magnetic resonance elastography (MRE) technique was used to estimate the dynamic shear modulus of mouse brain tissue in vivo. The technique allows visualization and measurement of mechanical shear waves excited by lateral vibration of the skull. Quantitative measurements of displacement in three dimensions (3-D) during vibration at 1200 Hz were obtained by applying oscillatory magnetic field gradients at the same frequency during an MR imaging sequence. Contrast in the resulting phase images of the mouse brain is proportional to displacement. To obtain estimates of shear modulus, measured displacement fields were fitted to the shear wave equation. Validation of the procedure was performed on gel characterized by independent rheometry tests and on data from finite element simulations. Brain tissue is, in reality, viscoelastic and nonlinear. The current estimates of dynamic shear modulus are strictly relevant only to small oscillations at a specific frequency, but these estimates may be obtained at high frequencies (and thus high deformation rates), non-invasively throughout the brain. These data complement measurements of nonlinear viscoelastic properties obtained by others at slower rates, either ex vivo or invasively. PMID:18412500
Expression Profile of DNA Damage Signaling Genes in Proton Exposed Mouse Brain
NASA Astrophysics Data System (ADS)
Ramesh, Govindarajan; Wu, Honglu
Exposure of living systems to radiation results in a wide assortment of lesions, the most signif-icant of is damage to genomic DNA which induce several cellular functions such as cell cycle arrest, repair, apoptosis etc. The radiation induced DNA damage investigation is one of the im-portant area in biology, but still the information available regarding the effects of proton is very limited. In this report, we investigated the differential gene expression pattern of DNA damage signaling genes particularly, damaged DNA binding, repair, cell cycle arrest, checkpoints and apoptosis using quantitative real-time RT-PCR array in proton exposed mouse brain tissues. The expression profiles showed significant changes in DNA damage related genes in 2Gy proton exposed mouse brain tissues as compared with control brain tissues. Furthermore, we also show that significantly increased levels of apoptotic related genes, caspase-3 and 8 activities in these cells, suggesting that in addition to differential expression of DNA damage genes, the alteration of apoptosis related genes may also contribute to the radiation induced DNA damage followed by programmed cell death. In summary, our findings suggest that proton exposed brain tissue undergo severe DNA damage which in turn destabilize the chromatin stability.
Nikolian, Vahagn C; Dekker, Simone E; Bambakidis, Ted; Higgins, Gerald A; Dennahy, Isabel S; Georgoff, Patrick E; Williams, Aaron M; Andjelkovic, Anuska V; Alam, Hasan B
2018-01-01
Combined traumatic brain injury and hemorrhagic shock are highly lethal. Following injuries, the integrity of the blood-brain barrier can be impaired, contributing to secondary brain insults. The status of the blood-brain barrier represents a potential factor impacting long-term neurologic outcomes in combined injuries. Treatment strategies involving plasma-based resuscitation and valproic acid therapy have shown efficacy in this setting. We hypothesize that a component of this beneficial effect is related to blood-brain barrier preservation. Following controlled traumatic brain injury, hemorrhagic shock, various resuscitation and treatment strategies were evaluated for their association with blood-brain barrier integrity. Analysis of gene expression profiles was performed using Porcine Gene ST 1.1 microarray. Pathway analysis was completed using network analysis tools (Gene Ontology, Ingenuity Pathway Analysis, and Parametric Gene Set Enrichment Analysis). Female Yorkshire swine were subjected to controlled traumatic brain injury and 2 hours of hemorrhagic shock (40% blood volume, mean arterial pressure 30-35 mmHg). Subjects were resuscitated with 1) normal saline, 2) fresh frozen plasma, 3) hetastarch, 4) fresh frozen plasma + valproic acid, or 5) hetastarch + valproic acid (n = 5 per group). After 6 hours of observation, brains were harvested for evaluation. Immunofluoroscopic evaluation of the traumatic brain injury site revealed significantly increased expression of tight-junction associated proteins (zona occludin-1, claudin-5) following combination therapy (fresh frozen plasma + valproic acid and hetastarch + valproic acid). The extracellular matrix protein laminin was found to have significantly improved expression with combination therapies. Pathway analysis indicated that valproic acid significantly modulated pathways involved in endothelial barrier function and cell signaling. Resuscitation with fresh frozen plasma results in improved expression of proteins essential for blood-brain barrier integrity. The addition of valproic acid provides significant improvement to these protein expression profiles. This is likely secondary to activation of key pathways related to endothelial functions.
NASA Astrophysics Data System (ADS)
Maurin, Mathieu; Stéphan, Olivier; Vial, Jean-Claude; Marder, Seth R.; van der Sanden, Boudewijn
2011-03-01
Our purpose is to test if Pluronic® fluorescent nanomicelles can be used for in vivo two-photon imaging of both the normal and the tumor vasculature. The nanomicelles were obtained after encapsulating a hydrophobic two-photon dye: di-stryl benzene derivative, in Pluronic block copolymers. Their performance with respect to imaging depth, blood plasma staining, and diffusion across the tumor vascular endothelium is compared to a classic blood pool dye Rhodamin B dextran (70 kDa) using two-photon microscopy. Pluronic nanomicelles show, like Rhodamin B dextran, a homogeneous blood plasma staining for at least 1 h after intravenous injection. Their two-photon imaging depth is similar in normal mouse brain, using 10 times less injected mass. In contrast with Rhodamin B dextran, no extravasation is observed in leaky tumor vessels due to their large size: 20-100 nm. In conclusion, Pluronic nanomicelles can be used as a blood pool dye, even in leaky tumor vessels. The use of Pluronic block copolymers is a valuable approach for encapsulating two-photon fluorescent dyes that are hydrophobic and not suitable for intravenous injection.
Wood, JodiAnne T.; Williams, John S.; Pandarinathan, Lakshmipathi; Janero, David R.; Lammi-Keefe, Carol J.; Makriyannis, Alexandros
2010-01-01
The endocannabinoid metabolome consists of a growing, (patho)physiologically important family of fatty-acid derived signaling lipids. Diet is a major source of fatty acid substrate for mammalian endocannabinoid biosynthesis. The principal long-chain PUFA found in mammalian brain, docosahexaenoic acid (DHA), supports neurological function, retinal development, and overall health. The extent to which dietary DHA supplementation influences endocannabinoid-related metabolites in brain, within the context of the circulating endocannabinoid profile, is currently unknown. We report the first lipidomic analysis of acute 2-week DHA dietary supplementation effects on the physiological state of 15 fatty-acid, N-acylethanolamine, and glycerol-ester endocannabinoid metabolome constituents in murine plasma and brain. The DHA-rich diet markedly elevated DHA, eicosapentaenoic acid, 2-eicosapentanoylglycerol (EPG), and docosahexanoylethanolamine in both compartments. Dietary DHA enhancement generally affected the synthesis of the N-acyl-ethanolamine and glycerol-ester metabolites to favor the docosahexaenoic and eicosapentaenoic vs. arachidonoyl and oleoyl homologs in both brain and plasma. The greater overall responsiveness of the endocannabinoid metabolome in plasma versus brain may reflect a more circumscribed homeostatic response range of brain lipids to dietary DHA supplementation. The ability of short-term DHA enhancement to modulate select constituents of the physiological brain and plasma endocannabinoid metabolomes carries metabolic and therapeutic implications. PMID:20071693
Wood, Jodianne T; Williams, John S; Pandarinathan, Lakshmipathi; Janero, David R; Lammi-Keefe, Carol J; Makriyannis, Alexandros
2010-06-01
The endocannabinoid metabolome consists of a growing, (patho)physiologically important family of fatty-acid derived signaling lipids. Diet is a major source of fatty acid substrate for mammalian endocannabinoid biosynthesis. The principal long-chain PUFA found in mammalian brain, docosahexaenoic acid (DHA), supports neurological function, retinal development, and overall health. The extent to which dietary DHA supplementation influences endocannabinoid-related metabolites in brain, within the context of the circulating endocannabinoid profile, is currently unknown. We report the first lipidomic analysis of acute 2-week DHA dietary supplementation effects on the physiological state of 15 fatty-acid, N-acylethanolamine, and glycerol-ester endocannabinoid metabolome constituents in murine plasma and brain. The DHA-rich diet markedly elevated DHA, eicosapentaenoic acid, 2-eicosapentanoylglycerol (EPG), and docosahexanoylethanolamine in both compartments. Dietary DHA enhancement generally affected the synthesis of the N-acyl-ethanolamine and glycerol-ester metabolites to favor the docosahexaenoic and eicosapentaenoic vs. arachidonoyl and oleoyl homologs in both brain and plasma. The greater overall responsiveness of the endocannabinoid metabolome in plasma versus brain may reflect a more circumscribed homeostatic response range of brain lipids to dietary DHA supplementation. The ability of short-term DHA enhancement to modulate select constituents of the physiological brain and plasma endocannabinoid metabolomes carries metabolic and therapeutic implications.
Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome
Goodliffe, Joseph W.; Olmos-Serrano, Jose Luis; Aziz, Nadine M.; Pennings, Jeroen L.A.; Guedj, Faycal; Bianchi, Diana W.
2016-01-01
Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16. SIGNIFICANCE STATEMENT Down syndrome (DS) leads to intellectual disability. Several mouse models have increased our understanding of the neuropathology of DS and are currently being used to test therapeutic strategies. A new mouse model that contains an expanded number of DS-related genes, known as Dp(16)1Yey/+ (Dp16), has been generated recently. We sought to determine whether the extended triplication creates a better phenocopy of DS-related brain pathologies. We measured embryonic development, forebrain maturation, and perinatal/adult behavior and revealed an absence of prenatal phenotypes in Dp16 fetal brain, but specific cellular and behavioral deficits after the first 2 postnatal weeks. These results uncover important differences in prenatal phenotype between Dp16 animals and humans with DS and other DS mouse models. PMID:26961948
Mutations in α-Tubulin Cause Abnormal Neuronal Migration in Mice and Lissencephaly in Humans
Keays, David A.; Tian, Guoling; Poirier, Karine; Huang, Guo-Jen; Siebold, Christian; Cleak, James; Oliver, Peter L.; Fray, Martin; Harvey, Robert J.; Molnár, Zoltán; Piñon, Maria C.; Dear, Neil; Valdar, William; Brown, Steve D.M.; Davies, Kay E.; Rawlins, J. Nicholas P.; Cowan, Nicholas J.; Nolan, Patrick; Chelly, Jamel; Flint, Jonathan
2007-01-01
Summary The development of the mammalian brain is dependent on extensive neuronal migration. Mutations in mice and humans that affect neuronal migration result in abnormal lamination of brain structures with associated behavioral deficits. Here, we report the identification of a hyperactive N-ethyl-N-nitrosourea (ENU)-induced mouse mutant with abnormalities in the laminar architecture of the hippocampus and cortex, accompanied by impaired neuronal migration. We show that the causative mutation lies in the guanosine triphosphate (GTP) binding pocket of α-1 tubulin (Tuba1) and affects tubulin heterodimer formation. Phenotypic similarity with existing mouse models of lissencephaly led us to screen a cohort of patients with developmental brain anomalies. We identified two patients with de novo mutations in TUBA3, the human homolog of Tuba1. This study demonstrates the utility of ENU mutagenesis in the mouse as a means to discover the basis of human neurodevelopmental disorders. PMID:17218254
Szamel, M; Goppelt, M; Resch, K
1985-12-19
Purified plasma membranes of mouse EL4 lymphoma cells were fractionated by means of affinity chromatography on concanavalin A-Sepharose into two subfractions; one (MF1) eluted freely from the affinity column, the second (MF2) adhered specifically to Con A-Sepharose. Both membrane subfractions proved to be of plasma membrane origin, as evidenced by the following criteria. (i) The ratio of cholesterol to phospholipid was nearly identical in plasma membrane and both subfractions. (ii) When isolated plasma membranes were labelled with tritiated NaBH4, both subfractions exhibited identical specific radioactivities. (iii) After enzymatic radioiodination of the cells, the total content of labelled proteins was very similar in isolated plasma membranes and in both subfractions. (iv) Some plasma membrane marker enzymes exhibited nearly identical specific activities in plasma membranes, MF1 or MF2 including gamma-glutamyl transpeptidase, 5'-nucleotidase and Mg2+-ATPase. Both subfractions exhibited characteristic differences. Thus the specific activities of (Na+ + K+)-ATPase, Ca2+-ATPase and lysophosphatidylcholine acyltransferase were several-fold enriched in MF2 compared to MF1. SDS-polyacrylamide gel electrophoresis revealed a different polypeptide composition of the two subfractions. Polypeptides of apparent molecular mass of 116, 95, 42, 39, 30 and 28 kDa were highly enriched in MF2, whereas MF1 contained another set of proteins, of apparent molecular mass of 70, 55 and 24 kDa. The phospholipid fatty acid composition of the subfractions proved to be different, as well, MF2 contained more saturated fatty acids than MF1. The data suggest the existence of plasma membrane domains in the plasma membranes of the mouse EL4 lymphoma cells, containing a set of polypeptides, among others membrane bound enzymes, embedded in a different phospholipid milieu.
Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P
2018-05-18
An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the visceral area. Additionally, this pattern of explained variation differed spatially across the brain, with transcriptomic similarity playing a larger role in the cortex than subcortex, while connectivity explains structural covariance best in parts of the cortex, midbrain, and hindbrain. These results suggest that both gene expression and connectivity underlie structural volume covariance, albeit to different extents depending on brain region, and this relationship is modulated by distance. Copyright © 2018. Published by Elsevier Inc.
Whish, Sophie; Dziegielewska, Katarzyna M.; Møllgård, Kjeld; Noor, Natassya M.; Liddelow, Shane A.; Habgood, Mark D.; Richardson, Samantha J.; Saunders, Norman R.
2015-01-01
In the adult the interface between the cerebrospinal fluid and the brain is lined by the ependymal cells, which are joined by gap junctions. These intercellular connections do not provide a diffusional restrain between the two compartments. However, during development this interface, initially consisting of neuroepithelial cells and later radial glial cells, is characterized by “strap” junctions, which limit the exchange of different sized molecules between cerebrospinal fluid and the brain parenchyma. Here we provide a systematic study of permeability properties of this inner cerebrospinal fluid-brain barrier during mouse development from embryonic day, E17 until adult. Results show that at fetal stages exchange across this barrier is restricted to the smallest molecules (286Da) and the diffusional restraint is progressively removed as the brain develops. By postnatal day P20, molecules the size of plasma proteins (70 kDa) diffuse freely. Transcriptomic analysis of junctional proteins present in the cerebrospinal fluid-brain interface showed expression of adherens junctional proteins, actins, cadherins and catenins changing in a development manner consistent with the observed changes in the permeability studies. Gap junction proteins were only identified in the adult as was claudin-11. Immunohistochemistry was used to localize at the cellular level some of the adherens junctional proteins of genes identified from transcriptomic analysis. N-cadherin, β - and α-catenin immunoreactivity was detected outlining the inner CSF-brain interface from E16; most of these markers were not present in the adult ependyma. Claudin-5 was present in the apical-most part of radial glial cells and in endothelial cells in embryos, but only in endothelial cells including plexus endothelial cells in adults. Claudin-11 was only immunopositive in the adult, consistent with results obtained from transcriptomic analysis. These results provide information about physiological, molecular and morphological-related permeability changes occurring at the inner cerebrospinal fluid-brain barrier during brain development. PMID:25729345
Expression of the Murine Duchenne Muscular Dystrophy Gene in Muscle and Brain
NASA Astrophysics Data System (ADS)
Chamberlain, Jeffrey S.; Pearlman, Joel A.; Muzny, Donna M.; Gibbs, Richard A.; Ranier, Joel E.; Reeves, Alice A.; Caskey, C. Thomas
1988-03-01
Complementary DNA clones were isolated that represent the 5' terminal 2.5 kilobases of the murine Duchenne muscular dystrophy (Dmd) messenger RNA (mRNA). Mouse Dmd mRNA was detectable in skeletal and cardiac muscle and at a level approximately 90 percent lower in brain. Dmd mRNA is also present, but at much lower than normal levels, in both the muscle and brain of three different strains of dystrophic mdx mice. The identification of Dmd mRNA in brain raises the possibility of a relation between human Duchenne muscular dystrophy (DMD) gene expression and the mental retardation found in some DMD males. These results also provide evidence that the mdx mutations are allelic variants of mouse Dmd gene mutations.
Phan, Jenny-Ann; Landau, Anne M; Jakobsen, Steen; Wong, Dean F; Gjedde, Albert
2017-11-22
We describe a novel method of kinetic analysis of radioligand binding to neuroreceptors in brain in vivo, here applied to noradrenaline receptors in rat brain. The method uses positron emission tomography (PET) of [ 11 C]yohimbine binding in brain to quantify the density and affinity of α 2 adrenoceptors under condition of changing radioligand binding to plasma proteins. We obtained dynamic PET recordings from brain of Spraque Dawley rats at baseline, followed by pharmacological challenge with unlabeled yohimbine (0.3 mg/kg). The challenge with unlabeled ligand failed to diminish radioligand accumulation in brain tissue, due to the blocking of radioligand binding to plasma proteins that elevated the free fractions of the radioligand in plasma. We devised a method that graphically resolved the masking of unlabeled ligand binding by the increase of radioligand free fractions in plasma. The Extended Inhibition Plot introduced here yielded an estimate of the volume of distribution of non-displaceable ligand in brain tissue that increased with the increase of the free fraction of the radioligand in plasma. The resulting binding potentials of the radioligand declined by 50-60% in the presence of unlabeled ligand. The kinetic unmasking of inhibited binding reflected in the increase of the reference volume of distribution yielded estimates of receptor saturation consistent with the binding of unlabeled ligand.
Emoto, Miho C; Yamato, Mayumi; Sato-Akaba, Hideo; Yamada, Ken-ichi; Fujii, Hirotada G
2015-11-03
Much evidence supports the idea that oxidative stress is involved in the pathogenesis of epilepsy, and therapeutic interventions with antioxidants are expected as adjunct antiepileptic therapy. The aims of this study were to non-invasively obtain spatially resolved redox data from control and pentylenetetrazole (PTZ)-induced kindled mouse brains by electron paramagnetic resonance (EPR) imaging and to visualize the brain regions that are sensitive to oxidative damage. After infusion of the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), a series of EPR images of PTZ-induced mouse heads were measured. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of redox status in vivo and mapped as a redox map. The obtained redox map showed heterogeneity in the redox status in PTZ-induced mouse brains compared with control. The co-registered image of the redox map and magnetic resonance imaging (MRI) for both control and PTZ-induced mice showed a clear change in the redox status around the hippocampus after PTZ. To examine the role of antioxidants on the brain redox status, the levels of antioxidants were measured in brain tissues of control and PTZ-induced mice. Significantly lower concentrations of glutathione in the hippocampus of PTZ-kindled mice were detected compared with control. From the results of both EPR imaging and the biochemical assay, the hippocampus was found to be susceptible to oxidative damage in the PTZ-induced animal model of epilepsy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Erickson, Michelle A; Niehoff, Michael L; Farr, Susan A; Morley, John E; Dillman, Lucy A; Lynch, Kristin M; Banks, William A
2012-01-01
The senescence accelerated mouse-prone 8 (SAMP8) mouse model of Alzheimer's disease has a natural mutation leading to age-related increases in the amyloid-β protein precursor (AβPP) and amyloid-β (Aβ) in the brain, memory impairment, and deficits in Aβ removal from the brain. Previous studies show that centrally administered antisense oligonucleotide directed against AβPP can decrease AβPP expression and Aβ production in the brains of aged SAMP8 mice, and improve memory. The same antisense crosses the blood-brain barrier and reverses memory deficits when injected intravenously. Here, we give 6 μg of AβPP or control antisense 3 times over 2 week intervals to 12 month old SAMP8 mice. Object recognition test was done 48 hours later, followed by removal of whole brains for immunoblot analysis of AβPP, low-density lipoprotein-related protein-1 (LRP-1), p-glycoprotein (Pgp), receptor for advanced glycation endproducts (RAGE), or ELISA of soluble Aβ(40). Our results show that AβPP antisense completely reverses a 30% age-associated increase in AβPP signal (p < 0.05 versus untreated 4 month old SAMP8). Soluble Aβ(40) increased with age, but was not reversed by antisense. LRP-1 large and small subunits increased significantly with age (147.7%, p < 0.01 and 123.7%, p < 0.05 respectively), and AβPP antisense completely reversed these increases (p < 0.05). Pgp and RAGE were not significantly altered with age or antisense. Antisense also caused improvements in memory (p < 0.001). Together, these data support the therapeutic potential of AβPP antisense and show a unique association between AβPP and LRP-1 expression in the SAMP8 mouse.
Anti-lysophosphatidic acid antibodies improve traumatic brain injury outcomes
2014-01-01
Background Lysophosphatidic acid (LPA) is a bioactive phospholipid with a potentially causative role in neurotrauma. Blocking LPA signaling with the LPA-directed monoclonal antibody B3/Lpathomab is neuroprotective in the mouse spinal cord following injury. Findings Here we investigated the use of this agent in treatment of secondary brain damage consequent to traumatic brain injury (TBI). LPA was elevated in cerebrospinal fluid (CSF) of patients with TBI compared to controls. LPA levels were also elevated in a mouse controlled cortical impact (CCI) model of TBI and B3 significantly reduced lesion volume by both histological and MRI assessments. Diminished tissue damage coincided with lower brain IL-6 levels and improvement in functional outcomes. Conclusions This study presents a novel therapeutic approach for the treatment of TBI by blocking extracellular LPA signaling to minimize secondary brain damage and neurological dysfunction. PMID:24576351
Preston, Chet; Wang, Louis; Yi, Jae Kyo; Lin, Chih-Li; Sun, Wei; Spyropoulos, Demetri D.; Rhee, Soyoung; Li, Mingsong; Zhou, Jie; Ge, Shaoyu; Zhang, Guofeng; Snider, Ashley J.; Hannun, Yusuf A.; Obeid, Lina M.; Mao, Cungui
2015-01-01
Dyshomeostasis of both ceramides and sphingosine-1-phosphate (S1P) in the brain has been implicated in aging-associated neurodegenerative disorders in humans. However, mechanisms that maintain the homeostasis of these bioactive sphingolipids in the brain remain unclear. Mouse alkaline ceramidase 3 (Acer3), which preferentially catalyzes the hydrolysis of C18:1-ceramide, a major unsaturated long-chain ceramide species in the brain, is upregulated with age in the mouse brain. Acer3 knockout causes an age-dependent accumulation of various ceramides and C18:1-monohexosylceramide and abolishes the age-related increase in the levels of sphingosine and S1P in the brain; thereby resulting in Purkinje cell degeneration in the cerebellum and deficits in motor coordination and balance. Our results indicate that Acer3 plays critically protective roles in controlling the homeostasis of various sphingolipids, including ceramides, sphingosine, S1P, and certain complex sphingolipids in the brain and protects Purkinje cells from premature degeneration. PMID:26474409
Pathophysiological Responses in Rat and Mouse Models of Radiation-Induced Brain Injury.
