Neuronal Representation of Ultraviolet Visual Stimuli in Mouse Primary Visual Cortex
Tan, Zhongchao; Sun, Wenzhi; Chen, Tsai-Wen; Kim, Douglas; Ji, Na
2015-01-01
The mouse has become an important model for understanding the neural basis of visual perception. Although it has long been known that mouse lens transmits ultraviolet (UV) light and mouse opsins have absorption in the UV band, little is known about how UV visual information is processed in the mouse brain. Using a custom UV stimulation system and in vivo calcium imaging, we characterized the feature selectivity of layer 2/3 neurons in mouse primary visual cortex (V1). In adult mice, a comparable percentage of the neuronal population responds to UV and visible stimuli, with similar pattern selectivity and receptive field properties. In young mice, the orientation selectivity for UV stimuli increased steadily during development, but not direction selectivity. Our results suggest that, by expanding the spectral window through which the mouse can acquire visual information, UV sensitivity provides an important component for mouse vision. PMID:26219604
Specific excitatory connectivity for feature integration in mouse primary visual cortex
Molina-Luna, Patricia; Roth, Morgane M.
2017-01-01
Local excitatory connections in mouse primary visual cortex (V1) are stronger and more prevalent between neurons that share similar functional response features. However, the details of how functional rules for local connectivity shape neuronal responses in V1 remain unknown. We hypothesised that complex responses to visual stimuli may arise as a consequence of rules for selective excitatory connectivity within the local network in the superficial layers of mouse V1. In mouse V1 many neurons respond to overlapping grating stimuli (plaid stimuli) with highly selective and facilitatory responses, which are not simply predicted by responses to single gratings presented alone. This complexity is surprising, since excitatory neurons in V1 are considered to be mainly tuned to single preferred orientations. Here we examined the consequences for visual processing of two alternative connectivity schemes: in the first case, local connections are aligned with visual properties inherited from feedforward input (a ‘like-to-like’ scheme specifically connecting neurons that share similar preferred orientations); in the second case, local connections group neurons into excitatory subnetworks that combine and amplify multiple feedforward visual properties (a ‘feature binding’ scheme). By comparing predictions from large scale computational models with in vivo recordings of visual representations in mouse V1, we found that responses to plaid stimuli were best explained by assuming feature binding connectivity. Unlike under the like-to-like scheme, selective amplification within feature-binding excitatory subnetworks replicated experimentally observed facilitatory responses to plaid stimuli; explained selective plaid responses not predicted by grating selectivity; and was consistent with broad anatomical selectivity observed in mouse V1. Our results show that visual feature binding can occur through local recurrent mechanisms without requiring feedforward convergence, and that such a mechanism is consistent with visual responses and cortical anatomy in mouse V1. PMID:29240769
Sreenivasan, Varun; Kyriakatos, Alexandros; Mateo, Celine; Jaeger, Dieter; Petersen, Carl C.H.
2016-01-01
Abstract. The spatial organization of mouse frontal cortex is poorly understood. Here, we used voltage-sensitive dye to image electrical activity in the dorsal cortex of awake head-restrained mice. Whisker-deflection evoked the earliest sensory response in a localized region of primary somatosensory cortex and visual stimulation evoked the earliest responses in a localized region of primary visual cortex. Over the next milliseconds, the initial sensory response spread within the respective primary sensory cortex and into the surrounding higher order sensory cortices. In addition, secondary hotspots in the frontal cortex were evoked by whisker and visual stimulation, with the frontal hotspot for whisker deflection being more anterior and lateral compared to the frontal hotspot evoked by visual stimulation. Investigating axonal projections, we found that the somatosensory whisker cortex and the visual cortex directly innervated frontal cortex, with visual cortex axons innervating a region medial and posterior to the innervation from somatosensory cortex, consistent with the location of sensory responses in frontal cortex. In turn, the axonal outputs of these two frontal cortical areas innervate distinct regions of striatum, superior colliculus, and brainstem. Sensory input, therefore, appears to map onto modality-specific regions of frontal cortex, perhaps participating in distinct sensorimotor transformations, and directing distinct motor outputs. PMID:27921067
Establishment of primary cultures for mouse ameloblasts as a model of their lifetime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzawa, Tetsuo; Itoh, Nao; Department of Clinical Pharmacy, School of Pharmaceutical Science, Showa University
2006-07-07
To understand how the properties of ameloblasts are spatiotemporally regulated during amelogenesis, two primary cultures of ameloblasts in different stages of differentiation were established from mouse enamel epithelium. Mouse primary ameloblasts (MPAs) prepared from immature enamel epithelium (MPA-I) could proliferate, whereas those from mature enamel epithelium (MPA-M) could not. MPA-M but not MPA-I caused apoptosis during culture. The mRNA expression of amelogenin, a marker of immature ameloblasts, was down-regulated, and that of enamel matrix serine proteiase-1, a marker of mature ameloblasts, was induced in MPA-I during culture. Using green fluorescence protein as a reporter, a visualized reporter system was establishedmore » to analyze the promoter activity of the amelogenin gene. The region between -1102 bp and -261 bp was required for the reporter expression in MPA-I. These results suggest that MPAs are valuable in vitro models for investigation of ameloblast biology, and that the visualized system is useful for promoter analysis in MPAs.« less
Modularity in the Organization of Mouse Primary Visual Cortex
Ji, Weiqing; Gămănuţ, Răzvan; Bista, Pawan; D’Souza, Rinaldo D.; Wang, Quanxin; Burkhalter, Andreas
2015-01-01
SUMMARY Layer 1 (L1) of primary visual cortex (V1) is the target of projections from many brain regions outside of V1. We found that inputs to the non-columnar mouse V1 from the dorsal lateral geniculate nucleus and feedback projections from multiple higher cortical areas to L1 are patchy. The patches are matched to a pattern of M2 muscarinic acetylcholine receptor expression at fixed locations of mouse, rat and monkey V1. Neurons in L2/3 aligned with M2-rich patches have high spatial acuity whereas cells in M2-poor zones exhibited high temporal acuity. Together M2+ and M2− zones form constant-size domains that are repeated across V1. Domains map subregions of the receptive field, such that multiple copies are contained within the point image. The results suggest that the modular network in mouse V1 selects spatiotemporally distinct clusters of neurons within the point image for top-down control and differential routing of inputs to cortical streams. PMID:26247867
Anderson, L A; Christianson, G B; Linden, J F
2009-02-03
Cytochrome oxidase (CYO) and acetylcholinesterase (AChE) staining density varies across the cortical layers in many sensory areas. The laminar variations likely reflect differences between the layers in levels of metabolic activity and cholinergic modulation. The question of whether these laminar variations differ between primary sensory cortices has never been systematically addressed in the same set of animals, since most studies of sensory cortex focus on a single sensory modality. Here, we compared the laminar distribution of CYO and AChE activity in the primary auditory, visual, and somatosensory cortices of the mouse, using Nissl-stained sections to define laminar boundaries. Interestingly, for both CYO and AChE, laminar patterns of enzyme activity were similar in the visual and somatosensory cortices, but differed in the auditory cortex. In the visual and somatosensory areas, staining densities for both enzymes were highest in layers III/IV or IV and in lower layer V. In the auditory cortex, CYO activity showed a reliable peak only at the layer III/IV border, while AChE distribution was relatively homogeneous across layers. These results suggest that laminar patterns of metabolic activity and cholinergic influence are similar in the mouse visual and somatosensory cortices, but differ in the auditory cortex.
Zeitoun, Jack H.; Kim, Hyungtae
2017-01-01
Binocular mechanisms for visual processing are thought to enhance spatial acuity by combining matched input from the two eyes. Studies in the primary visual cortex of carnivores and primates have confirmed that eye-specific neuronal response properties are largely matched. In recent years, the mouse has emerged as a prominent model for binocular visual processing, yet little is known about the spatial frequency tuning of binocular responses in mouse visual cortex. Using calcium imaging in awake mice of both sexes, we show that the spatial frequency preference of cortical responses to the contralateral eye is ∼35% higher than responses to the ipsilateral eye. Furthermore, we find that neurons in binocular visual cortex that respond only to the contralateral eye are tuned to higher spatial frequencies. Binocular neurons that are well matched in spatial frequency preference are also matched in orientation preference. In contrast, we observe that binocularly mismatched cells are more mismatched in orientation tuning. Furthermore, we find that contralateral responses are more direction-selective than ipsilateral responses and are strongly biased to the cardinal directions. The contralateral bias of high spatial frequency tuning was found in both awake and anesthetized recordings. The distinct properties of contralateral cortical responses may reflect the functional segregation of direction-selective, high spatial frequency-preferring neurons in earlier stages of the central visual pathway. Moreover, these results suggest that the development of binocularity and visual acuity may engage distinct circuits in the mouse visual system. SIGNIFICANCE STATEMENT Seeing through two eyes is thought to improve visual acuity by enhancing sensitivity to fine edges. Using calcium imaging of cellular responses in awake mice, we find surprising asymmetries in the spatial processing of eye-specific visual input in binocular primary visual cortex. The contralateral visual pathway is tuned to higher spatial frequencies than the ipsilateral pathway. At the highest spatial frequencies, the contralateral pathway strongly prefers to respond to visual stimuli along the cardinal (horizontal and vertical) axes. These results suggest that monocular, and not binocular, mechanisms set the limit of spatial acuity in mice. Furthermore, they suggest that the development of visual acuity and binocularity in mice involves different circuits. PMID:28924011
Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex.
Tan, Andrew Y Y; Brown, Brandon D; Scholl, Benjamin; Mohanty, Deepankar; Priebe, Nicholas J
2011-08-24
Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations, whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation selectivity in mouse V1 opens cortical computation to dissection by genetic and imaging tools, but also raises two essential questions: (1) How does orientation selectivity in mouse V1 neurons compare with that in previously described species? (2) What is the synaptic basis for orientation selectivity in mouse V1? A comparison of orientation selectivity in mouse and in cat, where such measures have traditionally been made, reveals that orientation selectivity in mouse V1 is weaker than in cat V1, but that spike threshold plays a similar role in narrowing selectivity between membrane potential and spike rate. To uncover the synaptic basis for orientation selectivity, we made whole-cell recordings in vivo from mouse V1 neurons, comparing neuronal input selectivity-based on membrane potential, synaptic excitation, and synaptic inhibition-to output selectivity based on spiking. We found that a neuron's excitatory and inhibitory inputs are selective for the same stimulus orientations as is its membrane potential response, and that inhibitory selectivity is not broader than excitatory selectivity. Inhibition has different dynamics than excitation, adapting more rapidly. In neurons with temporally modulated responses, the timing of excitation and inhibition was different in mice and cats.
Orientation Selectivity of Synaptic Input to Neurons in Mouse and Cat Primary Visual Cortex
Tan (陈勇毅), Andrew Y. Y.; Brown, Brandon D.; Scholl, Benjamin; Mohanty, Deepankar; Priebe, Nicholas J.
2011-01-01
Primary visual cortex (V1) is the site at which orientation selectivity emerges in mammals: visual thalamus afferents to V1 respond equally to all stimulus orientations whereas their target V1 neurons respond selectively to stimulus orientation. The emergence of orientation selectivity in V1 has long served as a model for investigating cortical computation. Recent evidence for orientation selectivity in mouse V1 opens cortical computation to dissection by genetic and imaging tools, but also raises two essential questions: 1) how does orientation selectivity in mouse V1 neurons compare with that in previously described species? 2) what is the synaptic basis for orientation selectivity in mouse V1? A comparison of orientation selectivity in mouse and in cat, where such measures have traditionally been made, reveals that orientation selectivity in mouse V1 is weaker than in cat V1, but that spike threshold plays a similar role in narrowing selectivity between membrane potential and spike rate. To uncover the synaptic basis for orientation selectivity, we made whole-cell recordings in vivo from mouse V1 neurons, comparing neuronal input selectivity - based on membrane potential, synaptic excitation, and synaptic inhibition - to output selectivity based on spiking. We found that a neuron's excitatory and inhibitory inputs are selective for the same stimulus orientations as is its membrane potential response, and that inhibitory selectivity is not broader than excitatory selectivity. Inhibition has different dynamics than excitation, adapting more rapidly. In neurons with temporally modulated responses, the timing of excitation and inhibition was different in mice and cats. PMID:21865476
fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI.
Niranjan, Arun; Christie, Isabel N; Solomon, Samuel G; Wells, Jack A; Lythgoe, Mark F
2016-10-01
The use of functional magnetic resonance imaging (fMRI) in mice is increasingly prevalent, providing a means to non-invasively characterise functional abnormalities associated with genetic models of human diseases. The predominant stimulus used in task-based fMRI in the mouse is electrical stimulation of the paw. Task-based fMRI in mice using visual stimuli remains underexplored, despite visual stimuli being common in human fMRI studies. In this study, we map the mouse brain visual system with BOLD measurements at 9.4T using flashing light stimuli with medetomidine anaesthesia. BOLD responses were observed in the lateral geniculate nucleus, the superior colliculus and the primary visual area of the cortex, and were modulated by the flashing frequency, diffuse vs focussed light and stimulus context. Negative BOLD responses were measured in the visual cortex at 10Hz flashing frequency; but turned positive below 5Hz. In addition, the use of interleaved snapshot GE-EPI improved fMRI image quality without diminishing the temporal contrast-noise-ratio. Taken together, this work demonstrates a novel methodological protocol in which the mouse brain visual system can be non-invasively investigated using BOLD fMRI. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Tohmi, Manavu; Kitaura, Hiroki; Komagata, Seiji; Kudoh, Masaharu; Shibuki, Katsuei
2006-11-08
Experience-dependent plasticity in the visual cortex was investigated using transcranial flavoprotein fluorescence imaging in mice anesthetized with urethane. On- and off-responses in the primary visual cortex were elicited by visual stimuli. Fluorescence responses and field potentials elicited by grating patterns decreased similarly as contrasts of visual stimuli were reduced. Fluorescence responses also decreased as spatial frequency of grating stimuli increased. Compared with intrinsic signal imaging in the same mice, fluorescence imaging showed faster responses with approximately 10 times larger signal changes. Retinotopic maps in the primary visual cortex and area LM were constructed using fluorescence imaging. After monocular deprivation (MD) of 4 d starting from postnatal day 28 (P28), deprived eye responses were suppressed compared with nondeprived eye responses in the binocular zone but not in the monocular zone. Imaging faithfully recapitulated a critical period for plasticity with maximal effects of MD observed around P28 and not in adulthood even under urethane anesthesia. Visual responses were compared before and after MD in the same mice, in which the skull was covered with clear acrylic dental resin. Deprived eye responses decreased after MD, whereas nondeprived eye responses increased. Effects of MD during a critical period were tested 2 weeks after reopening of the deprived eye. Significant ocular dominance plasticity was observed in responses elicited by moving grating patterns, but no long-lasting effect was found in visual responses elicited by light-emitting diode light stimuli. The present results indicate that transcranial flavoprotein fluorescence imaging is a powerful tool for investigating experience-dependent plasticity in the mouse visual cortex.
Spatial integration in mouse primary visual cortex.
Vaiceliunaite, Agne; Erisken, Sinem; Franzen, Florian; Katzner, Steffen; Busse, Laura
2013-08-01
Responses of many neurons in primary visual cortex (V1) are suppressed by stimuli exceeding the classical receptive field (RF), an important property that might underlie the computation of visual saliency. Traditionally, it has proven difficult to disentangle the underlying neural circuits, including feedforward, horizontal intracortical, and feedback connectivity. Since circuit-level analysis is particularly feasible in the mouse, we asked whether neural signatures of spatial integration in mouse V1 are similar to those of higher-order mammals and investigated the role of parvalbumin-expressing (PV+) inhibitory interneurons. Analogous to what is known from primates and carnivores, we demonstrate that, in awake mice, surround suppression is present in the majority of V1 neurons and is strongest in superficial cortical layers. Anesthesia with isoflurane-urethane, however, profoundly affects spatial integration: it reduces the laminar dependency, decreases overall suppression strength, and alters the temporal dynamics of responses. We show that these effects of brain state can be parsimoniously explained by assuming that anesthesia affects contrast normalization. Hence, the full impact of suppressive influences in mouse V1 cannot be studied under anesthesia with isoflurane-urethane. To assess the neural circuits of spatial integration, we targeted PV+ interneurons using optogenetics. Optogenetic depolarization of PV+ interneurons was associated with increased RF size and decreased suppression in the recorded population, similar to effects of lowering stimulus contrast, suggesting that PV+ interneurons contribute to spatial integration by affecting overall stimulus drive. We conclude that the mouse is a promising model for circuit-level mechanisms of spatial integration, which relies on the combined activity of different types of inhibitory interneurons.
Visual Information Present in Infragranular Layers of Mouse Auditory Cortex.
Morrill, Ryan J; Hasenstaub, Andrea R
2018-03-14
The cerebral cortex is a major hub for the convergence and integration of signals from across the sensory modalities; sensory cortices, including primary regions, are no exception. Here we show that visual stimuli influence neural firing in the auditory cortex of awake male and female mice, using multisite probes to sample single units across multiple cortical layers. We demonstrate that visual stimuli influence firing in both primary and secondary auditory cortex. We then determine the laminar location of recording sites through electrode track tracing with fluorescent dye and optogenetic identification using layer-specific markers. Spiking responses to visual stimulation occur deep in auditory cortex and are particularly prominent in layer 6. Visual modulation of firing rate occurs more frequently at areas with secondary-like auditory responses than those with primary-like responses. Auditory cortical responses to drifting visual gratings are not orientation-tuned, unlike visual cortex responses. The deepest cortical layers thus appear to be an important locus for cross-modal integration in auditory cortex. SIGNIFICANCE STATEMENT The deepest layers of the auditory cortex are often considered its most enigmatic, possessing a wide range of cell morphologies and atypical sensory responses. Here we show that, in mouse auditory cortex, these layers represent a locus of cross-modal convergence, containing many units responsive to visual stimuli. Our results suggest that this visual signal conveys the presence and timing of a stimulus rather than specifics about that stimulus, such as its orientation. These results shed light on both how and what types of cross-modal information is integrated at the earliest stages of sensory cortical processing. Copyright © 2018 the authors 0270-6474/18/382854-09$15.00/0.
Emergence of Orientation Selectivity in the Mammalian Visual Pathway
Scholl, Benjamin; Tan, Andrew Y. Y.; Corey, Joseph
2013-01-01
Orientation selectivity is a property of mammalian primary visual cortex (V1) neurons, yet its emergence along the visual pathway varies across species. In carnivores and primates, elongated receptive fields first appear in V1, whereas in lagomorphs such receptive fields emerge earlier, in the retina. Here we examine the mouse visual pathway and reveal the existence of orientation selectivity in lateral geniculate nucleus (LGN) relay cells. Cortical inactivation does not reduce this orientation selectivity, indicating that cortical feedback is not its source. Orientation selectivity is similar for LGN relay cells spiking and subthreshold input to V1 neurons, suggesting that cortical orientation selectivity is inherited from the LGN in mouse. In contrast, orientation selectivity of cat LGN relay cells is small relative to subthreshold inputs onto V1 simple cells. Together, these differences show that although orientation selectivity exists in visual neurons of both rodents and carnivores, its emergence along the visual pathway, and thus its underlying neuronal circuitry, is fundamentally different. PMID:23804085
Petruno, Sarah K; Clark, Robert E; Reinagel, Pamela
2013-01-01
The pigmented Long-Evans rat has proven to be an excellent subject for studying visually guided behavior including quantitative visual psychophysics. This observation, together with its experimental accessibility and its close homology to the mouse, has made it an attractive model system in which to dissect the thalamic and cortical circuits underlying visual perception. Given that visually guided behavior in the absence of primary visual cortex has been described in the literature, however, it is an empirical question whether specific visual behaviors will depend on primary visual cortex in the rat. Here we tested the effects of cortical lesions on performance of two-alternative forced-choice visual discriminations by Long-Evans rats. We present data from one highly informative subject that learned several visual tasks and then received a bilateral lesion ablating >90% of primary visual cortex. After the lesion, this subject had a profound and persistent deficit in complex image discrimination, orientation discrimination, and full-field optic flow motion discrimination, compared with both pre-lesion performance and sham-lesion controls. Performance was intact, however, on another visual two-alternative forced-choice task that required approaching a salient visual target. A second highly informative subject learned several visual tasks prior to receiving a lesion ablating >90% of medial extrastriate cortex. This subject showed no impairment on any of the four task categories. Taken together, our data provide evidence that these image, orientation, and motion discrimination tasks require primary visual cortex in the Long-Evans rat, whereas approaching a salient visual target does not.
Locomotion Enhances Neural Encoding of Visual Stimuli in Mouse V1
2017-01-01
Neurons in mouse primary visual cortex (V1) are selective for particular properties of visual stimuli. Locomotion causes a change in cortical state that leaves their selectivity unchanged but strengthens their responses. Both locomotion and the change in cortical state are thought to be initiated by projections from the mesencephalic locomotor region, the latter through a disinhibitory circuit in V1. By recording simultaneously from a large number of single neurons in alert mice viewing moving gratings, we investigated the relationship between locomotion and the information contained within the neural population. We found that locomotion improved encoding of visual stimuli in V1 by two mechanisms. First, locomotion-induced increases in firing rates enhanced the mutual information between visual stimuli and single neuron responses over a fixed window of time. Second, stimulus discriminability was improved, even for fixed population firing rates, because of a decrease in noise correlations across the population. These two mechanisms contributed differently to improvements in discriminability across cortical layers, with changes in firing rates most important in the upper layers and changes in noise correlations most important in layer V. Together, these changes resulted in a threefold to fivefold reduction in the time needed to precisely encode grating direction and orientation. These results support the hypothesis that cortical state shifts during locomotion to accommodate an increased load on the visual system when mice are moving. SIGNIFICANCE STATEMENT This paper contains three novel findings about the representation of information in neurons within the primary visual cortex of the mouse. First, we show that locomotion reduces by at least a factor of 3 the time needed for information to accumulate in the visual cortex that allows the distinction of different visual stimuli. Second, we show that the effect of locomotion is to increase information in cells of all layers of the visual cortex. Third, we show that the means by which information is enhanced by locomotion differs between the upper layers, where the major effect is the increasing of firing rates, and in layer V, where the major effect is the reduction in noise correlations. PMID:28264980
Matsui, Teppei; Ohki, Kenichi
2013-01-01
Higher order visual areas that receive input from the primary visual cortex (V1) are specialized for the processing of distinct features of visual information. However, it is still incompletely understood how this functional specialization is acquired. Here we used in vivo two photon calcium imaging in the mouse visual cortex to investigate whether this functional distinction exists at as early as the level of projections from V1 to two higher order visual areas, AL and LM. Specifically, we examined whether sharpness of orientation and direction selectivity and optimal spatial and temporal frequency of projection neurons from V1 to higher order visual areas match with that of target areas. We found that the V1 input to higher order visual areas were indeed functionally distinct: AL preferentially received inputs from V1 that were more orientation and direction selective and tuned for lower spatial frequency compared to projection of V1 to LM, consistent with functional differences between AL and LM. The present findings suggest that selective projections from V1 to higher order visual areas initiates parallel processing of sensory information in the visual cortical network. PMID:24068987
Fluoxetine increases plasticity and modulates the proteomic profile in the adult mouse visual cortex
Ruiz-Perera, L.; Muniz, M.; Vierci, G.; Bornia, N.; Baroncelli, L.; Sale, A.; Rossi, F.M.
2015-01-01
The scarce functional recovery of the adult CNS following injuries or diseases is largely due to its reduced potential for plasticity, the ability to reorganize neural connections as a function of experience. Recently, some new strategies restoring high levels of plasticity in the adult brain have been identified, especially in the paradigmatic model of the visual system. A chronic treatment with the anti-depressant fluoxetine reinstates plasticity in the adult rat primary visual cortex, inducing recovery of vision in amblyopic animals. The molecular mechanisms underlying this effect remain largely unknown. Here, we explored fluoxetine effects on mouse visual cortical plasticity, and exploited a proteomic approach to identify possible candidates mediating the outcome of the antidepressant treatment on adult cortical plasticity. We showed that fluoxetine restores ocular dominance plasticity in the adult mouse visual cortex, and identified 31 differentially expressed protein spots in fluoxetine-treated animals vs. controls. MALDITOF/TOF mass spectrometry identification followed by bioinformatics analysis revealed that these proteins are involved in the control of cytoskeleton organization, endocytosis, molecular transport, intracellular signaling, redox cellular state, metabolism and protein degradation. Altogether, these results indicate a complex effect of fluoxetine on neuronal signaling mechanisms potentially involved in restoring plasticity in the adult brain. PMID:26205348
Laminar circuit organization and response modulation in mouse visual cortex
Olivas, Nicholas D.; Quintanar-Zilinskas, Victor; Nenadic, Zoran; Xu, Xiangmin
2012-01-01
The mouse has become an increasingly important animal model for visual system studies, but few studies have investigated local functional circuit organization of mouse visual cortex. Here we used our newly developed mapping technique combining laser scanning photostimulation (LSPS) with fast voltage-sensitive dye (VSD) imaging to examine the spatial organization and temporal dynamics of laminar circuit responses in living slice preparations of mouse primary visual cortex (V1). During experiments, LSPS using caged glutamate provided spatially restricted neuronal activation in a specific cortical layer, and evoked responses from the stimulated layer to its functionally connected regions were detected by VSD imaging. In this study, we first provided a detailed analysis of spatiotemporal activation patterns at specific V1 laminar locations and measured local circuit connectivity. Then we examined the role of cortical inhibition in the propagation of evoked cortical responses by comparing circuit activity patterns in control and in the presence of GABAa receptor antagonists. We found that GABAergic inhibition was critical in restricting layer-specific excitatory activity spread and maintaining topographical projections. In addition, we investigated how AMPA and NMDA receptors influenced cortical responses and found that blocking AMPA receptors abolished interlaminar functional projections, and the NMDA receptor activity was important in controlling visual cortical circuit excitability and modulating activity propagation. The NMDA receptor antagonist reduced neuronal population activity in time-dependent and laminar-specific manners. Finally, we used the quantitative information derived from the mapping experiments and presented computational modeling analysis of V1 circuit organization. Taken together, the present study has provided important new information about mouse V1 circuit organization and response modulation. PMID:23060751
Primary amines protect against retinal degeneration in mouse models of retinopathies
Maeda, Akiko; Golczak, Marcin; Chen, Yu; Okano, Kiichiro; Kohno, Hideo; Shiose, Satomi; Ishikawa, Kaede; Harte, William; Palczewska, Grazyna; Maeda, Tadao; Palczewski, Krzysztof
2011-01-01
Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore, 11-cis-retinal, and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomered product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing FDA-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by mass spectrometry. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that displays features of Stargardt’s and age-related retinal degeneration. PMID:22198730
Targeting neuronal gap junctions in mouse retina offers neuroprotection in glaucoma
Kumar, Sandeep; Ramakrishnan, Hariharasubramanian; Roy, Kaushambi; Viswanathan, Suresh; Bloomfield, Stewart A.
2017-01-01
The progressive death of retinal ganglion cells and resulting visual deficits are hallmarks of glaucoma, but the underlying mechanisms remain unclear. In many neurodegenerative diseases, cell death induced by primary insult is followed by a wave of secondary loss. Gap junctions (GJs), intercellular channels composed of subunit connexins, can play a major role in secondary cell death by forming conduits through which toxic molecules from dying cells pass to and injure coupled neighbors. Here we have shown that pharmacological blockade of GJs or genetic ablation of connexin 36 (Cx36) subunits, which are highly expressed by retinal neurons, markedly reduced loss of neurons and optic nerve axons in a mouse model of glaucoma. Further, functional parameters that are negatively affected in glaucoma, including the electroretinogram, visual evoked potential, visual spatial acuity, and contrast sensitivity, were maintained at control levels when Cx36 was ablated. Neuronal GJs may thus represent potential therapeutic targets to prevent the progressive neurodegeneration and visual impairment associated with glaucoma. PMID:28604388
A neural circuit for gamma-band coherence across the retinotopic map in mouse visual cortex
Hakim, Richard; Shamardani, Kiarash
2018-01-01
Cortical gamma oscillations have been implicated in a variety of cognitive, behavioral, and circuit-level phenomena. However, the circuit mechanisms of gamma-band generation and synchronization across cortical space remain uncertain. Using optogenetic patterned illumination in acute brain slices of mouse visual cortex, we define a circuit composed of layer 2/3 (L2/3) pyramidal cells and somatostatin (SOM) interneurons that phase-locks ensembles across the retinotopic map. The network oscillations generated here emerge from non-periodic stimuli, and are stimulus size-dependent, coherent across cortical space, narrow band (30 Hz), and depend on SOM neuron but not parvalbumin (PV) neuron activity; similar to visually induced gamma oscillations observed in vivo. Gamma oscillations generated in separate cortical locations exhibited high coherence as far apart as 850 μm, and lateral gamma entrainment depended on SOM neuron activity. These data identify a circuit that is sufficient to mediate long-range gamma-band coherence in the primary visual cortex. PMID:29480803
Model-based analysis of pattern motion processing in mouse primary visual cortex
Muir, Dylan R.; Roth, Morgane M.; Helmchen, Fritjof; Kampa, Björn M.
2015-01-01
Neurons in sensory areas of neocortex exhibit responses tuned to specific features of the environment. In visual cortex, information about features such as edges or textures with particular orientations must be integrated to recognize a visual scene or object. Connectivity studies in rodent cortex have revealed that neurons make specific connections within sub-networks sharing common input tuning. In principle, this sub-network architecture enables local cortical circuits to integrate sensory information. However, whether feature integration indeed occurs locally in rodent primary sensory areas has not been examined directly. We studied local integration of sensory features in primary visual cortex (V1) of the mouse by presenting drifting grating and plaid stimuli, while recording the activity of neuronal populations with two-photon calcium imaging. Using a Bayesian model-based analysis framework, we classified single-cell responses as being selective for either individual grating components or for moving plaid patterns. Rather than relying on trial-averaged responses, our model-based framework takes into account single-trial responses and can easily be extended to consider any number of arbitrary predictive models. Our analysis method was able to successfully classify significantly more responses than traditional partial correlation (PC) analysis, and provides a rigorous statistical framework to rank any number of models and reject poorly performing models. We also found a large proportion of cells that respond strongly to only one stimulus class. In addition, a quarter of selectively responding neurons had more complex responses that could not be explained by any simple integration model. Our results show that a broad range of pattern integration processes already take place at the level of V1. This diversity of integration is consistent with processing of visual inputs by local sub-networks within V1 that are tuned to combinations of sensory features. PMID:26300738
Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system.
Smolders, Katrien; Vreysen, Samme; Laramée, Marie-Eve; Cuyvers, Annemie; Hu, Tjing-Tjing; Van Brussel, Leen; Eysel, Ulf T; Nys, Julie; Arckens, Lutgarde
2016-09-01
Neuronal activity plays an important role in the development and structural-functional maintenance of the brain as well as in its life-long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post-lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy-based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region- and cell-type-specific contributions to functional recovery, up to microcircuit level. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
A Role for Mouse Primary Visual Cortex in Motion Perception.
Marques, Tiago; Summers, Mathew T; Fioreze, Gabriela; Fridman, Marina; Dias, Rodrigo F; Feller, Marla B; Petreanu, Leopoldo
2018-06-04
Visual motion is an ethologically important stimulus throughout the animal kingdom. In primates, motion perception relies on specific higher-order cortical regions. Although mouse primary visual cortex (V1) and higher-order visual areas show direction-selective (DS) responses, their role in motion perception remains unknown. Here, we tested whether V1 is involved in motion perception in mice. We developed a head-fixed discrimination task in which mice must report their perceived direction of motion from random dot kinematograms (RDKs). After training, mice made around 90% correct choices for stimuli with high coherence and performed significantly above chance for 16% coherent RDKs. Accuracy increased with both stimulus duration and visual field coverage of the stimulus, suggesting that mice in this task integrate motion information in time and space. Retinal recordings showed that thalamically projecting On-Off DS ganglion cells display DS responses when stimulated with RDKs. Two-photon calcium imaging revealed that neurons in layer (L) 2/3 of V1 display strong DS tuning in response to this stimulus. Thus, RDKs engage motion-sensitive retinal circuits as well as downstream visual cortical areas. Contralateral V1 activity played a key role in this motion direction discrimination task because its reversible inactivation with muscimol led to a significant reduction in performance. Neurometric-psychometric comparisons showed that an ideal observer could solve the task with the information encoded in DS L2/3 neurons. Motion discrimination of RDKs presents a powerful behavioral tool for dissecting the role of retino-forebrain circuits in motion processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zariwala, Hatim A.; Madisen, Linda; Ahrens, Kurt F.; Bernard, Amy; Lein, Edward S.; Jones, Allan R.; Zeng, Hongkui
2011-01-01
The putative excitatory and inhibitory cell classes within the mouse primary visual cortex V1 have different functional properties as studied using recording microelectrode. Excitatory neurons show high selectivity for the orientation angle of moving gratings while the putative inhibitory neurons show poor selectivity. However, the study of selectivity of the genetically identified interneurons and their subtypes remain controversial. Here we use novel Cre-driver and reporter mice to identify genetic subpopulations in vivo for two-photon calcium dye imaging: Wfs1(+)/Gad1(−) mice that labels layer 2/3 excitatory cell population and Pvalb(+)/Gad1(+) mice that labels a genetic subpopulation of inhibitory neurons. The cells in both mice were identically labeled with a tdTomato protein, visible in vivo, using a Cre-reporter line. We found that the Wfs1(+) cells exhibited visual tuning properties comparable to the excitatory population, i.e., high selectivity and tuning to the angle, direction, and spatial frequency of oriented moving gratings. The functional tuning of Pvalb(+) neurons was consistent with previously reported narrow-spiking interneurons in microelectrode studies, exhibiting poorer selectivity than the excitatory neurons. This study demonstrates the utility of Cre-transgenic mouse technology in selective targeting of subpopulations of neurons and makes them amenable to structural, functional, and connectivity studies. PMID:21283555
Cooke, Sam F.; Bear, Mark F.
2014-01-01
Donald Hebb chose visual learning in primary visual cortex (V1) of the rodent to exemplify his theories of how the brain stores information through long-lasting homosynaptic plasticity. Here, we revisit V1 to consider roles for bidirectional ‘Hebbian’ plasticity in the modification of vision through experience. First, we discuss the consequences of monocular deprivation (MD) in the mouse, which have been studied by many laboratories over many years, and the evidence that synaptic depression of excitatory input from the thalamus is a primary contributor to the loss of visual cortical responsiveness to stimuli viewed through the deprived eye. Second, we describe a less studied, but no less interesting form of plasticity in the visual cortex known as stimulus-selective response potentiation (SRP). SRP results in increases in the response of V1 to a visual stimulus through repeated viewing and bears all the hallmarks of perceptual learning. We describe evidence implicating an important role for potentiation of thalamo-cortical synapses in SRP. In addition, we present new data indicating that there are some features of this form of plasticity that cannot be fully accounted for by such feed-forward Hebbian plasticity, suggesting contributions from intra-cortical circuit components. PMID:24298166
Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng
2016-01-01
Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL.
Intravital imaging of a spheroid-based orthotopic model of melanoma in the mouse ear skin
Chan, Keefe T.; Jones, Stephen W.; Brighton, Hailey E.; Bo, Tao; Cochran, Shelly D.; Sharpless, Norman E.; Bear, James E.
2017-01-01
Multiphoton microscopy is a powerful tool that enables the visualization of fluorescently tagged tumor cells and their stromal interactions within tissues in vivo. We have developed an orthotopic model of implanting multicellular melanoma tumor spheroids into the dermis of the mouse ear skin without the requirement for invasive surgery. Here, we demonstrate the utility of this approach to observe the primary tumor, single cell actin dynamics, and tumor-associated vasculature. These methods can be broadly applied to investigate an array of biological questions regarding tumor cell behavior in vivo. PMID:28748125
Critical period revisited: impact on vision.
Morishita, Hirofumi; Hensch, Takao K
2008-02-01
Neural circuits are shaped by experience in early postnatal life. The permanent loss of visual acuity (amblyopia) and anatomical remodeling within primary visual cortex following monocular deprivation is a classic example of critical period development from mouse to man. Recent work in rodents reveals a residual subthreshold potentiation of open eye response throughout life. Resetting excitatory-inhibitory balance or removing molecular 'brakes' on structural plasticity may unmask the potential for recovery of function in adulthood. Novel pharmacological or environmental interventions now hold great therapeutic promise based on a deeper understanding of critical period mechanisms.
Ibrahim, Leena A.; Mesik, Lukas; Ji, Xu-ying; Fang, Qi; Li, Hai-fu; Li, Ya-tang; Zingg, Brian; Zhang, Li I.; Tao, Huizhong Whit
2016-01-01
Summary Cross-modality interaction in sensory perception is advantageous for animals’ survival. How cortical sensory processing is cross-modally modulated and what are the underlying neural circuits remain poorly understood. In mouse primary visual cortex (V1), we discovered that orientation selectivity of layer (L)2/3 but not L4 excitatory neurons was sharpened in the presence of sound or optogenetic activation of projections from primary auditory cortex (A1) to V1. The effect was manifested by decreased average visual responses yet increased responses at the preferred orientation. It was more pronounced at lower visual contrast, and was diminished by suppressing L1 activity. L1 neurons were strongly innervated by A1-V1 axons and excited by sound, while visual responses of L2/3 vasoactive intestinal peptide (VIP) neurons were suppressed by sound, both preferentially at the cell's preferred orientation. These results suggest that the cross-modality modulation is achieved primarily through L1 neuron and L2/3 VIP-cell mediated inhibitory and disinhibitory circuits. PMID:26898778
Denman, Daniel J; Contreras, Diego
2014-10-01
Neural responses to sensory stimuli are not independent. Pairwise correlation can reduce coding efficiency, occur independent of stimulus representation, or serve as an additional channel of information, depending on the timescale of correlation and the method of decoding. Any role for correlation depends on its magnitude and structure. In sensory areas with maps, like the orientation map in primary visual cortex (V1), correlation is strongly related to the underlying functional architecture, but it is unclear whether this correlation structure is an essential feature of the system or arises from the arrangement of cells in the map. We assessed the relationship between functional architecture and pairwise correlation by measuring both synchrony and correlated spike count variability in mouse V1, which lacks an orientation map. We observed significant pairwise synchrony, which was organized by distance and relative orientation preference between cells. We also observed nonzero correlated variability in both the anesthetized (0.16) and awake states (0.18). Our results indicate that the structure of pairwise correlation is maintained in the absence of an underlying anatomical organization and may be an organizing principle of the mammalian visual system preserved by nonrandom connectivity within local networks. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Causal evidence for retina dependent and independent visual motion computations in mouse cortex
Hillier, Daniel; Fiscella, Michele; Drinnenberg, Antonia; Trenholm, Stuart; Rompani, Santiago B.; Raics, Zoltan; Katona, Gergely; Juettner, Josephine; Hierlemann, Andreas; Rozsa, Balazs; Roska, Botond
2017-01-01
How neuronal computations in the sensory periphery contribute to computations in the cortex is not well understood. We examined this question in the context of visual-motion processing in the retina and primary visual cortex (V1) of mice. We disrupted retinal direction selectivity – either exclusively along the horizontal axis using FRMD7 mutants or along all directions by ablating starburst amacrine cells – and monitored neuronal activity in layer 2/3 of V1 during stimulation with visual motion. In control mice, we found an overrepresentation of cortical cells preferring posterior visual motion, the dominant motion direction an animal experiences when it moves forward. In mice with disrupted retinal direction selectivity, the overrepresentation of posterior-motion-preferring cortical cells disappeared, and their response at higher stimulus speeds was reduced. This work reveals the existence of two functionally distinct, sensory-periphery-dependent and -independent computations of visual motion in the cortex. PMID:28530661
Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P
1996-09-01
The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.
Wang, Quanxin; Burkhalter, Andreas
2013-01-23
Previous studies of intracortical connections in mouse visual cortex have revealed two subnetworks that resemble the dorsal and ventral streams in primates. Although calcium imaging studies have shown that many areas of the ventral stream have high spatial acuity whereas areas of the dorsal stream are highly sensitive for transient visual stimuli, there are some functional inconsistencies that challenge a simple grouping into "what/perception" and "where/action" streams known in primates. The superior colliculus (SC) is a major center for processing of multimodal sensory information and the motor control of orienting the eyes, head, and body. Visual processing is performed in superficial layers, whereas premotor activity is generated in deep layers of the SC. Because the SC is known to receive input from visual cortex, we asked whether the projections from 10 visual areas of the dorsal and ventral streams terminate in differential depth profiles within the SC. We found that inputs from primary visual cortex are by far the strongest. Projections from the ventral stream were substantially weaker, whereas the sparsest input originated from areas of the dorsal stream. Importantly, we found that ventral stream inputs terminated in superficial layers, whereas dorsal stream inputs tended to be patchy and either projected equally to superficial and deep layers or strongly preferred deep layers. The results suggest that the anatomically defined ventral and dorsal streams contain areas that belong to distinct functional systems, specialized for the processing of visual information and visually guided action, respectively.
Herculano-Houzel, Suzana; Watson, Charles; Paxinos, George
2013-01-01
How are neurons distributed along the cortical surface and across functional areas? Here we use the isotropic fractionator (Herculano-Houzel and Lent, 2005) to analyze the distribution of neurons across the entire isocortex of the mouse, divided into 18 functional areas defined anatomically. We find that the number of neurons underneath a surface area (the N/A ratio) varies 4.5-fold across functional areas and neuronal density varies 3.2-fold. The face area of S1 contains the most neurons, followed by motor cortex and the primary visual cortex. Remarkably, while the distribution of neurons across functional areas does not accompany the distribution of surface area, it mirrors closely the distribution of cortical volumes—with the exception of the visual areas, which hold more neurons than expected for their volume. Across the non-visual cortex, the volume of individual functional areas is a shared linear function of their number of neurons, while in the visual areas, neuronal densities are much higher than in all other areas. In contrast, the 18 functional areas cluster into three different zones according to the relationship between the N/A ratio and cortical thickness and neuronal density: these three clusters can be called visual, sensory, and, possibly, associative. These findings are remarkably similar to those in the human cerebral cortex (Ribeiro et al., 2013) and suggest that, like the human cerebral cortex, the mouse cerebral cortex comprises two zones that differ in how neurons form the cortical volume, and three zones that differ in how neurons are distributed underneath the cortical surface, possibly in relation to local differences in connectivity through the white matter. Our results suggest that beyond the developmental divide into visual and non-visual cortex, functional areas initially share a common distribution of neurons along the parenchyma that become delimited into functional areas according to the pattern of connectivity established later. PMID:24155697
Ito, Keishi; Arakawa, Sousuke; Murakami, Shingo; Sawamoto, Kazunobu
2012-01-01
Sensory input is essential for the normal development of sensory centers in the brain, such as the somatosensory, visual, auditory, and olfactory systems. Visual deprivation during a specific developmental stage, called the critical period, results in severe and irreversible functional impairments in the primary visual cortex. Olfactory deprivation in the early postnatal period also causes significant developmental defects in the olfactory bulb, the primary center for olfaction. Olfactory bulb interneurons are continuously generated from neural stem cells in the ventricular-subventricular zone, suggesting that the olfactory system has plasticity even in adulthood. Here, we investigated the effect of transient neonatal olfactory deprivation on the addition of interneurons to the glomerular layer of the adult mouse olfactory bulb. We found that the addition of one subtype of interneurons was persistently inhibited even after reopening the naris. BrdU pulse-chase experiments revealed that the neonatal olfactory deprivation predominantly affected an early phase in the maturation of this neuronal subtype in the olfactory bulb. Subjecting the mice to odor stimulation for 6 weeks after naris reopening resulted in significant recovery from the histological and functional defects caused by the olfactory deprivation. These results suggest that a subtype-specific critical period exists for olfactory bulb neurogenesis, but that this period is less strict and more plastic compared with the critical periods for other systems. This study provides new insights into the mechanisms of postnatal neurogenesis and a biological basis for the therapeutic effect of olfactory training. PMID:23133633
Fehérvári, Tamás Dávid; Sawai, Hajime; Yagi, Tetsuya
2015-01-01
In the mammalian primary visual cortex (V1), lateral spreading of excitatory potentials is believed to be involved in spatial integrative functions, but the underlying cortical mechanism is not well understood. Visually-evoked population-level responses have been shown to propagate beyond the V1 initial activation site in mouse, similar to higher mammals. Visually-evoked responses are, however, affected by neuronal circuits prior to V1 (retina, LGN), making the separate analysis of V1 difficult. Intracortical stimulation eliminates these initial processing steps. We used in vivo RH1691 voltage-sensitive dye (VSD) imaging and intracortical microstimulation in adult C57BL/6 mice to elucidate the spatiotemporal properties of population-level signal spreading in V1 cortical circuits. The evoked response was qualitatively similar to that measured in single-cell electrophysiological experiments in rodents: a fast transient fluorescence peak followed by a fast and a slow decrease or hyperpolarization, similar to EPSP and fast and slow IPSPs in single cells. The early cortical response expanded at speeds commensurate with long horizontal projections (at 5% of the peak maximum, 0.08–0.15 m/s) however, the bulk of the VSD signal propagated slowly (at half-peak maximum, 0.05–0.08 m/s) suggesting an important role of regenerative multisynaptic transmission through short horizontal connections in V1 spatial integrative functions. We also found a tendency for a widespread and fast cortical response suppression in V1, which was eliminated by GABAA-antagonists gabazine and bicuculline methiodide. Our results help understand the neuronal circuitry involved in lateral spreading in V1. PMID:26230520
Hunger-Dependent Enhancement of Food Cue Responses in Mouse Postrhinal Cortex and Lateral Amygdala.
Burgess, Christian R; Ramesh, Rohan N; Sugden, Arthur U; Levandowski, Kirsten M; Minnig, Margaret A; Fenselau, Henning; Lowell, Bradford B; Andermann, Mark L
2016-09-07
The needs of the body can direct behavioral and neural processing toward motivationally relevant sensory cues. For example, human imaging studies have consistently found specific cortical areas with biased responses to food-associated visual cues in hungry subjects, but not in sated subjects. To obtain a cellular-level understanding of these hunger-dependent cortical response biases, we performed chronic two-photon calcium imaging in postrhinal association cortex (POR) and primary visual cortex (V1) of behaving mice. As in humans, neurons in mouse POR, but not V1, exhibited biases toward food-associated cues that were abolished by satiety. This emergent bias was mirrored by the innervation pattern of amygdalo-cortical feedback axons. Strikingly, these axons exhibited even stronger food cue biases and sensitivity to hunger state and trial history. These findings highlight a direct pathway by which the lateral amygdala may contribute to state-dependent cortical processing of motivationally relevant sensory cues. Published by Elsevier Inc.
Intravital characterization of tumor cell migration in pancreatic cancer
Beerling, Evelyne; Oosterom, Ilse; Voest, Emile; Lolkema, Martijn; van Rheenen, Jacco
2016-01-01
ABSTRACT Curing pancreatic cancer is difficult as metastases often determine the poor clinical outcome. To gain more insight into the metastatic behavior of pancreatic cancer cells, we characterized migratory cells in primary pancreatic tumors using intravital microscopy. We visualized the migratory behavior of primary tumor cells of a genetically engineered pancreatic cancer mouse model and found that pancreatic tumor cells migrate with a mesenchymal morphology as single individual cells or collectively as a stream of non-cohesive single motile cells. These findings may improve our ability to conceive treatments that block metastatic behavior. PMID:28243522
Inferring cortical function in the mouse visual system through large-scale systems neuroscience.
Hawrylycz, Michael; Anastassiou, Costas; Arkhipov, Anton; Berg, Jim; Buice, Michael; Cain, Nicholas; Gouwens, Nathan W; Gratiy, Sergey; Iyer, Ramakrishnan; Lee, Jung Hoon; Mihalas, Stefan; Mitelut, Catalin; Olsen, Shawn; Reid, R Clay; Teeter, Corinne; de Vries, Saskia; Waters, Jack; Zeng, Hongkui; Koch, Christof
2016-07-05
The scientific mission of the Project MindScope is to understand neocortex, the part of the mammalian brain that gives rise to perception, memory, intelligence, and consciousness. We seek to quantitatively evaluate the hypothesis that neocortex is a relatively homogeneous tissue, with smaller functional modules that perform a common computational function replicated across regions. We here focus on the mouse as a mammalian model organism with genetics, physiology, and behavior that can be readily studied and manipulated in the laboratory. We seek to describe the operation of cortical circuitry at the computational level by comprehensively cataloging and characterizing its cellular building blocks along with their dynamics and their cell type-specific connectivities. The project is also building large-scale experimental platforms (i.e., brain observatories) to record the activity of large populations of cortical neurons in behaving mice subject to visual stimuli. A primary goal is to understand the series of operations from visual input in the retina to behavior by observing and modeling the physical transformations of signals in the corticothalamic system. We here focus on the contribution that computer modeling and theory make to this long-term effort.
A new method for in vivo visualization of vessel remodeling using a near-infrared dye
Billaud, Marie; Ross, Jeremy A; Greyson, Mark A; Bruce, Anthony C; Seaman, Scott A; Heberlein, Katherine R; Han, Jenny; Best, Angela K; Peirce, Shayn M; Isakson, Brant E
2011-01-01
Intro Vascular obstructive events can be partially compensated for by remodeling processes that increase vessel diameter and collateral tortuosity. However, methods for visualizing remodeling events in vivo and with temporal comparisons from the same animal remain elusive. Methods Using a novel infrared conjugated polyethylene glycol dye, we investigated the possibility of intravital vascular imaging of the mouse ear before and after ligation of the primary feeder artery. For comparison, we used two different mouse models known to have impaired vascular remodeling post ligation (i.e. aged and PAI-1−/− mice). The results obtained with the infrared dye were confirmed using immunofluorescence labeling of the ear microvasculature with confocal microscopy. Results After ligation, increases in vessel diameter (between 10% and 60%) and tortuosity (approximately 15%) were observed in C57Bl/6 mice using both the infrared dye and the immunofluorescence technique. However, aged C57Bl/6 and PAI-1−/− mice did not show vascular remodeling following ligation. Conclusion Vascular remodeling can be visualized and accurately quantified using a new infrared dye in vivo. This analysis technique could be generally employed for quantitative investigations of changes in vascular remodeling. PMID:21418375
NASA Astrophysics Data System (ADS)
Bekisz, Marek; Shendye, Ninad; Raciborska, Ida; Wróbel, Andrzej; Waleszczyk, Wioletta J.
2017-08-01
The process of learning induces plastic changes in neuronal network of the brain. Our earlier studies on mice showed that classical conditioning in which monocular visual stimulation was paired with an electric shock to the tail enhanced GABA immunoreactivity within layer 4 of the monocular part of the primary visual cortex (V1), contralaterally to the stimulated eye. In the present experiment we investigated whether the same classical conditioning paradigm induces changes of neuronal excitability in this cortical area. Two experimental groups were used: mice that underwent 7-day visual classical conditioning and controls. Patch-clamp whole-cell recordings were performed from ex vivo slices of mouse V1. The slices were perfused with the modified artificial cerebrospinal fluid, the composition of which better mimics the brain interstitial fluid in situ and induces spontaneous activity. The neuronal excitability was characterized by measuring the frequency of spontaneous action potentials. We found that layer 4 star pyramidal cells located in the monocular representation of the "trained" eye in V1 had lower frequency of spontaneous activity in comparison with neurons from the same cortical region of control animals. Weaker spontaneous firing indicates decreased general excitability of star pyramidal neurons within layer 4 of the monocular representation of the "trained" eye in V1. Such effect could result from enhanced inhibitory processes accompanying learning in this cortical area.
NASA Astrophysics Data System (ADS)
Yen, WeiWei; Burdsal, Carol; Periasamy, Ammasi; Sutherland, Ann E.
2006-02-01
The cell mechanical and signaling pathways involved in gastrulation have been studied extensively in invertebrates and amphibians, such as Xenopus, and more recently in non-mammalian vertebrates such as zebrafish and chick. However, because culturing mouse embryos extra-utero is very difficult, this fundamental process has been least characterized in the mouse. As the primary mammalian model for genetics, biochemistry, and the study of human disease and birth defects, it is important to investigate how gastrulation proceeds in murine embryos. We have developed a method of using 4D multiphoton excitation microscopy and extra-utero culture to visualize and characterize the morphogenetic movements in mouse embryos dissected at 8.5 days of gestation. Cells are labeled by expression of an X chromosome-linked enhanced green fluorescent protein (EGFP) transgene. This method has provided a unique approach, where, for the first time, patterns of cell behavior in the notochord and surrounding paraxial mesoderm can be visualized and traced quantitatively. Our observations of mouse embryos reveal both distinct differences as well as striking similarities in patterned cell motility relative to other vertebrate models such as Xenopus, where axial extension is driven primarily by mediolateral oriented cell behaviors in the notochord and paraxial somitic mesoderm. Unlike Xenopus, the width of the mouse notochord remains the same between 4-somite stage and 8-somite stage embryos. This implies the mouse notochord plays a lesser role in driving axial extension compared to Xenopus, although intercalation may occur where the anterior region of the node becomes notochordal plate. In contrast, the width of mouse paraxial mesoderm narrows significantly during this period and cells within the paraxial mesoderm are both elongated and aligned perpendicular to the midline. In addition, these cells are observed to intercalate, consistent with a role for paraxial mesoderm in driving convergence and extension. These cell behaviors are similar to those characterized in the axial mesoderm of frog embryos during convergence and extension[1], and suggests that tissues may play different roles in axial elongation between the frog and the mouse.
Meijer, Guido T; Montijn, Jorrit S; Pennartz, Cyriel M A; Lansink, Carien S
2017-09-06
The sensory neocortex is a highly connected associative network that integrates information from multiple senses, even at the level of the primary sensory areas. Although a growing body of empirical evidence supports this view, the neural mechanisms of cross-modal integration in primary sensory areas, such as the primary visual cortex (V1), are still largely unknown. Using two-photon calcium imaging in awake mice, we show that the encoding of audiovisual stimuli in V1 neuronal populations is highly dependent on the features of the stimulus constituents. When the visual and auditory stimulus features were modulated at the same rate (i.e., temporally congruent), neurons responded with either an enhancement or suppression compared with unisensory visual stimuli, and their prevalence was balanced. Temporally incongruent tones or white-noise bursts included in audiovisual stimulus pairs resulted in predominant response suppression across the neuronal population. Visual contrast did not influence multisensory processing when the audiovisual stimulus pairs were congruent; however, when white-noise bursts were used, neurons generally showed response suppression when the visual stimulus contrast was high whereas this effect was absent when the visual contrast was low. Furthermore, a small fraction of V1 neurons, predominantly those located near the lateral border of V1, responded to sound alone. These results show that V1 is involved in the encoding of cross-modal interactions in a more versatile way than previously thought. SIGNIFICANCE STATEMENT The neural substrate of cross-modal integration is not limited to specialized cortical association areas but extends to primary sensory areas. Using two-photon imaging of large groups of neurons, we show that multisensory modulation of V1 populations is strongly determined by the individual and shared features of cross-modal stimulus constituents, such as contrast, frequency, congruency, and temporal structure. Congruent audiovisual stimulation resulted in a balanced pattern of response enhancement and suppression compared with unisensory visual stimuli, whereas incongruent or dissimilar stimuli at full contrast gave rise to a population dominated by response-suppressing neurons. Our results indicate that V1 dynamically integrates nonvisual sources of information while still attributing most of its resources to coding visual information. Copyright © 2017 the authors 0270-6474/17/378783-14$15.00/0.
Li, Ya-tang; Liu, Bao-hua; Chou, Xiao-lin; Zhang, Li I.
2015-01-01
In the primary visual cortex (V1), orientation-selective neurons can be categorized into simple and complex cells primarily based on their receptive field (RF) structures. In mouse V1, although previous studies have examined the excitatory/inhibitory interplay underlying orientation selectivity (OS) of simple cells, the synaptic bases for that of complex cells have remained obscure. Here, by combining in vivo loose-patch and whole-cell recordings, we found that complex cells, identified by their overlapping on/off subfields, had significantly weaker OS than simple cells at both spiking and subthreshold membrane potential response levels. Voltage-clamp recordings further revealed that although excitatory inputs to complex and simple cells exhibited a similar degree of OS, inhibition in complex cells was more narrowly tuned than excitation, whereas in simple cells inhibition was more broadly tuned than excitation. The differential inhibitory tuning can primarily account for the difference in OS between complex and simple cells. Interestingly, the differential synaptic tuning correlated well with the spatial organization of synaptic input: the inhibitory visual RF in complex cells was more elongated in shape than its excitatory counterpart and also was more elongated than that in simple cells. Together, our results demonstrate that OS of complex and simple cells is differentially shaped by cortical inhibition based on its orientation tuning profile relative to excitation, which is contributed at least partially by the spatial organization of RFs of presynaptic inhibitory neurons. SIGNIFICANCE STATEMENT Simple and complex cells, two classes of principal neurons in the primary visual cortex (V1), are generally thought to be equally selective for orientation. In mouse V1, we report that complex cells, identified by their overlapping on/off subfields, has significantly weaker orientation selectivity (OS) than simple cells. This can be primarily attributed to the differential tuning selectivity of inhibitory synaptic input: inhibition in complex cells is more narrowly tuned than excitation, whereas in simple cells inhibition is more broadly tuned than excitation. In addition, there is a good correlation between inhibitory tuning selectivity and the spatial organization of inhibitory inputs. These complex and simple cells with differential degree of OS may provide functionally distinct signals to different downstream targets. PMID:26245969
Li, Ya-tang; Liu, Bao-hua; Chou, Xiao-lin; Zhang, Li I; Tao, Huizhong W
2015-08-05
In the primary visual cortex (V1), orientation-selective neurons can be categorized into simple and complex cells primarily based on their receptive field (RF) structures. In mouse V1, although previous studies have examined the excitatory/inhibitory interplay underlying orientation selectivity (OS) of simple cells, the synaptic bases for that of complex cells have remained obscure. Here, by combining in vivo loose-patch and whole-cell recordings, we found that complex cells, identified by their overlapping on/off subfields, had significantly weaker OS than simple cells at both spiking and subthreshold membrane potential response levels. Voltage-clamp recordings further revealed that although excitatory inputs to complex and simple cells exhibited a similar degree of OS, inhibition in complex cells was more narrowly tuned than excitation, whereas in simple cells inhibition was more broadly tuned than excitation. The differential inhibitory tuning can primarily account for the difference in OS between complex and simple cells. Interestingly, the differential synaptic tuning correlated well with the spatial organization of synaptic input: the inhibitory visual RF in complex cells was more elongated in shape than its excitatory counterpart and also was more elongated than that in simple cells. Together, our results demonstrate that OS of complex and simple cells is differentially shaped by cortical inhibition based on its orientation tuning profile relative to excitation, which is contributed at least partially by the spatial organization of RFs of presynaptic inhibitory neurons. Simple and complex cells, two classes of principal neurons in the primary visual cortex (V1), are generally thought to be equally selective for orientation. In mouse V1, we report that complex cells, identified by their overlapping on/off subfields, has significantly weaker orientation selectivity (OS) than simple cells. This can be primarily attributed to the differential tuning selectivity of inhibitory synaptic input: inhibition in complex cells is more narrowly tuned than excitation, whereas in simple cells inhibition is more broadly tuned than excitation. In addition, there is a good correlation between inhibitory tuning selectivity and the spatial organization of inhibitory inputs. These complex and simple cells with differential degree of OS may provide functionally distinct signals to different downstream targets. Copyright © 2015 the authors 0270-6474/15/3511081-13$15.00/0.
van der Vos, Kristan E.; Abels, Erik R.; Zhang, Xuan; Lai, Charles; Carrizosa, Esteban; Oakley, Derek; Prabhakar, Shilpa; Mardini, Osama; Crommentuijn, Matheus H. W.; Skog, Johan; Krichevsky, Anna M.; Stemmer-Rachamimov, Anat; Mempel, Thorsten R.; El Khoury, Joseph; Hickman, Suzanne E.; Breakefield, Xandra O.
2016-01-01
Background To understand the ability of gliomas to manipulate their microenvironment, we visualized the transfer of vesicles and the effects of tumor-released extracellular RNA on the phenotype of microglia in culture and in vivo. Methods Extracellular vesicles (EVs) released from primary human glioblastoma (GBM) cells were isolated and microRNAs (miRNAs) were analyzed. Primary mouse microglia were exposed to GBM-EVs, and their uptake and effect on proliferation and levels of specific miRNAs, mRNAs, and proteins were analyzed. For in vivo analysis, mouse glioma cells were implanted in the brains of mice, and EV release and uptake by microglia and monocytes/macrophages were monitored by intravital 2-photon microscopy, immunohistochemistry, and fluorescence activated cell sorting analysis, as well as RNA and protein levels. Results Microglia avidly took up GBM-EVs, leading to increased proliferation and shifting of their cytokine profile toward immune suppression. High levels of miR-451/miR-21 in GBM-EVs were transferred to microglia with a decrease in the miR-451/miR-21 target c-Myc mRNA. In in vivo analysis, we directly visualized release of EVs from glioma cells and their uptake by microglia and monocytes/macrophages in brain. Dissociated microglia and monocytes/macrophages from tumor-bearing brains revealed increased levels of miR-21 and reduced levels of c-Myc mRNA. Conclusions Intravital microscopy confirms the release of EVs from gliomas and their uptake into microglia and monocytes/macrophages within the brain. Our studies also support functional effects of GBM-released EVs following uptake into microglia, associated in part with increased miRNA levels, decreased target mRNAs, and encoded proteins, presumably as a means for the tumor to manipulate its environs. PMID:26433199
Ye, Qian; Miao, Qing-Long
2013-08-08
Perineuronal nets (PNNs) are extracellular matrix structures consisting of chondroitin sulfate proteoglycans (CSPGs), hyaluronan, link proteins and tenascin-R (Tn-R). They enwrap a subset of GABAergic inhibitory interneurons in the cerebral cortex and restrict experience-dependent cortical plasticity. While the expression profile of PNN components has been widely studied in many areas of the central nervous system of various animal species, it remains unclear how these components are expressed during the postnatal development of mouse primary visual cortex (V1). In the present study, we characterized the developmental time course of the formation of PNNs in the mouse primary visual cortex, using the specific antibodies against the two PNN component proteins aggrecan and tenascin-R, or the lectin Wisteria floribunda agglutinin (WFA) that directly binds to glycosaminoglycan chains of chondroitin sulfate proteoglycans (CSPGs). We found that the fluorescence staining signals of both the WFA staining and the antibody against aggrecan rapidly increased in cortical neurons across layers 2-6 during postnatal days (PD) 10-28 and reached a plateau around PD42, suggesting a full construction of PNNs by the end of the critical period. Co-staining with antibodies to Ca(2+) binding protein parvalbumin (PV) demonstrated that the majority of PNN-surrounding cortical neurons are immunoreactive to PV. Similar expression profile of another PNN component tenascin-R was observed in the development of V1. Dark rearing of mice from birth significantly reduced the density of PNN-surrounding neurons. In addition, the expression of two recently identified CSPG receptors - Nogo receptor (NgR) and leukocyte common antigen-related phosphatase (LAR), showed significant increases from PD14 to PD70 in layer 2-6 of cortical PV-positive interneurons in normal reared mice, but decreased significantly in dark-reared ones. Taken together, these results suggest that PNNs form preferentially in cortical PV-positive interneurons in an experience-dependent manner, and reach full maturation around the end of the critical period of V1 development. © Elsevier B.V. All rights reserved.
A mouse model of ocular blast injury that induces closed globe anterior and posterior pole damage
Hines-Beard, Jessica; Marchetta, Jeffrey; Gordon, Sarah; Chaum, Edward; Geisert, Eldon E.; Rex, Tonia S.
2012-01-01
We developed and characterized a mouse model of primary ocular blast injury. The device consists of: a pressurized air tank attached to a regulated paintball gun with a machined barrel; a chamber that protects the mouse from direct injury and recoil, while exposing the eye; and a secure platform that enables fine, controlled movement of the chamber in relation to the barrel. Expected pressures were calculated and the optimal pressure transducer, based on the predicted pressures, was positioned to measure output pressures at the location where the mouse eye would be placed. Mice were exposed to one of three blast pressures (23.6, 26.4, or 30.4psi). Gross pathology, intraocular pressure, optical coherence tomography, and visual acuity were assessed 0, 3, 7, 14, and 28 days after exposure. Contralateral eyes and non-blast exposed mice were used as controls. We detected increased damage with increased pressures and a shift in the damage profile over time. Gross pathology included corneal edema, corneal abrasions, and optic nerve avulsion. Retinal damage was detected by optical coherence tomography and a deficit in visual acuity was detected by optokinetics. Our findings are comparable to those identified in Veterans of the recent wars with closed eye injuries as a result of blast exposure. In summary, this is a relatively simple system that creates injuries with features similar to those seen in patients with ocular blast trauma. This is an important new model for testing the short-term and long-term spectrum of closed globe blast injuries and potential therapeutic interventions. PMID:22504073
Three Types of Cortical L5 Neurons that Differ in Brain-Wide Connectivity and Function
Kim, Euiseok J.; Juavinett, Ashley L.; Kyubwa, Espoir M.; Jacobs, Matthew W.; Callaway, Edward M.
2015-01-01
SUMMARY Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. PMID:26671462
Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.
Kim, Euiseok J; Juavinett, Ashley L; Kyubwa, Espoir M; Jacobs, Matthew W; Callaway, Edward M
2015-12-16
Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. Copyright © 2015 Elsevier Inc. All rights reserved.
Smith, Milo R.; Burman, Poromendro
2016-01-01
Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate plasticity signatures. We tested the hypothesis that inflammation disrupts developmental cortical plasticity in vivo using the mouse ocular dominance model of experience-dependent plasticity in primary visual cortex. We found that the administration of systemic lipopolysaccharide suppressed plasticity during juvenile critical period with accompanying transcriptional changes in a particular set of molecular regulators within primary visual cortex. These findings suggest that inflammation may have unrecognized adverse consequences on the postnatal developmental trajectory and indicate that treating inflammation may reduce the burden of neurodevelopmental disorders. PMID:28101530
Stimulus relevance modulates contrast adaptation in visual cortex
Keller, Andreas J; Houlton, Rachael; Kampa, Björn M; Lesica, Nicholas A; Mrsic-Flogel, Thomas D; Keller, Georg B; Helmchen, Fritjof
2017-01-01
A general principle of sensory processing is that neurons adapt to sustained stimuli by reducing their response over time. Most of our knowledge on adaptation in single cells is based on experiments in anesthetized animals. How responses adapt in awake animals, when stimuli may be behaviorally relevant or not, remains unclear. Here we show that contrast adaptation in mouse primary visual cortex depends on the behavioral relevance of the stimulus. Cells that adapted to contrast under anesthesia maintained or even increased their activity in awake naïve mice. When engaged in a visually guided task, contrast adaptation re-occurred for stimuli that were irrelevant for solving the task. However, contrast adaptation was reversed when stimuli acquired behavioral relevance. Regulation of cortical adaptation by task demand may allow dynamic control of sensory-evoked signal flow in the neocortex. DOI: http://dx.doi.org/10.7554/eLife.21589.001 PMID:28130922
Chen, Xia; Fu, Junhong; Cheng, Wenbo; Song, Desheng; Qu, Xiaolei; Yang, Zhuo; Zhao, Kanxing
2017-01-01
Visual deprivation during the critical period induces long-lasting changes in cortical circuitry by adaptively modifying neuro-transmission and synaptic connectivity at synapses. Spike timing-dependent plasticity (STDP) is considered a strong candidate for experience-dependent changes. However, the visual deprivation forms that affect timing-dependent long-term potentiation(LTP) and long-term depression(LTD) remain unclear. Here, we demonstrated the temporal window changes of tLTP and tLTD, elicited by coincidental pre- and post-synaptic firing, following different modes of 6-day visual deprivation. Markedly broader temporal windows were found in robust tLTP and tLTD in the V1M of the deprived visual cortex in mice after 6-day MD and DE. The underlying mechanism for the changes seen with visual deprivation in juvenile mice using 6 days of dark exposure or monocular lid suture involves an increased fraction of NR2b-containing NMDAR and the consequent prolongation of NMDAR-mediated response duration. Moreover, a decrease in NR2A protein expression at the synapse is attributable to the reduction of the NR2A/2B ratio in the deprived cortex. PMID:28520739
Montijn, Jorrit S; Goltstein, Pieter M; Pennartz, Cyriel MA
2015-01-01
Previous studies have demonstrated the importance of the primary sensory cortex for the detection, discrimination, and awareness of visual stimuli, but it is unknown how neuronal populations in this area process detected and undetected stimuli differently. Critical differences may reside in the mean strength of responses to visual stimuli, as reflected in bulk signals detectable in functional magnetic resonance imaging, electro-encephalogram, or magnetoencephalography studies, or may be more subtly composed of differentiated activity of individual sensory neurons. Quantifying single-cell Ca2+ responses to visual stimuli recorded with in vivo two-photon imaging, we found that visual detection correlates more strongly with population response heterogeneity rather than overall response strength. Moreover, neuronal populations showed consistencies in activation patterns across temporally spaced trials in association with hit responses, but not during nondetections. Contrary to models relying on temporally stable networks or bulk signaling, these results suggest that detection depends on transient differentiation in neuronal activity within cortical populations. DOI: http://dx.doi.org/10.7554/eLife.10163.001 PMID:26646184
Comparison of confocal microscopy and two-photon microscopy in mouse cornea in vivo.
Lee, Jun Ho; Lee, Seunghun; Gho, Yong Song; Song, In Seok; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean
2015-03-01
High-resolution imaging of the cornea is important for studying corneal diseases at cellular levels. Confocal microscopy (CM) has been widely used in the clinic, and two-photon microscopy (TPM) has recently been introduced in various pre-clinical studies. We compared the performance of CM and TPM in normal mouse corneas and neovascularized mouse corneas induced by suturing. Balb/C mice and C57BL/6 mice expressing green fluorescent protein (GFP) were used to compare modalities based on intrinsic contrast and extrinsic fluorescence contrast. CM based on reflection (CMR), CM based on fluorescence (CMF), and TPM based on intrinsic/extrinsic fluorescence and second harmonic generation (SHG) were compared by imaging the same sections of mouse corneas sequentially in vivo. In normal mouse corneas, CMR visualized corneal cell morphologies with some background noise, and CMF visualized GFP expressing corneal cells clearly. TPM visualized corneal cells and collagen in the stroma based on fluorescence and SHG, respectively. However, in neovascularized mouse corneas, CMR could not resolve cells deep inside the cornea due to high background noise from the effects of increased structural irregularity induced by suturing. CMF and TPM visualized cells and induced vasculature better than CMR because both collect signals from fluorescent cells only. Both CMF and TPM had signal decays with depth due to the structural irregularity, with CMF having faster signal decay than TPM. CMR, CMF, and TPM showed different degrees of image degradation in neovascularized mouse corneas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experience-Dependent Synaptic Plasticity in V1 Occurs without Microglial CX3CR1
Stevens, Beth
2017-01-01
Brief monocular deprivation (MD) shifts ocular dominance and reduces the density of thalamic synapses in layer 4 of the mouse primary visual cortex (V1). We found that microglial lysosome content is also increased as a result of MD. Previous studies have shown that the microglial fractalkine receptor CX3CR1 is involved in synaptic development and hippocampal plasticity. We therefore tested the hypothesis that neuron-to-microglial communication via CX3CR1 is an essential component of visual cortical development and plasticity in male mice. Our data show that CX3CR1 is not required for normal development of V1 responses to visual stimulation, multiple forms of experience-dependent plasticity, or the synapse loss that accompanies MD in layer 4. By ruling out an essential role for fractalkine signaling, our study narrows the search for understanding how microglia respond to active synapse modification in the visual cortex. SIGNIFICANCE STATEMENT Microglia in the visual cortex respond to monocular deprivation with increased lysosome content, but signaling through the fractalkine receptor CX3CR1 is not an essential component in the mechanisms of visual cortical development or experience-dependent synaptic plasticity. PMID:28951447
Noah, Benjamin; Li, Jingwen; Rothrock, Ling
2017-10-01
The objectives of this study were to test the effect of interaction device on performance in a process control task (managing a tank farm). The study compared the following two conditions: a) 4K-resolution 55" screen with a 21" touchscreen versus b) 4K-resolution 55″ screen with keyboard/mouse. The touchscreen acted both as an interaction device for data entry and navigation and as an additional source of information. A within-subject experiment was conducted among 20 college engineering students. A primary task of preventing tanks from overfilling as well as a secondary task of manual logging with situation awareness questions were designed for the study. Primary Task performance (including tank level at discharge, number of tank discharged and performance score), Secondary Task Performance (including Tank log count, performance score), system interaction times, subjective workload, situation awareness questionnaire, user experience survey regarding usability and condition comparison were used as the measures. Parametric data resulted in two metrics statistically different means between the two conditions: The 4K-keyboard condition resulted in faster Detection + Navigation time compared to the 4K-touchscreen condition, by about 2 s, while participants within the 4K-touchscreen condition were about 2 s faster in data entry than in the 4K-keyboard condition. No significant results were found for: performance on the secondary task, situation awareness, and workload. Additionally, no clear significant differences were found in the non-parametric data analysis. However, participants showed a slight preference for the 4K-touchscreen condition compared to the 4K-keyboard condition in subjective responses in comparing the conditions. Introducing the touchscreen as an additional/alternative input device showed to have an effect in interaction times, which suggests that proper design considerations need to be made. While having values shown on the interaction device provides value, a potential issue of visual distraction exists when having an additional visual display. The allocation of visual attention between primary displays and the touchscreen should be further investigated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Beaudin, Stephane A.; Singh, Teghpal; Agster, Kara L.
2013-01-01
We examined the cytoarchitectonic and chemoarchitectonic organization of the cortical regions associated with the posterior rhinal fissure in the mouse brain, within the framework of what is known about these regions in the rat. Primary observations were in a first-generation hybrid mouse line, B6129PF/J1. The F1 hybrid was chosen because of the many advantages afforded in the study of the molecular and cellular bases of learning and memory. Comparisons with the parent strains, the C57BL6/J and 129P3/J are also reported. Mouse brain tissue was processed for visualization of Nissl material, myelin, acetyl cholinesterase, parvalbumin, and heavy metals. Tissue stained for heavy metals by the Timm’s method was particularly useful in the assignment of borders and in the comparative analyses because the patterns of staining were similar across species and strains. As in the rat, the areas examined were parcellated into 2 regions, the perirhinal and the postrhinal cortices. The perirhinal cortex was divided into areas 35 and 36, and the postrhinal cortex was divided into dorsal (PORd) and ventral (PORv) subregions. In addition to identifying the borders of the perirhinal cortex, we were able to identify a region in the mouse brain that shares signature features with the rat postrhinal cortex. PMID:22368084
Gain control by layer six in cortical circuits of vision.
Olsen, Shawn R; Bortone, Dante S; Adesnik, Hillel; Scanziani, Massimo
2012-02-22
After entering the cerebral cortex, sensory information spreads through six different horizontal neuronal layers that are interconnected by vertical axonal projections. It is believed that through these projections layers can influence each other's response to sensory stimuli, but the specific role that each layer has in cortical processing is still poorly understood. Here we show that layer six in the primary visual cortex of the mouse has a crucial role in controlling the gain of visually evoked activity in neurons of the upper layers without changing their tuning to orientation. This gain modulation results from the coordinated action of layer six intracortical projections to superficial layers and deep projections to the thalamus, with a substantial role of the intracortical circuit. This study establishes layer six as a major mediator of cortical gain modulation and suggests that it could be a node through which convergent inputs from several brain areas can regulate the earliest steps of cortical visual processing.
NASA Technical Reports Server (NTRS)
Hogan, Patrick; Maxwell, Christopher; Kim, Randolph; Gaskins, Tom
2007-01-01
World Wind allows users to zoom from satellite altitude down to any place on Earth, leveraging high-resolution LandSat imagery and SRTM (Shuttle Radar Topography Mission) elevation data to experience Earth in visually rich 3D. In addition to Earth, World Wind can also visualize other planets, and there are already comprehensive data sets for Mars and the Earth's moon, which are as easily accessible as those of Earth. There have been more than 20 million downloads to date, and the software is being used heavily by the Department of Defense due to the code s ability to be extended and the evolution of the code courtesy of NASA and the user community. Primary features include the dynamic access to public domain imagery and its ease of use. All one needs to control World Wind is a two-button mouse. Additional guides and features can be accessed through a simplified menu. A JAVA version will be available soon. Navigation is automated with single clicks of a mouse, or by typing in any location to automatically zoom in to see it. The World Wind install package contains the necessary requirements such as the .NET runtime and managed DirectX library. World Wind can display combinations of data from a variety of sources, including Blue Marble, LandSat 7, SRTM, NASA Scientific Visualization Studio, GLOBE, and much more. A thorough list of features, the user manual, a key chart, and screen shots are available at http://worldwind.arc.nasa.gov.
Sánchez-Cruz, Alonso; Villarejo-Zori, Beatriz; Marchena, Miguel; Zaldivar-Díez, Josefa; Palomo, Valle; Gil, Carmen; Lizasoain, Ignacio; de la Villa, Pedro; Martínez, Ana; de la Rosa, Enrique J; Hernández-Sánchez, Catalina
2018-04-16
Retinitis pigmentosa (RP) is a group of hereditary retinal neurodegenerative conditions characterized by primary dysfunction and death of photoreceptor cells, resulting in visual loss and, eventually, blindness. To date, no effective therapies have been transferred to clinic. Given the diverse genetic etiology of RP, targeting common cellular and molecular retinal alterations has emerged as a potential therapeutic strategy. Using the Pde6b rd10/rd10 mouse model of RP, we investigated the effects of daily intraperitoneal administration of VP3.15, a small-molecule heterocyclic GSK-3 inhibitor. Gene expression was analyzed by quantitative PCR and protein expression and phosphorylation by Western blot. Photoreceptor preservation was evaluated by histological analysis and visual function was assessed by electroretinography. In rd10 retinas, increased expression of pro-inflammatory markers and reactive gliosis coincided with the early stages of retinal degeneration. Compared with wild-type controls, GSK-3β expression (mRNA and protein) remained unchanged during the retinal degeneration period. However, levels of GSK-3β Ser9 and its regulator Akt Ser473 were increased in rd10 versus wild-type retinas. In vivo administration of VP3.15 reduced photoreceptor cell loss and preserved visual function. This neuroprotective effect was accompanied by a decrease in the expression of neuroinflammatory markers. These results provide proof of concept of the therapeutic potential of VP3.15 for the treatment of retinal neurodegenerative conditions in general, and RP in particular.
Development of a small prototype for a proof-of-concept of OpenPET imaging
NASA Astrophysics Data System (ADS)
Yamaya, Taiga; Yoshida, Eiji; Inaniwa, Taku; Sato, Shinji; Nakajima, Yasunori; Wakizaka, Hidekatsu; Kokuryo, Daisuke; Tsuji, Atsushi; Mitsuhashi, Takayuki; Kawai, Hideyuki; Tashima, Hideaki; Nishikido, Fumihiko; Inadama, Naoko; Murayama, Hideo; Haneishi, Hideaki; Suga, Mikio; Kinouchi, Shoko
2011-02-01
The OpenPET geometry is our new idea to visualize a physically opened space between two detector rings. In this paper, we developed the first small prototype to show a proof-of-concept of OpenPET imaging. Two detector rings of 110 mm diameter and 42 mm axial length were placed with a gap of 42 mm. The basic imaging performance was confirmed through phantom studies; the open imaging was realized at the cost of slight loss of axial resolution and 24% loss of sensitivity. For a proof-of-concept of PET image-guided radiation therapy, we carried out the in-beam tests with 11C radioactive beam irradiation in the heavy ion medical accelerator in Chiba to visualize in situ distribution of primary particles stopped in a phantom. We showed that PET images corresponding to dose distribution were obtained. For an initial proof-of-concept of real-time multimodal imaging, we measured a tumor-inoculated mouse with 18F-FDG, and an optical image of the mouse body surface was taken during the PET measurement by inserting a digital camera in the ring gap. We confirmed that the tumor in the gap was clearly visualized. The result also showed the extension effect of an axial field-of-view (FOV); a large axial FOV of 126 mm was obtained with the detectors that originally covered only an 84 mm axial FOV. In conclusion, our initial imaging studies showed promising performance of the OpenPET.
Vision drives accurate approach behavior during prey capture in laboratory mice
Hoy, Jennifer L.; Yavorska, Iryna; Wehr, Michael; Niell, Cristopher M.
2016-01-01
Summary The ability to genetically identify and manipulate neural circuits in the mouse is rapidly advancing our understanding of visual processing in the mammalian brain [1,2]. However, studies investigating the circuitry that underlies complex ethologically-relevant visual behaviors in the mouse have been primarily restricted to fear responses [3–5]. Here, we show that a laboratory strain of mouse (Mus musculus, C57BL/6J) robustly pursues, captures and consumes live insect prey, and that vision is necessary for mice to perform the accurate orienting and approach behaviors leading to capture. Specifically, we differentially perturbed visual or auditory input in mice and determined that visual input is required for accurate approach, allowing maintenance of bearing to within 11 degrees of the target on average during pursuit. While mice were able to capture prey without vision, the accuracy of their approaches and capture rate dramatically declined. To better explore the contribution of vision to this behavior, we developed a simple assay that isolated visual cues and simplified analysis of the visually guided approach. Together, our results demonstrate that laboratory mice are capable of exhibiting dynamic and accurate visually-guided approach behaviors, and provide a means to estimate the visual features that drive behavior within an ethological context. PMID:27773567
NASA Astrophysics Data System (ADS)
Jang, Sun-Joo; Park, Taejin; Shin, Inho; Park, Hyun Sang; Shin, Paul; Oh, Wang-Yuhl
2016-02-01
Optical coherence tomography (OCT) is a useful imaging method for in vivo tissue imaging with deep penetration and high spatial resolution. However, imaging of the beating mouse heart is still challenging due to limited temporal resolution or penetration depth. Here, we demonstrate a multifunctional OCT system for a beating mouse heart, providing various types of visual information about heart pathophysiology with high spatiotemporal resolution and deep tissue imaging. Angiographic imaging and polarization-sensitive (PS) imaging were implemented with the electrocardiogram (ECG)-triggered beam scanning scheme on the high-speed OCT platform (A-line rate: 240 kHz). Depth-resolved local birefringence and the local orientation of the mouse myocardial fiber were visualized from the PS-OCT. ECG-triggered angiographic OCT (AOCT) with the custom-built motion stabilization imaging window provided myocardial vasculature of a beating mouse heart. Mice underwent coronary artery ligation to derive myocardial infarction (MI) and were imaged with the multifunctional OCT system at multiple time points. AOCT and PS-OCT visualize change of functionality of coronary vessels and myocardium respectively at different phases (acute and chronic) of MI in an ischemic mouse heart. Taken together, the integrated imaging of PS-OCT and AOCT would play an important role in study of MI providing multi-dimensional information of the ischemic mouse heart in vivo.
Jiang, Yanfen; Dong, Hui; Eckmann, Lars; Hanson, Elaine M; Ihn, Katherine C; Mittal, Ravinder K
2017-01-01
The enteric nervous system (ENS) plays a crucial role in the control of gastrointestinal motility, secretion and absorption functions. Immunohistochemistry has been widely used to visualize neurons of the ENS for more than two decades. Genetically engineered mice that report specific proteins can also be used to visualize neurons of the ENS. The goal of our study was to develop a mouse that expresses fluorescent neuronal nitric oxide synthase (nNOS) and choline acetyltransferase (ChAT), the two proteins expressed in 95% of the ENS neurons. We compared ENS neurons visualized in the reporter mouse with the wild type mouse stained using classical immunostaining techniques. Mice hemizygous for ChAT-ChR2-YFP BAC transgene with expression of the mhChR2:YFP fusion protein directed by ChAT promoter/enhancer regions on the BAC transgene were purchased commercially. The Cre/LoxP technique of somatic recombination was used to construct mice with nNOS positive neurons. The two mice were crossbred and tissues were harvested and examined using fluorescent microscopy. Immunostaining was performed in the wild type mice, using antibodies to nNOS, ChAT, Hu and PGP 9.5. Greater than 95% of the ENS neurons were positive for either nNOS or ChAT or both. The nNOS and ChAT neurons and their processes in the ENS were well visualized in all the regions of the GI tract, i.e., esophagus, small intestine and colon. The number of nNOS and ChAT neurons was approximately same in the reporter mouse and immunostaining method in the wild type mouse. The nNOS fluorescence in the reporter mouse was seen in both cytoplasm as well as nucleus but in the immunostained specimens it was seen only in the cytoplasm. We propose that the genetically engineered double reporter mouse for ChAT and nNOS proteins is a powerful tool to study of the effects of various diseases on the ENS without the need for immunostaining.
The terminator mouse: salvation for primary cell culture.
Kabgani, Nazanin; Moeller, Marcus J
2013-11-01
The Terminator had to come back from the future already several times in an effort to bring salvation to mankind. In the present issue of Kidney International, Guo et al. brought us a novel transgenic mouse model: the terminator mouse. This highly elegant mouse may facilitate significantly the derivation of primary cultures of a specific cell type from a tissue containing multiple cell populations.
Sohn, Jaerin; Hioki, Hiroyuki; Okamoto, Shinichiro; Kaneko, Takeshi
2014-05-01
Dynorphins, leumorphin, and neoendorphins are preprodynorphin (PPD)-derived peptides and ligands for κ-opioid receptors. Using an antibody to PPD C-terminal, we investigated the chemical and molecular characteristics of PPD-expressing neurons in mouse neocortex. PPD-immunopositive neuronal somata were distributed most frequently in layer 5 and less frequently in layers 2-4 and 6 throughout neocortical regions. Combined labeling of immunofluorescence and fluorescent mRNA signals revealed that almost all PPD-immunopositive neurons expressed glutamic acid decarboxylase but not vesicular glutamate transporter, indicating their γ-aminobutyric acid (GABA)ergic characteristics, and that PPD-immunopositive neurons accounted for 15% of GABAergic interneurons in the primary somatosensory area. As GABAergic interneurons were divided into several groups by specific markers, we further examined the chemical characteristics of PPD-expressing neurons by the double immunofluorescence labeling method. More than 95% of PPD-immunopositive neurons were also somatostatin (SOM)-immunopositive in the primary somatosensory, primary motor, orbitofrontal, and primary visual areas, but only 24% were SOM-immunopositive in the medial prefrontal cortex. In the primary somatosensory area, PPD-immunopositive neurons constituted 50%, 79%, 55%, and 17% of SOM-immunopositive neurons in layers 2-3, 4, 5, and 6, respectively. Although SOM-expressing neurons contained calretinin-, neuropeptide Y-, nitric oxide synthase-, and reelin-expressing neurons as subgroups, only reelin immunoreactivity was detected in many PPD-immunopositive neurons. These results indicate that PPD-expressing neurons constitute a large subgroup of SOM-expressing cortical interneurons, and the PPD/SOM-expressing GABAergic neurons might serve not only as inhibitory elements in the local cortical circuit, but also as modulators for cortical neurons expressing κ-opioid and/or SOM receptors. Copyright © 2013 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
This paper provides an overview of the Model Optimization, Uncertainty, and SEnsitivity Analysis (MOUSE) software application, an open-source, Java-based toolbox of visual and numerical analysis components for the evaluation of environmental models. MOUSE is based on the OPTAS model calibration syst...
Rapid innate defensive responses of mice to looming visual stimuli.
Yilmaz, Melis; Meister, Markus
2013-10-21
Much of brain science is concerned with understanding the neural circuits that underlie specific behaviors. While the mouse has become a favorite experimental subject, the behaviors of this species are still poorly explored. For example, the mouse retina, like that of other mammals, contains ∼20 different circuits that compute distinct features of the visual scene [1, 2]. By comparison, only a handful of innate visual behaviors are known in this species--the pupil reflex [3], phototaxis [4], the optomotor response [5], and the cliff response [6]--two of which are simple reflexes that require little visual processing. We explored the behavior of mice under a visual display that simulates an approaching object, which causes defensive reactions in some other species [7, 8]. We show that mice respond to this stimulus either by initiating escape within a second or by freezing for an extended period. The probability of these defensive behaviors is strongly dependent on the parameters of the visual stimulus. Directed experiments identify candidate retinal circuits underlying the behavior and lead the way into detailed study of these neural pathways. This response is a new addition to the repertoire of innate defensive behaviors in the mouse that allows the detection and avoidance of aerial predators. Copyright © 2013 Elsevier Ltd. All rights reserved.
Homman-Ludiye, Jihane; Bourne, James A.
2014-01-01
The integration of the visual stimulus takes place at the level of the neocortex, organized in anatomically distinct and functionally unique areas. Primates, including humans, are heavily dependent on vision, with approximately 50% of their neocortical surface dedicated to visual processing and possess many more visual areas than any other mammal, making them the model of choice to study visual cortical arealisation. However, in order to identify the mechanisms responsible for patterning the developing neocortex, specifying area identity as well as elucidate events that have enabled the evolution of the complex primate visual cortex, it is essential to gain access to the cortical maps of alternative species. To this end, species including the mouse have driven the identification of cellular markers, which possess an area-specific expression profile, the development of new tools to label connections and technological advance in imaging techniques enabling monitoring of cortical activity in a behaving animal. In this review we present non-primate species that have contributed to elucidating the evolution and development of the visual cortex. We describe the current understanding of the mechanisms supporting the establishment of areal borders during development, mainly gained in the mouse thanks to the availability of genetically modified lines but also the limitations of the mouse model and the need for alternate species. PMID:25071460
Development and matching of binocular orientation preference in mouse V1.
Bhaumik, Basabi; Shah, Nishal P
2014-01-01
Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels.
Primary Mouse Myoblast Purification using Magnetic Cell Separation.
Sincennes, Marie Claude; Wang, Yu Xin; Rudnicki, Michael A
2017-01-01
Primary myoblasts can be isolated from mouse muscle cell extracts and cultured in vitro. Muscle cells are usually dissociated manually by mincing with razor blades or scissors in a collagenase/dispase solution. Primary myoblasts are then gradually enriched by pre-plating on collagen-coated plates, based on the observation that mouse fibroblasts attach quickly to collagen-coated plates, and are less adherent. Here, we describe an automated muscle dissociation protocol. We also propose an alternative to pre-plating using magnetic bead separation of primary myoblasts, which improve myoblast purity by minimizing fibroblast contamination.
Zheng, Ming-Jie; Wang, Jue; Xu, Lu; Zha, Xiao-Ming; Zhao, Yi; Ling, Li-Jun; Wang, Shui
2015-02-01
During the past decades, many efforts have been made in mimicking the clinical progress of human cancer in mouse models. Previously, we developed a human breast tissue-derived (HB) mouse model. Theoretically, it may mimic the interactions between "species-specific" mammary microenvironment of human origin and human breast cancer cells. However, detailed evidences are absent. The present study (in vivo, cellular, and molecular experiments) was designed to explore the regulatory role of human mammary microenvironment in the progress of human breast cancer cells. Subcutaneous (SUB), mammary fat pad (MFP), and HB mouse models were developed for in vivo comparisons. Then, the orthotopic tumor masses from three different mouse models were collected for primary culture. Finally, the biology of primary cultured human breast cancer cells was compared by cellular and molecular experiments. Results of in vivo mouse models indicated that human breast cancer cells grew better in human mammary microenvironment. Cellular and molecular experiments confirmed that primary cultured human breast cancer cells from HB mouse model showed a better proliferative and anti-apoptotic biology than those from SUB to MFP mouse models. Meanwhile, primary cultured human breast cancer cells from HB mouse model also obtained the migratory and invasive biology for "species-specific" tissue metastasis to human tissues. Comprehensive analyses suggest that "species-specific" mammary microenvironment of human origin better regulates the biology of human breast cancer cells in our humanized mouse model of breast cancer, which is more consistent with the clinical progress of human breast cancer.
Lee, Jinwoo; Tong, Tiegang; Takemori, Hiroshi; Jefcoate, Colin
2015-06-15
In mouse steroidogenic cells the activation of cholesterol metabolism is mediated by steroidogenic acute regulatory protein (StAR). Here, we visualized a coordinated regulation of StAR transcription, splicing and post-transcriptional processing, which are synchronized by salt inducible kinase (SIK1) and CREB-regulated transcription coactivator (CRTC2). To detect primary RNA (pRNA), spliced primary RNA (Sp-RNA) and mRNA in single cells, we generated probe sets by using fluorescence in situ hybridization (FISH). These methods allowed us to address the nature of StAR gene expression and to visualize protein-nucleic acid interactions through direct detection. We show that SIK1 represses StAR expression in Y1 adrenal and MA10 testis cells through inhibition of processing mediated by CRTC2. Digital image analysis matches qPCR analyses of the total cell culture. Evidence is presented for spatially separate accumulation of StAR pRNA and Sp-RNA at the gene loci in the nucleus. These findings establish that cAMP, SIK and CRTC mediate StAR expression through activation of individual StAR gene loci. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Light and the laboratory mouse.
Peirson, Stuart N; Brown, Laurence A; Pothecary, Carina A; Benson, Lindsay A; Fisk, Angus S
2018-04-15
Light exerts widespread effects on physiology and behaviour. As well as the widely-appreciated role of light in vision, light also plays a critical role in many non-visual responses, including regulating circadian rhythms, sleep, pupil constriction, heart rate, hormone release and learning and memory. In mammals, responses to light are all mediated via retinal photoreceptors, including the classical rods and cones involved in vision as well as the recently identified melanopsin-expressing photoreceptive retinal ganglion cells (pRGCs). Understanding the effects of light on the laboratory mouse therefore depends upon an appreciation of the physiology of these retinal photoreceptors, including their differing sens itivities to absolute light levels and wavelengths. The signals from these photoreceptors are often integrated, with different responses involving distinct retinal projections, making generalisations challenging. Furthermore, many commonly used laboratory mouse strains carry mutations that affect visual or non-visual physiology, ranging from inherited retinal degeneration to genetic differences in sleep and circadian rhythms. Here we provide an overview of the visual and non-visual systems before discussing practical considerations for the use of light for researchers and animal facility staff working with laboratory mice. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Activity Scratchpad Prototype: Simplifying the Rover Activity Planning Cycle
NASA Technical Reports Server (NTRS)
Abramyan, Lucy
2005-01-01
The Mars Exploration Rover mission depends on the Science Activity Planner as its primary interface to the Spirit and Opportunity Rovers. Scientists alternate between a series of mouse clicks and keyboard inputs to create a set of instructions for the rovers. To accelerate planning by minimizing mouse usage, a rover planning editor should receive the majority of inputted commands from the keyboard. Thorough investigation of the Eclipse platform's Java editor has provided the understanding of the base model for the Activity Scratchpad. Desirable Eclipse features can be mapped to specific rover planning commands, such as auto-completion for activity titles and content assist for target names. A custom editor imitating the Java editor's features was created with an XML parser for experimenting purposes. The prototype editor minimized effort for redundant tasks and significantly improved the visual representation of XML syntax by highlighting keywords, coloring rules, folding projections, and providing hover assist, templates and an outline view of the code.
Transcriptional architecture of the primate neocortex.
Bernard, Amy; Lubbers, Laura S; Tanis, Keith Q; Luo, Rui; Podtelezhnikov, Alexei A; Finney, Eva M; McWhorter, Mollie M E; Serikawa, Kyle; Lemon, Tracy; Morgan, Rebecca; Copeland, Catherine; Smith, Kimberly; Cullen, Vivian; Davis-Turak, Jeremy; Lee, Chang-Kyu; Sunkin, Susan M; Loboda, Andrey P; Levine, David M; Stone, David J; Hawrylycz, Michael J; Roberts, Christopher J; Jones, Allan R; Geschwind, Daniel H; Lein, Ed S
2012-03-22
Genome-wide transcriptional profiling was used to characterize the molecular underpinnings of neocortical organization in rhesus macaque, including cortical areal specialization and laminar cell-type diversity. Microarray analysis of individual cortical layers across sensorimotor and association cortices identified robust and specific molecular signatures for individual cortical layers and areas, prominently involving genes associated with specialized neuronal function. Overall, transcriptome-based relationships were related to spatial proximity, being strongest between neighboring cortical areas and between proximal layers. Primary visual cortex (V1) displayed the most distinctive gene expression compared to other cortical regions in rhesus and human, both in the specialized layer 4 as well as other layers. Laminar patterns were more similar between macaque and human compared to mouse, as was the unique V1 profile that was not observed in mouse. These data provide a unique resource detailing neocortical transcription patterns in a nonhuman primate with great similarity in gene expression to human. Copyright © 2012 Elsevier Inc. All rights reserved.
Rotational imaging optical coherence tomography for full-body mouse embryonic imaging
Wu, Chen; Sudheendran, Narendran; Singh, Manmohan; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.
2016-01-01
Abstract. Optical coherence tomography (OCT) has been widely used to study mammalian embryonic development with the advantages of high spatial and temporal resolutions and without the need for any contrast enhancement probes. However, the limited imaging depth of traditional OCT might prohibit visualization of the full embryonic body. To overcome this limitation, we have developed a new methodology to enhance the imaging range of OCT in embryonic day (E) 9.5 and 10.5 mouse embryos using rotational imaging. Rotational imaging OCT (RI-OCT) enables full-body imaging of mouse embryos by performing multiangle imaging. A series of postprocessing procedures was performed on each cross-section image, resulting in the final composited image. The results demonstrate that RI-OCT is able to improve the visualization of internal mouse embryo structures as compared to conventional OCT. PMID:26848543
Mouse Visual Neocortex Supports Multiple Stereotyped Patterns of Microcircuit Activity
Sadovsky, Alexander J.
2014-01-01
Spiking correlations between neocortical neurons provide insight into the underlying synaptic connectivity that defines cortical microcircuitry. Here, using two-photon calcium fluorescence imaging, we observed the simultaneous dynamics of hundreds of neurons in slices of mouse primary visual cortex (V1). Consistent with a balance of excitation and inhibition, V1 dynamics were characterized by a linear scaling between firing rate and circuit size. Using lagged firing correlations between neurons, we generated functional wiring diagrams to evaluate the topological features of V1 microcircuitry. We found that circuit connectivity exhibited both cyclic graph motifs, indicating recurrent wiring, and acyclic graph motifs, indicating feedforward wiring. After overlaying the functional wiring diagrams onto the imaged field of view, we found properties consistent with Rentian scaling: wiring diagrams were topologically efficient because they minimized wiring with a modular architecture. Within single imaged fields of view, V1 contained multiple discrete circuits that were overlapping and highly interdigitated but were still distinct from one another. The majority of neurons that were shared between circuits displayed peri-event spiking activity whose timing was specific to the active circuit, whereas spike times for a smaller percentage of neurons were invariant to circuit identity. These data provide evidence that V1 microcircuitry exhibits balanced dynamics, is efficiently arranged in anatomical space, and is capable of supporting a diversity of multineuron spike firing patterns from overlapping sets of neurons. PMID:24899701
Lukáts, Akos; Dkhissi-Benyahya, Ouria; Szepessy, Zsuzsanna; Röhlich, Pál; Vígh, Béla; Bennett, Nigel C; Cooper, Howard M; Szél, Agoston
2002-07-01
To decide whether the identical topography of short- and middle-wavelength cone photoreceptors in two species of rodents reflects the presence of both opsins in all cone cells. Double-label immunocytochemistry using antibodies directed against short-wavelength (S)-and middle- to long-wavelength (M/L)-sensitive opsin were used to determine the presence of visual pigments in cones of two species of rodents, the Siberian hamster (Phodopus sungorus) and the pouched mouse (Saccostomus campestris) from South Africa. Topographical distribution was determined from retinal whole-mounts, and the colocalization of visual pigments was examined using confocal laser scanning microscopy. Opsin colocalization was also confirmed in consecutive semithin tangential sections. The immunocytochemical results demonstrate that in both the Siberian hamster and the pouched mouse all retinal cones contain two visual pigments. No dorsoventral gradient in the differential expression of the two opsins is observed. The retina of the Siberian hamster and the pouched mouse is the first example to show a uniform coexpression of M and S cone opsins in all cones, without any topographical gradient in opsin expression. This finding makes these two species good models for the study of molecular control mechanisms in opsin coexpression in rodents, and renders them suitable as sources of dual cones for future investigations on the role and neural connections of this cone type.
Stackpole, Christopher W.; De Milio, Lawrence T.; Hämmerling, Ulrich; Jacobson, Janet B.; Lardis, Michael P.
1974-01-01
Redistribution of surface immunoglobulins, H-2b, Thy-1.2, and TL.1,2,3 alloantigens, and concanavalin A receptors on mouse lymphoid cells induced by hybrid rabbit F(ab′)2 antibody (anti-mouse immunoglobulin/anti-visual marker or anti-concanavalin A/anti-visual marker) was studied by immunofluorescence. When used directly to label surface immunoglobulin, and indirectly to label alloantigens and concanavalin A receptors, hybrid antibodies induced similar displacement of all surface components from a uniform distribution into “patches” and “caps” at 37°. One hybrid antibody preparation, antimouse immunoglobulin/anti-ferritin, contained negligible amounts of bivalent anti-mouse immunoglobulin antibody, and was therefore “monovalent” for the antimouse immunoglobulin specificity. This observation suggests that factors other than multivalent crosslinking are responsible for hybrid antibody-induced redistribution of cell-surface components. Cap formation induced by hybrid antibody was enhanced markedly by attachment of the visual marker, either ferritin or southern bean mosaic virus, at 37°. At -5°, hybrid antibody does not displace uniformly distributed H-2b alloantigen-alloantibody complexes, but patches of label develop when ferritin attaches to the hybrid antibody. These results explain the patchy distribution of cell-surface components, which is a temperature-independent characteristic of labeling with hybrid antibodies and visual markers for electron microscopy. Images PMID:4595577
Coherence in the Visual Imagination.
Vertolli, Michael O; Kelly, Matthew A; Davies, Jim
2018-04-01
An incoherent visualization is when aspects of different senses of a word (e.g., the biological "mouse" vs. the computer "mouse") are present in the same visualization (e.g., a visualization of a biological mouse in the same image with a computer tower). We describe and implement a new model of creating contextual coherence in the visual imagination called Coherencer, based on the SOILIE model of imagination. We show that Coherencer is able to generate scene descriptions that are more coherent than SOILIE's original approach as well as a parallel connectionist algorithm that is considered competitive in the literature on general coherence. We also show that co-occurrence probabilities are a better association representation than holographic vectors and that better models of coherence improve the resulting output independent of the association type that is used. Theoretically, we show that Coherencer is consistent with other models of cognitive generation. In particular, Coherencer is a similar, but more cognitively plausible model than the C 3 model of concept combination created by Costello and Keane (2000). We show that Coherencer is also consistent with both the modal schematic indices of perceptual symbol systems theory (Barsalou, 1999) and the amodal contextual constraints of Thagard's (2002) theory of coherence. Finally, we describe how Coherencer is consistent with contemporary research on the hippocampus, and we show evidence that the process of making a visualization coherent is serial. Copyright © 2017 Cognitive Science Society, Inc.
Visual Processing: Hungry Like the Mouse.
Piscopo, Denise M; Niell, Cristopher M
2016-09-07
In this issue of Neuron, Burgess et al. (2016) explore how motivational state interacts with visual processing, by examining hunger modulation of food-associated visual responses in postrhinal cortical neurons and their inputs from amygdala. Copyright © 2016 Elsevier Inc. All rights reserved.
Chu, Van Trung; Graf, Robin; Wirtz, Tristan; Weber, Timm; Favret, Jeremy; Li, Xun; Petsch, Kerstin; Tran, Ngoc Tung; Sieweke, Michael H; Berek, Claudia; Kühn, Ralf; Rajewsky, Klaus
2016-11-01
Applying clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9)-mediated mutagenesis to primary mouse immune cells, we used high-fidelity single guide RNAs (sgRNAs) designed with an sgRNA design tool (CrispRGold) to target genes in primary B cells, T cells, and macrophages isolated from a Cas9 transgenic mouse line. Using this system, we achieved an average knockout efficiency of 80% in B cells. On this basis, we established a robust small-scale CRISPR-mediated screen in these cells and identified genes essential for B-cell activation and plasma cell differentiation. This screening system does not require deep sequencing and may serve as a precedent for the application of CRISPR/Cas9 to primary mouse cells.
Guo, Jian-Kan; Shi, Hongmei; Koraishy, Farrukh; Marlier, Arnaud; Ding, Zhaowei; Shan, Alan; Cantley, Lloyd G
2013-11-01
Biomedical research often requires primary cultures of specific cell types, which are challenging to obtain at high purity in a reproducible manner. Here we engineered the murine Rosa26 locus by introducing the diphtheria toxin receptor flanked by loxP sites. The resultant strain was nicknamed the Terminator mouse. This approach results in diphtheria toxin-receptor expression in all non-Cre expressing cell types, making these cells susceptible to diphtheria toxin exposure. In primary cultures of kidney cells derived from the Terminator mouse, over 99.99% of cells were dead within 72 h of diphtheria toxin treatment. After crossing the Terminator with the podocin-Cre (podocyte specific) mouse or the Ggt-Cre (proximal tubule specific) mouse, diphtheria toxin treatment killed non-Cre expressing cells but spared podocytes and proximal tubule cells, respectively, enriching the primary cultures to over 99% purity, based on both western blotting and immunostaining of marker proteins. Thus, the Terminator mouse can be a useful tool to selectively and reproducibly obtain even low-abundant cell types at high quantity and purity.
Feature-Specific Organization of Feedback Pathways in Mouse Visual Cortex.
Huh, Carey Y L; Peach, John P; Bennett, Corbett; Vega, Roxana M; Hestrin, Shaul
2018-01-08
Higher and lower cortical areas in the visual hierarchy are reciprocally connected [1]. Although much is known about how feedforward pathways shape receptive field properties of visual neurons, relatively little is known about the role of feedback pathways in visual processing. Feedback pathways are thought to carry top-down signals, including information about context (e.g., figure-ground segmentation and surround suppression) [2-5], and feedback has been demonstrated to sharpen orientation tuning of neurons in the primary visual cortex (V1) [6, 7]. However, the response characteristics of feedback neurons themselves and how feedback shapes V1 neurons' tuning for other features, such as spatial frequency (SF), remain largely unknown. Here, using a retrograde virus, targeted electrophysiological recordings, and optogenetic manipulations, we show that putatively feedback neurons in layer 5 (hereafter "L5 feedback") in higher visual areas, AL (anterolateral area) and PM (posteromedial area), display distinct visual properties in awake head-fixed mice. AL L5 feedback neurons prefer significantly lower SF (mean: 0.04 cycles per degree [cpd]) compared to PM L5 feedback neurons (0.15 cpd). Importantly, silencing AL L5 feedback reduced visual responses of V1 neurons preferring low SF (mean change in firing rate: -8.0%), whereas silencing PM L5 feedback suppressed responses of high-SF-preferring V1 neurons (-20.4%). These findings suggest that feedback connections from higher visual areas convey distinctly tuned visual inputs to V1 that serve to boost V1 neurons' responses to SF. Such like-to-like functional organization may represent an important feature of feedback pathways in sensory systems and in the nervous system in general. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evangelio, Marian; García-Amado, María; Clascá, Francisco
2018-01-01
A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species.
Evangelio, Marian; García-Amado, María; Clascá, Francisco
2018-01-01
A key parameter to constrain predictive, bottom-up circuit models of a given brain domain is the number and position of the neuronal populations involved. These include not only the neurons whose bodies reside within the domain, but also the neurons in distant regions that innervate the domain. The mouse visual cortex receives its main subcortical input from the dorsal lateral geniculate nucleus (dLGN) and the lateral posterior (LP) complex of the thalamus. The latter consists of three different nuclei: lateral posterior lateral (LPL), lateral posterior medial rostral (LPMR), and lateral posterior medial caudal (LPMC), each exhibiting specific patterns of connections with the various visual cortical areas. Here, we have determined the number of thalamocortical projection neurons and interneurons in the LP complex and dLGN of the adult C57BL/6 male mouse. We combined Nissl staining and histochemical and immunolabeling methods for consistently delineating nuclei borders, and applied unbiased stereological cell counting methods. Thalamic interneurons were identified using GABA immunolabeling. The C57BL/6 dLGN contains ∼21,200 neurons, while LP complex contains ∼31,000 total neurons. The dLGN and LP are the only nuclei of the mouse dorsal thalamus containing substantial numbers GABA-immunoreactive interneurons. These interneurons, however, are scarcer than previously estimated; they are 5.6% of dLGN neurons and just 1.9% of the LP neurons. It can be thus inferred that the dLGN contains ∼20,000 and the LP complex ∼30,400 thalamocortical projection neurons (∼12,000 in LPL, 15,200 in LPMR, and 4,200 in LPMC). The present dataset is relevant for constraining models of mouse visual thalamocortical circuits, as well as for quantitative comparisons between genetically modified mouse strains, or across species. PMID:29706872
Hsu, Chi-Lin; Chou, Chih-Hsuan; Huang, Shih-Chuan; Lin, Chia-Yi; Lin, Meng-Ying; Tung, Chun-Che; Lin, Chun-Yen; Lai, Ivan Pochou; Zou, Yan-Fang; Youngson, Neil A; Lin, Shau-Ping; Yang, Chang-Hao; Chen, Shih-Kuo; Gau, Susan Shur-Fen; Huang, Hsien-Sung
2018-03-15
Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.
Cell Migration in Tissues: Explant Culture and Live Imaging.
Staneva, Ralitza; Barbazan, Jorge; Simon, Anthony; Vignjevic, Danijela Matic; Krndija, Denis
2018-01-01
Cell migration is a process that ensures correct cell localization and function in development and homeostasis. In disease such as cancer, cells acquire an upregulated migratory capacity that leads to their dissemination throughout the body. Live imaging of cell migration allows for better understanding of cell behaviors in development, adult tissue homeostasis and disease. We have optimized live imaging procedures to track cell migration in adult murine tissue explants derived from: (1) healthy gut; (2) primary intestinal carcinoma; and (3) the liver, a common metastatic site. To track epithelial cell migration in the gut, we generated an inducible fluorescent reporter mouse, enabling us to visualize and track individual cells in unperturbed gut epithelium. To image intratumoral cancer cells, we use a spontaneous intestinal cancer model based on the activation of Notch1 and deletion of p53 in the mouse intestinal epithelium, which gives rise to aggressive carcinoma. Interaction of cancer cells with a metastatic niche, the mouse liver, is addressed using a liver colonization model. In summary, we describe a method for long-term 3D imaging of tissue explants by two-photon excitation microscopy. Explant culturing and imaging can help understand dynamic behavior of cells in homeostasis and disease, and would be applicable to various tissues.
Development and matching of binocular orientation preference in mouse V1
Bhaumik, Basabi; Shah, Nishal P.
2014-01-01
Eye-specific thalamic inputs converge in the primary visual cortex (V1) and form the basis of binocular vision. For normal binocular perceptions, such as depth and stereopsis, binocularly matched orientation preference between the two eyes is required. A critical period of binocular matching of orientation preference in mice during normal development is reported in literature. Using a reaction diffusion model we present the development of RF and orientation selectivity in mouse V1 and investigate the binocular orientation preference matching during the critical period. At the onset of the critical period the preferred orientations of the modeled cells are mostly mismatched in the two eyes and the mismatch decreases and reaches levels reported in juvenile mouse by the end of the critical period. At the end of critical period 39% of cells in binocular zone in our model cortex is orientation selective. In literature around 40% cortical cells are reported as orientation selective in mouse V1. The starting and the closing time for critical period determine the orientation preference alignment between the two eyes and orientation tuning in cortical cells. The absence of near neighbor interaction among cortical cells during the development of thalamo-cortical wiring causes a salt and pepper organization in the orientation preference map in mice. It also results in much lower % of orientation selective cells in mice as compared to ferrets and cats having organized orientation maps with pinwheels. PMID:25104927
Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics
Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui
2016-01-01
Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548
Ear swelling test by using laser speckle imaging with a long exposure time
NASA Astrophysics Data System (ADS)
Kalchenko, Vyacheslav; Kuznetsov, Yuri; Preise, Dina; Meglinski, Igor; Harmelin, Alon
2014-06-01
Laser speckle imaging with long exposure time has been applied noninvasively to visualize the immediate reaction of cutaneous vessels in mice in response to a known primary irritant and potential allergen-methyl salicylate. The compound has been used topically on the surface of the pinna and the reaction of the vascular network was examined. We demonstrate that irritant-induced acute vascular reaction can be effectively and accurately detected by laser speckle imaging technique. The current approach holds a great promise for application in routine screening of the cutaneous vascular response induced by contact agents, screenings of mouse ear swelling test, and testing the allergenic potential of new synthetic materials and healthcare pharmaceutical products.
Mouse Cone Photoreceptors Co-express Two Functional Visual Arrestins
Nikonov, Sergei S.; Brown, Bruce M.; Davis, Jason A.; Zuniga, Freddi I.; Bragin, Alvina; Pugh, Edward N.; Craft, Cheryl M.
2008-01-01
Arrestins are members of a superfamily of proteins that arrest the activity of G-protein coupled receptors. Mouse cone photoreceptors express two visual arrestins, Arr1 and Arr4 (Carr). We quantified their expression levels and subcellular distributions in mouse cones: total Arr1 was estimated to be in an ~ 6:1 ratio to cone opsin, about 50-fold higher than Arr4. Recordings from single cones of Arr1−/− and Arr4−/− mice establish that both proteins are competent to arrest the activity of photoactivated S- and M- cone opsins. Recordings from Arr1−/− , Arr4−/− double-knockout mice establish a requirement for at least one of the two visual arrestins for normal cone opsin inactivation at all flash intensities. These recordings also reveal low activity photoproducts of S- and M-opsins that are absent when Grk1 and an arrestin are co-expressed, but which decay 70-fold more rapidly than the comparable photoproducts of rhodopsin in rods. PMID:18701071
Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex.
Rosenthal, Clive R; Andrews, Samantha K; Antoniades, Chrystalina A; Kennard, Christopher; Soto, David
2016-03-21
Human primary visual cortex (V1) has long been associated with learning simple low-level visual discriminations [1] and is classically considered outside of neural systems that support high-level cognitive behavior in contexts that differ from the original conditions of learning, such as recognition memory [2, 3]. Here, we used a novel fMRI-based dichoptic masking protocol-designed to induce activity in V1, without modulation from visual awareness-to test whether human V1 is implicated in human observers rapidly learning and then later (15-20 min) recognizing a non-conscious and complex (second-order) visuospatial sequence. Learning was associated with a change in V1 activity, as part of a temporo-occipital and basal ganglia network, which is at variance with the cortico-cerebellar network identified in prior studies of "implicit" sequence learning that involved motor responses and visible stimuli (e.g., [4]). Recognition memory was associated with V1 activity, as part of a temporo-occipital network involving the hippocampus, under conditions that were not imputable to mechanisms associated with conscious retrieval. Notably, the V1 responses during learning and recognition separately predicted non-conscious recognition memory, and functional coupling between V1 and the hippocampus was enhanced for old retrieval cues. The results provide a basis for novel hypotheses about the signals that can drive recognition memory, because these data (1) identify human V1 with a memory network that can code complex associative serial visuospatial information and support later non-conscious recognition memory-guided behavior (cf. [5]) and (2) align with mouse models of experience-dependent V1 plasticity in learning and memory [6]. Copyright © 2016 Elsevier Ltd. All rights reserved.
Generation of an immortalized mouse embryonic palatal mesenchyme cell line
Soriano, Philippe
2017-01-01
Palatogenesis is a complex morphogenetic process, disruptions in which result in highly prevalent birth defects in humans. In recent decades, the use of model systems such as genetically-modified mice, mouse palatal organ cultures and primary mouse embryonic palatal mesenchyme (MEPM) cultures has provided significant insight into the molecular and cellular defects underlying cleft palate. However, drawbacks in each of these systems have prevented high-throughput, large-scale studies of palatogenesis in vitro. Here, we report the generation of an immortalized MEPM cell line that maintains the morphology, migration ability, transcript expression and responsiveness to exogenous growth factors of primary MEPM cells, with increased proliferative potential over primary cultures. The immortalization method described in this study will facilitate the generation of palatal mesenchyme cells with an unlimited capacity for expansion from a single genetically-modified mouse embryo and enable mechanistic studies of palatogenesis that have not been possible using primary culture. PMID:28582446
Development of novel two-photon microscopy for living brain and neuron.
Nemoto, Tomomi
2014-11-01
"In vivo" two-photon microscopy (TPLSM) has revealed vital information on neural activity for brain function, even in light of its limitation in imaging events at depths greater than a several hundred micrometers from the brain surface. To break the limit of this penetration depth, we introduced a novel light source based on a semiconductor laser [1]. The light source successfully visualized not only cortex layer V pyramidal neurons spreading to all cortex layers at a superior S/N ratio, but visualize hippocampal CA1 neurons in young adult mice [2]. These results indicate that the penetration depth of this laser was ∼1.4 mm. In vivo TPLSM with a laser emitting a longer wavelength might give us insights on activities of neurons in the cortex or the hippocampus. This deep imaging method could be applicable to other living organs including tumor tissues. In addition, we developed liquid crystal devices to convert linearly polarized beams (LP) to vector beams [3]. A liquid device generated a vector beam called higher-order radially polarized (HRP) beam, which enabled that each of the aggregated 0.17 m beads was distinguished individually, whereas in conventional confocal microscopy or TPLSM they could not. We also visualized the finer structures of networks of filamentous cytoskeleton microtubule fluorescently-labeled in the COS-7, and primary culture of mouse neurons. Moreover, by taking an advantage of the LCDs that can utilize various wavelengths including near-infrared, we could employ an HRP beam for improving TPLSM. An HRP beam visualized fine intracellular structures not only in fixed cells stained with various dyes, but also in living cells expressing a fluorescent protein [4]. HRP beam also visualized finer structures of microtubules in fixed cells. Here, we will discuss these improvements and future application on the basis of our recent data.jmicro;63/suppl_1/i7/DFU087F1F1DFU087F1Fig. 1."in vivo" imaging of living mouse brain (H-line). © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Takase, Yuta; Tadokoro, Ryosuke; Takahashi, Yoshiko
2013-12-01
To understand how blood vessels form to establish the intricate network during vertebrate development, it is helpful if one can visualize the vasculature in embryos. We here describe a novel labeling method using highlighter ink, easily obtained in stationery stores with a low cost, to visualize embryo-wide vasculatures in avian and mice. We tested 50 different highlighters for fluorescent microscopy with filter sets equipped in a standard fluorescent microscope. The yellow and violet inks yielded fluorescent signals specifically detected by the filters used for green fluorescent protein (GFP) and red fluorescent protein (RFP) detections, respectively. When the ink solution was infused into chicken/quail and mouse embryos, vasculatures including large vessels and capillaries were labeled both in living and fixed embryos. Ink-infused embryos were further subjected to histological sections, and double stained with antibodies including QH-1 (quail), α smooth muscle actin (αSMA), and PECAM-1 (mouse), revealing that the endothelial cells were specifically labeled by the infused highlighter ink. Highlighter-labeled signals were detected with a resolution comparable to or higher than signals of fluorescein isothiocyanate (FITC)-lectin and Rhodamine-dextran, conventionally used for angiography. Furthermore, macroconfocal microscopic analyses with ink-infused embryos visualized fine vascular structures of both embryo proper and extra-embryonic plexus in a Z-stack image of 2400 μm thick with a markedly high resolution. Together, the low cost highlighter ink serves as an alternative reagent useful for visualization of blood vessels in developing avian and mouse embryos and possibly in other animals. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.
Gradiency and Visual Context in Syntactic Garden-Paths
ERIC Educational Resources Information Center
Farmer, Thomas A.; Anderson, Sarah E.; Spivey, Michael J.
2007-01-01
Through recording the streaming x- and y-coordinates of computer-mouse movements, we report evidence that visual context provides an immediate constraint on the resolution of syntactic ambiguity in the visual-world paradigm. This finding converges with previous eye-tracking results that support a constraint-based account of sentence processing, in…
Adissu, Hibret A.; Estabel, Jeanne; Sunter, David; Tuck, Elizabeth; Hooks, Yvette; Carragher, Damian M.; Clarke, Kay; Karp, Natasha A.; Project, Sanger Mouse Genetics; Newbigging, Susan; Jones, Nora; Morikawa, Lily; White, Jacqueline K.; McKerlie, Colin
2014-01-01
The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice. PMID:24652767
Kim, Renaid B.; Irvin, Cameron W.; Tilva, Keval R.; Mitchell, Cassie S.
2016-01-01
Numerous sub-cellular through system-level disturbances have been identified in over 1300 articles examining the superoxide dismutase-1 guanine 93 to alanine (SOD1-G93A) transgenic mouse amyotrophic lateral sclerosis (ALS) pathophysiology. Manual assessment of such a broad literature base is daunting. We performed a comprehensive informatics-based systematic review or ‘field analysis’ to agnostically compute and map the current state of the field. Text mining of recaptured articles was used to quantify published data topic breadth and frequency. We constructed a nine-category pathophysiological function-based ontology to systematically organize and quantify the field's primary data. Results demonstrated that the distribution of primary research belonging to each category is: systemic measures an motor function, 59%; inflammation, 46%; cellular energetics, 37%; proteomics, 31%; neural excitability, 22%; apoptosis, 20%; oxidative stress, 18%; aberrant cellular chemistry, 14%; axonal transport, 10%. We constructed a SOD1-G93A field map that visually illustrates and categorizes the 85% most frequently assessed sub-topics. Finally, we present the literature-cited significance of frequently published terms and uncover thinly investigated areas. In conclusion, most articles individually examine at least two categories, which is indicative of the numerous underlying pathophysiological interrelationships. An essential future path is examination of cross-category pathophysiological interrelationships and their co-correspondence to homeostatic regulation and disease progression. PMID:25998063
Novel Models of Visual Topographic Map Alignment in the Superior Colliculus
El-Ghazawi, Tarek A.; Triplett, Jason W.
2016-01-01
The establishment of precise neuronal connectivity during development is critical for sensing the external environment and informing appropriate behavioral responses. In the visual system, many connections are organized topographically, which preserves the spatial order of the visual scene. The superior colliculus (SC) is a midbrain nucleus that integrates visual inputs from the retina and primary visual cortex (V1) to regulate goal-directed eye movements. In the SC, topographically organized inputs from the retina and V1 must be aligned to facilitate integration. Previously, we showed that retinal input instructs the alignment of V1 inputs in the SC in a manner dependent on spontaneous neuronal activity; however, the mechanism of activity-dependent instruction remains unclear. To begin to address this gap, we developed two novel computational models of visual map alignment in the SC that incorporate distinct activity-dependent components. First, a Correlational Model assumes that V1 inputs achieve alignment with established retinal inputs through simple correlative firing mechanisms. A second Integrational Model assumes that V1 inputs contribute to the firing of SC neurons during alignment. Both models accurately replicate in vivo findings in wild type, transgenic and combination mutant mouse models, suggesting either activity-dependent mechanism is plausible. In silico experiments reveal distinct behaviors in response to weakening retinal drive, providing insight into the nature of the system governing map alignment depending on the activity-dependent strategy utilized. Overall, we describe novel computational frameworks of visual map alignment that accurately model many aspects of the in vivo process and propose experiments to test them. PMID:28027309
Counter, S Allen; Nikkhou, Sahar; Brené, Stefan; Damberg, Peter; Sierakowiak, Adam; Klason, Tomas; Berglin, Cecilia Engmér; Laurell, Göran
2013-01-01
Previous in vivo experimental magnetic resonance imaging (MRI) investigations of the mammalian inner ear at 4.7 Tesla have indicated that intravenously injected gadolinium (Gd) penetrates the perilymphatic labyrinth, but not the endolymphatic membranous labyrinth. In the present study, high field MRI at 9.4T was used to visualize the in vivo mouse vestibulo-cochlea system, and to determine whether the endolymphatic system is permeable to a Gd complex. A 9.4 T Varian magnet equipped with a 12 cm inner diameter gradient system with maximum gradient strength of 600 mT/m, a millipede coil (Varian design) and a Gd contrast agent were used for image acquisition in the normal C57 BL-6 mouse. High-resolution 2D and 3D images of the mouse cochlea were acquired within 80 minutes following intravenous injection of Gd. Gd initially permeated the perilymphatic scala tympani and scala vestibuli, and permitted visualization of both cochlear turns from base to apex. The superior, inferior and lateral semicircular canals were subsequently visualized in 3 planes. The membranous endolymphatic labyrinth was impermeable to intravenously injected Gd, and thus showed no apparent uptake of Gd at 9.4T. The 9.4T field strength MRI permitted acquisition of high resolution images of anatomical and physiological features of the normal, wild type mouse perilymphatic inner ear in vivo, and provided further evidence that the endolymphatic system is impermeable to intravenously injected Gd.
Orientation-selective Responses in the Mouse Lateral Geniculate Nucleus
Zhao, Xinyu; Chen, Hui; Liu, Xiaorong
2013-01-01
The dorsal lateral geniculate nucleus (dLGN) receives visual information from the retina and transmits it to the cortex. In this study, we made extracellular recordings in the dLGN of both anesthetized and awake mice, and found that a surprisingly high proportion of cells were selective for stimulus orientation. The orientation selectivity of dLGN cells was unchanged after silencing the visual cortex pharmacologically, indicating that it is not due to cortical feedback. The orientation tuning of some dLGN cells correlated with their elongated receptive fields, while in others orientation selectivity was observed despite the fact that their receptive fields were circular, suggesting that their retinal input might already be orientation selective. Consistently, we revealed orientation/axis-selective ganglion cells in the mouse retina using multielectrode arrays in an in vitro preparation. Furthermore, the orientation tuning of dLGN cells was largely maintained at different stimulus contrasts, which could be sufficiently explained by a simple linear feedforward model. We also compared the degree of orientation selectivity in different visual structures under the same recording condition. Compared with the dLGN, orientation selectivity is greatly improved in the visual cortex, but is similar in the superior colliculus, another major retinal target. Together, our results demonstrate prominent orientation selectivity in the mouse dLGN, which may potentially contribute to visual processing in the cortex. PMID:23904611
Researchers Find Essential Brain Circuit in Visual Development
... Release Monday, August 26, 2013 Researchers find essential brain circuit in visual development NIH-funded study could ... shows the connections from the eyes to the brain in a mouse. The right image shows the ...
Disruption of visual circuit formation and refinement in a mouse model of autism
Khanbabaei, Maryam; Murari, Kartikeya; Rho, Jong M.
2016-01-01
Aberrant connectivity is believed to contribute to the pathophysiology of autism spectrum disorder (ASD). Recent neuroimaging studies have increasingly identified such impairments in patients with ASD, including alterations in sensory systems. However, the cellular substrates and molecular underpinnings of disrupted connectivity remain poorly understood. Utilizing eye‐specific segregation in the dorsal lateral geniculate nucleus (dLGN) as a model system, we investigated the formation and refinement of precise patterning of synaptic connections in the BTBR T + tf/J (BTBR) mouse model of ASD. We found that at the neonatal stage, the shape of the dLGN occupied by retinal afferents was altered in the BTBR group compared to C57BL/6J (B6) animals. Notably, the degree of overlap between the ipsi‐ and contralateral afferents was significantly greater in the BTBR mice. Moreover, these abnormalities continued into mature stage in the BTBR animals, suggesting persistent deficits rather than delayed maturation of axonal refinement. Together, these results indicate disrupted connectivity at the synaptic patterning level in the BTBR mice, suggesting that in general, altered neural circuitry may contribute to autistic behaviours seen in this animal model. In addition, these data are consistent with the notion that lower‐level, primary processing mechanisms contribute to altered visual perception in ASD. Autism Res 2017, 10: 212–223. © 2016 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research. PMID:27529416
Leach, P T; Crawley, J N
2017-12-20
Mutant mouse models of neurodevelopmental disorders with intellectual disabilities provide useful translational research tools, especially in cases where robust cognitive deficits are reproducibly detected. However, motor, sensory and/or health issues consequent to the mutation may introduce artifacts that preclude testing in some standard cognitive assays. Touchscreen learning and memory tasks in small operant chambers have the potential to circumvent these confounds. Here we use touchscreen visual discrimination learning to evaluate performance in the maternally derived Ube3a mouse model of Angelman syndrome, the Ts65Dn trisomy mouse model of Down syndrome, and the Mecp2 Bird mouse model of Rett syndrome. Significant deficits in acquisition of a 2-choice visual discrimination task were detected in both Ube3a and Ts65Dn mice. Procedural control measures showed no genotype differences during pretraining phases or during acquisition. Mecp2 males did not survive long enough for touchscreen training, consistent with previous reports. Most Mecp2 females failed on pretraining criteria. Significant impairments on Morris water maze spatial learning were detected in both Ube3a and Ts65Dn, replicating previous findings. Abnormalities on rotarod in Ube3a, and on open field in Ts65Dn, replicating previous findings, may have contributed to the observed acquisition deficits and swim speed abnormalities during water maze performance. In contrast, these motor phenotypes do not appear to have affected touchscreen procedural abilities during pretraining or visual discrimination training. Our findings of slower touchscreen learning in 2 mouse models of neurodevelopmental disorders with intellectual disabilities indicate that operant tasks offer promising outcome measures for the preclinical discovery of effective pharmacological therapeutics. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Peng, Hanchuan; Tang, Jianyong; Xiao, Hang; Bria, Alessandro; Zhou, Jianlong; Butler, Victoria; Zhou, Zhi; Gonzalez-Bellido, Paloma T; Oh, Seung W; Chen, Jichao; Mitra, Ananya; Tsien, Richard W; Zeng, Hongkui; Ascoli, Giorgio A; Iannello, Giulio; Hawrylycz, Michael; Myers, Eugene; Long, Fuhui
2014-07-11
Three-dimensional (3D) bioimaging, visualization and data analysis are in strong need of powerful 3D exploration techniques. We develop virtual finger (VF) to generate 3D curves, points and regions-of-interest in the 3D space of a volumetric image with a single finger operation, such as a computer mouse stroke, or click or zoom from the 2D-projection plane of an image as visualized with a computer. VF provides efficient methods for acquisition, visualization and analysis of 3D images for roundworm, fruitfly, dragonfly, mouse, rat and human. Specifically, VF enables instant 3D optical zoom-in imaging, 3D free-form optical microsurgery, and 3D visualization and annotation of terabytes of whole-brain image volumes. VF also leads to orders of magnitude better efficiency of automated 3D reconstruction of neurons and similar biostructures over our previous systems. We use VF to generate from images of 1,107 Drosophila GAL4 lines a projectome of a Drosophila brain.
Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system
Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil
2018-01-01
Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia–reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia–reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light. PMID:29489849
Kong, Tae Hoon; Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil; Seo, Young Joon
2018-01-01
Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia-reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia-reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light.
Experimental characterization of recurrent ovarian immature teratoma cells after optimal surgery.
Tanaka, Tetsuji; Toujima, Saori; Utsunomiya, Tomoko; Yukawa, Kazunori; Umesaki, Naohiko
2008-07-01
Minimal optimal surgery without chemotherapy is often performed for patients with ovarian immature teratoma, which frequently occurs in young women who hope for future pregnancies. If tumors recur after the operation, anticancer drug chemotherapy is often administered, although few studies have highlighted differences between the recurrent and the primary tumor cells. Therefore, we have established experimental animal models of recurrent ovarian immature teratoma cells after optimal surgery and characterized the anticancer drug sensitivity and antigenicity of the recurrent tumors. Surgically-excised tumor cells of a grade II ovarian immature teratoma were cultured in vitro and transplanted into nude mice to establish stable cell lines. Differential drug sensitivity and antigenicity of the tumor cells were compared between the primary and the nude mouse tumors. Nude mouse tumor cells showed a normal 46XX karyotype. Cultured primary cells showed a remarkably high sensitivity to paclitaxel, docetaxel, adriamycin and pirarubicin, compared to peritoneal cancer cells obtained from a patient with ovarian adenocarcinomatous peritonitis. The drug sensitivity of teratoma cells to 5-fluorouracil, bleomycin or peplomycin was also significantly higher. However, there was no significant difference in sensitivity to platinum drugs between the primary teratoma and the peritoneal adenocarcinoma cells. As for nude mouse tumor cells, sensitivity to 12 anticancer drugs was significantly lower than that of the primary tumor cells, while there was little difference in sensitivity to carboplatin or peplomycin between the primary and nude mouse tumor cells. Flow cytometry showed that the expression of smooth muscle actin (SMA) significantly decreased in nude mouse tumor cells when compared to cultured primary cells. In conclusion, ovarian immature teratomas with normal karyotypes have a malignant potential to recur after minimal surgery. During nude mouse transplantation, SMA-overexpressing cells appeared to be selectively excluded and nude mouse tumor cells were less sensitive to the majority of anticancer drugs than the primary tumor cells. These results indicate that after optimal surgery for ovarian immature teratoma, recurrent cells can be more resistant to anticancer drugs than the primary tumors. Therefore, it is likely that adjuvant chemotherapy lowers the risk of ovarian immature teratomas recurring after optimal surgery. BEP and PBV regimens are frequently given to teratoma patients. However, paclitaxel/carboplatin or docetaxel/carboplatin, which are the most effective chemotherapy treatments for epithelial ovarian cancer patients, are considered to be an alternative regimen, especially in the prevention of reproductive toxicity.
Immunostaining, dehydration, and clearing of mouse embryos for ultramicroscopy.
Becker, Klaus; Jährling, Nina; Saghafi, Saiedeh; Dodt, Hans-Ulrich
2013-08-01
This protocol describes the preparation of mouse embryos for ultramicroscopy (UM), a powerful imaging technique that achieves precise and accurate three-dimensional (3D) reconstructions of intact macroscopic specimens with micrometer resolution. In UM, a specimen in the size range of ∼1-15 mm is illuminated perpendicular to the observation pathway by two thin counterpropagating sheets of laser light. In combination with fluorescein isothiocyanate (FITC) immunostaining, UM allows visualization of somatic motor and sensorial nerve fibers in whole mouse embryos. Even the fine branches of the sensomotoric fibers can be visualized over a distance of up to several millimeters. In this protocol, mouse embryos are fixed and immunostained in preparation for UM. Because UM requires the excitation light sheet to travel throughout the entire horizontal width of the specimen, specimens usually have to be rendered transparent before microscope inspection. Here, the embryos are dehydrated in ethanol and then cleared in a solution of benzyl alcohol and benzyl benzoate.
Imaging of Chromosome Dynamics in Mouse Testis Tissue by Immuno-FISH.
Scherthan, Harry
2017-01-01
The mouse (Mus musculus) represents the central mammalian genetic model system for biomedical and developmental research. Mutant mouse models have provided important insights into chromosome dynamics during the complex meiotic differentiation program that compensates for the genome doubling at fertilization. Homologous chromosomes (homologues) undergo dynamic pairing and recombine during first meiotic prophase before they become partitioned into four haploid sets by two consecutive meiotic divisions that lack an intervening S-phase. Fluorescence in situ hybridization (FISH) has been instrumental in the visualization and imaging of the dynamic reshaping of chromosome territories and mobility during prophase I, in which meiotic telomeres were found to act as pacemakers for the chromosome pairing dance. FISH combined with immunofluorescence (IF) co-staining of nuclear proteins has been instrumental for the visualization and imaging of mammalian meiotic chromosome behavior. This chapter describes FISH and IF methods for the analysis of chromosome dynamics in nuclei of paraffin-embedded mouse testes. The techniques have proven useful for fresh and archived paraffin testis material of several mammalian species.
Establishment of a patient-derived orthotopic osteosarcoma mouse model.
Blattmann, Claudia; Thiemann, Markus; Stenzinger, Albrecht; Roth, Eva K; Dittmar, Anne; Witt, Hendrik; Lehner, Burkhard; Renker, Eva; Jugold, Manfred; Eichwald, Viktoria; Weichert, Wilko; Huber, Peter E; Kulozik, Andreas E
2015-04-30
Osteosarcoma (OS) is the most common pediatric primary malignant bone tumor. As the prognosis for patients following standard treatment did not improve for almost three decades, functional preclinical models that closely reflect important clinical cancer characteristics are urgently needed to develop and evaluate new treatment strategies. The objective of this study was to establish an orthotopic xenotransplanted mouse model using patient-derived tumor tissue. Fresh tumor tissue from an adolescent female patient with osteosarcoma after relapse was surgically xenografted into the right tibia of 6 immunodeficient BALB/c Nu/Nu mice as well as cultured into medium. Tumor growth was serially assessed by palpation and with magnetic resonance imaging (MRI). In parallel, a primary cell line of the same tumor was established. Histology and high-resolution array-based comparative genomic hybridization (aCGH) were used to investigate both phenotypic and genotypic characteristics of different passages of human xenografts and the cell line compared to the tissue of origin. A primary OS cell line and a primary patient-derived orthotopic xenotranplanted mouse model were established. MRI analyses and histopathology demonstrated an identical architecture in the primary tumor and in the xenografts. Array-CGH analyses of the cell line and all xenografts showed highly comparable patterns of genomic progression. So far, three further primary patient-derived orthotopic xenotranplanted mouse models could be established. We report the first orthotopic OS mouse model generated by transplantation of tumor fragments directly harvested from the patient. This model represents the morphologic and genomic identity of the primary tumor and provides a preclinical platform to evaluate new treatment strategies in OS.
Cadieux, Brigitte; Blanchfield, Burke; Smith, James P; Austin, John W
2005-05-01
A simple, rapid, cost-effective in vitro slot blot immunoassay was developed for the detection and quantification of botulinum neurotoxin type E (BoNT/E) in cultures. Culture supernatants of 36 strains of clostridia, including 12 strains of Clostridium botulinum type E, 12 strains of other C. botulinum neurotoxin serotypes, and 12 strains of other clostridial species were tested. Samples containing BoNT/E were detected using affinity-purified polyclonal rabbit antisera prepared against BoNT/E with subsequent detection of secondary antibodies using chemiluminescence. All strains of C. botulinum type E tested positive, while all non C. botulinum type E strains tested negative. The sensitivity of the slot blot immunoassay for detection of BoNT/E was approximately four mouse lethal doses (MLD). The intensity of chemiluminescence was directly correlated with the concentration of BoNT/E up to 128 MLD, allowing quantification of BoNT/E between 4 and 128 MLD. The slot blot immunoassay was compared to the mouse bioassay for detection of BoNT/E using cultures derived from fish samples inoculated with C. botulinum type E, and cultures derived from naturally contaminated environmental samples. A total of 120 primary enrichment cultures derived from fish samples, of which 103 were inoculated with C. botulinum type E, and 17 were uninoculated controls, were assayed. Of the 103 primary enrichment cultures derived from inoculated fish samples, all were positive by mouse bioassay, while 94 were also positive by slot blot immunoassay, resulting in a 7.5% false-negative rate. All 17 primary enrichment cultures derived from the uninoculated fish samples were negative by both mouse bioassay and slot blot immunoassay. A total of twenty-six primary enrichment cultures derived from environmental samples were tested by mouse bioassay and slot blot immunoassay. Of 13 primary enrichment cultures positive by mouse bioassay, 12 were also positive by slot blot immunoassay, resulting in a 3.8% false-negative rate. All 13 primary enrichment cultures that tested negative by mouse bioassay also tested negative by slot blot immunoassay. The slot blot immunoassay could be used routinely as a positive screen for BoNT/E in primary enrichment cultures, and could be used as a replacement for the mouse bioassay for pure cultures.