Yang, Lianhong; Yang, Jianhua; Li, Guoqian; Li, Yi; Wu, Rong; Cheng, Jinping; Tang, Yamei
2017-03-01
The brain is the major dose-limiting organ in patients undergoing radiotherapy for assorted conditions. Radiation-induced brain injury is common and mainly occurs in patients receiving radiotherapy for malignant head and neck tumors, arteriovenous malformations, or lung cancer-derived brain metastases. Nevertheless, the underlying mechanisms of radiation-induced brain injury are largely unknown. Although many treatment strategies are employed for affected individuals, the effects remain suboptimal. Accordingly, animal models are extremely important for elucidating pathogenic radiation-associated mechanisms and for developing more efficacious therapies. So far, models employing various animal species with different radiation dosages and fractions have been introduced to investigate the prevention, mechanisms, early detection, and management of radiation-induced brain injury. However, these models all have limitations, and none are widely accepted. This review summarizes the animal models currently set forth for studies of radiation-induced brain injury, especially rat and mouse, as well as radiation dosages, dose fractionation, and secondary pathophysiological responses.
A chronological expression profile of gene activity during embryonic mouse brain development.
Goggolidou, P; Soneji, S; Powles-Glover, N; Williams, D; Sethi, S; Baban, D; Simon, M M; Ragoussis, I; Norris, D P
2013-12-01
The brain is a functionally complex organ, the patterning and development of which are key to adult health. To help elucidate the genetic networks underlying mammalian brain patterning, we conducted detailed transcriptional profiling during embryonic development of the mouse brain. A total of 2,400 genes were identified as showing differential expression between three developmental stages. Analysis of the data identified nine gene clusters to demonstrate analogous expression profiles. A significant group of novel genes of as yet undiscovered biological function were detected as being potentially relevant to brain development and function, in addition to genes that have previously identified roles in the brain. Furthermore, analysis for genes that display asymmetric expression between the left and right brain hemispheres during development revealed 35 genes as putatively asymmetric from a combined data set. Our data constitute a valuable new resource for neuroscience and neurodevelopment, exposing possible functional associations between genes, including novel loci, and encouraging their further investigation in human neurological and behavioural disorders.
Luis, Juana; Ramírez, Lorena; Carmona, Agustín; Ortiz, Guadalupe; Delgado, Jesús; Cárdenas, René
2009-01-01
Paternal behavior and testosterone plasma levels in the Volcano Mouse Neotomodon alstoni (Rodentia: Muridae). Although initially it was thought that testosterone inhibited the display of paternal behavior in males of rodents, it has been shown that in some species high testosterone levels are needed for exhibition of paternal care. In captivity, males of Volcano Mouse (Neotomodon alstoni) provide pups the same care provided by the mother, with the exception of suckling. Here we measured plasmatic testosterone concentrations 10 days after mating, five and 20 days postpartum, and 10 days after males were isolated from their families in order to determine possible changes in this hormone, associated to the presence and age of pups. Males of Volcano Mouse exhibited paternal behavior when their testosterone levels were relatively high. Although levels of this hormone did not change with the presence or pups age, males that invested more time in huddling showed higher testosterone levels. It is possible that in the Volcano Mouse testosterone modulates paternal behavior indirectly, as in the California mouse.
Chen, Cheng-Sheng; Kuo, Yu-Ting; Tsai, Hui-Yi; Li, Chun-Wei; Lee, Chen-Chang; Yen, Cheng-Fang; Lin, Hsiu-Fen; Ko, Chih-Hung; Juo, Suh-Hang Hank; Yeh, Yi-Chun; Liu, Gin-Chung
2011-07-01
An elevated plasma homocysteine level has been reported to be associated with various neuropsychiatric diseases. However, little is known about the brain biochemical changes associated with the higher plasma homocysteine level. The main goal of this study was to examine the sex difference in brain biochemical concentrations using brain proton magnetic resonance spectroscopy (H MRS), and to elucidate the biochemical changes associated with plasma homocysteine levels by sex in healthy elderly subjects. Seventy elderly subjects without any clinical psychiatric and neurological disease underwent 3-T brain H MRS. MRS spectra were acquired from voxels placed on the left side of the basal ganglia, frontal lobe, and hippocampus. Brain biochemical concentrations were compared between the elderly male and female participants. Correlations between these biochemical concentrations and plasma homocysteine levels by sex were analyzed. Female participants had significantly higher levels of choline in the left frontal lobe and hippocampus, and lower creatine and myo-inositol, in the left basal ganglia than did males. A higher homocysteine level was correlated with a lower N-acetylaspartate (NAA) concentration in the left hippocampus in elderly women (r = -0.44; p = 0.03) but not in elderly men. This study found that there was a sex difference in brain biochemical concentrations in the elderly participants. A higher plasma homocysteine level was associated with a lower NAA in the hippocampus of elderly women. The sex difference in association between brain biochemical concentrations and plasma homocysteine levels needs further investigation. We speculate that after menopause, women lose protection of estrogen from the neurotoxic effects of homocysteine in the hippocampus. Future studies are required to examine this speculation.
Barkow, Jessica Cummiskey; Freed, Curt R.
2017-01-01
Exercise has been recommended to improve motor function in Parkinson patients, but its value in altering progression of disease is unknown. In this study, we examined the neuroprotective effects of running wheel exercise in mice. In adult wild-type mice, one week of running wheel activity led to significantly increased DJ-1 protein concentrations in muscle and plasma. In DJ-1 knockout mice, running wheel performance was much slower and Rotarod performance was reduced, suggesting that DJ-1 protein is required for normal motor activity. To see if exercise can prevent abnormal protein deposition and behavioral decline in transgenic animals expressing a mutant human form of α-synuclein in all neurons, we set up running wheels in the cages of pre-symptomatic animals at 12 months old. Activity was monitored for a 3-month period. After 3 months, motor and cognitive performance on the Rotarod and Morris Water Maze were significantly better in running animals compared to control transgenic animals with locked running wheels. Biochemical analysis revealed that running mice had significantly higher DJ-1, Hsp70 and BDNF concentrations and had significantly less α-synuclein aggregation in brain compared to control mice. By contrast, plasma concentrations of α-synuclein were significantly higher in exercising mice compared to control mice. Our results suggest that exercise may slow the progression of Parkinson’s disease by preventing abnormal protein aggregation in brain. PMID:29272304
Perez-Gonzalez, Rocio; Gauthier, Sebastien A.; Kumar, Asok; Levy, Efrat
2012-01-01
In vitro studies have shown that neuronal cell cultures secrete exosomes containing amyloid-β precursor protein (APP) and the APP-processing products, C-terminal fragments (CTFs) and amyloid-β (Aβ). We investigated the secretion of full-length APP (flAPP) and APP CTFs via the exosome secretory pathway in vivo. To this end, we developed a novel protocol designed to isolate exosomes secreted into mouse brain extracellular space. Exosomes with typical morphology were isolated from freshly removed mouse brains and from frozen mouse and human brain tissues, demonstrating that exosomes can be isolated from post-mortem tissue frozen for long periods of time. flAPP, APP CTFs, and enzymes that cleave both flAPP and APP CTFs were identified in brain exosomes. Although higher levels of both flAPP and APP CTFs were observed in exosomes isolated from the brains of transgenic mice overexpressing human APP (Tg2576) compared with wild-type control mice, there was no difference in the number of secreted brain exosomes. These data indicate that the levels of flAPP and APP CTFs associated with exosomes mirror the cellular levels of flAPP and APP CTFs. Interestingly, exosomes isolated from the brains of both Tg2576 and wild-type mice are enriched with APP CTFs relative to flAPP. Thus, we hypothesize that the exosome secretory pathway plays a pleiotropic role in the brain: exosome secretion is beneficial to the cell, acting as a specific releasing system of neurotoxic APP CTFs and Aβ, but the secretion of exosomes enriched with APP CTFs, neurotoxic proteins that are also a source of secreted Aβ, is harmful to the brain. PMID:23129776
Xu, Ming; Liu, Xiaoxia; Mei, Guanghai; Zhang, Junjie; Wang, Weixing; Xu, Hongzhi
2018-05-09
Aberrant expression of angiogenic factors has been anecdotally documented in brain arteriovenous malformation (AVM) nidus vessels; however, no data is available on the effect of radiosurgery on the levels of angiogenic factors in AVM patients. We sought to determine the plasma contents of VEGF, TGF-β, Ang-2 and bFGF in 28 brain AVM patients at baseline and post radiosurgery and further analyzed the relationship between plasma contents of these angiogenic factors with clinicopathologic variables of these patients. We enrolled brain AVM patients who underwent Cyberknife radiosurgery at our hospital between January 2014 and December 2015. Brain AVM was confirmed by cerebral angiography and radiosurgery was performed with Cyberknife irradiation. Plasma contents of VEGF, TGF-β, Ang-2 and bFGF were analyzed using commercially available enzyme-linked immunoassay (ELISA) kits. The baseline plasma VEGF content was 222.63 pg/mL (range 43.25-431.25 pg/mL). At three months post surgery, there was a significant -34.29% decline in plasma VEGF content versus baseline (P = 0.000). Furthermore, the median baseline plasma VEGF levels were higher in brain AVM with a nidus volume ≥ 10 cm 3 ) than those with a nidus volume < 10 cm 3 [median(IQR) 293.5 (186.5,359.25) vs. 202 (59.75, 270.75) pg/mL, P = 0.057]. The baseline plasma TGF-β content was 556.17 pg/mL (range 44.44-1486.11 pg/mL) and there was a significant -27.47% decline in plasma TGF-β content at 3 months post radiosurgery versus baseline (P = 0.015). Moreover, the baseline plasma ANG-2 content was 214.27 pg/mL (range 77.14-453.76 pg/mL). There was an immediate and significant -12.47% decline in plasma ANG-2 content post surgery versus baseline (P = 0.002). At three months post surgery, the plasma ANG-2 content still remained significantly depressed versus baseline (P = 0.002). In addition, the baseline plasma bFGF content was 9.17 pg/mL (range 3.67-36.78 pg/mL). No significant difference in plasma bFGF content was observed immediately post surgery and 3 months post surgery versus baseline (P = 0.05). Radiosurgery for brain AVM patients significantly reduced the plasma levels of angiogenic factors. The plasma angiogenic factors may be candidate markers for aberrant agniogenesis of brain AVM and patient response to radiosurgery. Copyright © 2018 Elsevier Inc. All rights reserved.
Bandaruk, Yauhen; Mukai, Rie; Kawamura, Tomoyuki; Nemoto, Hisao; Terao, Junji
2012-10-17
Quercetin, a typical dietary flavonoid, is thought to exert antidepressant effects by inhibiting the monoamine oxidase-A (MAO-A) reaction, which is responsible for regulation of the metabolism of the neurotransmitter 5-hydroxytryptamine (5-HT) in the brain. This study compared the MAO-A inhibitory activity of quercetin with those of O-methylated quercetin (isorhamnetin, tamarixetin), luteolin, and green tea catechins ((-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate) by measuring the formation of the oxidative deamination product of 5-HT, 5-hydroxyindole aldehyde (5-HIAL), in mouse brain mitochondria. Quercetin was inferior to luteolin in the inhibition of MAO-A activity, whereas isorhamnetin, tamarixetin, and tea catechins scarcely exerted inhibitory activity. Quercetin did not affect MAO-A activity in mouse intestinal mitochondria, indicating that it does not evoke side effects on the metabolism of dietary monoamines in the gut. These data suggest that quercetin is a weak (but safe) MAO-A inhibitor in the modulation of 5-HT levels in the brain.
Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells
NASA Astrophysics Data System (ADS)
Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun
2012-02-01
Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.
Chen, Xiaodi; Sadowska, Grazyna B; Zhang, Jiyong; Kim, Jeong-Eun; Cummings, Erin E; Bodge, Courtney A; Lim, Yow-Pin; Makeyev, Oleksandr; Besio, Walter G; Gaitanis, John; Threlkeld, Steven W; Banks, William A; Stonestreet, Barbara S
2015-01-01
We have previously shown that increases in blood-brain barrier permeability represent an important component of ischemia-reperfusion related brain injury in the fetus. Pro-inflammatory cytokines could contribute to these abnormalities in blood-brain barrier function. We have generated pharmacological quantities of mouse anti-ovine interleukin-1β monoclonal antibody and shown that this antibody has very high sensitivity and specificity for interleukin-1β protein. This antibody also neutralizes the effects of interleukin-1β protein in vitro. In the current study, we hypothesized that the neutralizing anti-interleukin-1β monoclonal antibody attenuates ischemia-reperfusion related fetal blood-brain barrier dysfunction. Instrumented ovine fetuses at 127 days of gestation were studied after 30 min of carotid occlusion and 24h of reperfusion. Groups were sham operated placebo-control- (n=5), ischemia-placebo- (n=6), ischemia-anti-IL-1β antibody- (n=7), and sham-control antibody- (n=2) treated animals. Systemic infusions of placebo (0.154M NaCl) or anti-interleukin-1β monoclonal antibody (5.1±0.6 mg/kg) were given intravenously to the same sham or ischemic group of fetuses at 15 min and 4h after ischemia. Concentrations of interleukin-1β protein and anti-interleukin-1β monoclonal antibody were measured by ELISA in fetal plasma, cerebrospinal fluid, and parietal cerebral cortex. Blood-brain barrier permeability was quantified using the blood-to-brain transfer constant (Ki) with α-aminoisobutyric acid in multiple brain regions. Interleukin-1β protein was also measured in parietal cerebral cortices and tight junction proteins in multiple brain regions by Western immunoblot. Cerebral cortical interleukin-1β protein increased (P<0.001) after ischemia-reperfusion. After anti-interleukin-1β monoclonal antibody infusions, plasma anti-interleukin-1β monoclonal antibody was elevated (P<0.001), brain anti-interleukin-1β monoclonal antibody levels were higher (P<0.03), and interleukin-1β protein concentrations (P<0.03) and protein expressions (P<0.001) were lower in the monoclonal antibody-treated group than in placebo-treated-ischemia-reperfusion group. Monoclonal antibody infusions attenuated ischemia-reperfusion-related increases in Ki across the brain regions (P<0.04), and Ki showed an inverse linear correlation (r= -0.65, P<0.02) with anti-interleukin-1β monoclonal antibody concentrations in the parietal cortex, but had little effect on tight junction protein expression. We conclude that systemic anti-interleukin-1β monoclonal antibody infusions after ischemia result in brain anti-interleukin-1β antibody uptake, and attenuate ischemia-reperfusion-related interleukin-1β protein up-regulation and increases in blood-brain barrier permeability across brain regions in the fetus. The pro-inflammatory cytokine, interleukin-1β, contributes to impaired blood-brain barrier function after ischemia in the fetus. Copyright © 2014 Elsevier Inc. All rights reserved.
Shimizu, Yoshibumi; Ishikawa, Masaki; Gotoh, Mari; Fukasawa, Keiko; Yamamoto, Shinji; Iwasa, Kensuke; Yoshikawa, Keisuke; Murakami-Murofushi, Kimiko
2018-02-15
Cyclic phosphatidic acid (cPA), an analog of lysophosphatidic acid, is involved in the regulation of many cellular processes. A sensitive and specific method to quantify the molecular species of cPA is important for studying the physiological and pathophysiological roles of cPA. Here, we developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based quantification method for the simultaneous detection of cPA species having various fatty acids (16:0, 18:0, 18:1, and 18:2) as well as 2-carba-cPA, a chemically synthesized analog of cPA. Chromatography was performed using a reversed-phase C18 column. cPA species were detected using a triple quadrupole mass spectrometer. cPA 17:0 was used as an internal standard. Intra- and interday precision values (CV%) were within 10%. The linear range of detection for each cPA species was 0.01 μg/mL to 5 μg/mL, with correlation coefficients of 0.998 or higher. The developed method was applied to the quantification of cPA species in mouse plasma and organs. The concentrations of cPA 16:0, 18:0, and 18:1 were revealed to be significantly reduced in the brains of cuprizone-treated mice, a model of multiple sclerosis, compared with control mice. These findings could be important for understanding the roles of cPA in the neurodegenerative processes associated with multiple sclerosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Keane, Fiona M; Yao, Tsun-Wen; Seelk, Stefanie; Gall, Margaret G; Chowdhury, Sumaiya; Poplawski, Sarah E; Lai, Jack H; Li, Youhua; Wu, Wengen; Farrell, Penny; Vieira de Ribeiro, Ana Julia; Osborne, Brenna; Yu, Denise M T; Seth, Devanshi; Rahman, Khairunnessa; Haber, Paul; Topaloglu, A Kemal; Wang, Chuanmin; Thomson, Sally; Hennessy, Annemarie; Prins, John; Twigg, Stephen M; McLennan, Susan V; McCaughan, Geoffrey W; Bachovchin, William W; Gorrell, Mark D
2013-01-01
The protease fibroblast activation protein (FAP) is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis.
Keane, Fiona M.; Yao, Tsun-Wen; Seelk, Stefanie; Gall, Margaret G.; Chowdhury, Sumaiya; Poplawski, Sarah E.; Lai, Jack H.; Li, Youhua; Wu, Wengen; Farrell, Penny; Vieira de Ribeiro, Ana Julia; Osborne, Brenna; Yu, Denise M.T.; Seth, Devanshi; Rahman, Khairunnessa; Haber, Paul; Topaloglu, A. Kemal; Wang, Chuanmin; Thomson, Sally; Hennessy, Annemarie; Prins, John; Twigg, Stephen M.; McLennan, Susan V.; McCaughan, Geoffrey W.; Bachovchin, William W.; Gorrell, Mark D.
2013-01-01
The protease fibroblast activation protein (FAP) is a specific marker of activated mesenchymal cells in tumour stroma and fibrotic liver. A specific, reliable FAP enzyme assay has been lacking. FAP's unique and restricted cleavage of the post proline bond was exploited to generate a new specific substrate to quantify FAP enzyme activity. This sensitive assay detected no FAP activity in any tissue or fluid of FAP gene knockout mice, thus confirming assay specificity. Circulating FAP activity was ∼20- and 1.3-fold less in baboon than in mouse and human plasma, respectively. Serum and plasma contained comparable FAP activity. In mice, the highest levels of FAP activity were in uterus, pancreas, submaxillary gland and skin, whereas the lowest levels were in brain, prostate, leukocytes and testis. Baboon organs high in FAP activity included skin, epididymis, bladder, colon, adipose tissue, nerve and tongue. FAP activity was greatly elevated in tumours and associated lymph nodes and in fungal-infected skin of unhealthy baboons. FAP activity was 14- to 18-fold greater in cirrhotic than in non-diseased human liver, and circulating FAP activity was almost doubled in alcoholic cirrhosis. Parallel DPP4 measurements concorded with the literature, except for the novel finding of high DPP4 activity in bile. The new FAP enzyme assay is the first to be thoroughly characterised and shows that FAP activity is measurable in most organs and at high levels in some. This new assay is a robust tool for specific quantitation of FAP enzyme activity in both preclinical and clinical samples, particularly liver fibrosis. PMID:24371721
Giani, Jorge F.; Eriguchi, Masahiro; Bernstein, Ellen A.; Katsumata, Makoto; Shen, Xiao Z.; Li, Liang; McDonough, Alicia A.; Fuchs, Sebastien; Bernstein, Kenneth E.; Gonzalez-Villalobos, Romer A.
2017-01-01
Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension. PMID:27988209
Gotsbacher, Michael P; Telfer, Thomas J; Witting, Paul K; Double, Kay L; Finkelstein, David I; Codd, Rachel
2017-07-19
Parkinson's disease (PD) is a neurodegenerative disorder characterised by the death of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the brain and formation of α-synuclein-containing intracellular inclusions. Excess intraneuronal iron in the SNpc increases reactive oxygen species (ROS), which identifies removing iron as a possible therapeutic strategy. Desferrioxamine B (DFOB, 1) is an iron chelator produced by bacteria. Its high Fe(iii) affinity, water solubility and low chronic toxicity is useful in removing iron accumulated in plasma from patients with transfusion-dependent blood disorders. Here, lipophilic analogues of DFOB with increased potential to cross the blood-brain barrier (BBB) have been prepared by conjugating ancillary compounds onto the amine terminus. The ancillary compounds included the antioxidants rac-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (rac-trolox, rac-TLX (a truncated vitamin E variant)), R-TLX, S-TLX, methylated derivatives of 3-(6-hydroxy-2-methylchroman-2-yl)propionic acid (α-CEHC, γ-CEHC, δ-CEHC), or 4-(5-hydroxy-3-methyl-1H-pyrazol-1-yl)benzoic acid (carboxylic acid derivative of edaravone, EDA). Compounds 2-8 could have dual function in attenuating ROS by chelating Fe(iii) and via the antioxidant ancillary group. A conjugate between DFOB and an ancillary unit without antioxidant properties (3,5-dimethyladamantane-1-carboxylic acid (AdA dMe )) was included (9). Compounds 2-9 were more lipophilic (log P -0.05 to 3.39) than DFOB (log P -2.62) and showed an average plasma protein binding 6 times greater than DFOB. The ABTS˙ + radical assay indicated 2-8 had antioxidant activity ascribable to the ancillary fragment. Administration of 2 and 9 in the mouse model of PD using the neurotoxin prodrug 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which recapitulates elevated iron of human PD, resulted in significant neuronal protection (p < 0.05; up to 89% of that in non-lesioned control animals), demonstrating the neuroprotective potential of these compounds for PD.