Yu, Bowen; Doraiswamy, Harish; Chen, Xi; Miraldi, Emily; Arrieta-Ortiz, Mario Luis; Hafemeister, Christoph; Madar, Aviv; Bonneau, Richard; Silva, Cláudio T
2014-12-01
Elucidation of transcriptional regulatory networks (TRNs) is a fundamental goal in biology, and one of the most important components of TRNs are transcription factors (TFs), proteins that specifically bind to gene promoter and enhancer regions to alter target gene expression patterns. Advances in genomic technologies as well as advances in computational biology have led to multiple large regulatory network models (directed networks) each with a large corpus of supporting data and gene-annotation. There are multiple possible biological motivations for exploring large regulatory network models, including: validating TF-target gene relationships, figuring out co-regulation patterns, and exploring the coordination of cell processes in response to changes in cell state or environment. Here we focus on queries aimed at validating regulatory network models, and on coordinating visualization of primary data and directed weighted gene regulatory networks. The large size of both the network models and the primary data can make such coordinated queries cumbersome with existing tools and, in particular, inhibits the sharing of results between collaborators. In this work, we develop and demonstrate a web-based framework for coordinating visualization and exploration of expression data (RNA-seq, microarray), network models and gene-binding data (ChIP-seq). Using specialized data structures and multiple coordinated views, we design an efficient querying model to support interactive analysis of the data. Finally, we show the effectiveness of our framework through case studies for the mouse immune system (a dataset focused on a subset of key cellular functions) and a model bacteria (a small genome with high data-completeness).
Wang, Liqun; Chen, Tangting; Zhou, Xiang; Huang, Qiaobing; Jin, Chunhua
2013-08-01
We applied atomic force microscopy (AFM) to observe lipopolysaccharide (LPS)-induced intracellular cytoskeleton reorganization in primary cardiomyocytes from neonatal mouse. The nonionic detergent Triton X-100 was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized by AFM. Using three-dimensional technique of AFM, we were able to quantify the changes of cytoskeleton by the "density" and total "volume" of the cytoskeleton fibers. Compared to the control group, the density of cytoskeleton was remarkably decreased and the volume of cytoskeleton was significantly increased after LPS treatment, which suggests that LPS may induce the cytoskeleton reorganization and change the cardiomyocyte morphology. Copyright © 2013 Elsevier Ltd. All rights reserved.
Magrou, Loïc; Gămănuț, Bianca; Van Essen, David C.; Burkhalter, Andreas; Knoblauch, Kenneth; Toroczkai, Zoltán; Kennedy, Henry
2016-01-01
Mammals show a wide range of brain sizes, reflecting adaptation to diverse habitats. Comparing interareal cortical networks across brains of different sizes and mammalian orders provides robust information on evolutionarily preserved features and species-specific processing modalities. However, these networks are spatially embedded, directed, and weighted, making comparisons challenging. Using tract tracing data from macaque and mouse, we show the existence of a general organizational principle based on an exponential distance rule (EDR) and cortical geometry, enabling network comparisons within the same model framework. These comparisons reveal the existence of network invariants between mouse and macaque, exemplified in graph motif profiles and connection similarity indices, but also significant differences, such as fractionally smaller and much weaker long-distance connections in the macaque than in mouse. The latter lends credence to the prediction that long-distance cortico-cortical connections could be very weak in the much-expanded human cortex, implying an increased susceptibility to disconnection syndromes such as Alzheimer disease and schizophrenia. Finally, our data from tracer experiments involving only gray matter connections in the primary visual areas of both species show that an EDR holds at local scales as well (within 1.5 mm), supporting the hypothesis that it is a universally valid property across all scales and, possibly, across the mammalian class. PMID:27441598
Kulakovskiy, Ivan V; Vorontsov, Ilya E; Yevshin, Ivan S; Sharipov, Ruslan N; Fedorova, Alla D; Rumynskiy, Eugene I; Medvedeva, Yulia A; Magana-Mora, Arturo; Bajic, Vladimir B; Papatsenko, Dmitry A; Kolpakov, Fedor A; Makeev, Vsevolod J
2018-01-04
We present a major update of the HOCOMOCO collection that consists of patterns describing DNA binding specificities for human and mouse transcription factors. In this release, we profited from a nearly doubled volume of published in vivo experiments on transcription factor (TF) binding to expand the repertoire of binding models, replace low-quality models previously based on in vitro data only and cover more than a hundred TFs with previously unknown binding specificities. This was achieved by systematic motif discovery from more than five thousand ChIP-Seq experiments uniformly processed within the BioUML framework with several ChIP-Seq peak calling tools and aggregated in the GTRD database. HOCOMOCO v11 contains binding models for 453 mouse and 680 human transcription factors and includes 1302 mononucleotide and 576 dinucleotide position weight matrices, which describe primary binding preferences of each transcription factor and reliable alternative binding specificities. An interactive interface and bulk downloads are available on the web: http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco11. In this release, we complement HOCOMOCO by MoLoTool (Motif Location Toolbox, http://molotool.autosome.ru) that applies HOCOMOCO models for visualization of binding sites in short DNA sequences. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Altered pupillary light reflex in PACAP receptor 1-deficient mice.
Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian; Luuk, Hendrik; Hannibal, Jens
2012-05-09
The pupillary light reflex (PLR) is regulated by the classical photoreceptors, rods and cones, and by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. IpRGCs receive input from rods and cones and project to the olivary pretectal nucleus (OPN), which is the primary visual center involved in PLR. Mice lacking either the classical photoreceptors or melanopsin exhibit some changes in PLR, whereas the reflex is completely lost in mice deficient of all three photoreceptors. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is co-stored with melanopsin in ipRGCs and mediates light signaling to the brain via the specific PACAP receptor 1 (PAC1R). Here, we examined the occurrence of PACAP and PAC1R in the mouse OPN, and studied if lack of PAC1R affected the PLR. PACAP-immunoreactive nerve fibers were shown in the mouse OPN, and by in situ hybridization histochemistry, we demonstrated the presence of PAC1R mRNA. Mice lacking PAC1R exhibited a significantly attenuated PLR compared to wild type mice upon light stimulation, and the difference became more pronounced as light intensity was increased. Our findings accord well with observations of the PLR in the melanopsin-deficient mouse. We conclude that PACAP/PAC1R signaling is involved in the sustained phase of the PLR at high irradiances. Copyright © 2012 Elsevier B.V. All rights reserved.
Vick, Binje; Rothenberg, Maja; Sandhöfer, Nadine; Carlet, Michela; Finkenzeller, Cornelia; Krupka, Christina; Grunert, Michaela; Trumpp, Andreas; Corbacioglu, Selim; Ebinger, Martin; André, Maya C.; Hiddemann, Wolfgang; Schneider, Stephanie; Subklewe, Marion; Metzeler, Klaus H.; Spiekermann, Karsten; Jeremias, Irmela
2015-01-01
Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease with poor outcome. Adequate model systems are required for preclinical studies to improve understanding of AML biology and to develop novel, rational treatment approaches. Xenografts in immunodeficient mice allow performing functional studies on patient-derived AML cells. We have established an improved model system that integrates serial retransplantation of patient-derived xenograft (PDX) cells in mice, genetic manipulation by lentiviral transduction, and essential quality controls by immunophenotyping and targeted resequencing of driver genes. 17/29 samples showed primary engraftment, 10/17 samples could be retransplanted and some of them allowed virtually indefinite serial transplantation. 5/6 samples were successfully transduced using lentiviruses. Neither serial transplantation nor genetic engineering markedly altered sample characteristics analyzed. Transgene expression was stable in PDX AML cells. Example given, recombinant luciferase enabled bioluminescence in vivo imaging and highly sensitive and reliable disease monitoring; imaging visualized minimal disease at 1 PDX cell in 10000 mouse bone marrow cells and facilitated quantifying leukemia initiating cells. We conclude that serial expansion, genetic engineering and imaging represent valuable tools to improve the individualized xenograft mouse model of AML. Prospectively, these advancements enable repetitive, clinically relevant studies on AML biology and preclinical treatment trials on genetically defined and heterogeneous subgroups. PMID:25793878
Counter, S Allen; Nikkhou, Sahar; Brené, Stefan; Damberg, Peter; Sierakowiak, Adam; Klason, Tomas; Berglin, Cecilia Engmér; Laurell, Göran
2013-01-01
Objective: Previous in vivo experimental magnetic resonance imaging (MRI) investigations of the mammalian inner ear at 4.7 Tesla have indicated that intravenously injected gadolinium (Gd) penetrates the perilymphatic labyrinth, but not the endolymphatic membranous labyrinth. In the present study, high field MRI at 9.4T was used to visualize the in vivo mouse vestibulo-cochlea system, and to determine whether the endolymphatic system is permeable to a Gd complex. Methods: A 9.4 T Varian magnet equipped with a 12 cm inner diameter gradient system with maximum gradient strength of 600 mT/m, a millipede coil (Varian design) and a Gd contrast agent were used for image acquisition in the normal C57 BL-6 mouse. Results: High-resolution 2D and 3D images of the mouse cochlea were acquired within 80 minutes following intravenous injection of Gd. Gd initially permeated the perilymphatic scala tympani and scala vestibuli, and permitted visualization of both cochlear turns from base to apex. The superior, inferior and lateral semicircular canals were subsequently visualized in 3 planes. The membranous endolymphatic labyrinth was impermeable to intravenously injected Gd, and thus showed no apparent uptake of Gd at 9.4T. Conclusion: The 9.4T field strength MRI permitted acquisition of high resolution images of anatomical and physiological features of the normal, wild type mouse perilymphatic inner ear in vivo, and provided further evidence that the endolymphatic system is impermeable to intravenously injected Gd. PMID:23894262
Inoue, Yukiko U; Morimoto, Yuki; Hoshino, Mikio; Inoue, Takayoshi
2018-07-01
Pax6 encodes a transcription factor that plays pivotal roles in eye development, early brain patterning, neocortical arealization, and so forth. Visualization of Pax6 expression dynamics in these events could offer numerous advantages to neurodevelopmental studies. While CRISPR/Cas9 system has dramatically accelerated one-step generation of knock-out mouse, establishment of gene-cassette knock-in mouse via zygote injection has been considered insufficient due to its low efficiency. Recently, an improved CRISPR/Cas9 system for effective gene-cassette knock-in has been reported, where the native form of guide RNAs (crRNA and tracrRNA) assembled with recombinant Cas9 protein are directly delivered into mouse fertilized eggs. Here we apply this strategy to insert IRES-EGFP-pA cassette into Pax6 locus and achieve efficient targeted insertions of the 1.8 kb reporter gene. In Pax6-IRES-EGFP mouse we have generated, EGFP-positive cells reside in the eyes and cerebellum as endogenous Pax6 expressing cells at postnatal day 2. At the early embryonic stages when the embryos are transparent, EGFP-positive regions can be easily identified without PCR-based genotyping, precisely recapitulating the endogenous Pax6 expression patterns. Remarkably, at E12.5, the graded expression patterns of Pax6 in the developing neocortex now become recognizable in our knock-in mice, serving a sufficiently sensitive and useful tool to precisely visualize neurodevelopmental processes. Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.
Deletion of Ten-m3 Induces the Formation of Eye Dominance Domains in Mouse Visual Cortex
Merlin, Sam; Horng, Sam; Marotte, Lauren R.; Sur, Mriganka; Sawatari, Atomu
2013-01-01
The visual system is characterized by precise retinotopic mapping of each eye, together with exquisitely matched binocular projections. In many species, the inputs that represent the eyes are segregated into ocular dominance columns in primary visual cortex (V1), whereas in rodents, this does not occur. Ten-m3, a member of the Ten-m/Odz/Teneurin family, regulates axonal guidance in the retinogeniculate pathway. Significantly, ipsilateral projections are expanded in the dorsal lateral geniculate nucleus and are not aligned with contralateral projections in Ten-m3 knockout (KO) mice. Here, we demonstrate the impact of altered retinogeniculate mapping on the organization and function of V1. Transneuronal tracing and c-fos immunohistochemistry demonstrate that the subcortical expansion of ipsilateral input is conveyed to V1 in Ten-m3 KOs: Ipsilateral inputs are widely distributed across V1 and are interdigitated with contralateral inputs into eye dominance domains. Segregation is confirmed by optical imaging of intrinsic signals. Single-unit recording shows ipsilateral, and contralateral inputs are mismatched at the level of single V1 neurons, and binocular stimulation leads to functional suppression of these cells. These findings indicate that the medial expansion of the binocular zone together with an interocular mismatch is sufficient to induce novel structural features, such as eye dominance domains in rodent visual cortex. PMID:22499796
Liu, Bao-hua; Li, Pingyang; Li, Ya-tang; Sun, Yujiao J.; Yanagawa, Yuchio; Obata, Kunihiko; Zhang, Li I.; Tao, Huizhong W.
2009-01-01
Synaptic inhibition plays an important role in shaping receptive field (RF) properties in the visual cortex. However, the underlying mechanisms remain not well understood, partly due to difficulties in systematically studying functional properties of cortical inhibitory neurons in vivo. Here, we established two-photon imaging guided cell-attached recordings from genetically labelled inhibitory neurons and nearby “shadowed” excitatory neurons in the primary visual cortex of adult mice. Our results revealed that in layer 2/3, the majority of excitatory neurons exhibited both On and Off spike subfields, with their spatial arrangement varying from being completely segregated to overlapped. On the other hand, most layer 4 excitatory neurons exhibited only one discernable subfield. Interestingly, no RF structure with significantly segregated On and Off subfields was observed for layer 2/3 inhibitory neurons of either the fast-spike or regular-spike type. They predominantly possessed overlapped On and Off subfields with a significantly larger size than the excitatory neurons, and exhibited much weaker orientation tuning. These results from the mouse visual cortex suggest that different from the push-pull model proposed for simple cells, layer 2/3 simple-type neurons with segregated spike On and Off subfields likely receive spatially overlapped inhibitory On and Off inputs. We propose that the phase-insensitive inhibition can enhance the spatial distinctiveness of On and Off subfields through a gain control mechanism. PMID:19710305
Beck, Susanne C; Feng, Yuxi; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W
2017-01-01
Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects.
Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Tanimoto, Naoyuki; Acar, Niyazi; Shan, Shenliang; Seebauer, Britta; Berger, Wolfgang; Hammes, Hans-Peter; Seeliger, Mathias W.
2017-01-01
Loss of Norrin signalling due to mutations in the Norrie disease pseudoglioma gene causes severe vascular defects in the retina, leading to visual impairment and ultimately blindness. While the emphasis of experimental work so far was on the developmental period, we focus here on disease mechanisms that induce progression into severe adult disease. The goal of this study was the comprehensive analysis of the long-term effects of the absence of Norrin on vascular homeostasis and retinal function. In a mouse model of Norrie disease retinal vascular morphology and integrity were studied by means of in vivo angiography; the vascular constituents were assessed in detailed histological analyses using quantitative retinal morphometry. Finally, electroretinographic analyses were performed to assess the retinal function in adult Norrin deficient animals. We could show that the primary developmental defects not only persisted but developed into further vascular abnormalities and microangiopathies. In particular, the overall vessel homeostasis, the vascular integrity, and also the cellular constituents of the vascular wall were affected in the adult Norrin deficient retina. Moreover, functional analyses indicated to persistent hypoxia in the neural retina which was suggested as one of the major driving forces of disease progression. In summary, our data provide evidence that the key to adult Norrie disease are ongoing vascular modifications, driven by the persistent hypoxic conditions, which are ineffective to compensate for the primary Norrin-dependent defects. PMID:28575130
Hikosaka, Keisuke; Noritake, Hidenao; Kimura, Wataru; Sultana, Nishat; Sharkar, Mohammad T K; Tagawa, Yoh-Ichi; Uezato, Tadayoshi; Kobayashi, Yoshimasa; Wakita, Takaji; Miura, Naoyuki
2011-04-01
No suitable mouse model is available for studying chronic liver disease caused by hepatitis C virus (HCV). CD81, claudin-1, scavenger receptor class B type I, and occludin were recently reported to be the important factors in HCV entry into hepatocytes. We made transgenic mice (Alb-CCSO) expressing the four human proteins and examined whether HCV from a patient serum or HCV pseudoparticles (HCVpp) were capable of infecting them. HCV was not detected in the mouse serum after injecting the mice with HCV from a patient serum. We also found no indications of HCVpp entry into primary hepatocytes from Alb-CCSO mice. In addition, HCV-infectible Hep3B cells were fused with HCV-resistant primary mouse hepatocytes and the fused cells showed 35-fold lower infectivity compared to wild-type Hep3B cells, indicating that primary mouse hepatocytes have the inhibitory factor(s) in HCVpp entry. Our results suggest that the expression of the human factors does not confer susceptibility to HCV entry into the liver.
Kalogeraki, Evgenia; Pielecka-Fortuna, Justyna; Löwel, Siegrid
2017-01-01
In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in the primary visual cortex (V1) rapidly declines with age: in postnatal day 25-35 (critical period) mice, 4 days of monocular deprivation (MD) are sufficient to induce OD-shifts towards the open eye; thereafter, 7 days of MD are needed. Beyond postnatal day 110, even 14 days of MD failed to induce OD-plasticity in mouse V1. In contrast, mice raised in a so-called "enriched environment" (EE), exhibit lifelong OD-plasticity. EE-mice have more voluntary physical exercise (running wheels), and experience more social interactions (bigger housing groups) and more cognitive stimulation (regularly changed labyrinths or toys). Whether experience-dependent shifts of V1-activation happen faster in EE-mice and how long the plasticity promoting effect would persist after transferring EE-mice back to SCs has not yet been investigated. To this end, we used intrinsic signal optical imaging to visualize V1-activation i) before and after MD in EE-mice of different age groups (from 1-9 months), and ii) after transferring mice back to SCs after postnatal day 130. Already after 2 days of MD, and thus much faster than in SC-mice, EE-mice of all tested age groups displayed a significant OD-shift towards the open eye. Transfer of EE-mice to SCs immediately abolished OD-plasticity: already after 1 week of SC-housing and MD, OD-shifts could no longer be visualized. In an attempt to rescue abolished OD-plasticity of these mice, we either administered the anti-depressant fluoxetine (in drinking water) or supplied a running wheel in the SCs. OD-plasticity was only rescued for the running wheel- mice. Altogether our results show that raising mice in less deprived environments like large EE-cages strongly accelerates experience-dependent changes in V1-activation compared to the impoverished SC-raising. Furthermore, preventing voluntary physical exercise of EE-mice in adulthood immediately precludes OD-shifts in V1.
Pielecka-Fortuna, Justyna; Löwel, Siegrid
2017-01-01
In standard cage (SC) raised mice, experience-dependent ocular dominance (OD) plasticity in the primary visual cortex (V1) rapidly declines with age: in postnatal day 25–35 (critical period) mice, 4 days of monocular deprivation (MD) are sufficient to induce OD-shifts towards the open eye; thereafter, 7 days of MD are needed. Beyond postnatal day 110, even 14 days of MD failed to induce OD-plasticity in mouse V1. In contrast, mice raised in a so-called “enriched environment” (EE), exhibit lifelong OD-plasticity. EE-mice have more voluntary physical exercise (running wheels), and experience more social interactions (bigger housing groups) and more cognitive stimulation (regularly changed labyrinths or toys). Whether experience-dependent shifts of V1-activation happen faster in EE-mice and how long the plasticity promoting effect would persist after transferring EE-mice back to SCs has not yet been investigated. To this end, we used intrinsic signal optical imaging to visualize V1-activation i) before and after MD in EE-mice of different age groups (from 1–9 months), and ii) after transferring mice back to SCs after postnatal day 130. Already after 2 days of MD, and thus much faster than in SC-mice, EE-mice of all tested age groups displayed a significant OD-shift towards the open eye. Transfer of EE-mice to SCs immediately abolished OD-plasticity: already after 1 week of SC-housing and MD, OD-shifts could no longer be visualized. In an attempt to rescue abolished OD-plasticity of these mice, we either administered the anti-depressant fluoxetine (in drinking water) or supplied a running wheel in the SCs. OD-plasticity was only rescued for the running wheel- mice. Altogether our results show that raising mice in less deprived environments like large EE-cages strongly accelerates experience-dependent changes in V1-activation compared to the impoverished SC-raising. Furthermore, preventing voluntary physical exercise of EE-mice in adulthood immediately precludes OD-shifts in V1. PMID:29073219
Visualization of laser tattoo removal treatment effects in a mouse model by two-photon microscopy
Jang, Won Hyuk; Yoon, Yeoreum; Kim, Wonjoong; Kwon, Soonjae; Lee, Seunghun; Song, Duke; Choi, Jong Woon; Kim, Ki Hean
2017-01-01
Laser tattoo removal is an effective method of eliminating tattoo particles in the skin. However, laser treatment cannot always remove the unwanted tattoo completely, and there are risks of either temporary or permanent side effects. Studies using preclinical animal models could provide detailed information on the effects of laser treatment in the skin, and might help to minimize side effects in clinical practices. In this study, two-photon microscopy (TPM) was used to visualize the laser treatment effects on tattoo particles in both phantom specimens and in vivo mouse models. Fluorescent tattoo ink was used for particle visualization by TPM, and nanosecond (ns) and picosecond (ps) lasers at 532 nm were used for treatment. In phantom specimens, TPM characterized the fragmentation of individual tattoo particles by tracking them before and after the laser treatment. These changes were confirmed by field emission scanning electron microscopy (FE-SEM). TPM was used to measure the treatment efficiency of the two lasers at different laser fluences. In the mouse model, TPM visualized clusters of tattoo particles in the skin and detected their fragmentation after the laser treatment. Longitudinal TPM imaging observed the migration of cells containing tattoo particles after the laser treatment. These results show that TPM may be useful for the assessment of laser tattoo removal treatment in preclinical studies. PMID:28856046
An extended retinotopic map of mouse cortex
Zhuang, Jun; Ng, Lydia; Williams, Derric; Valley, Matthew; Li, Yang; Garrett, Marina; Waters, Jack
2017-01-01
Visual perception and behavior are mediated by cortical areas that have been distinguished using architectonic and retinotopic criteria. We employed fluorescence imaging and GCaMP6 reporter mice to generate retinotopic maps, revealing additional regions of retinotopic organization that extend into barrel and retrosplenial cortices. Aligning retinotopic maps to architectonic borders, we found a mismatch in border location, indicating that architectonic borders are not aligned with the retinotopic transition at the vertical meridian. We also assessed the representation of visual space within each region, finding that four visual areas bordering V1 (LM, P, PM and RL) display complementary representations, with overlap primarily at the central hemifield. Our results extend our understanding of the organization of mouse cortex to include up to 16 distinct retinotopically organized regions. DOI: http://dx.doi.org/10.7554/eLife.18372.001 PMID:28059700
Chavez-Solano, Marbella; Ibarra-Sanchez, Alfredo; Treviño, Mario; Gonzalez-Espinosa, Claudia; Lamas, Monica
2016-04-01
Fyn kinase is widely expressed in neuronal and glial cells of the brain, where it exerts multiple functional roles that affect fundamental physiological processes. The aim of our study was to investigate the, so far unknown, functional role of Fyn in the retina. We report that Fyn is expressed, in vivo, in a subpopulation of Müller glia. We used a mouse model of Fyn genetic ablation and Müller-enriched primary cultures to demonstrate that Fyn deficiency induces morphological alterations in the mature retina, a reduction in the thickness of the outer and inner nuclear layers and alterations in postnatal Müller cell physiology. These include shortening of Müller cell processes, a decrease in cell proliferation, inactivation of the Akt signal transduction pathway, a reduced number of focal adhesions points and decreased adhesion of these cells to the ECM. As abnormalities in Müller cell physiology have been previously associated to a compromised retinal function we evaluated behavioral responses to visual stimulation. Our results associate Fyn deficiency with impaired visual optokinetic responses under scotopic and photopic light conditions. Our study reveals novel roles for Fyn kinase in retinal morphology and Müller cell physiology and suggests that Fyn is required for optimal visual processing. Copyright © 2016 Elsevier Inc. All rights reserved.
Müller, Romy; Helmert, Jens R; Pannasch, Sebastian
2014-10-01
Remote cooperation can be improved by transferring the gaze of one participant to the other. However, based on a partner's gaze, an interpretation of his communicative intention can be difficult. Thus, gaze transfer has been inferior to mouse transfer in remote spatial referencing tasks where locations had to be pointed out explicitly. Given that eye movements serve as an indicator of visual attention, it remains to be investigated whether gaze and mouse transfer differentially affect the coordination of joint action when the situation demands an understanding of the partner's search strategies. In the present study, a gaze or mouse cursor was transferred from a searcher to an assistant in a hierarchical decision task. The assistant could use this cursor to guide his movement of a window which continuously opened up the display parts the searcher needed to find the right solution. In this context, we investigated how the ease of using gaze transfer depended on whether a link could be established between the partner's eye movements and the objects he was looking at. Therefore, in addition to the searcher's cursor, the assistant either saw the positions of these objects or only a grey background. When the objects were visible, performance and the number of spoken words were similar for gaze and mouse transfer. However, without them, gaze transfer resulted in longer solution times and more verbal effort as participants relied more strongly on speech to coordinate the window movement. Moreover, an analysis of the spatio-temporal coupling of the transmitted cursor and the window indicated that when no visual object information was available, assistants confidently followed the searcher's mouse but not his gaze cursor. Once again, the results highlight the importance of carefully considering task characteristics when applying gaze transfer in remote cooperation. Copyright © 2013 Elsevier B.V. All rights reserved.
Genetic Otx2 mis-localization delays critical period plasticity across brain regions.
Lee, H H C; Bernard, C; Ye, Z; Acampora, D; Simeone, A; Prochiantz, A; Di Nardo, A A; Hensch, T K
2017-05-01
Accumulation of non-cell autonomous Otx2 homeoprotein in postnatal mouse visual cortex (V1) has been implicated in both the onset and closure of critical period (CP) plasticity. Here, we show that a genetic point mutation in the glycosaminoglycan recognition motif of Otx2 broadly delays the maturation of pivotal parvalbumin-positive (PV+) interneurons not only in V1 but also in the primary auditory (A1) and medial prefrontal cortex (mPFC). Consequently, not only visual, but also auditory plasticity is delayed, including the experience-dependent expansion of tonotopic maps in A1 and the acquisition of acoustic preferences in mPFC, which mitigates anxious behavior. In addition, Otx2 mis-localization leads to dynamic turnover of selected perineuronal net (PNN) components well beyond the normal CP in V1 and mPFC. These findings reveal widespread actions of Otx2 signaling in the postnatal cortex controlling the maturational trajectory across modalities. Disrupted PV+ network function and deficits in PNN integrity are implicated in a variety of psychiatric illnesses, suggesting a potential global role for Otx2 function in establishing mental health.
Vélez-Fort, Mateo; Rousseau, Charly V; Niedworok, Christian J; Wickersham, Ian R; Rancz, Ede A; Brown, Alexander P Y; Strom, Molly; Margrie, Troy W
2014-09-17
Sensory computations performed in the neocortex involve layer six (L6) cortico-cortical (CC) and cortico-thalamic (CT) signaling pathways. Developing an understanding of the physiological role of these circuits requires dissection of the functional specificity and connectivity of the underlying individual projection neurons. By combining whole-cell recording from identified L6 principal cells in the mouse primary visual cortex (V1) with modified rabies virus-based input mapping, we have determined the sensory response properties and upstream monosynaptic connectivity of cells mediating the CC or CT pathway. We show that CC-projecting cells encompass a broad spectrum of selectivity to stimulus orientation and are predominantly innervated by deep layer V1 neurons. In contrast, CT-projecting cells are ultrasparse firing, exquisitely tuned to orientation and direction information, and receive long-range input from higher cortical areas. This segregation in function and connectivity indicates that L6 microcircuits route specific contextual and stimulus-related information within and outside the cortical network. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.
Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang
2017-06-27
The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P < 0.05). The treatment group exhibited the highest OD value among the four groups. The results observed at 5h were consistent with the results at 1 h. Flow cytometry results showed that at 1h after treatment the apoptosis percentages is higher in the control group compared to other three groups (P < 0.05). Mouse brain tissues were collected and primary neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.
In Vitro Transformation of Rat and Mouse Cells by DNA from Simian Virus 40
Abrahams, P. J.; van der Eb, A. J.
1975-01-01
Primary rat kidney cells and mouse 3T3 cells can be transformed by DNA of simian virus 40 when use is made of the calcium technique (Graham and van der Eb, 1973). The transformation assay in primary rat cells is reproducible, but the dose response is not linear. PMID:166204
A recombinant lentiviral PDGF-driven mouse model of proneural glioblastoma.
Rahme, Gilbert J; Luikart, Bryan W; Cheng, Chao; Israel, Mark A
2018-02-19
Mouse models of glioblastoma (GBM), the most aggressive primary brain tumor, are critical for understanding GBM pathology and can contribute to the preclinical evaluation of therapeutic agents. Platelet-derived growth factor (PDGF) signaling has been implicated in the development and pathogenesis of GBM, specifically the proneural subtype. Although multiple mouse models of PDGF-driven glioma have been described, they require transgenic mice engineered to activate PDGF signaling and/or impair tumor suppressor genes and typically represent lower-grade glioma. We designed recombinant lentiviruses expressing both PDGFB and a short hairpin RNA targeting Cdkn2a to induce gliomagenesis following stereotactic injection into the dentate gyrus of adult immunocompetent mice. We engineered these viruses to coexpress CreERT2 with PDGFB, allowing for deletion of floxed genes specifically in transduced cells, and designed another version of this recombinant lentivirus in which enhanced green fluorescent protein was coexpressed with PDGFB and CreERT2 to visualize transduced cells. The dentate gyrus of injected mice showed hypercellularity one week post-injection and subsequently developed bona fide tumors with the pathologic hallmarks of GBM leading to a median survival of 77 days post-injection. Transcriptomic analysis of these tumors revealed a proneural gene expression signature. Informed by the genetic alterations observed in human GBM, we engineered a novel mouse model of proneural GBM. While reflecting many of the advantages of transgenic mice, this model allows for the facile in vivo testing of gene function in tumor cells and makes possible the rapid production of large numbers of immunocompetent tumor-bearing mice for preclinical testing of therapeutics. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Arakawa, Toshiya; Tanave, Akira; Ikeuchi, Shiho; Takahashi, Aki; Kakihara, Satoshi; Kimura, Shingo; Sugimoto, Hiroki; Asada, Nobuhiko; Shiroishi, Toshihiko; Tomihara, Kazuya; Tsuchiya, Takashi; Koide, Tsuyoshi
2014-08-30
Owing to their complex nature, social interaction tests normally require the observation of video data by a human researcher, and thus are difficult to use in large-scale studies. We previously established a statistical method, a hidden Markov model (HMM), which enables the differentiation of two social states ("interaction" and "indifference"), and three social states ("sniffing", "following", and "indifference"), automatically in silico. Here, we developed freeware called DuoMouse for the rapid evaluation of social interaction behavior. This software incorporates five steps: (1) settings, (2) video recording, (3) tracking from the video data, (4) HMM analysis, and (5) visualization of the results. Using DuoMouse, we mapped a genetic locus related to social interaction. We previously reported that a consomic strain, B6-Chr6C(MSM), with its chromosome 6 substituted for one from MSM/Ms, showed more social interaction than C57BL/6 (B6). We made four subconsomic strains, C3, C5, C6, and C7, each of which has a shorter segment of chromosome 6 derived from B6-Chr6C, and conducted social interaction tests on these strains. DuoMouse indicated that C6, but not C3, C5, and C7, showed higher interaction, sniffing, and following than B6, specifically in males. The data obtained by human observation showed high concordance to those from DuoMouse. The results indicated that the MSM-derived chromosomal region present in C6-but not in C3, C5, and C7-associated with increased social behavior. This method to analyze social interaction will aid primary screening for difference in social behavior in mice. Copyright © 2014 Elsevier B.V. All rights reserved.
Rearrangement of Retinogeniculate Projection Patterns after Eye-Specific Segregation in Mice
Hayakawa, Itaru; Kawasaki, Hiroshi
2010-01-01
It has been of interest whether and when the rearrangement of neuronal circuits can be induced after projection patterns are formed during development. Earlier studies using cats reported that the rearrangement of retinogeniculate projections could be induced even after eye-specific segregation has occurred, but detailed and quantitative characterization of this rearrangement has been lacking. Here we delineate the structural changes of retinogeniculate projections in the C57BL/6 mouse in response to monocular enucleation (ME) after eye-specific segregation. When ME was performed after eye-specific segregation, rearrangement of retinogeniculate axons in the dorsal lateral geniculate nucleus (dLGN) was observed within 5 days. Although this rearrangement was observed both along the dorsomedial-ventrolateral and outer-inner axes in the dLGN, it occurred more rapidly along the outer-inner axis. We also examined the critical period for this rearrangement and found that the rearrangement became almost absent by the beginning of the critical period for ocular dominance plasticity in the primary visual cortex. Taken together, our findings serve as a framework for the assessment of phenotypes of genetically altered mouse strains as well as provide insights into the mechanisms underlying the rearrangement of retinogeniculate projections. PMID:20544023
Function of MYO7A in the Human RPE and the Validity of Shaker1 Mice as a Model for Usher Syndrome 1B
Gibbs, Daniel; Diemer, Tanja; Khanobdee, Kornnika; Hu, Jane; Bok, Dean
2010-01-01
Purpose. To investigate the function of MYO7A in human RPE cells and to test the validity of using shaker1 RPE in preclinical studies on therapies for Usher syndrome 1B by comparing human and mouse cells. Methods. MYO7A was localized by immunofluorescence. Primary cultures of human and mouse RPE cells were used to measure melanosome motility and rod outer segment (ROS) phagocytosis and digestion. MYO7A was knocked down in the human RPE cells by RNAi to test for a mutant phenotype in melanosome motility. Results. The distribution of MYO7A in the RPE of human and mouse was found to be comparable, both in vivo and in primary cultures. Primary cultures of human RPE cells phagocytosed and digested ROSs with kinetics comparable to that of primary cultures of mouse RPE cells. Melanosome motility was also comparable, and, after RNAi knockdown, consisted of longer-range fast movements characteristic of melanosomes in shaker1 RPE. Conclusions. The localization and function of MYO7A in human RPE cells is comparable to that in mouse RPE cells. Although shaker1 retinas do not undergo degeneration, correction of mutant phenotypes in the shaker1 RPE represents a valid preclinical test for potential therapeutic treatments. PMID:19643958
Cognitive processing in the primary visual cortex: from perception to memory.
Supèr, Hans
2002-01-01
The primary visual cortex is the first cortical area of the visual system that receives information from the external visual world. Based on the receptive field characteristics of the neurons in this area, it has been assumed that the primary visual cortex is a pure sensory area extracting basic elements of the visual scene. This information is then subsequently further processed upstream in the higher-order visual areas and provides us with perception and storage of the visual environment. However, recent findings show that such neural implementations are observed in the primary visual cortex. These neural correlates are expressed by the modulated activity of the late response of a neuron to a stimulus, and most likely depend on recurrent interactions between several areas of the visual system. This favors the concept of a distributed nature of visual processing in perceptual organization.
An integrated expression atlas of miRNAs and their promoters in human and mouse
de Rie, Derek; Abugessaisa, Imad; Alam, Tanvir; Arner, Erik; Arner, Peter; Ashoor, Haitham; Åström, Gaby; Babina, Magda; Bertin, Nicolas; Burroughs, A. Maxwell; Carlisle, Ailsa J.; Daub, Carsten O.; Detmar, Michael; Deviatiiarov, Ruslan; Fort, Alexandre; Gebhard, Claudia; Goldowitz, Daniel; Guhl, Sven; Ha, Thomas J.; Harshbarger, Jayson; Hasegawa, Akira; Hashimoto, Kosuke; Herlyn, Meenhard; Heutink, Peter; Hitchens, Kelly J.; Hon, Chung Chau; Huang, Edward; Ishizu, Yuri; Kai, Chieko; Kasukawa, Takeya; Klinken, Peter; Lassmann, Timo; Lecellier, Charles-Henri; Lee, Weonju; Lizio, Marina; Makeev, Vsevolod; Mathelier, Anthony; Medvedeva, Yulia A.; Mejhert, Niklas; Mungall, Christopher J.; Noma, Shohei; Ohshima, Mitsuhiro; Okada-Hatakeyama, Mariko; Persson, Helena; Rizzu, Patrizia; Roudnicky, Filip; Sætrom, Pål; Sato, Hiroki; Severin, Jessica; Shin, Jay W.; Swoboda, Rolf K.; Tarui, Hiroshi; Toyoda, Hiroo; Vitting-Seerup, Kristoffer; Winteringham, Louise; Yamaguchi, Yoko; Yasuzawa, Kayoko; Yoneda, Misako; Yumoto, Noriko; Zabierowski, Susan; Zhang, Peter G.; Wells, Christine A.; Summers, Kim M.; Kawaji, Hideya; Sandelin, Albin; Rehli, Michael; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; de Hoon, Michiel J. L.
2018-01-01
MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions. PMID:28829439
In utero mouse embryonic imaging with OCT for ophthalmologic research
NASA Astrophysics Data System (ADS)
Syed, Saba H.; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.
2011-03-01
Live imaging of an eye during embryonic development in mammalian model is important for understanding dynamic aspects of normal and abnormal eye morphogenesis. In this study, we used Swept Source Optical Coherence Tomography (SS-OCT) for live structural imaging of mouse embryonic eye through the uterine wall. The eye structure was reconstructed in mouse embryos at 13.5 to 17.5 days post coitus (dpc). Despite the limited imaging depth of OCT in turbid tissues, we were able to visualize the whole eye globe at these stages. These results suggest that live in utero OCT imaging is a useful tool to study embryonic eye development in the mouse model.
Abstract: Propiconazole is a triazole-containing fungicide that is used agriculturally on grasses, fruits, grains, seeds, hardwoods, and conifers. Propiconazole is a mouse liver hepatotoxicant and a hepatocarcinogen and has adverse reproductive and developmental toxicities in exp...
Liau, Ee Shan; Yen, Ya-Ping; Chen, Jun-An
2018-05-11
Spinal motor neurons (MNs) extend their axons to communicate with their innervating targets, thereby controlling movement and complex tasks in vertebrates. Thus, it is critical to uncover the molecular mechanisms of how motor axons navigate to, arborize, and innervate their peripheral muscle targets during development and degeneration. Although transgenic Hb9::GFP mouse lines have long served to visualize motor axon trajectories during embryonic development, detailed descriptions of the full spectrum of axon terminal arborization remain incomplete due to the pattern complexity and limitations of current optical microscopy. Here, we describe an improved protocol that combines light sheet fluorescence microscopy (LSFM) and robust image analysis to qualitatively and quantitatively visualize developing motor axons. This system can be easily adopted to cross genetic mutants or MN disease models with Hb9::GFP lines, revealing novel molecular mechanisms that lead to defects in motor axon navigation and arborization.
Strobl, Marie-Therese J; Freeman, Daniel; Patel, Jenica; Poulsen, Ryan; Wendler, Christopher C; Rivkees, Scott A; Coleman, Jason E
2017-05-01
Insufficient or excessive thyroid hormone (TH) levels during fetal development can cause long-term neurological and cognitive problems. Studies in animal models of perinatal hypo- and hyperthyroidism suggest that these problems may be a consequence of the formation of maladaptive circuitry in the cerebral cortex, which can persist into adulthood. Here we used mouse models of maternal hypo- and hyperthyroidism to investigate the long-term effects of altering thyroxine (T4) levels during pregnancy (corresponding to embryonic days 6.5-18.5) on thalamocortical (TC) axon dynamics in adult offspring. Because perinatal hypothyroidism has been linked to visual processing deficits in humans, we performed chronic two-photon imaging of TC axons and boutons in primary visual cortex (V1). We found that a decrease or increase in maternal serum T4 levels was associated with atypical steady-state dynamics of TC axons and boutons in V1 of adult offspring. Hypothyroid offspring exhibited axonal branch and bouton dynamics indicative of an abnormal increase in TC connectivity, whereas changes in hyperthyroid offspring were indicative of an abnormal decrease in TC connectivity. Collectively, our data suggest that alterations to prenatal T4 levels can cause long-term synaptic instability in TC circuits, which could impair early stages of visual processing. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Arc restores juvenile plasticity in adult mouse visual cortex
Jenks, Kyle R.; Kim, Taekeun; Pastuzyn, Elissa D.; Okuno, Hiroyuki; Taibi, Andrew V.; Bear, Mark F.
2017-01-01
The molecular basis for the decline in experience-dependent neural plasticity over age remains poorly understood. In visual cortex, the robust plasticity induced in juvenile mice by brief monocular deprivation during the critical period is abrogated by genetic deletion of Arc, an activity-dependent regulator of excitatory synaptic modification. Here, we report that augmenting Arc expression in adult mice prolongs juvenile-like plasticity in visual cortex, as assessed by recordings of ocular dominance (OD) plasticity in vivo. A distinguishing characteristic of juvenile OD plasticity is the weakening of deprived-eye responses, believed to be accounted for by the mechanisms of homosynaptic long-term depression (LTD). Accordingly, we also found increased LTD in visual cortex of adult mice with augmented Arc expression and impaired LTD in visual cortex of juvenile mice that lack Arc or have been treated in vivo with a protein synthesis inhibitor. Further, we found that although activity-dependent expression of Arc mRNA does not change with age, expression of Arc protein is maximal during the critical period and declines in adulthood. Finally, we show that acute augmentation of Arc expression in wild-type adult mouse visual cortex is sufficient to restore juvenile-like plasticity. Together, our findings suggest a unifying molecular explanation for the age- and activity-dependent modulation of synaptic sensitivity to deprivation. PMID:28790183
Vierci, Gabriela; Pannunzio, Bruno; Bornia, Natalia; Rossi, Francesco M.
2016-01-01
Histone posttranslational modifications play a fundamental role in orchestrating gene expression. In this work, we analyzed the acetylation of H3 and H4 histones (AcH3–AcH4) and its modulation by visual experience in the mouse visual cortex (VC) during normal development and in two experimental conditions that restore juvenile-like plasticity levels in adults (fluoxetine treatment and enriched environment). We found that AcH3–AcH4 declines with age and is upregulated by treatments restoring plasticity in the adult. We also found that visual experience modulates AcH3–AcH4 in young and adult plasticity-restored mice but not in untreated ones. Finally, we showed that the transporter vGAT is downregulated in adult plasticity-restored models. In summary, we identified a dynamic regulation of AcH3–AcH4, which is associated with high plasticity levels and enhanced by visual experience. These data, along with recent ones, indicate H3–H4 acetylation as a central hub in the control of experience-dependent plasticity in the VC. PMID:27891053
Massé, Ian O; Guillemette, Sonia; Laramée, Marie-Eve; Bronchti, Gilles; Boire, Denis
2014-11-07
Anophthalmia is a condition in which the eye does not develop from the early embryonic period. Early blindness induces cross-modal plastic modifications in the brain such as auditory and haptic activations of the visual cortex and also leads to a greater solicitation of the somatosensory and auditory cortices. The visual cortex is activated by auditory stimuli in anophthalmic mice and activity is known to alter the growth pattern of the cerebral cortex. The size of the primary visual, auditory and somatosensory cortices and of the corresponding specific sensory thalamic nuclei were measured in intact and enucleated C57Bl/6J mice and in ZRDCT anophthalmic mice (ZRDCT/An) to evaluate the contribution of cross-modal activity on the growth of the cerebral cortex. In addition, the size of these structures were compared in intact, enucleated and anophthalmic fourth generation backcrossed hybrid C57Bl/6J×ZRDCT/An mice to parse out the effects of mouse strains and of the different visual deprivations. The visual cortex was smaller in the anophthalmic ZRDCT/An than in the intact and enucleated C57Bl/6J mice. Also the auditory cortex was larger and the somatosensory cortex smaller in the ZRDCT/An than in the intact and enucleated C57Bl/6J mice. The size differences of sensory cortices between the enucleated and anophthalmic mice were no longer present in the hybrid mice, showing specific genetic differences between C57Bl/6J and ZRDCT mice. The post natal size increase of the visual cortex was less in the enucleated than in the anophthalmic and intact hybrid mice. This suggests differences in the activity of the visual cortex between enucleated and anophthalmic mice and that early in-utero spontaneous neural activity in the visual system contributes to the shaping of functional properties of cortical networks. Copyright © 2014 Elsevier B.V. All rights reserved.
Emoto, Miho C; Sato-Akaba, Hideo; Hirata, Hiroshi; Fujii, Hirotada G
2014-09-01
Electron paramagnetic resonance (EPR) imaging using nitroxides as redox-sensitive probes is a powerful, noninvasive method that can be used under various physiological conditions to visualize changes in redox status that result from oxidative damage. Two blood-brain barrier-permeative nitroxides, 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (HMP) and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MCP), have been widely used as redox-sensitive probes in the brains of small animals, but their in vivo distribution and properties have not yet been analyzed in detail. In this study, a custom-made continuous-wave three-dimensional (3D) EPR imager was used to obtain 3D EPR images of mouse heads using MCP or HMP. This EPR imager made it possible to take 3D EPR images reconstructed from data from 181 projections acquired every 60s. Using this improved EPR imager and magnetic resonance imaging, the distribution and reduction time courses of HMP and MCP were examined in mouse heads. EPR images of living mice revealed that HMP and MCP have different distributions and different time courses for entering the brain. Based on the pharmacokinetics of the reduction reactions of HMP and MCP in the mouse head, the half-lives of HMP and MCP were clearly and accurately mapped pixel by pixel. An ischemic mouse model was prepared, and the half-life of MCP was mapped in the mouse head. Compared to the half-life in control mice, the half-life of MCP in the ischemic model mouse brain was significantly increased, suggesting a shift in the redox balance. This in vivo EPR imaging method using BBB-permeative MCP is a useful noninvasive method for assessing changes in the redox status in mouse brains under oxidative stress. Copyright © 2014 Elsevier Inc. All rights reserved.
High-intensity erotic visual stimuli de-activate the primary visual cortex in women.
Huynh, Hieu K; Beers, Caroline; Willemsen, Antoon; Lont, Erna; Laan, Ellen; Dierckx, Rudi; Jansen, Monique; Sand, Michael; Weijmar Schultz, Willibrord; Holstege, Gert
2012-06-01
The primary visual cortex, Brodmann's area (BA 17), plays a vital role in basic survival mechanisms in humans. In most neuro-imaging studies in which the volunteers have to watch pictures or movies, the primary visual cortex is similarly activated independent of the content of the pictures or movies. However, in case the volunteers perform demanding non-visual tasks, the primary visual cortex becomes de-activated, although the amount of incoming visual sensory information is the same. Do low- and high-intensity erotic movies, compared to neutral movies, produce similar de-activation of the primary visual cortex? Brain activation/de-activation was studied by Positron Emission Tomography scanning of the brains of 12 healthy heterosexual premenopausal women, aged 18-47, who watched neutral, low- and high-intensity erotic film segments. We measured differences in regional cerebral blood flow (rCBF) in the primary visual cortex during watching neutral, low-intensity erotic, and high-intensity erotic film segments. Watching high-intensity erotic, but not low-intensity erotic movies, compared to neutral movies resulted in strong de-activation of the primary (BA 17) and adjoining parts of the secondary visual cortex. The strong de-activation during watching high-intensity erotic film might represent compensation for the increased blood supply in the brain regions involved in sexual arousal, also because high-intensity erotic movies do not require precise scanning of the visual field, because the impact is clear to the observer. © 2012 International Society for Sexual Medicine.
A Method for the Immortalization of Newborn Mouse Skin Keratinocytes
Hammiller, Brianna O.; El-Abaseri, Taghrid Bahig; Dlugosz, Andrzej A.; Hansen, Laura A.
2015-01-01
Isolation and culture of mouse primary epidermal keratinocytes is a common technique that allows for easy genetic and environmental manipulation. However, due to their limited lifespan in culture, experiments utilizing primary keratinocytes require large numbers of animals, and are time consuming and expensive. To avoid these issues, we developed a method for the immortalization of primary mouse epidermal keratinocytes. Upon isolation of newborn epidermal keratinocytes according to established methods, the cells were cultured long-term in keratinocyte growth factor-containing medium. The cells senesced within a few weeks and eventually, small, slowly growing colonies emerged. After they regained confluency, the cells were passaged and slowly refilled the dish. With several rounds of subculture, the cells adapted to culture conditions, were easily subcultured, maintained normal morphology, and were apparently immortal. The immortalized cells retained the ability to differentiate with increased calcium concentrations, and were maintained to high passage numbers while maintaining a relatively stable karyotype. Analysis of multiple immortalized cell lines as well as primary keratinocyte cultures revealed increased numbers of chromosomes, especially in the primary keratinocytes, and chromosomal aberrations in most of the immortalized cultures and in the primary keratinocytes. Orthotopic grafting of immortalized keratinocytes together with fibroblasts onto nude mouse hosts produced skin while v-rasHa infection of the immortalized keratinocytes prior to grafting produced squamous cell carcinoma. In summary, this method of cell line generation allows for decreased use of animals, reduces the expense and time involved in research, and provides a useful model for cutaneous keratinocyte experimentation. PMID:26284198
The impairment of learning and memory and synaptic loss in mouse after chronic nitrite exposure.
Chen, Yongfang; Cui, Zhanjun; Wang, Lai; Liu, Hongliang; Fan, Wenjuan; Deng, Jinbo; Deng, Jiexin
2016-12-01
The objective of this study is to understand the impairment of learning and memory in mouse after chronic nitrite exposure. The animal model of nitrite exposure in mouse was created with the daily intubation of nitrite in adult healthy male mice for 3 months. Furthermore, the mouse's learning and memory abilities were tested with Morris water maze, and the expression of Synaptophysin and γ-Synuclein was visualized with immunocytochemistry and Western blot. Our results showed that nitrite exposure significantly prolonged the escape latency period (ELP) and decreased the values of the frequency across platform (FAP) as well as the accumulative time in target quadrant (ATITQ) compared to control, in dose-dependent manner. In addition, after nitrite exposure, synaptophysin (SYN) positive buttons in the visual cortex was reduced, in contrast the increase of γ-synuclein positive cells. The results above were supported by Western blot as well. We conclude that nitrite exposure could lead to a decline in mice's learning and memory. The overexpression of γ-synuclein contributed to the synaptic loss, which is most likely the cause of learning and memory impairment. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1720-1730, 2016. © 2015 Wiley Periodicals, Inc.
Weimer, Jill M.; Custer, Andrew W.; Benedict, Jared W.; Alexander, Noreen A.; Kingsley, Evan; Federoff, Howard J.; Cooper, Jonathan D.; Pearce, David A.
2013-01-01
Juvenile neuronal ceroid lipofuscinosis (JNCL) is an autosomal recessive disorder of childhood caused by mutations in CLN3. Although visual deterioration is typically the first clinical sign to manifest in affected children, loss of Cln3 in a mouse model of JNCL does not recapitulate this retinal deterioration. This suggests that either the loss of CLN3 does not directly affect retinal cell survival or that nuclei involved in visual processing are affected prior to retinal degeneration. Having previously demonstrated that Cln3−/− mice have decreased optic nerve axonal density, we now demonstrate a decrease in nerve conduction. Examination of retino-recipient regions revealed a decreased number of neurons within the dorsal lateral geniculate nucleus (LGNd). We demonstrate decreased transport of amino acids from the retina to the LGN, suggesting an impediment in communication between the retina and projection nuclei. This study defines a novel path of degeneration within the LGNd, providing a mechanism for causation of JNCL visual deficits. PMID:16412658
Brayda, Luca; Campus, Claudio; Memeo, Mariacarla; Lucagrossi, Laura
2015-01-01
Tactile maps are efficient tools to improve spatial understanding and mobility skills of visually impaired people. Their limited adaptability can be compensated with haptic devices which display graphical information, but their assessment is frequently limited to performance-based metrics only which can hide potential spatial abilities in O&M protocols. We assess a low-tech tactile mouse able to deliver three-dimensional content considering how performance, mental workload, behavior, and anxiety status vary with task difficulty and gender in congenitally blind, late blind, and sighted subjects. Results show that task difficulty coherently modulates the efficiency and difficulty to build mental maps, regardless of visual experience. Although exhibiting attitudes that were similar and gender-independent, the females had lower performance and higher cognitive load, especially when congenitally blind. All groups showed a significant decrease in anxiety after using the device. Tactile graphics with our device seems therefore to be applicable with different visual experiences, with no negative emotional consequences of mentally demanding spatial tasks. Going beyond performance-based assessment, our methodology can help with better targeting technological solutions in orientation and mobility protocols.
Espuny-Camacho, Ira; Michelsen, Kimmo A; Linaro, Daniele; Bilheu, Angéline; Acosta-Verdugo, Sandra; Herpoel, Adèle; Giugliano, Michele; Gaillard, Afsaneh; Vanderhaeghen, Pierre
2018-05-29
The transplantation of pluripotent stem-cell-derived neurons constitutes a promising avenue for the treatment of several brain diseases. However, their potential for the repair of the cerebral cortex remains unclear, given its complexity and neuronal diversity. Here, we show that human visual cortical cells differentiated from embryonic stem cells can be transplanted and can integrate successfully into the lesioned mouse adult visual cortex. The transplanted human neurons expressed the appropriate repertoire of markers of six cortical layers, projected axons to specific visual cortical targets, and were synaptically active within the adult brain. Moreover, transplant maturation and integration were much less efficient following transplantation into the lesioned motor cortex, as previously observed for transplanted mouse cortical neurons. These data constitute an important milestone for the potential use of human PSC-derived cortical cells for the reassembly of cortical circuits and emphasize the importance of cortical areal identity for successful transplantation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Exploring human disease using the Rat Genome Database.
Shimoyama, Mary; Laulederkind, Stanley J F; De Pons, Jeff; Nigam, Rajni; Smith, Jennifer R; Tutaj, Marek; Petri, Victoria; Hayman, G Thomas; Wang, Shur-Jen; Ghiasvand, Omid; Thota, Jyothi; Dwinell, Melinda R
2016-10-01
Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu) has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers - within and beyond the rat community - who are particularly interested in leveraging rat-based insights to understand human diseases. © 2016. Published by The Company of Biologists Ltd.
Quétard, Boris; Quinton, Jean-Charles; Colomb, Michèle; Pezzulo, Giovanni; Barca, Laura; Izaute, Marie; Appadoo, Owen Kevin; Mermillod, Martial
2015-09-01
Detecting a pedestrian while driving in the fog is one situation where the prior expectation about the target presence is integrated with the noisy visual input. We focus on how these sources of information influence the oculomotor behavior and are integrated within an underlying decision-making process. The participants had to judge whether high-/low-density fog scenes displayed on a computer screen contained a pedestrian or a deer by executing a mouse movement toward the response button (mouse-tracking). A variable road sign was added on the scene to manipulate expectations about target identity. We then analyzed the timing and amplitude of the deviation of mouse trajectories toward the incorrect response and, using an eye tracker, the detection time (before fixating the target) and the identification time (fixations on the target). Results revealed that expectation of the correct target results in earlier decisions with less deviation toward the alternative response, this effect being partially explained by the facilitation of target identification.
An Orthotopic Mouse Model of Spontaneous Breast Cancer Metastasis.
Paschall, Amy V; Liu, Kebin
2016-08-14
Metastasis is the primary cause of mortality of breast cancer patients. The mechanism underlying cancer cell metastasis, including breast cancer metastasis, is largely unknown and is a focus in cancer research. Various breast cancer spontaneous metastasis mouse models have been established. Here, we report a simplified procedure to establish orthotopic transplanted breast cancer primary tumor and resultant spontaneous metastasis that mimic human breast cancer metastasis. Combined with the bioluminescence live tumor imaging, this mouse model allows tumor growth and progression kinetics to be monitored and quantified. In this model, a low dose (1 x 10(4) cells) of 4T1-Luc breast cancer cells was injected into BALB/c mouse mammary fat pad using a tuberculin syringe. Mice were injected with luciferin and imaged at various time points using a bioluminescent imaging system. When the primary tumors grew to the size limit as in the IACUC-approved protocol (approximately 30 days), mice were anesthetized under constant flow of 2% isoflurane and oxygen. The tumor area was sterilized with 70% ethanol. The mouse skin around the tumor was excised to expose the tumor which was removed with a pair of sterile scissors. Removal of the primary tumor extends the survival of the 4T-1 tumor-bearing mice for one month. The mice were then repeatedly imaged for metastatic tumor spreading to distant organs. Therapeutic agents can be administered to suppress tumor metastasis at this point. This model is simple and yet sensitive in quantifying breast cancer cell growth in the primary site and progression kinetics to distant organs, and thus is an excellent model for studying breast cancer growth and progression, and for testing anti-metastasis therapeutic and immunotherapeutic agents in vivo.
Washington, Ida M; Payton, Mark E
2016-01-01
Mouse cage and bedding changes are potentially stressful to mice and are also labor- and resource-intensive. These changes are often performed on a calendar-based schedule to maintain a clean microenvironment and limit the concentrations of ammonia to which mice and workers are exposed. The current study sought to establish a performance-based approach to mouse cage-changing that uses urine spot characteristics as visual indicators of intracage ammonia levels. Colorimetric ammonia indicators were used to measure ammonia levels in individually-ventilated cages (IVC) housing male or female mice (n =5 per cage) of various strains at 1 to 16 d after cage change. Urine spot characteristics were correlated with ammonia levels to create a visual indicator of the cage-change criterion of 25 ppm ammonia. Results demonstrated a consistent increase in ammonia levels with days since cage change, with cages reaching the cage-change criterion at approximately 10 d for IVC containing male mice and 16 d for those with female mice. Ammonia levels were higher for male than female mice but were not correlated with mouse age. However, urine spot diameter, color, and edge characteristics were strongly correlated with ammonia levels. Husbandry practices based on using urine spot characteristics as indicators of ammonia levels led to fewer weekly cage changes and concomitant savings in labor and resources. Therefore, urine spot characteristics can be used as visual indicators of intracage ammonia levels for use of a performance (urine spot)-based approach to cage-changing frequency that maintains animal health and wellbeing. PMID:27177558
NASA Astrophysics Data System (ADS)
Cohen, Noam; Schejter, Adi; Farah, Nairouz; Shoham, Shy
2016-03-01
Studying the responses of retinal ganglion cell (RGC) populations has major significance in vision research. Multiphoton imaging of optogenetic probes has recently become the leading approach for visualizing neural populations and has specific advantages for imaging retinal activity during visual stimulation, because it leads to reduced direct photoreceptor excitation. However, multiphoton retinal activity imaging is not straightforward: point-by-point scanning leads to repeated neural excitation while optical access through the rodent eye in vivo has proven highly challenging. Here, we present two enabling optical designs for multiphoton imaging of responses to visual stimuli in mouse retinas expressing calcium indicators. First, we present an imaging solution based on Scanning Line Temporal Focusing (SLITE) for rapidly imaging neuronal activity in vitro. In this design, we scan a temporally focused line rather than a point, increasing the scan speed and reducing the impact of repeated excitation, while maintaining high optical sectioning. Second, we present the first in vivo demonstration of two-photon imaging of RGC activity in the mouse retina. To obtain these cellular resolution recordings we integrated an illumination path into a correction-free imaging system designed using an optical model of the mouse eye. This system can image at multiple depths using an electronically tunable lens integrated into its optical path. The new optical designs presented here overcome a number of outstanding obstacles, allowing the study of rapid calcium- and potentially even voltage-indicator signals both in vitro and in vivo, thereby bringing us a step closer toward distributed monitoring of action potentials.
The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of mice and men.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, J M; Michaud III, Edward J; Schoeb, T
2008-08-01
The Oak Ridge Polycystic Kidney (ORPK) mouse was described nearly 14 years ago as a model for human recessive polycystic kidney disease. The ORPK mouse arose through integration of a transgene into an intron of the Ift88 gene resulting in a hypomorphic allele (Ift88Tg737Rpw). The Ift88Tg737Rpw mutation impairs intraflagellar transport (IFT), a process required for assembly of motile and immotile cilia. Historically, the primary immotile cilium was thought to have minimal importance for human health; however, a rapidly expanding number of human disorders have now been attributed to ciliary defects. Importantly, many of these phenotypes are present and can bemore » analyzed using the ORPK mouse. In this review, we highlight the research conducted using the OPRK mouse and the phenotypes shared with human cilia disorders. Furthermore, we describe an additional follicular dysplasia phenotype in the ORPK mouse, which alongside the ectodermal dysplasias seen in human Ellis-van Creveld and Sensenbrenner's syndromes, suggests an unappreciated role for primary cilia in the skin and hair follicle.« less
Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices.
Tremblay, Marie-Ève; Zettel, Martha L; Ison, James R; Allen, Paul D; Majewska, Ania K
2012-04-01
Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical, and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. Copyright © 2012 Wiley Periodicals, Inc.
Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices
Tremblay, Marie-Ève; Zettel, Martha L.; Ison, James R.; Allen, Paul D.; Majewska, Ania K.
2011-01-01
Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. PMID:22223464
Layer-specific excitation/inhibition balances during neuronal synchronization in the visual cortex.
Adesnik, Hillel
2018-05-01
Understanding the balance between synaptic excitation and inhibition in cortical circuits in the brain, and how this contributes to cortical rhythms, is fundamental to explaining information processing in the cortex. This study used cortical layer-specific optogenetic activation in mouse cortex to show that excitatory neurons in any cortical layer can drive powerful gamma rhythms, while inhibition balances excitation. The net impact of this is to keep activity within each layer in check, but simultaneously to promote the propagation of activity to downstream layers. The data show that rhythm-generating circuits exist in all principle layers of the cortex, and provide layer-specific balances of excitation and inhibition that affect the flow of information across the layers. Rhythmic activity can synchronize neural ensembles within and across cortical layers. While gamma band rhythmicity has been observed in all layers, the laminar sources and functional impacts of neuronal synchronization in the cortex remain incompletely understood. Here, layer-specific optogenetic stimulation demonstrates that populations of excitatory neurons in any cortical layer of the mouse's primary visual cortex are sufficient to powerfully entrain neuronal oscillations in the gamma band. Within each layer, inhibition balances excitation and keeps activity in check. Across layers, translaminar output overcomes inhibition and drives downstream firing. These data establish that rhythm-generating circuits exist in all principle layers of the cortex, but provide layer-specific balances of excitation and inhibition that may dynamically shape the flow of information through cortical circuits. These data might help explain how excitation/inhibition (E/I) balances across cortical layers shape information processing, and shed light on the diverse nature and functional impacts of cortical gamma rhythms. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.
Long-term primary culture of mouse mammary tumor cells: production of virus.
Young, L J; Cardiff, R D; Ashley, R L
1975-05-01
Long-term primary cultures of mouse mammary tumor cells proved an excellent source of mouse mammary tumor virus (MMTV). Virus purified from these primary cultures had the same morphologic biochemical, immunologic, and biologic characteristics as MMTV. Quantitation of MMTV-protein equivalents released into the medium was measured by the radioimmunoassay for MMTV. Peak production levels were 20-40 mug MMTV protien equivalents/75-cm-2 flask/24 hours. These cultures produced MMTV for as long as 90 days. MMTV cultivation depended on the initial cell-plating density and hormones. Maximal MMTV release was obtained at a plating density of 1 times 10-6 cells/cm-2 in the presence of insulin and hydrocortisone. Insulin alone gave basal levels of MMTV, and hydrocortisone alone increased MMTV release only three-fold, but insulin and hydrocortisone together effected an eightfold increase in MMTV release. This suggested that hydrocortisone had a primary effect on MMTV release and insulin acted synergistically with hydrocortisone to maximize MMTV release.
Babiloni, Claudio; Marzano, Nicola; Soricelli, Andrea; Cordone, Susanna; Millán-Calenti, José Carlos; Del Percio, Claudio; Buján, Ana
2016-01-01
This article reviews three experiments on event-related potentials (ERPs) testing the hypothesis that primary visual consciousness (stimulus self-report) is related to enhanced cortical neural synchronization as a function of stimulus features. ERP peak latency and sources were compared between “seen” trials and “not seen” trials, respectively related and unrelated to the primary visual consciousness. Three salient features of visual stimuli were considered (visuospatial, emotional face expression, and written words). Results showed the typical visual ERP components in both “seen” and “not seen” trials. There was no statistical difference in the ERP peak latencies between the “seen” and “not seen” trials, suggesting a similar timing of the cortical neural synchronization regardless the primary visual consciousness. In contrast, ERP sources showed differences between “seen” and “not seen” trials. For the visuospatial stimuli, the primary consciousness was related to higher activity in dorsal occipital and parietal sources at about 400 ms post-stimulus. For the emotional face expressions, there was greater activity in parietal and frontal sources at about 180 ms post-stimulus. For the written letters, there was higher activity in occipital, parietal and temporal sources at about 230 ms post-stimulus. These results hint that primary visual consciousness is associated with an enhanced cortical neural synchronization having entirely different spatiotemporal characteristics as a function of the features of the visual stimuli and possibly, the relative qualia (i.e., visuospatial, face expression, and words). In this framework, the dorsal visual stream may be synchronized in association with the primary consciousness of visuospatial and emotional face contents. Analogously, both dorsal and ventral visual streams may be synchronized in association with the primary consciousness of linguistic contents. In this line of reasoning, the ensemble of the cortical neural networks underpinning the single visual features would constitute a sort of multi-dimensional palette of colors, shapes, regions of the visual field, movements, emotional face expressions, and words. The synchronization of one or more of these cortical neural networks, each with its peculiar timing, would produce the primary consciousness of one or more of the visual features of the scene. PMID:27445750
SSC San Diego Biennial Review 2003. Command and Control
2003-01-01
systems. IMAT systems use scientific visualizations, three- dimensional graphics, and animations to illustrate com- plex physical interactions in mission...Again, interactive animations are used to explain underlying concepts. For exam- ple, for principles of beamforming using a phased array, a three...solve complex problems. Experts type natural language text, use mouse clicks to provide hints for explanation generation, and use mouse clicks to
Zhang, Jinchao; Liu, Cuilian; Sun, Jing; Liu, Dandan; Wang, Peng
2010-01-01
The effects of water extract of Cajanus cajan (Linn.) Millsp. (Leguminosae) leaves (WECML) on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells (BMSCs) and the adipocytic trans-differentiation of mouse primary osteoblasts (OBs) were studied. The results indicated that WECML promoted the proliferation of BMSCs and OBs at most concentrations. WECML promoted the osteogenic differentiation and formation of mineralized matrix nodules of BMSCs at concentrations of 0.1, 1, and 10 microg/mL, but inhibited the osteogenic differentiation and formation of mineralized matrix nodules of BMSCs at concentration of 0.01 microg/mL. WECML inhibited the adipogenic differentiation of BMSCs and adipocytic trans-differentiation of OBs at concentrations of 0.001, 0.1, 1, 10, and 100 microg/mL, but had no effects at concentration of 0.01 microg/mL. The results suggest that WECML has protective effects on bone and these protective effects may be mediated by decreasing adipocytic cell formation from BMSCs, which may promote the proliferation, differentiation, and mineralization function of OBs. The defined active ingredients in the WECML and the active mechanism need to be further studied.
Rutkowski, Joseph M.; Markhus, Carl Erik; Gyenge, Christina C.; Alitalo, Kari; Wiig, Helge; Swartz, Melody A.
2010-01-01
Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling—predominantly collagen and fat deposition—may dictate tissue swelling and govern interstitial transport in lymphedema. PMID:20110415
Rutkowski, Joseph M; Markhus, Carl Erik; Gyenge, Christina C; Alitalo, Kari; Wiig, Helge; Swartz, Melody A
2010-03-01
Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling--predominantly collagen and fat deposition--may dictate tissue swelling and govern interstitial transport in lymphedema.