Kodamullil, Alpha Tom; Iyappan, Anandhi; Karki, Reagon; Madan, Sumit; Younesi, Erfan; Hofmann-Apitius, Martin
2017-01-01
Perturbance in inflammatory pathways have been identified as one of the major factors which leads to neurodegenerative diseases (NDD). Owing to the limited access of human brain tissues and the immense complexity of the brain, animal models, specifically mouse models, play a key role in advancing the NDD field. However, many of these mouse models fail to reproduce the clinical manifestations and end points of the disease. NDD drugs, which passed the efficacy test in mice, were repeatedly not successful in clinical trials. There are numerous studies which are supporting and opposing the applicability of mouse models in neuroinflammation and NDD. In this paper, we assessed to what extend a mouse can mimic the cellular and molecular interactions in humans at a mechanism level. Based on our mechanistic modeling approach, we investigate the failure of a neuroinflammation targeted drug in the late phases of clinical trials based on the comparative analyses between the two species.
Sequence analysis of 497 mouse brain ESTs expressed in the substantia nigra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, G.J.; Savioz, A.; Davies, R.W.
1997-01-15
The use of subtracted, region-specific cDNA libraries combined with single-pass cDNA sequencing allows the discovery of novel genes and facilitates molecular description of the tissue or region involved. We report the sequence of 497 mouse expressed sequence tags (ESTs) from two subtracted libraries enriched for cDNAs expressed in the substantia nigra, a brain region with important roles in movement control and Parkinson disease. Of these, 238 ESTs give no database matches and therefore derive from novel genes. A further 115 ESTs show sequence similarity to ESTs from other organisms, which themselves do not yield any significant database matches to genesmore » of known function. Fifty-six ESTs show sequence similarity to previously identified genes whose mouse homologues have not been reported. The total number of ESTs reported that are new for the mouse is 407, which, together with the 90 ESTs corresponding to known mouse genes or cDNAs, contributes to the molecular description of the substantia nigra. 21 refs., 4 tabs.« less
Noda, Akihiro; Fushiki, Hiroshi; Murakami, Yoshihiro; Sasaki, Hiroshi; Miyoshi, Sosuke; Kakuta, Hirotoshi; Nishimura, Shintaro
2012-11-01
Telmisartan is a widely used, long-acting antihypertensive agent. Known to be a selective angiotensin II type 1 (AT(1)) receptor (AT(1)R) blocker (ARB), telmisartan acts as a partial agonist of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and inhibits centrally mediated effects of angiotensin II in rats following peripheral administration, although the brain penetration of telmisartan remains unclear. We investigated the brain concentration and localization of telmisartan using (11)C-labeled telmisartan and positron emission tomography (PET) in conscious rhesus macaques. Three male rhesus macaques were bolus intravenously administered [(11)C]telmisartan either alone or as a mixture with unlabeled telmisartan (1mg/kg). Dynamic PET images were acquired for 95min following administration. Blood samples were collected for the analysis of plasma concentration and metabolites, and brain and plasma concentrations were calculated from detected radioactivity using the specific activity of the administered drug preparation, in which whole blood radioactivity was used for the correction of intravascular blood radioactivity in brain. Telmisartan penetrated into the brain little but enough to block AT(1)R and showed a consistently increasing brain/plasma ratio within the PET scanning period, suggesting slow clearance of the compound from the brain compared to the plasma clearance. Brain/plasma ratios at 30, 60, and 90min were 0.06, 0.13, and 0.18, respectively. No marked localization according to the AT(1)R distribution was noted over the entire brain, even on tracer alone dosing. Telmisartan penetrated into the brain enough to block AT(1)R and showed a slow clearance from the brain in conscious rhesus macaques, supporting the long-acting and central responses of telmisartan as a unique property among ARBs. Copyright © 2012 Elsevier Inc. All rights reserved.
Nicholson, Russell A; David, Laurence S; Pan, Rui Le; Liu, Xin Min
2010-10-01
This investigation focuses on the in vitro neuroactive properties of pinostrobin, a substituted flavanone from Cajanus cajan (L.) Millsp. of the Fabaceae family. We demonstrate that pinostrobin inhibits voltage-gated sodium channels of mammalian brain (IC(50)=23 µM) based on the ability of this substance to suppress the depolarizing effects of the sodium channel-selective activator veratridine in a synaptoneurosomal preparation from mouse brain. The resting membrane potential of synaptoneurosomes was unaffected by pinostrobin. The pharmacological profile of pinostrobin resembles that of depressant drugs that block sodium channels. Copyright © 2010 Elsevier B.V. All rights reserved.
Yang, Hyunwoo; Jung, Seungmoon; Seo, Jinsoo; Khalid, Arshi; Yoo, Jung-Seok; Park, Jihyun; Kim, Soyun; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Lee, Sang Kun; Jeon, Daejong
2016-09-01
The psychosocial environment is one of the major contributors of social stress. Family members or caregivers who consistently communicate with individuals with brain disorders are considered at risk for physical and mental health deterioration, possibly leading to mental disorders. However, the underlying neural mechanisms of this phenomenon remain poorly understood. To address this, we developed a social stress paradigm in which a mouse model of epilepsy or depression was housed long-term (>4weeks) with normal conspecifics. We characterized the behavioral phenotypes and electrophysiologically investigated the neural activity of conspecific cagemate mice. The cagemates exhibited deficits in behavioral tasks assessing anxiety, locomotion, learning/memory, and depression-like behavior. Furthermore, they showed severe social impairment in social behavioral tasks involving social interaction or aggression. Strikingly, behavioral dysfunction remained in the cagemates 4weeks following co-housing cessation with the mouse models. In an electrophysiological study, the cagemates showed an increased number of spikes in medial prefrontal cortex (mPFC) neurons. Our results demonstrate that conspecifics co-housed with mouse models of brain disorders develop chronic behavioral dysfunctions, and suggest a possible association between abnormal mPFC neural activity and their behavioral pathogenesis. These findings contribute to the understanding of the psychosocial and psychiatric symptoms frequently present in families or caregivers of patients with brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Meleis, Ahmed M.; Mahtabfar, Aria; Danish, Shabbar
2017-01-01
Glioblastoma is highly aggressive. Early dispersal of the primary tumor renders localized therapy ineffective. Recurrence always occurs and leads to patient death. Prior studies have shown that dispersal of Glioblastoma can be significantly reduced by Dexamethasone (Dex), a drug currently used to control brain tumor related edema. However, due to high doses and significant side effects, treatment is tapered and discontinued as soon as edema has resolved. Prior analyses of the dispersal inhibitory effects of Dex were performed on tissue culture plastic, or polystyrene filters seeded with normal human astrocytes, conditions which inherently differ from the parenchymal architecture of neuronal tissue. The aim of this study was to utilize an ex-vivo model to examine Dex-mediated inhibition of tumor cell migration from low-passage, human Glioblastoma neurospheres on multiple substrates including mouse retina, and slices of mouse, pig, and human brain. We also determined the lowest possible Dex dose that can inhibit dispersal. Analysis by Two-Factor ANOVA shows that for GBM-2 and GBM-3, Dex treatment significantly reduces dispersal on all tissue types. However, the magnitude of the effect appears to be tissue-type specific. Moreover, there does not appear to be a difference in Dex-mediated inhibition of dispersal between mouse retina, mouse brain and human brain. To estimate the lowest possible dose at which Dex can inhibit dispersal, LogEC50 values were compared by Extra Sum-of-Squares F-test. We show that it is possible to achieve 50% reduction in dispersal with Dex doses ranging from 3.8 x10-8M to 8.0x10-9M for GBM-2, and 4.3x10-8M to 1.8x10-9M for GBM-3, on mouse retina and brain slices, respectively. These doses are 3-30-fold lower than those used to control edema. This study extends our previous in vitro data and identifies the mouse retina as a potential substrate for in vivo studies of GBM dispersal. PMID:29040322
Gusdon, Aaron M; Fernandez-Bueno, Gabriel A; Wohlgemuth, Stephanie; Fernandez, Jenelle; Chen, Jing; Mathews, Clayton E
2015-09-10
Aberrant mitochondrial function, including excessive reactive oxygen species (ROS) production, has been implicated in the pathogenesis of human diseases. The use of mitochondrial inhibitors to ascertain the sites in the electron transport chain (ETC) resulting in altered ROS production can be an important tool. However, the response of mouse mitochondria to ETC inhibitors has not been thoroughly assessed. Here we set out to characterize the differences in phenotypic response to ETC inhibitors between the more energetically demanding brain mitochondria and less energetically demanding liver mitochondria in commonly utilized C57BL/6J mice. We show that in contrast to brain mitochondria, inhibiting distally within complex I or within complex III does not increase liver mitochondrial ROS production supported by complex I substrates, and liver mitochondrial ROS production supported by complex II substrates occurred primarily independent of membrane potential. Complex I, II, and III enzymatic activities and membrane potential were equivalent between liver and brain and responded to ETC. inhibitors similarly. Brain mitochondria exhibited an approximately two-fold increase in complex I and II supported respiration compared with liver mitochondria while exhibiting similar responses to inhibitors. Elevated NADH transport and heightened complex II-III coupled activity accounted for increased complex I and II supported respiration, respectively in brain mitochondria. We conclude that important mechanistic differences exist between mouse liver and brain mitochondria and that mouse mitochondria exhibit phenotypic differences compared with mitochondria from other species.
Yamanaka, Tomoyuki; Tosaki, Asako; Kurosawa, Masaru; Akimoto, Kazunori; Hirose, Tomonori; Ohno, Shigeo; Hattori, Nobutaka; Nukina, Nobuyuki
2013-01-01
Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS). Recent studies have established the significance of atypical protein kinase C (aPKC) and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation. PMID:24391875
Wagenführ, Lisa; Meyer, Anne K; Braunschweig, Lena; Marrone, Lara; Storch, Alexander
2015-09-01
The mammalian neocortex shows a conserved six-layered structure that differs between species in the total number of cortical neurons produced owing to differences in the relative abundance of distinct progenitor populations. Recent studies have identified a new class of proliferative neurogenic cells in the outer subventricular zone (OSVZ) in gyrencephalic species such as primates and ferrets. Lissencephalic brains of mice possess fewer OSVZ-like progenitor cells and these do not constitute a distinct layer. Most in vitro and in vivo studies have shown that oxygen regulates the maintenance, proliferation and differentiation of neural progenitor cells. Here we dissect the effects of fetal brain oxygen tension on neural progenitor cell activity using a novel mouse model that allows oxygen tension to be controlled within the hypoxic microenvironment in the neurogenic niche of the fetal brain in vivo. Indeed, maternal oxygen treatment of 10%, 21% and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal brain oxygenation. Increased oxygen tension in fetal mouse forebrain in vivo leads to a marked expansion of a distinct proliferative cell population, basal to the SVZ. These cells constitute a novel neurogenic cell layer, similar to the OSVZ, and contribute to corticogenesis by heading for deeper cortical layers as a part of the cortical plate. © 2015. Published by The Company of Biologists Ltd.
Kadri, Yamina; Nciri, Riadh; Brahmi, Noura; Saidi, Saber; Harrath, Abdel Halim; Alwasel, Saleh; Aldahmash, Waleed; El Feki, Abdelfatteh; Allagui, Mohamed Salah
2018-05-07
Cerium chloride (CeCl 3 ) is considered an environmental pollutant and a potent neurotoxic agent. Medicinal plants have many bioactive compounds that provide protection against damage caused by such pollutants. Curcuma longa is a bioactive compound-rich plant with very important antioxidant properties. To study the preventive and healing effects of Curcuma longa on cerium-damaged mouse brains, we intraperitoneally injected cerium chloride (CeCl 3 , 20 mg/kg BW) along with Curcuma longa extract, administrated by gavage (100 mg/kg BW), into mice for 60 days. We then examined mouse behavior, brain tissue damage, and brain oxidative stress parameters. Our results revealed a significant modification in the behavior of the CeCl 3 -treated mice. In addition, CeCl 3 induced a significant increment in lipid peroxidation, carbonyl protein (PCO), and advanced oxidation protein product levels, as well as a significant reduction in superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. Acetylcholinesterase (AChE) activity remarkably increased in the brain of CeCl 3 -treated mice. Histopathological observations confirmed these results. Curcuma longa attenuated CeCl 3 -induced oxidative stress and increased the activities of antioxidant enzymes. It also decreased AChE activity in the CeCl 3 -damaged mouse brain that was confirmed by histopathology. In conclusion, this study suggests that Curcuma longa has a neuroprotective effect against CeCl 3 -induced damage in the brain.
Keyworth, Helen; Georgiou, Polymnia; Zanos, Panos; Rueda, André Veloso; Chen, Ying; Kitchen, Ian; Camarini, Rosana; Cropley, Mark; Bailey, Alexis
2018-06-01
Evidence suggests that exercise decreases nicotine withdrawal symptoms in humans; however, the mechanisms mediating this effect are unclear. We investigated, in a mouse model, the effect of exercise intensity during chronic nicotine exposure on nicotine withdrawal severity, binding of α4β2*, α7 nicotinic acetylcholine (nAChR), μ-opioid (μ receptors) and D 2 dopamine receptors and on brain-derived neurotrophic factor (BDNF) and plasma corticosterone levels. Male C57Bl/6J mice treated with nicotine (minipump, 24 mg·kg -1 ·day -1 ) or saline for 14 days underwent one of three concurrent exercise regimes: 24, 2 or 0 h·day -1 voluntary wheel running. Mecamylamine-precipitated withdrawal symptoms were assessed on day 14. Quantitative autoradiography of α4β2*, α7 nAChRs, μ receptors and D 2 receptor binding was performed in brain sections of these mice. Plasma corticosterone and brain BDNF levels were also measured. Nicotine-treated mice undertaking 2 or 24 h·day -1 wheel running displayed a significant reduction in withdrawal symptom severity compared with the sedentary group. Wheel running induced a significant up-regulation of α7 nAChR binding in the CA2/3 area of the hippocampus of nicotine-treated mice. Neither exercise nor nicotine treatment affected μ or D 2 receptor binding or BDNF levels. Nicotine withdrawal increased plasma corticosterone levels and α4β2* nAChR binding, irrespective of exercise regimen. We demonstrated for the first time a profound effect of exercise on α7 nAChRs in nicotine-dependent animals, irrespective of exercise intensity. These findings shed light onto the mechanism underlining the protective effect of exercise on the development of nicotine dependence. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.
Schmouth, Jean-François; Castellarin, Mauro; Laprise, Stéphanie; Banks, Kathleen G; Bonaguro, Russell J; McInerny, Simone C; Borretta, Lisa; Amirabbasi, Mahsa; Korecki, Andrea J; Portales-Casamar, Elodie; Wilson, Gary; Dreolini, Lisa; Jones, Steven J M; Wasserman, Wyeth W; Goldowitz, Daniel; Holt, Robert A; Simpson, Elizabeth M
2013-10-14
The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome') strategy to expand our understanding of human gene regulation in vivo. In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression.
Thalidomide Reduces Hemorrhage of Brain Arteriovenous Malformations in a Mouse Model.
Zhu, Wan; Chen, Wanqiu; Zou, Dingquan; Wang, Liang; Bao, Chen; Zhan, Lei; Saw, Daniel; Wang, Sen; Winkler, Ethan; Li, Zhengxi; Zhang, Meng; Shen, Fanxia; Shaligram, Sonali; Lawton, Michael; Su, Hua
2018-05-01
Brain arteriovenous malformation (bAVM) is an important risk factor for intracranial hemorrhage. Current treatments for bAVM are all associated with considerable risks. There is no safe method to prevent bAVM hemorrhage. Thalidomide reduces nose bleeding in patients with hereditary hemorrhagic telangiectasia, an inherited disorder characterized by vascular malformations. In this study, we tested whether thalidomide and its less toxic analog, lenalidomide, reduce bAVM hemorrhage using a mouse model. bAVMs were induced through induction of brain focal activin-like kinase 1 ( Alk1 , an AVM causative gene) gene deletion and angiogenesis in adult Alk1 -floxed mice. Thalidomide was injected intraperitoneally twice per week for 6 weeks, starting either 2 or 8 weeks after AVM induction. Lenalidomide was injected intraperitoneally daily starting 8 weeks after AVM induction for 6 weeks. Brain samples were collected at the end of the treatments for morphology, mRNA, and protein analyses. The influence of Alk1 downregulation on PDGFB (platelet-derived growth factor B) expression was also studied on cultured human brain microvascular endothelial cells. The effect of PDGFB in mural cell recruitment in bAVM was explored by injection of a PDGFB overexpressing lentiviral vector to the mouse brain. Thalidomide or lenalidomide treatment reduced the number of dysplastic vessels and hemorrhage and increased mural cell (vascular smooth muscle cells and pericytes) coverage in the bAVM lesion. Thalidomide reduced the burden of CD68 + cells and the expression of inflammatory cytokines in the bAVM lesions. PDGFB expression was reduced in ALK1-knockdown human brain microvascular endothelial cells and in mouse bAVM lesion. Thalidomide increased Pdgfb expression in bAVM lesion. Overexpression of PDGFB mimicked the effect of thalidomide. Thalidomide and lenalidomide improve mural cell coverage of bAVM vessels and reduce bAVM hemorrhage, which is likely through upregulation of Pdgfb expression. © 2018 American Heart Association, Inc.
Flood, Z C; Engel, D L J; Simon, C C; Negherbon, K R; Murphy, L J; Tamavimok, W; Anderson, G M; Janušonis, S
2012-05-17
The genetic heterogeneity of autism spectrum disorders (ASDs) suggests that their underlying neurobiology involves dysfunction at the neural network level. Understanding these neural networks will require a major collaborative effort and will depend on validated and widely accepted animal models. Many mouse models have been proposed in autism research, but the assessment of their validity often has been limited to measuring social interactions. However, two other well-replicated findings have been reported in ASDs: transient brain overgrowth in early postnatal life and elevated 5-HT (serotonin) levels in blood platelets (platelet hyperserotonemia). We examined two inbred mouse strains (C57BL/6 and BALB/c) with respect to these phenomena. The BALB/c strain is less social and exhibits some other autistic-like behaviors. In addition, it has a lower 5-HT synthesis rate in the central nervous system due to a single-nucleotide polymorphism in the tryptophan hydroxylase 2 (Tph2) gene. The postnatal growth of brain mass was analyzed with mixed-effects models that included litter effects. The volume of the hippocampal complex and the thickness of the somatosensory cortex were measured in 3D-brain reconstructions from serial sections. The postnatal whole-blood 5-HT levels were assessed with high-performance liquid chromatography. With respect to the BALB/c strain, the C57BL/6 strain showed transient brain overgrowth and persistent blood hyperserotonemia. The hippocampal volume was permanently enlarged in the C57BL/6 strain, with no change in the adult brain mass. These results indicate that, in mice, autistic-like shifts in the brain and periphery may be associated with less autistic-like behaviors. Importantly, they suggest that consistency among behavioral, anatomical, and physiological measures may expedite the validation of new and previously proposed mouse models of autism, and that the construct validity of models should be demonstrated when these measures are inconsistent. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Godefroy, D; Dominici, C; Hardin-Pouzet, H; Anouar, Y; Melik-Parsadaniantz, S; Rostène, W; Reaux-Le Goazigo, A
2017-12-01
Over the years, advances in immunohistochemistry techniques have been a critical step in detecting and mapping neuromodulatory substances in the central nervous system. The better quality and specificity of primary antibodies, new staining procedures and the spectacular development of imaging technologies have allowed such progress. Very recently, new methods permitting tissue transparency have been successfully used on brain tissues. In the present study, we combined whole-mount immunostaining for tyrosine hydroxylase (TH), oxytocin (OXT) and arginine vasopressin (AVP), with the iDISCO+ clearing method, light-sheet microscopy and semi-automated counting of three-dimensionally-labelled neurones to obtain a (3D) distribution of these neuronal populations in a 5-day postnatal (P5) mouse brain. Segmentation procedure and 3D reconstruction allowed us, with high resolution, to map TH staining of the various catecholaminergic cell groups and their ascending and descending fibre pathways. We show that TH pathways are present in the whole P5 mouse brain, similar to that observed in the adult rat brain. We also provide new information on the postnatal distribution of OXT and AVP immunoreactive cells in the mouse hypothalamus, and show that, compared to AVP neurones, OXT neurones in the supraoptic (SON) and paraventricular (PVN) nuclei are not yet mature in the early postnatal period. 3D semi-automatic quantitative analysis of the PVN reveals that OXT cell bodies are more numerous than AVP neurones, although their immunoreactive soma have a volume half smaller. More AVP nerve fibres compared to OXT were observed in the PVN and the retrochiasmatic area. In conclusion, the results of the present study demonstrate the utility and the potency of imaging large brain tissues with clearing procedures coupled to novel 3D imaging technologies to study, localise and quantify neurotransmitter substances involved in brain and neuroendocrine functions. © 2017 British Society for Neuroendocrinology.
Cerebral oxidative metabolism mapping in four genetic mouse models of anxiety and mood disorders.
Matrov, Denis; Kaart, Tanel; Lanfumey, Laurence; Maldonado, Rafael; Sharp, Trevor; Tordera, Rosa M; Kelly, Paul A; Deakin, Bill; Harro, Jaanus
2018-06-07
The psychopathology of depression is highly complex and the outcome of studies on animal models is divergent. In order to find brain regions that could be metabolically distinctively active across a variety of mouse depression models and to compare the interconnectivity of brain regions of wild-type and such genetically modified mice, histochemical mapping of oxidative metabolism was performed by the measurement of cytochrome oxidase activity. We included mice with the heterozygous knockout of the vesicular glutamate transporter (VGLUT 1 -/+ ), full knockout of the cannabinoid 1 receptor (CB1 -/- ), an anti-sense knockdown of the glucocorticoid receptor (GRi) and overexpression of the human 5-hydroxytryptamine transporter (h5-HTT). Altogether 76 mouse brains were studied to measure oxidative metabolism in one hundred brain regions, and the obtained dataset was submitted to a variety of machine learning algorithms and multidimensional scaling. Overall, the top brain regions having the largest contribution to classification into depression model were the lateroanterior hypothalamic nucleus, the anterior part of the basomedial amygdaloid nucleus, claustrum, the suprachiasmatic nucleus, the ventromedial hypothalamic nucleus, and the anterior hypothalamic area. In terms of the patterns of inter-regional relationship between wild-type and genetically modified mice there was little overall difference, while the most deviating brain regions were cortical amygdala and ventrolateral and ventral posteromedial thalamic nuclei. The GRi mice that most clearly differed from their controls exhibited deviation of connectivity for a number of brain regions, such as ventrolateral thalamic nucleus, the intermediate part of the lateral septal nucleus, the anteriodorsal part of the medial amygdaloid nucleus, the medial division of the central amygdaloid nucleus, ventral pallidum, nucleus of the vertical limb of the diagonal band, anteroventral parts of the thalamic nucleus and parts of the bed nucleus of the stria terminalis. Conclusively, the GRi mouse model was characterized by changes in the functional connectivity of the extended amygdala and stress response circuits. Copyright © 2018 Elsevier B.V. All rights reserved.
Chapouly, Candice; Tadesse Argaw, Azeb; Horng, Sam; Castro, Kamilah; Zhang, Jingya; Asp, Linnea; Loo, Hannah; Laitman, Benjamin M; Mariani, John N; Straus Farber, Rebecca; Zaslavsky, Elena; Nudelman, German; Raine, Cedric S; John, Gareth R
2015-06-01
In inflammatory central nervous system conditions such as multiple sclerosis, breakdown of the blood-brain barrier is a key event in lesion pathogenesis, predisposing to oedema, excitotoxicity, and ingress of plasma proteins and inflammatory cells. Recently, we showed that reactive astrocytes drive blood-brain barrier opening, via production of vascular endothelial growth factor A (VEGFA). Here, we now identify thymidine phosphorylase (TYMP; previously known as endothelial cell growth factor 1, ECGF1) as a second key astrocyte-derived permeability factor, which interacts with VEGFA to induce blood-brain barrier disruption. The two are co-induced NFκB1-dependently in human astrocytes by the cytokine interleukin 1 beta (IL1B), and inactivation of Vegfa in vivo potentiates TYMP induction. In human central nervous system microvascular endothelial cells, VEGFA and the TYMP product 2-deoxy-d-ribose cooperatively repress tight junction proteins, driving permeability. Notably, this response represents part of a wider pattern of endothelial plasticity: 2-deoxy-d-ribose and VEGFA produce transcriptional programs encompassing angiogenic and permeability genes, and together regulate a third unique cohort. Functionally, each promotes proliferation and viability, and they cooperatively drive motility and angiogenesis. Importantly, introduction of either into mouse cortex promotes blood-brain barrier breakdown, and together they induce severe barrier disruption. In the multiple sclerosis model experimental autoimmune encephalitis, TYMP and VEGFA co-localize to reactive astrocytes, and correlate with blood-brain barrier permeability. Critically, blockade of either reduces neurologic deficit, blood-brain barrier disruption and pathology, and inhibiting both in combination enhances tissue preservation. Suggesting importance in human disease, TYMP and VEGFA both localize to reactive astrocytes in multiple sclerosis lesion samples. Collectively, these data identify TYMP as an astrocyte-derived permeability factor, and suggest TYMP and VEGFA together promote blood-brain barrier breakdown. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bond, P A; Brooks, B A; Judd, A
1975-01-01
1 The tissue solubilizer Soluene-100 provides an efficient and easy means of preparing small amounts of rat tissue for cation analysis. 2 Administration of lithium ions to rats for two days to 42 days by the addition of lithium chloride to the diet at a concentration of 30 mmol/kg dry weight results in (a) the uniform distribution of lithium throughout the brain at a concentration comparable to that found in plasma; (b) decrease in the brain sodium concentration: (c) a decrease in brain magnesium concentration and an increase in plasma magnesium concentration; (d)no change in brain water content. 3 The inclusion of LiCl in the diet at a concentration of 30 mmol/kg dry food gives consistent and predictable plasma and brain levels of lithium in the rat without the occurrence of serious side effects over periods of up to 42 days. PMID:1148484
Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome.
de Cossío, Lourdes Fernández; Fourrier, Célia; Sauvant, Julie; Everard, Amandine; Capuron, Lucile; Cani, Patrice D; Layé, Sophie; Castanon, Nathalie
2017-08-01
Mounting evidence shows that the gut microbiota, an important player within the gut-brain communication axis, can affect metabolism, inflammation, brain function and behavior. Interestingly, gut microbiota composition is known to be altered in patients with metabolic syndrome (MetS), who also often display neuropsychiatric symptoms. The use of prebiotics, which beneficially alters the microbiota, may therefore be a promising way to potentially improve physical and mental health in MetS patients. This hypothesis was tested in a mouse model of MetS, namely the obese and type-2 diabetic db/db mice, which display emotional and cognitive alterations associated with changes in gut microbiota composition and hippocampal inflammation compared to their lean db/+ littermates. We assessed the impact of chronic administration (8weeks) of prebiotics (oligofructose) on both metabolic (body weight, food intake, glucose homeostasis) and behavioral (increased anxiety-like behavior and impaired spatial memory) alterations characterizing db/db mice, as well as related neurobiological correlates, with particular attention to neuroinflammatory processes. Prebiotic administration improved excessive food intake and glycemic dysregulations (glucose tolerance and insulin resistance) in db/db mice. This was accompanied by an increase of plasma anti-inflammatory cytokine IL-10 levels and hypothalamic mRNA expression of the anorexigenic cytokine IL-1β, whereas unbalanced mRNA expression of hypothalamic orexigenic (NPY) and anorexigenic (CART, POMC) peptides was unchanged. We also detected signs of improved blood-brain-barrier integrity in the hypothalamus of oligofructose-treated db/db mice (normalized expression of tight junction proteins ZO-1 and occludin). On the contrary, prebiotic administration did not improve behavioral alterations and associated reduction of hippocampal neurogenesis displayed by db/db mice, despite normalization of increased hippocampal IL-6 mRNA expression. Of note, we found a relationship between the effect of treatment on dentate gyrus neurons and spatial memory. These findings may prove valuable for introducing novel approaches to treat some of the comorbidities associated with MetS. Copyright © 2016 Elsevier Inc. All rights reserved.
Palma, E.; Ragozzino, D. A.; Di Angelantonio, S.; Spinelli, G.; Trettel, F.; Martinez-Torres, A.; Torchia, G.; Arcella, A.; Di Gennaro, G.; Quarato, P. P.; Esposito, V.; Cantore, G.; Miledi, R.; Eusebi, F.
2004-01-01
The properties of γ-aminobutyric acid (GABA) type A receptors (GABAA receptors) microtransplanted from the human epileptic brain to the plasma membrane of Xenopus oocytes were compared with those recorded directly from neurons, or glial cells, in human brains slices. Cell membranes isolated from brain specimens, surgically obtained from six patients afflicted with drug-resistant temporal lobe epilepsy (TLE) were injected into frog oocytes. Within a few hours, these oocytes acquired GABAA receptors that generated GABA currents with an unusual run-down, which was inhibited by orthovanadate and okadaic acid. In contrast, receptors derived from membranes of a nonepileptic hippocampal uncus, membranes from mouse brain, or recombinant rat α1β2γ2-GABA receptors exhibited a much less pronounced GABA-current run-down. Moreover, the GABAA receptors of pyramidal neurons in temporal neocortex slices from the same six epileptic patients exhibited a stronger run-down than the receptors of rat pyramidal neurons. Interestingly, the GABAA receptors of neighboring glial cells remained substantially stable after repetitive activation. Therefore, the excessive GABA-current run-down observed in the membrane-injected oocytes recapitulates essentially what occurs in neurons, rather than in glial cells. Quantitative RT-PCR analyses from the same TLE neocortex specimens revealed that GABAA-receptor β1, β2, β3, and γ2 subunit mRNAs were significantly overexpressed (8- to 33-fold) compared with control autopsy tissues. Our results suggest that an abnormal GABA-receptor subunit transcription in the TLE brain leads to the expression of run-down-enhanced GABAA receptors. Blockage of phosphatases stabilizes the TLE GABAA receptors and strengthens GABAergic inhibition. It may be that this process can be targeted to develop new treatments for intractable epilepsy. PMID:15218107
Pardridge, William M
2015-02-01
Biologic drugs are large molecules that do not cross the blood- brain barrier (BBB). Brain penetration is possible following the re-engineering of the biologic drug as an IgG fusion protein. The IgG domain is a MAb against an endogenous BBB receptor such as the transferrin receptor (TfR). The TfRMAb acts as a molecular Trojan horse to ferry the fused biologic drug into the brain via receptor-mediated transport on the endogenous BBB TfR. This review discusses TfR isoforms, models of BBB transport of transferrin and TfRMAbs, and the genetic engineering of TfRMAb fusion proteins, including BBB penetrating IgG-neurotrophins, IgG-decoy receptors, IgG-lysosomal enzyme therapeutics and IgG-avidin fusion proteins, as well as BBB transport of bispecific antibodies formed by fusion of a therapeutic antibody to a TfRMAb targeting antibody. Also discussed are quantitative aspects of the plasma pharmacokinetics and brain uptake of TfRMAb fusion proteins, as compared to the brain uptake of small molecules, and therapeutic applications of TfRMAb fusion proteins in mouse models of neural disease, including Parkinson's disease, stroke, Alzheimer's disease and lysosomal storage disorders. The review covers the engineering of TfRMAb-avidin fusion proteins for BBB targeted delivery of biotinylated peptide radiopharmaceuticals, low-affinity TfRMAb Trojan horses and the safety pharmacology of chronic administration of TfRMAb fusion proteins. The BBB delivery of biologic drugs is possible following re-engineering as a fusion protein with a molecular Trojan horse such as a TfRMAb. The efficacy of this technology will be determined by the outcome of future clinical trials.
Analysis of lipid raft molecules in the living brain slices.
Kotani, Norihiro; Nakano, Takanari; Ida, Yui; Ito, Rina; Hashizume, Miki; Yamaguchi, Arisa; Seo, Makoto; Araki, Tomoyuki; Hojo, Yasushi; Honke, Koichi; Murakoshi, Takayuki
2017-08-24
Neuronal plasma membrane has been thought to retain a lot of lipid raft components which play important roles in the neural function. Although the biochemical analyses of lipid raft using brain tissues have been extensively carried out in the past 20 years, many of their experimental conditions do not coincide with those of standard neuroscience researches such as neurophysiology and neuropharmacology. Hence, the physiological methods for lipid raft analysis that can be compatible with general neuroscience have been required. Herein, we developed a system to physiologically analyze ganglioside GM1-enriched lipid rafts in brain tissues using the "Enzyme-Mediated Activation of Radical Sources (EMARS)" method that we reported (Kotani N. et al. Proc. Natl. Acad. Sci. U S A 105, 7405-7409 (2008)). The EMARS method was applied to acute brain slices prepared from mouse brains in aCSF solution using the EMARS probe, HRP-conjugated cholera toxin subunit B, which recognizes ganglioside GM1. The membrane molecules present in the GM1-enriched lipid rafts were then labeled with fluorescein under the physiological condition. The fluorescein-tagged lipid raft molecules called "EMARS products" distributed differentially among various parts of the brain. On the other hand, appreciable differences were not detected among segments along the longitudinal axis of the hippocampus. We further developed a device to label the lipid raft molecules in acute hippocampal slices under two different physiological conditions to detect dynamics of the lipid raft molecules during neural excitation. Using this device, several cell membrane molecules including Thy1, known as a lipid raft resident molecule in neurons, were confirmed by the EMARS method in living hippocampal slices. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ni, Ruiqing; Vaas, Markus; Rudin, Markus; Klohs, Jan
2018-02-01
Beta-amyloid (Aβ) deposition and vascular dysfunction are important contributors to the pathogenesis in Alzheimer's disease (AD). However, the spatio-temporal relationship between an altered oxygen metabolism and Aβ deposition in the brain remains elusive. Here we provide novel in-vivo estimates of brain Aβ load with Aβ-binding probe CRANAD-2 and measures of brain oxygen saturation by using multi-spectral optoacoustic imaging (MSOT) and perfusion imaging with magnetic resonance imaging (MRI) in arcAβ mouse models of AD. We demonstrated a decreased cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) in the cortical region of the arcAβ mice compared to wildtype littermates at 24 months. In addition, we showed proof-of-concept for the detection of cerebral Aβ deposits in brain from arcAβ mice compared to wild-type littermates.
NASA Astrophysics Data System (ADS)
Choi, Woo June; Wang, Ruikang K.
2015-10-01
We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.
Whiteaker, Jeffrey R; Zhang, Heidi; Zhao, Lei; Wang, Pei; Kelly-Spratt, Karen S; Ivey, Richard G; Piening, Brian D; Feng, Li-Chia; Kasarda, Erik; Gurley, Kay E; Eng, Jimmy K; Chodosh, Lewis A; Kemp, Christopher J; McIntosh, Martin W; Paulovich, Amanda G
2007-10-01
Despite their potential to impact diagnosis and treatment of cancer, few protein biomarkers are in clinical use. Biomarker discovery is plagued with difficulties ranging from technological (inability to globally interrogate proteomes) to biological (genetic and environmental differences among patients and their tumors). We urgently need paradigms for biomarker discovery. To minimize biological variation and facilitate testing of proteomic approaches, we employed a mouse model of breast cancer. Specifically, we performed LC-MS/MS of tumor and normal mammary tissue from a conditional HER2/Neu-driven mouse model of breast cancer, identifying 6758 peptides representing >700 proteins. We developed a novel statistical approach (SASPECT) for prioritizing proteins differentially represented in LC-MS/MS datasets and identified proteins over- or under-represented in tumors. Using a combination of antibody-based approaches and multiple reaction monitoring-mass spectrometry (MRM-MS), we confirmed the overproduction of multiple proteins at the tissue level, identified fibulin-2 as a plasma biomarker, and extensively characterized osteopontin as a plasma biomarker capable of early disease detection in the mouse. Our results show that a staged pipeline employing shotgun-based comparative proteomics for biomarker discovery and multiple reaction monitoring for confirmation of biomarker candidates is capable of finding novel tissue and plasma biomarkers in a mouse model of breast cancer. Furthermore, the approach can be extended to find biomarkers relevant to human disease.
Effect of melatonin and tetrapeptide on gene expression in mouse brain.
Anisimov, S V; Khavinson, V Kh; Anisimov, V N
2004-11-01
A microchip technique was used to study expression of 16,897 clones from a cDNA library in the brain of mice receiving melatonin or tetrapeptide Epithalon (Ala-Glu-Asp-Gly). Expression of 53 transcripts in mouse brain underwent significant changes after treatment with the preparations. Melatonin and Epithalon modified expression of 38 and 22 transcripts, respectively. These preparations produced similar changes in the expression of 6 transcripts. Expression of 1 transcript (Rp119) was inhibited by melatonin, but induced by Epithalon. The target genes are physiologically related to the cell cycle, apoptosis, biosynthesis, processing, and transport of nucleic acids. Comparative study of gene expression in the brain and heart of CBA mice receiving melatonin and Epithalon suggest that these preparations have a tissue-specific biological effect.
In vivo microscopy of the mouse brain using multiphoton laser scanning techniques
NASA Astrophysics Data System (ADS)
Yoder, Elizabeth J.
2002-06-01
The use of multiphoton microscopy for imaging mouse brain in vivo offers several advantages and poses several challenges. This tutorial begins by briefly comparing multiphoton microscopy with other imaging modalities used to visualize the brain and its activity. Next, an overview of the techniques for introducing fluorescence into whole animals to generate contrast for in vivo microscopy using two-photon excitation is presented. Two different schemes of surgically preparing mice for brain imaging with multiphoton microscopy are reviewed. Then, several issues and problems with in vivo microscopy - including motion artifact, respiratory and cardiac rhythms, maintenance of animal health, anesthesia, and the use of fiducial markers - are discussed. Finally, examples of how these techniques have been applied to visualize the cerebral vasculature and its response to hypercapnic stimulation are provided.
Genomic analysis of wig-1 pathways.
Sedaghat, Yalda; Mazur, Curt; Sabripour, Mahyar; Hung, Gene; Monia, Brett P
2012-01-01
Wig-1 is a transcription factor regulated by p53 that can interact with hnRNP A2/B1, RNA Helicase A, and dsRNAs, which plays an important role in RNA and protein stabilization. in vitro studies have shown that wig-1 binds p53 mRNA and stabilizes it by protecting it from deadenylation. Furthermore, p53 has been implicated as a causal factor in neurodegenerative diseases based in part on its selective regulatory function on gene expression, including genes which, in turn, also possess regulatory functions on gene expression. In this study we focused on the wig-1 transcription factor as a downstream p53 regulated gene and characterized the effects of wig-1 down regulation on gene expression in mouse liver and brain. Antisense oligonucleotides (ASOs) were identified that specifically target mouse wig-1 mRNA and produce a dose-dependent reduction in wig-1 mRNA levels in cell culture. These wig-1 ASOs produced marked reductions in wig-1 levels in liver following intraperitoneal administration and in brain tissue following ASO administration through a single striatal bolus injection in FVB and BACHD mice. Wig-1 suppression was well tolerated and resulted in the reduction of mutant Htt protein levels in BACHD mouse brain but had no effect on normal Htt protein levels nor p53 mRNA or protein levels. Expression microarray analysis was employed to determine the effects of wig-1 suppression on genome-wide expression in mouse liver and brain. Reduction of wig-1 caused both down regulation and up regulation of several genes, and a number of wig-1 regulated genes were identified that potentially links wig-1 various signaling pathways and diseases. Antisense oligonucleotides can effectively reduce wig-1 levels in mouse liver and brain, which results in specific changes in gene expression for pathways relevant to both the nervous system and cancer.
Quantitative mouse brain phenotyping based on single and multispectral MR protocols
Badea, Alexandra; Gewalt, Sally; Avants, Brian B.; Cook, James J.; Johnson, G. Allan
2013-01-01
Sophisticated image analysis methods have been developed for the human brain, but such tools still need to be adapted and optimized for quantitative small animal imaging. We propose a framework for quantitative anatomical phenotyping in mouse models of neurological and psychiatric conditions. The framework encompasses an atlas space, image acquisition protocols, and software tools to register images into this space. We show that a suite of segmentation tools (Avants, Epstein et al., 2008) designed for human neuroimaging can be incorporated into a pipeline for segmenting mouse brain images acquired with multispectral magnetic resonance imaging (MR) protocols. We present a flexible approach for segmenting such hyperimages, optimizing registration, and identifying optimal combinations of image channels for particular structures. Brain imaging with T1, T2* and T2 contrasts yielded accuracy in the range of 83% for hippocampus and caudate putamen (Hc and CPu), but only 54% in white matter tracts, and 44% for the ventricles. The addition of diffusion tensor parameter images improved accuracy for large gray matter structures (by >5%), white matter (10%), and ventricles (15%). The use of Markov random field segmentation further improved overall accuracy in the C57BL/6 strain by 6%; so Dice coefficients for Hc and CPu reached 93%, for white matter 79%, for ventricles 68%, and for substantia nigra 80%. We demonstrate the segmentation pipeline for the widely used C57BL/6 strain, and two test strains (BXD29, APP/TTA). This approach appears promising for characterizing temporal changes in mouse models of human neurological and psychiatric conditions, and may provide anatomical constraints for other preclinical imaging, e.g. fMRI and molecular imaging. This is the first demonstration that multiple MR imaging modalities combined with multivariate segmentation methods lead to significant improvements in anatomical segmentation in the mouse brain. PMID:22836174
Genomic Analysis of wig-1 Pathways
Sedaghat, Yalda; Mazur, Curt; Sabripour, Mahyar; Hung, Gene; Monia, Brett P.
2012-01-01
Background Wig-1 is a transcription factor regulated by p53 that can interact with hnRNP A2/B1, RNA Helicase A, and dsRNAs, which plays an important role in RNA and protein stabilization. in vitro studies have shown that wig-1 binds p53 mRNA and stabilizes it by protecting it from deadenylation. Furthermore, p53 has been implicated as a causal factor in neurodegenerative diseases based in part on its selective regulatory function on gene expression, including genes which, in turn, also possess regulatory functions on gene expression. In this study we focused on the wig-1 transcription factor as a downstream p53 regulated gene and characterized the effects of wig-1 down regulation on gene expression in mouse liver and brain. Methods and Results Antisense oligonucleotides (ASOs) were identified that specifically target mouse wig-1 mRNA and produce a dose-dependent reduction in wig-1 mRNA levels in cell culture. These wig-1 ASOs produced marked reductions in wig-1 levels in liver following intraperitoneal administration and in brain tissue following ASO administration through a single striatal bolus injection in FVB and BACHD mice. Wig-1 suppression was well tolerated and resulted in the reduction of mutant Htt protein levels in BACHD mouse brain but had no effect on normal Htt protein levels nor p53 mRNA or protein levels. Expression microarray analysis was employed to determine the effects of wig-1 suppression on genome-wide expression in mouse liver and brain. Reduction of wig-1 caused both down regulation and up regulation of several genes, and a number of wig-1 regulated genes were identified that potentially links wig-1 various signaling pathways and diseases. Conclusion Antisense oligonucleotides can effectively reduce wig-1 levels in mouse liver and brain, which results in specific changes in gene expression for pathways relevant to both the nervous system and cancer. PMID:22347364
Iijima, N; Tanaka, M; Mitsui, S; Yamamura, Y; Yamaguchi, N; Ibata, Y
1999-03-20
Serine proteases are considered to play several important roles in the brain. In an attempt to find novel brain-specific serine proteases (BSSPs), motopsin (PRSS-12) was cloned from a mouse brain cDNA library by polymerase chain reaction (PCR). Northern blot analysis demonstrated that the postnatal 10-day mouse brain contained the most amount of motopsin mRNA. At this developmental stage, in situ hybridization histochemistry showed that motopsin mRNA was specifically expressed in the following regions: cerebral cortical layers II/III, V and VIb, endopiriform cortex and the limbic system, particularly in the CA1 region of the hippocampal formation. In addition, in the brainstem, the oculomotor nucleus, trochlear nucleus, mecencephalic and motor nuclei of trigeminal nerve (N), abducens nucleus, facial nucleus, nucleus of the raphe pontis, dorsoral motor nucleus of vagal N, hypoglossal nucleus and ambiguus nucleus showed motopsin mRNA expression. Expression was also found in the anterior horn of the spinal cord. The above findings strongly suggest that neurons in almost all motor nuclei, particularly in the brainstem and spinal cord, express motopsin mRNA, and that motopsin seems to have a close relation to the functional role of efferent neurons. Copyright 1999 Elsevier Science B.V.