Liu, Chao; Wang, Xiaofang; Zhang, Hua; Xie, Xiaohua; Liu, Peihong; Liu, Ying; Jani, Priyam H.; Lu, Yongbo; Chen, Shuo; Qin, Chunlin
2016-01-01
Fam20c is essential for the normal mineralization of dentin and bone. The generation of odontoblast and osteoblast cell lines carrying floxed Fam20c allele can offer valuable tools for the study of the roles of Fam20c in the mineralization of dentin and bone. The limited capability of the primary odontoblasts and osteoblasts to proliferate necessitates the development of odontoblast and osteoblast cell lines serving as substitutes for the study of differentiation and mineralization of the odontoblasts and osteoblasts. In this study, we established and characterized immortalized mouse floxed Fam20c dental papilla mesenchymal and osteoblast cell lines. The isolated primary mouse floxed Fam20c dental papilla mesenchymal cells and osteoblasts were immortalized by the infection of lentivirus containing Simian Virus 40 T-antigen (SV40 T-Ag). The immortalization of floxed Fam20c dental papilla mesenchymal cells and osteoblasts was verified by the long-term passages and genomic integration of SV40 T-Ag. The immortalized floxed Fam20c dental papilla mesenchymal and osteoblast cell lines not only proliferated at a high rate and retained the morphology of their primary counterparts, but also preserved the dentin and bone specific gene expression as the primary dental papilla mesenchymal cells and osteoblasts did. Consistently, the capability of the primary floxed Fam20c dental papilla mesenchymal cells and osteoblasts to mineralize was also inherited by the immortalized dental papilla mesenchymal and osteoblast cell lines. Thus, we have successfully generated the immortalized mouse floxed Fam20c dental papilla mesenchymal and osteoblast cell lines. PMID:25833681
Allen Brain Atlas-Driven Visualizations: a web-based gene expression energy visualization tool.
Zaldivar, Andrew; Krichmar, Jeffrey L
2014-01-01
The Allen Brain Atlas-Driven Visualizations (ABADV) is a publicly accessible web-based tool created to retrieve and visualize expression energy data from the Allen Brain Atlas (ABA) across multiple genes and brain structures. Though the ABA offers their own search engine and software for researchers to view their growing collection of online public data sets, including extensive gene expression and neuroanatomical data from human and mouse brain, many of their tools limit the amount of genes and brain structures researchers can view at once. To complement their work, ABADV generates multiple pie charts, bar charts and heat maps of expression energy values for any given set of genes and brain structures. Such a suite of free and easy-to-understand visualizations allows for easy comparison of gene expression across multiple brain areas. In addition, each visualization links back to the ABA so researchers may view a summary of the experimental detail. ABADV is currently supported on modern web browsers and is compatible with expression energy data from the Allen Mouse Brain Atlas in situ hybridization data. By creating this web application, researchers can immediately obtain and survey numerous amounts of expression energy data from the ABA, which they can then use to supplement their work or perform meta-analysis. In the future, we hope to enable ABADV across multiple data resources.
[Microcomputer control of a LED stimulus display device].
Ohmoto, S; Kikuchi, T; Kumada, T
1987-02-01
A visual stimulus display system controlled by a microcomputer was constructed at low cost. The system consists of a LED stimulus display device, a microcomputer, two interface boards, a pointing device (a "mouse") and two kinds of software. The first software package is written in BASIC. Its functions are: to construct stimulus patterns using the mouse, to construct letter patterns (alphabet, digit, symbols and Japanese letters--kanji, hiragana, katakana), to modify the patterns, to store the patterns on a floppy disc, to translate the patterns into integer data which are used to display the patterns in the second software. The second software package, written in BASIC and machine language, controls display of a sequence of stimulus patterns in predetermined time schedules in visual experiments.
Local Diversity and Fine-Scale Organization of Receptive Fields in Mouse Visual Cortex
Histed, Mark H.; Yurgenson, Sergey
2011-01-01
Many thousands of cortical neurons are activated by any single sensory stimulus, but the organization of these populations is poorly understood. For example, are neurons in mouse visual cortex—whose preferred orientations are arranged randomly—organized with respect to other response properties? Using high-speed in vivo two-photon calcium imaging, we characterized the receptive fields of up to 100 excitatory and inhibitory neurons in a 200 μm imaged plane. Inhibitory neurons had nonlinearly summating, complex-like receptive fields and were weakly tuned for orientation. Excitatory neurons had linear, simple receptive fields that can be studied with noise stimuli and system identification methods. We developed a wavelet stimulus that evoked rich population responses and yielded the detailed spatial receptive fields of most excitatory neurons in a plane. Receptive fields and visual responses were locally highly diverse, with nearby neurons having largely dissimilar receptive fields and response time courses. Receptive-field diversity was consistent with a nearly random sampling of orientation, spatial phase, and retinotopic position. Retinotopic positions varied locally on average by approximately half the receptive-field size. Nonetheless, the retinotopic progression across the cortex could be demonstrated at the scale of 100 μm, with a magnification of ∼10 μm/°. Receptive-field and response similarity were in register, decreasing by 50% over a distance of 200 μm. Together, the results indicate considerable randomness in local populations of mouse visual cortical neurons, with retinotopy as the principal source of organization at the scale of hundreds of micrometers. PMID:22171051
Ding, Jiaqi; Chen, Xiaoli; Lin, Jiaji; Zhu, Junling; Li, Zhuyi
2018-01-01
Objective To study the effects of dopamine receptor D2 (DRD2) on the adipogenesis genes in mouse primary mesencephalic neurons. Methods The lentiviral vectors which expressed specific shRNA targeting DRD2 were constructed to decrease DRD2 expression in mouse primary mesencephalic neurons. High throughput sequencing (HTS) analysis was used to investigate gene expression changes between the DRD2 knock-down group and the negative control group. Real-time quantitative PCR (qRT-PCR) and Western blot analysis were applied to verify the differently expressed genes. Fatty acids were measured by fatty acid detection kit. Results DRD2 expression was effectively down-regulated in mouse primary mesencephalic neurons by lentiviral vectors. HTS revealed adipogenesis genes were significantly up-regulated after DRD2 down-regulation, mainly including delta(14)-sterol reductase, acetyl-coenzyme A synthetase, insulin-induced gene 1 protein and especially stearoyl-coenzyme A desaturase 1 (SCD1, 4-fold upregulated). The qRT-PCR and Western blot analysis verified that SCD1 was upregulated 2.6 folds and 2 folds respectively by lentiviral DRD2-shRNA vectors. Moreover, the SCD1-related free fatty acids were significantly more increased than the negative control group. Conclusion DRD2 in primary mesencephalic neurons had a significant regulative effect on the adipogenesis genes. The up-regulation of SCD1 can accelerate the conversion of saturated fatty acids to monounsaturated fatty acids and prevent the damage of lipid toxicity to cells.
COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies
2017-01-01
COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages “maps” and “maptools” to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data. PMID:29083911
COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies.
Travin, Dmitrii; Popov, Iaroslav; Guler, Arzu Tugce; Medvedev, Dmitry; van der Plas-Duivesteijn, Suzanne; Varela, Monica; Kolder, Iris C R M; Meijer, Annemarie H; Spaink, Herman P; Palmblad, Magnus
2018-01-05
COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages "maps" and "maptools" to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data.
NASA Astrophysics Data System (ADS)
Kobayashi, Takuma; Tagawa, Ayato; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Hatanaka, Yumiko; Tamura, Hideki; Ishikawa, Yasuyuki; Shiosaka, Sadao; Ohta, Jun
2010-11-01
The combination of optical imaging with voltage-sensitive dyes is a powerful tool for studying the spatiotemporal patterns of neural activity and understanding the neural networks of the brain. To visualize the potential status of multiple neurons simultaneously using a compact instrument with high density and a wide range, we present a novel measurement system using an implantable biomedical photonic LSI device with a red absorptive light filter for voltage-sensitive dye imaging (BpLSI-red). The BpLSI-red was developed for sensing fluorescence by the on-chip LSI, which was designed by using complementary metal-oxide-semiconductor (CMOS) technology. A micro-electro-mechanical system (MEMS) microfabrication technique was used to postprocess the CMOS sensor chip; light-emitting diodes (LEDs) were integrated for illumination and to enable long-term cell culture. Using the device, we succeeded in visualizing the membrane potential of 2000-3000 cells and the process of depolarization of pheochromocytoma cells (PC12 cells) and mouse cerebral cortical neurons in a primary culture with cellular resolution. Therefore, our measurement application enables the detection of multiple neural activities simultaneously.
Learning enhances the relative impact of top-down processing in the visual cortex
Makino, Hiroshi; Komiyama, Takaki
2015-01-01
Theories have proposed that in sensory cortices learning can enhance top-down modulation by higher brain areas while reducing bottom-up sensory inputs. To address circuit mechanisms underlying this process, we examined the activity of layer 2/3 (L2/3) excitatory neurons in the mouse primary visual cortex (V1) as well as L4 neurons, the main bottom-up source, and long-range top-down projections from the retrosplenial cortex (RSC) during associative learning over days using chronic two-photon calcium imaging. During learning, L4 responses gradually weakened, while RSC inputs became stronger. Furthermore, L2/3 acquired a ramp-up response temporal profile with learning, coinciding with a similar change in RSC inputs. Learning also reduced the activity of somatostatin-expressing inhibitory neurons (SOM-INs) in V1 that could potentially gate top-down inputs. Finally, RSC inactivation or SOM-IN activation was sufficient to partially reverse the learning-induced changes in L2/3. Together, these results reveal a learning-dependent dynamic shift in the balance between bottom-up and top-down information streams and uncover a role of SOM-INs in controlling this process. PMID:26167904
Noel, Gregory; Le Vee, Marc; Moreau, Amélie; Stieger, Bruno; Parmentier, Yannick; Fardel, Olivier
2013-04-11
Primary hepatocyte cultures are now considered as convenient models for in vitro analyzing liver drug transport. However, if primary human and rat hepatocytes have been well-characterized with respect to drug transporter expression and regulation, much less is known for primary mouse hepatocytes. The present study was therefore designed to gain insights about this point. The profile of sinusoidal and canalicular drug transporter mRNA expression in short time (4h)-cultured mouse hepatocytes was found to be highly correlated with that of freshly isolated hepatocytes; by contrast, those of counterparts cultured for a longer time (until 4 days) either in monolayer configurations on plastic or collagen or in sandwich configuration with matrigel were profoundly altered: uptake drug transporters such as Oct1, Oatps and Oat2 were thus down-regulated, whereas most of efflux transporters such as Mdr1a/b, Mrp3, Mrp4 and Bcrp were induced. Moreover, short time-cultured hepatocytes exhibited the highest levels of sinusoidal influx transporter activities. Transporter-mediated drug secretion into canalicular networks was however only observed in sandwich-cultured hepatocytes. Mouse hepatocytes cultured either in monolayer or sandwich configurations were finally shown to exhibit up-regulation of referent transporters in response to exposure to prototypical activators of the drug sensing receptors pregnane X receptor, aryl hydrocarbon receptor or constitutive androstane receptor. Taken together, these data demonstrate the feasibility of using primary mouse hepatocytes for investigating potential interactions of xenobiotics with hepatic transporter activity or regulation, provided that adequate culture conditions are retained. Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Dilek, Gulcin
2010-01-01
This study aims to explore the visual thinking skills of some sixth grade (12-13 year-old) primary pupils who created visual interpretations during history courses. Pupils drew pictures describing historical scenes or events based on visual sources. They constructed these illustrations by using visual and written primary and secondary sources in…
Single-Cell Analysis of Experience-Dependent Transcriptomic States in Mouse Visual Cortex
Hrvatin, Sinisa; Hochbaum, Daniel R.; Nagy, M. Aurel; Cicconet, Marcelo; Robertson, Keiramarie; Cheadle, Lucas; Zilionis, Rapolas; Ratner, Alex; Borges-Monroy, Rebeca; Klein, Allon M.; Sabatini, Bernardo L.; Greenberg, Michael E.
2017-01-01
Activity-dependent transcriptional responses shape cortical function. However, we lack a comprehensive understanding of the diversity of these responses across the full range of cortical cell types, and how these changes contribute to neuronal plasticity and disease. Here we applied high-throughput single-cell RNA-sequencing to investigate the breadth of transcriptional changes that occur across cell types in mouse visual cortex following exposure to light. We identified significant and divergent transcriptional responses to stimulation in each of the 30 cell types characterized, revealing 611 stimulus-responsive genes. Excitatory pyramidal neurons exhibit inter- and intra-laminar heterogeneity in the induction of stimulus responsive genes. Non-neuronal cells demonstrated clear transcriptional responses that may regulate experience-dependent changes in neurovascular coupling and myelination. Together, these results reveal the dynamic landscape of stimulus-dependent transcriptional changes that occur across cell types in visual cortex, which are likely critical for cortical function and may be sites of de-regulation in developmental brain disorders. PMID:29230054
A method to visualize transdermal nickel permeation in mouse skin using a nickel allergy patch
Sugiyama, Tomoko; Uo, Motohiro; Wada, Takahiro; Hongo, Toshio; Omagari, Daisuke; Komiyama, Kazuo; Oikawa, Masakazu; Kusama, Mikio; Mori, Yoshiyuki
2015-01-01
Metal patch test is often used in clinical settings when metal-induced contact dermatitis is suspected. However, the transdermal permeation behavior of metal ions from the patch test remains unclear. Current patch tests using high concentrations of metal salt solutions have some side effects, e.g. acute skin reactions to high concentrations of metal salt. To resolve these, estimating metal ion transdermal permeation is wished. In this study, synchrotron radiation X-ray fluorescence (SR-XRF) and micro-focused particle-induced X-ray emission (micro-PIXE) were used to visualize the time-dependent Ni permeation in mouse skin. The cross-sectional diffusion of Ni was visualized in a time-dependent manner. Our results indicate that maximum Ni permeation occurs after 24 h of patch treatment, and the permeated Ni content was high in the epidermis and spread into the dermis beyond the basal layer. This method may be useful to determine the appropriate solution concentration and duration of administration for the patch test. PMID:26484550
Speed, spatial, and temporal tuning of rod and cone vision in mouse.
Umino, Yumiko; Solessio, Eduardo; Barlow, Robert B
2008-01-02
Rods and cones subserve mouse vision over a 100 million-fold range of light intensity (-6 to 2 log cd m(-2)). Rod pathways tune vision to the temporal frequency of stimuli (peak, 0.75 Hz) and cone pathways to their speed (peak, approximately 12 degrees/s). Both pathways tune vision to the spatial components of stimuli (0.064-0.128 cycles/degree). The specific photoreceptor contributions were determined by two-alternative, forced-choice measures of contrast thresholds for optomotor responses of C57BL/6J mice with normal vision, Gnat2(cpfl3) mice without functional cones, and Gnat1-/- mice without functional rods. Gnat2(cpfl3) mice (threshold, -6.0 log cd m(-2)) cannot see rotating gratings above -2.0 log cd m(-2) (photopic vision), and Gnat1-/- mice (threshold, -4.0 log cd m(-2)) are blind below -4.0 log cd m(-2) (scotopic vision). Both genotypes can see in the transitional mesopic range (-4.0 to -2.0 log cd m(-2)). Mouse rod and cone sensitivities are similar to those of human. This parametric study characterizes the functional properties of the mouse visual system, revealing the rod and cone contributions to contrast sensitivity and to the temporal processing of visual stimuli.
A Novel, Real-Time, In Vivo Mouse Retinal Imaging System.
Butler, Mark C; Sullivan, Jack M
2015-11-01
To develop an efficient, low-cost instrument for robust real-time imaging of the mouse retina in vivo, and assess system capabilities by evaluating various animal models. Following multiple disappointing attempts to visualize the mouse retina during a subretinal injection using commercially available systems, we identified the key limitation to be inadequate illumination due to off axis illumination and poor optical train optimization. Therefore, we designed a paraxial illumination system for Greenough-type stereo dissecting microscope incorporating an optimized optical launch and an efficiently coupled fiber optic delivery system. Excitation and emission filters control spectral bandwidth. A color coupled-charged device (CCD) camera is coupled to the microscope for image capture. Although, field of view (FOV) is constrained by the small pupil aperture, the high optical power of the mouse eye, and the long working distance (needed for surgical manipulations), these limitations can be compensated by eye positioning in order to observe the entire retina. The retinal imaging system delivers an adjustable narrow beam to the dilated pupil with minimal vignetting. The optic nerve, vasculature, and posterior pole are crisply visualized and the entire retina can be observed through eye positioning. Normal and degenerative retinal phenotypes can be followed over time. Subretinal or intraocular injection procedures are followed in real time. Real-time, intravenous fluorescein angiography for the live mouse has been achieved. A novel device is established for real-time viewing and image capture of the small animal retina during subretinal injections for preclinical gene therapy studies.
High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes.
Walk, Elyse L; McLaughlin, Sarah L; Weed, Scott A
2015-07-25
High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease.
Compression and reflection of visually evoked cortical waves
Xu, Weifeng; Huang, Xiaoying; Takagaki, Kentaroh; Wu, Jian-young
2007-01-01
Summary Neuronal interactions between primary and secondary visual cortical areas are important for visual processing, but the spatiotemporal patterns of the interaction are not well understood. We used voltage-sensitive dye imaging to visualize neuronal activity in rat visual cortex and found novel visually evoked waves propagating from V1 to other visual areas. A primary wave originated in the monocular area of V1 and was “compressed” when propagating to V2. A reflected wave initiated after compression and propagated backward into V1. The compression occurred at the V1/V2 border, and local GABAA inhibition is important for the compression. The compression/reflection pattern provides a two-phase modulation: V1 is first depolarized by the primary wave and then V1 and V2 are simultaneously depolarized by the reflected and primary waves, respectively. The compression/reflection pattern only occurred for evoked but not for spontaneous waves, suggesting that it is organized by an internal mechanism associated with visual processing. PMID:17610821
ERIC Educational Resources Information Center
Metsiou, Katerina; Papadopoulos, Konstantinos; Agaliotis, Ioannis
2011-01-01
This study explored the adaptive behavior of primary school students with visual impairments, as well as the impact of educational setting on their adaptive behavior. Instrumentation included an informal questionnaire and the Vineland Adaptive Behavior Scales. Participants were 36 primary school students with visual impairments. The educational…
2014-07-01
Molecular evidence of stress- induced acute heart injury in a mouse model simulating posttraumatic stress disorder. Proc Natl Acad Sci U S A. 2014 Feb...obtaining measures aligned with the core neurocognitive domains: IQ, working memory ( auditory /visual), processing speed, verbal memory (immediate...in the test sample and combined sample with a similar pattern for the validation sample. Similarly, performance on tests of auditory and visual
A novel toxicogenomics-based approach to categorize (non-)genotoxic carcinogens.
Schaap, Mirjam M; Wackers, Paul F K; Zwart, Edwin P; Huijskens, Ilse; Jonker, Martijs J; Hendriks, Giel; Breit, Timo M; van Steeg, Harry; van de Water, Bob; Luijten, Mirjam
2015-12-01
Alternative methods to detect non-genotoxic carcinogens are urgently needed, as this class of carcinogens goes undetected in the current testing strategy for carcinogenicity under REACH. A complicating factor is that non-genotoxic carcinogens act through several distinctive modes of action, which makes prediction of their carcinogenic property difficult. We have recently demonstrated that gene expression profiling in primary mouse hepatocytes is a useful approach to categorize non-genotoxic carcinogens according to their modes of action. In the current study, we improved the methods used for analysis and added mouse embryonic stem cells as a second in vitro test system, because of their features complementary to hepatocytes. Our approach involved an unsupervised analysis based on the 30 most significantly up- and down-regulated genes per chemical. Mouse embryonic stem cells and primary mouse hepatocytes were exposed to a selected set of chemicals and subsequently subjected to gene expression profiling. We focused on non-genotoxic carcinogens, but also included genotoxic carcinogens and non-carcinogens to test the robustness of this approach. Application of the optimized comparison approach resulted in improved categorization of non-genotoxic carcinogens. Mouse embryonic stem cells were a useful addition, especially for genotoxic substances, but also for detection of non-genotoxic carcinogens that went undetected by primary hepatocytes. The approach presented here is an important step forward to categorize chemicals, especially those that are carcinogenic.
Yu, Zhanyang; Liu, Ning; Li, Yadan; Xu, Jianfeng; Wang, Xiaoying
2013-08-01
Neuroglobin (Ngb) is an endogenous neuroprotective molecule against hypoxic/ischemic brain injury, but the underlying mechanisms remain largely undefined. Our recent study revealed that Ngb can bind to voltage-dependent anion channel (VDAC), a regulator of mitochondria permeability transition (MPT). In this study we examined the role of Ngb in MPT pore (mPTP) opening following oxygen-glucose deprivation (OGD) in primary cultured mouse cortical neurons. Co-immunoprecipitation (Co-IP) and immunocytochemistry showed that the binding between Ngb and VDAC was increased after OGD compared to normoxia, indicating the OGD-enhanced Ngb-VDAC interaction. Ngb overexpression protected primary mouse cortical neurons from OGD-induced neuronal death, to an extent comparable to mPTP opening inhibitor, cyclosporine A (CsA) pretreatment. We further measured the role of Ngb in OGD-induced mPTP opening using Ngb overexpression and knockdown approaches in primary cultured neurons, and recombinant Ngb exposure to isolated mitochondria. Same as CsA pretreatment, Ngb overexpression significantly reduced OGD-induced mPTP opening markers including mitochondria swelling, mitochondrial NAD(+) release, and cytochrome c (Cyt c) release in primary cultured neurons. Recombinant Ngb incubation significantly reduced OGD-induced NAD(+) release and Cyt c release from isolated mitochondria. In contrast, Ngb knockdown significantly increased OGD-induced neuron death, and increased OGD-induced mitochondrial NAD(+) release and Cyt c release as well, and these outcomes could be rescued by CsA pretreatment. In summary, our results demonstrated that Ngb overexpression can inhibit OGD-induced mPTP opening in primary cultured mouse cortical neurons, which may be one of the molecular mechanisms of Ngb's neuroprotection. Copyright © 2013 Elsevier Inc. All rights reserved.
Liu, Chao; Wang, Xiaofang; Zhang, Hua; Xie, Xiaohua; Liu, Peihong; Liu, Ying; Jani, Priyam H; Lu, Yongbo; Chen, Shuo; Qin, Chunlin
2015-11-01
Fam20c is essential for the normal mineralization of dentin and bone. The generation of odontoblast and osteoblast cell lines carrying floxed Fam20c allele can offer valuable tools for the study of the roles of Fam20c in the mineralization of dentin and bone. The limited capability of the primary odontoblasts and osteoblasts to proliferate necessitates the development of odontoblast and osteoblast cell lines serving as substitutes for the study of differentiation and mineralization of the odontoblasts and osteoblasts. In this study, we established and characterized immortalized mouse floxed Fam20c dental papilla mesenchymal and osteoblast cell lines. The isolated primary mouse floxed Fam20c dental papilla mesenchymal cells and osteoblasts were immortalized by the infection of lentivirus containing Simian Virus 40 T-antigen (SV40 T-Ag). The immortalization of floxed Fam20c dental papilla mesenchymal cells and osteoblasts was verified by the long-term passages and genomic integration of SV40 T-Ag. The immortalized floxed Fam20c dental papilla mesenchymal and osteoblast cell lines not only proliferated at a high rate and retained the morphology of their primary counterparts, but also preserved the dentin and bone specific gene expression as the primary dental papilla mesenchymal cells and osteoblasts did. Consistently, the capability of the primary floxed Fam20c dental papilla mesenchymal cells and osteoblasts to mineralize was also inherited by the immortalized dental papilla mesenchymal and osteoblast cell lines. Thus, we have successfully generated the immortalized mouse floxed Fam20c dental papilla mesenchymal and osteoblast cell lines. © 2015 Wiley Periodicals, Inc.
When apperceptive agnosia is explained by a deficit of primary visual processing.
Serino, Andrea; Cecere, Roberto; Dundon, Neil; Bertini, Caterina; Sanchez-Castaneda, Cristina; Làdavas, Elisabetta
2014-03-01
Visual agnosia is a deficit in shape perception, affecting figure, object, face and letter recognition. Agnosia is usually attributed to lesions to high-order modules of the visual system, which combine visual cues to represent the shape of objects. However, most of previously reported agnosia cases presented visual field (VF) defects and poor primary visual processing. The present case-study aims to verify whether form agnosia could be explained by a deficit in basic visual functions, rather that by a deficit in high-order shape recognition. Patient SDV suffered a bilateral lesion of the occipital cortex due to anoxia. When tested, he could navigate, interact with others, and was autonomous in daily life activities. However, he could not recognize objects from drawings and figures, read or recognize familiar faces. He was able to recognize objects by touch and people from their voice. Assessments of visual functions showed blindness at the centre of the VF, up to almost 5°, bilaterally, with better stimulus detection in the periphery. Colour and motion perception was preserved. Psychophysical experiments showed that SDV's visual recognition deficits were not explained by poor spatial acuity or by the crowding effect. Rather a severe deficit in line orientation processing might be a key mechanism explaining SDV's agnosia. Line orientation processing is a basic function of primary visual cortex neurons, necessary for detecting "edges" of visual stimuli to build up a "primal sketch" for object recognition. We propose, therefore, that some forms of visual agnosia may be explained by deficits in basic visual functions due to widespread lesions of the primary visual areas, affecting primary levels of visual processing. Copyright © 2013 Elsevier Ltd. All rights reserved.
Studies on Typhus and Spotted Fever.
1980-02-01
prowazekii-infected human somatic (fibroblast, endothelia)), but not chick, mouse or monkey , cells in culture: (a) intracellular antirickettsial action...that of the controls. No such effect on growth was apparent in CE cells, Nu E % o0 M Ŕ ZOO - .0 E 00 (1 CI - 4D W = .) C ~ o r- -!NBI Go !N 21501,,o o...human origin transformed or malignant cells, monkey primary or diploid and primary mouse embryo fibroblasts will permit expression of these effects to
Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K
2017-02-01
Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse -1 . At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL) -1 ·mouse -1 ) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.
Spatial Correlations in Natural Scenes Modulate Response Reliability in Mouse Visual Cortex
Rikhye, Rajeev V.
2015-01-01
Intrinsic neuronal variability significantly limits information encoding in the primary visual cortex (V1). Certain stimuli can suppress this intertrial variability to increase the reliability of neuronal responses. In particular, responses to natural scenes, which have broadband spatiotemporal statistics, are more reliable than responses to stimuli such as gratings. However, very little is known about which stimulus statistics modulate reliable coding and how this occurs at the neural ensemble level. Here, we sought to elucidate the role that spatial correlations in natural scenes play in reliable coding. We developed a novel noise-masking method to systematically alter spatial correlations in natural movies, without altering their edge structure. Using high-speed two-photon calcium imaging in vivo, we found that responses in mouse V1 were much less reliable at both the single neuron and population level when spatial correlations were removed from the image. This change in reliability was due to a reorganization of between-neuron correlations. Strongly correlated neurons formed ensembles that reliably and accurately encoded visual stimuli, whereas reducing spatial correlations reduced the activation of these ensembles, leading to an unreliable code. Together with an ensemble-specific normalization model, these results suggest that the coordinated activation of specific subsets of neurons underlies the reliable coding of natural scenes. SIGNIFICANCE STATEMENT The natural environment is rich with information. To process this information with high fidelity, V1 neurons have to be robust to noise and, consequentially, must generate responses that are reliable from trial to trial. While several studies have hinted that both stimulus attributes and population coding may reduce noise, the details remain unclear. Specifically, what features of natural scenes are important and how do they modulate reliability? This study is the first to investigate the role of spatial correlations, which are a fundamental attribute of natural scenes, in shaping stimulus coding by V1 neurons. Our results provide new insights into how stimulus spatial correlations reorganize the correlated activation of specific ensembles of neurons to ensure accurate information processing in V1. PMID:26511254
Automatic detection and quantitative analysis of cells in the mouse primary motor cortex
NASA Astrophysics Data System (ADS)
Meng, Yunlong; He, Yong; Wu, Jingpeng; Chen, Shangbin; Li, Anan; Gong, Hui
2014-09-01
Neuronal cells play very important role on metabolism regulation and mechanism control, so cell number is a fundamental determinant of brain function. Combined suitable cell-labeling approaches with recently proposed three-dimensional optical imaging techniques, whole mouse brain coronal sections can be acquired with 1-μm voxel resolution. We have developed a completely automatic pipeline to perform cell centroids detection, and provided three-dimensional quantitative information of cells in the primary motor cortex of C57BL/6 mouse. It involves four principal steps: i) preprocessing; ii) image binarization; iii) cell centroids extraction and contour segmentation; iv) laminar density estimation. Investigations on the presented method reveal promising detection accuracy in terms of recall and precision, with average recall rate 92.1% and average precision rate 86.2%. We also analyze laminar density distribution of cells from pial surface to corpus callosum from the output vectorizations of detected cell centroids in mouse primary motor cortex, and find significant cellular density distribution variations in different layers. This automatic cell centroids detection approach will be beneficial for fast cell-counting and accurate density estimation, as time-consuming and error-prone manual identification is avoided.
NASA Astrophysics Data System (ADS)
Wilson, John J.; Palaniappan, Ramaswamy
2011-04-01
The steady state visual evoked protocol has recently become a popular paradigm in brain-computer interface (BCI) applications. Typically (regardless of function) these applications offer the user a binary selection of targets that perform correspondingly discrete actions. Such discrete control systems are appropriate for applications that are inherently isolated in nature, such as selecting numbers from a keypad to be dialled or letters from an alphabet to be spelled. However motivation exists for users to employ proportional control methods in intrinsically analogue tasks such as the movement of a mouse pointer. This paper introduces an online BCI in which control of a mouse pointer is directly proportional to a user's intent. Performance is measured over a series of pointer movement tasks and compared to the traditional discrete output approach. Analogue control allowed subjects to move the pointer faster to the cued target location compared to discrete output but suffers more undesired movements overall. Best performance is achieved when combining the threshold to movement of traditional discrete techniques with the range of movement offered by proportional control.
Preservation of three-dimensional spatial structure in the gut microbiome.
Hasegawa, Yuko; Mark Welch, Jessica L; Rossetti, Blair J; Borisy, Gary G
2017-01-01
Preservation of three-dimensional structure in the gut is necessary in order to analyze the spatial organization of the gut microbiota and gut luminal contents. In this study, we evaluated preparation methods for mouse gut with the goal of preserving micron-scale spatial structure while performing fluorescence imaging assays. Our evaluation of embedding methods showed that commonly used media such as Tissue-Tek Optimal Cutting Temperature (OCT) compound, paraffin, and polyester waxes resulted in redistribution of luminal contents. By contrast, a hydrophilic methacrylate resin, Technovit H8100, preserved three-dimensional organization. Our mouse intestinal preparation protocol optimized using the Technovit H8100 embedding method was compatible with microbial fluorescence in situ hybridization (FISH) and other labeling techniques, including immunostaining and staining with both wheat germ agglutinin (WGA) and 4', 6-diamidino-2-phenylindole (DAPI). Mucus could be visualized whether the sample was fixed with paraformaldehyde (PFA) or with Carnoy's fixative. The protocol optimized in this study enabled simultaneous visualization of micron-scale spatial patterns formed by microbial cells in the mouse intestines along with biogeographical landmarks such as host-derived mucus and food particles.
In vivo microscopy of the mouse brain using multiphoton laser scanning techniques
NASA Astrophysics Data System (ADS)
Yoder, Elizabeth J.
2002-06-01
The use of multiphoton microscopy for imaging mouse brain in vivo offers several advantages and poses several challenges. This tutorial begins by briefly comparing multiphoton microscopy with other imaging modalities used to visualize the brain and its activity. Next, an overview of the techniques for introducing fluorescence into whole animals to generate contrast for in vivo microscopy using two-photon excitation is presented. Two different schemes of surgically preparing mice for brain imaging with multiphoton microscopy are reviewed. Then, several issues and problems with in vivo microscopy - including motion artifact, respiratory and cardiac rhythms, maintenance of animal health, anesthesia, and the use of fiducial markers - are discussed. Finally, examples of how these techniques have been applied to visualize the cerebral vasculature and its response to hypercapnic stimulation are provided.
The multisensory function of the human primary visual cortex.
Murray, Micah M; Thelen, Antonia; Thut, Gregor; Romei, Vincenzo; Martuzzi, Roberto; Matusz, Pawel J
2016-03-01
It has been nearly 10 years since Ghazanfar and Schroeder (2006) proposed that the neocortex is essentially multisensory in nature. However, it is only recently that sufficient and hard evidence that supports this proposal has accrued. We review evidence that activity within the human primary visual cortex plays an active role in multisensory processes and directly impacts behavioural outcome. This evidence emerges from a full pallet of human brain imaging and brain mapping methods with which multisensory processes are quantitatively assessed by taking advantage of particular strengths of each technique as well as advances in signal analyses. Several general conclusions about multisensory processes in primary visual cortex of humans are supported relatively solidly. First, haemodynamic methods (fMRI/PET) show that there is both convergence and integration occurring within primary visual cortex. Second, primary visual cortex is involved in multisensory processes during early post-stimulus stages (as revealed by EEG/ERP/ERFs as well as TMS). Third, multisensory effects in primary visual cortex directly impact behaviour and perception, as revealed by correlational (EEG/ERPs/ERFs) as well as more causal measures (TMS/tACS). While the provocative claim of Ghazanfar and Schroeder (2006) that the whole of neocortex is multisensory in function has yet to be demonstrated, this can now be considered established in the case of the human primary visual cortex. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dissection of the Mouse Pancreas for Histological Analysis and Metabolic Profiling.
Veite-Schmahl, Michelle J; Regan, Daniel P; Rivers, Adam C; Nowatzke, Joseph F; Kennedy, Michael A
2017-08-19
We have been investigating the pancreas specific transcription factor, 1a cre-recombinase; lox-stop-lox- Kristen rat sarcoma, glycine to aspartic acid at the 12 codon (Ptf1a cre/+ ;LSL-Kras G12D/+ ) mouse strain as a model of human pancreatic cancer. The goal of our current studies is to identify novel metabolic biomarkers of pancreatic cancer progression. We have performed metabolic profiling of urine, feces, blood, and pancreas tissue extracts, as well as histological analyses of the pancreas to stage the cancer progression. The mouse pancreas is not a well-defined solid organ like in humans, but rather is a diffusely distributed soft tissue that is not easily identified by individuals unfamiliar with mouse internal anatomy or by individuals that have little or no experience performing mouse organ dissections. The purpose of this article is to provide a detailed step-wise visual demonstration to guide novices in the removal of the mouse pancreas by dissection. This article should be especially valuable to students and investigators new to research that requires harvesting of the mouse pancreas by dissection for metabolic profiling or histological analyses.
Mouse Tumor Biology (MTB): a database of mouse models for human cancer.
Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T
2015-01-01
The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Generation of human acute lymphoblastic leukemia xenografts for use in oncology drug discovery
Holmfeldt, Linda
2015-01-01
The establishment of reproducible mouse models of acute lymphoblastic leukemia (ALL) is necessary to provide in vivo therapeutic models that recapitulate human ALL, and for amplification of limiting amounts of primary tumor material. A frequently used model is the primary xenograft model that utilizes immunocompromised mice and involves injection of primary patient tumor specimens into mice, and subsequent serial passaging of the tumors by retransplants of cells harvested from the mouse bone marrow and spleen. The tumors generated can then be used for genomic profiling, ex vivo compound testing, mechanistic studies and retransplantation. This unit describes detailed procedures for the establishment and maintenance of primary ALL xenograft panels for potential use in basic research or translational studies. PMID:25737157
Nakamura, Kouichi; Watakabe, Akiya; Hioki, Hiroyuki; Fujiyama, Fumino; Tanaka, Yasuyo; Yamamori, Tetsuo; Kaneko, Takeshi
2007-12-01
Vesicular glutamate transporter 1 (VGLUT1) and VGLUT2 show complementary distribution in neocortex; VGLUT1 is expressed mainly in axon terminals of neocortical neurons, whereas VGLUT2 is located chiefly in thalamocortical axon terminals. However, we recently reported a frequent colocalization of VGLUT1 and VGLUT2 at a subset of axon terminals in postnatal developing neocortex. We here quantified the frequency of colocalization between VGLUT1 and VGLUT2 immunoreactivities at single axon terminals by using the correlation coefficient (CC) as an indicator in order to determine the time course and spatial extent of the colocalization during postnatal development of mouse neocortex. The colocalization was more frequent in the primary somatosensory (S1) area than in both the primary visual (V1) and the motor areas; of area S1 cortical layers, colocalization was most evident in layer IV barrels at postnatal day (P) 7 and in adulthood. CC in layer IV showed a peak at P7 in area S1, and at P10 in area V1 though the latter peak was much smaller than the former. These results suggest that thalamocortical axon terminals contained not only VGLUT2 but also VGLUT1, especially at P7-10. Double fluorescence in situ hybridization confirmed coexpression of VGLUT1 and VGLUT2 mRNAs at P7 in the somatosensory thalamic nuclei and later in the thalamic dorsal lateral geniculate nucleus. As VGLUT1 is often used in axon terminals that show synaptic plasticity in adult brain, the present findings suggest that VGLUT1 is used in thalamocortical axons transiently during the postnatal period when plasticity is required.
Autophagy as a melanocytic self-defense mechanism.
Setaluri, Vijayasaradhi
2015-05-01
Defects in autophagy have implications for melanocyte survival and manifestations of skin pigmentary disorders. Zhang et al. (2015) show that mouse melanocytes lacking the autophagy protein Atg7 undergo premature senescence in vitro and accumulate products of oxidative damage, despite activation of the redox response. Interestingly, contrary to previous findings, the melanocyte-specific deficiency in autophagy did not cause major defects in melanosome biogenesis, nor did it produce visually striking changes in mouse coat color.
Primary Tumor and MEF Cell Isolation to Study Lung Metastasis.
Dong, Shengli; Maziveyi, Mazvita; Alahari, Suresh K
2015-05-20
In breast tumorigenesis, the metastatic stage of the disease poses the greatest threat to the affected individual. Normal breast cells with altered genotypes now possess the ability to invade and survive in other tissues. In this protocol, mouse mammary tumors are removed and primary cells are prepared from tumors. The cells isolated from this procedure are then available for gene profiling experiments. For successful metastasis, these cells must be able to intravasate, survive in circulation, extravasate to distant organs, and survive in that new organ system. The lungs are the typical target of breast cancer metastasis. A set of genes have been discovered that mediates the selectivity of metastasis to the lung. Here we describe a method of studying lung metastasis from a genetically engineered mouse model.. Furthermore, another protocol for analyzing mouse embryonic fibroblasts (MEFs) from the mouse embryo is included. MEF cells from the same animal type provide a clue of non-cancer cell gene expression. Together, these techniques are useful in studying mouse mammary tumorigenesis, its associated signaling mechanisms and pathways of the abnormalities in embryos.
Expression, subcellular localization, and regulation of sigma receptor in retinal muller cells.
Jiang, Guoliang; Mysona, Barbara; Dun, Ying; Gnana-Prakasam, Jaya P; Pabla, Navjotsin; Li, Weiguo; Dong, Zheng; Ganapathy, Vadivel; Smith, Sylvia B
2006-12-01
Sigma receptors (sigmaRs) are nonopioid, nonphencyclidine binding sites with robust neuroprotective properties. Type 1 sigmaR1 (sigmaR1) is expressed in brain oligodendrocytes, but its expression and binding capacity have not been analyzed in retinal glial cells. This study examined the expression, subcellular localization, binding activity, and regulation of sigmaR1 in retinal Müller cells. Primary mouse Müller cells (MCs) were analyzed by RT-PCR, immunoblotting, and immunocytochemistry for the expression of sigmaR1, and data were compared with those of the rat Müller cell line (rMC-1) and the rat ganglion cell line (RGC-5). Confocal microscopy was used to determine the subcellular sigmaR1 location in primary mouse MCs. Membranes prepared from these cells were used for binding assays with [3H]-pentazocine (PTZ). The kinetics of binding, the ability of various sigmaR1 ligands to compete with sigmaR1 binding, and the effects of donated nitric oxide (NO) and reactive oxygen species (ROS) on binding were examined. sigmaR1 is expressed in primary mouse MCs and is localized to the nuclear and endoplasmic reticulum membranes. Binding assays showed that in primary mouse MCs, rMC-1, and RGC-5, the binding of PTZ was saturable. [3H]-PTZ bound with high affinity in RGC-5 and rMC-1 cells, and the binding was similarly robust in primary mouse MCs. Competition studies showed marked inhibition of [3H]-PTZ binding in the presence of sigmaR1-specific ligands. Incubation of cells with NO and ROS donors markedly increased sigmaR1 binding activity. MCs express sigmaR1 and demonstrate robust sigmaR1 binding activity, which is inhibited by sigmaR1 ligands and is stimulated during oxidative stress. The potential of Müller cells to bind sigmaR1 ligands may prove beneficial in retinal degenerative diseases such as diabetic retinopathy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freund, R.; Bauer, P.H.; Benjamin, T.L.
1994-11-01
The authors have examined the growth properties of polyomavirus large T-antigen mutants that ar unable to bind pRB, the product of the retinoblastoma tumor suppressor gene. These mutants grow poorly on primary mouse cells yet grow well on NIH 3T3 and other established mouse cell lines. Preinfection of primary baby mouse kidney (BMK) epithelial cells with wild-type simian virus 40 renders these cells permissive to growth of pRB-binding polyomavirus mutants. Conversely, NIH 3T3 cells transfected by and expressing wild-type human pRB become nonpermissive. Primary fibroblasts for mouse embryos that carry a homozygous knockout of the RB gene are permissive, whilemore » those from normal littermates are nonpermissive. The host range of polyomavirus pRB-binding mutants is thus determined by expression or lack of expression of functional pRB by the host. These results demonstrate the importance of pRB binding by large T antigen for productive viral infection in primary cells. Failure of pRB-binding mutants to grow well in BMK cells correlates with their failure to induce progression from G{sub 0} or G{sub 1} through the S phase of the cell cycle. Time course studies show delayed synthesis and lower levels of accumulation of large T antigen, viral DNA, and VP1 in mutant compared with wild-type virus-infected BMK cells. These results support a model in which productive infection by polyomavirus in normal mouse cells is tightly coupled to the induction and progression of the cell cycle. 48 refs., 6 figs., 5 tabs.« less
Hosang, Leon; Yusifov, Rashad; Löwel, Siegrid
2018-01-01
For routine behavioral tasks, mice predominantly rely on olfactory cues and tactile information. In contrast, their visual capabilities appear rather restricted, raising the question whether they can improve if vision gets more behaviorally relevant. We therefore performed long-term training using the visual water task (VWT): adult standard cage (SC)-raised mice were trained to swim toward a rewarded grating stimulus so that using visual information avoided excessive swimming toward nonrewarded stimuli. Indeed, and in contrast to old mice raised in a generally enriched environment (Greifzu et al., 2016), long-term VWT training increased visual acuity (VA) on average by more than 30% to 0.82 cycles per degree (cyc/deg). In an individual animal, VA even increased to 1.49 cyc/deg, i.e., beyond the rat range of VAs. Since visual experience enhances the spatial frequency threshold of the optomotor (OPT) reflex of the open eye after monocular deprivation (MD), we also quantified monocular vision after VWT training. Monocular VA did not increase reliably, and eye reopening did not initiate a decline to pre-MD values as observed by optomotry; VA values rather increased by continued VWT training. Thus, optomotry and VWT measure different parameters of mouse spatial vision. Finally, we tested whether long-term MD induced ocular dominance (OD) plasticity in the visual cortex of adult [postnatal day (P)162-P182] SC-raised mice. This was indeed the case: 40-50 days of MD induced OD shifts toward the open eye in both VWT-trained and, surprisingly, also in age-matched mice without VWT training. These data indicate that (1) long-term VWT training increases adult mouse VA, and (2) long-term MD induces OD shifts also in adult SC-raised mice.
Li, Fengling; Jiang, Weiqian; Wang, Tian-Yi; Xie, Taorong; Yao, Haishan
2018-05-21
In the primary visual cortex (V1), neuronal responses to stimuli within the receptive field (RF) are modulated by stimuli in the RF surround. A common effect of surround modulation is surround suppression, which is dependent on the feature difference between stimuli within and surround the RF and is suggested to be involved in the perceptual phenomenon of figure-ground segregation. In this study, we examined the relationship between feature-specific surround suppression of V1 neurons and figure detection behavior based on figure-ground feature difference. We trained freely moving mice to perform a figure detection task using figure and ground gratings that differed in spatial phase. The performance of figure detection increased with the figure-ground phase difference, and was modulated by stimulus contrast. Electrophysiological recordings from V1 in head-fixed mice showed that the increase in phase difference between stimuli within and surround the RF caused a reduction in surround suppression, which was associated with an increase in V1 neural discrimination between stimuli with and without RF-surround phase difference. Consistent with the behavioral performance, the sensitivity of V1 neurons to RF-surround phase difference could be influenced by stimulus contrast. Furthermore, inhibiting V1 by optogenetically activating either parvalbumin (PV)- or somatostatin (SOM)-expressing inhibitory neurons both decreased the behavioral performance of figure detection. Thus, the phase-specific surround suppression in V1 represents a neural correlate of figure detection behavior based on figure-ground phase discontinuity. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Data and animal management software for large-scale phenotype screening.
Ching, Keith A; Cooke, Michael P; Tarantino, Lisa M; Lapp, Hilmar
2006-04-01
The mouse N-ethyl-N-nitrosourea (ENU) mutagenesis program at the Genomics Institute of the Novartis Research Foundation (GNF) uses MouseTRACS to analyze phenotype screens and manage animal husbandry. MouseTRACS is a Web-based laboratory informatics system that electronically records and organizes mouse colony operations, prints cage cards, tracks inventory, manages requests, and reports Institutional Animal Care and Use Committee (IACUC) protocol usage. For efficient phenotype screening, MouseTRACS identifies mutants, visualizes data, and maps mutations. It displays and integrates phenotype and genotype data using likelihood odds ratio (LOD) plots of genetic linkage between genotype and phenotype. More detailed mapping intervals show individual single nucleotide polymorphism (SNP) markers in the context of phenotype. In addition, dynamically generated pedigree diagrams and inventory reports linked to screening results summarize the inheritance pattern and the degree of penetrance. MouseTRACS displays screening data in tables and uses standard charts such as box plots, histograms, scatter plots, and customized charts looking at clustered mice or cross pedigree comparisons. In summary, MouseTRACS enables the efficient screening, analysis, and management of thousands of animals to find mutant mice and identify novel gene functions. MouseTRACS is available under an open source license at http://www.mousetracs.sourceforge.net.
Bernard, Quentin; Wang, Zhenping; Di Nardo, Anna; Boulanger, Nathalie
2017-06-27
Borrelia burgdorferi (sensu lato), the causative agent of Lyme borreliosis is a bacterium transmitted by hard ticks, Ixodes spp. Bacteria are injected into the host skin during the tick blood meal with tick saliva. There, Borrelia and saliva interact together with skin cells such as keratinocytes, fibroblasts, mast cells and other specific immune cells before disseminating to target organs. To study the role of mast cells in the transmission of Lyme borreliosis, we isolated mouse primary mast cells from bone marrow and incubated them in the presence of Borrelia burgdorferi (sensu stricto) and tick salivary gland extract. We further analyzed their potential role in vivo, in a mouse model of deficient in mast cells (Kit wsh-/- mice). To our knowledge, we report here for the first time the bacteria ability to induce the inflammatory response of mouse primary mast cells. We show that OspC, a major surface lipoprotein involved in the early transmission of Borrelia, induces the degranulation of primary mast cells but has a limited effect on the overall inflammatory response of these cells. In contrast, whole bacteria have an opposite effect. We also show that mast cell activation is significantly inhibited by tick salivary gland extract. Finally, we demonstrate that mast cells are likely not the only host cells involved in the early transmission and dissemination of Borrelia since the use of mast cell deficient Kit wsh-/- mice shows a limited impact on these two processes in the context of this mouse genetic background. The absence of mast cells did not change the replication rate of Borrelia in the skin. However, in the absence of mast cells, Borrelia dissemination to the joints was faster. Mast cells do not control skin bacterial proliferation during primary infection and the establishment of the primary infection, as shown in the C57BL/6 mouse model studied. Nevertheless, the Borrelia induced cytotokine modulation on mast cells might be involved in long term and/or repeated infections and protect from Lyme borreliosis due to the development of a hypersensitivity to tick saliva.
Multi-modal information processing for visual workload relief
NASA Technical Reports Server (NTRS)
Burke, M. W.; Gilson, R. D.; Jagacinski, R. J.
1980-01-01
The simultaneous performance of two single-dimensional compensatory tracking tasks, one with the left hand and one with the right hand, is discussed. The tracking performed with the left hand was considered the primary task and was performed with a visual display or a quickened kinesthetic-tactual (KT) display. The right-handed tracking was considered the secondary task and was carried out only with a visual display. Although the two primary task displays had afforded equivalent performance in a critical tracking task performed alone, in the dual-task situation the quickened KT primary display resulted in superior secondary visual task performance. Comparisons of various combinations of primary and secondary visual displays in integrated or separated formats indicate that the superiority of the quickened KT display is not simply due to the elimination of visual scanning. Additional testing indicated that quickening per se also is not the immediate cause of the observed KT superiority.
Lithium treatment elongates primary cilia in the mouse brain and in cultured cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyoshi, Ko, E-mail: miyoshi@cc.okayama-u.ac.jp; Kasahara, Kyosuke; Miyazaki, Ikuko
2009-10-30
The molecular mechanisms underlying the therapeutic effects of lithium, a first-line antimanic mood stabilizer, have not yet been fully elucidated. Treatment of the algae Chlamydomonas reinhardtii with lithium has been shown to induce elongation of their flagella, which are analogous structures to vertebrate cilia. In the mouse brain, adenylyl cyclase 3 (AC3) and certain neuropeptide receptors colocalize to the primary cilium of neuronal cells, suggesting a chemosensory function for the primary cilium in the nervous system. Here we show that lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Brain sections from mice chronically fed withmore » Li{sub 2}CO{sub 3} were subjected to immunofluorescence study. Primary cilia carrying both AC3 and the receptor for melanin-concentrating hormone (MCH) were elongated in the dorsal striatum and nucleus accumbens of lithium-fed mice, as compared to those of control animals. Moreover, lithium-treated NIH3T3 cells and cultured striatal neurons exhibited elongation of the primary cilia. The present results provide initial evidence that a psychotropic agent can affect ciliary length in the central nervous system, and furthermore suggest that lithium exerts its therapeutic effects via the upregulation of cilia-mediated MCH sensing. These findings thus contribute novel insights into the pathophysiology of bipolar mood disorder and other psychiatric diseases.« less
3D reconstruction of internal structure of animal body using near-infrared light
NASA Astrophysics Data System (ADS)
Tran, Trung Nghia; Yamamoto, Kohei; Namita, Takeshi; Kato, Yuji; Shimizu, Koichi
2014-03-01
To realize three-dimensional (3D) optical imaging of the internal structure of animal body, we have developed a new technique to reconstruct CT images from two-dimensional (2D) transillumination images. In transillumination imaging, the image is blurred due to the strong scattering in the tissue. We had developed a scattering suppression technique using the point spread function (PSF) for a fluorescent light source in the body. In this study, we have newly proposed a technique to apply this PSF for a light source to the image of unknown light-absorbing structure. The effectiveness of the proposed technique was examined in the experiments with a model phantom and a mouse. In the phantom experiment, the absorbers were placed in the tissue-equivalent medium to simulate the light-absorbing organs in mouse body. Near-infrared light was illuminated from one side of the phantom and the image was recorded with CMOS camera from another side. Using the proposed techniques, the scattering effect was efficiently suppressed and the absorbing structure can be visualized in the 2D transillumination image. Using the 2D images obtained in many different orientations, we could reconstruct the 3D image. In the mouse experiment, an anesthetized mouse was held in an acrylic cylindrical holder. We can visualize the internal organs such as kidneys through mouse's abdomen using the proposed technique. The 3D image of the kidneys and a part of the liver were reconstructed. Through these experimental studies, the feasibility of practical 3D imaging of the internal light-absorbing structure of a small animal was verified.
A Novel, Real-Time, In Vivo Mouse Retinal Imaging System
Butler, Mark C.; Sullivan, Jack M.
2015-01-01
Purpose To develop an efficient, low-cost instrument for robust real-time imaging of the mouse retina in vivo, and assess system capabilities by evaluating various animal models. Methods Following multiple disappointing attempts to visualize the mouse retina during a subretinal injection using commercially available systems, we identified the key limitation to be inadequate illumination due to off axis illumination and poor optical train optimization. Therefore, we designed a paraxial illumination system for Greenough-type stereo dissecting microscope incorporating an optimized optical launch and an efficiently coupled fiber optic delivery system. Excitation and emission filters control spectral bandwidth. A color coupled-charged device (CCD) camera is coupled to the microscope for image capture. Although, field of view (FOV) is constrained by the small pupil aperture, the high optical power of the mouse eye, and the long working distance (needed for surgical manipulations), these limitations can be compensated by eye positioning in order to observe the entire retina. Results The retinal imaging system delivers an adjustable narrow beam to the dilated pupil with minimal vignetting. The optic nerve, vasculature, and posterior pole are crisply visualized and the entire retina can be observed through eye positioning. Normal and degenerative retinal phenotypes can be followed over time. Subretinal or intraocular injection procedures are followed in real time. Real-time, intravenous fluorescein angiography for the live mouse has been achieved. Conclusions A novel device is established for real-time viewing and image capture of the small animal retina during subretinal injections for preclinical gene therapy studies. PMID:26551329
EMPReSS: European mouse phenotyping resource for standardized screens.
Green, Eain C J; Gkoutos, Georgios V; Lad, Heena V; Blake, Andrew; Weekes, Joseph; Hancock, John M
2005-06-15
Standardized phenotyping protocols are essential for the characterization of phenotypes so that results are comparable between different laboratories and phenotypic data can be related to ontological descriptions in an automated manner. We describe a web-based resource for the visualization, searching and downloading of standard operating procedures and other documents, the European Mouse Phenotyping Resource for Standardized Screens-EMPReSS. Direct access: http://www.empress.har.mrc.ac.uk e.green@har.mrc.ac.uk.
Mui, Amanda M.; Yang, Victoria; Aung, Moe H.; Fu, Jieming; Adekunle, Adewumi N.; Prall, Brian C.; Sidhu, Curran S.; Park, Han na; Boatright, Jeffrey H.; Iuvone, P. Michael
2018-01-01
Visual experience during the critical period modulates visual development such that deprivation causes visual impairments while stimulation induces enhancements. This study aimed to determine whether visual stimulation in the form of daily optomotor response (OMR) testing during the mouse critical period (1) improves aspects of visual function, (2) involves retinal mechanisms and (3) is mediated by brain derived neurotrophic factor (BDNF) and dopamine (DA) signaling pathways. We tested spatial frequency thresholds in C57BL/6J mice daily from postnatal days 16 to 23 (P16 to P23) using OMR testing. Daily OMR-treated mice were compared to littermate controls that were placed in the OMR chamber without moving gratings. Contrast sensitivity thresholds, electroretinograms (ERGs), visual evoked potentials, and pattern ERGs were acquired at P21. To determine the role of BDNF signaling, a TrkB receptor antagonist (ANA-12) was systemically injected 2 hours prior to OMR testing in another cohort of mice. BDNF immunohistochemistry was performed on retina and brain sections. Retinal DA levels were measured using high-performance liquid chromatography. Daily OMR testing enhanced spatial frequency thresholds and contrast sensitivity compared to controls. OMR-treated mice also had improved rod-driven ERG oscillatory potential response times, greater BDNF immunoreactivity in the retinal ganglion cell layer, and increased retinal DA content compared to controls. VEPs and pattern ERGs were unchanged. Systemic delivery of ANA-12 attenuated OMR-induced visual enhancements. Daily OMR testing during the critical period leads to general visual function improvements accompanied by increased DA and BDNF in the retina, with this process being requisitely mediated by TrkB activation. These results suggest that novel combination therapies involving visual stimulation and using both behavioral and molecular approaches may benefit degenerative retinal diseases or amblyopia. PMID:29408880
aGEM: an integrative system for analyzing spatial-temporal gene-expression information
Jiménez-Lozano, Natalia; Segura, Joan; Macías, José Ramón; Vega, Juanjo; Carazo, José María
2009-01-01
Motivation: The work presented here describes the ‘anatomical Gene-Expression Mapping (aGEM)’ Platform, a development conceived to integrate phenotypic information with the spatial and temporal distributions of genes expressed in the mouse. The aGEM Platform has been built by extending the Distributed Annotation System (DAS) protocol, which was originally designed to share genome annotations over the WWW. DAS is a client-server system in which a single client integrates information from multiple distributed servers. Results: The aGEM Platform provides information to answer three main questions. (i) Which genes are expressed in a given mouse anatomical component? (ii) In which mouse anatomical structures are a given gene or set of genes expressed? And (iii) is there any correlation among these findings? Currently, this Platform includes several well-known mouse resources (EMAGE, GXD and GENSAT), hosting gene-expression data mostly obtained from in situ techniques together with a broad set of image-derived annotations. Availability: The Platform is optimized for Firefox 3.0 and it is accessed through a friendly and intuitive display: http://agem.cnb.csic.es Contact: natalia@cnb.csic.es Supplementary information: Supplementary data are available at http://bioweb.cnb.csic.es/VisualOmics/aGEM/home.html and http://bioweb.cnb.csic.es/VisualOmics/index_VO.html and Bioinformatics online. PMID:19592395
Saraswathi, Padmanabhan; Beuerman, Roger W
2015-10-01
Microbial biofilms commonly comprise part of the infectious scenario, complicating the therapeutic approach. The purpose of this study was to determine in a mouse model of corneal infection if mature biofilms formed and to visualize the stages of biofilm formation. A bacterial keratitis model was established using Pseudomonas aeruginosa ATCC 9027 (1 × 10(8) CFU/ml) to infect the cornea of C57BL/6 black mouse. Eyes were examined post-infection (PI) on days 1, 2, 3, 5, and 7, and imaged by slit lamp microscopy, and light, confocal, and electron microscopy to identify the stages of biofilm formation and the time of appearance. On PI day 1, Gram staining showed rod-shaped bacteria adherent on the corneal surface. On PI days 2 and 3, bacteria were seen within webs of extracellular polymeric substance (EPS) and glycocalyx secretion, imaged by confocal microscopy. Scanning electron microscopy demonstrated microcolonies of active infectious cells bound with thick fibrous material. Transmission electron microscopy substantiated the formation of classical biofilm architecture with P. aeruginosa densely packed within the extracellular polymeric substances on PI days 5 and 7. Direct visual evidence showed that biofilms routinely developed on the biotic surface of the mouse cornea. The mouse model can be used to develop new approaches to deal therapeutically with biofilms in corneal infections. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Boregowda, Siddaraju; Krishnappa, Veena; Chambers, Jeremy; LoGrasso, Phillip V.; Lai, Wen-Tzu; Ortiz, Luis A.; Phinney, Donald G.
2013-01-01
Large scale expansion of human mesenchymal stem cells (MSCs) is routinely performed for clinical therapy. In contrast, developing protocols for large scale expansion of primary mouse MSCs has been more difficult due to unique aspects of rodent biology. Currently, established methods to isolate mouse MSCs select for rapidly dividing subpopulations that emerge from bone marrow cultures following long-term (months) expansion in atmospheric oxygen. Herein, we demonstrate that exposure to atmospheric oxygen rapidly induced p53, TOP2A and BAX expression and mitochondrial ROS generation in primary mouse MSCs resulting in oxidative stress, reduced cell viability and inhibition of cell proliferation. Alternatively, procurement and culture in 5% oxygen supported more prolific expansion of the CD45−ve/CD44+ve cell fraction in marrow, produced increased MSC yields following immuno-depletion, and supported sustained MSC growth resulting in a 2300-fold increase in cumulative cell yield by 4th passage. MSCs cultured in 5% oxygen also exhibited enhanced tri-lineage differentiation. The oxygen-induced stress response was dependent upon p53 since siRNA mediated knockdown of p53 in wild type cells or exposure of p53−/− MSCs to atmospheric oxygen failed to induce ROS generation, reduce viability, or arrest cell growth. These data indicate that long-term culture expansion of mouse MSCs in atmospheric oxygen selects for clones with absent or impaired p53 function, which allows cells to escape oxygen-induced growth inhibition. In contrast, expansion in 5% oxygen generates large numbers of primary mouse MSCs that retain sensitivity to atmospheric oxygen, and therefore a functional p53 protein, even after long-term expansion in vitro. PMID:22367737
Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions
Carrillo-Reid, Luis; Bando, Yuki; Peterka, Darcy S
2018-01-01
The simultaneous imaging and manipulating of neural activity could enable the functional dissection of neural circuits. Here we have combined two-photon optogenetics with simultaneous volumetric two-photon calcium imaging to measure and manipulate neural activity in mouse neocortex in vivo in three-dimensions (3D) with cellular resolution. Using a hybrid holographic approach, we simultaneously photostimulate more than 80 neurons over 150 μm in depth in layer 2/3 of the mouse visual cortex, while simultaneously imaging the activity of the surrounding neurons. We validate the usefulness of the method by photoactivating in 3D selected groups of interneurons, suppressing the response of nearby pyramidal neurons to visual stimuli in awake animals. Our all-optical approach could be used as a general platform to read and write neuronal activity. PMID:29412138
Mouse cones require an arrestin for normal inactivation of phototransduction.
Nikonov, Sergei S; Brown, Bruce M; Davis, Jason A; Zuniga, Freddi I; Bragin, Alvina; Pugh, Edward N; Craft, Cheryl M
2008-08-14
Arrestins are proteins that arrest the activity of G protein-coupled receptors (GPCRs). While it is well established that normal inactivation of photoexcited rhodopsin, the GPCR of rod phototransduction, requires arrestin (Arr1), it has been controversial whether the same requirement holds for cone opsin inactivation. Mouse cone photoreceptors express two distinct visual arrestins: Arr1 and Arr4. By means of recordings from cones of mice with one or both arrestins knocked out, this investigation establishes that a visual arrestin is required for normal cone inactivation. Arrestin-independent inactivation is 70-fold more rapid in cones than in rods, however. Dual arrestin expression in cones could be a holdover from ancient genome duplication events that led to multiple isoforms of arrestin, allowing evolutionary specialization of one form while the other maintains the basic function.
NASA Astrophysics Data System (ADS)
Juhnke, Bethany; Berron, Monica; Philip, Adriana; Williams, Jordan; Holub, Joseph; Winer, Eliot
2013-03-01
Advancements in medical image visualization in recent years have enabled three-dimensional (3D) medical images to be volume-rendered from magnetic resonance imaging (MRI) and computed tomography (CT) scans. Medical data is crucial for patient diagnosis and medical education, and analyzing these three-dimensional models rather than two-dimensional (2D) slices would enable more efficient analysis by surgeons and physicians, especially non-radiologists. An interaction device that is intuitive, robust, and easily learned is necessary to integrate 3D modeling software into the medical community. The keyboard and mouse configuration does not readily manipulate 3D models because these traditional interface devices function within two degrees of freedom, not the six degrees of freedom presented in three dimensions. Using a familiar, commercial-off-the-shelf (COTS) device for interaction would minimize training time and enable maximum usability with 3D medical images. Multiple techniques are available to manipulate 3D medical images and provide doctors more innovative ways of visualizing patient data. One such example is windowing. Windowing is used to adjust the viewed tissue density of digital medical data. A software platform available at the Virtual Reality Applications Center (VRAC), named Isis, was used to visualize and interact with the 3D representations of medical data. In this paper, we present the methodology and results of a user study that examined the usability of windowing 3D medical imaging using a Kinect™ device compared to a traditional mouse.
Biology and therapy of inherited retinal degenerative disease: insights from mouse models
Veleri, Shobi; Lazar, Csilla H.; Chang, Bo; Sieving, Paul A.; Banin, Eyal; Swaroop, Anand
2015-01-01
Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases. PMID:25650393
Ishida, Momoko; Ose, Saya; Nishi, Kosuke; Sugahara, Takuya
2016-07-01
We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.
In vivo evaluation of antiviral efficacy against genital herpes using mouse and guinea pig models.
Valencia, Frances; Veselenak, Ronald L; Bourne, Nigel
2013-01-01
Both the guinea pig and mouse are important animal models for the study of genital herpes. The murine model has been used extensively to evaluate vaccines and antiviral agents by measuring the incidence of infection and the magnitude of viral replication; however, this model is limited with regard to distinguishing between candidate vaccines or treatments. In contrast, the guinea pig closely mimics human infection and provides an excellent model of both primary and recurrent genital herpes disease. This animal model is especially important in the study of viral transmission through the evaluation of latent viral reactivation and virus shedding into the genital tract. Here, we describe methodologies to determine viral infection, severity of primary disease, and quantification of primary viral replication in the genital tract for both the guinea pig and murine models of genital herpes. Additionally, we detail the evaluation of the onset of primary disease and progression to the day of death in the mouse model. Further, we summarize methods to assess the frequency of recurrences, frequency and magnitude of virus shedding, and latent viral load in the sensory nerve ganglia of the guinea pig.
Fourman, Mitchell S; Mahjoub, Adel; Mandell, Jon B; Yu, Shibing; Tebbets, Jessica C; Crasto, Jared A; Alexander, Peter E; Weiss, Kurt R
2018-03-01
Current preclinical osteosarcoma (OS) models largely focus on quantifying primary tumor burden. However, most fatalities from OS are caused by metastatic disease. The quantification of metastatic OS currently relies on CT, which is limited by motion artifact, requires intravenous contrast, and can be technically demanding in the preclinical setting. We describe the ability for indocyanine green (ICG) fluorescence angiography to quantify primary and metastatic OS in a previously validated orthotopic, immunocompetent mouse model. (1) Can near-infrared ICG fluorescence be used to attach a comparable, quantitative value to the primary OS tumor in our experimental mouse model? (2) Will primary tumor fluorescence differ in mice that go on to develop metastatic lung disease? (3) Does primary tumor fluorescence correlate with tumor volume measured with CT? Six groups of 4- to 6-week-old immunocompetent Balb/c mice (n = 6 per group) received paraphyseal injections into their left hindlimb proximal tibia consisting of variable numbers of K7M2 mouse OS cells. A hindlimb transfemoral amputation was performed 4 weeks after injection with euthanasia and lung extraction performed 10 weeks after injection. Histologic examination of lung and primary tumor specimens confirmed ICG localization only within the tumor bed. Mice with visible or palpable tumor growth had greater hindlimb fluorescence (3.5 ± 2.3 arbitrary perfusion units [APU], defined as the fluorescence pixel return normalized by the detector) compared with those with a negative examination (0.71 ± 0.38 APU, -2.7 ± 0.5 mean difference, 95% confidence interval -3.7 to -1.8, p < 0.001). A strong linear trend (r = 0.81, p < 0.01) was observed between primary tumor and lung fluorescence, suggesting that quantitative ICG tumor fluorescence is directly related to eventual metastatic burden. We did not find a correlation (r = 0.04, p = 0.45) between normalized primary tumor fluorescence and CT volumetric measurements. We demonstrate a novel methodology for quantifying primary and metastatic OS in a previously validated, immunocompetent, orthotopic mouse model. Quantitative fluorescence of the primary tumor with ICG angiography is linearly related to metastatic burden, a relationship that does not exist with respect to clinical tumor size. This highlights the potential utility of ICG near-infrared fluorescence imaging as a valuable preclinical proof-of-concept modality. Future experimental work will use this model to evaluate the efficacy of novel OS small molecule inhibitors. Given the histologic localization of ICG to only the tumor bed, we envision the clinical use of ICG angiography as an intraoperative margin and tumor detector. Such a tool may be used as an alternative to intraoperative histology to confirm negative primary tumor margins or as a valuable tool for debulking surgeries in vulnerable anatomic locations. Because we have demonstrated the successful preservation of ICG in frozen tumor samples, future work will focus on blinded validation of this modality in observational human trials, comparing the ICG fluorescence of harvested tissue samples with fresh frozen pathology.
Live-Cell Imaging of Phagosome Motility in Primary Mouse RPE Cells.
Hazim, Roni; Jiang, Mei; Esteve-Rudd, Julian; Diemer, Tanja; Lopes, Vanda S; Williams, David S
2016-01-01
The retinal pigment epithelium (RPE) is a post-mitotic epithelial monolayer situated between the light-sensitive photoreceptors and the choriocapillaris. Given its vital functions for healthy vision, the RPE is a primary target for insults that result in blinding diseases, including age-related macular degeneration (AMD). One such function is the phagocytosis and digestion of shed photoreceptor outer segments. In the present study, we examined the process of trafficking of outer segment disk membranes in live cultures of primary mouse RPE, using high speed spinning disk confocal microscopy. This approach has enabled us to track phagosomes, and determine parameters of their motility, which are important for their efficient degradation.
Franzius, Christiane; Hotfilder, Marc; Poremba, Christopher; Hermann, Sven; Schäfers, Klaus; Gabbert, Helmut Erich; Jürgens, Heribert; Schober, Otmar; Schäfers, Michael; Vormoor, Josef
2006-12-01
As primary osseous metastasis is the main adverse prognostic factor in patients with Ewing tumours, a NOD/scid mouse model for human Ewing tumour metastases has been established to examine the mechanisms of metastasis. The aim of this study was to evaluate the feasibility of diagnostic molecular imaging by small animal PET in this mouse model. Human Ewing tumour cells were transplanted into immune-deficient NOD/scid mice via s.c injection (n=17) or i.v. injection (n=17). The animals (mean weight 23.2 g) were studied 2-7 weeks after transplantation using a submillimetre resolution animal PET scanner. To assess glucose utilisation and bone metabolism, mice were scanned after intravenous injection of 9.6 MBq (mean) 2-[(18)F]fluoro-2-deoxy-D: -glucose (FDG) or 9.4 MBq (mean) [(18)F]fluoride. Whole-body PET images were analysed visually and semi-quantitatively [%ID/g, tumour to non-tumour ratio (T/NT)]. Foci of pathological uptake were identified with respect to the physiological organ uptake in corresponding regions. Subcutaneously transplanted Ewing tumours demonstrated a moderately increased glucose uptake (median %ID/g 2.5; median T/NT 2.2). After i.v. transplantation, the pattern of metastasis was similar to that in patients with metastases in lung, bone and soft tissue. These metastases showed an increased FDG uptake (median %ID/g 3.6; median T/NT 2.7). Osseous metastases were additionally visible on [(18)F]fluoride PET by virtue of decreased [(18)F]fluoride uptake (osteolysis; median %ID/g 8.4; median T/NT 0.59). Metastases were confirmed immunohistologically. Diagnostic molecular imaging of Ewing tumours and their small metastases in an in vivo NOD/scid mouse model is feasible using a submillimetre resolution PET scanner.