Yook, Jang Soo; Shibato, Junko; Rakwal, Randeep; Soya, Hideaki
2015-01-01
Naturally occurring astaxantin (ASX) is one of the noticeable carotenoid and dietary supplement, which has strong antioxidant and anti-inflammatory properties, and neuroprotective effects in the brain through crossing the blood–brain barrier. Specially, we are interested in the role of ASX as a brain food. Although ASX has been suggested to have potential benefit to the brain function, the underlying molecular mechanisms and events mediating such effect remain unknown. Here we examined molecular factors in the hippocampus of adult mouse fed ASX diets (0.1% and 0.5% doses) using DNA microarray (Agilent 4 × 44 K whole mouse genome chip) analysis. In this study, we described in detail our experimental workflow and protocol, and validated quality controls with the housekeeping gene expression (Gapdh and Beta-actin) on the dye-swap based approach to advocate our microarray data, which have been uploaded to Gene Expression Omnibus (accession number GSE62197) as a gene resource for the scientific community. This data will also form an important basis for further detailed experiments and bioinformatics analysis with an aim to unravel the potential molecular pathways or mechanisms underlying the positive effects of ASX supplementation on the brain, in particular the hippocampus. PMID:26981356
Specimen preparation, imaging, and analysis protocols for knife-edge scanning microscopy.
Choe, Yoonsuck; Mayerich, David; Kwon, Jaerock; Miller, Daniel E; Sung, Chul; Chung, Ji Ryang; Huffman, Todd; Keyser, John; Abbott, Louise C
2011-12-09
Major advances in high-throughput, high-resolution, 3D microscopy techniques have enabled the acquisition of large volumes of neuroanatomical data at submicrometer resolution. One of the first such instruments producing whole-brain-scale data is the Knife-Edge Scanning Microscope (KESM), developed and hosted in the authors' lab. KESM has been used to section and image whole mouse brains at submicrometer resolution, revealing the intricate details of the neuronal networks (Golgi), vascular networks (India ink), and cell body distribution (Nissl). The use of KESM is not restricted to the mouse nor the brain. We have successfully imaged the octopus brain, mouse lung, and rat brain. We are currently working on whole zebra fish embryos. Data like these can greatly contribute to connectomics research; to microcirculation and hemodynamic research; and to stereology research by providing an exact ground-truth. In this article, we will describe the pipeline, including specimen preparation (fixing, staining, and embedding), KESM configuration and setup, sectioning and imaging with the KESM, image processing, data preparation, and data visualization and analysis. The emphasis will be on specimen preparation and visualization/analysis of obtained KESM data. We expect the detailed protocol presented in this article to help broaden the access to KESM and increase its utilization.
A microinjection technique for targeting regions of embryonic and neonatal mouse brain in vivo
Davidson, Steve; Truong, Hai; Nakagawa, Yasushi; Giesler, Glenn J
2009-01-01
A simple pressure injection technique was developed to deliver substances into specific regions of the embryonic and neonatal mouse brain in vivo. The retrograde tracers Fluorogold and cholera toxin B subunit were used to test the validity of the technique. Injected animals survived the duration of transport (24–48 hrs) and then were sacrificed and perfused with fixative. Small injections (≤ 50 nL) were contained within targeted structures of the perinatal brain and labeled distant cells of origin in several model neural pathways. Traced neural pathways in the perinatal mouse were further examined with immunohistochemical methods to test the feasibility of double labeling experiments during development. Several experimental situations in which this technique would be useful are discussed, for example, to label projection neurons in slice or culture preparations of mouse embryos and neonates. The administration of pharmacological or genetic vectors directly into specific neural targets during development should also be feasible. An examination of the form of neural pathways during early stages of life may lead to insights regarding the functional changes that occur during critical periods of development and provide an anatomic basis for some neurodevelopmental disorders. PMID:19840780
Pohjoismäki, Jaakko L. O.; Goffart, Steffi; Tyynismaa, Henna; Willcox, Smaranda; Ide, Tomomi; Kang, Dongchon; Suomalainen, Anu; Karhunen, Pekka J.; Griffith, Jack D.; Holt, Ian J.; Jacobs, Howard T.
2009-01-01
Analysis of human heart mitochondrial DNA (mtDNA) by electron microscopy and agarose gel electrophoresis revealed a complete absence of the θ-type replication intermediates seen abundantly in mtDNA from all other tissues. Instead only Y- and X-junctional forms were detected after restriction digestion. Uncut heart mtDNA was organized in tangled complexes of up to 20 or more genome equivalents, which could be resolved to genomic monomers, dimers, and linear fragments by treatment with the decatenating enzyme topoisomerase IV plus the cruciform-cutting T7 endonuclease I. Human and mouse brain also contained a population of such mtDNA forms, which were absent, however, from mouse, rabbit, or pig heart. Overexpression in transgenic mice of two proteins involved in mtDNA replication, namely human mitochondrial transcription factor A or the mouse Twinkle DNA helicase, generated abundant four-way junctions in mtDNA of heart, brain, and skeletal muscle. The organization of mtDNA of human heart as well as of mouse and human brain in complex junctional networks replicating via a presumed non-θ mechanism is unprecedented in mammals. PMID:19525233
A novel Alzheimer's disease drug candidate targeting inflammation and fatty acid metabolism.
Daugherty, Daniel; Goldberg, Joshua; Fischer, Wolfgang; Dargusch, Richard; Maher, Pamela; Schubert, David
2017-07-14
CAD-31 is an Alzheimer's disease (AD) drug candidate that was selected on the basis of its ability to stimulate the replication of human embryonic stem cell-derived neural precursor cells as well as in APPswe/PS1ΔE9 AD mice. To move CAD-31 toward the clinic, experiments were undertaken to determine its neuroprotective and pharmacological properties, as well as to assay its therapeutic efficacy in a rigorous mouse model of AD. CAD-31 has potent neuroprotective properties in six distinct nerve cell assays that mimic toxicities observed in the old brain. Pharmacological and preliminary toxicological studies show that CAD-31 is brain-penetrant and likely safe. When fed to old, symptomatic APPswe/PS1ΔE9 AD mice starting at 10 months of age for 3 additional months in a therapeutic model of the disease, there was a reduction in the memory deficit and brain inflammation, as well as an increase in the expression of synaptic proteins. Small-molecule metabolic data from the brain and plasma showed that the major effect of CAD-31 is centered on fatty acid metabolism and inflammation. Pathway analysis of gene expression data showed that CAD-31 had major effects on synapse formation and AD energy metabolic pathways. All of the multiple physiological effects of CAD-31 were favorable in the context of preventing some of the toxic events in old age-associated neurodegenerative diseases.
Nuclear localization of Klotho in brain: an anti-aging protein
German, Dwight C.; Khobahy, Ida; Pastor, Johanne; Kuro-o, Makoto; Liu, Xinran
2011-01-01
Klotho is a putative age-suppressing gene whose over-expression in mice results in extension of life span. The klotho gene encodes a single-pass transmembrane protein whose extracellular domain is shed and released into blood, urine, and cerebrospinal fluid, potentially functioning as a humoral factor. The extracellular domain of Klotho has an activity that increases the expression of anti-oxidant enzymes and confers resistance to oxidative stress in cultured cells and in whole animals. The transmembrane form of the Klotho protein directly binds to multiple fibroblast growth factor receptors and modifies their ligand affinity and specificity. The purpose of the present study was to determine the precise cellular localization of Klotho in the mouse brain. Using light microscopic immunohistochemical methods, we found the highest levels of Klotho immunoreactivity in two brain regions: the choroid plexus, and cerebellar Purkinje cells. In the choroid plexus cells, Klotho was found not only on the plasma membrane but also in large amounts near the nuclear membrane. Likewise, in the Purkinje cell Klotho was found throughout the cell including dendrites, axon and soma with large amounts near the nuclear membrane. Using immunoelectron microscopy, we found Klotho in the cell membrane, but the highest concentration was localized in the peripheral portion of the nucleus and the nucleolus in both cell types. This new finding suggests that in addition to Klotho being secreted from cells in brain, it also has a nuclear function. PMID:22245317
Mousseau, D D; Larson, A A
1994-09-01
We have previously observed similarities in the behavioral effects produced by the NH2-terminus of the undecapeptide substance P (SP) and by 1,3-di(2-tolyl)-guanidine (DTG) in the adult mouse. The present series of experiments indicate differences in the rank-order of potency of sigma ligands [DTG; haloperidol (HAL)], SP analogs [SP; SP(1-7); SP(5-11); [D-Pro2, D-Phe7]-SP(1-7) (D-SP(1-7))] and miscellaneous compounds [morphine (MOR), naloxone (NAL)] at competing for [3H]-DTG binding sites in the mouse brain and spinal cord in vitro: Brain; DTG = HAL > SP = MOR = NAL > SP(1-7) > D-SP(1-7) > SP(5-11): Spinal cord; DTG = HAL > SP(1-7) = MOR = NAL > SP > D-SP(1-7) = SP(5-11). The observed difference in the rank-order potencies of the displacing ligands at these same binding sites supports the notion of two distinct populations of sigma binding sites in these tissues in the adult mouse. Given the low (micromolar) potency of SP analogs at displacing [3H]-DTG binding in the present series of experiments, it is unlikely that the similar behavioral effects we have previously observed elicited by SP(1-7) and DTG in the adult mouse are a result of a direct action of SP(1-7) at the sigma binding site.
Zhang, Shuai; Qin, Chunxia; Cao, Guoqiong; Xin, Wenfeng; Feng, Chengqiang; Zhang, Wensheng
2016-08-02
Long noncoding RNAs (lncRNAs) may play an important role in Alzheimer's disease (AD) pathogenesis. However, despite considerable research in this area, the comprehensive and systematic understanding of lncRNAs in AD is still limited. The emergence of RNA sequencing provides a predictor and has incomparable advantage compared with other methods, including microarray. In this study, we identified lncRNAs in a 7-month-old mouse brain through deep RNA sequencing using the senescence-accelerated mouse prone 8 (SAMP8) and senescence-accelerated mouse resistant 1 (SAMR1) models. A total of 599,985,802 clean reads and 23,334 lncRNA transcripts were obtained. Then, we identified 97 significantly upregulated and 114 significantly downregulated lncRNA transcripts from all cases in SAMP8 mice relative to SAMR1 mice. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses revealed that these significantly dysregulated lncRNAs were involved in regulating the development of AD from various angles, such as nerve growth factor term (GO: 1990089), mitogen-activated protein kinase signaling pathway, and AD pathway. Furthermore, the most probable AD-associated lncRNAs were predicted and listed in detail. Our study provided the systematic dissection of lncRNA profiling in SAMP8 mouse brain and accelerated the development of lncRNA biomarkers in AD. These attracting biomarkers could provide significant insights into AD therapy in the future.
Beaudin, Stephane A.; Singh, Teghpal; Agster, Kara L.
2013-01-01
We examined the cytoarchitectonic and chemoarchitectonic organization of the cortical regions associated with the posterior rhinal fissure in the mouse brain, within the framework of what is known about these regions in the rat. Primary observations were in a first-generation hybrid mouse line, B6129PF/J1. The F1 hybrid was chosen because of the many advantages afforded in the study of the molecular and cellular bases of learning and memory. Comparisons with the parent strains, the C57BL6/J and 129P3/J are also reported. Mouse brain tissue was processed for visualization of Nissl material, myelin, acetyl cholinesterase, parvalbumin, and heavy metals. Tissue stained for heavy metals by the Timm’s method was particularly useful in the assignment of borders and in the comparative analyses because the patterns of staining were similar across species and strains. As in the rat, the areas examined were parcellated into 2 regions, the perirhinal and the postrhinal cortices. The perirhinal cortex was divided into areas 35 and 36, and the postrhinal cortex was divided into dorsal (PORd) and ventral (PORv) subregions. In addition to identifying the borders of the perirhinal cortex, we were able to identify a region in the mouse brain that shares signature features with the rat postrhinal cortex. PMID:22368084
Metabolic drift in the aging brain
Ivanisevic, Julijana; Stauch, Kelly L.; Petrascheck, Michael; Benton, H. Paul; Epstein, Adrian A.; Fang, Mingliang; Gorantla, Santhi; Tran, Minerva; Hoang, Linh; Kurczy, Michael E.; Boska, Michael D.; Gendelman, Howard E.; Fox, Howard S.; Siuzdak, Gary
2016-01-01
Brain function is highly dependent upon controlled energy metabolism whose loss heralds cognitive impairments. This is particularly notable in the aged individuals and in age-related neurodegenerative diseases. However, how metabolic homeostasis is disrupted in the aging brain is still poorly understood. Here we performed global, metabolomic and proteomic analyses across different anatomical regions of mouse brain at different stages of its adult lifespan. Interestingly, while severe proteomic imbalance was absent, global-untargeted metabolomics revealed an energy metabolic drift or significant imbalance in core metabolite levels in aged mouse brains. Metabolic imbalance was characterized by compromised cellular energy status (NAD decline, increased AMP/ATP, purine/pyrimidine accumulation) and significantly altered oxidative phosphorylation and nucleotide biosynthesis and degradation. The central energy metabolic drift suggests a failure of the cellular machinery to restore metabostasis (metabolite homeostasis) in the aged brain and therefore an inability to respond properly to external stimuli, likely driving the alterations in signaling activity and thus in neuronal function and communication. PMID:27182841
Herrlinger, Stephanie A; Shao, Qiang; Ma, Li; Brindley, Melinda; Chen, Jian-Fu
2018-04-26
The Zika virus (ZIKV) is a flavivirus currently endemic in North, Central, and South America. It is now established that the ZIKV can cause microcephaly and additional brain abnormalities. However, the mechanism underlying the pathogenesis of ZIKV in the developing brain remains unclear. Intracerebral surgical methods are frequently used in neuroscience research to address questions about both normal and abnormal brain development and brain function. This protocol utilizes classical surgical techniques and describes methods that allow one to model ZIKV-associated human neurological disease in the mouse nervous system. While direct brain inoculation does not model the normal mode of virus transmission, the method allows investigators to ask targeted questions concerning the consequence after ZIKV infection of the developing brain. This protocol describes embryonic, neonatal, and adult stages of intraventricular inoculation of ZIKV. Once mastered, this method can become a straightforward and reproducible technique that only takes a few hours to perform.
Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain*
Hou, Sheng Tao; Jiang, Susan X.; Zaharia, L. Irina; Han, Xiumei; Benson, Chantel L.; Slinn, Jacqueline; Abrams, Suzanne R.
2016-01-01
Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (−)-PA in mouse and rat brains. (−)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells. Purified (−)-PA has no toxicity and protects cultured cortical neurons against glutamate toxicity through reversible inhibition of glutamate receptors. Focal occlusion of the middle cerebral artery elicited a significant induction in (−)-PA expression in the cerebrospinal fluid but not in the peripheral blood. Importantly, (−)-PA induction only occurred in the penumbra area, indicting a protective role of PA in the brain. Indeed, elevating the (−)-PA level in the brain reduced ischemic brain injury, whereas reducing the (−)-PA level using a monoclonal antibody against (−)-PA increased ischemic injury. Collectively, these studies showed for the first time that (−)-PA is an endogenous neuroprotective molecule capable of reversibly inhibiting glutamate receptors during ischemic brain injury. PMID:27864367
Phaseic Acid, an Endogenous and Reversible Inhibitor of Glutamate Receptors in Mouse Brain.
Hou, Sheng Tao; Jiang, Susan X; Zaharia, L Irina; Han, Xiumei; Benson, Chantel L; Slinn, Jacqueline; Abrams, Suzanne R
2016-12-30
Phaseic acid (PA) is a phytohormone regulating important physiological functions in higher plants. Here, we show the presence of naturally occurring (-)-PA in mouse and rat brains. (-)-PA is exclusively present in the choroid plexus and the cerebral vascular endothelial cells. Purified (-)-PA has no toxicity and protects cultured cortical neurons against glutamate toxicity through reversible inhibition of glutamate receptors. Focal occlusion of the middle cerebral artery elicited a significant induction in (-)-PA expression in the cerebrospinal fluid but not in the peripheral blood. Importantly, (-)-PA induction only occurred in the penumbra area, indicting a protective role of PA in the brain. Indeed, elevating the (-)-PA level in the brain reduced ischemic brain injury, whereas reducing the (-)-PA level using a monoclonal antibody against (-)-PA increased ischemic injury. Collectively, these studies showed for the first time that (-)-PA is an endogenous neuroprotective molecule capable of reversibly inhibiting glutamate receptors during ischemic brain injury. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Lee, Bo-Ram; Joo, Kyung-Il; Choi, Eun Sook; Jahng, Junghoon; Kim, Hyunmin
2017-01-01
We performed dye-enhanced imaging of mouse brain microvessels using spectral focusing coherent anti-Stokes Raman scattering (SF-CARS) microscopy. The resonant signals from C-H stretching in forward CARS usually show high background intensity in tissues, which makes CARS imaging of microvessels difficult. In this study, epi-detection of back-scattered SF-CARS signals showed a negligible background, but the overall intensity of resonant CARS signals was too low to observe the network of brain microvessels. Therefore, Evans blue (EB) dye was used as contrasting agent to enhance the back-scattered SF-CARS signals. Breakdown of brain microvessels by inducing hemorrhage in a mouse was clearly visualized using backward SF-CARS signals, following intravenous injection of EB. The improved visualization of brain microvessels with EB enhanced the sensitivity of SF-CARS, detecting not only the blood vessels themselves but their integrity as well in the brain vasculature. PMID:29049299
Plasma Levels of Glucose and Insulin in Patients with Brain Tumors
ALEXANDRU, OANA; ENE, L.; PURCARU, OANA STEFANA; TACHE, DANIELA ELISE; POPESCU, ALISA; NEAMTU, OANA MARIA; TATARANU, LIGIA GABRIELA; GEORGESCU, ADA MARIA; TUDORICA, VALERICA; ZAHARIA, CORNELIA; DRICU, ANICA
2014-01-01
In the last years there were many authors that suggest the existence of an association between different components of metabolic syndrome and various cancers. Two important components of metabolic syndrome are hyperglycemia and hyperinsulinemia. Both of them had already been linked with the increased risk of pancreatic, breast, endometrial or prostate cancer. However the correlation of the level of the glucose and insulin with various types and grades of brain tumors remains unclear. In this article we have analysed the values of plasma glucose and insulin in 267 patients, consecutively diagnosed with various types of brain tumors. Our results showed no correlation between the glycemia and brain tumor types or grades. High plasma levels of insulin were found in brain metastasis and astrocytomas while the other types of brain tumors (meningiomas and glioblastomas) had lower levels of the peptide. The levels of insulin were also higher in brain metastasis and grade 3 brain tumors when compared with grade 1, grade 2 and grade 4 brain tumors. PMID:24791202
Mouse model of plasma cell mastitis.
Yu, Jian-jun; Bao, Shan-lin; Yu, Sheng-lin; Zhang, Da-Qing; Loo, Wings T Y; Chow, Louis W C; Su, Li; Cui, Zhen; Chen, Kai; Ma, Li-Qiong; Zhang, Ning; Yu, Hui; Yang, Yun-Zhen; Dong, Yu; Yip, Adrian Y S; Ng, Elizabeth L Y
2012-09-19
Plasma cell mastitis is distinct from the common form of mastitis and clinically resembles breast carcinoma. The lesion occurs in non-lactating young women, and the incidence rate is rising. Surgical resection is the main treatment, but cannot prevent recurrence of the disease. Disfigurement or removal of breast after the operations can cause marked physical and psychological distress. The etiology of plasma cell mastitis is unclear up till now. It is therefore necessary to investigate further the underlying immunological changes of the disease. The lesions of plasma cell mastitis removed from patients through aseptic operation were mixed with normal saline into homogenate tube machine (homogenate tubes were disinfected and sterilized prior to treatment). The mixture was homogenized at medium speed and grinded in ultrasonic cell disruptor. The homogenate obtained was made into oil emulsion with Freund's adjuvant. Thirty female BALB/c mice (6 weeks after sexual maturity) were divided into five groups A-E: group A was blank control; group B was normal saline control; group C was inoculated with 0.02 ml water-in-oil emulsion; group D was inoculated with 0.04 ml water-in-oil emulsion; group E was complete Freund's adjuvant control. Pathology results showed that mouse mammary gland acinar cells remained integral without any abnormal changes observed in control groups A and B. Experimental groups C and D showed dilation of mouse mammary ductal tissue with a large number of epithelial cells and debris in the lumen, and fibrosis around ducts accompanied by large duct cells, neutrophils, lymphocytes, and especially plasma cell infiltration. Pathological changes were observed in 3 (50%) mice and 5 (83.3%) mice in group C and D respectively. In group E, neutrophil infiltration in mammary gland was observed in 5 mice, but neither infiltration of plasma cells nor other abnormal pathological changes were observed. The lesions of patient with plasma cell mastitis could make the female BALB/c mice experience the similar clinical and pathological manifestation. High-dose group can successfully establish a mouse model of plasma cell mastitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giacobini, E.; Boyer, A.; Somani, S.M.
1986-03-05
Time course of /sup 3/H-physostigmine (Phy) concentration and cholinesterase (ChE) activity in plasma and tissues was studied in rats pretreated with Phy and then soman. Rats were dosed with Phy (100 ..mu..g/kg, i.v.), 5 or 15 min prior to soman (105 ..mu..g/kg, 1.5 LD/sub 50/, s.c.) treatment and were sacrificed at various times; Phys conc. and ChE activity were determined. BuChE activity in plasma was 5% of control from 7-30 min after Phy i.v. pretreatment and soman or soman alone treatment. Plasma Phy conc. steadily declined (32.6 ng/ml at 7 min) to 15 ng/ml at 30 min. ChE activity inmore » muscle was 60-50% of control for Phy pretreated but soman alone gave 85-72% activity from 2-30 min. Brain ChE activity was about 5% of control within 2 min after soman treatment; however, with Phy pretreatment, the activity was about 52% at 7 min, 40% at 22 min, which recovered to 45% of control at 35 min, indicating that Phy protected brain ChE. Brain Phy conc. steadily declined (58.6 ng/g at 7 min) to 11.7 ng/g at 30 min. However, pretreatment of rat with a higher dose of Phy and then soman showed BuChE in plasma and ChE in brain and muscle to be about 25, 35 and 51%, in comparison to about 5% in plasma and brain with soman alone treatment, indicating higher protection of ChE enzyme with higher conc. of Phy in plasma and brain.« less
Zhang, Le; Dasuri, Kalavathi; Fernandez-Kim, Sun-Ok; Bruce-Keller, Annadora J; Freeman, Linnea R; Pepping, Jennifer K; Beckett, Tina L; Murphy, M Paul; Keller, Jeffrey N
2013-09-01
Cerebral amyloid angiopathy (CAA) occurs in nearly every individual with Alzheimer's disease (AD) and Down's syndrome, and is the second largest cause of intracerebral hemorrhage. Mouse models of CAA have demonstrated evidence for increased gliosis contributing to CAA pathology. Nearly two thirds of Americans are overweight or obese, with little known about the effects of obesity on the brain, although increasingly the vasculature appears to be a principle target of obesity effects on the brain. In the current study we describe for the first time whether diet induced obesity (DIO) modulates glial reactivity, amyloid levels, and inflammatory signaling in a mouse model of CAA. In these studies we identify surprisingly that DIO does not significantly increase Aβ levels, astrocyte (GFAP) or microglial (IBA-1) gliosis in the CAA mice. However, within the hippocampal gyri a localized increase in reactive microglia were increased in the CA1 and stratum oriens relative to CAA mice on a control diet. DIO was observed to selectively increase IL-6 in CAA mice, with IL-1β and TNF-α not increased in CAA mice in response to DIO. Taken together, these data show that prolonged DIO has only modest effects towards Aβ in a mouse model of CAA, but appears to elevate some localized microglial reactivity within the hippocampal gyri and selective markers of inflammatory signaling. These data are consistent with the majority of the existing literature in other models of Aβ pathology, which surprisingly show a mixed profile of DIO effects towards pathological processes in mouse models of neurodegenerative disease. The importance for considering the potential impact of ceiling effects in pathology within mouse models of Aβ pathogenesis, and the current experimental limitations for DIO in mice to fully replicate metabolic dysfunction present in human obesity, are discussed. This article is part of a Special Issue entitled: Animal Models of Disease. Copyright © 2012. Published by Elsevier B.V.
Holmes, Holly E.; Powell, Nick M.; Ma, Da; Ismail, Ozama; Harrison, Ian F.; Wells, Jack A.; Colgan, Niall; O'Callaghan, James M.; Johnson, Ross A.; Murray, Tracey K.; Ahmed, Zeshan; Heggenes, Morten; Fisher, Alice; Cardoso, M. Jorge; Modat, Marc; O'Neill, Michael J.; Collins, Emily C.; Fisher, Elizabeth M. C.; Ourselin, Sébastien; Lythgoe, Mark F.
2017-01-01
With increasingly large numbers of mouse models of human disease dedicated to MRI studies, compromises between in vivo and ex vivo MRI must be fully understood in order to inform the choice of imaging methodology. We investigate the application of high resolution in vivo and ex vivo MRI, in combination with tensor-based morphometry (TBM), to uncover morphological differences in the rTg4510 mouse model of tauopathy. The rTg4510 mouse also offers a novel paradigm by which the overexpression of mutant tau can be regulated by the administration of doxycycline, providing us with a platform on which to investigate more subtle alterations in morphology with morphometry. Both in vivo and ex vivo MRI allowed the detection of widespread bilateral patterns of atrophy in the rTg4510 mouse brain relative to wild-type controls. Regions of volume loss aligned with neuronal loss and pathological tau accumulation demonstrated by immunohistochemistry. When we sought to investigate more subtle structural alterations in the rTg4510 mice relative to a subset of doxycycline-treated rTg4510 mice, ex vivo imaging enabled the detection of more regions of morphological brain changes. The disadvantages of ex vivo MRI may however mitigate this increase in sensitivity: we observed a 10% global shrinkage in brain volume of the post-mortem tissues due to formalin fixation, which was most notable in the cerebellum and olfactory bulbs. However, many central brain regions were not adversely affected by the fixation protocol, perhaps due to our “in-skull” preparation. The disparity between our TBM findings from in vivo and ex vivo MRI underlines the importance of appropriate study design, given the trade-off between these two imaging approaches. We support the utility of in vivo MRI for morphological phenotyping of mouse models of disease; however, for subtler phenotypes, ex vivo offers enhanced sensitivity to discrete morphological changes. PMID:28408879
Stefan, Mihaela; Portis, Toni; Longnecker, Richard; Nicholls, Robert D
2005-05-01
Prader-Willi syndrome (PWS) is a complex neurobehavioral disorder that results from loss of function of 10 clustered, paternally expressed genes in a 1.5-Mb region of chromosome 15q11-q13. Many of the primary PWS region genes appear to have nuclear RNA regulatory functions, suggesting that multiple genetic pathways could be secondarily affected in PWS. Using a transgenic mouse model of PWS (TgPWS) with an approximately 4-Mb chromosome 7C deletion of paternal origin that models the neonatal phenotype of the human syndrome we compared by oligonucleotide microarrays expression levels of approximately 12,000 genes and ESTs in TgPWS and wild-type brain. Hybridization data were processed with two distinct statistical algorithms and revealed a dramatically reduced expression of 4 imprinted genes within the deletion region in TgPWS mice, with 2 nonimprinted, codeleted genes reduced twofold. However, only 3 genes outside the deletion were significantly altered in TgPWS mouse brain, with approximately 1.5-fold up-regulation of mRNA levels. Remarkably, these genes map to a single chromosome domain (18B3), and by quantitative RT-PCR we show that 8 genes in this domain are up-regulated in TgPWS brain. These 18B3 genes were up-regulated in an equivalent manner in Angelman syndrome mouse (TgAS) brain, which has the same deletion but of maternal origin. Therefore, the trans-regulation of the chromosome 18B3 domain is due to decreased expression of a nonimprinted gene within the TgPWS/AS mouse deletion in mouse chromosome 7C. Most surprisingly, since 48-60% of the genome was screened, it appears that the imprinted mouse PWS loci do not widely regulate mRNA levels of other genes and may regulate RNA structure.
Holmes, Holly E; Powell, Nick M; Ma, Da; Ismail, Ozama; Harrison, Ian F; Wells, Jack A; Colgan, Niall; O'Callaghan, James M; Johnson, Ross A; Murray, Tracey K; Ahmed, Zeshan; Heggenes, Morten; Fisher, Alice; Cardoso, M Jorge; Modat, Marc; O'Neill, Michael J; Collins, Emily C; Fisher, Elizabeth M C; Ourselin, Sébastien; Lythgoe, Mark F
2017-01-01
With increasingly large numbers of mouse models of human disease dedicated to MRI studies, compromises between in vivo and ex vivo MRI must be fully understood in order to inform the choice of imaging methodology. We investigate the application of high resolution in vivo and ex vivo MRI, in combination with tensor-based morphometry (TBM), to uncover morphological differences in the rTg4510 mouse model of tauopathy. The rTg4510 mouse also offers a novel paradigm by which the overexpression of mutant tau can be regulated by the administration of doxycycline, providing us with a platform on which to investigate more subtle alterations in morphology with morphometry. Both in vivo and ex vivo MRI allowed the detection of widespread bilateral patterns of atrophy in the rTg4510 mouse brain relative to wild-type controls. Regions of volume loss aligned with neuronal loss and pathological tau accumulation demonstrated by immunohistochemistry. When we sought to investigate more subtle structural alterations in the rTg4510 mice relative to a subset of doxycycline-treated rTg4510 mice, ex vivo imaging enabled the detection of more regions of morphological brain changes. The disadvantages of ex vivo MRI may however mitigate this increase in sensitivity: we observed a 10% global shrinkage in brain volume of the post-mortem tissues due to formalin fixation, which was most notable in the cerebellum and olfactory bulbs. However, many central brain regions were not adversely affected by the fixation protocol, perhaps due to our "in-skull" preparation. The disparity between our TBM findings from in vivo and ex vivo MRI underlines the importance of appropriate study design, given the trade-off between these two imaging approaches. We support the utility of in vivo MRI for morphological phenotyping of mouse models of disease; however, for subtler phenotypes, ex vivo offers enhanced sensitivity to discrete morphological changes.
Acetate transport and utilization in the rat brain.
Deelchand, Dinesh K; Shestov, Alexander A; Koski, Dee M; Uğurbil, Kâmil; Henry, Pierre-Gilles
2009-05-01
Acetate, a glial-specific substrate, is an attractive alternative to glucose for the study of neuronal-glial interactions. The present study investigates the kinetics of acetate uptake and utilization in the rat brain in vivo during infusion of [2-13C]acetate using NMR spectroscopy. When plasma acetate concentration was increased, the rate of brain acetate utilization (CMR(ace)) increased progressively and reached close to saturation for plasma acetate concentration > 2-3 mM, whereas brain acetate concentration continued to increase. The Michaelis-Menten constant for brain acetate utilization (K(M)(util) = 0.01 +/- 0.14 mM) was much smaller than for acetate transport through the blood-brain barrier (BBB) (K(M)(t) = 4.18 +/- 0.83 mM). The maximum transport capacity of acetate through the BBB (V(max)(t) = 0.96 +/- 0.18 micromol/g/min) was nearly twofold higher than the maximum rate of brain acetate utilization (V(max)(util) = 0.50 +/- 0.08 micromol/g/min). We conclude that, under our experimental conditions, brain acetate utilization is saturated when plasma acetate concentrations increase above 2-3 mM. At such high plasma acetate concentration, the rate-limiting step for glial acetate metabolism is not the BBB, but occurs after entry of acetate into the brain.
Bortolussi, Giulia; Zentilin, Lorena; Baj, Gabriele; Giraudi, Pablo; Bellarosa, Cristina; Giacca, Mauro; Tiribelli, Claudio; Muro, Andrés F.
2012-01-01
Crigler-Najjar type I (CNI) syndrome is a recessively inherited disorder characterized by severe unconjugated hyperbilirubinemia caused by uridine diphosphoglucuronosyltransferase 1A1 (UGT1A1) deficiency. The disease is lethal due to bilirubin-induced neurological damage unless phototherapy is applied from birth. However, treatment becomes less effective during growth, and liver transplantation is required. To investigate the pathophysiology of the disease and therapeutic approaches in mice, we generated a mouse model by introducing a premature stop codon in the UGT1a1 gene, which results in an inactive enzyme. Homozygous mutant mice developed severe jaundice soon after birth and died within 11 d, showing significant cerebellar alterations. To rescue neonatal lethality, newborns were injected with a single dose of adeno-associated viral vector 9 (AAV9) expressing the human UGT1A1. Gene therapy treatment completely rescued all AAV-treated mutant mice, accompanied by lower plasma bilirubin levels and normal brain histology and motor coordination. Our mouse model of CNI reproduces genetic and phenotypic features of the human disease. We have shown, for the first time, the full recovery of the lethal effects of neonatal hyperbilirubinemia. We believe that, besides gene-addition-based therapies, our mice could represent a very useful model to develop and test novel technologies based on gene correction by homologous recombination.—Bortolussi, G., Zentilin, L., Baj, G., Giraudi, P., Bellarosa, C., Giacca, M., Tiribelli, C., Muro, A. F. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer. PMID:22094718
Dosimetry in small-animal CT using Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Lee, C.-L.; Park, S.-J.; Jeon, P.-H.; Jo, B.-D.; Kim, H.-J.
2016-01-01
Small-animal computed tomography (micro-CT) imaging devices are increasingly being used in biological research. While investigators are mainly interested in high-contrast, low-noise, and high-resolution anatomical images, relatively large radiation doses are required, and there is also growing concern over the radiological risk from preclinical experiments. This study was conducted to determine the radiation dose in a mouse model for dosimetric estimates using the GEANT4 application for tomographic emission simulations (GATE) and to extend its techniques to various small-animal CT applications. Radiation dose simulations were performed with the same parameters as those for the measured micro-CT data, using the MOBY phantom, a pencil ion chamber and an electrometer with a CT detector. For physical validation of radiation dose, absorbed dose of brain and liver in mouse were evaluated to compare simulated results with physically measured data using thermoluminescent dosimeters (TLDs). The mean difference between simulated and measured data was less than 2.9% at 50 kVp X-ray source. The absorbed doses of 37 brain tissues and major organs of the mouse were evaluated according to kVp changes. The absorbed dose over all of the measurements in the brain (37 types of tissues) consistently increased and ranged from 42.4 to 104.0 mGy. Among the brain tissues, the absorbed dose of the hypothalamus (157.8-414.30 mGy) was the highest for the beams at 50-80 kVp, and that of the corpus callosum (11.2-26.6 mGy) was the lowest. These results can be used as a dosimetric database to control mouse doses and preclinical targeted radiotherapy experiments. In addition, to accurately calculate the mouse-absorbed dose, the X-ray spectrum, detector alignment, and uncertainty in the elemental composition of the simulated materials must be accurately modeled.
Gene Editing Vectors for Studying Nicotinic Acetylcholine Receptors in Cholinergic Transmission.
Peng, Can; Yan, Yijin; Kim, Veronica J; Engle, Staci E; Berry, Jennifer N; McIntosh, J Michael; Neve, Rachael L; Drenan, Ryan M
2018-05-19
Nicotinic acetylcholine receptors (nAChRs), prototype members of the cys-loop ligand gated ion channel family, are key mediators of cholinergic transmission in the central nervous system. Despite their importance, technical gaps exist in our ability to dissect the function of individual subunits in the brain. To overcome these barriers, we designed CRISPR/Cas9 small guide RNA sequences (sgRNAs) for production of loss-of-function alleles in mouse nAChR genes. These sgRNAs were validated in vitro via deep sequencing. We subsequently targeted candidate nAChR genes in vivo by creating herpes simplex virus (HSV) vectors delivering sgRNAs and Cas9 expression to mouse brain. Production of loss-of-function insertions or deletions (indels) by these "all-in-one" HSV vectors was confirmed using brain slice patch clamp electrophysiology coupled with pharmacological analysis. Next, we developed a scheme for cell type-specific gene editing in mouse brain. Knockin mice expressing Cas9 in a Cre-dependent manner were validated using viral microinjections and genetic crosses to common Cre-driver mouse lines. We subsequently confirmed functional Cas9 activity by targeting the ubiquitous neuronal protein, NeuN, using adeno associated virus (AAV) delivery of sgRNAs. Finally, the mouse β2 nAChR gene was successfully targeted in dopamine transporter (DAT) positive neurons via CRISPR/Cas9. The sgRNA sequences and viral vectors, including our scheme for Cre-dependent gene editing, should be generally useful to the scientific research community. These tools could lead to new discoveries related to the function of nAChRs in neurotransmission and behavioral processes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Ariga, Toshio
2017-01-01
Alzheimer's disease (AD) is the most common type of dementia with clinical symptoms that include deficits in memory, judgment, thinking, and behavior. Gangliosides are present on the outer surface of plasma membranes and are especially abundant in the nervous tissues of vertebrates. Ganglioside metabolism, especially the cholinergic neuron-specific gangliosides, GQ1bα and GT1aα, is altered in mouse model of AD and patients with AD. Thus, alterations in ganglioside metabolism may participate in several events related to the pathogenesis of AD. Increased expressions of GT1aα may reflect cholinergic neurogenesis. Most changes in ganglioside metabolism occur in the specific brain areas and their lipid rafts. Targeting ganglioside metabolism in lipid rafts may represent an underexploited opportunity to design novel therapeutic strategies for AD.
Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains.
Wiltshire, T; Ervin, R B; Duan, H; Bogue, M A; Zamboni, W C; Cook, S; Chung, W; Zou, F; Tarantino, L M
2015-03-01
Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Mahmoudian, Alireza; Rajaei, Ziba; Haghir, Hossein; Banihashemian, Shahaboldin; Hami, Javad
2012-04-01
The aim of the present study was to determine the effects of valerian (Valeriana officinalis) consumption in pregnancy on cortical volume and the levels of zinc and copper, two essential elements that affect brain development and function, in the brain tissues of mouse fetuses. Pregnant female mice were treated with either saline or 1.2 g/kg body weight valerian extract intraperitoneally daily on gestation days (GD) 7 to 17. On GD 20, mice were sacrificed and their fetuses were collected. Fetal brains were dissected, weighed and processed for histological analysis. The volume of cerebral cortex was estimated by the Cavalieri principle. The levels of zinc and copper in the brain tissues were measured by atomic absorption spectroscopy. The results indicated that valerian consumption in pregnancy had no significant effect on brain weight, cerebral cortex volume and copper level in fetal brain. However,it significantly decreased the level of zinc in the brain (P<0.05). Using valerian during midgestation do not have an adverse effect on cerebral cortex; however,it caused a significant decrease in zinc level in the fetal brain. This suggests that valerian use should be limited during pregnancy.
Dobrivojević, Marina; Bohaček, Ivan; Erjavec, Igor; Gorup, Dunja; Gajović, Srećko
2013-01-01
Aim To explore the possibility of brain imaging by microcomputed tomography (microCT) using x-ray contrasting methods to visualize mouse brain ischemic lesions after middle cerebral artery occlusion (MCAO). Methods Isolated brains were immersed in ionic or nonionic radio contrast agent (RCA) for 5 days and subsequently scanned using microCT scanner. To verify whether ex-vivo microCT brain images can be used to characterize ischemic lesions, they were compared to Nissl stained serial histological sections of the same brains. To verify if brains immersed in RCA may be used afterwards for other methods, subsequent immunofluorescent labeling with anti-NeuN was performed. Results Nonionic RCA showed better gray to white matter contrast in the brain, and therefore was selected for further studies. MicroCT measurement of ischemic lesion size and cerebral edema significantly correlated with the values determined by Nissl staining (ischemic lesion size: P=0.0005; cerebral edema: P=0.0002). Brain immersion in nonionic RCA did not affect subsequent immunofluorescent analysis and NeuN immunoreactivity. Conclusion MicroCT method was proven to be suitable for delineation of the ischemic lesion from the non-infarcted tissue, and quantification of lesion volume and cerebral edema. PMID:23444240
Dobrivojević, Marina; Bohaček, Ivan; Erjavec, Igor; Gorup, Dunja; Gajović, Srećko
2013-02-01
To explore the possibility of brain imaging by microcomputed tomography (microCT) using x-ray contrasting methods to visualize mouse brain ischemic lesions after middle cerebral artery occlusion (MCAO). Isolated brains were immersed in ionic or nonionic radio contrast agent (RCA) for 5 days and subsequently scanned using microCT scanner. To verify whether ex-vivo microCT brain images can be used to characterize ischemic lesions, they were compared to Nissl stained serial histological sections of the same brains. To verify if brains immersed in RCA may be used afterwards for other methods, subsequent immunofluorescent labeling with anti-NeuN was performed. Nonionic RCA showed better gray to white matter contrast in the brain, and therefore was selected for further studies. MicroCT measurement of ischemic lesion size and cerebral edema significantly correlated with the values determined by Nissl staining (ischemic lesion size: P=0.0005; cerebral edema: P=0.0002). Brain immersion in nonionic RCA did not affect subsequent immunofluorescent analysis and NeuN immunoreactivity. MicroCT method was proven to be suitable for delineation of the ischemic lesion from the non-infarcted tissue, and quantification of lesion volume and cerebral edema.
Kelliher, Kevin R; Wersinger, Scott R
2009-01-01
In many species, chemical compounds emitted by conspecifics exert profound effects on reproductive physiology and sexual behavior. This is particularly true in the mouse, where such cues advance and delay puberty, suppress and facilitate estrous cycles, and cause the early termination of pregnancy. They also facilitate sexual behavior and inform mate selection. The mouse has a rich and complex repertoire of social behaviors. The technologies of molecular genetics are well developed in the mouse. Gene expression can be experimentally manipulated in the mouse relatively easily and in a time- and tissue-specific manner. Thus, the mouse is an excellent model in which to investigate the genetic, neural, and hormonal bases by which chemical compounds released by other mice affect physiology and behavior. These chemical cues are detected and processed by the olfactory system and other specialized but less well characterized sensory organs. The sensory information reaches brain regions that regulate hormone levels as well as those that are involved in behavior and alters the function of these brain regions. The effects of these chemical compounds have important implications for the laboratory animal facility as well as for researchers. We begin with an overview of the basic structure and function of the olfactory system and of the connections among brain regions that receive olfactory stimuli. We discuss the effects of chemosensory cues on the behavior and physiology of the organism along with what is known about the neural and hormonal mechanisms underlying these effects. We also describe some of the implications for the laboratory animal facility.