Sesin, Anaelis; Adjouadi, Malek; Cabrerizo, Mercedes; Ayala, Melvin; Barreto, Armando
2008-01-01
This study developed an adaptive real-time human-computer interface (HCI) that serves as an assistive technology tool for people with severe motor disability. The proposed HCI design uses eye gaze as the primary computer input device. Controlling the mouse cursor with raw eye coordinates results in sporadic motion of the pointer because of the saccadic nature of the eye. Even though eye movements are subtle and completely imperceptible under normal circumstances, they considerably affect the accuracy of an eye-gaze-based HCI. The proposed HCI system is novel because it adapts to each specific user's different and potentially changing jitter characteristics through the configuration and training of an artificial neural network (ANN) that is structured to minimize the mouse jitter. This task is based on feeding the ANN a user's initially recorded eye-gaze behavior through a short training session. The ANN finds the relationship between the gaze coordinates and the mouse cursor position based on the multilayer perceptron model. An embedded graphical interface is used during the training session to generate user profiles that make up these unique ANN configurations. The results with 12 subjects in test 1, which involved following a moving target, showed an average jitter reduction of 35%; the results with 9 subjects in test 2, which involved following the contour of a square object, showed an average jitter reduction of 53%. For both results, the outcomes led to trajectories that were significantly smoother and apt at reaching fixed or moving targets with relative ease and within a 5% error margin or deviation from desired trajectories. The positive effects of such jitter reduction are presented graphically for visual appreciation.
Kataoka, Kota; Ekuni, Daisuke; Tomofuji, Takaaki; Irie, Koichiro; Kunitomo, Muneyoshi; Uchida, Yoko; Fukuhara, Daiki; Morita, Manabu
2016-11-16
The aim of this study was to investigate whether a Keap1-dependent oxidative stress detector-luciferase (OKD-LUC) mouse model would be useful for the visualization of oxidative stress induced by experimental periodontitis. A ligature was placed around the mandibular first molars for seven days to induce periodontitis. Luciferase activity was measured with an intraperitoneal injection of d-luciferin on days 0, 1, and 7. The luciferase activity in the periodontitis group was significantly greater than that in the control group at seven days. The expressions of heme oxygenase-1 (HO-1) and malondialdehyde in periodontal tissue were significantly higher in the periodontitis group than in the control group. Immunofluorescent analysis confirmed that the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) occurred more frequently in the periodontitis group than in the control group. This study found that under oxidative stress induced by experimental periodontitis, the Nrf2/antioxidant defense pathway was activated and could be visualized from the luciferase activity in the OKD-LUC model. Thus, the OKD-LUC mouse model may be useful for exploring the mechanism underlying the relationship between the Nrf2/antioxidant defense pathway and periodontitis by enabling the visualization of oxidative stress over time.
Pharmacotherapy of retinal disease with visual cycle modulators.
Hussain, Rehan M; Gregori, Ninel Z; Ciulla, Thomas A; Lam, Byron L
2018-04-01
Pharmacotherapy with visual cycle modulators (VCMs) is under investigation for retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), Stargardt macular dystrophy (SMD) and nonexudative age-related macular degeneration (AMD), all blinding diseases that lack effective treatment options. Areas covered: The authors review investigational VCMs, including oral retinoids, 9-cis-retinyl-acetate (zuretinol) and 9-cis-β-carotene, which restore 11-cis-retinal levels in RP and LCA caused by LRAT and RPE65 gene mutations, and may improve visual acuity and visual fields. Therapies for SMD aiming to decrease accumulation of toxic Vitamin A dimers and lipofuscin in the retina and retinal pigment epithelium (RPE) include C20-D3-vitamin A (ALK-001), isotretinoin, VM200, emixustat, and A1120. Mouse models of SMD show promising data for these treatments, though proof of efficacy in humans is currently lacking. Fenretinide and emixustat are investigational VCMs for dry AMD, though neither has been shown to reduce geographic atrophy or improve vision in human trials. A1120 prevents retinol transport into the RPE and may spare the side effects typically seen in VCMs (nyctalopia and chromatopsia) per mouse studies. Expert opinion: Oral VCMs may be feasible treatment options for degenerative retinal diseases based on pre-clinical and some early clinical studies. Further trials are warranted to assess their efficacy and safety in humans.
Visual cortical areas of the mouse: comparison of parcellation and network structure with primates
Laramée, Marie-Eve; Boire, Denis
2015-01-01
Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals. PMID:25620914
Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.
Laramée, Marie-Eve; Boire, Denis
2014-01-01
Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.
Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells
2015-10-01
209 induced cell senescence, G1 cell cycle arrest, and reduced intratumor BMI-1 levels, while displaying antitumor activity in mouse xenografts did...achieved from mouse xenograft studies (Bertino Lab), therefore suggesting that this compound may be further pursued for PCa therapy. We have published...confirmed the activity of C-209 in zebrafish and mouse xenografts . We will continue to collect more primary PCa tissues to study oncogenic addiction of
Ex vivo mouse brain microscopy at 15T with loop-gap RF coil.
Cohen, Ouri; Ackerman, Jerome L
2018-04-18
The design of a loop-gap-resonator RF coil optimized for ex vivo mouse brain microscopy at ultra high fields is described and its properties characterized using simulations, phantoms and experimental scans of mouse brains fixed in 10% formalin containing 4 mM Magnevist™. The RF (B 1 ) and magnetic field (B 0 ) homogeneities are experimentally quantified and compared to electromagnetic simulations of the coil. The coil's performance is also compared to a similarly sized surface coil and found to yield double the sensitivity. A three-dimensional gradient-echo (GRE) sequence is used to acquire high resolution mouse brain scans at (47 μm) 3 resolution in 1.8 h and a 20 × 20 × 19 μm 3 resolution in 27 h. The high resolution obtained permitted clear visualization and identification of multiple structures in the ex vivo mouse brain and represents, to our knowledge, the highest resolution ever achieved for a whole mouse brain. Importantly, the coil design is simple and easy to construct. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ni, Ruiqing; Vaas, Markus; Ren, Wuwei; Klohs, Jan
2018-02-01
Matrix metalloproteinases (MMPs) play important roles in the pathophysiology of cerebral ischemia. Here we visualized in vivo MMP activity in the transient middle cerebral artery occlusion (tMCAO) mouse model using multispectral optoacoustic imaging (MSOT) with a MMP-activatable probe. MSOT data was co-registered with structural magnetic resonance imaging (MRI) obtained at 7 T for localization of signal distribution. We demonstrated upregulated MMP signal within the focal ischemic lesion in the tMCAO mouse model using MSOT/MRI multimodal imaging. This convenient non-invasive method will allow repetitive measurement following the time course of MMP-lesion development in ischemic stroke animal model.
Cho, Nam Hyun; Jang, Jeong Hun; Jung, Woonggyu; Kim, Jeehyun
2014-01-01
We developed an augmented-reality system that combines optical coherence tomography (OCT) with a surgical microscope. By sharing the common optical path in the microscope and OCT, we could simultaneously acquire OCT and microscope views. The system was tested to identify the middle-ear and inner-ear microstructures of a mouse. Considering the probability of clinical application including otorhinolaryngology, diseases such as middle-ear effusion were visualized using in vivo mouse and OCT images simultaneously acquired through the eyepiece of the surgical microscope during surgical manipulation using the proposed system. This system is expected to realize a new practical area of OCT application. PMID:24787787
Altered Functional Connectivity of the Primary Visual Cortex in Subjects with Amblyopia
Ding, Kun; Liu, Yong; Yan, Xiaohe; Lin, Xiaoming; Jiang, Tianzi
2013-01-01
Amblyopia, which usually occurs during early childhood and results in poor or blurred vision, is a disorder of the visual system that is characterized by a deficiency in an otherwise physically normal eye or by a deficiency that is out of proportion with the structural or functional abnormalities of the eye. Our previous study demonstrated alterations in the spontaneous activity patterns of some brain regions in individuals with anisometropic amblyopia compared to subjects with normal vision. To date, it remains unknown whether patients with amblyopia show characteristic alterations in the functional connectivity patterns in the visual areas of the brain, particularly the primary visual area. In the present study, we investigated the differences in the functional connectivity of the primary visual area between individuals with amblyopia and normal-sighted subjects using resting functional magnetic resonance imaging. Our findings demonstrated that the cerebellum and the inferior parietal lobule showed altered functional connectivity with the primary visual area in individuals with amblyopia, and this finding provides further evidence for the disruption of the dorsal visual pathway in amblyopic subjects. PMID:23844297
Social modulation of associative fear learning by pheromone communication
Bredy, Timothy W.; Barad, Mark
2009-01-01
Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone β-phenylethylamine (β-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning. PMID:19117912
Design and Implementation of an Operations Module for the ARGOS paperless Ship System
1989-06-01
A. OPERATIONS STACK SCRIPTS SCRIPTS FOR STACK: operations * BACKGROUND #1: Operations * on openStack hide message box show menuBar pass openStack end... openStack ** CARD #1, BUTTON #1: Up ***** on mouseUp visual effect zoom out go to card id 10931 of stack argos end mouseUp ** CARD #1, BUTTON #2...STACK SCRIPTS SCRIPTS FOR STACK: Reports ** BACKGROUND #1: Operations * on openStack hie message box show menuBar pass openStack end openStack ** CARD #1
Social modulation of associative fear learning by pheromone communication.
Bredy, Timothy W; Barad, Mark
2009-01-01
Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned familiar mouse and by the putative stress-related anxiogenic pheromone beta-phenylethylamine (beta-PEA). Together, these findings suggest social modulation of higher-order cognitive processing through pheromone communication and support the concurrent excitor hypothesis of extinction learning.
Expression and function of Allergin-1 on human primary mast cells.
Nagai, Kei; Tahara-Hanaoka, Satoko; Morishima, Yuko; Tokunaga, Takahiro; Imoto, Yoshimasa; Noguchi, Emiko; Kanemaru, Kazumasa; Imai, Masamichi; Shibayama, Shiro; Hizawa, Nobuyuki; Fujieda, Shigeharu; Yamagata, Kunihiro; Shibuya, Akira
2013-01-01
Mast cells (MC) play an important role in allergic and non-allergic immune responses. Activation of human MC is modulated by several cell surface inhibitory receptors, including recently identified Allergin-1 expressed on both human and mouse MC. Although Allergin-1 suppresses IgE-mediated, mast cell-dependent anaphylaxis in mice, the expression profile and function of Allergin-1 on human primary MC remains undetermined. Here, we established a seven-color flow cytometry method for assessing expression and function of a very small number of human primary MC. We show that Allergin-1S1, a splicing isoform of Allergin-1, is predominantly expressed on human primary MC in both bronchoalveolar lavage (BAL) fluid and nasal scratching specimens. Moreover, Allergin-1S1 inhibits IgE-mediated activation from human primary MC in BAL fluid. These results indicate that Allergin-1 on human primary MC exhibits similar characteristics as mouse Allergin-1 in the expression profile and function.
NASA Astrophysics Data System (ADS)
Lopez, Andrew L.; Wang, Shang; Garcia, Monica; Valladolid, Christian; Larin, Kirill V.; Larina, Irina V.
2015-03-01
Understanding mouse embryonic development is an invaluable resource for our interpretation of normal human embryology and congenital defects. Our research focuses on developing methods for live imaging and dynamic characterization of early embryonic development in mouse models of human diseases. Using multidisciplinary methods: optical coherence tomography (OCT), live mouse embryo manipulations and static embryo culture, molecular biology, advanced image processing and computational modeling we aim to understand developmental processes. We have developed an OCT based approach to image live early mouse embryos (E8.5 - E9.5) cultured on an imaging stage and visualize developmental events with a spatial resolution of a few micrometers (less than the size of an individual cell) and a frame rate of up to hundreds of frames per second and reconstruct cardiodynamics in 4D (3D+time). We are now using these methods to study how specific embryonic lethal mutations affect cardiac morphology and function during early development.
Morphological phenotyping of mouse hearts using optical coherence tomography
NASA Astrophysics Data System (ADS)
Cua, Michelle; Lin, Eric; Lee, Ling; Sheng, Xiaoye; Wong, Kevin S. K.; Tibbits, Glen F.; Beg, Mirza Faisal; Sarunic, Marinko V.
2014-11-01
Transgenic mouse models have been instrumental in the elucidation of the molecular mechanisms behind many genetically based cardiovascular diseases such as Marfan syndrome (MFS). However, the characterization of their cardiac morphology has been hampered by the small size of the mouse heart. In this report, we adapted optical coherence tomography (OCT) for imaging fixed adult mouse hearts, and applied tools from computational anatomy to perform morphometric analyses. The hearts were first optically cleared and imaged from multiple perspectives. The acquired volumes were then corrected for refractive distortions, and registered and stitched together to form a single, high-resolution OCT volume of the whole heart. From this volume, various structures such as the valves and myofibril bundles were visualized. The volumetric nature of our dataset also allowed parameters such as wall thickness, ventricular wall masses, and luminal volumes to be extracted. Finally, we applied the entire acquisition and processing pipeline in a preliminary study comparing the cardiac morphology of wild-type mice and a transgenic mouse model of MFS.
Dopamine D2 receptors preferentially regulate the development of light responses of the inner retina
Tian, Ning; Xu, Hong-ping; Wang, Ping
2014-01-01
Retinal light responsiveness measured via electroretinography undergoes developmental modulation and is thought to be critically regulated by both visual experience and dopamine. The primary goal of this study is to determine whether the dopamine D2 receptor regulates the visual experience-dependent functional development of the retina. Accordingly, we recorded electroretinograms from wild type mice and mice with a genetic deletion of the gene that encodes the dopamine D2 receptor raised under normal cyclic light conditions and constant darkness. Our results demonstrate that mutation of the dopamine D2 receptors preferentially increases the amplitude of the inner retinal light responses evoked by high intensity light measured as oscillatory potentials in adult mice. During postnatal development, all three major components of electroretinograms, the a-wave, b-wave and oscillatory potentials, increase with age. Comparatively, mutation of the dopamine D2 receptors preferentially reduces the age-dependent increase of b-waves evoked by low intensity light. Light deprivation from birth reduces the amplitude of b-waves and completely diminishes the increased amplitude of oscillatory potentials. Taken together, these results demonstrate that the dopamine D2 receptor plays an important role in the activity-dependent functional development of the mouse retina. PMID:25393815
The Population Tracking Model: A Simple, Scalable Statistical Model for Neural Population Data
O'Donnell, Cian; alves, J. Tiago Gonç; Whiteley, Nick; Portera-Cailliau, Carlos; Sejnowski, Terrence J.
2017-01-01
Our understanding of neural population coding has been limited by a lack of analysis methods to characterize spiking data from large populations. The biggest challenge comes from the fact that the number of possible network activity patterns scales exponentially with the number of neurons recorded (∼2Neurons). Here we introduce a new statistical method for characterizing neural population activity that requires semi-independent fitting of only as many parameters as the square of the number of neurons, requiring drastically smaller data sets and minimal computation time. The model works by matching the population rate (the number of neurons synchronously active) and the probability that each individual neuron fires given the population rate. We found that this model can accurately fit synthetic data from up to 1000 neurons. We also found that the model could rapidly decode visual stimuli from neural population data from macaque primary visual cortex about 65 ms after stimulus onset. Finally, we used the model to estimate the entropy of neural population activity in developing mouse somatosensory cortex and, surprisingly, found that it first increases, and then decreases during development. This statistical model opens new options for interrogating neural population data and can bolster the use of modern large-scale in vivo Ca2+ and voltage imaging tools. PMID:27870612
NASA Astrophysics Data System (ADS)
Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot
2008-03-01
The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.
Lontis, Eugen R; Lund, Morten E; Christensen, Henrik V; Bentsen, Bo; Gaihede, Michael; Caltenco, Hector A; Andreasen Struijk, Lotte N S
2010-01-01
Typing performance of a full alphabet keyboard and a joystick type of mouse (with on-screen keyboard) provided by a wireless integrated tongue control system (TCS) has been investigated. The speed and accuracy have been measured in a form of a throughput defining the true correct words per minute [cwpm]. Training character sequences were typed in a dedicated interface that provided visual feedback of activated sensors, a map of the alphabet associated, and the task character. Testing sentences were typed in Word, with limited visual feedback, using non-predictive typing (map of characters in alphabetic order associated to sensors) and predictive typing (LetterWise) for TCS keyboard, and non-predictive typing for TCS mouse. Two subjects participated for four and three consecutive days, respectively, two sessions per day. Maximal throughput of 2.94, 2.46, and 2.06, 1.68 [cwpm] were obtained with TCS keyboard by subject 1 and 2 with predictive and non-predictive typing respectively. Maximal throughput of 2.09 and 1.71 [cwpm] was obtained with TCS mouse by subject 1 and 2, respectively. Same experimental protocol has been planned for a larger number of subjects.
NASA Astrophysics Data System (ADS)
Zhi, Zhongwei; Yin, Xin; Dziennis, Suzan; Alpers, Charles E.; Wang, Ruikang K.
2013-03-01
Visualization and measurement of retinal blood flow (RBF) is important to the diagnosis and management of different eye diseases, including diabetic retinopathy. Optical microangiography (OMAG) is developed for generating 3D dynamic microcirculation image and later refined into ultra-high sensitive OMAG (UHS-OMAG) for true capillary vessels imaging. Here, we present the application of OMAG imaging technique for visualization of depth-resolved vascular network within retina and choroid as well as measurement of total retinal blood flow in mice. A fast speed spectral domain OCT imaging system at 820nm with a line scan rate of 140 kHz was developed to image mouse posterior eye. By applying UHS-OMAG scanning protocol and processing algorithm, we achieved true capillary level imaging of retina and choroid vasculature in mouse eye. The vascular pattern within different retinal layers and choroid was presented. An en face Doppler OCT approach [1] without knowing Doppler angle was adopted for the measurement of total retinal blood flow. The axial blood flow velocity is measured in an en face plane by raster scanning and the flow is calculated by integrating over the vessel area of the central retinal artery.
Xie, Ran; Dong, Lu; Du, Yifei; Zhu, Yuntao; Hua, Rui; Zhang, Chen; Chen, Xing
2016-01-01
Mammalian brains are highly enriched with sialoglycans, which have been implicated in brain development and disease progression. However, in vivo labeling and visualization of sialoglycans in the mouse brain remain a challenge because of the blood−brain barrier. Here we introduce a liposome-assisted bioorthogonal reporter (LABOR) strategy for shuttling 9-azido sialic acid (9AzSia), a sialic acid reporter, into the brain to metabolically label sialoglycoconjugates, including sialylated glycoproteins and glycolipids. Subsequent bioorthogonal conjugation of the incorporated 9AzSia with fluorescent probes via click chemistry enabled fluorescence imaging of brain sialoglycans in living animals and in brain sections. Newly synthesized sialoglycans were found to widely distribute on neuronal cell surfaces, in particular at synaptic sites. Furthermore, large-scale proteomic profiling identified 140 brain sialylated glycoproteins, including a wealth of synapse-associated proteins. Finally, by performing a pulse−chase experiment, we showed that dynamic sialylation is spatially regulated, and that turnover of sialoglycans in the hippocampus is significantly slower than that in other brain regions. The LABOR strategy provides a means to directly visualize and monitor the sialoglycan biosynthesis in the mouse brain and will facilitate elucidating the functional role of brain sialylation. PMID:27125855
Swanzey, Emily; Stadtfeld, Matthias
2016-11-15
Genomic imprinting results in the monoallelic expression of genes that encode important regulators of growth and proliferation. Dysregulation of imprinted genes, such as those within the Dlk1-Dio3 locus, is associated with developmental syndromes and specific diseases. Our ability to interrogate causes of imprinting instability has been hindered by the absence of suitable model systems. Here, we describe a Dlk1 knock-in reporter mouse that enables single-cell visualization of allele-specific expression and prospective isolation of cells, simultaneously. We show that this 'imprinting reporter mouse' can be used to detect tissue-specific Dlk1 expression patterns in developing embryos. We also apply this system to pluripotent cell culture and demonstrate that it faithfully indicates DNA methylation changes induced upon cellular reprogramming. Finally, the reporter system reveals the role of elevated oxygen levels in eroding imprinted Dlk1 expression during prolonged culture and in vitro differentiation. The possibility to study allele-specific expression in different contexts makes our reporter system a useful tool to dissect the regulation of genomic imprinting in normal development and disease. © 2016. Published by The Company of Biologists Ltd.
Nogo Receptor 1 Confines a Disinhibitory Microcircuit to the Critical Period in Visual Cortex.
Stephany, Céleste-Élise; Ikrar, Taruna; Nguyen, Collins; Xu, Xiangmin; McGee, Aaron W
2016-10-26
A characteristic of the developing mammalian visual system is a brief interval of plasticity, termed the "critical period," when the circuitry of primary visual cortex is most sensitive to perturbation of visual experience. Depriving one eye of vision (monocular deprivation [MD]) during the critical period alters ocular dominance (OD) by shifting the responsiveness of neurons in visual cortex to favor the nondeprived eye. A disinhibitory microcircuit involving parvalbumin-expressing (PV) interneurons initiates this OD plasticity. The gene encoding the neuronal nogo-66-receptor 1 (ngr1/rtn4r) is required to close the critical period. Here we combined mouse genetics, electrophysiology, and circuit mapping with laser-scanning photostimulation to investigate whether disinhibition is confined to the critical period by ngr1 We demonstrate that ngr1 mutant mice retain plasticity characteristic of the critical period as adults, and that ngr1 operates within PV interneurons to restrict the loss of intracortical excitatory synaptic input following MD in adult mice, and this disinhibition induces a "lower PV network configuration" in both critical-period wild-type mice and adult ngr1 -/- mice. We propose that ngr1 limits disinhibition to close the critical period for OD plasticity and that a decrease in PV expression levels reports the diminished recent cumulative activity of these interneurons. Life experience refines brain circuits throughout development during specified critical periods. Abnormal experience during these critical periods can yield enduring maladaptive changes in neural circuits that impair brain function. In the developing visual system, visual deprivation early in life can result in amblyopia (lazy-eye), a prevalent childhood disorder comprising permanent deficits in spatial vision. Here we identify that the nogo-66 receptor 1 gene restricts an early and essential step in OD plasticity to the critical period. These findings link the emerging circuit-level description of OD plasticity to the genetic regulation of the critical period. Understanding how plasticity is confined to critical periods may provide clues how to better treat amblyopia. Copyright © 2016 the authors 0270-6474/16/3611006-07$15.00/0.
RISE: a database of RNA interactome from sequencing experiments
Gong, Jing; Shao, Di; Xu, Kui
2018-01-01
Abstract We present RISE (http://rise.zhanglab.net), a database of RNA Interactome from Sequencing Experiments. RNA-RNA interactions (RRIs) are essential for RNA regulation and function. RISE provides a comprehensive collection of RRIs that mainly come from recent transcriptome-wide sequencing-based experiments like PARIS, SPLASH, LIGR-seq, and MARIO, as well as targeted studies like RIA-seq, RAP-RNA and CLASH. It also includes interactions aggregated from other primary databases and publications. The RISE database currently contains 328,811 RNA-RNA interactions mainly in human, mouse and yeast. While most existing RNA databases mainly contain interactions of miRNA targeting, notably, more than half of the RRIs in RISE are among mRNA and long non-coding RNAs. We compared different RRI datasets in RISE and found limited overlaps in interactions resolved by different techniques and in different cell lines. It may suggest technology preference and also dynamic natures of RRIs. We also analyzed the basic features of the human and mouse RRI networks and found that they tend to be scale-free, small-world, hierarchical and modular. The analysis may nominate important RNAs or RRIs for further investigation. Finally, RISE provides a Circos plot and several table views for integrative visualization, with extensive molecular and functional annotations to facilitate exploration of biological functions for any RRI of interest. PMID:29040625
C5a Increases the Injury to Primary Neurons Elicited by Fibrillar Amyloid Beta.
Hernandez, Michael X; Namiranian, Pouya; Nguyen, Eric; Fonseca, Maria I; Tenner, Andrea J
2017-02-01
C5aR1, the proinflammatory receptor for C5a, is expressed in the central nervous system on microglia, endothelial cells, and neurons. Previous work demonstrated that the C5aR1 antagonist, PMX205, decreased amyloid pathology and suppressed cognitive deficits in two Alzheimer's Disease (AD) mouse models. However, the cellular mechanisms of this protection have not been definitively demonstrated. Here, primary cultured mouse neurons treated with exogenous C5a show reproducible loss of MAP-2 staining in a dose-dependent manner within 24 hr of treatment, indicative of injury to neurons. This injury is prevented by the C5aR1 antagonist PMX53, a close analog of PMX205. Furthermore, primary neurons derived from C5aR1 null mice exhibited no MAP-2 loss after exposure to the highest concentration of C5a tested. Primary mouse neurons treated with both 100 nM C5a and 5 µM fibrillar amyloid beta (fAβ), to model what occurs in the AD brain, showed increased MAP-2 loss relative to either C5a or fAβ alone. Blocking C5aR1 with PMX53 (100 nM) blocked the loss of MAP2 in these primary neurons to the level seen with fAβ alone. Similar experiments with primary neurons derived from C5aR1 null mice showed a loss of MAP-2 due to fAβ treatment. However, the addition of C5a to the cultures did not enhance the loss of MAP-2 and the addition of PMX53 to the cultures did not change the MAP-2 loss in response to fAβ. Thus, at least part of the beneficial effects of C5aR1 antagonist in AD mouse models may be due to protection of neurons from the toxic effects of C5a.
Secondary visual workload capability with primary visual and kinesthetic-tactual displays
NASA Technical Reports Server (NTRS)
Gilson, R. D.; Burke, M. W.; Jagacinski, R. J.
1978-01-01
Subjects performed a cross-adaptive tracking task with a visual secondary display and either a visual or a quickened kinesthetic-tactual (K-T) primary display. The quickened K-T display resulted in superior secondary task performance. Comparisons of secondary workload capability with integrated and separated visual displays indicated that the superiority of the quickened K-T display was not simply due to the elimination of visual scanning. When subjects did not have to perform a secondary task, there was no significant difference between visual and quickened K-T displays in performing a critical tracking task.
View-Dependent Streamline Deformation and Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong, Xin; Edwards, John; Chen, Chun-Ming
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual cluttering for visualizing 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures.more » Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.« less
McClay, Wilbert A; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T; Nagarajan, Srikantan S
2015-09-30
Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user's intent for specific keyboard strikes or mouse button presses. The BCI's data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject's MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse.
McClay, Wilbert A.; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T.; Nagarajan, Srikantan S.
2015-01-01
Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user’s intent for specific keyboard strikes or mouse button presses. The BCI’s data analytics of a subject’s MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse. PMID:26437432
NASA Astrophysics Data System (ADS)
Park, Jang Ryul; Choi, WooJhon; Kim, Jaeryung; Hong, Hye Kyong; Kim, Yongjoo; Hwang, Yoonha; Park, Sang Jun; Woo, Se Joon; Kim, Pilhan; Park, Kyu Hyung; Koh, Gou Young; Oh, Wang-Yuhl
2017-02-01
To understand the pathogenesis of ophthalmic disease, utilizing small animal models such as mouse is necessary because of their ease of maintenance and availability. For identifying pathophysiology and drug development of retinal diseases in mouse model, optical coherence tomography angiography (OCTA) is promising imaging modality visualizing not only microstructure but also microvasculature. In this study, we serially imaged 3D structure and angiography of laser-induced choroidal neovascularization (CNV) in the mouse retina with/without anti-VEGF treatment. Also, the volume changes of CNV and avascular region in choroid layer are measured for identifying effects of anti-VEGF. A lab-built high-speed OCTA prototype using the wavelength-swept laser centered at 1040 nm with 230 kHz A-scan rate acquired 3-D volumetric data consisted of 1024 x 1024 x 3 A-scans. The OCTA scanned 1.7 mm x 1.7 mm area around ONH. For obtaining angiography, amplitude decorrelation from 3 consecutive B-scans at each position was generated. Seven days after the laser photocoagulation at mouse retina for generation of the laser-induced CNV, intravitreal administration of Fc and VEGF-Trap was given in the therapeutic arm. The OCTA were performed at 6, 14, 21 and 35 days after laser photocoagulation. Vasculatures of inner retina, outer retina and choroid layers were separately visualized after RPE flattening and layer segmentation. To investigate therapeutic effects of anti-VEGF treatment, the relative area and volume of CNV in outer retina layer is measured. Also, total volume of avascular zone surrounding the laser injury site in choroid layer is also analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoner, R.D.; Terres, G.
1963-12-01
Enhanced primary antitoxin responses were obtained in mice immunized by intravenous injection with complexes of tetanus toxoid and mouse antitoxin, presumably formed either in vivo, or prepared in vitro in antigen-antibody ratios of antibody excess, equivalence, and antigen excess. The demonstration of the enhancement phenomenon elicited by complexes of toxoid and isologous mouse antitoxin provide conclusive evidence that the antibody portion of the complex does not need to be of heterologous origin in order to elicit enhanced primary antibody responses in mice. Intravenous immunization with the above complexes elicited enhanced primary responses in irradiated animals, whereas minimal responses were obtainedmore » with antigen only. Littie difference was observed in primary responses in nonirradiated mice when antigen only or antigen complexed with specific antibody is given by subcutaneous injection. However, enhanced primary antitoxin responses were obtained in irradiated mice (400 rad) immunized with the various complexes over the responses observed in irradiated animals immunlzed with antigen only. The greatest degree of enhancement occurred when the complexes were prepared in the region of equivalence and antigen excess. Secondary antitoxin responses were repressed when the same complexes of antigen and antibody were injected to elicit secondary responses. A corresponding repression of secondary responses was observed in irradiated mice when radiation doses of 300 rad were delivered 24 hr before the second injection of antigen complexed with specific mouse antitoxin. (BBB)« less
Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice.
McLenachan, Samuel; Magno, Aaron Len; Ramos, David; Catita, Joana; McMenamin, Paul G; Chen, Fred Kuanfu; Rakoczy, Elizabeth Piroska; Ruberte, Jesus
2015-09-01
The mouse retina is a commonly used animal model for the study of pathogenesis and treatment of blinding retinal vascular diseases such as diabetic retinopathy. In this study, we aimed to characterize normal and pathological variations in vascular anatomy in the mouse retina using fluorescein angiography visualized with scanning laser ophthalmoscopy and optical coherence tomography (SLO-OCT). We examined eyes from C57BL/6J wild type mice as well as the Ins2(Akita) and Akimba mouse models of diabetic retinopathy using the Heidelberg Retinal Angiography (HRA) and OCT system. Angiography was performed on three focal planes to examine distinct vascular layers. For comparison with angiographic data, ex vivo analyses, including Indian ink angiography, histology and 3D confocal scanning laser microscopy were performed in parallel. All layers of the mouse retinal vasculature could be readily visualized during fluorescein angiography by SLO-OCT. Blood vessel density was increased in the deep vascular plexus (DVP) compared with the superficial vascular plexus (SVP). Arteriolar and venular typologies were established and structural differences were observed between venular types. Unexpectedly, the hyaloid artery was found to persist in 15% of C57BL/6 mice, forming anastomoses with peripheral retinal capillaries. Fluorescein leakage was easily detected in Akimba retinae by angiography, but was not observed in Ins2(Akita) mice. Blood vessel density was increased in the DVP of 6 month old Ins2(Akita) mice, while the SVP displayed reduced branching in precapillary arterioles. In summary, we present the first comprehensive characterization of the mouse retinal vasculature by SLO-OCT fluorescein angiography. Using this clinical imaging technique, we report previously unrecognized variations in C57BL/6J vascular anatomy and novel features of vascular retinopathy in the Ins2(Akita) mouse model of diabetes. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Samén, Erik; Lu, Li; Mulder, Jan; Thorell, Jan-Olov; Damberg, Peter; Tegnebratt, Tetyana; Holmgren, Lars; Rundqvist, Helene; Stone-Elander, Sharon
2014-03-26
Vascular endothelial growth factor receptor 2 (VEGFR2) is a crucial mediator of tumour angiogenesis. High expression levels of the receptor have been correlated to poor prognosis in cancer patients. Reliable imaging biomarkers for stratifying patients for anti-angiogenic therapy could therefore be valuable for increasing treatment success rates. The aim of this study was to investigate the pharmacokinetics and angiogenesis imaging abilities of the VEGFR2-targeting positron emission tomography (PET) tracer (R)-[11C]PAQ. (R)-[11C]PAQ was evaluated in the mouse mammary tumour virus-polyoma middle T (MMTV-PyMT) model of metastatic breast cancer. Mice at different stages of disease progression were imaged with (R)-[11C]PAQ PET, and results were compared to those obtained with [18 F]FDG PET and magnetic resonance imaging. (R)-[11C]PAQ uptake levels were also compared to ex vivo immunofluorescence analysis of tumour- and angiogenesis-specific biomarkers. Additional pharmacokinetic studies were performed in rat and mouse. A heterogeneous uptake of (R)-[11C]PAQ was observed in the tumorous mammary glands. Ex vivo analysis confirmed the co-localization of areas with high radioactivity uptake and areas with elevated levels of VEGFR2. In some animals, a high focal uptake was observed in the lungs. The lung uptake correlated to metastatic and angiogenic activity, but not to uptake of [18 F]FDG PET. The pharmacokinetic studies revealed a limited metabolism and excretion during the 1-h scan and a distribution of radioactivity mainly to the liver, kidneys and lungs. In rat, a high uptake was additionally observed in adrenal and parathyroid glands. The results indicate that (R)-[11C]PAQ is a promising imaging biomarker for visualization of angiogenesis, based on VEGFR2 expression, in primary tumours and during metastasis development.
2014-01-01
Background Vascular endothelial growth factor receptor 2 (VEGFR2) is a crucial mediator of tumour angiogenesis. High expression levels of the receptor have been correlated to poor prognosis in cancer patients. Reliable imaging biomarkers for stratifying patients for anti-angiogenic therapy could therefore be valuable for increasing treatment success rates. The aim of this study was to investigate the pharmacokinetics and angiogenesis imaging abilities of the VEGFR2-targeting positron emission tomography (PET) tracer (R)-[11C]PAQ. Methods (R)-[11C]PAQ was evaluated in the mouse mammary tumour virus-polyoma middle T (MMTV-PyMT) model of metastatic breast cancer. Mice at different stages of disease progression were imaged with (R)-[11C]PAQ PET, and results were compared to those obtained with [18 F]FDG PET and magnetic resonance imaging. (R)-[11C]PAQ uptake levels were also compared to ex vivo immunofluorescence analysis of tumour- and angiogenesis-specific biomarkers. Additional pharmacokinetic studies were performed in rat and mouse. Results A heterogeneous uptake of (R)-[11C]PAQ was observed in the tumorous mammary glands. Ex vivo analysis confirmed the co-localization of areas with high radioactivity uptake and areas with elevated levels of VEGFR2. In some animals, a high focal uptake was observed in the lungs. The lung uptake correlated to metastatic and angiogenic activity, but not to uptake of [18 F]FDG PET. The pharmacokinetic studies revealed a limited metabolism and excretion during the 1-h scan and a distribution of radioactivity mainly to the liver, kidneys and lungs. In rat, a high uptake was additionally observed in adrenal and parathyroid glands. Conclusion The results indicate that (R)-[11C]PAQ is a promising imaging biomarker for visualization of angiogenesis, based on VEGFR2 expression, in primary tumours and during metastasis development. PMID:24670127
A severe combined immunodeficient-hu in vivo mouse model of human primary mantle cell lymphoma.
Wang, Michael; Zhang, Liang; Han, Xiaohong; Yang, Jing; Qian, Jianfei; Hong, Sungyoul; Lin, Pei; Shi, Yuankai; Romaguera, Jorge; Kwak, Larry W; Yi, Qing
2008-04-01
To establish a severe combined immunodeficient (SCID)-hu in vivo mouse model of human primary mantle cell lymphoma (MCL) for the study of the biology and novel therapy of human MCL. Primary MCL cells were isolated from spleen, lymph node, bone marrow aspirates, or peripheral blood of six different patients and injected respectively into human bone chips, which had been s.c. implanted in SCID-hu. Circulating human beta(2)-microglobulin in mouse serum was used to monitor the engraftment and growth of patient's MCL cells. H&E staining and immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies were used to confirm the tumor growth and migration. Increasing levels of circulating human beta(2)-microglobulin in mouse serum indicated that the patient's MCL cells were engrafted successfully into human bone chip of SCID-hu mice. The engraftment and growth of patient's MCL cells were dependent on human bone marrow microenvironment. Immunohistochemical staining with anti-human CD20 and cyclin D1 antibodies confirmed that patient's MCL cells were able to not only survive and propagate in the bone marrow microenvironment of the human fetal bone chips, but also similar to the human disease, migrate to lymph nodes, spleen, bone marrow, and gastrointestinal tract of host mice. Treatment of MCL-bearing SCID-hu mice with atiprimod, a novel antitumor compound against the protection of bone marrow stromal cells, induced tumor regression. This is the first human primary MCL animal model that should be useful for the biological and therapeutic research on MCL.
Analysis of Alternative Pre-RNA Splicing in the Mouse Retina Using a Fluorescent Reporter.
Murphy, Daniel; Kolandaivelu, Saravanan; Ramamurthy, Visvanathan; Stoilov, Peter
2016-01-01
In vivo alternative splicing is controlled in a tissue and cell type specific manner. Often individual cellular components of complex tissues will express different splicing programs. Thus, when studying splicing in multicellular organisms it is critical to determine the exon inclusion levels in individual cells positioned in the context of their native tissue or organ. Here we describe how a fluorescent splicing reporter in combination with in vivo electroporation can be used to visualize alternative splicing in individual cells within mature tissues. In a test case we show how the splicing of a photoreceptor specific exon can be visualized within the mouse retina. The retina was chosen as an example of a complex tissue that is fragile and whose cells cannot be studied in culture. With minor modifications to the injection and electroporation procedure, the protocol we outline can be applied to other tissues and organs.
NASA Astrophysics Data System (ADS)
Ishida, Hiroki; Hachiga, Tadashi; Andoh, Tsugunobu; Akiguchi, Shunsuke
2012-11-01
We demonstrate that using micro multipoint laser Doppler velocimetry (μ-MLDV) for noninvasive in-vivo imaging of blood vessels is useful for diagnosing malignant melanomas by comparison with visual diagnosis by dermoscopy. The blood flow velocity in microvessels varied during growth of melanomas transplanted in mouse ears. Mouse ears were observed by μ-MLDV up to 16 days after transplantation. The blood flow velocity in the tumor increased with increasing time and reached maximum of 4.5 mm/s at 9 days, which is more than twice that prior to transplantation. After 12 days, when the lesion had grown to an area of 6.6 mm2, we observed the formation of new blood vessels in the tumor. Finally, when the lesion had an area of 18 mm2 after 16 days, the flow velocity in the tumor decreased to approximately 3.2 mm/s.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCrea, R.P.E.; Harder, S.L.; Martin, M.
2009-05-26
The clinical diagnosis of many neurodegenerative disorders relies primarily or exclusively on observed behaviors rather than measurable physical tests. One of the hallmarks of Alzheimer disease (AD) is the presence of amyloid-containing plaques associated with deposits of iron, copper and/or zinc. Work in other laboratories has shown that iron-rich plaques can be seen in the mouse brain in vivo with magnetic resonance imaging (MRI) using a high-field strength magnet but this iron cannot be visualized in humans using clinical magnets. To improve the interpretation of MRI, we correlated iron accumulation visualized by X-ray fluorescence spectroscopy, an element-specific technique with T1,more » T2, and susceptibility weighted MR (SWI) in a mouse model of AD. We show that SWI best shows areas of increased iron accumulation when compared to standard sequences.« less
In vivo three-photon microscopy of subcortical structures within an intact mouse brain
NASA Astrophysics Data System (ADS)
Horton, Nicholas G.; Wang, Ke; Kobat, Demirhan; Clark, Catharine G.; Wise, Frank W.; Schaffer, Chris B.; Xu, Chris
2013-03-01
Two-photon fluorescence microscopy enables scientists in various fields including neuroscience, embryology and oncology to visualize in vivo and ex vivo tissue morphology and physiology at a cellular level deep within scattering tissue. However, tissue scattering limits the maximum imaging depth of two-photon fluorescence microscopy to the cortical layer within mouse brain, and imaging subcortical structures currently requires the removal of overlying brain tissue or the insertion of optical probes. Here, we demonstrate non-invasive, high-resolution, in vivo imaging of subcortical structures within an intact mouse brain using three-photon fluorescence microscopy at a spectral excitation window of 1,700 nm. Vascular structures as well as red fluorescent protein-labelled neurons within the mouse hippocampus are imaged. The combination of the long excitation wavelength and the higher-order nonlinear excitation overcomes the limitations of two-photon fluorescence microscopy, enabling biological investigations to take place at a greater depth within tissue.
Visual dot interaction with short-term memory.
Etindele Sosso, Faustin Armel
2017-06-01
Many neurodegenerative diseases have a memory component. Brain structures related to memory are affected by environmental stimuli, and it is difficult to dissociate effects of all behavior of neurons. Here, visual cortex of mice was stimulated with gratings and dot, and an observation of neuronal activity before and after was made. Bandwidth, firing rate and orientation selectivity index were evaluated. A primary communication between primary visual cortex and short-term memory appeared to show an interesting path to train cognitive circuitry and investigate the basics mechanisms of the neuronal learning. The findings also suggested the interplay between primary visual cortex and short-term plasticity. The properties inside a visual target shape the perception and affect the basic encoding. Using visual cortex, it may be possible to train the memory and improve the recovery of people with cognitive disabilities or memory deficit.
Role of YAP activation in nuclear receptor CAR-mediated proliferation of mouse hepatocytes.
Abe, Taiki; Amaike, Yuto; Shizu, Ryota; Takahashi, Miki; Kano, Makoto; Hosaka, Takuomi; Sasaki, Takamitsu; Kodama, Susumu; Matsuzawa, Atsushi; Yoshinari, Kouichi
2018-06-08
Constitutive androstane receptor (CAR) is a xenobiotic-responsive nuclear receptor that is highly expressed in the liver. CAR activation induces hepatocyte proliferation and hepatocarcinogenesis in rodents, but the mechanisms remain unclear. In this study, we investigated the association of CAR-dependent cell proliferation with Yes-associated protein (YAP), which is a transcriptional cofactor controlling organ size and cell growth through the interaction with various transcriptional factors including TEAD. In mouse livers, TCPOBOP (a mouse CAR activator) treatment increased the nuclear YAP accumulation and mRNA levels of YAP target genes as well as cell-cycle related genes along with liver hypertrophy and verteporfin (an inhibitor of YAP/TEAD interaction) cotreatment tended to attenuate them. Furthermore, in cell-based reporter gene assays, CAR activation enhanced the YAP/TEAD-dependent transcription. To investigate the role of YAP/TEAD activation in the CAR-dependent hepatocyte proliferation, we sought to establish an in vitro system completely reproducing CAR-dependent cell proliferation. Since CAR was only slightly expressed in cultured mouse primary hepatocytes compared to mouse livers and no proliferation was observed after treatment with TCPOBOP, we overexpressed CAR using mouse CAR expressing adenovirus (Ad-mCAR-V5) in mouse primary hepatocytes. Ad-mCAR-V5 infection and TCPOBOP treatment induced hepatocyte proliferation. Similar results were obtained with immortalized normal mouse hepatocytes as well. In the established in vitro system, CAR-dependent proliferation was strongly inhibited by Yap knockdown and completely abolished by verteporfin treatment. Our present results obtained in in vivo and in vitro experiments suggest that YAP/TEAD activation plays key roles in CAR-dependent proliferation of murine hepatocytes.
Danhier, Pierre; Magat, Julie; Levêque, Philippe; De Preter, Géraldine; Porporato, Paolo E; Bouzin, Caroline; Jordan, Bénédicte F; Demeur, Gladys; Haufroid, Vincent; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard
2015-03-01
Cell tracking could be useful to elucidate fundamental processes of cancer biology such as metastasis. The aim of this study was to visualize, using MRI, and to quantify, using electron paramagnetic resonance (EPR), the entrapment of murine breast cancer cells labeled with superparamagnetic iron oxide particles (SPIOs) in the mouse brain after intracardiac injection. For this purpose, luciferase-expressing murine 4 T1-luc breast cancer cells were labeled with fluorescent Molday ION Rhodamine B SPIOs. Following intracardiac injection, SPIO-labeled 4 T1-luc cells were imaged using multiple gradient-echo sequences. Ex vivo iron oxide quantification in the mouse brain was performed using EPR (9 GHz). The long-term fate of 4 T1-luc cells after injection was characterized using bioluminescence imaging (BLI), brain MRI and immunofluorescence. We observed hypointense spots due to SPIO-labeled cells in the mouse brain 4 h after injection on T2 *-weighted images. Histology studies showed that SPIO-labeled cancer cells were localized within blood vessels shortly after delivery. Ex vivo quantification of SPIOs showed that less than 1% of the injected cells were taken up by the mouse brain after injection. MRI experiments did not reveal the development of macrometastases in the mouse brain several days after injection, but immunofluorescence studies demonstrated that these cells found in the brain established micrometastases. Concerning the metastatic patterns of 4 T1-luc cells, an EPR biodistribution study demonstrated that SPIO-labeled 4 T1-luc cells were also entrapped in the lungs of mice after intracardiac injection. BLI performed 6 days after injection of 4 T1-luc cells showed that this cell line formed macrometastases in the lungs and in the bones. Conclusively, EPR and MRI were found to be complementary for cell tracking applications. MRI cell tracking at 11.7 T allowed sensitive detection of isolated SPIO-labeled cells in the mouse brain, whereas EPR allowed the assessment of the number of SPIO-labeled cells in organs shortly after injection. Copyright © 2015 John Wiley & Sons, Ltd.
Guo, Bing-bing; Zheng, Xiao-lin; Lu, Zhen-gang; Wang, Xing; Yin, Zheng-qin; Hou, Wen-sheng; Meng, Ming
2015-01-01
Visual cortical prostheses have the potential to restore partial vision. Still limited by the low-resolution visual percepts provided by visual cortical prostheses, implant wearers can currently only “see” pixelized images, and how to obtain the specific brain responses to different pixelized images in the primary visual cortex (the implant area) is still unknown. We conducted a functional magnetic resonance imaging experiment on normal human participants to investigate the brain activation patterns in response to 18 different pixelized images. There were 100 voxels in the brain activation pattern that were selected from the primary visual cortex, and voxel size was 4 mm × 4 mm × 4 mm. Multi-voxel pattern analysis was used to test if these 18 different brain activation patterns were specific. We chose a Linear Support Vector Machine (LSVM) as the classifier in this study. The results showed that the classification accuracies of different brain activation patterns were significantly above chance level, which suggests that the classifier can successfully distinguish the brain activation patterns. Our results suggest that the specific brain activation patterns to different pixelized images can be obtained in the primary visual cortex using a 4 mm × 4 mm × 4 mm voxel size and a 100-voxel pattern. PMID:26692860
Identification of Naegleria fowleri proteins linked to primary amoebic meningoencephalitis.
Jamerson, Melissa; Schmoyer, Jacqueline A; Park, Jay; Marciano-Cabral, Francine; Cabral, Guy A
2017-03-01
Naegleria fowleri (N. fowleri) causes primary amoebic meningoencephalitis, a rapidly fatal disease of the central nervous system. N. fowleri can exist in cyst, flagellate or amoebic forms, depending on environmental conditions. The amoebic form can invade the brain following introduction into the nasal passages. When applied intranasally to a mouse model, cultured N. fowleri amoebae exhibit low virulence. However, upon serial passage in mouse brain, the amoebae acquire a highly virulent state. In the present study, a proteomics approach was applied to the identification of N. fowleri amoeba proteins whose expression was associated with the highly virulent state in mice. Mice were inoculated intranasally with axenically cultured amoebae or with mouse-passaged amoebae. Examination by light and electron microscopy revealed no morphological differences. However, mouse-passaged amoebae were more virulent in mice as indicated by exhibiting a two log10 titre decrease in median infective dose 50 (ID50). Scatter plot analysis of amoebic lysates revealed a subset of proteins, the expression of which was associated with highly virulent amoebae. MS-MS indicated that this subset contained proteins that shared homology with those linked to cytoskeletal rearrangement and the invasion process. Invasion assays were performed in the presence of a select inhibitor to expand on the findings. The collective results suggest that N. fowleri gene products linked to cytoskeletal rearrangement and invasion may be candidate targets in the management of primary amoebic meningoencephalitis.
Wu, Li-an; Feng, Junsheng; Wang, Lynn; Mu, Yan-dong; Baker, Andrew; Donly, Kevin J.; Harris, Stephen E.; MacDougall, Mary; Chen, Shuo
2011-01-01
Bone morphogenetic protein 2 (Bmp2) is essential for osteoblast differentiation and osteogenesis. Generation of floxed Bmp2 osteoblast cell lines is a valuable tool for studying the effects of Bmp2 on osteoblast differentiation and its signaling pathways during skeletal metabolism. Due to relatively limited sources of primary osteoblasts, we have developed cell lines that serve as good surrogate models for the study of osteoblast cell differentiation and bone mineralization. In this study, we established and characterized immortalized mouse floxed Bmp2 osteoblast cell lines. Primary mouse floxed Bmp2 osteoblasts were transfected with pSV3-neo and clonally selected. These transfected cells were verified by PCR and immunohistochemistry. To determine the genotype and phenotype of the immortalized cells, cell morphology, proliferation, differentiation and mineralization were analyzed. Also, expression of osteoblast-related gene markers including Runx2, Osx, ATF4, Dlx3, bone sialoprotein, dentin matrix protein 1, osteonectin, osteocalcin and osteopontin were examined by quantitative RT-PCR and immunohistochemistry. These results showed that immortalized floxed Bmp2 osteoblasts had a higher proliferation rate but preserved their genotypic and phenotypic characteristics similar to the primary cells. Thus, we, for the first time, describe the development of immortalized mouse floxed Bmp2 osteoblast cell lines and present a useful model to study osteoblast biology mediated by BMP2 and its downstream signaling transduction pathways. PMID:21271257
Optical Histology: High-Resolution Visualization of Tissue Microvasculature
NASA Astrophysics Data System (ADS)
Moy, Austin Jing-Ming
Mammalian tissue requires the delivery of nutrients, growth factors, and the exchange of oxygen and carbon dioxide gases to maintain normal function. These elements are delivered by the blood, which travels through the connected network of blood vessels, known as the vascular system. The vascular system consists of large feeder blood vessels (arteries and veins) that are connected to the small blood vessels (arterioles and venules), which in turn are connected to the capillaries that are directly connected to the tissue and facilitate gas exchange and nutrient delivery. These small blood vessels and capillaries make up an intricate but organized network of blood vessels that exist in all mammalian tissues known as the microvasculature and are very important in maintaining the health and proper function of mammalian tissue. Due to the importance of the microvasculature in tissue survival, disruption of the microvasculature typically leads to tissue dysfunction and tissue death. The most prevalent method to study the microvasculature is visualization. Immunohistochemistry (IHC) is the gold-standard method to visualize tissue microvasculature. IHC is very well-suited for highly detailed interrogation of the tissue microvasculature at the cellular level but is unwieldy and impractical for wide-field visualization of the tissue microvasculature. The objective my dissertation research was to develop a method to enable wide-field visualization of the microvasculature, while still retaining the high-resolution afforded by optical microscopy. My efforts led to the development of a technique dubbed "optical histology" that combines chemical and optical methods to enable high-resolution visualization of the microvasculature. The development of the technique first involved preliminary studies to quantify optical property changes in optically cleared tissues, followed by development and demonstration of the methodology. Using optical histology, I successfully obtained high resolution, depth sectioned images of the microvasculature in mouse brain and the coronary microvasculature in mouse heart. Future directions of optical histology include the potential to facilitate visualization of the entire microvascular structure of an organ as well as visualization of other tissue molecular markers of interest.
Yusifov, Rashad
2018-01-01
Abstract For routine behavioral tasks, mice predominantly rely on olfactory cues and tactile information. In contrast, their visual capabilities appear rather restricted, raising the question whether they can improve if vision gets more behaviorally relevant. We therefore performed long-term training using the visual water task (VWT): adult standard cage (SC)-raised mice were trained to swim toward a rewarded grating stimulus so that using visual information avoided excessive swimming toward nonrewarded stimuli. Indeed, and in contrast to old mice raised in a generally enriched environment (Greifzu et al., 2016), long-term VWT training increased visual acuity (VA) on average by more than 30% to 0.82 cycles per degree (cyc/deg). In an individual animal, VA even increased to 1.49 cyc/deg, i.e., beyond the rat range of VAs. Since visual experience enhances the spatial frequency threshold of the optomotor (OPT) reflex of the open eye after monocular deprivation (MD), we also quantified monocular vision after VWT training. Monocular VA did not increase reliably, and eye reopening did not initiate a decline to pre-MD values as observed by optomotry; VA values rather increased by continued VWT training. Thus, optomotry and VWT measure different parameters of mouse spatial vision. Finally, we tested whether long-term MD induced ocular dominance (OD) plasticity in the visual cortex of adult [postnatal day (P)162–P182] SC-raised mice. This was indeed the case: 40–50 days of MD induced OD shifts toward the open eye in both VWT-trained and, surprisingly, also in age-matched mice without VWT training. These data indicate that (1) long-term VWT training increases adult mouse VA, and (2) long-term MD induces OD shifts also in adult SC-raised mice. PMID:29379877
Diversity, Replication, Pathogenicity and Cell Biology of Crimean Congo Hemorrhagic Fever Virus
2010-10-01
in CCHFV pathogenesis or whether it is even O glycosylated. A third unusual feature is * Corresponding author. Mailing address: Department of Microbi ...CA), followed by Western blot analysis with mouse anti-V5 (Invitrogen) as the primary antibody and sheep anti-mouse horseradish peroxidase conjugate as...250) or with mouse anti-V5 MAb (diluted 1:500) (Invitrogen) in PBS containing 0.5 mM MgCl2 and 4% fetal bovine serum. In addition, TGN46, a sheep
Mammary Cancer and Activation of Transposable Elements
2013-09-01
formal monthly electronic lab meeting between Peaston lab and Edwards lab. And regularly hold meetings. • An informal schedule was set up with a plan...cytes and ADS-derived induced pluripotent stem cells (ADS-iPSCs) (19) and primary mouse ES cells to isolated sperm and oocytes (20). We selected an...051 59 5 92% H9-IMR90 5875 7 669 782 605 58 91% oocyte - ES cell (mouse) 4727 1 204 883 334 25 93% sperm - ES cell (mouse) 4580 4 364 748 1027 104 91
Advancing the Capabilities of an Authentic Ex Vivo Model of Primary Human Prostate Cancer
2014-10-01
maintained the PTEN expression of the native tissues after 5 days in culture. Prostate-specific membrane antigen ( PSMA ) was detected in benign and malignant...room temperature 1 h room temperature 30 min room temperature Abcam, Cambridge, MA, USA p63 SMA CD68 PSMA Mouse monoclonal Mouse monoclonal Mouse...Prostate-specific membrane antigen ( PSMA ) was detected in benign and malignant glands as expected in both native tissue and in TSCs after 5 days.47
Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function.
Schmucker, Christine; Seeliger, Mathias; Humphries, Pete; Biel, Martin; Schaeffel, Frank
2005-01-01
The mouse eye has become an important model in vision research. However, it is not known how visual acuity changes with luminance. Therefore, grating acuity of mice was measured at different luminances in an automated optomotor paradigm. Furthermore, mutant mice lacking either rods (RHO-/- and CNGB1-/-) or cones (CNGA3-/-), or both, were studied to determine the rod and cone contribution to visual acuity. Freely ranging individual mice were automatically tracked at a 25-Hz sampling rate with a self-programmed video system in a large rotating optomotor drum. The drum had a square-wave grating inside with adjustable spatial frequency. The angular speed of the mice with respect to the center of the drum and the angular orientation of the snout-tail body axis were analyzed. In addition, the motor activity of the wild-type mice was recorded at different luminances. The optomotor drum provided reliable data on visual input to the mouse's behavior and was convenient to use, since the experimenter's had only to place the mice individually in a Perspex cylinder. Optomotor grating acuity of the wild-type mice was limited to 0.3 to 0.4 cyc/deg. Maximum optomotor responses were obtained at 0.1 to 0.2 cyc/deg. The importance of visual input declined monotonically with decreasing luminance (30 cd/m2, 100%; 0.1 cd/m2, 76.4%; 0.005 cd/m2, 45.9%; and darkness, -9%). Mice lacking functional rods were able to resolve gratings up to 0.1 cyc/deg at 30 cd/m2. Surprisingly, mice lacking functional cones had an optomotor acuity that was similar to the wild-type. Double-knockout mice without rods and cones had no detectable grating acuity. Because the visual system of the mouse is more responsive at bright luminances, experiments in which visual input is important should be performed in photopic conditions (30 cd/m2 or even more). Apparently, spatial vision is governed by the rod system, which is not saturated in the mesopic or low photopic range. Mice lacking both rods and cones have no detectable grating acuity, indicating that the retinal melanopsin system does not contribute to spatial vision.
Rat astrocytes are more supportive for mouse OPC self-renewal than mouse astrocytes in culture.
Cheng, Xuejun; Xie, Binghua; Qi, Jiajun; Zhao, Xiaofeng; Zhang, Zunyi; Qiu, Mengsheng; Yang, Junlin
2017-09-01
Mouse primary oligodendrocyte precursor cells (OPCs) are increasingly used to study the molecular mechanisms underlying the phenotype changes in oligodendrocyte differentiation and axonal myelination observed in transgenic or mutant mouse models. However, mouse OPCs are much more difficult to be isolated by the simple dissociation culture of brain tissues than their rat counterparts. To date, the mechanisms underlying the species difference in OPC preparation remain obscure. In this study, we showed that astrocytes from rats have a stronger effect than those from mouse in promoting OPC proliferation and survival in vitro. Mouse astrocytes displayed significantly weaker viability in culture and reduced potential in maintaining OPC self-renewal, as confirmed by culturing OPCs with conditioned media from rat or mouse astrocytes. These results explained the reason for why stratified cultures of OPCs and astrocytes are difficult to be achieved in mouse CNS tissues. Based on these findings, we adopted inactivated rat astrocytes as feeder cells to support the self-renewal of mouse cortical OPCs and preparation of high-purity mouse OPCs. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 907-916, 2017. © 2016 Wiley Periodicals, Inc.
DEVELOPMENT OF AN INTACT HEPATOCYTE ACTIVATION SYSTEM FOR ROUTINE USE WITH THE MOUSE LYMPHOMA ASSAY
The authors have developed a method for cocultivating primary rat hepatocytes with L5178Y/TK+/- 3.7.2C mouse lymphoma cells. The system should provide a means to simulate more closely in vivo metabolism compared to metabolism by liver homogenates, while still being useful for rou...
Lack of centrioles and primary cilia in STIL−/− mouse embryos
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL−/− mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL−/− cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL−/− cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development. PMID:25486474
Lack of centrioles and primary cilia in STIL(-/-) mouse embryos.
David, Ahuvit; Liu, Fengying; Tibelius, Alexandra; Vulprecht, Julia; Wald, Diana; Rothermel, Ulrike; Ohana, Reut; Seitel, Alexander; Metzger, Jasmin; Ashery-Padan, Ruth; Meinzer, Hans-Peter; Gröne, Hermann-Josef; Izraeli, Shai; Krämer, Alwin
2014-01-01
Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.
Lin, Wen; Wu, Rachel T; Wu, Tienyuan; Khor, Tin-Oo; Wang, Hu; Kong, Ah-Ng
2008-10-15
Sulforaphane (SFN) is a natural isothiocyanate that is present in cruciferous vegetables such as broccoli and cabbage. Previous studies have shown that SFN is effective in preventing carcinogenesis induced by carcinogens in rodents, which is related in part to its potent anti-inflammation properties. In the present study, we compared the anti-inflammatory effect of SFN on LPS-stimulated inflammation in primary peritoneal macrophages derived from Nrf2 (+/+) and Nrf2 (-/-) mice. Pretreatment of SFN in Nrf2 (+/+) primary peritoneal macrophages potently inhibited LPS-stimulated mRNA expression, protein expression and production of TNF-alpha, IL-1beta, COX-2 and iNOS. HO-1 expression was significantly augmented in LPS-stimulated Nrf2 (+/+) primary peritoneal macrophages by SFN. Interestingly, the anti-inflammatory effect was attenuated in Nrf2 (-/-) primary peritoneal macrophages. We concluded that SFN exerts its anti-inflammatory activity mainly via activation of Nrf2 in mouse peritoneal macrophages.
Age-related slowing of response selection and production in a visual choice reaction time task
Woods, David L.; Wyma, John M.; Yund, E. William; Herron, Timothy J.; Reed, Bruce
2015-01-01
Aging is associated with delayed processing in choice reaction time (CRT) tasks, but the processing stages most impacted by aging have not been clearly identified. Here, we analyzed CRT latencies in a computerized serial visual feature-conjunction task. Participants responded to a target letter (probability 40%) by pressing one mouse button, and responded to distractor letters differing either in color, shape, or both features from the target (probabilities 20% each) by pressing the other mouse button. Stimuli were presented randomly to the left and right visual fields and stimulus onset asynchronies (SOAs) were adaptively reduced following correct responses using a staircase procedure. In Experiment 1, we tested 1466 participants who ranged in age from 18 to 65 years. CRT latencies increased significantly with age (r = 0.47, 2.80 ms/year). Central processing time (CPT), isolated by subtracting simple reaction times (SRT) (obtained in a companion experiment performed on the same day) from CRT latencies, accounted for more than 80% of age-related CRT slowing, with most of the remaining increase in latency due to slowed motor responses. Participants were faster and more accurate when the stimulus location was spatially compatible with the mouse button used for responding, and this effect increased slightly with age. Participants took longer to respond to distractors with target color or shape than to distractors with no target features. However, the additional time needed to discriminate the more target-like distractors did not increase with age. In Experiment 2, we replicated the findings of Experiment 1 in a second population of 178 participants (ages 18–82 years). CRT latencies did not differ significantly in the two experiments, and similar effects of age, distractor similarity, and stimulus-response spatial compatibility were found. The results suggest that the age-related slowing in visual CRT latencies is largely due to delays in response selection and production. PMID:25954175
Ji, Shuiwang
2013-07-11
The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship.
Sung, Haejune; Shin, Hyun Ho; Baek, Yunseng; Kim, Gyu Ah; Koh, Jae Sang; Park, Eun-Cheol; Shin, Jaeyong
2017-08-23
Glaucoma is one of the most leading causes of permanent visual impairments in Korea, and social expenses spent for the glaucoma are increasing. This study is to identify association between socioeconomic status and the visual impairments caused by primary glaucoma in Korea. This study is based on a cohort study using stratified representative samples in the National Health Insurance claim data from 2002 to 2013 with 1,025,340 representative subjects. Target subjects were patients who are newly diagnosed with primary glaucoma from 2004 to 2013. We conducted a multiple logistic regression analysis depending on the occurrence of visual impairment and its temporal order compared to the glaucoma diagnosis. Among 1728 patients with primary glaucoma, those with low and middle income shows higher odds ratio (OR) of the visual impairments than those with high income group (low income; OR = 3.42, 95% Confidential Interval (CI):2.06-5.66, middle income; OR = 2.13, 95% CI: 1.28-3.55), in case of the occurrence of the visual impairments preceded the diagnosis of glaucoma. Glaucoma patients without pre-existing glaucoma history before visual impairment have higher association between socioeconomic status and the occurrence of visual impairments by primary glaucoma. Since glaucoma had not been diagnosed and recognized yet, the differences may have been derived from the disparities of the awareness of the glaucoma. These findings call attention to the correlation between socioeconomic factors and the visual impairments by glaucoma, and raise public health needs over the importance of glaucoma awareness and eye screening for glaucoma, especially for low socioeconomic status.
View-Dependent Streamline Deformation and Exploration
Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R.; Wong, Pak Chung
2016-01-01
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely. PMID:26600061
View-Dependent Streamline Deformation and Exploration.
Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R; Wong, Pak Chung
2016-07-01
Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.
Neural Anatomy of Primary Visual Cortex Limits Visual Working Memory.
Bergmann, Johanna; Genç, Erhan; Kohler, Axel; Singer, Wolf; Pearson, Joel
2016-01-01
Despite the immense processing power of the human brain, working memory storage is severely limited, and the neuroanatomical basis of these limitations has remained elusive. Here, we show that the stable storage limits of visual working memory for over 9 s are bound by the precise gray matter volume of primary visual cortex (V1), defined by fMRI retinotopic mapping. Individuals with a bigger V1 tended to have greater visual working memory storage. This relationship was present independently for both surface size and thickness of V1 but absent in V2, V3 and for non-visual working memory measures. Additional whole-brain analyses confirmed the specificity of the relationship to V1. Our findings indicate that the size of primary visual cortex plays a critical role in limiting what we can hold in mind, acting like a gatekeeper in constraining the richness of working mental function. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Fiber optic label-free biophotonic diagnostic tool for cardiovascular disease
NASA Astrophysics Data System (ADS)
Rius, Cristina; Ackermann, Tobias N.; Dorado, Beatriz; Muñoz-Berbel, Xavier; Andrés, Vicente; Llobera, Andreu
2015-06-01
A label-free compact method for performing photonic characterization of "healthy" versus "diseased" arteries has been developed. It permits the detection of atherosclerotic lesion in living mouse arteries. Using this prototype, we observed that the spectral response (photonic fingerprint, PIN) obtained from aortas of wild-type mice differs from the response of ApoE-KO mice fed with high-fat diet (an atheroprone mouse model). Benchmark of the results against gold standard was performed by staining the aortas with Oil-Red-O to visualize atherosclerotic plaques.
Investigating Visual Alerting in Maritime Command and Control
2008-12-01
were: “ qwe ” for neutral or “asd” for hostile. The final step in the categorization task was to confirm their decision by clicking the mouse on a box...the Report display was active. As in Experiment 1, participants typed “ qwe ” or “asd” into the textbox to report their classification. An example of...button, and enter your answer in the text box on the right screen. To enter your answer type " qwe "=neutral or "asd"=hostile. Use the mouse to
Link between orientation and retinotopic maps in primary visual cortex
Paik, Se-Bum; Ringach, Dario L.
2012-01-01
Maps representing the preference of neurons for the location and orientation of a stimulus on the visual field are a hallmark of primary visual cortex. It is not yet known how these maps develop and what function they play in visual processing. One hypothesis postulates that orientation maps are initially seeded by the spatial interference of ON- and OFF-center retinal receptive field mosaics. Here we show that such a mechanism predicts a link between the layout of orientation preferences around singularities of different signs and the cardinal axes of the retinotopic map. Moreover, we confirm the predicted relationship holds in tree shrew primary visual cortex. These findings provide additional support for the notion that spatially structured input from the retina may provide a blueprint for the early development of cortical maps and receptive fields. More broadly, it raises the possibility that spatially structured input from the periphery may shape the organization of primary sensory cortex of other modalities as well. PMID:22509015
Tiner, Bethany L.; Kirtley, Michelle L.; Erova, Tatiana E.; Popov, Vsevolod L.; Baze, Wallace B.; van Lier, Christina J.; Ponnusamy, Duraisamy; Andersson, Jourdan A.; Motin, Vladimir L.; Chauhan, Sadhana
2015-01-01
Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection. PMID:25605764
Tiner, Bethany L; Sha, Jian; Kirtley, Michelle L; Erova, Tatiana E; Popov, Vsevolod L; Baze, Wallace B; van Lier, Christina J; Ponnusamy, Duraisamy; Andersson, Jourdan A; Motin, Vladimir L; Chauhan, Sadhana; Chopra, Ashok K
2015-04-01
Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Shijun, Xu; Junsheng, Mu; Jianqun, Zhang; Ping, Bo
2016-03-01
Identifying a suitable polymeric biomaterial for myocardial patch repair following myocardial infarction, cerebral infarction, and cartilage injury is essential. This study aimed to investigate the effect of the novel polymer material, poly3-hydroxybutyrate-co-3-hydroxyhexanoate, on the adhesion, proliferation, and differentiation of mouse-induced pluripotent stem cells in vitro. Mouse-induced pluripotent stem cells were isolated, expanded, and cultured on either two-dimensional or three-dimensional poly3-hydroxybutyrate-co-3-hydroxyhexanoate films (membranes were perforated to imitate three-dimensional space). Following attachment onto the films, mouse-induced pluripotent stem cell morphology was visualized using scanning electron microscopy. Cell vitality was detected using the Cell Counting Kit-8 assay and cell proliferation was observed using fluorescent 4',6-diamidino-2-phenylindole (DAPI) staining. Mouse-induced pluripotent stem cells were induced into cardiomyocytes by differentiation medium containing vitamin C. A control group in the absence of an inducer was included. Mouse-induced pluripotent stem cell survival and differentiation were observed using immunofluorescence and flow cytometry, respectively. Mouse-induced pluripotent stem cells growth, proliferation, and differentiation were observed on both two-dimensional and three-dimensional poly3-hydroxybutyrate-co-3-hydroxyhexanoate films. Vitamin C markedly improved the efficiency of mouse-induced pluripotent stem cells differentiation into cardiomyocytes on poly3-hydroxybutyrate-co-3-hydroxyhexanoate films. Three-dimensional culture was better at promoting mouse-induced pluripotent stem cell proliferation and differentiation compared with two-dimensional culture. © The Author(s) 2016.