Patel, Yogesh T; Jacus, Megan O; Boulos, Nidal; Dapper, Jason D; Davis, Abigail D; Vuppala, Pradeep K; Freeman, Burgess B; Mohankumar, Kumarasamypet M; Throm, Stacy L; Gilbertson, Richard J; Stewart, Clinton F
2015-05-01
Clofarabine, a deoxyadenosine analog, was an active anticancer drug in our in vitro high-throughput screening against mouse ependymoma neurospheres. To characterize the clofarabine disposition in mice for further preclinical efficacy studies, we evaluated the plasma and central nervous system disposition in a mouse model of ependymoma. A plasma pharmacokinetic study of clofarabine (45 mg/kg, IP) was performed in CD1 nude mice bearing ependymoma to obtain initial plasma pharmacokinetic parameters. These estimates were used to derive D-optimal plasma sampling time points for cerebral microdialysis studies. A simulation of clofarabine pharmacokinetics in mice and pediatric patients suggested that a dosage of 30 mg/kg IP in mice would give exposures comparable to that in children at a dosage of 148 mg/m(2). Cerebral microdialysis was performed to study the tumor extracellular fluid (ECF) disposition of clofarabine (30 mg/kg, IP) in the ependymoma cortical allografts. Plasma and tumor ECF concentration-time data were analyzed using a nonlinear mixed effects modeling approach. The median unbound fraction of clofarabine in mouse plasma was 0.79. The unbound tumor to plasma partition coefficient (K pt,uu: ratio of tumor to plasma AUCu,0-inf) of clofarabine was 0.12 ± 0.05. The model-predicted mean tumor ECF clofarabine concentrations were below the in vitro 1-h IC50 (407 ng/mL) for ependymoma neurospheres. Thus, our results show the clofarabine exposure reached in the tumor ECF was below that associated with an antitumor effect in our in vitro washout study. Therefore, clofarabine was de-prioritized as an agent to treat ependymoma, and further preclinical studies were not pursued.
Patel, Yogesh T.; Jacus, Megan O.; Boulos, Nidal; Dapper, Jason D.; Davis, Abigail D.; Vuppala, Pradeep K.; Freeman, Burgess B.; Mohankumar, Kumarasamypet M.; Throm, Stacy L.; Gilbertson, Richard J.; Stewart, Clinton F.
2015-01-01
Clofarabine, a deoxyadenosine analog, was an active anticancer drug in our in vitro high-throughput screening against mouse ependymoma neurospheres. To characterize the clofarabine disposition in mice for further preclinical efficacy studies, we evaluated the plasma and central nervous system (CNS) disposition in a mouse model of ependymoma. A plasma pharmacokinetic study of clofarabine (45 mg/kg, IP) was performed in CD1 nude mice bearing ependymoma to obtain initial plasma pharmacokinetic parameters. These estimates were used to derive D-optimal plasma sampling time-points for cerebral microdialysis studies. A simulation of clofarabine pharmacokinetics in mice and pediatric patients suggested that a dosage of 30 mg/kg, IP in mice would give exposures comparable to that in children at a dosage of 148 mg/m2. Cerebral microdialysis was performed to study the tumor extracellular fluid (ECF) disposition of clofarabine (30 mg/kg, IP) in the ependymoma cortical allografts. Plasma and tumor ECF concentration-time data were analyzed using a nonlinear mixed effects modeling approach. The median unbound fraction of clofarabine in mouse plasma was 0.79. The unbound tumor to plasma partition coefficient (Kpt,uu: ratio of tumor to plasma AUCu,0-inf) of clofarabine was 0.12±0.05. The model predicted mean tumor ECF clofarabine concentrations were below the in vitro 1-hr IC50 (407 ng/mL) for ependymoma neurospheres. Thus, our results show the clofarabine exposure reached in the tumor ECF was below that associated with an antitumor effect in our in vitro washout study. Therefore, clofarabine was de-prioritized as an agent to treat ependymoma, and further preclinical studies were not pursued. PMID:25724157
Laszlo, I.
1963-01-01
Several methods for removing interfering nucleotides, adenosine-5'-monophosphate and adenosine 5'-triphosphate from brain extracts have been studied. An enzymic method, using adenylic acid deaminase, has been found suitable. This deaminates adenosine monophosphate to 5'-inosinic acid, an inactive compound which does not influence the estimations of substance P. Owing to the adenosine triphosphatase content of the enzyme extract, adenosine triphosphate was also inactivated. For the estimation of adenosine monophosphate-deaminase activity, a simple colorimetric method is described which measures the ammonia liberated from adenosine monophosphate. Substance P in mouse brain extracts was estimated after treatment of the animals with various drugs, and after the enzymic removal of interfering nucleotides from the brain extracts. The drugs had no effect on the substance P content of mouse brain. The effect of drugs on the contractions of the guinea-pig ileum induced by substance P was also investigated, and the effect of drugs on the estimations of substance P in brain extracts is discussed. PMID:14066136
Erramuzpe, A; Encinas, J M; Sierra, A; Maletic-Savatic, M; Brewster, A L; Anderson, Anne E; Stramaglia, S; Cortes, Jesus M
2015-01-01
Brain Functional Connectivity (FC) quantifies statistical dependencies between areas of the brain. FC has been widely used to address altered function of brain circuits in control conditions compared to different pathological states, including epilepsy, a major neurological disorder. However, FC also has the as yet unexplored potential to help us understand the pathological transformation of the brain circuitry. Our hypothesis is that FC can differentiate global brain interactions across a time-scale of days. To this end, we present a case report study based on a mouse model for epilepsy and analyze longitudinal intracranial electroencephalography data of epilepsy to calculate FC changes from the initial insult (status epilepticus) and over the latent period, when epileptogenic networks emerge, and at chronic epilepsy, when unprovoked seizures occur as spontaneous events. We found that the overall network FC at low frequency bands decreased immediately after status epilepticus was provoked, and increased monotonously later on during the latent period. Overall, our results demonstrate the capacity of FC to address longitudinal variations of brain connectivity across the establishment of pathological states.
Gong, Hui; Xu, Dongli; Yuan, Jing; Li, Xiangning; Guo, Congdi; Peng, Jie; Li, Yuxin; Schwarz, Lindsay A.; Li, Anan; Hu, Bihe; Xiong, Benyi; Sun, Qingtao; Zhang, Yalun; Liu, Jiepeng; Zhong, Qiuyuan; Xu, Tonghui; Zeng, Shaoqun; Luo, Qingming
2016-01-01
The precise annotation and accurate identification of neural structures are prerequisites for studying mammalian brain function. The orientation of neurons and neural circuits is usually determined by mapping brain images to coarse axial-sampling planar reference atlases. However, individual differences at the cellular level likely lead to position errors and an inability to orient neural projections at single-cell resolution. Here, we present a high-throughput precision imaging method that can acquire a co-localized brain-wide data set of both fluorescent-labelled neurons and counterstained cell bodies at a voxel size of 0.32 × 0.32 × 2.0 μm in 3 days for a single mouse brain. We acquire mouse whole-brain imaging data sets of multiple types of neurons and projections with anatomical annotation at single-neuron resolution. The results show that the simultaneous acquisition of labelled neural structures and cytoarchitecture reference in the same brain greatly facilitates precise tracing of long-range projections and accurate locating of nuclei. PMID:27374071
Gang, Yadong; Zhou, Hongfu; Jia, Yao; Liu, Ling; Liu, Xiuli; Rao, Gong; Li, Longhui; Wang, Xiaojun; Lv, Xiaohua; Xiong, Hanqing; Yang, Zhongqin; Luo, Qingming; Gong, Hui; Zeng, Shaoqun
2017-01-01
Resin embedding has been widely applied to fixing biological tissues for sectioning and imaging, but has long been regarded as incompatible with green fluorescent protein (GFP) labeled sample because it reduces fluorescence. Recently, it has been reported that resin-embedded GFP-labeled brain tissue can be imaged with high resolution. In this protocol, we describe an optimized protocol for resin embedding and chemical reactivation of fluorescent protein labeled mouse brain, we have used mice as experiment model, but the protocol should be applied to other species. This method involves whole brain embedding and chemical reactivation of the fluorescent signal in resin-embedded tissue. The whole brain embedding process takes a total of 7 days. The duration of chemical reactivation is ~2 min for penetrating 4 μm below the surface in the resin-embedded brain. This protocol provides an efficient way to prepare fluorescent protein labeled sample for high-resolution optical imaging. This kind of sample was demonstrated to be imaged by various optical micro-imaging methods. Fine structures labeled with GFP across a whole brain can be detected. PMID:28352214
Quantification of HSV-1-mediated expression of the ferritin MRI reporter in the mouse brain
Iordanova, B; Goins, WF; Clawson, DS; Hitchens, TK; Ahrens, ET
2017-01-01
The development of effective strategies for gene therapy has been hampered by difficulties verifying transgene delivery in vivo and quantifying gene expression non-invasively. Magnetic resonance imaging (MRI) offers high spatial resolution and three-dimensional views, without tissue depth limitations. The iron-storage protein ferritin is a prototype MRI gene reporter. Ferritin forms a paramagnetic ferrihydrite core that can be detected by MRI via its effect on the local magnetic field experienced by water protons. In an effort to better characterize the ferritin reporter for central nervous system applications, we expressed ferritin in the mouse brain in vivo using a neurotropic herpes simplex virus type 1 (HSV-1). We computed three-dimensional maps of MRI transverse relaxation rates in the mouse brain with ascending doses of ferritin-expressing HSV-1. We established that the transverse relaxation rates correlate significantly to the number of inoculated infectious particles. Our results are potentially useful for quantitatively assessing limitations of ferritin reporters for gene therapy applications. PMID:22996196
NASA Astrophysics Data System (ADS)
Kobayashi, Takayoshi; Sundaram, Durga; Nakata, Kazuaki; Tsurui, Hiromichi
2017-03-01
Qualifications of intracellular structure were performed for the first time using the gray-level co-occurrence matrix (GLCM) method for images of cells obtained by resolution-enhanced photothermal imaging. The GLCM method has been used to extract five parameters of texture features for five different types of cells in mouse brain; pyramidal neurons and glial cells in the basal nucleus (BGl), dentate gyrus granule cells, cerebellar Purkinje cells, and cerebellar granule cells. The parameters are correlation, contrast, angular second moment (ASM), inverse difference moment (IDM), and entropy for the images of cells of interest in a mouse brain. The parameters vary depending on the pixel distance taken in the analysis method. Based on the obtained results, we identified that the most suitable GLCM parameter is IDM for pyramidal neurons and BGI, granule cells in the dentate gyrus, Purkinje cells and granule cells in the cerebellum. It was also found that the ASM is the most appropriate for neurons in the basal nucleus.
Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion
Ma, Da; Cardoso, Manuel J.; Modat, Marc; Powell, Nick; Wells, Jack; Holmes, Holly; Wiseman, Frances; Tybulewicz, Victor; Fisher, Elizabeth; Lythgoe, Mark F.; Ourselin, Sébastien
2014-01-01
Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm, which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework. PMID:24475148
Expression profile and distribution of Efhc1 gene transcript during rodent brain development.
Conte, Fábio F; Ribeiro, Patrícia A O; Marchesini, Rafael B; Pascoal, Vinícius D B; Silva, Joelcimar M; Oliveira, Amanda R; Gilioli, Rovílson; Sbragia, Lourenço; Bittencourt, Jackson C; Lopes-Cendes, Iscia
2009-09-01
One of the putative causative genes for juvenile myoclonic epilepsy (JME) is EFHC1. We report here the expression profile and distribution of Efhc1 messenger RNA (mRNA) during mouse and rat brain development. Real-time polymerase chain reaction revealed that there is no difference in the expression of Efhc1 mRNA between right and left hemispheres in both species. In addition, the highest levels of Efhc1 mRNA were found at intra-uterine stages in mouse and in adulthood in rat. In common, there was a progressive decrease in Efhc1 expression from 1-day-old neonates to 14-day-old animals in both species. In situ hybridization studies showed that rat and mouse Efhc1 mRNAs are expressed in ependymal cells of ventricle walls. Our findings suggest that Efhc1 expression is more important during initial phases of brain development and that at this stage it could be involved in key developmental mechanisms underlying JME.
A new subtype of progenitor cell in the mouse embryonic neocortex
Wang, Xiaoqun; Tsai, Jin-Wu; LaMonica, Bridget; Kriegstein, Arnold R.
2011-01-01
A hallmark of mammalian brain evolution is cortical expansion, which reflects an increase in the number of cortical neurons established by the progenitor cell subtypes present and the number of their neurogenic divisions. Recent studies have revealed a new class of radial glia-like (oRG) progenitor cells in the human brain, which reside in the outer subventricular zone. Expansion of the subventricular zone and appearance of oRG cells may have been essential evolutionary steps leading from lissencephalic to gyrencephalic neocortex. Here we show that oRG-like progenitor cells are present in the mouse embryonic neocortex. They arise from asymmetric divisions of radial glia and undergo self-renewing asymmetric divisions to generate neurons. Moreover, mouse oRG cells undergo mitotic somal translocation whereby centrosome movement into the basal process during interphase preceeds nuclear translocation. Our finding of oRG cells in the developing rodent brain fills a gap in our understanding of neocortical expansion. PMID:21478886
Ramanujam, N; Sivaselvakumar, M; Ramalingam, S
2017-11-01
A simple, sensitive and reproducible ultra-performance liquid chromatography (UPLC) method has been developed and validated for simultaneous estimation of polychlorinated biphenyl (PCB) 77 and PCB 180 in mouse plasma. The sample preparation was performed by simple liquid-liquid extraction technique. The analytes were chromatographed on a Waters Acquity H class UPLC system using isocratic mobile phase conditions at a flow rate of 0.3 mL/min and Acquity UPLC BEH shield RP 18 column maintained at 35°C. Quantification was performed on a photodiode array detector set at 215 nm and PCB 101 was used as internal standard (IS). PCB 77, PCB 180, and IS retention times were 2.6, 4.7 and 2.8 min, respectively, and the total run time was 6 min. The method was validated for specificity, selectivity, recovery, linearity, accuracy, precision and sample stability. The calibration curve was linear over the concentration range 10-3000 ng/mL for PCB 77 and PCB 180. Intra- and inter-day precisions for PCBs 77 and 180 were found to be good with CV <4.64%, and the accuracy ranged from 98.90 to 102.33% in mouse plasma. The validated UPLC method was successfully applied to the pharmacokinetic study of PCBs 77 and 180 in mouse plasma. Copyright © 2017 John Wiley & Sons, Ltd.
Swaminathan, Suresh Kumar; Ahlschwede, Kristen M; Sarma, Vidur; Curran, Geoffry L; Omtri, Rajesh S; Decklever, Teresa; Lowe, Val J; Poduslo, Joseph F; Kandimalla, Karunya K
2018-05-01
Impaired brain clearance of amyloid-beta peptides (Aβ) 40 and 42 across the blood-brain barrier (BBB) is believed to be one of the pathways responsible for Alzheimer's disease (AD) pathogenesis. Hyperinsulinemia prevalent in type II diabetes was shown to damage cerebral vasculature and increase Aβ accumulation in AD brain. However, there is no clarity on how aberrations in peripheral insulin levels affect Aβ accumulation in the brain. This study describes, for the first time, an intricate relation between plasma insulin and Aβ transport at the BBB. Upon peripheral insulin administration in wild-type mice: the plasma clearance of Aβ40 increased, but Aβ42 clearance reduced; the plasma-to-brain influx of Aβ40 increased, and that of Aβ42 reduced; and the clearance of intracerebrally injected Aβ40 decreased, whereas Aβ42 clearance increased. In hCMEC/D3 monolayers (in vitro BBB model) exposed to insulin, the luminal uptake and luminal-to-abluminal permeability of Aβ40 increased and that of Aβ42 reduced; the abluminal-to-luminal permeability of Aβ40 decreased, whereas Aβ42 permeability increased. Moreover, Aβ cellular trafficking machinery was altered. In summary, Aβ40 and Aβ42 demonstrated distinct distribution kinetics in plasma and brain compartments, and insulin differentially modulated their distribution. Cerebrovascular disease and metabolic disorders may disrupt this intricate homeostasis and aggravate AD pathology.
Shrivas, Kamlesh; Hayasaka, Takahiro; Sugiura, Yuki; Setou, Mitsutoshi
2011-10-01
We report the detection of a group of endogenous low molecular weight metabolites (LMWM) in mouse brain (80-500 Da) using TiO(2) nanoparticles (NPs) in nanoparticle-assisted laser desorption/ionization-imaging mass spectrometry (Nano-PALDI-IMS) without any washing and separation step prior to MS analysis. The identification of metabolites using TiO(2) NPs was compared with a conventional organic matrix 2,5-dihydroxybenzoic acid (DHB) where signals of 179 molecules were specific to TiO(2) NPs, 4 were specific to DHB, and 21 were common to both TiO(2) NPs and DHB. The use of TiO(2) NPs enabled the detection of a higher number of LMWM as compared to DHB and gold NPs as a matrix. This approach is a simple, inexpensive, washing, and separation free for imaging and identification of LMWM in mouse brain. We believe that the biochemical information from distinct regions of the brain using a Nano-PALDI-IMS will be helpful in elucidating the imbalances linked with diseases in biomedical samples.
Capps, Benjamin
2017-10-01
Suppose that a colleague proposed a fantastic experiment: to introduce human stem cells into a neonatal mouse so that its entire brain developed into "human-like" neuronal structures. The colleague claimed it would still be a mouse, and that its chimeric brain would be nothing like a "human" one. It would not, as a result, have a moral status beyond its nonhuman animal origins. Thus, the "human neuron mouse" would allow scientists to tinker with human-like neurology in ways that would be precluded if it were a human being, and that would promise to lead to substantial understanding of the destructive and incurable brain diseases that befall humanity. The colleague does admit, however, that for reasons of comparative fidelity, experiments in human patients would be scientifically preferable, although in this case, neither ethically justified nor legally permitted. For that reason, it might be desirable to create a human brain in a nonhuman primate, where it would be more likely that significant human-like neuronal development would occur, but still could not become a person. This article explores the significance of a "human neuron chimpanzee," and suggests that contradictions in the design of the experiment make it unethical to proceed in either murine or primate models.
Low cost light-sheet microscopy for whole brain imaging
NASA Astrophysics Data System (ADS)
Kumar, Manish; Nasenbeny, Jordan; Kozorovitskiy, Yevgenia
2018-02-01
Light-sheet microscopy has evolved as an indispensable tool in imaging biological samples. It can image 3D samples at fast speed, with high-resolution optical sectioning, and with reduced photobleaching effects. These properties make light-sheet microscopy ideal for imaging fluorophores in a variety of biological samples and organisms, e.g. zebrafish, drosophila, cleared mouse brains, etc. While most commercial turnkey light-sheet systems are expensive, the existing lower cost implementations, e.g. OpenSPIM, are focused on achieving high-resolution imaging of small samples or organisms like zebrafish. In this work, we substantially reduce the cost of light-sheet microscope system while targeting to image much larger samples, i.e. cleared mouse brains, at single-cell resolution. The expensive components of a lightsheet system - excitation laser, water-immersion objectives, and translation stage - are replaced with an incoherent laser diode, dry objectives, and a custom-built Arduino-controlled translation stage. A low-cost CUBIC protocol is used to clear fixed mouse brain samples. The open-source platforms of μManager and Fiji support image acquisition, processing, and visualization. Our system can easily be extended to multi-color light-sheet microscopy.
André, Pascal; Debray, Marcel; Scherrmann, Jean-Michel; Cisternino, Salvatore
2009-07-01
Identifying drug transporters and their in vivo significance will help to explain why some central nervous system (CNS) drugs cross the blood-brain barrier (BBB) and reach the brain parenchyma. We characterized the transport of the drug clonidine at the luminal BBB by in situ mouse brain perfusion. Clonidine influx was saturable, followed by Michaelis-Menten kinetics (K(m)=0.62 mmol/L, V(max)=1.76 nmol/sec per g at pH 7.40), and was insensitive to both sodium and trans-membrane potential. In vivo manipulation of intracellular and/or extracellular pH and trans-stimulation showed that clonidine was transported by an H+-coupled antiporter regulated by both proton and clonidine gradients, and that diphenhydramine was also a substrate. Organic cation transporters (Oct1-3), P-gp, and Bcrp did not alter clonidine transport at the BBB in knockout mice. Secondary or tertiary amine CNS compounds such as oxycodone, morphine, diacetylmorphine, methylenedioxyamphetamine (MDMA), cocaine, and nicotine inhibited clonidine transport. However, cationic compounds that interact with choline, Mate, Octn, and Pmat transporters did not. This suggests that clonidine is transported at the luminal mouse BBB by a new H+-coupled reversible antiporter.
Effects of heavy ion to the primary culture of mouse brain cells
NASA Technical Reports Server (NTRS)
Nojima, Kumie; Nakadai, Taeko; Kohno, Yukio; Vazquez, Marcelo E.; Yasuda, Nakahiro; Nagaoka, Shunji
2004-01-01
To investigate effects of low dose heavy particle radiation to CNS system, we adopted mouse neonatal brain cells in culture being exposed to heavy ions by HIMAC at NIRS and NSRL at BNL. The applied dose varied from 0.05 Gy up to 2.0 Gy. The subsequent biological effects were evaluated by an induction of apoptosis and neuron survival focusing on the dependencies of the animal strains, SCID, B6, B6C3F1, C3H, used for brain cell culture, SCID was the most sensitive and C3H the least sensitive to particle radiation as evaluated by 10% apoptotic criterion. The LET dependency was compared with using SCID and B6 cells exposing to different ions (H, C, Ne, Si, Ar, and Fe). Although no detectable LET dependency was observed in the high LET (55-200 keV/micrometers) and low dose (<0.5 Gy) regions. The survivability profiles of the neurons were different in the mouse strains and ions. In this report, a result of memory and learning function to adult mice after whole-body and brain local irradiation at carbon ion and iron ion.