Preissl, Sebastian; Fang, Rongxin; Huang, Hui; Zhao, Yuan; Raviram, Ramya; Gorkin, David U; Zhang, Yanxiao; Sos, Brandon C; Afzal, Veena; Dickel, Diane E; Kuan, Samantha; Visel, Axel; Pennacchio, Len A; Zhang, Kun; Ren, Bing
2018-03-01
Analysis of chromatin accessibility can reveal transcriptional regulatory sequences, but heterogeneity of primary tissues poses a significant challenge in mapping the precise chromatin landscape in specific cell types. Here we report single-nucleus ATAC-seq, a combinatorial barcoding-assisted single-cell assay for transposase-accessible chromatin that is optimized for use on flash-frozen primary tissue samples. We apply this technique to the mouse forebrain through eight developmental stages. Through analysis of more than 15,000 nuclei, we identify 20 distinct cell populations corresponding to major neuronal and non-neuronal cell types. We further define cell-type-specific transcriptional regulatory sequences, infer potential master transcriptional regulators and delineate developmental changes in forebrain cellular composition. Our results provide insight into the molecular and cellular dynamics that underlie forebrain development in the mouse and establish technical and analytical frameworks that are broadly applicable to other heterogeneous tissues.
Task-dependent engagements of the primary visual cortex during kinesthetic and visual motor imagery.
Mizuguchi, Nobuaki; Nakamura, Maiko; Kanosue, Kazuyuki
2017-01-01
Motor imagery can be divided into kinesthetic and visual aspects. In the present study, we investigated excitability in the corticospinal tract and primary visual cortex (V1) during kinesthetic and visual motor imagery. To accomplish this, we measured motor evoked potentials (MEPs) and probability of phosphene occurrence during the two types of motor imageries of finger tapping. The MEPs and phosphenes were induced by transcranial magnetic stimulation to the primary motor cortex and V1, respectively. The amplitudes of MEPs and probability of phosphene occurrence during motor imagery were normalized based on the values obtained at rest. Corticospinal excitability increased during both kinesthetic and visual motor imagery, while excitability in V1 was increased only during visual motor imagery. These results imply that modulation of cortical excitability during kinesthetic and visual motor imagery is task dependent. The present finding aids in the understanding of the neural mechanisms underlying motor imagery and provides useful information for the use of motor imagery in rehabilitation or motor imagery training. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Chi, Wenying; Meng, Fanjun; Li, Yan; Li, Peilong; Wang, Guizhi; Cheng, Hong; Han, Song; Li, Junfa
2014-12-10
As a newly discovered member of the HSP70 family, heat shock protein A12B (HSPA12B) is involved in brain ischemic injury. According to our previous study, microRNA-134 (miR-134) could target HSPA12B by binding to its 3'-untranslated region (UTR). However, the regulation of miR-134 on HSPA12B and their role in protecting neuronal cells from ischemic injury are unclear. In this study, the miR-134 expression level was manipulated, and the HSPA12B protein levels were also determined in oxygen-glucose deprivation (OGD)-treated primary cultured neuronal cells in vitro and mouse brain after middle cerebral artery occlusion (MCAO)-induced ischemic stroke in vivo. The results showed that miR-134 expression levels increased in primary cultured neuronal cells and mouse brain from 12h to 7 day reoxygenation/reperfusion after 1h OGD or 1h MCAO treatment. miR-134 overexpression promoted neuronal cell death and apoptosis by decreasing HSPA12B protein levels. Conversely, downregulating miR-134 reduced neuronal cell death and apoptosis by enhancing HSPA12B protein levels. Also, HSPA12B siRNA could block miR-134 inhibitor-mediated neuroprotection against OGD-induced neuronal cell injury in vitro. Taken together, miR-134 might influence neuronal cell survival against ischemic injury in primary cultured neuronal cells and mouse brain with ischemic stroke by negatively modulating HSPA12B protein expression in a posttranscriptional manner. Copyright © 2014 Elsevier B.V. All rights reserved.
Toyama, Takashi; Shinkai, Yasuhiro; Yasutake, Akira; Uchida, Koji; Yamamoto, Masayuki
2011-01-01
Background: Methylmercury (MeHg) exhibits neurotoxicity through accumulation in the brain. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) plays an important role in reducing the cellular accumulation of MeHg. Objectives: We investigated the protective effect of isothiocyanates, which are known to activate Nrf2, on the accumulation of mercury after exposure to MeHg in vitro and in vivo. Methods: We used primary mouse hepatocytes in in vitro experiments and mice as an in vivo model. We used Western blotting, luciferase assays, atomic absorption spectrometry assays, and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assays, and we identified toxicity in mice based on hind-limb flaccidity and mortality. Results: The isothiocyanates 6-methylsulfinylhexyl isothiocyanate (6-HITC) and sulforaphane (SFN) activated Nrf2 and up-regulated downstream proteins associated with MeHg excretion, such as glutamate-cysteine ligase, glutathione S-transferase, and multidrug resistance–associated protein, in primary mouse hepatocytes. Under these conditions, intracellular glutathione levels increased in wild-type but not Nrf2-deficient primary mouse hepatocytes. Pretreatment with 6-HITC and SFN before MeHg exposure suppressed cellular accumulation of mercury and cytotoxicity in wild-type but not Nrf2-deficient primary mouse hepatocytes. In comparison, in vivo administration of MeHg to Nrf2-deficient mice resulted in increased sensitivity to mercury concomitant with an increase in mercury accumulation in the brain and liver. Injection of SFN before administration of MeHg resulted in a decrease in mercury accumulation in the brain and liver of wild-type, but not Nrf2-deficient, mice. Conclusions: Through activation of Nrf2, 6-HITC and SFN can suppress mercury accumulation and intoxication caused by MeHg intake. PMID:21382770
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuneo, Kyle C.; Mito, Jeffrey K.; Javid, Melodi P.
2013-05-01
Purpose: Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS) and other tumors undergo radiation therapy (RT) before surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. Methods and Materials: A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activatedmore » fluorescent probes, and various tissues, including the tumor, were imaged using a hand-held imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by Western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. Results: RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b-positive tumor-associated immune cells. Conclusions: In this primary murine model of STS, RT did not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes labeled tumor cells and tumor-associated macrophages. Our results suggest that it would be feasible to include patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.« less
Hadley, Kevin C; Rakhit, Rishi; Guo, Hongbo; Sun, Yulong; Jonkman, James E N; McLaurin, Joanne; Hazrati, Lili-Naz; Emili, Andrew; Chakrabartty, Avijit
2015-09-29
Spatially targeted optical microproteomics (STOMP) is a novel proteomics technique for interrogating micron-scale regions of interest (ROIs) in mammalian tissue, with no requirement for genetic manipulation. Methanol or formalin-fixed specimens are stained with fluorescent dyes or antibodies to visualize ROIs, then soaked in solutions containing the photo-tag: 4-benzoylbenzyl-glycyl-hexahistidine. Confocal imaging along with two photon excitation are used to covalently couple photo-tags to all proteins within each ROI, to a resolution of 0.67 µm in the xy-plane and 1.48 µm axially. After tissue solubilization, photo-tagged proteins are isolated and identified by mass spectrometry. As a test case, we examined amyloid plaques in an Alzheimer's disease (AD) mouse model and a post-mortem AD case, confirming known plaque constituents and discovering new ones. STOMP can be applied to various biological samples including cell lines, primary cell cultures, ex vivo specimens, biopsy samples, and fixed post-mortem tissue.
Peng, Shuang; Bie, Binglin; Sun, Yangzesheng; Liu, Min; Cong, Hengjiang; Zhou, Wentao; Xia, Yucong; Tang, Heng; Deng, Hexiang; Zhou, Xiang
2018-04-03
Effective transfection of genetic molecules such as DNA usually relies on vectors that can reversibly uptake and release these molecules, and protect them from digestion by nuclease. Non-viral vectors meeting these requirements are rare due to the lack of specific interactions with DNA. Here, we design a series of four isoreticular metal-organic frameworks (Ni-IRMOF-74-II to -V) with progressively tuned pore size from 2.2 to 4.2 nm to precisely include single-stranded DNA (ssDNA, 11-53 nt), and to achieve reversible interaction between MOFs and ssDNA. The entire nucleic acid chain is completely confined inside the pores providing excellent protection, and the geometric distribution of the confined ssDNA is visualized by X-ray diffraction. Two MOFs in this series exhibit excellent transfection efficiency in mammalian immune cells, 92% in the primary mouse immune cells (CD4+ T cell) and 30% in human immune cells (THP-1 cell), unrivaled by the commercialized agents (Lipo and Neofect).
Wang, Bor-Shuen; Feng, Liang; Liu, Mingna; Liu, Xiaorong; Cang, Jianhua
2013-01-01
SUMMARY Experience shapes neural circuits during critical periods in early life. The timing of critical periods is regulated by both genetics and the environment. Here we study the functional significance of such temporal regulations in the mouse primary visual cortex, where critical period plasticity drives binocular matching of orientation preference. We find that the binocular matching is permanently disrupted in mice that have a precocious critical period due to genetically enhanced inhibition. The disruption is specific to one type of neurons, the complex cells, which, as we reveal, normally match after the simple cells. Early environmental enrichment completely rescues the deficit by inducing histone acetylation and consequently advancing the matching process to coincide with the precocious plasticity. Our experiments thus demonstrate that the proper timing of the critical period is essential for establishing normal binocularity and the detrimental impact of its genetic misregulation can be ameliorated by environmental manipulations via epigenetic mechanisms. PMID:24012279
Volumetric Two-photon Imaging of Neurons Using Stereoscopy (vTwINS)
Song, Alexander; Charles, Adam S.; Koay, Sue Ann; Gauthier, Jeff L.; Thiberge, Stephan Y.; Pillow, Jonathan W.; Tank, David W.
2017-01-01
Two-photon laser scanning microscopy of calcium dynamics using fluorescent indicators is a widely used imaging method for large scale recording of neural activity in vivo. Here we introduce volumetric Two-photon Imaging of Neurons using Stereoscopy (vTwINS), a volumetric calcium imaging method that employs an elongated, V-shaped point spread function to image a 3D brain volume. Single neurons project to spatially displaced “image pairs” in the resulting 2D image, and the separation distance between images is proportional to depth in the volume. To demix the fluorescence time series of individual neurons, we introduce a novel orthogonal matching pursuit algorithm that also infers source locations within the 3D volume. We illustrate vTwINS by imaging neural population activity in mouse primary visual cortex and hippocampus. Our results demonstrate that vTwINS provides an effective method for volumetric two-photon calcium imaging that increases the number of neurons recorded while maintaining a high frame-rate. PMID:28319111
18F-FDG as an inflammation biomarker for imaging dengue virus infection and treatment response
Watanabe, Satoru; Herr, Keira J.; Kalimuddin, Shirin; Tham, Jing Yang; Ong, Joanne; Reolo, Marie; Serrano, Raymond M.F.; Cheung, Yin Bun; Low, Jenny G.H.; Vasudevan, Subhash G.
2017-01-01
Development of antiviral therapy against acute viral diseases, such as dengue virus (DENV), suffers from the narrow window of viral load detection in serum during onset and clearance of infection and fever. We explored a biomarker approach using 18F-fluorodeoxyglucose (18F-FDG) PET in established mouse models for primary and antibody-dependent enhancement infection with DENV. 18F-FDG uptake was most prominent in the intestines and correlated with increased virus load and proinflammatory cytokines. Furthermore, a significant temporal trend in 18F-FDG uptake was seen in intestines and selected tissues over the time course of infection. Notably, 18F-FDG uptake and visualization by PET robustly differentiated treatment-naive groups from drug-treated groups as well as nonlethal from lethal infections with a clinical strain of DENV2. Thus, 18F-FDG may serve as a novel DENV infection–associated inflammation biomarker for assessing treatment response during therapeutic intervention trials. PMID:28469088
Law, MeiYee; Shaw, David R
2018-01-01
Mouse Genome Informatics (MGI, http://www.informatics.jax.org/ ) web resources provide free access to meticulously curated information about the laboratory mouse. MGI's primary goal is to help researchers investigate the genetic foundations of human diseases by translating information from mouse phenotypes and disease models studies to human systems. MGI provides comprehensive phenotypes for over 50,000 mutant alleles in mice and provides experimental model descriptions for over 1500 human diseases. Curated data from scientific publications are integrated with those from high-throughput phenotyping and gene expression centers. Data are standardized using defined, hierarchical vocabularies such as the Mammalian Phenotype (MP) Ontology, Mouse Developmental Anatomy and the Gene Ontologies (GO). This chapter introduces you to Gene and Allele Detail pages and provides step-by-step instructions for simple searches and those that take advantage of the breadth of MGI data integration.
Four alpha ganglion cell types in mouse retina: Function, structure, and molecular signatures
Sanes, Joshua R.
2017-01-01
The retina communicates with the brain using ≥30 parallel channels, each carried by axons of distinct types of retinal ganglion cells. In every mammalian retina one finds so-called "alpha" ganglion cells (αRGCs), identified by their large cell bodies, stout axons, wide and mono-stratified dendritic fields, and high levels of neurofilament protein. In the mouse, three αRGC types have been described based on responses to light steps: On-sustained, Off-sustained, and Off-transient. Here we employed a transgenic mouse line that labels αRGCs in the live retina, allowing systematic targeted recordings. We characterize the three known types and identify a fourth, with On-transient responses. All four αRGC types share basic aspects of visual signaling, including a large receptive field center, a weak antagonistic surround, and absence of any direction selectivity. They also share a distinctive waveform of the action potential, faster than that of other RGC types. Morphologically, they differ in the level of dendritic stratification within the IPL, which accounts for their response properties. Molecularly, each type has a distinct signature. A comparison across mammals suggests a common theme, in which four large-bodied ganglion cell types split the visual signal into four channels arranged symmetrically with respect to polarity and kinetics. PMID:28753612
Specimen preparation, imaging, and analysis protocols for knife-edge scanning microscopy.
Choe, Yoonsuck; Mayerich, David; Kwon, Jaerock; Miller, Daniel E; Sung, Chul; Chung, Ji Ryang; Huffman, Todd; Keyser, John; Abbott, Louise C
2011-12-09
Major advances in high-throughput, high-resolution, 3D microscopy techniques have enabled the acquisition of large volumes of neuroanatomical data at submicrometer resolution. One of the first such instruments producing whole-brain-scale data is the Knife-Edge Scanning Microscope (KESM), developed and hosted in the authors' lab. KESM has been used to section and image whole mouse brains at submicrometer resolution, revealing the intricate details of the neuronal networks (Golgi), vascular networks (India ink), and cell body distribution (Nissl). The use of KESM is not restricted to the mouse nor the brain. We have successfully imaged the octopus brain, mouse lung, and rat brain. We are currently working on whole zebra fish embryos. Data like these can greatly contribute to connectomics research; to microcirculation and hemodynamic research; and to stereology research by providing an exact ground-truth. In this article, we will describe the pipeline, including specimen preparation (fixing, staining, and embedding), KESM configuration and setup, sectioning and imaging with the KESM, image processing, data preparation, and data visualization and analysis. The emphasis will be on specimen preparation and visualization/analysis of obtained KESM data. We expect the detailed protocol presented in this article to help broaden the access to KESM and increase its utilization.
USDA-ARS?s Scientific Manuscript database
Age-related increases in oxidative stress and inflammation are associated with loss of cognitive and motor functions. Previous research has shown that supplementation with berry fruits can modulate signaling in primary hippocampal neurons or BV-2 mouse microglial cells. Because of the high polypheno...
Tsuji, Kenji; Suleiman, Hani; Miner, Jeffrey H; Daley, James M; Capen, Diane E; Păunescu, Teodor G; Lu, Hua A Jenny
2017-09-15
The glomerulus exercises its filtration barrier function by establishing a complex filtration apparatus consisting of podocyte foot processes, glomerular basement membrane and endothelial cells. Disruption of any component of the glomerular filtration barrier leads to glomerular dysfunction, frequently manifested as proteinuria. Ultrastructural studies of the glomerulus by transmission electron microscopy (TEM) and conventional scanning electron microscopy (SEM) have been routinely used to identify and classify various glomerular diseases. Here we report the application of newly developed helium ion scanning microscopy (HIM) to examine the glomerulopathy in a Col4a3 mutant/Alport syndrome mouse model. Our study revealed unprecedented details of glomerular abnormalities in Col4a3 mutants including distorted podocyte cell bodies and disorganized primary processes. Strikingly, we observed abundant filamentous microprojections arising from podocyte cell bodies and processes, and presence of unique bridging processes that connect the primary processes and foot processes in Alport mice. Furthermore, we detected an altered glomerular endothelium with disrupted sub-endothelial integrity. More importantly, we were able to clearly visualize the complex, three-dimensional podocyte and endothelial interface by HIM. Our study demonstrates that HIM provides nanometer resolution to uncover and rediscover critical ultrastructural characteristics of the glomerulopathy in Col4a3 mutant mice.
Kolasa, Magdalena; Solich, Joanna; Faron-Górecka, Agata; Żurawek, Dariusz; Pabian, Paulina; Łukasiewicz, Sylwia; Kuśmider, Maciej; Szafran-Pilch, Kinga; Szlachta, Marta; Dziedzicka-Wasylewska, Marta
2018-05-01
Recently, it has been shown that serotonin 5-HT 1A receptor interacts with dopamine D2 receptor in vitro. However, the existence of 5-HT 1A -D2 heteromers in native tissue remains unexplored. In the present study, we investigated 5-HT 1A -D2 receptor heteromerization in mice treated acutely or chronically with paroxetine (10 mg/kg) or risperidone (0.05 mg/kg). Receptor heteromerization was visualized and quantified in the mouse brain by in situ proximity ligation assay (PLA). Additionally, we aimed to determine the cellular localization of 5-HT 1A -D2 receptor heteromers in mouse adult primary neuronal cells by immunofluorescent staining with markers for astrocytes (GFAP) and neurons (NeuN and MAP2). The results from the current study demonstrated that 5-HT 1A and D2 receptor co-localization and heteromerization occurred in the mouse prefrontal cortex. Counterstaining after PLA confirmed neuronal (pyramidal and GABAergic) as well as astrocytal localization of 5-HT 1A -D2 receptor heteromers. Chronic administration of paroxetine or risperidone increased the level of 5-HT 1A -D2 receptor heteromers in the prefrontal cortex. These changes were not accompanied by any changes in the expression of mRNAs (measured by in situ hybridization) or densities of 5-HT 1A and D2 receptors (quantified by receptor autoradiography with [3H]8-OH-DPAT and [3H]domperidone, respectively), what all indicated that paroxetine and risperidone facilitated 5-HT 1A -D2 heteromer formation independently of the receptor expression. In vitro homogenous time-resolved FRET (HTRF) study confirmed the ability of tested drugs to influence the human 5-HT 1A -D2 heteromer formation. The obtained data indicate that the increase in 5-HT 1A -D2 receptor heteromerization is a common molecular characteristic of paroxetine and low-dose risperidone treatment. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Almandoz-Gil, Leire; Persson, Emma; Lindström, Veronica; Ingelsson, Martin; Erlandsson, Anna; Bergström, Joakim
2018-01-01
The aggregation of alpha-synuclein (αSyn) is the pathological hallmark of Parkinson's disease, dementia with Lewy bodies and related neurological disorders. However, the physiological function of the protein and how this function relates to its pathological effects remain poorly understood. One of the proposed roles of αSyn is to promote the soluble N -ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly by binding to VAMP-2. The objective of this study was to visualize the co-localization between αSyn and the SNARE proteins (VAMP-2, SNAP-25, and syntaxin-1) for the first time using in situ proximity ligation assay (PLA). Cortical primary neurons were cultured from either non-transgenic or transgenic mice expressing human αSyn with the A30P mutation under the Thy-1 promoter. With an antibody recognizing both mouse and human αSyn, a PLA signal indicating close proximity between αSyn and the three SNARE proteins was observed both in the soma and throughout the processes. No differences in the extent of PLA signals were seen between non-transgenic and transgenic neurons. With an antibody specific against human αSyn, the PLA signal was mostly located to the soma and was only present in a few cells. Taken together, in situ PLA is a method that can be used to investigate the co-localization of αSyn and the SNARE proteins in primary neuronal cultures.
Intelligent Visual Input: A Graphical Method for Rapid Entry of Patient-Specific Data
Bergeron, Bryan P.; Greenes, Robert A.
1987-01-01
Intelligent Visual Input (IVI) provides a rapid, graphical method of data entry for both expert system interaction and medical record keeping purposes. Key components of IVI include: a high-resolution graphic display; an interface supportive of rapid selection, i.e., one utilizing a mouse or light pen; algorithm simplification modules; and intelligent graphic algorithm expansion modules. A prototype IVI system, designed to facilitate entry of physical exam findings, is used to illustrates the potential advantages of this approach.
Veselova, E V; Kamenskikh, T G; Raĭgorodkiĭ, Iu M; Kolbenev, I O; Myshkina, E S
2010-01-01
The traveling magnetic field was used to treat primary open-angle glaucoma. The field was applied to the projection of cervical sympathetic ganglia of the patients. Hemodynamic parameters of posterior short ciliary arteries and central retinal artery were analysed along with visual evoked potentials, visual field limits, and visual acuity. It was shown that magnetotherapy with the use of an AMO-ATOS apparatus produces better clinical results in patients with stage I and II primary open-angle glaucoma compared with medicamentous therapy (intake of trental tablets).
ERIC Educational Resources Information Center
Russell-Bowie, Deirdre
2010-01-01
This paper reports the findings of a study on pre-service teachers' background and confidence in music and visual arts education. The study involved 939 non-specialist pre-service primary teachers from five countries. Initially the paper identifies the students' perceptions of their background and confidence in relation to music and visual arts…
Increased visual sensitivity following periods of dim illumination.
McKeown, Alex S; Kraft, Timothy W; Loop, Michael S
2015-02-19
We measured changes in the sensitivity of the human rod pathway by testing visual reaction times before and after light adaptation. We targeted a specific range of conditioning light intensities to see if a physiological adaptation recently discovered in mouse rods is observable at the perceptual level in humans. We also measured the noise spectrum of single mouse rods due to the importance of the signal-to-noise ratio in rod to rod bipolar cell signal transfer. Using the well-defined relationship between stimulus intensity and reaction time (Piéron's law), we measured the reaction times of eight human subjects (ages 24-66) to scotopic test flashes of a single intensity before and after the presentation of a 3-minute background. We also made recordings from single mouse rods and processed the cellular noise spectrum before and after similar conditioning exposures. Subject reaction times to a fixed-strength stimulus were fastest 5 seconds after conditioning background exposure (79% ± 1% of the preconditioning mean, in darkness) and were significantly faster for the first 12 seconds after background exposure (P < 0.01). During the period of increased rod sensitivity, the continuous noise spectrum of individual mouse rods was not significantly increased. A decrease in human reaction times to a dim flash after conditioning background exposure may originate in rod photoreceptors through a transient increase in the sensitivity of the phototransduction cascade. There is no accompanying increase in rod cellular noise, allowing for reliable transmission of larger rod signals after conditioning exposures and the observed increase in perceptual sensitivity. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.
A neural correlate of working memory in the monkey primary visual cortex.
Supèr, H; Spekreijse, H; Lamme, V A
2001-07-06
The brain frequently needs to store information for short periods. In vision, this means that the perceptual correlate of a stimulus has to be maintained temporally once the stimulus has been removed from the visual scene. However, it is not known how the visual system transfers sensory information into a memory component. Here, we identify a neural correlate of working memory in the monkey primary visual cortex (V1). We propose that this component may link sensory activity with memory activity.
Hiroshima, Yukihiko; Maawy, Ali A; Katz, Matthew H G; Fleming, Jason B; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M
2015-03-01
Patient-derived orthotopic xenograft (PDOX) nude-mouse models replicate the behavior of clinical cancer, including metastasis. The objective of the study was to determine the efficacy of zoledronic acid (ZA) on metastasis of a patient-derived orthotopic xenograft (PDOX) nude-mouse model of pancreatic cancer. In the present study, we examined the efficacy of ZA on pancreatic cancer growth and metastasis in a PDOX nude-mouse model. ZA monotherapy did not significantly suppress primary tumor growth. However, the primary tumor weight of gemcitabine (GEM) and combination GEM + ZA-treated mice was significantly decreased compared to the control group (GEM: P = 0.003; GEM + ZA: P = 0.002). The primary tumor weight of GEM + ZA-treated mice was significantly decreased compared to GEM-treated mice (P = 0.016). The metastasis weight decreased in ZA- or GEM-treated mice compared to the control group (ZA: P = 0.009; GEM: P = 0.007. No metastasis was detected in combination GEM + ZA-treated mice compared to the control group (GEM + ZA; P = 0.005). The results of the present study indicate that ZA can selectively target metastasis in a pancreatic cancer PDOX model and that the combination of ZA and GEM should be evaluated clinically in the near future for this highly treatment-resistant disease. © 2014 Wiley Periodicals, Inc.
Takenaka, Nobuyuki; Nihata, Yuma; Ueda, Sho; Satoh, Takaya
2017-11-01
Rac1 has been implicated in insulin-dependent glucose uptake by mechanisms involving plasma membrane translocation of the glucose transporter GLUT4 in skeletal muscle. Although the uptake of glucose is also stimulated by insulin in adipose tissue, the role for Rac1 in adipocyte insulin signaling remains controversial. As a step to reveal the role for Rac1 in adipocytes, we aimed to establish immunofluorescent microscopy to detect the intracellular distribution of activated Rac1. The epitope-tagged Rac1-binding domain of a Rac1-specific target was utilized as a probe that specifically recognizes the activated form of Rac1. Rac1 activation in response to ex vivo and in vivo insulin stimulations in primary adipocyte culture and mouse white adipose tissue, respectively, was successfully observed by immunofluorescent microscopy. These Rac1 activations were mediated by phosphoinositide 3-kinase. Another small GTPase RalA has also been implicated in insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. Similarly to Rac1, immunofluorescent microscopy using an activated RalA-specific polypeptide probe allowed us to detect intracellular distribution of insulin-activated RalA in adipocytes. These novel approaches to visualize the activation status of small GTPases in adipocytes will largely contribute to the understanding of signal transduction mechanisms particularly for insulin action. Copyright © 2017 Elsevier Inc. All rights reserved.
Cell fixation and preservation for droplet-based single-cell transcriptomics.
Alles, Jonathan; Karaiskos, Nikos; Praktiknjo, Samantha D; Grosswendt, Stefanie; Wahle, Philipp; Ruffault, Pierre-Louis; Ayoub, Salah; Schreyer, Luisa; Boltengagen, Anastasiya; Birchmeier, Carmen; Zinzen, Robert; Kocks, Christine; Rajewsky, Nikolaus
2017-05-19
Recent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not altered by stress or ageing. Other challenges are rare cells that need to be collected over several days or samples prepared at different times or locations. Here, we used chemical fixation to address these problems. Methanol fixation allowed us to stabilise and preserve dissociated cells for weeks without compromising single-cell RNA sequencing data. By using mixtures of fixed, cultured human and mouse cells, we first showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary cells from dissociated, complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells prepared by fluorescence-activated cell sorting, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide 'dropbead', an R package for exploratory data analysis, visualization and filtering of Drop-seq data. We expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single-cell resolution.
Large scale digital atlases in neuroscience
NASA Astrophysics Data System (ADS)
Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.
2014-03-01
Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.
van den Hurk, Job; Van Baelen, Marc; Op de Beeck, Hans P.
2017-01-01
To what extent does functional brain organization rely on sensory input? Here, we show that for the penultimate visual-processing region, ventral-temporal cortex (VTC), visual experience is not the origin of its fundamental organizational property, category selectivity. In the fMRI study reported here, we presented 14 congenitally blind participants with face-, body-, scene-, and object-related natural sounds and presented 20 healthy controls with both auditory and visual stimuli from these categories. Using macroanatomical alignment, response mapping, and surface-based multivoxel pattern analysis, we demonstrated that VTC in blind individuals shows robust discriminatory responses elicited by the four categories and that these patterns of activity in blind subjects could successfully predict the visual categories in sighted controls. These findings were confirmed in a subset of blind participants born without eyes and thus deprived from all light perception since conception. The sounds also could be decoded in primary visual and primary auditory cortex, but these regions did not sustain generalization across modalities. Surprisingly, although not as strong as visual responses, selectivity for auditory stimulation in visual cortex was stronger in blind individuals than in controls. The opposite was observed in primary auditory cortex. Overall, we demonstrated a striking similarity in the cortical response layout of VTC in blind individuals and sighted controls, demonstrating that the overall category-selective map in extrastriate cortex develops independently from visual experience. PMID:28507127
ATF1 and RAS in exosomes are potential clinical diagnostic markers for cervical cancer.
Shi, Yanhua; Wang, Wei; Yang, Baozhi; Tian, Hongge
2017-10-01
Cervical cancer is one of the most common cancers among women worldwide. It is highly lethal yet can be treated when found in early stage. Thus, early detection is of significant important for early diagnosis of cervical cancer. Exosomes have been used as biomarkers in clinical diagnosis. It is unknown that whether blood exosomes associated with cervical cancer can be detected and if these exosomes can accurately represent the developmental stage of cervical cancer. Mouse models were made out of a relapsed cervical cancer patient's tumour sample for original and recurrent cervical cancer, and gene analysis in both tumours and exosomes in these mouse models were performed. We found that activating transcription factor 1 (ATF1) and RAS genes were significantly up-regulated in tumours of both primary and recurrent cervical cancer mouse model, and they can also be detected in the blood exosomes of the mouse model. Our results indicated that ATF1 and RAS could be potential candidate biomarkers for cervical cancer in early diagnosis. ATF1 and RAS genes were found significantly elevated in tumours of primary and recurrent cervical cancer mouse model, and they were also detected in the blood exosomes. Therefore, ATF1 and RAS could be used as a diagnostic marker for cervical cancer in the future. Copyright © 2017 John Wiley & Sons, Ltd.
The Effectiveness of Gaze-Contingent Control in Computer Games.
Orlov, Paul A; Apraksin, Nikolay
2015-01-01
Eye-tracking technology and gaze-contingent control in human-computer interaction have become an objective reality. This article reports on a series of eye-tracking experiments, in which we concentrated on one aspect of gaze-contingent interaction: Its effectiveness compared with mouse-based control in a computer strategy game. We propose a measure for evaluating the effectiveness of interaction based on "the time of recognition" the game unit. In this article, we use this measure to compare gaze- and mouse-contingent systems, and we present the analysis of the differences as a function of the number of game units. Our results indicate that performance of gaze-contingent interaction is typically higher than mouse manipulation in a visual searching task. When tested on 60 subjects, the results showed that the effectiveness of gaze-contingent systems over 1.5 times higher. In addition, we obtained that eye behavior stays quite stabile with or without mouse interaction. © The Author(s) 2015.
Surface-based atlases of cerebellar cortex in the human, macaque, and mouse.
Van Essen, David C
2002-12-01
This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).
Surface-based atlases of cerebellar cortex in the human, macaque, and mouse
NASA Technical Reports Server (NTRS)
Van Essen, David C.
2002-01-01
This study describes surface reconstructions and associated flat maps that represent the highly convoluted shape of cerebellar cortex in three species: human, macaque, and mouse. The reconstructions were based on high-resolution structural MRI data obtained from other laboratories. The surface areas determined for the fiducial reconstructions are about 600 cm(2) for the human, 60 cm(2) for the macaque, and 0.8 cm(2) for the mouse. As expected from the ribbon-like pattern of cerebellar folding, the cerebellar flat maps are elongated along the axis parallel to the midline. However, the degree of elongation varies markedly across species. The macaque flat map is many times longer than its mean width, whereas the mouse flat map is only slightly elongated and the human map is intermediate in its aspect ratio. These cerebellar atlases, along with associated software for visualization and for mapping experimental data onto the atlas, are freely available to the neuroscience community (see http:/brainmap.wustl.edu).
Mouse Model of Human Hereditary Pancreatitis
2015-09-01
constructed and tested. The primary structure of the trypsinogen activation peptide in mouse T7 trypsinogen is shown. Positions mutated are indicated. 1...trypsinogen designed to increase autoactivation (spontaneous conversion to active trypsin). All mutations targeted the so-called activation peptide , a...mutations, as we previously seen in studies on human cationic trypsinogen. A peculiarity of the trypsinogen activation peptide is the 5
Gutierrez-Mecinas, Maria; Watanabe, Masahiko; Todd, Andrew J
2014-12-11
Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter. GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region. These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanada, Takahiro; Tsukiyama-Kohara, Kyoko, E-mail: kkohara@vet.kagoshima-u.ac.jp; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima, Kagoshima 890-0065
The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3–6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10{sup 5} copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogenmore » activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10{sup 4}-10{sup 6} copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10{sup 3} copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. - Highlights: • Primary hepatocytes were established from tupaia that is a novel HBV infection model. • Tupaia primary hepatocytes were susceptible for HBV infection. • The immunodeficient chimeric mice with tupaia hepatocytes were established. • The chimeric mice with tupaia hepatocytes were susceptible for HBV infection.« less
ERIC Educational Resources Information Center
Cakmak, Salih; Yilmaz, Hatice Cansu; Isitan, Hacer Damlanur
2017-01-01
The general aim of this research is to try to determine the appropriateness of the visuals in the primary school Turkish workbooks for the students with low visibility in terms of visual design elements. In the realization of the work, the document review method was used. In this study, purposive sampling method was used in the selection of…
Isolation of Circulating Tumor Cells in an Orthotopic Mouse Model of Colorectal Cancer.
Kochall, Susan; Thepkaysone, May-Linn; García, Sebastián A; Betzler, Alexander M; Weitz, Jürgen; Reissfelder, Christoph; Schölch, Sebastian
2017-07-18
Despite the advantages of easy applicability and cost-effectiveness, subcutaneous mouse models have severe limitations and do not accurately simulate tumor biology and tumor cell dissemination. Orthotopic mouse models have been introduced to overcome these limitations; however, such models are technically demanding, especially in hollow organs such as the large bowel. In order to produce uniform tumors which reliably grow and metastasize, standardized techniques of tumor cell preparation and injection are critical. We have developed an orthotopic mouse model of colorectal cancer (CRC) which develops highly uniform tumors and can be used for tumor biology studies as well as therapeutic trials. Tumor cells from either primary tumors, 2-dimensional (2D) cell lines or 3-dimensional (3D) organoids are injected into the cecum and, depending on the metastatic potential of the injected tumor cells, form highly metastatic tumors. In addition, CTCs can be found regularly. We here describe the technique of tumor cell preparation from both 2D cell lines and 3D organoids as well as primary tumor tissue, the surgical and injection techniques as well as the isolation of CTCs from the tumor-bearing mice, and present tips for troubleshooting.
Chang, Bo
2016-01-01
Leber's congenital amaurosis (LCA) is an inherited retinal degenerative disease characterized by severe loss of vision in the first year of life. In addition to early vision loss, a variety of other eye-related abnormalities including roving eye movements, deep-set eyes, and sensitivity to bright light also occur with this disease. Many animal models of LCA are available and the study them has led to a better understanding of the pathology of the disease, and has led to the development of therapeutic strategies aimed at curing or slowing down LCA. Mouse models, with their well-developed genetics and similarity to human physiology and anatomy, serve as powerful tools with which to investigate the etiology of human LCA. Such mice provide reproducible, experimental systems for elucidating pathways of normal development, function, designing strategies and testing compounds for translational research and gene-based therapies aimed at delaying the diseases progression. In this chapter, I describe tools used in the discovery and evaluation of mouse models of LCA including a Phoenix Image-Guided Optical Coherence Tomography (OCT) and a Diagnosys Espion Visual Electrophysiology System. Three mouse models are described, the rd3 mouse model for LCA12 and LCA1, the rd12 mouse model for LCA2, and the rd16 mouse model for LCA10.
Primary Cilia and Mammalian Hedgehog Signaling
Bangs, Fiona; Anderson, Kathryn V.
2017-01-01
It has been a decade since it was discovered that primary cilia have an essential role in Hedgehog signaling in mammals. This discovery came from screens in the mouse that identified a set of genes that are required for both normal Hedgehog signaling and for the formation of primary cilia. Since then, dozens of mouse mutations have been identified that disrupt cilia in a variety of ways and have complex effects on Hedgehog signaling. Here we summarize the genetic and developmental studies used to deduce how Hedgehog signal transduction is linked to cilia and the complex effects that perturbation of cilia structure can have on Hh signaling. We conclude by describing the current status of our understanding of the cell-type specific regulation of ciliogenesis and how that determines the ability of cells to respond to Hedgehog ligands. PMID:27881449
VisiOmatic: Celestial image viewer
NASA Astrophysics Data System (ADS)
Bertin, Emmanuel; Marmo, Chiara; Pillay, Ruven
2014-08-01
VisiOmatic is a web client for IIPImage (ascl:1408.009) and is used to visualize and navigate through large science images from remote locations. It requires STIFF (ascl:1110.006), is based on the Leaflet Javascript library, and works on both touch-based and mouse-based devices.
Dynamic Imaging of Mouse Embryos and Cardiodynamics in Static Culture.
Lopez, Andrew L; Larina, Irina V
2018-01-01
The heart is a dynamic organ that quickly undergoes morphological and mechanical changes through early embryonic development. Characterizing these early moments is important for our understanding of proper embryonic development and the treatment of heart disease. Traditionally, tomographic imaging modalities and fluorescence-based microscopy are excellent approaches to visualize structural features and gene expression patterns, respectively, and connect aberrant gene programs to pathological phenotypes. However, these approaches usually require static samples or fluorescent markers, which can limit how much information we can derive from the dynamic and mechanical changes that regulate heart development. Optical coherence tomography (OCT) is unique in this circumstance because it allows for the acquisition of three-dimensional structural and four-dimensional (3D + time) functional images of living mouse embryos without fixation or contrast reagents. In this chapter, we focus on how OCT can visualize heart morphology at different stages of development and provide cardiodynamic information to reveal mechanical properties of the developing heart.
Kucheryavykh, Lilia Y; Dávila-Rodríguez, Josué; Rivera-Aponte, David E; Zueva, Lidia V; Washington, A Valance; Sanabria, Priscilla; Inyushin, Mikhail Y
2017-01-01
Platelets contain beta-amyloid precursor protein (APP) as well as Aβ peptide (Aβ) that can be released upon activation. During thrombosis, platelets are concentrated in clots and activated. We used in vivo fluorescent analysis and electron microscopy in mice to determine to what degree platelets are concentrated in clots. We used immunostaining to visualize Aβ after photothrombosis in mouse brains. Both in vivo results and electron microscopy revealed that platelets were 300-500 times more concentrated in clots than in non-clotted blood. After thrombosis in control mice, but not in thrombocytopenic animals, Aβ immunofluorescence was present inside blood vessels in the visual cortex and around capillaries in the entorhinal cortex. The increased concentration of platelets allows enhanced release of Aβ during thrombosis, suggesting an additional source of Aβ in the brains of Alzheimer's patients that may arise if frequent micro-thrombosis events occur in their brains. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Lee, Bo-Ram; Joo, Kyung-Il; Choi, Eun Sook; Jahng, Junghoon; Kim, Hyunmin
2017-01-01
We performed dye-enhanced imaging of mouse brain microvessels using spectral focusing coherent anti-Stokes Raman scattering (SF-CARS) microscopy. The resonant signals from C-H stretching in forward CARS usually show high background intensity in tissues, which makes CARS imaging of microvessels difficult. In this study, epi-detection of back-scattered SF-CARS signals showed a negligible background, but the overall intensity of resonant CARS signals was too low to observe the network of brain microvessels. Therefore, Evans blue (EB) dye was used as contrasting agent to enhance the back-scattered SF-CARS signals. Breakdown of brain microvessels by inducing hemorrhage in a mouse was clearly visualized using backward SF-CARS signals, following intravenous injection of EB. The improved visualization of brain microvessels with EB enhanced the sensitivity of SF-CARS, detecting not only the blood vessels themselves but their integrity as well in the brain vasculature. PMID:29049299
Predicting successful tactile mapping of virtual objects.
Brayda, Luca; Campus, Claudio; Gori, Monica
2013-01-01
Improving spatial ability of blind and visually impaired people is the main target of orientation and mobility (O&M) programs. In this study, we use a minimalistic mouse-shaped haptic device to show a new approach aimed at evaluating devices providing tactile representations of virtual objects. We consider psychophysical, behavioral, and subjective parameters to clarify under which circumstances mental representations of spaces (cognitive maps) can be efficiently constructed with touch by blindfolded sighted subjects. We study two complementary processes that determine map construction: low-level perception (in a passive stimulation task) and high-level information integration (in an active exploration task). We show that jointly considering a behavioral measure of information acquisition and a subjective measure of cognitive load can give an accurate prediction and a practical interpretation of mapping performance. Our simple TActile MOuse (TAMO) uses haptics to assess spatial ability: this may help individuals who are blind or visually impaired to be better evaluated by O&M practitioners or to evaluate their own performance.
Internal state of monkey primary visual cortex (V1) predicts figure-ground perception.
Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A F
2003-04-15
When stimulus information enters the visual cortex, it is rapidly processed for identification. However, sometimes the processing of the stimulus is inadequate and the subject fails to notice the stimulus. Human psychophysical studies show that this occurs during states of inattention or absent-mindedness. At a neurophysiological level, it remains unclear what these states are. To study the role of cortical state in perception, we analyzed neural activity in the monkey primary visual cortex before the appearance of a stimulus. We show that, before the appearance of a reported stimulus, neural activity was stronger and more correlated than for a not-reported stimulus. This indicates that the strength of neural activity and the functional connectivity between neurons in the primary visual cortex participate in the perceptual processing of stimulus information. Thus, to detect a stimulus, the visual cortex needs to be in an appropriate state.
Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health.
Deming, Janise D; Pak, Joseph S; Brown, Bruce M; Kim, Moon K; Aung, Moe H; Eom, Yun Sung; Shin, Jung-A; Lee, Eun-Jin; Pardue, Machelle T; Craft, Cheryl Mae
2015-08-01
Visual arrestins (ARR) play a critical role in shutoff of rod and cone phototransduction. When electrophysiological responses are measured for a single mouse cone photoreceptor, ARR1 expression can substitute for ARR4 in cone pigment desensitization; however, each arrestin may also contribute its own, unique role to modulate other cellular functions. A combination of ERG, optokinetic tracking, immunohistochemistry, and immunoblot analysis was used to investigate the retinal phenotypes of Arr4 null mice (Arr4-/-) compared with age-matched control, wild-type mice. When 2-month-old Arr4-/- mice were compared with wild-type mice, they had diminished visual acuity and contrast sensitivity, yet enhanced ERG flicker response and higher photopic ERG b-wave amplitudes. In contrast, in older Arr4-/- mice, all ERG amplitudes were significantly reduced in magnitude compared with age-matched controls. Furthermore, in older Arr4-/- mice, the total cone numbers decreased and cone opsin protein immunoreactive expression levels were significantly reduced, while overall photoreceptor outer nuclear layer thickness was unchanged. Our study demonstrates that Arr4-/- mice display distinct phenotypic differences when compared to controls, suggesting that ARR4 modulates essential functions in high acuity vision and downstream cellular signaling pathways that are not fulfilled or substituted by the coexpression of ARR1, despite its high expression levels in all mouse cones. Without normal ARR4 expression levels, cones slowly degenerate with increasing age, making this a new model to study age-related cone dystrophy.
Goltstein, Pieter M; Montijn, Jorrit S; Pennartz, Cyriel M A
2015-01-01
Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to 'break' the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity.
Goltstein, Pieter M.; Montijn, Jorrit S.; Pennartz, Cyriel M. A.
2015-01-01
Anesthesia affects brain activity at the molecular, neuronal and network level, but it is not well-understood how tuning properties of sensory neurons and network connectivity change under its influence. Using in vivo two-photon calcium imaging we matched neuron identity across episodes of wakefulness and anesthesia in the same mouse and recorded spontaneous and visually evoked activity patterns of neuronal ensembles in these two states. Correlations in spontaneous patterns of calcium activity between pairs of neurons were increased under anesthesia. While orientation selectivity remained unaffected by anesthesia, this treatment reduced direction selectivity, which was attributable to an increased response to the null-direction. As compared to anesthesia, populations of V1 neurons coded more mutual information on opposite stimulus directions during wakefulness, whereas information on stimulus orientation differences was lower. Increases in correlations of calcium activity during visual stimulation were correlated with poorer population coding, which raised the hypothesis that the anesthesia-induced increase in correlations may be causal to degrading directional coding. Visual stimulation under anesthesia, however, decorrelated ongoing activity patterns to a level comparable to wakefulness. Because visual stimulation thus appears to ‘break’ the strength of pairwise correlations normally found in spontaneous activity under anesthesia, the changes in correlational structure cannot explain the awake-anesthesia difference in direction coding. The population-wide decrease in coding for stimulus direction thus occurs independently of anesthesia-induced increments in correlations of spontaneous activity. PMID:25706867
Diffusion fMRI detects white-matter dysfunction in mice with acute optic neuritis
Lin, Tsen-Hsuan; Spees, William M.; Chiang, Chia-Wen; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei
2014-01-01
Optic neuritis is a frequent and early symptom of multiple sclerosis (MS). Conventional magnetic resonance (MR) techniques provide means to assess multiple MS-related pathologies, including axonal injury, demyelination, and inflammation. A method to directly and non-invasively probe white-matter function could further elucidate the interplay of underlying pathologies and functional impairments. Previously, we demonstrated a significant 27% activation-associated decrease in the apparent diffusion coefficient of water perpendicular to the axonal fibers (ADC⊥) in normal C57BL/6 mouse optic nerve with visual stimulation using diffusion fMRI. Here we apply this approach to explore the relationship between visual acuity, optic nerve pathology, and diffusion fMRI in the experimental autoimmune encephalomyelitis (EAE) mouse model of optic neuritis. Visual stimulation produced a significant 25% (vs. baseline) ADC⊥ decrease in sham EAE optic nerves, while only a 7% (vs. baseline) ADC⊥ decrease was seen in EAE mice with acute optic neuritis. The reduced activation-associated ADC⊥ response correlated with post-MRI immunohistochemistry determined pathologies (including inflammation, demyelination, and axonal injury). The negative correlation between activation-associated ADC⊥ response and visual acuity was also found when pooling EAE-affected and sham groups under our experimental criteria. Results suggest that reduction in diffusion fMRI directly reflects impaired axonal-activation in EAE mice with optic neuritis. Diffusion fMRI holds promise for directly gauging in vivo white-matter dysfunction or therapeutic responses in MS patients. PMID:24632420
Delle Monache, Sergio; Lacquaniti, Francesco; Bosco, Gianfranco
2015-02-01
Manual interceptions are known to depend critically on integration of visual feedback information and experience-based predictions of the interceptive event. Within this framework, coupling between gaze and limb movements might also contribute to the interceptive outcome, since eye movements afford acquisition of high-resolution visual information. We investigated this issue by analyzing subjects' head-fixed oculomotor behavior during manual interceptions. Subjects moved a mouse cursor to intercept computer-generated ballistic trajectories either congruent with Earth's gravity or perturbed with weightlessness (0 g) or hypergravity (2 g) effects. In separate sessions, trajectories were either fully visible or occluded before interception to enforce visual prediction. Subjects' oculomotor behavior was classified in terms of amounts of time they gazed at different visual targets and of overall number of saccades. Then, by way of multivariate analyses, we assessed the following: (1) whether eye movement patterns depended on targets' laws of motion and occlusions; and (2) whether interceptive performance was related to the oculomotor behavior. First, we found that eye movement patterns depended significantly on targets' laws of motion and occlusion, suggesting predictive mechanisms. Second, subjects coupled differently oculomotor and interceptive behavior depending on whether targets were visible or occluded. With visible targets, subjects made smaller interceptive errors if they gazed longer at the mouse cursor. Instead, with occluded targets, they achieved better performance by increasing the target's tracking accuracy and by avoiding gaze shifts near interception, suggesting that precise ocular tracking provided better trajectory predictions for the interceptive response.
Marcelli, Fabienne; Escher, Pascal; Schorderet, Daniel F
2012-09-01
The mouse has emerged as an animal model for many diseases. At IRO, we have used this animal to understand the development of many eye diseases and treatment of some of them. Precise evaluation of vision is a prerequisite for both these approaches. In this unit we describe three ways to measure vision: testing the optokinetic response, and evaluating the fundus by direct observation and by fluorescent angiography. Curr. Protoc. Mouse Biol. 2:207-218 © 2012 by John Wiley & Sons, Inc. Copyright © 2012 John Wiley & Sons, Inc.
Lin, Wen; Wu, Rachel T; Wu, Tienyuan; Khor, Tin-Oo; Wang, Hu; Kong, Ah-Ng
2008-01-01
Sulforaphane (SFN) is a natural isothiocyanate that is present in cruciferous vegetables such as broccoli and cabbage. Previous studies have shown that SFN is effective in preventing carcinogenesis induced by carcinogens in rodents, which is related in part to its potent anti-inflammation properties. In the present study, we compared the anti-inflammatory effect of SFN on LPS-stimulated inflammation in primary peritoneal macrophages derived from Nrf2 (+/+) and Nrf2 mice. Pretreatment of SFN in Nrf2 (+/+) primary peritoneal macrophages potently inhibited LPS-stimulated mRNA expression, protein expression and production of TNFα, IL-1β, Cox-2 and iNOS. HO-1 expression, which is significantly augmented in LPS-stimulated Nrf2 (+/+) primary peritoneal macrophages by SFN. Interestingly, the anti-inflammatory effect was attenuated in Nrf2 (−/−) primary peritoneal macrophages. We concluded that SFN exerts its anti-inflammatory activity mainly via activation of Nrf2 in mouse peritoneal macrophages. PMID:18755157
Hernández-Fernaud, Juan R; Salido, Eduardo
2010-11-01
Mutations in the alanine-glyoxylate aminotransferase gene (AGXT) are responsible for primary hyperoxaluria type I, a rare disease characterized by excessive hepatic oxalate production that leads to renal failure. A deeper understanding of the changes in the metabolic pathways secondary to the lack of AGXT expression is needed in order to explore substrate depletion as a therapeutic strategy to limit oxalate production in primary hyperoxaluria type I. We have developed an Agxt knockout (AgxtKO) mouse that reproduces some key features of primary hyperoxaluria type I. To improve our understanding of the metabolic adjustments subsequent to AGXT deficiency, we performed a proteomic analysis of the changes in expression levels of various subcellular fractions of liver and kidney metabolism linked to the lack of AGXT. In this article, we report specific changes in the liver and kidney proteome of AgxtKO mice that point to significant variations in gluconeogenesis, glycolysis and fatty acid pathways. Journal compilation © 2010 FEBS. No claim to original German government works.
A Graphics Design Framework to Visualize Multi-Dimensional Economic Datasets
ERIC Educational Resources Information Center
Chandramouli, Magesh; Narayanan, Badri; Bertoline, Gary R.
2013-01-01
This study implements a prototype graphics visualization framework to visualize multidimensional data. This graphics design framework serves as a "visual analytical database" for visualization and simulation of economic models. One of the primary goals of any kind of visualization is to extract useful information from colossal volumes of…
Kim, Yeha; Lim, Soyeon; Ha, Taejeong; Song, You-Hyang; Sohn, Young-In; Park, Dae-Jin; Paik, Sun-Sook; Kim-Kaneyama, Joo-ri; Song, Mi-Ryoung; Leung, Amanda; Levine, Edward M; Kim, In-Beom; Goo, Yong Sook; Lee, Seung-Hee; Kang, Kyung Hwa; Kim, Jin Woo
2017-01-01
The visual responses of vertebrates are sensitive to the overall composition of retinal interneurons including amacrine cells, which tune the activity of the retinal circuitry. The expression of Paired-homeobox 6 (PAX6) is regulated by multiple cis-DNA elements including the intronic α-enhancer, which is active in GABAergic amacrine cell subsets. Here, we report that the transforming growth factor ß1-induced transcript 1 protein (Tgfb1i1) interacts with the LIM domain transcription factors Lhx3 and Isl1 to inhibit the α-enhancer in the post-natal mouse retina. Tgfb1i1-/- mice show elevated α-enhancer activity leading to overproduction of Pax6ΔPD isoform that supports the GABAergic amacrine cell fate maintenance. Consequently, the Tgfb1i1-/- mouse retinas show a sustained light response, which becomes more transient in mice with the auto-stimulation-defective Pax6ΔPBS/ΔPBS mutation. Together, we show the antagonistic regulation of the α-enhancer activity by Pax6 and the LIM protein complex is necessary for the establishment of an inner retinal circuitry, which controls visual adaptation. DOI: http://dx.doi.org/10.7554/eLife.21303.001 PMID:28139974
2013-01-01
Background The structured organization of cells in the brain plays a key role in its functional efficiency. This delicate organization is the consequence of unique molecular identity of each cell gradually established by precise spatiotemporal gene expression control during development. Currently, studies on the molecular-structural association are beginning to reveal how the spatiotemporal gene expression patterns are related to cellular differentiation and structural development. Results In this article, we aim at a global, data-driven study of the relationship between gene expressions and neuroanatomy in the developing mouse brain. To enable visual explorations of the high-dimensional data, we map the in situ hybridization gene expression data to a two-dimensional space by preserving both the global and the local structures. Our results show that the developing brain anatomy is largely preserved in the reduced gene expression space. To provide a quantitative analysis, we cluster the reduced data into groups and measure the consistency with neuroanatomy at multiple levels. Our results show that the clusters in the low-dimensional space are more consistent with neuroanatomy than those in the original space. Conclusions Gene expression patterns and developing brain anatomy are closely related. Dimensionality reduction and visual exploration facilitate the study of this relationship. PMID:23845024
Novel mouse model of colitis characterized by hapten-protein visualization.
Ishiguro, Kazuhiro; Ando, Takafumi; Maeda, Osamu; Watanabe, Osamu; Goto, Hidemi
2010-09-01
Trinitrobenzene sulfonic acid (TNBS) and oxazolone are used to induce colitis for the investigation of inflammatory reactions in the colon. Although these chemicals are presumed to bind proteins in the colonic mucosa and then induce colitis as haptens, hapten-protein formation has not yet been confirmed in the colonic mucosa. We developed a mouse model of colitis characterized by hapten-protein visualization, using 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl), which emits fluorescence after binding to proteins. The enema of 1 mg/mL NBD-Cl induced severe diarrhea, rectal bleeding, and body weight reductions in BALB/c mice. Mucosal signs indicative of colitis, such as redness and swelling observed under stereomicroscopy or inflammatory cell infiltration and crypt-epithelium destruction under microscopy, were manifested around NBD-proteins visualized with fluorescence. Fluorescence microscopy showed the infiltration of F4/80+ cells around areas of NBD-proteins, and flow cytometry indicated the uptake of NBD-proteins by CD11b+ cells. We also found critical roles for T cells and interleukin-6 in colitis induction with NBD-proteins. NBD-Cl-induced colitis presents a unique model to study the relevance between hapten-protein formation and inflammatory reactions and offers a method to assess experimental interventions on colitis induction in the mucosa, where hapten-protein formation is confirmed.
Optimization of a GCaMP calcium indicator for neural activity imaging.
Akerboom, Jasper; Chen, Tsai-Wen; Wardill, Trevor J; Tian, Lin; Marvin, Jonathan S; Mutlu, Sevinç; Calderón, Nicole Carreras; Esposti, Federico; Borghuis, Bart G; Sun, Xiaonan Richard; Gordus, Andrew; Orger, Michael B; Portugues, Ruben; Engert, Florian; Macklin, John J; Filosa, Alessandro; Aggarwal, Aman; Kerr, Rex A; Takagi, Ryousuke; Kracun, Sebastian; Shigetomi, Eiji; Khakh, Baljit S; Baier, Herwig; Lagnado, Leon; Wang, Samuel S-H; Bargmann, Cornelia I; Kimmel, Bruce E; Jayaraman, Vivek; Svoboda, Karel; Kim, Douglas S; Schreiter, Eric R; Looger, Loren L
2012-10-03
Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of "GCaMP5" sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.
Tau pathology does not affect experience-driven single-neuron and network-wide Arc/Arg3.1 responses.
Rudinskiy, Nikita; Hawkes, Jonathan M; Wegmann, Susanne; Kuchibhotla, Kishore V; Muzikansky, Alona; Betensky, Rebecca A; Spires-Jones, Tara L; Hyman, Bradley T
2014-06-10
Intraneuronal neurofibrillary tangles (NFTs) - a characteristic pathological feature of Alzheimer's and several other neurodegenerative diseases - are considered a major target for drug development. Tangle load correlates well with the severity of cognitive symptoms and mouse models of tauopathy are behaviorally impaired. However, there is little evidence that NFTs directly impact physiological properties of host neurons. Here we used a transgenic mouse model of tauopathy to study how advanced tau pathology in different brain regions affects activity-driven expression of immediate-early gene Arc required for experience-dependent consolidation of long-term memories. We demonstrate in vivo that visual cortex neurons with tangles are as likely to express comparable amounts of Arc in response to structured visual stimulation as their neighbors without tangles. Probability of experience-dependent Arc response was not affected by tau tangles in both visual cortex and hippocampal pyramidal neurons as determined postmortem. Moreover, whole brain analysis showed that network-wide activity-driven Arc expression was not affected by tau pathology in any of the brain regions, including brain areas with the highest tangle load. Our findings suggest that intraneuronal NFTs do not affect signaling cascades leading to experience-dependent gene expression required for long-term synaptic plasticity.
Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.
2014-01-01
ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354
Test systems for measuring ocular parameters and visual function in mice.
Schaeffel, Frank
2008-05-01
New techniques are described to measure refractive state, pupil responses, corneal curvature, ocular dimensions and spatial vision in mice. These variables are important for studies on myopia development in mice, but they are also valuable for phenotyping mouse mutants and for pharmacological studies.
An open-source Java-based Toolbox for environmental model evaluation: The MOUSE Software Application
USDA-ARS?s Scientific Manuscript database
A consequence of environmental model complexity is that the task of understanding how environmental models work and identifying their sensitivities/uncertainties, etc. becomes progressively more difficult. Comprehensive numerical and visual evaluation tools have been developed such as the Monte Carl...
Eppig, Janan T; Smith, Cynthia L; Blake, Judith A; Ringwald, Martin; Kadin, James A; Richardson, Joel E; Bult, Carol J
2017-01-01
The Mouse Genome Informatics (MGI), resource ( www.informatics.jax.org ) has existed for over 25 years, and over this time its data content, informatics infrastructure, and user interfaces and tools have undergone dramatic changes (Eppig et al., Mamm Genome 26:272-284, 2015). Change has been driven by scientific methodological advances, rapid improvements in computational software, growth in computer hardware capacity, and the ongoing collaborative nature of the mouse genomics community in building resources and sharing data. Here we present an overview of the current data content of MGI, describe its general organization, and provide examples using simple and complex searches, and tools for mining and retrieving sets of data.
miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma
2012-01-01
Background MicroRNAs (miRNAs) and their role during tumor development have been studied in great detail during the last decade, albeit their expression pattern and regulation during normal development are however not so well established. Previous studies have shown that miRNAs are differentially expressed in solid human tumors. Platelet-derived growth factor (PDGF) signaling is known to be involved in normal development of the brain as well as in malignant primary brain tumors, gliomas, but the complete mechanism is still lacking. We decided to investigate the expression of the oncogenic miR-21 during normal mouse development and glioma, focusing on PDGF signaling as a potential regulator of miR-21. Methods We generated mouse glioma using the RCAS/tv-a system for driving PDGF-BB expression in a cell-specific manner. Expression of miR-21 in mouse cell cultures and mouse brain were assessed using Northern blot analysis and in situ hybridization. Immunohistochemistry and Western blot analysis were used to investigate SOX2 expression. LNA-modified siRNA was used for irreversible depletion of miR-21. For inhibition of PDGF signaling Gleevec (imatinib mesylate), Rapamycin and U0126, as well as siRNA were used. Statistical significance was calculated using double-sided unpaired Student´s t-test. Results We identified miR-21 to be highly expressed during embryonic and newborn brain development followed by a gradual decrease until undetectable at postnatal day 7 (P7), this pattern correlated with SOX2 expression. Furthermore, miR-21 and SOX2 showed up-regulation and overlapping expression pattern in RCAS/tv-a generated mouse brain tumor specimens. Upon irreversible depletion of miR-21 the expression of SOX2 was strongly diminished in both mouse primary glioma cultures and human glioma cell lines. Interestingly, in normal fibroblasts the expression of miR-21 was induced by PDGF-BB, and inhibition of PDGF signaling in mouse glioma primary cultures resulted in suppression of miR-21 suggesting that miR-21 is indeed regulated by PDGF signaling. Conclusions Our data show that miR-21 and SOX2 are tightly regulated already during embryogenesis and define a distinct population with putative tumor cell of origin characteristics. Furthermore, we believe that miR-21 is a mediator of PDGF-driven brain tumors, which suggests miR-21 as a promising target for treatment of glioma. PMID:22931209
The latest animal models of ovarian cancer for novel drug discovery.
Magnotti, Elizabeth; Marasco, Wayne A
2018-03-01
Epithelial ovarian cancer is a heterogeneous disease classified into five subtypes, each with a different molecular profile. Most cases of ovarian cancer are diagnosed after metastasis of the primary tumor and are resistant to traditional platinum-based chemotherapeutics. Mouse models of ovarian cancer have been utilized to discern ovarian cancer tumorigenesis and the tumor's response to therapeutics. Areas covered: The authors provide a review of mouse models currently employed to understand ovarian cancer. This article focuses on advances in the development of orthotopic and patient-derived tumor xenograft (PDX) mouse models of ovarian cancer and discusses current humanized mouse models of ovarian cancer. Expert opinion: The authors suggest that humanized mouse models of ovarian cancer will provide new insight into the role of the human immune system in combating and augmenting ovarian cancer and aid in the development of novel therapeutics. Development of humanized mouse models will take advantage of the NSG and NSG-SGM3 strains of mice as well as new strains that are actively being derived.
Botchkarev, V A; Eichmüller, S; Peters, E M; Pietsch, P; Johansson, O; Maurer, M; Paus, R
1997-04-01
Close contacts between mast cells (MC) and nerve fibers have previously been demonstrated in normal and inflamed skin by light and electron microscopy. A key step for any study in MC-nerve interactions in situ is to simultaneously visualize both communication partners, preferably with the option of double labelling the nerve fibers. For this purpose, we developed the following triple-staining technique. After paraformaldehyde-picric acid perfusion fixation, cryostat sections of back skin from C57BL/6 mice were incubated with a primary rat monoclonal antibody to substance P (SP), followed by incubation with a secondary goat-anti-rat TRITC-conjugated IgG. A rabbit antiserum to CGRP was then applied, followed by a secondary goat-anti-rabbit FITC-conjugated IgG. MCs were visualized by incubation with AMCA-labelled avidin, or (for a more convenient quantification of close MC-nerve fiber contacts) with a mixture of TRITC- and FITC-labelled avidins. Using this simple, novel covisualization method, we were able to show that MC-nerve associations in mouse skin are, contrary to previous suggestions, highly selective for nerve fiber types, and that these interactions are regulated in a hair cycle-dependent manner: in telogen and early anagen skin, MCs preferentially contacted CGRP-immunoreactive (IR) or SP/CGRP-IR double-labelled nerve fibers. Compared with telogen values, there was a significant increase in the number of close contacts between MCs and tyrosine hydroxylase-IR fibers during late anagen, and between MCs and peptide histidine-methionine-IR and choline acetyl transferase-IR fibers during catagen.
Racz, Boglarka; Varadi, Andras; Kong, Jian; Allikmets, Rando; Pearson, Paul G; Johnson, Graham; Cioffi, Christopher L; Petrukhin, Konstantin
2018-06-05
A primary pathological defect in the heritable eye disorder Stargardt disease is excessive accumulation of cytotoxic lipofuscin bisretinoids in the retina. Age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) matches the age-dependent increase in the incidence of the atrophic (dry) form of age-related macular degeneration (AMD) and therefore may be one of several pathogenic factors contributing to AMD progression. Lipofuscin bisretinoid synthesis in the retina depends on the influx of serum retinol from the circulation into the RPE. Formation of the tertiary retinol-binding protein 4 (RBP4)-transthyretin-retinol complex in the serum is required for this influx. Herein, we report the pharmacological effects of the non-retinoid RBP4 antagonist, BPN-14136. BPN-14136 dosing in the Abca4-/- mouse model of increased lipofuscinogenesis significantly reduced serum RBP4 levels and inhibited bisretinoid synthesis, and this inhibition correlated with a partial reduction in visual cycle retinoids such as retinaldehydes serving as bisretinoid precursors. BPN-14136 administration at doses inducing maximal serum RBP4 reduction did not produce changes in the rate of the visual cycle, consistent with minimal changes in dark adaptation. Abca4-/- mice exhibited dysregulation of the complement system in the retina, and BPN-14136 administration normalized the retinal levels of proinflammatory complement cascade components such as complement factors D and H, C-reactive protein, and C3. We conclude that BPN-14136 has several beneficial characteristics, combining inhibition of bisretinoid synthesis and reduction in retinaldehydes with normalization of the retinal complement system. BPN-14136, or a similar compound, may be a promising drug candidate to manage Stargardt disease and dry AMD. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
Waumans, Yannick; Vliegen, Gwendolyn; Maes, Lynn; Rombouts, Miche; Declerck, Ken; Van Der Veken, Pieter; Vanden Berghe, Wim; De Meyer, Guido R Y; Schrijvers, Dorien; De Meester, Ingrid
2016-02-01
Atherosclerosis remains the leading cause of death in Western countries. Dipeptidyl peptidase (DPP) 4 has emerged as a novel target for the prevention and treatment of atherosclerosis. Family members DPP8 and 9 are abundantly present in macrophage-rich regions of atherosclerotic plaques, and DPP9 inhibition attenuates activation of human M1 macrophages in vitro. Studying this family in a mouse model for atherosclerosis would greatly advance our knowledge regarding their potential as therapeutic targets. We found that DPP4 is downregulated during mouse monocyte-to-macrophage differentiation. DPP8 and 9 expression seems relatively low in mouse monocytes and macrophages. Viability of primary mouse macrophages is unaffected by DPP4 or DPP8/9 inhibition. Importantly, DPP8/9 inhibition attenuates macrophage activation as IL-6 secretion is significantly decreased. Mouse macrophages respond similarly to DPP inhibition, compared to human macrophages. This shows that the mouse could become a valid model species for the study of DPPs as therapeutic targets in atherosclerosis.
Rachel A. Loehman; Joran Elias; Richard J. Douglass; Amy J. Kuenzi; James N. Mills; Kent Wagoner
2012-01-01
Deer mice (Peromyscus maniculatus) are the main reservoir host for Sin Nombre virus, the primary etiologic agent of hantavirus pulmonary syndrome in North America. Sequential changes in weather and plant productivity (trophic cascades) have been noted as likely catalysts of deer mouse population irruptions, and monitoring and modeling of these phenomena may allow for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalova, Natalia, E-mail: kovalova@msu.edu
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental pollutant that activates the aryl hydrocarbon receptor (AhR) resulting in altered gene expression. In vivo, in vitro, and ex vivo studies have demonstrated that B cells are directly impaired by TCDD, and are a sensitive target as evidenced by suppression of antibody responses. The window of sensitivity to TCDD-induced suppression of IgM secretion among mouse, rat and human B cells is similar. Specifically, TCDD must be present within the initial 12 h post B cell stimulation, indicating that TCDD disrupts early signaling network(s) necessary for B lymphocyte activation and differentiation. Therefore, we hypothesized thatmore » TCDD treatment across three different species (mouse, rat and human) triggers a conserved, B cell-specific mechanism that is involved in TCDD-induced immunosuppression. RNA sequencing (RNA-Seq) was used to identify B cell-specific orthologous genes that are differentially expressed in response to TCDD in primary mouse, rat and human B cells. Time course studies identified TCDD-elicited differential expression of 515 human, 2371 mouse and 712 rat orthologous genes over the 24-h period. 28 orthologs were differentially expressed in response to TCDD in all three species. Overrepresented pathways enriched in all three species included cytokine-cytokine receptor interaction, ECM-receptor interaction, focal adhesion, regulation of actin cytoskeleton and pathways in cancer. Differentially expressed genes functionally associated with cell-cell signaling in humans, immune response in mice, and oxidation reduction in rats. Overall, these results suggest that despite the conservation of the AhR and its signaling mechanism, TCDD elicits species-specific gene expression changes. - Highlights: • Kovalova TAAP Highlights Nov. 2016 • RNA-Seq identified TCDD-induced gene expression in PWM-activated primary B cells. • TCDD elicited differential expression of 515 human, 2371 mouse and 712 rat orthologs. • 28 orthologs were differentially expressed in response to TCDD in all three species. • TCDD elicits mostly species-specific gene expression changes in activated B cells.« less
Neurodegeneration and Vision Loss after Mild Blunt Trauma in the C57Bl/6 and DBA/2J Mouse
Bricker-Anthony, Courtney; Rex, Tonia S.