NASA Astrophysics Data System (ADS)
Lee, Seungduk; Lee, Mina; Koh, Dalkwon; Kim, Beop-Min; Choi, Jee Hyun
2010-05-01
We applied near-infrared spectroscopy (NIRS) and electroencephalography (EEG) simultaneously on the mouse brain and investigated the hemodynamic response to epileptic episodes under pharmacologically driven seizure. γ-butyrolactone (GBL) and 4-aminopyridine (4-AP) were applied to induce absence and tonic-clonic seizures, respectively. The epileptic episodes were identified from the single-channel EEG, and the corresponding hemodynamic changes in different regions of the brain were characterized by multichannel frequency-domain NIRS. Our results are the following: (i) the oxyhemoglobin level increases in the case of GBL-treated mice but not 4-AP-treated mice compared to the predrug state; (ii) the dominant response to each absence seizure is a decrease in deoxyhemolobin; (iii) the phase shift between oxy- and deoxyhemoglobin reduces in GBL-treated mice but no 4-AP-treated mice; and (iv) the spatial correlation of hemodynamics increased significantly in 4-AP-treated mice but not in GBL-treated mice. Our results shows that spatiotemporal tracking of cerebral hemodynamics using NIRS can be successfully applied to the mouse brain in conjunction with electrophysiological recording, which will support the study of molecular, cellular, and network origin of neurovascular coupling in vivo.
Identification of N-Acyl Phosphatidylserine Molecules in Eukaryotic Cells
Guan, Ziqiang; Li, Shengrong; Smith, Dale C.; Shaw, Walter A.; Raetz, Christian R. H.
2008-01-01
While profiling the lipidome of the mouse brain by mass spectrometry, we discovered a novel family of N-acyl phosphatidylserine (N-acyl-PS) molecules. These N-acyl-PS species were enriched by DEAE-cellulose column chromatography, and they were then characterized by accurate mass measurements, tandem mass spectrometry, liquid chromatography/mass spectrometry, and comparison to an authentic standard. Mouse brain N-acyl-PS molecules are heterogeneous and constitute about 0.1 % of the total lipid. In addition to various ester-linked fatty acyl chains on their glycerol backbones, the complexity of the N-acyl-PS series is further increased by the presence of diverse amide-linked N-acyl chains, which include saturated, mono-unsaturated and poly-unsaturated species. N-acyl-PS molecular species were also detected in the lipids of pig brain, mouse RAW264.7 macrophage tumor cells and yeast, but not E. coli. N-acyl-PSs may be biosynthetic precursors of N-acyl serine molecules, such as the recently reported signaling lipid N-arachidonoyl serine from bovine brain. We suggest that a phospholipase D might cleave N-acyl-PS to generate N-acyl serine, in analogy to the biosynthesis of the endocannabinoid N-arachidonoyl ethanolamine (anadamide) from N-arachidonoyl phosphatidylethanolamine. PMID:18031065
Di Pardo, Alba; Castaldo, Salvatore; Capocci, Luca; Amico, Enrico; Vittorio, Maglione
2017-11-08
Disruption of blood-brain barrier (BBB) integrity is a common feature for different neurological and neurodegenerative diseases. Although the interplay between perturbed BBB homeostasis and the pathogenesis of brain disorders needs further investigation, the development and validation of a reliable procedure to accurately detect BBB alterations may be crucial and represent a useful tool for potentially predicting disease progression and developing targeted therapeutic strategies. Here, we present an easy and efficient procedure for evaluating BBB leakage in a neurodegenerative condition like that occurring in a preclinical mouse model of Huntington disease, in which defects in the permeability of BBB are clearly detectable precociously in the disease. Specifically, the high molecular weight fluorescein isothiocyanate labelled (FITC)-albumin, which is able to cross the BBB only when the latter is impaired, is acutely infused into a mouse jugular vein and its distribution in the vascular or parenchymal districts is then determined by fluorescence microscopy. Accumulation of green fluorescent-albumin in the brain parenchyma functions as an index of aberrant BBB permeability and, when quantitated by using Image J processing software, is reported as Green Fluorescence Intensity.
Increased β-amyloid deposition in Tg-SWDI transgenic mouse brain following in vivo lead exposure.
Gu, Huiying; Robison, Gregory; Hong, Lan; Barrea, Raul; Wei, Xing; Farlow, Martin R; Pushkar, Yulia N; Du, Yansheng; Zheng, Wei
2012-09-03
Previous studies in humans and animals have suggested a possible association between lead (Pb) exposure and the etiology of Alzheimer's disease (AD). Animals acutely exposed to Pb display an over-expressed amyloid precursor protein (APP) and the ensuing accumulation of beta-amyloid (Aβ) in brain extracellular spaces. This study was designed to examine whether in vivo Pb exposure increased brain concentrations of Aβ, resulting in amyloid plaque deposition in brain tissues. Human Tg-SWDI APP transgenic mice, which genetically over-express amyloid plaques at age of 2-3 months, received oral gavages of 50mg/kg Pb acetate once daily for 6 weeks; a control group of the same mouse strain received the same molar concentration of Na acetate. ELISA results revealed a significant increase of Aβ in the CSF, brain cortex and hippocampus. Immunohistochemistry displayed a detectable increase of amyloid plaques in brains of Pb-exposed animals. Neurobehavioral test using Morris water maze showed an impaired spatial learning ability in Pb-treated mice, but not in C57BL/6 wild type mice with the same age. In vitro studies further uncovered that Pb facilitated Aβ fibril formation. Moreover, the synchrotron X-ray fluorescent studies demonstrated a high level of Pb present in amyloid plaques in mice exposed to Pb in vivo. Taken together, these data indicate that Pb exposure with ensuing elevated Aβ level in mouse brains appears to be associated with the amyloid plaques formation. Pb apparently facilitates Aβ fibril formation and participates in deposition of amyloid plaques. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ma, Qingyi; Zhang, Lubo
2018-06-01
Neonatal hypoxia-ischemia (HI) is the most common cause of brain injury in neonates, which leads to high neonatal mortality and severe neurological morbidity in later life (Vannucci, 2000; Volpe, 2001). Yet the molecular mechanisms of neuronal death and brain damage induced by neonatal HI remain largely elusive. Herein, using both in vivo and in vitro models, we determine an endogenous neuroprotectant role of c-type natriuretic peptide (CNP) in preserving neuronal survival after HI brain injury in mouse pups. Postnatal day 7 (P7) mouse pups with CNP deficiency (Nppc lbab/lbab ) exhibit increased brain infarct size and worsened long-term locomotor function after neonatal HI compared with wildtype control (Nppc +/+ ). In isolated primary cortical neurons, recombinant CNP dose-dependently protects primary neurons from oxygen-glucose deprivation (OGD) insult. This neuroprotective effect appears to be mediated through its cognate natriuretic peptide receptor 2 (NPR2), in that antagonization of NPR2, but not NPR3, exacerbates neuronal death and counteracts the protective effect of CNP on primary neurons exposed to OGD insult. Immunoblot and confocal microscopy demonstrate the abundant expression of NPR2 in neurons of the neonatal brain and in isolated primary cortical neurons as well. Moreover, similar to CNP deficiency, administration of NPR2 antagonist P19 via intracerebroventricular injection prior to HI results in exacerbated neuronal death and brain injury after HI. Altogether, the present study indicates that CNP and its cognate receptor NPR2 mainly expressed in neurons represent an innate neuroprotective mechanism in neonatal HI brain injury. Copyright © 2018 Elsevier Inc. All rights reserved.
Mohamed, Loqman A.; Keller, Jeffrey N.; Kaddoumi, Amal
2016-01-01
Recently, we showed that rivastigmine decreased amyloid-β (Aβ) brain load in aged rats by enhancing its clearance across the blood-brain barrier (BBB) via upregulation of P-glycoprotein (P-gp) and low-density lipoprotein receptor-related protein 1 (LRP1). Here, we extend our previous work to clarify P-gp role in mediating rivastigmine effect on Aβ brain levels and neuroprotection in a mouse model of Alzheimer’s disease (AD) that expresses different levels of P-gp. APPSWE mice were bred with mdr1a/b knockout mice to produce littermates that were divided into three groups; APP+/mdr1+/+, APP+/mdr1+/− and APP+/mdr1−/−. Animals received rivastigmine treatment (0.3 mg/kg/day) or vehicle for 8 weeks using Alzet osmotic mini-pumps. ELISA analysis of brain homogenates for Aβ showed rivastigmine treatment to significantly decrease Aβ brain load in APP+/mdr1+/+ by 25% and in APP+/mdr1+/− mice by 21% compared to their vehicle treated littermates, but not in APP+/mdr1−/− mice. In addition, rivastigmine reduced GFAP immunostaining of astrocytes by 50% and IL-1β brain level by 43% in APP+/mdr1+/+ mice, however its effect was less pronounced in P-gp knockout mice. Moreover, rivastigmine demonstrated a P-gp expression dependent neuroprotective effect that was highest in APP+/mdr1+/+>APP+/mdr1+/−>APP+/mdr1−/− as determined by expression of synaptic markers PSD-95 and SNAP-25 using Western blot analysis. Collectively, our results suggest that P-gp plays important role in mediating rivastigmine non-cholinergic beneficial effects, including Aβ brain load reduction, neuroprotective and anti-inflammatory effects in the AD mouse models. PMID:26780497
Stanić, Davor; Dubois, Sydney; Chua, Hui Kheng; Tonge, Bruce; Rinehart, Nicole; Horne, Malcolm K.; Boon, Wah Chin
2014-01-01
Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, including the bed nucleus of the stria terminalis, olfactory tubercle, medial amygdaloid nucleus and medial preoptic area, with the densest distributions of EGFP-positive cell bodies in the bed nucleus and medial amygdala. Differences between male and female mice were apparent, with the density of EGFP-positive cell bodies and fibres being lower in some brain regions of female mice, including the bed nucleus and medial amygdala. EGFP-positive cell bodies in the bed nucleus, lateral septum, medial amygdala and hypothalamus co-expressed oestrogen receptor (ER) α and β, or the androgen receptor (AR), although single-labelled EGFP-positive cells were also identified. Additionally, single-labelled ERα−, ERβ- or AR-positive cell bodies often appeared to be surrounded by EGFP-immunoreactive nerve fibres/terminals. The widespread distribution of EGFP-positive cell bodies and fibres suggests that aromatase signalling is common in the mouse brain, and that locally synthesised brain oestrogens could mediate biological effects by activating pre- and post-synaptic oestrogen α and β receptors, and androgen receptors. The higher number of EGFP-positive cells in male mice may indicate that the autocrine and paracrine effects of oestrogens are more prominent in males than females. PMID:24646567
Long, Youming; Hu, Xueqiang; Peng, Fuhua; Lu, Zhengqi; Wang, Yuge; Yang, Yu; Qiu, Wei
2012-01-01
Serum neuromyelitis optica immunoglobulin G (NMO-IgG) is used as a biomarker to differentiate between neuromyelitis optica (NMO) and multiple sclerosis (MS). However, the original assay is expensive and complex and shows low sensitivity. Here, we investigated the potential of NMO-IgG detection using an indirect immunofluorescence (IIF) assay on monkey brains. NMO-IgG seroprevalence was determined in 168 samples by an IIF assay on a monkey brain substrate. The data were compared with those from a standard mouse brain IIF assay using McNemar and kappa tests. Thirty-one of 50 (62%) NMO patients, 7 of 18 (38.9%) longitudinally extensive transverse myelitis patients, 6 of 57 (10.5%) MS patients, and 5 of 10 (50%) optic neuritis patients were seropositive for NMO-IgG. None of the acute partial transverse myelitis patients (n = 3) or healthy controls (n = 20) was positive. Thus, the sensitivity of the test was 62% for the patients with clinically definite NMO. The specificity was 89.5%, considering the 57 MS patients as the control group. The modified IIF assay on monkey brains and the standard IIF assay based on mouse brains were not significantly different (McNemar test; p = 1.000). The two assays were concordant in 39 seropositive samples and 100 seronegative samples (kappa test; kappa = 0.592, p < 0.0001). Although the modified IIF monkey brain assay was no better than the standard mouse brain IIF assay, we affirmed that NMO-IgG is a sensitive and specific biomarker to differentiate between NMO and MS. Copyright © 2011 S. Karger AG, Basel.
Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier.
Lazear, Helen M; Daniels, Brian P; Pinto, Amelia K; Huang, Albert C; Vick, Sarah C; Doyle, Sean E; Gale, Michael; Klein, Robyn S; Diamond, Michael S
2015-04-22
Although interferon-λ [also known as type III interferon or interleukin-28 (IL-28)/IL-29] restricts infection by several viruses, its inhibitory mechanism has remained uncertain. We used recombinant interferon-λ and mice lacking the interferon-λ receptor (IFNLR1) to evaluate the effect of interferon-λ on infection with West Nile virus, an encephalitic flavivirus. Cell culture studies in mouse keratinocytes and dendritic cells showed no direct antiviral effect of exogenous interferon-λ, even though expression of interferon-stimulated genes was induced. We observed no differences in West Nile virus burden between wild-type and Ifnlr1(-/-) mice in the draining lymph nodes, spleen, or blood. We detected increased West Nile virus infection in the brain and spinal cord of Ifnlr1(-/-) mice, yet this was not associated with a direct antiviral effect in mouse neurons. Instead, we observed an increase in blood-brain barrier permeability in Ifnlr1(-/-) mice. Treatment of mice with pegylated interferon-λ2 resulted in decreased blood-brain barrier permeability, reduced West Nile virus infection in the brain without affecting viremia, and improved survival against lethal virus challenge. An in vitro model of the blood-brain barrier showed that interferon-λ signaling in mouse brain microvascular endothelial cells increased transendothelial electrical resistance, decreased virus movement across the barrier, and modulated tight junction protein localization in a protein synthesis- and signal transducer and activator of transcription 1 (STAT1)-independent manner. Our data establish an indirect antiviral function of interferon-λ in which noncanonical signaling through IFNLR1 tightens the blood-brain barrier and restricts viral neuroinvasion and pathogenesis. Copyright © 2015, American Association for the Advancement of Science.
Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.
2014-01-01
Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637
Tiwari, Vivek; Ambadipudi, Susmitha; Patel, Anant B
2013-10-01
The (13)C nuclear magnetic resonance (NMR) studies together with the infusion of (13)C-labeled substrates in rats and humans have provided important insight into brain energy metabolism. In the present study, we have extended a three-compartment metabolic model in mouse to investigate glutamatergic and GABAergic tricarboxylic acid (TCA) cycle and neurotransmitter cycle fluxes across different regions of the brain. The (13)C turnover of amino acids from [1,6-(13)C2]glucose was monitored ex vivo using (1)H-[(13)C]-NMR spectroscopy. The astroglial glutamate pool size, one of the important parameters of the model, was estimated by a short infusion of [2-(13)C]acetate. The ratio Vcyc/VTCA was calculated from the steady-state acetate experiment. The (13)C turnover curves of [4-(13)C]/[3-(13)C]glutamate, [4-(13)C]glutamine, [2-(13)C]/[3-(13)C]GABA, and [3-(13)C]aspartate from [1,6-(13)C2]glucose were analyzed using a three-compartment metabolic model to estimate the rates of the TCA cycle and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The glutamatergic TCA cycle rate was found to be highest in the cerebral cortex (0.91 ± 0.05 μmol/g per minute) and least in the hippocampal region (0.64 ± 0.07 μmol/g per minute) of the mouse brain. In contrast, the GABAergic TCA cycle flux was found to be highest in the thalamus-hypothalamus (0.28 ± 0.01 μmol/g per minute) and least in the cerebral cortex (0.24 ± 0.02 μmol/g per minute). These findings indicate that the energetics of excitatory and inhibitory function is distinct across the mouse brain.
Wu, Pei-Jung; Hung, Yun-Fen; Liu, Hsin-Yu; Hsueh, Yi-Ping
2017-01-01
Inflammation is clearly associated with Alzheimer disease (AD). Knockout of Nlrp3, a gene encoding an inflammasome sensor, has been shown to ameliorate AD pathology in a mouse model. Because AIM2 is the most dominant inflammasome sensor expressed in mouse brains, here we investigate whether Aim2 deletion also influences the phenotype of a 5XFAD AD mouse model. Quantitative RT-PCR, immunostaining, immunoblotting, and behavioral analyses were applied to compare wild-type, Aim2-/-, 5XFAD, and Aim2-/-;5XFAD mice. We found that Aim2 knockout mitigates Aβ deposition in the cerebral cortex and hippocampus of 5XFAD mice. The activation of microglial cells is also reduced in Aim2-/-;5XFAD brains compared with 5XFAD brains. However, Aim2 knockout does not improve memory and anxiety phenotypes of 5XFAD mice in an open field, cued Y-maze, or Barnes maze. Compared with 5XFAD mice, Il-1 expression levels are not reduced in Aim2-/-;5XFAD mice. Unexpectedly, Il-6 and Il-18 expression levels in 5XFAD brains were further increased when Aim2 was deleted. Thus, inflammatory cytokine expression in 5XFAD brains is upregulated by Aim2 deletion through an unknown mechanism. Although Aim2 knockout mitigates Aβ deposition and microglial activation, Aim2 deletion does not have a beneficial effect on the spatial memory or cytokine expression of 5XFAD mice. Our findings suggest that Aβ aggregation and microglial activation may not always be correlated with the expression of inflammatory cytokines or cognitive function of 5XFAD mice. Our study also implies that different inflammasomes likely perform distinct roles in different physiological and/or pathological events. © 2017 S. Karger AG, Basel.
Chi, Wenying; Meng, Fanjun; Li, Yan; Li, Peilong; Wang, Guizhi; Cheng, Hong; Han, Song; Li, Junfa
2014-12-10
As a newly discovered member of the HSP70 family, heat shock protein A12B (HSPA12B) is involved in brain ischemic injury. According to our previous study, microRNA-134 (miR-134) could target HSPA12B by binding to its 3'-untranslated region (UTR). However, the regulation of miR-134 on HSPA12B and their role in protecting neuronal cells from ischemic injury are unclear. In this study, the miR-134 expression level was manipulated, and the HSPA12B protein levels were also determined in oxygen-glucose deprivation (OGD)-treated primary cultured neuronal cells in vitro and mouse brain after middle cerebral artery occlusion (MCAO)-induced ischemic stroke in vivo. The results showed that miR-134 expression levels increased in primary cultured neuronal cells and mouse brain from 12h to 7 day reoxygenation/reperfusion after 1h OGD or 1h MCAO treatment. miR-134 overexpression promoted neuronal cell death and apoptosis by decreasing HSPA12B protein levels. Conversely, downregulating miR-134 reduced neuronal cell death and apoptosis by enhancing HSPA12B protein levels. Also, HSPA12B siRNA could block miR-134 inhibitor-mediated neuroprotection against OGD-induced neuronal cell injury in vitro. Taken together, miR-134 might influence neuronal cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by negatively modulating HSPA12B protein expression in a posttranscriptional manner. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhu, Yanping; Shan, Xiaoyang; Safarpour, Farzaneh; Erro Go, Nancy; Li, Nancy; Shan, Alice; Huang, Mina C; Deen, Matthew; Holicek, Viktor; Ashmus, Roger; Madden, Zarina; Gorski, Sharon; Silverman, Michael A; Vocadlo, David J
2018-03-05
The glycosylation of nucleocytoplasmic proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) is conserved among metazoans and is particularly abundant within brain. O-GlcNAc is involved in diverse cellular processes ranging from the regulation of gene expression to stress response. Moreover, O-GlcNAc is implicated in various diseases including cancers, diabetes, cardiac dysfunction, and neurodegenerative diseases. Pharmacological inhibition of O-GlcNAcase (OGA), the sole enzyme that removes O-GlcNAc, reproducibly slows neurodegeneration in various Alzheimer's disease (AD) mouse models manifesting either tau or amyloid pathology. These data have stimulated interest in the possibility of using OGA-selective inhibitors as pharmaceuticals to alter the progression of AD. The mechanisms mediating the neuroprotective effects of OGA inhibitors, however, remain poorly understood. Here we show, using a range of methods in neuroblastoma N2a cells, in primary rat neurons, and in mouse brain, that selective OGA inhibitors stimulate autophagy through an mTOR-independent pathway without obvious toxicity. Additionally, OGA inhibition significantly decreased the levels of toxic protein species associated with AD pathogenesis in the JNPL3 tauopathy mouse model as well as the 3×Tg-AD mouse model. These results strongly suggest that OGA inhibitors act within brain through a mechanism involving enhancement of autophagy, which aids the brain in combatting the accumulation of toxic protein species. Our study supports OGA inhibition being a feasible therapeutic strategy for hindering the progression of AD and other neurodegenerative diseases. Moreover, these data suggest more targeted strategies to stimulate autophagy in an mTOR-independent manner may be found within the O-GlcNAc pathway. These findings should aid the advancement of OGA inhibitors within the clinic.
Starbuck, John M; Dutka, Tara; Ratliff, Tabetha S; Reeves, Roger H; Richtsmeier, Joan T
2014-08-01
Trisomy 21 results in gene-dosage imbalance during embryogenesis and throughout life, ultimately causing multiple anomalies that contribute to the clinical manifestations of Down syndrome. Down syndrome is associated with manifestations of variable severity (e.g., heart anomalies, reduced growth, dental anomalies, shortened life-span). Craniofacial dysmorphology and cognitive dysfunction are consistently observed in all people with Down syndrome. Mouse models are useful for studying the effects of gene-dosage imbalance on development. We investigated quantitative changes in the skull and brain of the Dp(16)1Yey Down syndrome mouse model and compared these mice to Ts65Dn and Ts1Cje mouse models. Three-dimensional micro-computed tomography images of Dp(16)1Yey and euploid mouse crania were morphometrically evaluated. Cerebellar cross-sectional area, Purkinje cell linear density, and granule cell density were evaluated relative to euploid littermates. Skulls of Dp(16)1Yey and Ts65Dn mice displayed similar changes in craniofacial morphology relative to their respective euploid littermates. Trisomy-based differences in brain morphology were also similar in Dp(16)1Yey and Ts65Dn mice. These results validate examination of the genetic basis for craniofacial and brain phenotypes in Dp(16)1Yey mice and suggest that they, like Ts65Dn mice, are valuable tools for modeling the effects of trisomy 21 on development. © 2014 Wiley Periodicals, Inc.