2015-01-01
Damage to the eye from blast exposure can occur as a result of the overpressure air-wave (primary injury), flying debris (secondary injury), blunt force trauma (tertiary injury), and/or chemical/thermal burns (quaternary injury). In this study, we investigated damage in the contralateral eye after a blast directed at the ipsilateral eye in the C57Bl/6J and DBA/2J mouse. Assessments of ocular health (gross pathology, electroretinogram recordings, optokinetic tracking, optical coherence tomography and histology) were performed at 3, 7, 14 and 28 days post-trauma. Olfactory epithelium and optic nerves were also examined. Anterior pathologies were more common in the DBA/2J than in the C57Bl/6 and could be prevented with non-medicated viscous eye drops. Visual acuity decreased over time in both strains, but was more rapid and severe in the DBA/2J. Retinal cell death was present in approximately 10% of the retina at 7 and 28 days post-blast in both strains. Approximately 60% of the cell death occurred in photoreceptors. Increased oxidative stress and microglial reactivity was detected in both strains, beginning at 3 days post-injury. However, there was no sign of injury to the olfactory epithelium or optic nerve in either strain. Although our model directs an overpressure air-wave at the left eye in a restrained and otherwise protected mouse, retinal damage was detected in the contralateral eye. The lack of damage to the olfactory epithelium and optic nerve, as well as the different timing of cell death as compared to the blast-exposed eye, suggests that the injuries were due to physical contact between the contralateral eye and the housing chamber of the blast device and not propagation of the blast wave through the head. Thus we describe a model of mild blunt eye trauma. PMID:26148200
Permeability of roads to movement of scrubland lizards and small mammals.
Brehme, Cheryl S; Tracey, Jeff A; McClenaghan, Leroy R; Fisher, Robert N
2013-08-01
A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife-vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low-use dirt, low-use secondary paved, and rural 2-lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange-throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low-use paved road of similar width or onto the highway, indicating they avoid paved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2-lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2-lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low-use roads, but roads with heavy traffic may deter movement of a much wider range of small animal species. © 2013 Society for Conservation Biology.
Permeability of roads to movement of scrubland lizards and small mammals
Brehme, Cheryl S.; Tracey, Jeff A.; McClenaghan, Leroy R.; Fisher, Robert N.
2013-01-01
A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife-vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low-use dirt, low-use secondary paved, and rural 2-lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange-throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low-use paved road of similar width or onto the highway, indicating they avoidpaved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2-lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2-lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low-use roads,but roads with heavy traffic may deter movement of a much wider range of small animal species.
Plastic Bags and Environmental Pollution
ERIC Educational Resources Information Center
Sang, Anita Ng Heung
2010-01-01
The "Hong Kong Visual Arts Curriculum Guide," covering Primary 1 to Secondary 3 grades (Curriculum Development Committee, 2003), points to three domains of learning in visual arts: (1) visual arts knowledge; (2) visual arts appreciation and criticism; and (3) visual arts making. The "Guide" suggests learning should develop…
Scott, Gregory D; Karns, Christina M; Dow, Mark W; Stevens, Courtney; Neville, Helen J
2014-01-01
Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.
Starosolski, Zbigniew; Villamizar, Carlos A.; Rendon, David; Paldino, Michael J.; Milewicz, Dianna M.; Ghaghada, Ketan B.; Annapragada, Ananth V.
2015-01-01
Abnormalities in the cerebrovascular system play a central role in many neurologic diseases. The on-going expansion of rodent models of human cerebrovascular diseases and the need to use these models to understand disease progression and treatment has amplified the need for reproducible non-invasive imaging methods for high-resolution visualization of the complete cerebral vasculature. In this study, we present methods for in vivo high-resolution (19 μm isotropic) computed tomography imaging of complete mouse brain vasculature. This technique enabled 3D visualization of large cerebrovascular networks, including the Circle of Willis. Blood vessels as small as 40 μm were clearly delineated. ACTA2 mutations in humans cause cerebrovascular defects, including abnormally straightened arteries and a moyamoya-like arteriopathy characterized by bilateral narrowing of the internal carotid artery and stenosis of many large arteries. In vivo imaging studies performed in a mouse model of Acta2 mutations demonstrated the utility of this method for studying vascular morphometric changes that are practically impossible to identify using current histological methods. Specifically, the technique demonstrated changes in the width of the Circle of Willis, straightening of cerebral arteries and arterial stenoses. We believe the use of imaging methods described here will contribute substantially to the study of rodent cerebrovasculature. PMID:25985192
Cryo-Imaging and Software Platform for Analysis of Molecular MR Imaging of Micrometastases
Qutaish, Mohammed Q.; Zhou, Zhuxian; Prabhu, David; Liu, Yiqiao; Busso, Mallory R.; Izadnegahdar, Donna; Gargesha, Madhusudhana; Lu, Hong; Lu, Zheng-Rong
2018-01-01
We created and evaluated a preclinical, multimodality imaging, and software platform to assess molecular imaging of small metastases. This included experimental methods (e.g., GFP-labeled tumor and high resolution multispectral cryo-imaging), nonrigid image registration, and interactive visualization of imaging agent targeting. We describe technological details earlier applied to GFP-labeled metastatic tumor targeting by molecular MR (CREKA-Gd) and red fluorescent (CREKA-Cy5) imaging agents. Optimized nonrigid cryo-MRI registration enabled nonambiguous association of MR signals to GFP tumors. Interactive visualization of out-of-RAM volumetric image data allowed one to zoom to a GFP-labeled micrometastasis, determine its anatomical location from color cryo-images, and establish the presence/absence of targeted CREKA-Gd and CREKA-Cy5. In a mouse with >160 GFP-labeled tumors, we determined that in the MR images every tumor in the lung >0.3 mm2 had visible signal and that some metastases as small as 0.1 mm2 were also visible. More tumors were visible in CREKA-Cy5 than in CREKA-Gd MRI. Tape transfer method and nonrigid registration allowed accurate (<11 μm error) registration of whole mouse histology to corresponding cryo-images. Histology showed inflammation and necrotic regions not labeled by imaging agents. This mouse-to-cells multiscale and multimodality platform should uniquely enable more informative and accurate studies of metastatic cancer imaging and therapy. PMID:29805438
Qutaish, Mohammed Q.; Sullivant, Kristin E.; Burden-Gulley, Susan M.; Lu, Hong; Roy, Debashish; Wang, Jing; Basilion, James P.; Brady-Kalnay, Susann M.; Wilson, David L.
2012-01-01
Purpose The goals of this study were to create cryo-imaging methods to quantify characteristics (size, dispersal, and blood vessel density) of mouse orthotopic models of glioblastoma multiforme (GBM) and to enable studies of tumor biology, targeted imaging agents, and theranostic nanoparticles. Procedures Green fluorescent protein-labeled, human glioma LN-229 cells were implanted into mouse brain. At 20–38 days, cryo-imaging gave whole brain, 4-GB, 3D microscopic images of bright field anatomy, including vasculature, and fluorescent tumor. Image analysis/visualization methods were developed. Results Vessel visualization and segmentation methods successfully enabled analyses. The main tumor mass volume, the number of dispersed clusters, the number of cells/cluster, and the percent dispersed volume all increase with age of the tumor. Histograms of dispersal distance give a mean and median of 63 and 56 μm, respectively, averaged over all brains. Dispersal distance tends to increase with age of the tumors. Dispersal tends to occur along blood vessels. Blood vessel density did not appear to increase in and around the tumor with this cell line. Conclusion Cryo-imaging and software allow, for the first time, 3D, whole brain, microscopic characterization of a tumor from a particular cell line. LN-229 exhibits considerable dispersal along blood vessels, a characteristic of human tumors that limits treatment success. PMID:22125093
Autoradiographic visualization of the mouse egg's sperm receptor bound to sperm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bleil, J.D.; Wassarman, P.M.
1986-04-01
The extracellular coat, or zona pellucida, of mammalian eggs contains species-specific receptors to which sperm bind as a prelude to fertilization. In mice, ZP3, one of only three zona pellucida glycoproteins, serves as sperm receptor. Acrosome-intact, but not acrosome-reacted, mouse sperm recognize and interact with specific O-linked oligosaccharides of ZP3 resulting in sperm-egg binding. Binding, in turn, causes sperm to undergo the acrosome reaction; a membrane fusion event that results in loss of plasma membrane at the anterior region of the head and exposure of inner acrosomal membrane with its associated acrosomal contents. Bound, acrosome-reacted sperm are able to penetratemore » the zona pellucida and fuse with the egg's plasma membrane (fertilization). In the present report, we examined binding of radioiodinated, purified, egg ZP3 to both acrosome intact and acrosome reacted sperm by whole-mount autoradiography. Silver grains due to bound 125I-ZP3 were found localized to the acrosomal cap region of heads of acrosome-reacted sperm. Under the same conditions, 125I-fetuin bound at only background levels to heads of both acrosome-intact and -reacted sperm, and 125I-ZP2, another zona pellucida glycoprotein, bound preferentially to acrosome-reacted sperm. These results provide visual evidence that ZP3 binds preferentially and specifically to heads of acrosome intact sperm; properties expected of the mouse egg's sperm receptor.« less
Localized CT-Guided Irradiation Inhibits Neurogenesis in Specific Regions of the Adult Mouse Brain
Ford, E. C.; Achanta, P.; Purger, D.; Armour, M.; Reyes, J.; Fong, J.; Kleinberg, L.; Redmond, K.; Wong, J.; Jang, M. H.; Jun, H.; Song, H-J.; Quinones-Hinojosa, A.
2011-01-01
Radiation is used in the study of neurogenesis in the adult mouse both as a model for patients undergoing radiation therapy for CNS malignancies and as a tool to interrupt neurogenesis. We describe the use of a dedicated CT-guided precision device to irradiate specific sub-regions of the adult mouse brain. Improved CT visualization was accomplished with intrathecal injection of iodinated contrast agent, which enhances the lateral ventricles. T2-weighted MRI images were also used for target localization. Visualization of delivered beams (10 Gy) in tissue was accomplished with immunohistochemical staining for the protein γ-H2AX, a marker of DNA double-strand breaks. γ-H2AX stains showed that the lateral ventricle wall could be targeted with an accuracy of 0.19 mm (n = 10). In the hippocampus, γ-H2AX staining showed that the dentate gyrus can be irradiated unilaterally with a localized arc treatment. This resulted in a significant decrease of proliferative neural progenitor cells as measured by Ki-67 staining (P < 0.001) while leaving the contralateral side intact. Two months after localized irradiation, neurogenesis was significantly inhibited in the irradiated region as seen with EdU/NeuN double labeling (P < 0.001). Localized radiation in the rodent brain is a promising new tool for the study of neurogenesis. PMID:21449714
Chen, Haijin; Mo, Xiaodong; Yu, Jinlong; Huang, Zonghai
2013-09-01
Alpinetin, a novel plant flavonoid derived from Alpinia katsumadai Hayata, has been reported to exhibit anti-inflammatory properties. However, the effect of alpinetin on mastitis has not been investigated. The aim of this study was to investigate the protective effect of alpinetin against lipopolysaccharide (LPS)-induced mastitis and to clarify the possible mechanism. In the present study, primary mouse mammary epithelial cells and an LPS-induced mouse mastitis model were used to investigate the effect of alpinetin on mastitis and the possible mechanism. In vivo, we observed that alpinetin significantly attenuated the infiltration of neutrophilic granulocytes, and the activation of myeloperoxidase; down-regulated the level of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6; inhibited the phosphorylation of IκB-α, NF-κB p65 and the expression of TLR4, caused by LPS. In vitro, we also observed that alpinetin inhibited the expression of TLR4 and the production of TNF-α, IL-1β and IL-6 in LPS-stimulated primary mouse mammary epithelial cells. However, alpinetin could not inhibit the production of IL-1β and IL-6 in TNF-α-stimulated primary mouse mammary epithelial cells. In conclusion, our results suggest that the anti-inflammatory effects of alpinetin against LPS-induced mastitis may be due to its ability to inhibit TLR4-mediated NF-κB signaling pathways. Alpinetin may be a promising potential therapeutic reagent for mastitis treatment. Copyright © 2013 Elsevier B.V. All rights reserved.
Jeon, Yoon; Ko, Eun; Lee, Kyung Yong; Ko, Min Ji; Park, Seo Young; Kang, Jeeheon; Jeon, Chang Hwan; Lee, Ho; Hwang, Deog Su
2011-02-18
TopBP1 plays important roles in chromosome replication, DNA damage response, and other cellular regulatory functions in vertebrates. Although the roles of TopBP1 have been studied mostly in cancer cell lines, its physiological function remains unclear in mice and untransformed cells. We generated conditional knock-out mice in which exons 5 and 6 of the TopBP1 gene are flanked by loxP sequences. Although TopBP1-deficient embryos developed to the blastocyst stage, no homozygous mutant embryos were recovered at E8.5 or beyond, and completely resorbed embryos were frequent at E7.5, indicating that mutant embryos tend to die at the peri-implantation stage. This finding indicated that TopBP1 is essential for cell proliferation during early embryogenesis. Ablation of TopBP1 in TopBP1(flox/flox) mouse embryonic fibroblasts and 3T3 cells using Cre recombinase-expressing retrovirus arrests cell cycle progression at the G(1), S, and G(2)/M phases. The TopBP1-ablated mouse cells exhibit phosphorylation of H2AX and Chk2, indicating that the cells contain DNA breaks. The TopBP1-ablated mouse cells enter cellular senescence. Although RNA interference-mediated knockdown of TopBP1 induced cellular senescence in human primary cells, it induced apoptosis in cancer cells. Therefore, TopBP1 deficiency in untransformed mouse and human primary cells induces cellular senescence rather than apoptosis. These results indicate that TopBP1 is essential for cell proliferation and maintenance of chromosomal integrity.
Simple and rapid determination of homozygous transgenic mice via in vivo fluorescence imaging.
Lin, Xiaolin; Jia, Junshuang; Qin, Yujuan; Lin, Xia; Li, Wei; Xiao, Gaofang; Li, Yanqing; Xie, Raoying; Huang, Hailu; Zhong, Lin; Wu, Qinghong; Wang, Wanshan; Huang, Wenhua; Yao, Kaitai; Xiao, Dong; Sun, Yan
2015-11-17
Setting up breeding programs for transgenic mouse strains require to distinguish homozygous from the heterozygous transgenic animals. The combinational use of the fluorescence reporter transgene and small animal in-vivo imaging system might allow us to rapidly and visually determine the transgenic mice homozygous for transgene(s) by the in vivo fluorescence imaging. RLG, RCLG or Rm17LG transgenic mice ubiquitously express red fluorescent protein (RFP). To identify homozygous RLG transgenic mice, whole-body fluorescence imaging for all of newborn F2-generation littermates produced by mating of RFP-positive heterozygous transgenic mice (F1-generation) derived from the same transgenic founder was performed. Subsequently, the immediate data analysis of the in vivo fluorescence imaging was carried out, which greatly facilitated us to rapidly and readily distinguish RLG transgenic individual(s) with strong fluorescence from the rest of F2-generation littermates, followed by further determining this/these RLG individual(s) showing strong fluorescence to be homozygous, as strongly confirmed by mouse mating. Additionally, homozygous RCLG or Rm17LG transgenic mice were also rapidly and precisely distinguished by the above-mentioned optical approach. This approach allowed us within the shortest time period to obtain 10, 8 and 2 transgenic mice homozygous for RLG, RCLG and Rm17LG transgene, respectively, as verified by mouse mating, indicating the practicality and reliability of this optical method. Taken together, our findings fully demonstrate that the in vivo fluorescence imaging offers a visual, rapid and reliable alternative method to the traditional approaches (i.e., mouse mating and real-time quantitative PCR) in identifying homozygous transgenic mice harboring fluorescence reporter transgene under the control of a ubiquitous promoter in the situation mentioned in this study.
Simple and rapid determination of homozygous transgenic mice via in vivo fluorescence imaging
Li, Wei; Xiao, Gaofang; Li, Yanqing; Xie, Raoying; Huang, Hailu; Zhong, Lin; Wu, Qinghong; Wang, Wanshan; Huang, Wenhua; Yao, Kaitai; Xiao, Dong; Sun, Yan
2015-01-01
Setting up breeding programs for transgenic mouse strains require to distinguish homozygous from the heterozygous transgenic animals. The combinational use of the fluorescence reporter transgene and small animal in-vivo imaging system might allow us to rapidly and visually determine the transgenic mice homozygous for transgene(s) by the in vivo fluorescence imaging. RLG, RCLG or Rm17LG transgenic mice ubiquitously express red fluorescent protein (RFP). To identify homozygous RLG transgenic mice, whole-body fluorescence imaging for all of newborn F2-generation littermates produced by mating of RFP-positive heterozygous transgenic mice (F1-generation) derived from the same transgenic founder was performed. Subsequently, the immediate data analysis of the in vivo fluorescence imaging was carried out, which greatly facilitated us to rapidly and readily distinguish RLG transgenic individual(s) with strong fluorescence from the rest of F2-generation littermates, followed by further determining this/these RLG individual(s) showing strong fluorescence to be homozygous, as strongly confirmed by mouse mating. Additionally, homozygous RCLG or Rm17LG transgenic mice were also rapidly and precisely distinguished by the above-mentioned optical approach. This approach allowed us within the shortest time period to obtain 10, 8 and 2 transgenic mice homozygous for RLG, RCLG and Rm17LG transgene, respectively, as verified by mouse mating, indicating the practicality and reliability of this optical method. Taken together, our findings fully demonstrate that the in vivo fluorescence imaging offers a visual, rapid and reliable alternative method to the traditional approaches (i.e., mouse mating and real-time quantitative PCR) in identifying homozygous transgenic mice harboring fluorescence reporter transgene under the control of a ubiquitous promoter in the situation mentioned in this study. PMID:26472024
Begenisic, Tatjana; Spolidoro, Maria; Braschi, Chiara; Baroncelli, Laura; Milanese, Marco; Pietra, Gianluca; Fabbri, Maria E.; Bonanno, Giambattista; Cioni, Giovanni; Maffei, Lamberto; Sale, Alessandro
2011-01-01
Down syndrome (DS) is the most common genetic disorder associated with mental retardation. It has been repeatedly shown that Ts65Dn mice, the prime animal model for DS, have severe cognitive and neural plasticity defects due to excessive inhibition. We report that increasing sensory-motor stimulation in adulthood through environmental enrichment (EE) reduces brain inhibition levels and promotes recovery of spatial memory abilities, hippocampal synaptic plasticity, and visual functions in adult Ts65Dn mice. PMID:22207837
O'Neill, Samuel; McAndrew, Darryl J
2016-04-01
The assessment of visual acuity is indicated in a number of clinical circumstances. It is commonly conducted through the use of a Snellen wall chart. Mobile technology developments and adoption rates by clinicians may potentially provide more convenient methods of assessing visual acuity. Limited data exist on the validity of these devices and applications. The objective of this study was to evaluate the assessment of distance visual acuity using mobile technology devices against the commonly used 3-metre Snellen chart in a primary care setting. A prospective quantitative comparative study was conducted at a regional medical practice. The visual acuity of 60 participants was assessed on a Snellen wall chart and two mobile technology devices (iPhone, iPad). Visual acuity intervals were converted to logarithm of minimum angle of resolution (logMAR) scores and subjected to intraclass correlation coefficient (ICC) assessment. The results show a high level of general agreement between testing modality (ICC 0.917 with a 95% confidence interval of 0.887-0.940). The high level of agreement of visual acuity results between the Snellen wall chart and both mobile technology devices suggests that clinicians can use this technology with confidence in the primary care setting.
ERIC Educational Resources Information Center
Lemoni, Rea; Lefkaditou, Ageliki; Stamou, Anastasia G.; Schizas, Dimitrios; Stamou, George P.
2013-01-01
This paper explores the function of the visual syntax of images in Greek primary school textbooks. By using a model for the formal analysis of the visual material, which will allow us to disclose the mechanisms through which meanings are manifested, our aim is to investigate the discursive transition relating to the view of nature and the…
In vivo biometry in the mouse eye with low coherence interferometry.
Schmucker, Christine; Schaeffel, Frank
2004-01-01
A major drawback of the mouse model of myopia is that the ocular dimensions cannot be measured in vivo, and that histological techniques post-mortem suffer from limited resolution. We have tested the potential of a newly developed technique, optical low coherence interferometry (OLCI), adapted for short measurement distances by Meditec, Carl Zeiss, Jena, Germany (the "ACMaster"). Using this technique, ocular biometry was performed in mice with normal vision and after deprivation of form vision. Axial eye length, corneal thickness and anterior chamber depth were measured in 23 mice, aged 25-53 days, and standard deviations from repeated measurements in the same eyes, as well as intra-individual and inter-individual variability were determined in different age groups. The data were compared to those from a preceding study in which biometrical data were obtained from frozen sections [Vision Res. 44 (2004) 1857]. Refractions were measured by automated infrared photorefraction. Mice had either normal visual exposure or were monocularly deprived of form vision for 14 days. Using OLCI, axial length could be determined with an average standard deviation of 8.0 +/- 2.9 microm, corneal thickness with 3.5 +/- 2.1 microm, and anterior chamber depth with 10.6 +/- 12.3 microm. Neither axial length, nor corneal thickness, nor anterior chamber depth were significantly different in left and right eyes of individual mice that had normal visual experience (mean absolute difference between axial lengths: 17 +/- 18 microm, between corneal thickness 5.1 +/- 4.8 microm, and between anterior chamber depths 16.7 +/- 14.8 microm). Compared to the variability that was previously found in frozen sections, the variability of axial length measurements with OLCI was 2.7 times less. After two weeks of form deprivation, OLCI revealed a significant axial elongation in the occluded eyes, compared to the contralateral fellow eyes (+38 +/- 36 microm or 1.16%, p = 0.045, n = 7, paired t-test). In this sample, no accompanying myopic shift was observed in the occluded eyes but this observation is not unexpected given the inherently variable responses of mouse eye growth to visual deprivation. OLCI had sufficient resolution in living mice to detect axial length changes in vivo that were equivalent to a dioptric change of 2 D. Using this technique, it was confirmed that mouse eyes respond to form deprivation by axial elongation, similar to the eyes of other animal models. The lack of a myopic shift in this sample, despite the axial elongation, demonstrates that biometric data are particularly important when the mouse eye is used as a model to study myopia.
Sato, Shinya
2016-01-01
Key points This study explores the nature of the cis retinol that Müller cells in the retina provide to cones for the regeneration of their visual pigment.We report that the retina visual cycle provides cones exclusively with 11‐cis chromophore in both salamander and mouse and show that this selectivity is dependent on the 11‐cis‐specific cellular retinaldehyde binding protein (CRALBP) present in Müller cells.Even though salamander blue cones and green rods share the same visual pigment, only blue cones but not green rods are able to dark‐adapt in the retina following a bleach and to use exogenous 9‐cis retinol for pigment regeneration, suggesting that access to the retina visual cycle is cone‐specific and pigment‐independent.Our results show that the retina produces 11‐cis retinol that can be oxidized and used for pigment regeneration and dark adaptation selectively in cones and not in rods. Abstract Chromophore supply by the retinal Müller cells (retina visual cycle) supports the efficient pigment regeneration required for cone photoreceptor function in bright light. Surprisingly, a large fraction of the chromophore produced by dihydroceramide desaturase‐1, the putative all‐trans retinol isomerase in Müller cells, appears to be 9‐cis retinol. In contrast, the canonical retinal pigment epithelium (RPE) visual cycle produces exclusively 11‐cis retinal. Here, we used the different absorption spectra of 9‐cis and 11‐cis pigments to identify the isoform of the chromophore produced by the visual cycle of the intact retina. We found that the spectral sensitivity of salamander and mouse cones dark‐adapted in the isolated retina (with only the retina visual cycle) was similar to that of cones dark‐adapted in the intact eye (with both the RPE and retina visual cycles) and consistent with pure 11‐cis pigment composition. However, in mice lacking the cellular retinaldehyde binding protein (CRALBP), cone spectral sensitivity contained a substantial 9‐cis component. Thus, the retina visual cycle provides cones exclusively with 11‐cis chromophore and this process is mediated by the 11‐cis selective CRALBP in Müller cells. Finally, despite sharing the same pigment, salamander blue cones, but not green rods, recovered their sensitivity in the isolated retina. Exogenous 9‐cis retinol produced robust sensitivity recovery in bleached red and blue cones but not in red and green rods, suggesting that cis retinol oxidation restricts access to the retina visual cycle to cones. PMID:27385534
Social Modulation of Associative Fear Learning by Pheromone Communication
ERIC Educational Resources Information Center
Bredy, Timothy W.; Barad, Mark
2009-01-01
Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned…
Visualizing estrogen receptor-a-expressing neurons using a new ERa-ZsGreen reporter mouse line
USDA-ARS?s Scientific Manuscript database
A variety of biological functions of estrogens, including regulation of energy metabolism, are mediated by neurons expressingestrogen receptor-a (ERa) in the brain. However, complex intracellular processes in these ERa-expressing neurons are difficult to unravel, due to the lack of strategy to visua...
Visual Neuroscience: A Retinal Ganglion Cell to Report Image Focus?
Baden, Tom; Schaeffel, Frank; Berens, Philipp
2017-02-20
A recent study describes a mouse neuron projecting from the retina to the brain that exhibits exquisitely high sensitivity to high spatial frequency patterns presented over an unusually large receptive field: could this cell be a (de)focus detector? Copyright © 2017 Elsevier Ltd. All rights reserved.
Co-regulation of Primary Mouse Hepatocyte Viability and Function by Oxygen and Matrix
Buck, Lorenna D.; Inman, S. Walker; Rusyn, Ivan; Griffith, Linda G.
2014-01-01
Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed 2 methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound. PMID:24222008
CerebralWeb: a Cytoscape.js plug-in to visualize networks stratified by subcellular localization.
Frias, Silvia; Bryan, Kenneth; Brinkman, Fiona S L; Lynn, David J
2015-01-01
CerebralWeb is a light-weight JavaScript plug-in that extends Cytoscape.js to enable fast and interactive visualization of molecular interaction networks stratified based on subcellular localization or other user-supplied annotation. The application is designed to be easily integrated into any website and is configurable to support customized network visualization. CerebralWeb also supports the automatic retrieval of Cerebral-compatible localizations for human, mouse and bovine genes via a web service and enables the automated parsing of Cytoscape compatible XGMML network files. CerebralWeb currently supports embedded network visualization on the InnateDB (www.innatedb.com) and Allergy and Asthma Portal (allergen.innatedb.com) database and analysis resources. Database tool URL: http://www.innatedb.com/CerebralWeb © The Author(s) 2015. Published by Oxford University Press.
Zika virus-induced hyper excitation precedes death of mouse primary neuron.
Gaburro, Julie; Bhatti, Asim; Sundaramoorthy, Vinod; Dearnley, Megan; Green, Diane; Nahavandi, Saeid; Paradkar, Prasad N; Duchemin, Jean-Bernard
2018-04-27
Zika virus infection in new born is linked to congenital syndromes, especially microcephaly. Studies have shown that these neuropathies are the result of significant death of neuronal progenitor cells in the central nervous system of the embryo, targeted by the virus. Although cell death via apoptosis is well acknowledged, little is known about possible pathogenic cellular mechanisms triggering cell death in neurons. We used in vitro embryonic mouse primary neuron cultures to study possible upstream cellular mechanisms of cell death. Neuronal networks were grown on microelectrode array and electrical activity was recorded at different times post Zika virus infection. In addition to this method, we used confocal microscopy and Q-PCR techniques to observe morphological and molecular changes after infection. Zika virus infection of mouse primary neurons triggers an early spiking excitation of neuron cultures, followed by dramatic loss of this activity. Using NMDA receptor antagonist, we show that this excitotoxicity mechanism, likely via glutamate, could also contribute to the observed nervous system defects in human embryos and could open new perspective regarding the causes of adult neuropathies. This model of excitotoxicity, in the context of neurotropic virus infection, highlights the significance of neuronal activity recording with microelectrode array and possibility of more than one lethal mechanism after Zika virus infection in the nervous system.
Isolation of Primary Mouse Trophoblast Cells and Trophoblast Invasion Assay
Pennington, Kathleen A.; Schlitt, Jessica M.; Schulz, Laura C.
2012-01-01
The placenta is responsible for the transport of nutrients, gasses and growth factors to the fetus, as well as the elimination of wastes. Thus, defects in placental development have important consequences for the fetus and mother, and are a major cause of embryonic lethality. The major cell type of the fetal portion of the placenta is the trophoblast. Primary mouse placental trophoblast cells are a useful tool for studying normal and abnormal placental development, and unlike cell lines, may be isolated and used to study trophoblast at specific stages of pregnancy. In addition, primary cultures of trophoblast from transgenic mice may be used to study the role of particular genes in placental cells. The protocol presented here is based on the description by Thordarson et al.1, in which a percoll gradient is used to obtain a relatively pure trophoblast cell population from isolated mouse placentas. It is similar to the more widely used methods for human trophoblast cell isolation2-3. Purity may be assessed by immunocytochemical staining of the isolated cells for cytokeratin 74. Here, the isolated cells are then analyzed using a matrigel invasion assay to assess trophoblast invasiveness in vitro5-6. The invaded cells are analyzed by immunocytochemistry and stained for counting. PMID:22257865
Modafinil inhibits K(Ca)3.1 currents and muscle contraction via a cAMP-dependent mechanism.
Choi, Shinkyu; Kim, Moon Young; Joo, Ka Young; Park, Seonghee; Kim, Ji Aee; Jung, Jae-Chul; Oh, Seikwan; Suh, Suk Hyo
2012-07-01
Modafinil has been used as a psychostimulant for the treatment of narcolepsy. However, its primary mechanism of action remains elusive. Therefore, we examined the effects of modafinil on K(Ca)3.1 channels and vascular smooth muscle contraction. K(Ca)3.1 currents and channel activity were measured using a voltage-clamp technique and inside-out patches in mouse embryonic fibroblast cell line, NIH-3T3 fibroblasts. Intracellular adenosine 3',5'-cyclic monophosphate (cAMP) concentration was measured, and the phosphorylation of K(Ca)3.1 channel protein was examined using western blotting in NIH-3T3 fibroblasts and/or primary cultured mouse aortic smooth muscle cells (SMCs). Muscle contractions were recorded from mouse aorta and rat pulmonary artery by using a myograph developed in-house. Modafinil was found to inhibit K(Ca)3.1 currents in a concentration-dependent manner, and the half-maximal inhibition (IC(50)) of modafinil for the current inhibition was 6.8 ± 0.7 nM. The protein kinase A (PKA) activator forskolin also inhibited K(Ca)3.1 currents. The inhibitory effects of modafinil and forskolin on K(Ca)3.1 currents were blocked by the PKA inhibitors PKI(14-22) or H-89. In addition, modafinil relaxed blood vessels (mouse aorta and rat pulmonary artery) in a concentration-dependent manner. Modafinil increased cAMP concentrations in NIH-3T3 fibroblasts or primary cultured mouse aortic SMCs and phosphorylated K(Ca)3.1 channel protein in NIH-3T3 fibroblasts. However, open probability and single-channel current amplitudes of K(Ca)3.1 channels were not changed by modafinil. From these results, we conclude that modafinil inhibits K(Ca)3.1 channels and vascular smooth muscle contraction by cAMP-dependent phosphorylation, suggesting that modafinil can be used as a cAMP-dependent K(Ca)3.1 channel blocker and vasodilator. Copyright © 2012 Elsevier Ltd. All rights reserved.
Modern Scientific Visualization is more than Just Pretty Pictures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E Wes; Rubel, Oliver; Wu, Kesheng
2008-12-05
While the primary product of scientific visualization is images and movies, its primary objective is really scientific insight. Too often, the focus of visualization research is on the product, not the mission. This paper presents two case studies, both that appear in previous publications, that focus on using visualization technology to produce insight. The first applies"Query-Driven Visualization" concepts to laser wakefield simulation data to help identify and analyze the process of beam formation. The second uses topological analysis to provide a quantitative basis for (i) understanding the mixing process in hydrodynamic simulations, and (ii) performing comparative analysis of data frommore » two different types of simulations that model hydrodynamic instability.« less
Koppe, Tiago; Patchen, Bonnie; Cheng, Aaron; Bhasin, Manoj; Vulpe, Chris; Schwartz, Robert E.; Moreno‐Navarrete, Jose Maria; Fernandez‐Real, Jose Manuel
2017-01-01
Iron overload causes the generation of reactive oxygen species that can lead to lasting damage to the liver and other organs. The goal of this study was to identify genes that modify the toxicity of iron overload. We studied the effect of iron overload on the hepatic transcriptional and metabolomic profile in mouse models using a dietary model of iron overload and a genetic model, the hemojuvelin knockout mouse. We then evaluated the correlation of nicotinamide N‐methyltransferase (NNMT) expression with body iron stores in human patients and the effect of NNMT knockdown on gene expression and viability in primary mouse hepatocytes. We found that iron overload induced significant changes in the expression of genes and metabolites involved in glucose and nicotinamide metabolism and that NNMT, an enzyme that methylates nicotinamide and regulates hepatic glucose and cholesterol metabolism, is one of the most strongly down‐regulated genes in the liver in both genetic and dietary iron overload. We found that hepatic NNMT expression is inversely correlated with serum ferritin levels and serum transferrin saturation in patients who are obese, suggesting that body iron stores regulate human liver NNMT expression. Furthermore, we demonstrated that adenoviral knockdown of NNMT in primary mouse hepatocytes exacerbates iron‐induced hepatocyte toxicity and increases expression of transcriptional markers of oxidative and endoplasmic reticulum stress, while overexpression of NNMT partially reversed these effects. Conclusion: Iron overload alters glucose and nicotinamide transcriptional and metabolic pathways in mouse hepatocytes and decreases NNMT expression, while NNMT deficiency worsens the toxic effect of iron overload. For these reasons, NNMT may be a drug target for the prevention of iron‐induced hepatotoxicity. (Hepatology Communications 2017;1:803–815) PMID:29404495
Visual Imagery without Visual Perception?
ERIC Educational Resources Information Center
Bertolo, Helder
2005-01-01
The question regarding visual imagery and visual perception remain an open issue. Many studies have tried to understand if the two processes share the same mechanisms or if they are independent, using different neural substrates. Most research has been directed towards the need of activation of primary visual areas during imagery. Here we review…
Duncan, Robert O; Sample, Pamela A; Bowd, Christopher; Weinreb, Robert N; Zangwill, Linda M
2012-05-01
Altered metabolic activity has been identified as a potential contributing factor to the neurodegeneration associated with primary open angle glaucoma (POAG). Consequently, we sought to determine whether there is a relationship between the loss of visual function in human glaucoma and resting blood perfusion within primary visual cortex (V1). Arterial spin labeling (ASL) functional magnetic resonance imaging (fMRI) was conducted in 10 participants with POAG. Resting cerebral blood flow (CBF) was measured from dorsal and ventral V1. Behavioral measurements of visual function were obtained using standard automated perimetry (SAP), short-wavelength automated perimetry (SWAP), and frequency-doubling technology perimetry (FDT). Measurements of CBF were compared to differences in visual function for the superior and inferior hemifield. Differences in CBF between ventral and dorsal V1 were correlated with differences in visual function for the superior versus inferior visual field. A statistical bootstrapping analysis indicated that the observed correlations between fMRI responses and measurements of visual function for SAP (r=0.49), SWAP (r=0.63), and FDT (r=0.43) were statistically significant (all p<0.05). Resting blood perfusion in human V1 is correlated with the loss of visual function in POAG. Altered CBF may be a contributing factor to glaucomatous optic neuropathy, or it may be an indication of post-retinal glaucomatous neurodegeneration caused by damage to the retinal ganglion cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Establishment and characterization of the reversibly immortalized mouse fetal heart progenitors.
Li, Mi; Chen, Yuan; Bi, Yang; Jiang, Wei; Luo, Qing; He, Yun; Su, Yuxi; Liu, Xing; Cui, Jing; Zhang, Wenwen; Li, Ruidong; Kong, Yuhan; Zhang, Jiye; Wang, Jinhua; Zhang, Hongyu; Shui, Wei; Wu, Ningning; Zhu, Jing; Tian, Jie; Yi, Qi-Jian; Luu, Hue H; Haydon, Rex C; He, Tong-Chuan; Zhu, Gao-Hui
2013-01-01
Progenitor cell-based cardiomyocyte regeneration holds great promise of repairing an injured heart. Although cardiomyogenic differentiation has been reported for a variety of progenitor cell types, the biological factors that regulate effective cardiomyogenesis remain largely undefined. Primary cardiomyogenic progenitors (CPs) have a limited life span in culture, hampering the CPs' in vitro and in vivo studies. The objective of this study is to investigate if primary CPs isolated from fetal mouse heart can be reversibly immortalized with SV40 large T and maintain long-term cell proliferation without compromising cardiomyogenic differentiation potential. Primary cardiomyocytes were isolated from mouse E15.5 fetal heart, and immortalized retrovirally with the expression of SV40 large T antigen flanked with loxP sites. Expression of cardiomyogenic markers were determined by quantitative RT-PCR and immunofluorescence staining. The immortalization phenotype was reversed by using an adenovirus-mediated expression of the Cre reconbinase. Cardiomyogenic differentiation induced by retinoids or dexamethasone was assessed by an α-myosin heavy chain (MyHC) promoter-driven reporter. We demonstrate that the CPs derived from mouse E15.5 fetal heart can be efficiently immortalized by SV40 T antigen. The conditionally immortalized CPs (iCP15 clones) exhibit an increased proliferative activity and are able to maintain long-term proliferation, which can be reversed by Cre recombinase. The iCP15 cells express cardiomyogenic markers and retain differentiation potential as they can undergo terminal differentiate into cardiomyctes under appropriate differentiation conditions although the iCP15 clones represent a large repertoire of CPs at various differentiation stages. The removal of SV40 large T increases the iCPs' differentiation potential. Thus, the iCPs not only maintain long-term cell proliferative activity but also retain cardiomyogenic differentiation potential. Our results suggest that the reported reversible SV40 T antigen-mediated immortalization represents an efficient approach for establishing long-term culture of primary cardiomyogenic progenitors for basic and translational research.
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-01-01
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas. DOI: http://dx.doi.org/10.7554/eLife.15252.001 PMID:27596931
Cocchi, Luca; Sale, Martin V; L Gollo, Leonardo; Bell, Peter T; Nguyen, Vinh T; Zalesky, Andrew; Breakspear, Michael; Mattingley, Jason B
2016-09-06
Within the primate visual system, areas at lower levels of the cortical hierarchy process basic visual features, whereas those at higher levels, such as the frontal eye fields (FEF), are thought to modulate sensory processes via feedback connections. Despite these functional exchanges during perception, there is little shared activity between early and late visual regions at rest. How interactions emerge between regions encompassing distinct levels of the visual hierarchy remains unknown. Here we combined neuroimaging, non-invasive cortical stimulation and computational modelling to characterize changes in functional interactions across widespread neural networks before and after local inhibition of primary visual cortex or FEF. We found that stimulation of early visual cortex selectively increased feedforward interactions with FEF and extrastriate visual areas, whereas identical stimulation of the FEF decreased feedback interactions with early visual areas. Computational modelling suggests that these opposing effects reflect a fast-slow timescale hierarchy from sensory to association areas.
Supèr, Hans; van der Togt, Chris; Spekreijse, Henk; Lamme, Victor A. F.
2004-01-01
We continuously scan the visual world via rapid or saccadic eye movements. Such eye movements are guided by visual information, and thus the oculomotor structures that determine when and where to look need visual information to control the eye movements. To know whether visual areas contain activity that may contribute to the control of eye movements, we recorded neural responses in the visual cortex of monkeys engaged in a delayed figure-ground detection task and analyzed the activity during the period of oculomotor preparation. We show that ≈100 ms before the onset of visually and memory-guided saccades neural activity in V1 becomes stronger where the strongest presaccadic responses are found at the location of the saccade target. In addition, in memory-guided saccades the strength of presaccadic activity shows a correlation with the onset of the saccade. These findings indicate that the primary visual cortex contains saccade-related responses and participates in visually guided oculomotor behavior. PMID:14970334
Supèr, Hans; Spekreijse, Henk; Lamme, Victor A F
2003-06-26
To look at an object its position in the visual scene has to be localized and subsequently appropriate oculo-motor behavior needs to be initiated. This kind of behavior is largely controlled by the cortical executive system, such as the frontal eye field. In this report, we analyzed neural activity in the visual cortex in relation to oculo-motor behavior. We show that in a figure-ground detection task, the strength of late modulated activity in the primary visual cortex correlates with the saccade latency. We propose that this may indicate that the variability of reaction times in the detection of a visual stimulus is reflected in low-level visual areas as well as in high-level areas.
Epicenters of dynamic connectivity in the adaptation of the ventral visual system.
Prčkovska, Vesna; Huijbers, Willem; Schultz, Aaron; Ortiz-Teran, Laura; Peña-Gomez, Cleofe; Villoslada, Pablo; Johnson, Keith; Sperling, Reisa; Sepulcre, Jorge
2017-04-01
Neuronal responses adapt to familiar and repeated sensory stimuli. Enhanced synchrony across wide brain systems has been postulated as a potential mechanism for this adaptation phenomenon. Here, we used recently developed graph theory methods to investigate hidden connectivity features of dynamic synchrony changes during a visual repetition paradigm. Particularly, we focused on strength connectivity changes occurring at local and distant brain neighborhoods. We found that connectivity reorganization in visual modal cortex-such as local suppressed connectivity in primary visual areas and distant suppressed connectivity in fusiform areas-is accompanied by enhanced local and distant connectivity in higher cognitive processing areas in multimodal and association cortex. Moreover, we found a shift of the dynamic functional connections from primary-visual-fusiform to primary-multimodal/association cortex. These findings suggest that repetition-suppression is made possible by reorganization of functional connectivity that enables communication between low- and high-order areas. Hum Brain Mapp 38:1965-1976, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Engineering a new mouse model for vitiligo.
Manga, Prashiela; Orlow, Seth J
2012-07-01
Although the precise mechanisms that trigger vitiligo remain elusive, autoimmune responses mediate its progression. The development of therapies has been impeded by a paucity of animal models, since mice lack interfollicular melanocytes, the primary targets in vitiligo. In this issue, Harris et al. describe a mouse model in which interfollicular melanocytes are retained by Kit ligand overexpression and an immune response is initiated by transplanting melanocyte-targeting CD8+ T cells.
NF-κB gene signature predicts prostate cancer progression
Jin, Renjie; Yi, Yajun; Yull, Fiona E.; Blackwell, Timothy S.; Clark, Peter E.; Koyama, Tatsuki; Smith, Joseph A.; Matusik, Robert J.
2014-01-01
In many prostate cancer (PCa) patients, the cancer will be recurrent and eventually progress to lethal metastatic disease after primary treatment, such as surgery or radiation therapy. Therefore, it would be beneficial to better predict which patients with early-stage PCa would progress or recur after primary definitive treatment. In addition, many studies indicate that activation of NF-κB signaling correlates with PCa progression; however, the precise underlying mechanism is not fully understood. Our studies show that activation of NF-κB signaling via deletion of one allele of its inhibitor, IκBα, did not induce prostatic tumorigenesis in our mouse model. However, activation of NF-κB signaling did increase the rate of tumor progression in the Hi-Myc mouse PCa model when compared to Hi-Myc alone. Using the non-malignant NF-κB activated androgen depleted mouse prostate, a NF-κB Activated Recurrence Predictor 21 (NARP21) gene signature was generated. The NARP21 signature successfully predicted disease-specific survival and distant metastases-free survival in patients with PCa. This transgenic mouse model derived gene signature provides a useful and unique molecular profile for human PCa prognosis, which could be used on a prostatic biopsy to predict indolent versus aggressive behavior of the cancer after surgery. PMID:24686169
Linking human beta retrovirus infection with primary biliary cirrhosis.
Mason, A L; Zhang, G
2010-01-01
Several environmental agents have been linked with primary biliary cirrhosis (PBC) that include bacteria, xenobiotics and viruses. A human beta retrovirus (HBRV) related to mouse mammary tumor virus has been cloned and characterized from patients with PBC. This agent can be detected in the majority of patients' perihepatic lymph nodes by immunochemistry and RT-PCR. The HBRV has recently been isolated in culture and integration sites have been identified in the genome of patients to provide convincing evidence of beta retrovirus infection in patients. Three lines of evidence support a role for the virus in PBC. First, the beta retrovirus is linked with aberrant expression of mitochondrial protein(s) on the biliary epithelium cell (BEC) surface, a disease specific phenotype. Second, the related agent, mouse mammary tumor virus has been linked with autoimmune biliary disease in the NOD.c3c4 mouse model for PBC. In this mouse model, the virus is localized to diseased biliary epithelium that also display aberrant expression of the mitochondrial autoantigens. In translational studies, both patients with PBC and NOD.c3c4 mice demonstrate significant improvement in biliary disease with combination antiviral therapy. An overview of the biological relevance of the beta retrovirus infection in PBC will be discussed in this review. Copyright 2010 Elsevier Masson SAS. All rights reserved.
2017-05-19
Vijay Singh, Martin Tchernookov, Rebecca Butterfield, Ilya Nemenman, Rongrong Ji. Director Field Model of the Primary Visual Cortex for Contour...FTE Equivalent: Total Number: DISCIPLINE Vijay Singh 40 Physics 0.40 1 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Martin Tchernookov 0.20
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Yuchao; McGill, Mitchell R.; Du, Kuo
3′-Hydroxyacetanilide or N-acetyl-meta-aminophenol (AMAP) is generally regarded as a non-hepatotoxic analog of acetaminophen (APAP). Previous studies demonstrated the absence of toxicity after AMAP in mice, hamsters, primary mouse hepatocytes and several cell lines. In contrast, experiments with liver slices suggested that it may be toxic to human hepatocytes; however, the mechanism of toxicity is unclear. To explore this, we treated primary human hepatocytes (PHH) with AMAP or APAP for up to 48 h and measured several parameters to assess metabolism and injury. Although less toxic than APAP, AMAP dose-dependently triggered cell death in PHH as indicated by alanine aminotransferase (ALT)more » release and propidium iodide (PI) staining. Similar to APAP, AMAP also significantly depleted glutathione (GSH) in PHH and caused mitochondrial damage as indicated by glutamate dehydrogenase (GDH) release and the JC-1 assay. However, unlike APAP, AMAP treatment did not cause relevant c-jun-N-terminal kinase (JNK) activation in the cytosol or phospho-JNK translocation to mitochondria. To compare, AMAP toxicity was assessed in primary mouse hepatocytes (PMH). No cytotoxicity was observed as indicated by the lack of lactate dehydrogenase release and no PI staining. Furthermore, there was no GSH depletion or mitochondrial dysfunction after AMAP treatment in PMH. Immunoblotting for arylated proteins suggested that AMAP treatment caused extensive mitochondrial protein adduct formation in PHH but not in PMH. In conclusion, AMAP is hepatotoxic in PHH and the mechanism involves the formation of mitochondrial protein adducts and mitochondrial dysfunction. - Highlights: • AMAP induces cell death in primary human hepatocytes (PHH). • AMAP does not cause cell death in primary mouse hepatocytes (PMH). • AMAP leads to mitochondria dysfunction in PHH but not PMH. • Protein adduct formation and dysfunction in mitochondria correlate with toxicity.« less
An Automated Mouse Tail Vascular Access System by Vision and Pressure Feedback.
Chang, Yen-Chi; Berry-Pusey, Brittany; Yasin, Rashid; Vu, Nam; Maraglia, Brandon; Chatziioannou, Arion X; Tsao, Tsu-Chin
2015-08-01
This paper develops an automated vascular access system (A-VAS) with novel vision-based vein and needle detection methods and real-time pressure feedback for murine drug delivery. Mouse tail vein injection is a routine but critical step for preclinical imaging applications. Due to the small vein diameter and external disturbances such as tail hair, pigmentation, and scales, identifying vein location is difficult and manual injections usually result in poor repeatability. To improve the injection accuracy, consistency, safety, and processing time, A-VAS was developed to overcome difficulties in vein detection noise rejection, robustness in needle tracking, and visual servoing integration with the mechatronics system.
2017-01-01
The superior colliculus (SC) receives direct input from the retina and integrates it with information about sound, touch, and state of the animal that is relayed from other parts of the brain to initiate specific behavioral outcomes. The superficial SC layers (sSC) contain cells that respond to visual stimuli, whereas the deep SC layers (dSC) contain cells that also respond to auditory and somatosensory stimuli. Here, we used a large-scale silicon probe recording system to examine the visual response properties of SC cells of head-fixed and alert male mice. We found cells with diverse response properties including: (1) orientation/direction-selective (OS/DS) cells with a firing rate that is suppressed by drifting sinusoidal gratings (negative OS/DS cells); (2) suppressed-by-contrast cells; (3) cells with complex-like spatial summation nonlinearity; and (4) cells with Y-like spatial summation nonlinearity. We also found specific response properties that are enriched in different depths of the SC. The sSC is enriched with cells with small RFs, high evoked firing rates (FRs), and sustained temporal responses, whereas the dSC is enriched with the negative OS/DS cells and with cells with large RFs, low evoked FRs, and transient temporal responses. Locomotion modulates the activity of the SC cells both additively and multiplicatively and changes the preferred spatial frequency of some SC cells. These results provide the first description of the negative OS/DS cells and demonstrate that the SC segregates cells with different response properties and that the behavioral state of a mouse affects SC activity. SIGNIFICANCE STATEMENT The superior colliculus (SC) receives visual input from the retina in its superficial layers (sSC) and induces eye/head-orientating movements and innate defensive responses in its deeper layers (dSC). Despite their importance, very little is known about the visual response properties of dSC neurons. Using high-density electrode recordings and novel model-based analysis, we found several novel visual response properties of the SC cells, including encoding of a cell's preferred orientation or direction by suppression of the firing rate. The sSC and the dSC are enriched with cells with different visual response properties. Locomotion modulates the cells in the SC. These findings contribute to our understanding of how the SC processes visual inputs, a critical step in comprehending visually guided behaviors. PMID:28760858
Sellers, Kristin K; Bennett, Davis V; Fröhlich, Flavio
2015-02-19
Neuronal firing responses in visual cortex reflect the statistics of visual input and emerge from the interaction with endogenous network dynamics. Artificial visual stimuli presented to animals in which the network dynamics were constrained by anesthetic agents or trained behavioral tasks have provided fundamental understanding of how individual neurons in primary visual cortex respond to input. In contrast, very little is known about the mesoscale network dynamics and their relationship to microscopic spiking activity in the awake animal during free viewing of naturalistic visual input. To address this gap in knowledge, we recorded local field potential (LFP) and multiunit activity (MUA) simultaneously in all layers of primary visual cortex (V1) of awake, freely viewing ferrets presented with naturalistic visual input (nature movie clips). We found that naturalistic visual stimuli modulated the entire oscillation spectrum; low frequency oscillations were mostly suppressed whereas higher frequency oscillations were enhanced. In average across all cortical layers, stimulus-induced change in delta and alpha power negatively correlated with the MUA responses, whereas sensory-evoked increases in gamma power positively correlated with MUA responses. The time-course of the band-limited power in these frequency bands provided evidence for a model in which naturalistic visual input switched V1 between two distinct, endogenously present activity states defined by the power of low (delta, alpha) and high (gamma) frequency oscillatory activity. Therefore, the two mesoscale activity states delineated in this study may define the degree of engagement of the circuit with the processing of sensory input. Copyright © 2014 Elsevier B.V. All rights reserved.
Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health
Deming, Janise D.; Pak, Joseph S.; Brown, Bruce M.; Kim, Moon K.; Aung, Moe H.; Eom, Yun Sung; Shin, Jung-a; Lee, Eun-Jin; Pardue, Machelle T.; Craft, Cheryl Mae
2015-01-01
Purpose Visual arrestins (ARR) play a critical role in shutoff of rod and cone phototransduction. When electrophysiological responses are measured for a single mouse cone photoreceptor, ARR1 expression can substitute for ARR4 in cone pigment desensitization; however, each arrestin may also contribute its own, unique role to modulate other cellular functions. Methods A combination of ERG, optokinetic tracking, immunohistochemistry, and immunoblot analysis was used to investigate the retinal phenotypes of Arr4 null mice (Arr4−/−) compared with age-matched control, wild-type mice. Results When 2-month-old Arr4−/− mice were compared with wild-type mice, they had diminished visual acuity and contrast sensitivity, yet enhanced ERG flicker response and higher photopic ERG b-wave amplitudes. In contrast, in older Arr4−/− mice, all ERG amplitudes were significantly reduced in magnitude compared with age-matched controls. Furthermore, in older Arr4−/− mice, the total cone numbers decreased and cone opsin protein immunoreactive expression levels were significantly reduced, while overall photoreceptor outer nuclear layer thickness was unchanged. Conclusions Our study demonstrates that Arr4−/− mice display distinct phenotypic differences when compared to controls, suggesting that ARR4 modulates essential functions in high acuity vision and downstream cellular signaling pathways that are not fulfilled or substituted by the coexpression of ARR1, despite its high expression levels in all mouse cones. Without normal ARR4 expression levels, cones slowly degenerate with increasing age, making this a new model to study age-related cone dystrophy. PMID:26284544
Yano, Shuya; Takehara, Kiyoto; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M
2017-11-01
We have established an orthotopic nude-mouse model of gastric cancer carcinomatosis peritonitis, a recalcitrant disease in human patients. Human MKN45 poorly-differentiated human gastric cancer cells developed carcinomatosis peritonitis upon orthotopic transplantation in nude mice. The MKN45 cells expressed the fluorescent ubiquitination-based cell cycle indicator (FUCCI) that color codes the phases of the cell cycle. The intra-peritoneal tumors and ascites contained mostly quiescent G 1 /G o cancer cells visualized as red by FUCCI imaging. Cisplatinum (CDDP) treatment did not reduce bloody ascites, and larger tumors formed in the peritoneal cavity after CDDP treatment in an early-stage carcinomatosis peritonitis orthotopic mouse model. Paclitaxel-treated mice had reduced ascites, but also had large tumor masses in the peritonium after treatment with cancer cells mostly in G 0 /G 1 , visualized by FUCCI red. In contrast, OBP-301 telomerase-dependent adenovirus-treated mice had no ascites and only small tumor nodules consisting of cancer cells mostly in S/G 2 phases in the early-stage carcinomatosis peritonitis model, visualized by FUCCI green. Furthermore, OBP-301 significantly reduced the size of tumors (P < 0.01) and ascites even in a late-stage carcinomatosis peritonitis model. These results suggest that quiescent peritoneally-disseminated gastric cancer cells are resistant to conventional chemotherapy, but OBP-301 significantly reduced the weight of the tumors and increased survival, suggesting clinical potential. J. Cell. Biochem. 118: 3635-3642, 2017. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Sensory-driven and spontaneous gamma oscillations engage distinct cortical circuitry
2015-01-01
Gamma oscillations are a robust component of sensory responses but are also part of the background spontaneous activity of the brain. To determine whether the properties of gamma oscillations in cortex are specific to their mechanism of generation, we compared in mouse visual cortex in vivo the laminar geometry and single-neuron rhythmicity of oscillations produced during sensory representation with those occurring spontaneously in the absence of stimulation. In mouse visual cortex under anesthesia (isoflurane and xylazine), visual stimulation triggered oscillations mainly between 20 and 50 Hz, which, because of their similar functional significance to gamma oscillations in higher mammals, we define here as gamma range. Sensory representation in visual cortex specifically increased gamma oscillation amplitude in the supragranular (L2/3) and granular (L4) layers and strongly entrained putative excitatory and inhibitory neurons in infragranular layers, while spontaneous gamma oscillations were distributed evenly through the cortical depth and primarily entrained putative inhibitory neurons in the infragranular (L5/6) cortical layers. The difference in laminar distribution of gamma oscillations during the two different conditions may result from differences in the source of excitatory input to the cortex. In addition, modulation of superficial gamma oscillation amplitude did not result in a corresponding change in deep-layer oscillations, suggesting that superficial and deep layers of cortex may utilize independent but related networks for gamma generation. These results demonstrate that stimulus-driven gamma oscillations engage cortical circuitry in a manner distinct from spontaneous oscillations and suggest multiple networks for the generation of gamma oscillations in cortex. PMID:26719085
Frequency spectrum might act as communication code between retina and visual cortex I
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
AIM To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). METHODS Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. RESULTS The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. CONCLUSION The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1. PMID:26682156
Visual Disability Among Juvenile Open-angle Glaucoma Patients.
Gupta, Viney; Ganesan, Vaitheeswaran L; Kumar, Sandip; Chaurasia, Abadh K; Malhotra, Sumit; Gupta, Shikha
2018-04-01
Juvenile onset primary open-angle glaucoma (JOAG) unlike adult onset primary open-angle glaucoma presents with high intraocular pressure and diffuse visual field loss, which if left untreated leads to severe visual disability. The study aimed to evaluate the extent of visual disability among JOAG patients presenting to a tertiary eye care facility. Visual acuity and perimetry records of unrelated JOAG patients presenting to our Glaucoma facility were analyzed. Low vision and blindness was categorized by the WHO criteria and percentage impairment was calculated as per the guidelines provided by the American Medical Association (AMA). Fifty-two (15%) of the 348 JOAG patients were bilaterally blind at presentation and 32 (9%) had low vision according to WHO criteria. Ninety JOAG patients (26%) had a visual impairment of 75% or more. Visual disability at presentation among JOAG patients is high. This entails a huge economic burden, given their young age and associated social responsibilities.
Frequency spectrum might act as communication code between retina and visual cortex I.
Yang, Xu; Gong, Bo; Lu, Jian-Wei
2015-01-01
To explore changes and possible communication relationship of local potential signals recorded simultaneously from retina and visual cortex I (V1). Fourteen C57BL/6J mice were measured with pattern electroretinogram (PERG) and pattern visually evoked potential (PVEP) and fast Fourier transform has been used to analyze the frequency components of those signals. The amplitude of PERG and PVEP was measured at about 36.7 µV and 112.5 µV respectively and the dominant frequency of PERG and PVEP, however, stay unchanged and both signals do not have second, or otherwise, harmonic generation. The results suggested that retina encodes visual information in the way of frequency spectrum and then transfers it to primary visual cortex. The primary visual cortex accepts and deciphers the input visual information coded from retina. Frequency spectrum may act as communication code between retina and V1.
Carraro, Mattia; Park, Albert H; Harrison, Robert V
2016-02-01
Some forms of sensorineural hearing loss involve damage or degenerative changes to the stria vascularis and/or other vascular structures in the cochlea. In animal models, many methods for anatomical assessment of cochlear vasculature exist, each with advantages and limitations. One methodology, corrosion casting, has proved useful in some species, however in the mouse model this technique is difficult to achieve because digestion of non vascular tissue results in collapse of the delicate cast specimen. We have developed a partial corrosion cast method that allows visualization of vasculature along much of the cochlear length but maintains some structural integrity of the specimen. We provide a detailed step-by-step description of this novel technique. We give some illustrative examples of the use of the method in mouse models of presbycusis and cytomegalovirus (CMV) infection. Copyright © 2015 Elsevier B.V. All rights reserved.
Lindström, Nils O; De Sena Brandine, Guilherme; Tran, Tracy; Ransick, Andrew; Suh, Gio; Guo, Jinjin; Kim, Albert D; Parvez, Riana K; Ruffins, Seth W; Rutledge, Elisabeth A; Thornton, Matthew E; Grubbs, Brendan; McMahon, Jill A; Smith, Andrew D; McMahon, Andrew P
2018-06-04
Mammalian nephrons arise from a limited nephron progenitor pool through a reiterative inductive process extending over days (mouse) or weeks (human) of kidney development. Here, we present evidence that human nephron patterning reflects a time-dependent process of recruitment of mesenchymal progenitors into an epithelial nephron precursor. Progressive recruitment predicted from high-resolution image analysis and three-dimensional reconstruction of human nephrogenesis was confirmed through direct visualization and cell fate analysis of mouse kidney organ cultures. Single-cell RNA sequencing of the human nephrogenic niche provided molecular insights into these early patterning processes and predicted developmental trajectories adopted by nephron progenitor cells in forming segment-specific domains of the human nephron. The temporal-recruitment model for nephron polarity and patterning suggested by direct analysis of human kidney development provides a framework for integrating signaling pathways driving mammalian nephrogenesis. Copyright © 2018 Elsevier Inc. All rights reserved.
Multi-modality optical imaging of ovarian cancer in a post-menopausal mouse model
NASA Astrophysics Data System (ADS)
Watson, Jennifer M.; Rice, Photini Faith; Marion, Samuel L.; Bentley, David L.; Brewer, Molly A.; Utzinger, Urs; Hoyer, Patricia B.; Barton, Jennifer K.
2011-03-01
Our goal is to use optical imaging to detect cancer development on the sub cellular scale. By determining the microscopic changes that precede ovarian cancer we hope to develop a minimally invasive screening test for high risk patients. A mouse ovarian cancer model has been developed by treating mice with 4-Vinylcyclohexene Diepoxide to induce ovarian failure and 7, 12-Dimethylbenz[a]anthracene (DMBA) to induce ovarian cancer. Using optical coherence tomography (OCT) and multiphoton microscopy (MPM) we have obtained co-registered en face images of sixty-seven mouse ovaries ex vivo and forty-two ovaries in vivo. Preliminary analysis indicates that OCT and MPM can visualize ovarian microstructure. During the next year we will be completing a long term survival study using post-menopausal mice that have been treated with DMBA to induce cancer and imaged in vivo at time points before and after treatment.
Grubb, Stephen C.; Bult, Carol J.; Bogue, Molly A.
2014-01-01
The Mouse Phenome Database (MPD; phenome.jax.org) was launched in 2001 as the data coordination center for the international Mouse Phenome Project. MPD integrates quantitative phenotype, gene expression and genotype data into a common annotated framework to facilitate query and analysis. MPD contains >3500 phenotype measurements or traits relevant to human health, including cancer, aging, cardiovascular disorders, obesity, infectious disease susceptibility, blood disorders, neurosensory disorders, drug addiction and toxicity. Since our 2012 NAR report, we have added >70 new data sets, including data from Collaborative Cross lines and Diversity Outbred mice. During this time we have completely revamped our homepage, improved search and navigational aspects of the MPD application, developed several web-enabled data analysis and visualization tools, annotated phenotype data to public ontologies, developed an ontology browser and released new single nucleotide polymorphism query functionality with much higher density coverage than before. Here, we summarize recent data acquisitions and describe our latest improvements. PMID:24243846
Wang, Ruikang K.
2014-01-01
In vivo imaging of mouse brain vasculature typically requires applying skull window opening techniques: open-skull cranial window or thinned-skull cranial window. We report non-invasive 3D in vivo cerebral blood flow imaging of C57/BL mouse by the use of ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate two cranial window types based on their procedures and ability to visualize surface pial vessel dynamics. Application of the thinned-skull technique is found to be effective in achieving high quality images for pial vessels for short-term imaging, and has advantages over the open-skull technique in available imaging area, surgical efficiency, and cerebral environment preservation. In summary, thinned-skull cranial window serves as a promising tool in studying hemodynamics in pial microvasculature using OMAG or other OCT blood flow imaging modalities. PMID:25426632
Application of laser speckle contrast image in the evaluation of arthritis animal model
NASA Astrophysics Data System (ADS)
Son, Taeyoon; Jang, Won Hyuk; Park, Jihoon; Yoon, Hyung-Ju; Lee, Jeon; Kim, Wan-Uk; Jung, Byungjo
2013-03-01
Arthritis is a chronic inflammatory disease that induces potentially damaging and commonly disabling. Various imaging modalities have been used for the evaluation of arthritis. This study aimed to investigate the feasibility of laser speckle contrast image (LSCI) in the evaluation of the severity and early stage of arthritis in animal model. Arthritis was induced on mouse foot and evaluated by a trained expert and the LSCI. The arthritis severity was quantitatively evaluated by speckle index (SI) computed from LSCI. In visual inspection by an expert, it was difficult to evaluate the arthritis because there was no noticeable different between control mouse group (CMG) and arthritis mouse group (AMG) in erythema. However, arthritis was easily evaluated by significant SI different between the CMG and AMG. In addition, the LSCI also successfully evaluated the early stage of arthritis, presenting different SI distribution depending on lesion.
Peterson, Shelby C; Brownell, Isaac; Wong, Sunny Y
2016-06-26
Cutaneous somatosensory nerves function to detect diverse stimuli that act upon the skin. In addition to their established sensory roles, recent studies have suggested that nerves may also modulate skin disorders including atopic dermatitis, psoriasis and cancer. Here, we describe protocols for testing the requirement for nerves in maintaining a cutaneous mechanosensory organ, the touch dome (TD). Specifically, we discuss methods for genetically labeling, harvesting and visualizing TDs by whole-mount staining, and for performing unilateral surgical denervation on mouse dorsal back skin. Together, these approaches can be used to directly compare TD morphology and gene expression in denervated as well as sham-operated skin from the same animal. These methods can also be readily adapted to examine the requirement for nerves in mouse models of skin pathology. Finally, the ability to repeatedly sample the skin provides an opportunity to monitor disease progression at different stages and times after initiation.
What can mice tell us about how vision works?
Huberman, Andrew D.; Niell, Cristopher M.
2012-01-01
Understanding the neural basis of visual perception is a longstanding fundamental goal of neuroscience. Historically, most vision studies were carried out on humans, macaque monkeys and cats. Over the last five years, however, a growing number of researchers have begun using mice to parse the mechanisms underlying visual processing- the rationale is that despite having relatively poor acuity, mice are unmatched in terms of the variety and sophistication of tools available to label, monitor and manipulate specific cell types and circuits. In this review, we discuss recent advances in understanding the mouse visual system at the anatomical, receptive field and perceptual level, focusing on the opportunities and constraints those features provide toward the goal of understanding how vision works. PMID:21840069
Look, Snap, See: Visual Literacy through the Camera.
ERIC Educational Resources Information Center
Spoerner, Thomas M.
1981-01-01
Activities involving photographs stimulate visual perceptual awareness. Children understand visual stimuli before having verbal capacity to deal with the world. Vision becomes the primary means for learning, understanding, and adjusting to the environment. Photography can provide an effective avenue to visual literacy. (Author)
Donnelley, M; Siu, K K W; Jamison, R A; Parsons, D W
2012-01-01
Although airway gene transfer research in mouse models relies on bolus fluid dosing into the nose or trachea, the dynamics and immediate fate of delivered gene transfer agents are poorly understood. In particular, this is because there are no in vivo methods able to accurately visualize the movement of fluid in small airways of intact animals. Using synchrotron phase-contrast X-ray imaging, we show that the fate of surrogate fluid doses delivered into live mouse airways can now be accurately and non-invasively monitored with high spatial and temporal resolution. This new imaging approach can help explain the non-homogenous distributions of gene expression observed in nasal airway gene transfer studies, suggests that substantial dose losses may occur at deliver into mouse trachea via immediate retrograde fluid motion and shows the influence of the speed of bolus delivery on the relative targeting of conducting and deeper lung airways. These findings provide insight into some of the factors that can influence gene expression in vivo, and this method provides a new approach to documenting and analyzing dose delivery in small-animal models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Chang-Hyuk; Kim, Hong-Tae; Choe, Jung-Yoon
This study was performed to observe microstructures of the rheumatoid arthritis induced mouse feet using a synchrotron radiation beam and to compare findings with histological observations. X-ray refraction images from ex-vivo rheumatoid arthritis induced mouse feet were obtained with an 8KeV white (unmonochromatic) beam and 20 micron thick CsI(Tl) scintillation crystal. The visual image was magnified using a x 10 microscope objective and captured using digital CCD camera. Experiments were performed at 1B2 bending magnet beamline of the Pohang Accelerator Laboratory (PAL) in Korea. Obtained images were compared with histopathologic findings from same sample. Cartilage destruction and thickened joint capsulemore » with joint space narrowing were clearly identified at each grade of rheumatoid model with spatial resolution of as much as 1.2 micron and these findings were directly correlated with histopathologic findings. The results suggest that x-ray microscopy study of the rheumatoid arthritis model using synchrotron radiation demonstrates the potential for clinically relevant micro structure of mouse feet without sectioning and fixation.« less
ERIC Educational Resources Information Center
Fischer, Quentin S.; Aleem, Salman; Zhou, Hongyi; Pham, Tony A.
2007-01-01
Prolonged visual deprivation from early childhood to maturity is believed to cause permanent visual impairment. However, there have been case reports of substantial improvement of binocular vision in human adults following lifelong visual impairment or deprivation. These observations, together with recent findings of adult ocular dominance…
Wnt inhibition enhances browning of mouse primary white adipocytes.
Lo, Kinyui Alice; Ng, Pei Yi; Kabiri, Zahra; Virshup, David; Sun, Lei
2016-01-01
The global epidemic in obesity and metabolic syndrome requires novel approaches to tackle. White adipose tissue, traditionally seen as a passive energy-storage organ, can be induced to take on certain characteristics of brown fat in a process called browning. The "browned" white adipose tissue, or beige fat, is a potential anti-obesity target. Various signaling pathways can enhance browning. Wnt is a key regulator of adipocyte biology, but its role in browning has not been explored. In this study, we found that in primary mouse adipocytes derived from the inguinal depot, Wnt inhibition by both chemical and genetic methods significantly enhanced browning. The effect of Wnt inhibition on browning most likely targets the beige precursor cells in selected adipose depots.
Primary Pterygium in a 7-Year-Old Boy: A Report of a Rare Case and Dilemma of its Management
Noor, Raja Azmi Mohd
2003-01-01
Primary pterygium in children is uncommon but is associated with severe visual problems. Astigmatism is the main visual problem caused by pterygium. Significant amounts of astigmatism occur long before a pterygium encroaches the visual axis. Early surgical intervention is safe and effective. It is associated with significant visual improvement in outcome. This is a case report on seven-year-old Malay boy who presented with a growth over nasal aspect of the right eye of 1 year duration. His right eye visual acuity is affected up to 6/12. The dilemma pased to early surgical interview is the high rate of recurrancean the young age group. This problem is highlighted in this case report. PMID:23386804
Primary pterygium in a 7-year-old boy: a report of a rare case and dilemma of its management.
Noor, Raja Azmi Mohd
2003-07-01
Primary pterygium in children is uncommon but is associated with severe visual problems. Astigmatism is the main visual problem caused by pterygium. Significant amounts of astigmatism occur long before a pterygium encroaches the visual axis. Early surgical intervention is safe and effective. It is associated with significant visual improvement in outcome. This is a case report on seven-year-old Malay boy who presented with a growth over nasal aspect of the right eye of 1 year duration. His right eye visual acuity is affected up to 6/12. The dilemma pased to early surgical interview is the high rate of recurrancean the young age group. This problem is highlighted in this case report.
Sharmin, Sazia; Taguchi, Atsuhiro; Kaku, Yusuke; Yoshimura, Yasuhiro; Ohmori, Tomoko; Sakuma, Tetsushi; Mukoyama, Masashi; Yamamoto, Takashi; Kurihara, Hidetake; Nishinakamura, Ryuichi
2016-06-01
Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator-like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm-like structures. Microarray analysis of sorted iPS cell-derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell-derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell-derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases. Copyright © 2016 by the American Society of Nephrology.
Sharmin, Sazia; Taguchi, Atsuhiro; Kaku, Yusuke; Yoshimura, Yasuhiro; Ohmori, Tomoko; Sakuma, Tetsushi; Mukoyama, Masashi; Yamamoto, Takashi; Kurihara, Hidetake
2016-01-01
Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in vitro. These induced human podocytes exhibited apicobasal polarity, with nephrin proteins accumulated close to the basal domain, and possessed primary processes that were connected with slit diaphragm–like structures. Microarray analysis of sorted iPS cell–derived podocytes identified well conserved marker gene expression previously shown in mouse and human podocytes in vivo. Furthermore, we developed a novel transplantation method using spacers that release the tension of host kidney capsules, thereby allowing the effective formation of glomeruli from human iPS cell–derived nephron progenitors. The human glomeruli were vascularized with the host mouse endothelial cells, and iPS cell–derived podocytes with numerous cell processes accumulated around the fenestrated endothelial cells. Therefore, the podocytes generated from iPS cells retain the podocyte-specific molecular and structural features, which will be useful for dissecting human glomerular development and diseases. PMID:26586691
Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura
2009-01-01
In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) – originally identified and investigated in rats - can be measured in C57Bl/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioral phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom. PMID:18771687
Primary visual response (M100) delays in adolescents with FASD as measured with MEG.
Coffman, Brian A; Kodituwakku, Piyadasa; Kodituwakku, Elizabeth L; Romero, Lucinda; Sharadamma, Nirupama Muniswamy; Stone, David; Stephen, Julia M
2013-11-01
Fetal alcohol spectrum disorders (FASD) are debilitating, with effects of prenatal alcohol exposure persisting into adolescence and adulthood. Complete characterization of FASD is crucial for the development of diagnostic tools and intervention techniques to decrease the high cost to individual families and society of this disorder. In this experiment, we investigated visual system deficits in adolescents (12-21 years) diagnosed with an FASD by measuring the latency of patients' primary visual M100 responses using MEG. We hypothesized that patients with FASD would demonstrate delayed primary visual responses compared to controls. M100 latencies were assessed both for FASD patients and age-matched healthy controls for stimuli presented at the fovea (central stimulus) and at the periphery (peripheral stimuli; left or right of the central stimulus) in a saccade task requiring participants to direct their attention and gaze to these stimuli. Source modeling was performed on visual responses to the central and peripheral stimuli and the latency of the first prominent peak (M100) in the occipital source timecourse was identified. The peak latency of the M100 responses were delayed in FASD patients for both stimulus types (central and peripheral), but the difference in latency of primary visual responses to central vs. peripheral stimuli was significant only in FASD patients, indicating that, while FASD patients' visual systems are impaired in general, this impairment is more pronounced in the periphery. These results suggest that basic sensory deficits in this population may contribute to sensorimotor integration deficits described previously in this disorder. Copyright © 2012 Wiley Periodicals, Inc.
Visually Evoked Spiking Evolves While Spontaneous Ongoing Dynamics Persist
Huys, Raoul; Jirsa, Viktor K.; Darokhan, Ziauddin; Valentiniene, Sonata; Roland, Per E.
2016-01-01
Neurons in the primary visual cortex spontaneously spike even when there are no visual stimuli. It is unknown whether the spiking evoked by visual stimuli is just a modification of the spontaneous ongoing cortical spiking dynamics or whether the spontaneous spiking state disappears and is replaced by evoked spiking. This study of laminar recordings of spontaneous spiking and visually evoked spiking of neurons in the ferret primary visual cortex shows that the spiking dynamics does not change: the spontaneous spiking as well as evoked spiking is controlled by a stable and persisting fixed point attractor. Its existence guarantees that evoked spiking return to the spontaneous state. However, the spontaneous ongoing spiking state and the visual evoked spiking states are qualitatively different and are separated by a threshold (separatrix). The functional advantage of this organization is that it avoids the need for a system reorganization following visual stimulation, and impedes the transition of spontaneous spiking to evoked spiking and the propagation of spontaneous spiking from layer 4 to layers 2–3. PMID:26778982
Altered figure-ground perception in monkeys with an extra-striate lesion.
Supèr, Hans; Lamme, Victor A F
2007-11-05
The visual system binds and segments the elements of an image into coherent objects and their surroundings. Recent findings demonstrate that primary visual cortex is involved in this process of figure-ground organization. In the primary visual cortex the late part of a neural response to a stimulus correlates with figure-ground segregation and perception. Such a late onset indicates an involvement of feedback projections from higher visual areas. To investigate the possible role of feedback in figure-ground perception we removed dorsal extra-striate areas of the monkey visual cortex. The findings show that figure-ground perception is reduced when the figure is presented in the lesioned hemifield and perception is normal when the figure appeared in the intact hemifield. In conclusion, our observations show the importance for recurrent processing in visual perception.
Margolin, Edward; Gujar, Sachin K; Trobe, Jonathan D
2007-12-01
A 16-year-old boy who was briefly asystolic and hypotensive after a motor vehicle accident complained of abnormal vision after recovering consciousness. Visual acuity was normal, but visual fields were severely constricted without clear hemianopic features. The ophthalmic examination was otherwise normal. Brain MRI performed 11 days after the accident showed no pertinent abnormalities. At 6 months after the event, brain MRI demonstrated brain volume loss in the primary visual cortex and no other abnormalities. One year later, visual fields remained severely constricted; neurologic examination, including formal neuropsychometric testing, was normal. This case emphasizes the fact that hypoxic-ischemic encephalopathy (HIE) may cause enduring damage limited to primary visual cortex and that the MRI abnormalities may be subtle. These phenomena should be recognized in the management of patients with HIE.
The Rise of the Graphical User Interface.
ERIC Educational Resources Information Center
Edwards, Alastair D. N.
1996-01-01
Discusses the history of the graphical user interface (GUI) and the growing realization that adaptations must be made to it lest its visual nature discriminate against nonsighted or sight-impaired users. One of the most popular commercially developed adaptations is to develop sounds that signal the location of icons or menus to mouse users.…
USDA-ARS?s Scientific Manuscript database
Aims: Parkinson's disease (PD) is a neurodegenerative disorder characterized by accumulation of misfolded alpha-synuclein within the CNS. Although non-motor clinical phenotypes of PD such as visual dysfunction have become increasingly apparent, retinal pathology associated with PD is not well under...
Jones, P H; Shakdher, S; Singh, P
2017-04-01
Salient findings and interpretations from the canimpact clinical cancer research study are visually represented in two synthesis maps for the purpose of communicating an integrated presentation of the study to clinical cancer researchers and policymakers. Synthesis maps integrate evidence and expertise into a visual narrative for knowledge translation and communication. A clinical system synthesis map represents the current Canadian primary care and cancer practice systems, proposed as a visual knowledge translation from the mixed-methods canimpact study to inform Canadian clinical research, policy, and practice discourses. Two synthesis maps, drawn together from multiple canimpact investigations and sources, were required to articulate critical differences between the clinical system and patient perspectives. The synthesis map of Canada-wide clinical cancer systems illustrates the relationships between primary care and the full cancer continuum. A patient-centred map was developed to represent the cancer (and primary care) journeys as experienced by breast and colorectal cancer patients.
Varando, Gherardo; Benavides-Piccione, Ruth; Muñoz, Alberto; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier
2018-01-01
The development of 3D visualization and reconstruction methods to analyse microscopic structures at different levels of resolutions is of great importance to define brain microorganization and connectivity. MultiMap is a new tool that allows the visualization, 3D segmentation and quantification of fluorescent structures selectively in the neuropil from large stacks of confocal microscopy images. The major contribution of this tool is the posibility to easily navigate and create regions of interest of any shape and size within a large brain area that will be automatically 3D segmented and quantified to determine the density of puncta in the neuropil. As a proof of concept, we focused on the analysis of glutamatergic and GABAergic presynaptic axon terminals in the mouse hippocampal region to demonstrate its use as a tool to provide putative excitatory and inhibitory synaptic maps. The segmentation and quantification method has been validated over expert labeled images of the mouse hippocampus and over two benchmark datasets, obtaining comparable results to the expert detections. PMID:29875639
Varando, Gherardo; Benavides-Piccione, Ruth; Muñoz, Alberto; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier
2018-01-01
The development of 3D visualization and reconstruction methods to analyse microscopic structures at different levels of resolutions is of great importance to define brain microorganization and connectivity. MultiMap is a new tool that allows the visualization, 3D segmentation and quantification of fluorescent structures selectively in the neuropil from large stacks of confocal microscopy images. The major contribution of this tool is the posibility to easily navigate and create regions of interest of any shape and size within a large brain area that will be automatically 3D segmented and quantified to determine the density of puncta in the neuropil. As a proof of concept, we focused on the analysis of glutamatergic and GABAergic presynaptic axon terminals in the mouse hippocampal region to demonstrate its use as a tool to provide putative excitatory and inhibitory synaptic maps. The segmentation and quantification method has been validated over expert labeled images of the mouse hippocampus and over two benchmark datasets, obtaining comparable results to the expert detections.
Fluorescence-based visualization of autophagic activity predicts mouse embryo viability
NASA Astrophysics Data System (ADS)
Tsukamoto, Satoshi; Hara, Taichi; Yamamoto, Atsushi; Kito, Seiji; Minami, Naojiro; Kubota, Toshiro; Sato, Ken; Kokubo, Toshiaki
2014-03-01
Embryo quality is a critical parameter in assisted reproductive technologies. Although embryo quality can be evaluated morphologically, embryo morphology does not correlate perfectly with embryo viability. To improve this, it is important to understand which molecular mechanisms are involved in embryo quality control. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic materials sequestered by autophagosomes are degraded in lysosomes. We previously demonstrated that autophagy is highly activated after fertilization and is essential for further embryonic development. Here, we developed a simple fluorescence-based method for visualizing autophagic activity in live mouse embryos. Our method is based on imaging of the fluorescence intensity of GFP-LC3, a versatile marker for autophagy, which is microinjected into the embryos. Using this method, we show that embryonic autophagic activity declines with advancing maternal age, probably due to a decline in the activity of lysosomal hydrolases. We also demonstrate that embryonic autophagic activity is associated with the developmental viability of the embryo. Our results suggest that embryonic autophagic activity can be utilized as a novel indicator of embryo quality.
An optimized fluorescent probe for visualizing glutamate neurotransmission.
Marvin, Jonathan S; Borghuis, Bart G; Tian, Lin; Cichon, Joseph; Harnett, Mark T; Akerboom, Jasper; Gordus, Andrew; Renninger, Sabine L; Chen, Tsai-Wen; Bargmann, Cornelia I; Orger, Michael B; Schreiter, Eric R; Demb, Jonathan B; Gan, Wen-Biao; Hires, S Andrew; Looger, Loren L
2013-02-01
We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.
New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.
Schur, Rebecca M; Gao, Songqi; Yu, Guanping; Chen, Yu; Maeda, Akiko; Palczewski, Krzysztof; Lu, Zheng-Rong
2018-01-24
No clinically approved therapies are currently available that prevent the onset of photoreceptor death in retinal degeneration. Signaling between retinal neurons is regulated by the release and uptake of neurotransmitters, wherein GABA is the main inhibitory neurotransmitter. In this work, novel 3-chloropropiophenone derivatives and the clinical anticonvulsants tiagabine and vigabatrin were tested to modulate GABA signaling and protect against light-induced retinal degeneration. Abca4 -/- Rdh8 -/- mice, an accelerated model of retinal degeneration, were exposed to intense light after prophylactic injections of one of these compounds. Imaging and functional assessments of the retina indicated that these compounds successfully protected photoreceptor cells from degeneration to maintain a full-visual-field response. Furthermore, these compounds demonstrated a strong safety profile in wild-type mice and did not compromise visual function or damage the retina, despite repeated administration. These results indicate that modulating inhibitory GABA signaling can offer prophylactic protection against light-induced retinal degeneration.-Schur, R. M., Gao, S., Yu, G., Chen, Y., Maeda, A., Palczewski, K., Lu, Z.-R. New GABA modulators protect photoreceptor cells from light-induced degeneration in mouse models.
Li, Zan; Yan, Shi-Hai; Chen, Chen; Geng, Zhi-Rong; Chang, Jia-Yin; Chen, Chun-Xia; Huang, Bing-Huan; Wang, Zhi-Lin
2017-04-15
Reactions of peroxynitrite (ONOO - ) with biomolecules can lead to cytotoxic and cytoprotective events. Due to the difficulty of directly and unambiguously measuring its levels, most of the beneficial effects associated with ONOO - in vivo remain controversial or poorly characterized. Recently, optical imaging has served as a powerful noninvasive approach to studying ONOO - in living systems. However, ratiometric probes for ONOO - are currently lacking. Herein, we report the design, synthesis, and biological evaluation of F 482 , a novel fluorescence indicator that relies on ONOO - -induced diene oxidation. The remarkable sensitivity, selectivity, and photostability of F 482 enabled us to visualize basal ONOO - in immune-stimulated phagocyte cells and quantify its generation in phagosomes by high-throughput flow cytometry analysis. With the aid of in vivo ONOO - imaging in a mouse inflammation model assisted by F 482 , we envision that F 482 will find widespread applications in the study of the ONOO - biology associated with physiological and pathological processes in vitro and in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimization of a GCaMP calcium indicator for neural activity imaging
Akerboom, Jasper; Chen, Tsai-Wen; Wardill, Trevor J.; Tian, Lin; Marvin, Jonathan S.; Mutlu, Sevinç; Calderón, Nicole Carreras; Esposti, Federico; Borghuis, Bart G.; Sun, Xiaonan Richard; Gordus, Andrew; Orger, Michael B.; Portugues, Ruben; Engert, Florian; Macklin, John J.; Filosa, Alessandro; Aggarwal, Aman; Kerr, Rex; Takagi, Ryousuke; Kracun, Sebastian; Shigetomi, Eiji; Khakh, Baljit S.; Baier, Herwig; Lagnado, Leon; Wang, Samuel S.-H.; Bargmann, Cornelia I.; Kimmel, Bruce E.; Jayaraman, Vivek; Svoboda, Karel; Kim, Douglas S.; Schreiter, Eric R.; Looger, Loren L.
2012-01-01
Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials (APs) in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by several-fold, creating a family of “GCaMP5” sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2–3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general. PMID:23035093
Slaets, Dominique; De Bruyne, Sylvie; Dumolyn, Caroline; Moerman, Lieselotte; Mertens, Koen; De Vos, Filip
2010-11-01
[(18)F]Fluoromethylcholine ([(18)F]FCho) is a radiotracer generally used for tumour visualization in patients. Due to high levels of dimethylaminoethanol (DMAE) remaining in [(18)F]FCho solutions synthesized by currently available methods, tumour visualization might be compromised. An improved purification method involving an optimized purification step for reducing the levels of DMAE was conceived. The physiological explanation for the interference of residual DMAE in [(18)F]FCho pharmacokinetics was further elaborated in a xenograft mouse model. The use of a series of polymer solid-phase extraction cartridges (Oasis HLB/WCX), instead of the commonly used combination of tC18 and Accell CM cartridges, reduced DMAE levels from 402.2±49.6 ppm to 3.0±0.5 ppm. Subsequent in vitro tests proved that (1) [(18)F]FCho uptake was reduced in the presence of DMAE at concentrations above 0.5 µM and (2) DMAE is a competitive inhibitor of [(18)F]FCho transport. In vivo experiments in xenograft mouse models corroborated reduced tumour uptake at DMAE plasma levels of about 2.5 µM as found in patients injected with contaminated [(18)F]FCho. Residual DMAE, even at levels below choline plasma concentrations found during fasting, compromises [(18)F]FCho uptake in vivo and care should be taken to avoid its interference in molecular imaging with [(18)F]FCho.
A simple and sensitive method to measure timing accuracy.
De Clercq, Armand; Crombez, Geert; Buysse, Ann; Roeyers, Herbert
2003-02-01
Timing accuracy in presenting experimental stimuli (visual information on a PC or on a TV) and responding (keyboard presses and mouse signals) is of importance in several experimental paradigms. In this article, a simple system for measuring timing accuracy is described. The system uses two PCs (at least Pentium II, 200 MHz), a photocell, and an amplifier. No additional boards and timing hardware are needed. The first PC, a SlavePC, monitors the keyboard presses or mouse signals from the PC under test and uses a photocell that is placed in front of the screen to detect the appearance of visual stimuli on the display. The software consists of a small program running on the SlavePC. The SlavePC is connected through a serial line with a second PC. This MasterPC controls the SlavePC through an ActiveX control, which is used in a Visual Basic program. The accuracy of our system was investigated by using a similar setup of a SlavePC and a MasterPC to generate pulses and by using a pulse generator card. These tests revealed that our system has a 0.01-msec accuracy. As an illustration, the reaction time accuracy of INQUISIT for a few applications was tested using our system. It was found that in those applications that we investigated, INQUISIT measures reaction times from keyboard presses with millisecond accuracy.
NASA Astrophysics Data System (ADS)
Asanuma, Daisuke; Urano, Yasuteru; Nagano, Tetsuo; Hama, Yukihiro; Koyama, Yoshinori; Kobayashi, Hisataka
2009-02-01
One goal of molecular imaging is to establish a widely applicable technique for specific detection of tumors with minimal background. Here, we achieve specific in vivo tumor visualization with a newly-designed "activatable" targeted fluorescence probe. This agent is activated after cellular internalization by sensing the pH change in the lysosome. Novel acidic pH-activatable probes based on the BODIPY fluorophore were synthesized, and then conjugated to a cancer-targeting monoclonal antibody, Trastuzumab, or galactosyl serum albumin (GSA). As proof of concept, ex and in vivo imaging of two different tumor mouse models was performed: HER2-overexpressed lung metastasis tumor with Trastuzumab-pH probe conjugates and lectin-overexpressed i.p. disseminated tumor with GSA-pH probe conjugates. These pH-activatable targeted probes were highly specific for tumors with minimal background signal. Because the acidic pH in lysosomes is maintained by the energy-consuming proton pump, only viable cancer cells were successfully visualized. Furthermore, this strategy was also applied to fluorescence endoscopy in tumor mouse models, resulting in specific visualization of tumors as small as submillimeter in size that could hardly detected by naked eyes because of their poor contrast against normal tissues. The design concept can be widely adapted to cancer-specific cell-surface-targeting molecules that result in cellular internalization.
Mutational Analysis of Drosophila Basigin Function in the Visual System
Munro, Michelle; Akkam, Yazan; Curtin, Kathryn D.
2009-01-01
Drosophila basigin is a cell-surface glycoprotein of the Ig superfamily and a member of a protein family that includes mammalian EMMPRIN/CD147/basigin, neuroplastin, and embigin. Our previous work on Drosophila basigin has shown that it is required for normal photoreceptor cell structure and normal neuron-glia interaction in the fly visual system. Specifically, the photoreceptor neurons of mosaic animals that are mutant in the eye for basigin show altered cell structure with nuclei, mitochondria and rER misplaced and variable axon diameter compared to wild-type. In addition, glia cells in the optic lamina that contact photoreceptor axons are misplaced and show altered structure. All these defects are rescued by expression of either transgenic fly basigin or transgenic mouse basigin in the photoreceptors demonstrating that mouse basigin can functionally replace fly basigin. To determine what regions of the basigin protein are required for each of these functions, we have created mutant basigin transgenes coding for proteins that are altered in conserved residues, introduced these into the fly genome, and tested them for their ability to rescue both photoreceptor cell structure defects and neuron-glia interaction defects of basigin. The results suggest that the highly conserved transmembrane domain and the extracellular domains are crucial for basigin function in the visual system while the short intracellular tail may not play a role in these functions. PMID:19782733
[Risks and health problems caused by the use of video terminals].
Tamez González, Silvia; Ortiz-Hernández, Luis; Martínez-Alcántara, Susana; Méndez-Ramírez, Ignacio
2003-01-01
To evaluate the association between video display terminal (VDT) use and health hazards, occupational risks, and psychosocial factors, in newspaper workers. A cross-sectional study was conducted in 1998 in a representative sample (n = 68) drawn from a population of 218 VDT operators in Mexico City. Data were collected using a self-administered questionnaire. Data were confirmed by performing physical examinations. The research hypothesis was that both the current and cumulative use of VDT are associated with visual, musculoskeletal system, and skin illnesses, as well as with fatigue and mental or psychosomatic disorders. Occupational health hazards were assessed (visual problems, postural risks, sedentary work, computer mouse use, excessive heat, and overcrowding), as well as psychosocial factors related to work organization (psychological demands, work control, and social support). Prevalence ratios were adjusted for confounding variables like age, sex and schooling. Women were more likely than men to have upper extremity musculoskeletal disorders (MSD), dermatitis, and seborrheic eczema. VDT use was associated with neuro-visual fatigue, upper extremity MSD, dermatitis, and seborrheic eczema. Computer mouse use and postural risks were significantly associated with health problems. Psychosocial factors were mainly associated with mental problems, psychosomatic disorders, and fatigue. Intense use of video screens has been found to cause musculoskeletal disorders of the hand. The diversification of tasks and control of labor processes itself had a protective effect against psychosomatic disorders and pathological fatigue.
Ding, Jin-Dong; Johnson, Lincoln V; Herrmann, Rolf; Farsiu, Sina; Smith, Stephanie G; Groelle, Marybeth; Mace, Brian E; Sullivan, Patrick; Jamison, Jeffrey A; Kelly, Una; Harrabi, Ons; Bollini, Sangeetha Subbarao; Dilley, Jeanette; Kobayashi, Dione; Kuang, Bing; Li, Wenlin; Pons, Jaume; Lin, John C; Bowes Rickman, Catherine
2011-07-12
Age-related macular degeneration (AMD) is a leading cause of visual dysfunction worldwide. Amyloid β (Aβ) peptides, Aβ1-40 (Aβ40) and Aβ1-42 (Aβ42), have been implicated previously in the AMD disease process. Consistent with a pathogenic role for Aβ, we show here that a mouse model of AMD that invokes multiple factors that are known to modify AMD risk (aged human apolipoprotein E 4 targeted replacement mice on a high-fat, cholesterol-enriched diet) presents with Aβ-containing deposits basal to the retinal pigmented epithelium (RPE), histopathologic changes in the RPE, and a deficit in scotopic electroretinographic response, which is reflective of impaired visual function. Strikingly, these electroretinographic deficits are abrogated in a dose-dependent manner by systemic administration of an antibody targeting the C termini of Aβ40 and Aβ42. Concomitant reduction in the levels of Aβ and activated complement components in sub-RPE deposits and structural preservation of the RPE are associated with anti-Aβ40/42 antibody immunotherapy and visual protection. These observations are consistent with the reduction in amyloid plaques and improvement of cognitive function in mouse models of Alzheimer's disease treated with anti-Aβ antibodies. They also implicate Aβ in the pathogenesis of AMD and identify Aβ as a viable therapeutic target for its treatment.
Beggiato, Sarah; Borelli, Andrea Celeste; Ferraro, Luca; Tanganelli, Sergio; Antonelli, Tiziana; Tomasini, Maria Cristina
2018-01-01
Based on the pivotal role of astrocytes in brain homeostasis and the strong metabolic cooperation existing between neurons and astrocytes, it has been suggested that astrocytic dysfunctions might cause and/or contribute to neuroinflammation and neurodegenerative processes. Therapeutic approaches aimed at both neuroprotection and neuroinflammation reduction may prove particularly effective in slowing the progression of these diseases. The endogenous lipid mediator palmitoylethanolamide (PEA) displayed neuroprotective and anti(neuro)inflammatory properties, and demonstrated interesting potential as a novel treatment for Alzheimer's disease. We firstly evaluated whether astrocytes could participate in regulating the Aβ42-induced neuronal damage, by using primary mouse astrocytes cell cultures and mixed astrocytes-neurons cultures. Furthermore, the possible protective effects of PEA against Aβ42-induced neuronal toxicity have also been investigated by evaluating neuronal viability, apoptosis, and morphometric parameters. The presence of astrocytes pre-exposed to Aβ42 (0.5μM; 24 h) induced a reduction of neuronal viability in primary mouse astrocytes-neurons co-cultures. Furthermore, under these experimental conditions, an increase in the number of neuronal apoptotic nuclei and a decrease in the number of MAP-2 positive neurons were observed. Finally, astrocytic Aβ42 pre-exposure induced an increase in the number of neurite aggregations/100μm as compared to control (i.e., untreated) astrocytes-neurons co-cultures. These effects were not observed in neurons cultured in the presence of astrocytes pre-exposed to PEA (0.1μM), applied 1 h before and maintained during Aβ42 treatment. Astrocytes contribute to Aβ42-induced neurotoxicity and PEA, by blunting Aβ42-induced astrocyte activation, improved neuronal survival in mouse astrocyte-neuron co-cultures.
Murata, Koichi; Kitaori, Toshiyuki; Oishi, Shinya; Watanabe, Naoki; Yoshitomi, Hiroyuki; Tanida, Shimei; Ishikawa, Masahiro; Kasahara, Takashi; Shibuya, Hideyuki; Fujii, Nobutaka; Nagasawa, Takashi; Nakamura, Takashi; Ito, Hiromu
2012-01-01
Stromal cell-derived factor 1 (SDF-1/CXCL12/PBSF) plays important roles in the biological and physiological functions of haematopoietic and mesenchymal stem cells. This chemokine regulates the formation of multiple organ systems during embryogenesis. However, its roles in skeletal development remain unclear. Here we investigated the roles of SDF-1 in chondrocyte differentiation. We demonstrated that SDF-1 protein was expressed at pre-hypertrophic and hypertrophic chondrocytes in the newly formed endochondral callus of rib fracture as well as in the growth plate of normal mouse tibia by immunohistochemical analysis. Using SDF-1(-/-) mouse embryo, we histologically showed that the total length of the whole humeri of SDF-1(-/-) mice was significantly shorter than that of wild-type mice, which was contributed mainly by shorter hypertrophic and calcified zones in SDF-1(-/-) mice. Actin cytoskeleton of hypertrophic chondrocytes in SDF-1(-/-) mouse humeri showed less F-actin and rounder shape than that of wild-type mice. Primary chondrocytes from SDF-1(-/-) mice showed the enhanced formation of philopodia and loss of F-actin. The administration of SDF-1 to primary chondrocytes of wild-type mice and SDF-1(-/-) mice promoted the formation of actin stress fibers. Organ culture of embryonic metatarsals from SDF-1(-/-) mice showed the growth delay, which was recovered by an exogenous administration of SDF-1. mRNA expression of type X collagen in metatarsals and in primary chondrocytes of SDF-1(-/-) mouse embryo was down-regulated while the administration of SDF-1 to metatarsals recovered. These data suggests that SDF-1 regulates the actin organization and stimulates bone growth by mediating chondrocyte hypertrophy.
NASA Astrophysics Data System (ADS)
Jia, Yali; Qin, Jia; Zhi, Zhongwei; Wang, Ruikang K.
2011-08-01
The primary pathophysiology of peripheral arterial disease is associated with impaired perfusion to the muscle tissue in the lower extremities. The lack of effective pharmacologic treatments that stimulate vessel collateralization emphasizes the need for an imaging method that can be used to dynamically visualize depth-resolved microcirculation within muscle tissues. Optical microangiography (OMAG) is a recently developed label-free imaging method capable of producing three-dimensional images of dynamic blood perfusion within microcirculatory tissue beds at an imaging depth of up to ~2 mm, with an unprecedented imaging sensitivity of blood flow at ~4 μm/s. In this paper, we demonstrate the utility of OMAG in imaging the detailed blood flow distributions, at a capillary-level resolution, within skeletal muscles of mice. By use of the mouse model of hind-limb ischemia, we show that OMAG can assess the time-dependent changes in muscle perfusion and perfusion restoration along tissue depth. These findings indicate that OMAG can represent a sensitive, consistent technique to effectively study pharmacologic therapies aimed at promoting the growth and development of collateral vessels.
Primary School Pupils' Response to Audio-Visual Learning Process in Port-Harcourt
ERIC Educational Resources Information Center
Olube, Friday K.
2015-01-01
The purpose of this study is to examine primary school children's response on the use of audio-visual learning processes--a case study of Chokhmah International Academy, Port-Harcourt (owned by Salvation Ministries). It looked at the elements that enhance pupils' response to educational television programmes and their hindrances to these…
Assistive Device Use in Visually Impaired Older Adults: Role of Control Beliefs
ERIC Educational Resources Information Center
Becker, Stefanie; Wahl, Hans-Werner; Schilling, Oliver; Burmedi, David
2005-01-01
Purpose: We investigate whether psychological control, conceptually framed within the life-span theory of control by Heckhausen and Schulz, drives assistive device use in visually impaired elders. In particular, we expect the two primary control modes differentiated in the life-span theory of control (i.e., selective primary and compensatory…
Higher Brain Functions Served by the Lowly Rodent Primary Visual Cortex
ERIC Educational Resources Information Center
Gavornik, Jeffrey P.; Bear, Mark F.
2014-01-01
It has been more than 50 years since the first description of ocular dominance plasticity--the profound modification of primary visual cortex (V1) following temporary monocular deprivation. This discovery immediately attracted the intense interest of neurobiologists focused on the general question of how experience and deprivation modify the brain…
de Borst, Aline W; de Gelder, Beatrice
2017-08-01
Previous studies have shown that the early visual cortex contains content-specific representations of stimuli during visual imagery, and that these representational patterns of imagery content have a perceptual basis. To date, there is little evidence for the presence of a similar organization in the auditory and tactile domains. Using fMRI-based multivariate pattern analyses we showed that primary somatosensory, auditory, motor, and visual cortices are discriminative for imagery of touch versus sound. In the somatosensory, motor and visual cortices the imagery modality discriminative patterns were similar to perception modality discriminative patterns, suggesting that top-down modulations in these regions rely on similar neural representations as bottom-up perceptual processes. Moreover, we found evidence for content-specific representations of the stimuli during auditory imagery in the primary somatosensory and primary motor cortices. Both the imagined emotions and the imagined identities of the auditory stimuli could be successfully classified in these regions. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Fluorescence imaging of angiogenesis in green fluorescent protein-expressing tumors
NASA Astrophysics Data System (ADS)
Yang, Meng; Baranov, Eugene; Jiang, Ping; Li, Xiao-Ming; Wang, Jin W.; Li, Lingna; Yagi, Shigeo; Moossa, A. R.; Hoffman, Robert M.
2002-05-01
The development of therapeutics for the control of tumor angiogenesis requires a simple, reliable in vivo assay for tumor-induced vascularization. For this purpose, we have adapted the orthotopic implantation model of angiogenesis by using human and rodent tumors genetically tagged with Aequorea victoria green fluorescent protein (GFP) for grafting into nude mice. Genetically-fluorescent tumors can be readily imaged in vivo. The non-luminous induced capillaries are clearly visible against the bright tumor fluorescence examined either intravitally or by whole-body luminance in real time. Fluorescence shadowing replaces the laborious histological techniques for determining blood vessel density. High-level GFP-expressing tumor cell lines made it possible to acquire the high-resolution real-time fluorescent optical images of angiogenesis in both primary tumors and their metastatic lesions in various human and rodent tumor models by means of a light-based imaging system. Intravital images of angiogenesis onset and development were acquired and quantified from a GFP- expressing orthotopically-growing human prostate tumor over a 19-day period. Whole-body optical imaging visualized vessel density increasing linearly over a 20-week period in orthotopically-growing, GFP-expressing human breast tumor MDA-MB-435. Vessels in an orthotopically-growing GFP- expressing Lewis lung carcinoma tumor were visualized through the chest wall via a reversible skin flap. These clinically-relevant angiogenesis mouse models can be used for real-time in vivo evaluation of agents inhibiting or promoting tumor angiogenesis in physiological micro- environments.
Cortical sources of visual evoked potentials during consciousness of executive processes.
Babiloni, Claudio; Vecchio, Fabrizio; Iacoboni, Marco; Buffo, Paola; Eusebi, Fabrizio; Rossini, Paolo Maria
2009-03-01
What is the timing of cortical activation related to consciousness of visuo-spatial executive functions? Electroencephalographic data (128 channels) were recorded in 13 adults. Cue stimulus briefly appeared on right or left (equal probability) monitor side for a period, inducing about 50% of recognitions. It was then masked and followed (2 s) by a central visual go stimulus. Left (right) mouse button had to be clicked after right (left) cue stimulus. This "inverted" response indexed executive processes. Afterward, subjects said "seen" if they had detected the cue stimulus or "not seen" when it was missed. Sources of event-related potentials (ERPs) were estimated by LORETA software. The inverted responses were about 95% in seen trials and about 60% in not seen trials. Cue stimulus evoked frontal-parietooccipital potentials, having the same peak latencies in the seen and not seen data. Maximal difference in amplitude of the seen and not seen ERPs was detected at about +300-ms post-stimulus (P3). P3 sources were higher in amplitude in the seen than not seen trials in dorsolateral prefrontal, premotor and parietooccipital areas. This was true in dorsolateral prefrontal and premotor cortex even when percentage of the inverted responses and reaction time were paired in the seen and not seen trials. These results suggest that, in normal subjects, the primary consciousness enhances the efficacy of visuo-spatial executive processes and is sub-served by a late (100- to 400-ms post-stimulus) enhancement of the neural synchronization in frontal areas.
Implicit visual learning and the expression of learning.
Haider, Hilde; Eberhardt, Katharina; Kunde, Alexander; Rose, Michael
2013-03-01
Although the existence of implicit motor learning is now widely accepted, the findings concerning perceptual implicit learning are ambiguous. Some researchers have observed perceptual learning whereas other authors have not. The review of the literature provides different reasons to explain this ambiguous picture, such as differences in the underlying learning processes, selective attention, or differences in the difficulty to express this knowledge. In three experiments, we investigated implicit visual learning within the original serial reaction time task. We used different response devices (keyboard vs. mouse) in order to manipulate selective attention towards response dimensions. Results showed that visual and motor sequence learning differed in terms of RT-benefits, but not in terms of the amount of knowledge assessed after training. Furthermore, visual sequence learning was modulated by selective attention. However, the findings of all three experiments suggest that selective attention did not alter implicit but rather explicit learning processes. Copyright © 2012 Elsevier Inc. All rights reserved.
Interactions between attention, context and learning in primary visual cortex.
Gilbert, C; Ito, M; Kapadia, M; Westheimer, G
2000-01-01
Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.
Otsuna, Hideo; Shinomiya, Kazunori; Ito, Kei
2014-01-01
Compared with connections between the retinae and primary visual centers, relatively less is known in both mammals and insects about the functional segregation of neural pathways connecting primary and higher centers of the visual processing cascade. Here, using the Drosophila visual system as a model, we demonstrate two levels of parallel computation in the pathways that connect primary visual centers of the optic lobe to computational circuits embedded within deeper centers in the central brain. We show that a seemingly simple achromatic behavior, namely phototaxis, is under the control of several independent pathways, each of which is responsible for navigation towards unique wavelengths. Silencing just one pathway is enough to disturb phototaxis towards one characteristic monochromatic source, whereas phototactic behavior towards white light is not affected. The response spectrum of each demonstrable pathway is different from that of individual photoreceptors, suggesting subtractive computations. A choice assay between two colors showed that these pathways are responsible for navigation towards, but not for the detection itself of, the monochromatic light. The present study provides novel insights about how visual information is separated and processed in parallel to achieve robust control of an innate behavior. PMID:24574974
HBV life cycle is restricted in mouse hepatocytes expressing human NTCP.
Li, Hanjie; Zhuang, Qiuyu; Wang, Yuze; Zhang, Tianying; Zhao, Jinghua; Zhang, Yali; Zhang, Junfang; Lin, Yi; Yuan, Quan; Xia, Ningshao; Han, Jiahuai
2014-03-01
Recent studies have revealed that human sodium taurocholate cotransporting polypeptide (SLC10A1 or NTCP) is a functional cellular receptor for hepatitis B virus (HBV). However, whether human NTCP can support HBV infection in mouse hepatocyte cell lines has not been clarified. Because an HBV-permissible mouse model would be helpful for the study of HBV pathogenesis, it is necessary to investigate whether human NTCP supports the susceptibility of mouse hepatocyte cell lines to HBV. The results show that exogenous human NTCP expression can render non-susceptible HepG2 (human), Huh7 (human), Hepa1-6 (mouse), AML-12 (mouse) cell lines and primary mouse hepatocyte (PMH) cells susceptible to hepatitis D virus (HDV) which employs HBV envelope proteins. However, human NTCP could only introduce HBV susceptibility in human-derived HepG2 and Huh7 cells, but not in mouse-derived Hepa1-6, AML-12 or PMH cells. These data suggest that although human NTCP is a functional receptor that mediates HBV infection in human cells, it cannot support HBV infection in mouse hepatocytes. Our study indicated that the restriction of HBV in mouse hepatocytes likely occurs after viral entry but prior to viral transcription. We have excluded the role of mouse hepatocyte nuclear factors in the restriction of the HBV life cycle and showed that knockdown or inhibition of Sting, TBK1, IRF3 or IRF7, the components of the anti-viral signaling pathways, had no effect on HBV infection in mouse hepatocytes. Therefore, murine restriction factors that limit HBV infection need to be identified before a HBV-permissible mouse line can be created.
The Puzzle of Visual Development: Behavior and Neural Limits.
Kiorpes, Lynne
2016-11-09
The development of visual function takes place over many months or years in primate infants. Visual sensitivity is very poor near birth and improves over different times courses for different visual functions. The neural mechanisms that underlie these processes are not well understood despite many decades of research. The puzzle arises because research into the factors that limit visual function in infants has found surprisingly mature neural organization and adult-like receptive field properties in very young infants. The high degree of visual plasticity that has been documented during the sensitive period in young children and animals leaves the brain vulnerable to abnormal visual experience. Abnormal visual experience during the sensitive period can lead to amblyopia, a developmental disorder of vision affecting ∼3% of children. This review provides a historical perspective on research into visual development and the disorder amblyopia. The mismatch between the status of the primary visual cortex and visual behavior, both during visual development and in amblyopia, is discussed, and several potential resolutions are considered. It seems likely that extrastriate visual areas further along the visual pathways may set important limits on visual function and show greater vulnerability to abnormal visual experience. Analyses based on multiunit, population activity may provide useful representations of the information being fed forward from primary visual cortex to extrastriate processing areas and to the motor output. Copyright © 2016 the authors 0270-6474/16/3611384-10$15.00/0.
Skin test sensitivity to mouse predicts allergic symptoms to nasal challenge in urban adults.
Chong, Laura K; Ong, Mary Jane; Curtin-Brosnan, Jean; Matsui, Elizabeth C
2010-01-01
Epidemiologic studies have shown an association between mouse allergen exposure and asthma morbidity among urban populations, but confirmatory challenge studies in community populations have not been performed. This study was designed to examine the clinical relevance of mouse sensitization using a nasal challenge model. Forty-nine urban adults with asthma underwent skin-prick testing (SPT) and intradermal testing (IDT) with mouse epithelia extract. A positive SPT was defined as a net wheal size ≥3 mm and a positive IDT was defined as a net wheal size ≥6 mm using a 1:100 dilution of extract (1:10 w/v was obtained from Greer Laboratories (Lenoir, NC) as a single lot [Mus m 1 concentration = 2130 ng/mL]). Mouse-specific IgE (m-IgE) was measured by ImmunoCAP (Phadia, Uppsala, Sweden). Nasal challenge was performed with increasing concentrations of mouse epithelia extract and symptoms were assessed by visual analog scale. A positive challenge was defined as a 20-mm increase in the scale. The age range of the 49 participants was 18-50 years; 41% were men and 86% were black. Fourteen participants were SPT(+) to mouse, 15 participants were SPT(-) but (IDT(+)), and 20 participants were negative on both SPT(-) and IDT(-) (SPT(-)/IDT(-)). Sixty-four percent of the SPT(+) group, 40% of the IDT(+) group, and 20% of the SPT(-)/IDT(-) group had a positive nasal challenge. Sixty-seven percent (10/15) of those who were either SPT(+) or m-IgE(+) had a positive nasal challenge. SPT or the combination of SPT plus m-IgE performed best in diagnosing mouse allergy. The great majority of mouse-sensitized urban adults with asthma appear to have clinically relevant sensitization. Urban adults with asthma should be evaluated for mouse sensitization using SPT or SPT plus m-IgE testing.
Yamazaki, Tomoko; Li, Wenling; Yang, Ling; Li, Ping; Cao, Haiming; Motegi, Sei-Ichiro; Udey, Mark C; Bernhard, Elise; Nakamura, Takahisa; Mukouyama, Yoh-Suke
2018-01-11
Obesity and type 2 diabetes are frequently associated with peripheral neuropathy. Though there are multiple methods for diagnosis and analysis of morphological changes of peripheral nerves and blood vessels, three-dimensional high-resolution imaging is necessary to appreciate the pathogenesis with an anatomically recognizable branching morphogenesis and patterning. Here we established a novel technique for whole-mount imaging of adult mouse ear skin to visualize branching morphogenesis and patterning of peripheral nerves and blood vessels. Whole-mount immunostaining of adult mouse ear skin showed that peripheral sensory and sympathetic nerves align with large-diameter blood vessels. Diet-induced obesity (DIO) mice exhibit defective vascular smooth muscle cells (VSMCs) coverage, while there is no significant change in the amount of peripheral nerves. The leptin receptor-deficient db/db mice, a severe obese and type 2 diabetic mouse model, exhibit defective VSMC coverage and a large increase in the amount of smaller-diameter nerve bundles with myelin sheath and unmyelinated nerve fibers. Interestingly, an increase in the amount of myeloid immune cells was observed in the DIO but not db/db mouse skin. These data suggest that our whole-mount imaging method enables us to investigate the neuro-vascular and neuro-immune phenotypes in the animal models of obesity and diabetes.
Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J.; Foster, Russell G.; Peirson, Stuart N.; Nolan, Patrick M.
2015-01-01
The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. PMID:25179226
Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J; Foster, Russell G; Peirson, Stuart N; Nolan, Patrick M
2015-01-01
The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P
2018-05-18
An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the visceral area. Additionally, this pattern of explained variation differed spatially across the brain, with transcriptomic similarity playing a larger role in the cortex than subcortex, while connectivity explains structural covariance best in parts of the cortex, midbrain, and hindbrain. These results suggest that both gene expression and connectivity underlie structural volume covariance, albeit to different extents depending on brain region, and this relationship is modulated by distance. Copyright © 2018. Published by Elsevier Inc.
Property of hepatitis B virus replication in Tupaia belangeri hepatocytes.
Sanada, Takahiro; Tsukiyama-Kohara, Kyoko; Yamamoto, Naoki; Ezzikouri, Sayeh; Benjelloun, Soumaya; Murakami, Shuko; Tanaka, Yasuhito; Tateno, Chise; Kohara, Michinori
2016-01-08
The northern treeshrew (Tupaia belangeri) has been reported to be an effective candidate for animal infection model with hepatitis B virus (HBV). The objective of our study was to analyze the growth characteristics of HBV in tupaia hepatocytes and the host response to HBV infection. We established primary tupaia hepatocytes (3-6-week old tupaia) and infected them with HBV genotypes A, B and C, and all the genotypes proliferated as well as those in human primary hepatocytes (>10(5) copies/ml in culture supernatant). We next generated a chimeric mouse with tupaia liver by transplantation of tupaia primary hepatocytes to urokinase-type plasminogen activator cDNA (cDNA-uPA)/severe combined immunodeficient (SCID) mice and the replacement ratio with tupaia hepatocytes was found to be more than 95%. Infection of chimeric mice with HBV (genotypes B, C, and D) resulted in HBV-DNA level of 10(4)-10(6) copies/ml after 8 weeks of infection, which were almost similar to that in humanized chimeric mouse. In contrast, serum HBV level in adult tupaia (1-year-old tupaia) was quite low (<10(3) copies/ml). Understanding the differences in the response to HBV infection in primary tupaia hepatocytes, chimeric mouse, and adult tupaia will contribute to elucidating the mechanism of persistent HBV infection and viral eradication. Thus, T. belangeri was found to be efficient for studying the host response to HBV infection, thereby providing novel insight into the pathogenesis of HBV. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Co-regulation of primary mouse hepatocyte viability and function by oxygen and matrix.
Buck, Lorenna D; Inman, S Walker; Rusyn, Ivan; Griffith, Linda G
2014-05-01
Although oxygen and extracellular matrix cues both influence differentiation state and metabolic function of primary rat and human hepatocytes, relatively little is known about how these factors together regulate behaviors of primary mouse hepatocytes in culture. To determine the effects of pericellular oxygen tension on hepatocellular function, we employed two methods of altering oxygen concentration in the local cellular microenvironment of cells cultured in the presence or absence of an extracellular matrix (Matrigel) supplement. By systematically altering medium depth and gas phase oxygen tension, we created multiple oxygen regimes (hypoxic, normoxic, and hyperoxic) and measured the local oxygen concentrations in the pericellular environment using custom-designed oxygen microprobes. From these measurements of oxygen concentrations, we derived values of oxygen consumption rates under a spectrum of environmental contexts, thus providing the first reported estimates of these values for primary mouse hepatocytes. Oxygen tension and matrix microenvironment were found to synergistically regulate hepatocellular survival and function as assessed using quantitative image analysis for cells stained with vital dyes, and assessment of secretion of albumin. Hepatocellular viability was affected only at strongly hypoxic conditions. Surprisingly, albumin secretion rates were greatest at a moderately supra-physiological oxygen concentration, and this effect was mitigated at still greater supra-physiological concentrations. Matrigel enhanced the effects of oxygen on retention of function. This study underscores the importance of carefully controlling cell density, medium depth, and gas phase oxygen, as the effects of these parameters on local pericellular oxygen tension and subsequent hepatocellular function are profound. © 2014 Wiley Periodicals, Inc.
Boll, Björn; Bessa, Juliana; Folzer, Emilien; Ríos Quiroz, Anacelia; Schmidt, Roland; Bulau, Patrick; Finkler, Christof; Mahler, Hanns-Christian; Huwyler, Jörg; Iglesias, Antonio; Koulov, Atanas V
2017-04-03
A current concern with the use of therapeutic proteins is the likely presence of aggregates and submicrometer, subvisible, and visible particles. It has been proposed that aggregates and particles may lead to unwanted increases in the immune response with a possible impact on safety or efficacy. The aim of this study was thus to evaluate the ability of subvisible particles of a therapeutic antibody to break immune tolerance in an IgG1 transgenic mouse model and to understand the particle attributes that might play a role in this process. We investigated the immunogenic properties of subvisible particles (unfractionated, mixed populations, and well-defined particle size fractions) using a transgenic mouse model expressing a mini-repertoire of human IgG1 (hIgG1 tg). Immunization with proteinaceous subvisible particles generated by artificial stress conditions demonstrated that only subvisible particles bearing very extensive chemical modifications within the primary amino acid structure could break immune tolerance in the hIgG1 transgenic mouse model. Protein particles exhibiting low levels of chemical modification were not immunogenic in this model.
Kang, Jun Il; Groleau, Marianne; Dotigny, Florence; Giguère, Hugo; Vaucher, Elvire
2014-07-01
The cholinergic afferents from the basal forebrain to the primary visual cortex play a key role in visual attention and cortical plasticity. These afferent fibers modulate acute and long-term responses of visual neurons to specific stimuli. The present study evaluates whether this cholinergic modulation of visual neurons results in cortical activity and visual perception changes. Awake adult rats were exposed repeatedly for 2 weeks to an orientation-specific grating with or without coupling this visual stimulation to an electrical stimulation of the basal forebrain. The visual acuity, as measured using a visual water maze before and after the exposure to the orientation-specific grating, was increased in the group of trained rats with simultaneous basal forebrain/visual stimulation. The increase in visual acuity was not observed when visual training or basal forebrain stimulation was performed separately or when cholinergic fibers were selectively lesioned prior to the visual stimulation. The visual evoked potentials show a long-lasting increase in cortical reactivity of the primary visual cortex after coupled visual/cholinergic stimulation, as well as c-Fos immunoreactivity of both pyramidal and GABAergic interneuron. These findings demonstrate that when coupled with visual training, the cholinergic system improves visual performance for the trained orientation probably through enhancement of attentional processes and cortical plasticity in V1 related to the ratio of excitatory/inhibitory inputs. This study opens the possibility of establishing efficient rehabilitation strategies for facilitating visual capacity.
ERIC Educational Resources Information Center
Wessel, Dorothy
A 10-week classroom intervention program was implemented to facilitate the fine-motor development of eight first-grade children assessed as being deficient in motor skills. The program was divided according to five deficits to be remediated: visual motor, visual discrimination, visual sequencing, visual figure-ground, and visual memory. Each area…
Multi-color fluorescence imaging of sub-cellular dynamics of cancer cells in live mice
NASA Astrophysics Data System (ADS)
Hoffman, Robert M.
2006-02-01
We have genetically engineered dual-color fluorescent cells with one color in the nucleus and the other in the cytoplasm that enables real-time nuclear-cytoplasmic dynamics to be visualized in living cells in the cytoplasm in vivo as well as in vitro. To obtain the dual-color cells, red fluorescent protein (RFP) was expressed of the cancer cells, and green fluorescent protein (GFP) linked to histone H2B was expressed in the nucleus. Mitotic cells were visualized by whole-body imaging after injection in the mouse ear. Common carotid artery or heart injection of dual-color cells and a reversible skin flap enabled the external visualization of the dual-color cells in microvessels in the mouse where extreme elongation of the cell body as well as the nucleus occurred. The migration velocities of the dual-color cancer cells in the capillaries were measured by capturing individual images of the dual-color fluorescent cells over time. Human HCT-116-GFP-RFP colon cancer and mouse mammary tumor (MMT)-GFP-RFP cells were injected in the portal vein of nude mice. Extensive clasmocytosis (destruction of the cytoplasm) of the HCT-116-GFP-RFP cells occurred within 6 hours. The data suggest rapid death of HCT-116-GFP-RFP cells in the portal vein. In contrast, MMT-GFP-RFP cells injected into the portal vein mostly survived and formed colonies in the liver. However, when the host mice were pretreated with cyclophosphamide, the HCT-116-GFP-RFP cells also survived and formed colonies in the liver after portal vein injection. These results suggest that a cyclophosphamide-sensitive host cellular system attacked the HCT-116-GFP-RFP cells but could not effectively kill the MMT-GFP-RFP cells. With the ability to continuously image cancer cells at the subcellular level in the live animal, our understanding of the complex steps of metastasis will significantly increase. In addition, new drugs can be developed to target these newly visible steps of metastasis.
Hrvatin, Sinisa; Hochbaum, Daniel R; Nagy, M Aurel; Cicconet, Marcelo; Robertson, Keiramarie; Cheadle, Lucas; Zilionis, Rapolas; Ratner, Alex; Borges-Monroy, Rebeca; Klein, Allon M; Sabatini, Bernardo L; Greenberg, Michael E
2018-05-11
In the version of this article initially published, the x-axis labels in Fig. 3c read Vglut, Gad1/2, Aldh1l1 and Pecam1; they should have read Vglut + , Gad1/2 + , Aldh1l1 + and Pecam1 + . In Fig. 4, the range values were missing from the color scales; they are, from left to right, 4-15, 0-15, 4-15 and 0-15 in Fig. 4a and 4-15, 4-15 and 4-8 in Fig. 4h. In the third paragraph of the main text, the phrase reading "Previous approaches have analyzed a limited number of inhibitory cell types, thus masking the full diversity of excitatory populations" should have read "Previous approaches have analyzed a limited number of inhibitory cell types and masked the full diversity of excitatory populations." In the second paragraph of Results section "Diversity of experience-regulated ERGs," the phrase reading "thus suggesting considerable divergence within the gene expression program responding to early stimuli" should have read "thus suggesting considerable divergence within the early stimulus-responsive gene expression program." In the fourth paragraph of Results section "Excitatory neuronal LRGs," the sentence reading "The anatomical organization of these cell types into sublayers, coupled with divergent transcriptional responses to a sensory stimulus, suggested previously unappreciated functional subdivisions located within the laminae of the mouse visual cortex and resembling the cytoarchitecture in higher mammals" should have read "The anatomical organization of these cell types into sublayers, coupled with divergent transcriptional responses to a sensory stimulus, suggests previously unappreciated functional subdivisions located within the laminae of the mouse visual cortex, resembling the cytoarchitecture in higher mammals." In the last sentence of the Results, "sensory-responsive genes" should have read "sensory-stimulus-responsive genes." The errors have been corrected in the HTML and PDF versions of the article.
Testing of visual field with virtual reality goggles in manual and visual grasp modes.
Wroblewski, Dariusz; Francis, Brian A; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas
2014-01-01
Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4-6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode.
NASA Astrophysics Data System (ADS)
Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan
2011-06-01
Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.
Propagating Humanized BLT Mice for the Study of Human Immunology and Immunotherapy.
Smith, Drake J; Lin, Levina J; Moon, Heesung; Pham, Alexander T; Wang, Xi; Liu, Siyuan; Ji, Sunjong; Rezek, Valerie; Shimizu, Saki; Ruiz, Marlene; Lam, Jennifer; Janzen, Deanna M; Memarzadeh, Sanaz; Kohn, Donald B; Zack, Jerome A; Kitchen, Scott G; An, Dong Sung; Yang, Lili
2016-12-15
The humanized bone marrow-liver-thymus (BLT) mouse model harbors a nearly complete human immune system, therefore providing a powerful tool to study human immunology and immunotherapy. However, its application is greatly limited by the restricted supply of human CD34 + hematopoietic stem cells and fetal thymus tissues that are needed to generate these mice. The restriction is especially significant for the study of human immune systems with special genetic traits, such as certain human leukocyte antigen (HLA) haplotypes or monogene deficiencies. To circumvent this critical limitation, we have developed a method to quickly propagate established BLT mice. Through secondary transfer of bone marrow cells and human thymus implants from BLT mice into NSG (NOD/SCID/IL-2Rγ -/- ) recipient mice, we were able to expand one primary BLT mouse into a colony of 4-5 proBLT (propagated BLT) mice in 6-8 weeks. These proBLT mice reconstituted human immune cells, including T cells, at levels comparable to those of their primary BLT donor mouse. They also faithfully inherited the human immune cell genetic traits from their donor BLT mouse, such as the HLA-A2 haplotype that is of special interest for studying HLA-A2-restricted human T cell immunotherapies. Moreover, an EGFP reporter gene engineered into the human immune system was stably passed from BLT to proBLT mice, making proBLT mice suitable for studying human immune cell gene therapy. This method provides an opportunity to overcome a critical hurdle to utilizing the BLT humanized mouse model and enables its more widespread use as a valuable preclinical research tool.
Glucagon-related peptides in the mouse retina and the effects of deprivation of form vision.
Mathis, Ute; Schaeffel, Frank
2007-02-01
In chickens, retinal glucagon amacrine cells play an important role in emmetropization, since they express the transcription factor ZENK (also known as NGFI-A, zif268, tis8, cef5, Krox24) in correlation with the sign of imposed image defocus. Pharmacological studies have shown that glucagon can act as a stop signal for axial eye growth, making it a promising target for pharmacological intervention of myopia. Unfortunately, in mammalian retina, glucagon itself has not yet been detected by immunohistochemical staining. To learn more about its possible role in emmetropization in mammals, we studied the expression of different members of the glucagon hormone family in mouse retina, and whether their abundance is regulated by visual experience. Black wildtype C57BL/6 mice, raised under a 12/12 h light/dark cycle, were studied at postnatal ages between P29 and P40. Frosted hemispherical thin plastic shells (diffusers) were placed in front of the right eyes to impose visual conditions that are known to induce myopia. The left eyes remained uncovered and served as controls. Transversal retinal cryostat sections were single- or double-labeled by indirect immunofluorescence for early growth response protein 1 (Egr-1, the mammalian ortholog of ZENK), glucagon, glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), peptide histidine isoleucine (PHI), growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase-activating polypeptide (PACAP), secretin, and vasoactive intestinal polypeptide (VIP). In total, retinas of 45 mice were studied, 28 treated with diffusers, and 17 serving as controls. Glucagon itself was not detected in mouse retina. VIP, PHI, PACAP and GIP were localized. VIP was co-localized with PHI and Egr-1, which itself was strongly regulated by retinal illumination. Diffusers, applied for various durations (1, 2, 6, and 24 h) had no effect on the expression of VIP, PHI, PACAP, and GIP, at least at the protein level. Similarly, even if the analysis was confined to cells that also expressed Egr-1, no difference was found between VIP expression in eyes with diffusers and in eyes with normal vision. Several members of the glucagon super family are expressed in mouse retina (although not glucagon itself), but their expression pattern does not seem to be regulated by visual experience.
Verma, Neelam; Ram, Jagat; Sukhija, Jaspreet; Pandav, Surinder S.; Gupta, Amit
2011-01-01
Purpose: To study the outcome of in-the-bag implanted square-edge polymethyl methacrylate (PMMA) intraocular lenses (IOL) with and without primary posterior capsulotomy in pediatric traumatic cataract. Materials and Methods: The study was undertaken in a tertiary care center. Thirty eyes of 30 children ranging in age from 4 to 16 years with traumatic cataract which underwent cataract extraction with capsular bag implantation of IOL were prospectively evaluated. Group A included 15 eyes of 15 children where primary posterior capsulotomy (PPC) and anterior vitrectomy with capsular bag implantation of square-edge PMMA IOL (Aurolab SQ3602, Madurai, Tamil Nadu, India) was performed. Group B comprised 15 eyes of 15 children in which the posterior capsule was left intact. Postoperative visual acuity, visual axis opacification (VAO) and possible complications were analyzed. Results: Best corrected visual acuity (BCVA) of 20/40 or better was achieved in 12 of 15 eyes in both groups. Amblyopia was the cause of no improvement in visual acuity in the remaining eyes. Visual axis opacification was significantly high in Group B as compared to Group A (P=0.001). Postoperative fibrinous uveitis occurred in most of the eyes in both groups. Pupillary capture was observed in one eye in each group. Conclusion: Primary posterior capsulotomy and anterior vitrectomy with capsular bag implantation of square-edge PMMA significantly helps to maintain a clear visual axis in children with traumatic cataract. PMID:21836338
Picchioni, Dante; Schmidt, Kathleen C; McWhirter, Kelly K; Loutaev, Inna; Pavletic, Adriana J; Speer, Andrew M; Zametkin, Alan J; Miao, Ning; Bishu, Shrinivas; Turetsky, Kate M; Morrow, Anne S; Nadel, Jeffrey L; Evans, Brittney C; Vesselinovitch, Diana M; Sheeler, Carrie A; Balkin, Thomas J; Smith, Carolyn B
2018-05-15
If protein synthesis during sleep is required for sleep-dependent memory consolidation, we might expect rates of cerebral protein synthesis (rCPS) to increase during sleep in the local brain circuits that support performance on a particular task following training on that task. To measure circuit-specific brain protein synthesis during a daytime nap opportunity, we used the L-[1-(11)C]leucine positron emission tomography (PET) method with simultaneous polysomnography. We trained subjects on the visual texture discrimination task (TDT). This was followed by a nap opportunity during the PET scan, and we retested them later in the day after the scan. The TDT is considered retinotopically specific, so we hypothesized that higher rCPS in primary visual cortex would be observed in the trained hemisphere compared to the untrained hemisphere in subjects who were randomized to a sleep condition. Our results indicate that the changes in rCPS in primary visual cortex depended on whether subjects were in the wakefulness or sleep condition but were independent of the side of the visual field trained. That is, only in the subjects randomized to sleep, rCPS in the right primary visual cortex was higher than the left regardless of side trained. Other brain regions examined were not so affected. In the subjects who slept, performance on the TDT improved similarly regardless of the side trained. Results indicate a regionally selective and sleep-dependent effect that occurs with improved performance on the TDT.
Horling, L; Neuhuber, W L; Raab, M
2012-02-15
Highly sensitive immunohistochemical detection systems such as tyramide signal amplification (TSA) are widely used, since they allow using two primary antibodies raised in the same species. Most of them are based on the streptavidin-biotin-peroxidase system and include streptavidin-coupled secondary antibodies. Using TSA in cryostat-sectioned tissues of mouse esophagus, we were puzzled by negative controls with unexpected staining mostly in the ganglionic areas. This prompted us to search for the causing agent and to include also other parts of the mouse gastrointestinal tract for comparison. Streptavidin-coupled antibodies bound to endogenous binding sites yet to be characterized, which are present throughout the mouse intestines. Staining was mainly localized around neuronal cell bodies of enteric ganglia. Thus, caution is warranted when applying streptavidin-coupled antibodies in the mouse gastrointestinal tract. The use of endogenous biotin-blocking kits combined with a prolonged post-fixation time could significantly reduce unintentional staining. Copyright © 2011 Elsevier B.V. All rights reserved.
Visual impairment in FOXG1-mutated individuals and mice.
Boggio, E M; Pancrazi, L; Gennaro, M; Lo Rizzo, C; Mari, F; Meloni, I; Ariani, F; Panighini, A; Novelli, E; Biagioni, M; Strettoi, E; Hayek, J; Rufa, A; Pizzorusso, T; Renieri, A; Costa, M
2016-06-02
The Forkead Box G1 (FOXG1 in humans, Foxg1 in mice) gene encodes for a DNA-binding transcription factor, essential for the development of the telencephalon in mammalian forebrain. Mutations in FOXG1 have been reported to be involved in the onset of Rett Syndrome, for which sequence alterations of MECP2 and CDKL5 are known. While visual alterations are not classical hallmarks of Rett syndrome, an increasing body of evidence shows visual impairment in patients and in MeCP2 and CDKL5 animal models. Herein we focused on the functional role of FOXG1 in the visual system of animal models (Foxg1(+/Cre) mice) and of a cohort of subjects carrying FOXG1 mutations or deletions. Visual physiology of Foxg1(+/Cre) mice was assessed by visually evoked potentials, which revealed a significant reduction in response amplitude and visual acuity with respect to wild-type littermates. Morphological investigation showed abnormalities in the organization of excitatory/inhibitory circuits in the visual cortex. No alterations were observed in retinal structure. By examining a cohort of FOXG1-mutated individuals with a panel of neuro-ophthalmological assessments, we found that all of them exhibited visual alterations compatible with high-level visual dysfunctions. In conclusion our data show that Foxg1 haploinsufficiency results in an impairment of mouse and human visual cortical function. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
An eye movement analysis of the effect of interruption modality on primary task resumption.
Ratwani, Raj; Trafton, J Gregory
2010-06-01
We examined the effect of interruption modality (visual or auditory) on primary task (visual) resumption to determine which modality was the least disruptive. Theories examining interruption modality have focused on specific periods of the interruption timeline. Preemption theory has focused on the switch from the primary task to the interrupting task. Multiple resource theory has focused on interrupting tasks that are to be performed concurrently with the primary task. Our focus was on examining how interruption modality influences task resumption.We leverage the memory-for-goals theory, which suggests that maintaining an associative link between environmental cues and the suspended primary task goal is important for resumption. Three interruption modality conditions were examined: auditory interruption with the primary task visible, auditory interruption with a blank screen occluding the primary task, and a visual interruption occluding the primary task. Reaction time and eye movement data were collected. The auditory condition with the primary task visible was the least disruptive. Eye movement data suggest that participants in this condition were actively maintaining an associative link between relevant environmental cues on the primary task interface and the suspended primary task goal during the interruption. These data suggest that maintaining cue association is the important factor for reducing the disruptiveness of interruptions, not interruption modality. Interruption-prone computing environments should be designed to allow for the user to have access to relevant primary task cues during an interruption to minimize disruptiveness.
Photopic visual input is necessary for emmetropization in mice
Tkatchenko, Tatiana V.; Shen, Yimin; Braun, Rod D.; Bawa, Gurinder; Kumar, Pradeep; Avrutsky, Ivan; Tkatchenko, Andrei V.
2013-01-01
It was recently demonstrated that refractive errors in mice stabilize around emmetropic values during early postnatal development, and that they develop experimental myopia in response to both visual form deprivation and imposed optical defocus similar to other vertebrate species. Animal studies also suggest that photopic vision plays critical role in emmetropization in diurnal species; however, it is unknown whether refractive eye development is guided by photopic vision in the mouse, which is a nocturnal species. We used an infrared mouse photorefractor and a high-resolution MRI to clarify the role of photopic visual input in refractive eye development in the mouse. Refractive eye development and form-deprivation myopia in P21-P89 C57BL/6J mice were analyzed under 12:12 h light-dark cycle, constant light and constant darkness regimens. Animals in all experimental groups were myopic at P21 (-13.2 ± 1.6 D, light-dark cycle; -12.5 ± 0.9 D, constant light; -12.5 ± 2.0 D, constant dark). The mean refractive error in the light-dark-cycle-reared animals was -0.5 ± 1.3 D at P32 and, and did not change significantly until P40 (+0.3 ± 0.6 D, P40). Animals in this group became progressively hyperopic between P40 and P89 (+2.2 ± 0.6, P67; +3.7 ± 2.0, P89). The mean refractive error in the constant-light-reared mice was -1.0 ± 0.7 D at P32 and remained stable until P89 (+0.1 ± 0.6, P40; +0.3 ± 0.6, P67; 0.0 ± 0.4, P89). Dark-reared animals exhibited highly hyperopic refractive errors at P32 (+5.2 ± 1.8) and became progressively more hyperopic with age (+8.7 ± 1.9, P40; +11.2 ± 1.4, P67). MRI analysis revealed that emmetropization in the P40-P89 constant-light-reared animals was associated with larger eyes, a longer axial length and a larger vitreous chamber compared to the light-dark-cycle-reared mice. Constant-light-reared mice also developed 4 times higher degrees of form-deprivation myopia on average compared to light-dark-cycle-reared animals (-12.0 ± 1.4, constant light; -2.7 ± 0.7, light-dark cycle). Dark-rearing completely prevented the development of form-deprivation myopia (-0.3 ± 0.5). Thus, photopic vision plays important role in normal refractive eye development and ocular response to visual form deprivation in the mouse. PMID:23838522
Sun, Haiyan; Yan, Yijing; Xu, Chenshu; Wan, Hongxia; Liu, Dong
2016-03-23
The roots of Panax ginseng (ginseng) have been extensively used in traditional Chinese medicine. However, herb-drug interactions between ginseng and other co-administered drugs are not fully understood concerning the effect of ginseng on drug metabolism and clearance. The current study aimed to elucidate the effect of total ginsenosides, a typical ginseng extract, on the regulation of Cyp1a2, a key enzyme to regulate drug metabolism under the normal and inflammatory conditions in mice. Female C57BL/6J mice treated with vehicle and lipopolysaccharide (LPS) were intragastrically administered ginseng extract for 7 days before hepatic P450 expression was analyzed. Primary mouse hepatocytes were also employed to further explore the effects of total ginsenosides on Cyp1a2 expression. The results showed that total ginsenosides in P. ginseng extract exhibited a concentration-dependent suppression on Cyp1a2 mRNA and protein level in both mice and primary mouse hepatocytes. Notably, the inhibitory effects of total ginsenosides on Cyp1a2 mRNA and protein expression were further enhanced following LPS treatment. Therefore, future research is warranted to investigate the role of ginsenosides in the regulation of hepatic CYP450s. Moreover, consumption of ginseng as food or supplement should be monitored for patients on combinational therapy, especially those with inflammatory diseases.