Science.gov

Sample records for mouse skin tumor

  1. Jute batching oil: a tumor promoter on mouse skin

    SciTech Connect

    Mehrotra, N.K.; Kumar, S.; Agarwal, R.; Antony, M.

    1987-02-01

    A mineral oil essentially used in the jute industry for the batching of jute fibers, and earlier reported to be nontumorigenic on mouse skin, has been found to be a tumor promoter following a two-stage mouse-skin bioassay protocol. The types of tumors developed after initiation with a single dose of urethane or 3-methylcholanthrene (subcutaneously), followed by repeated skin painting with jute batching oil (JBO) included benign papillomas, keratoacanthomas, and fibrosarcomas. Chemical analysis of this oil indicated the total aromatic content was 11.71% and the amount of fluoranthene, pyrene, chrysene, and triphenylene was in the range of 192.54 to 227.79 mg/kg in the test sample. The underlying biochemical mechanism for the tumor-promoting effect of JBO seemed to operate through a different pathway rather than involving the induction of cytochrome-dependent monoxygenase and N-demethylase activities in the tissue.

  2. Notch1 functions as a tumor suppressor in mouse skin.

    PubMed

    Nicolas, Michael; Wolfer, Anita; Raj, Kenneth; Kummer, J Alain; Mill, Pleasantine; van Noort, Mascha; Hui, Chi-chung; Clevers, Hans; Dotto, G Paolo; Radtke, Freddy

    2003-03-01

    Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.

  3. Quantifying levels of p53 mutation in mouse skin tumors.

    PubMed

    Verkler, Tracie L; Couch, Letha H; Howard, Paul C; Parsons, Barbara L

    2005-06-01

    Allele-specific competitive blocker PCR (ACB-PCR) amplification and quantification was developed for mouse p53 codon 270 CGT-->TGT base substitution and codon 244/245 AAC/CGC-->AAT/TGC tandem mutation. PCR products corresponding to p53 mutant and wild-type DNA sequences were generated. These DNAs were mixed in known proportions to construct samples with defined mutant fractions and the allele-specific detection of each mutation was systematically optimized. Each assay was used to analyze eight simulated solar light (SSL)-induced tumors. By analyzing mutant fraction (MF) standards in parallel with PCR products generated from tumor samples, p53 mutants could be quantified as subpopulations within the tumors. All eight tumors contained detectable levels of p53 codon 270 CGT-->TGT mutation. Three tumors had p53 MFs between 10(-4) and 10(-3). Five tumors had p53 MFs between 10(-3) and 10(-2). None of the eight mouse skin tumors had measurable levels of p53 codon 244/245 tandem mutation. Frequent detection of p53 codon 270 CGT-->TGT mutation provides additional evidence that a pyrimidine dinucleotide overlapping a methylated CpG site (Pyr(me)CG) is a susceptible target for SSL-induced mutagenesis. The absence of p53 codon 244/245 mutation in tumors may be explained by its mutant p53 phenotype and/or indicate that this site is not methylated. These initial results indicate that p53 codon 270 CGT-->TGT mutation may be a sensitive biomarker for SSL- or UV-induced mutagenesis. This mutational endpoint may be useful for evaluating the co-carcinogenicity of compounds administered in combination with UV or SSL.

  4. Genetic variants of Tgfb1 act as context-dependent modifiers of mouse skin tumor susceptibility.

    PubMed

    Mao, Jian-Hua; Saunier, Elise F; de Koning, John P; McKinnon, Margaret M; Higgins, Mamie Nakijama; Nicklas, Kathy; Yang, Hai-Tao; Balmain, Allan; Akhurst, Rosemary J

    2006-05-23

    The human TGFB1 gene is polymorphic, and genetic variants are associated with altered cancer risk. However, human genetic association studies have had variable outcomes because TGFbeta1 action is context-dependent. We used the murine skin model of chemical carcinogenesis in genetic linkage analysis of three independent Mus musculus NIH/Ola x (Mus spretus x M. musculus NIH/Ola)F1 backcrosses, to identify a skin tumor susceptibility locus, Skts14, on proximal chromosome 7. Tgfb1 maps at the peak of linkage. The mouse Tgfb1 gene is polymorphic, resulting in cis-regulated differential allelic mRNA expression between M. spretus and M. musculus in F1 mouse skin. This phenomenon is reflected in differential phospho-SMAD2 levels, downstream of TGFbeta signaling, between these two mouse species. In normal F1 mouse skin, the Tgfb1SPR allele is expressed at higher levels than the Tgfb1NIH allele, and this differential is accentuated by phorbol 12-myristate 13-acetate treatment. In benign F1 papillomas, this imbalance is reversed, possibly by selection against expression of a hyperactive Tgfb1SPR allele in TGFbeta growth-responsive tumors. We demonstrate that skin tumor susceptibility is altered by Tgfb1 gene dosage, but that manifestation of Tgfb1-linked skin tumor susceptibility in M. musculus NIH/Ola x (M. spretus x M. musculus NIH/Ola)F1 backcross mice depends on interactions with another unlinked tumor modifying locus, Skts15, that overlaps Tgfbm3 on chromosome 12. These findings illustrate the power of complex genetic interactions in determining disease outcome and have major implications to the assessment of disease risk in individuals harboring variant TGFB1 alleles.

  5. Connexin expression in epidermal cell lines from SENCAR mouse skin tumors.

    PubMed

    Budunova, I V; Carbajal, S; Viaje, A; Slaga, T J

    1996-03-01

    Alteration of gap-junctional intercellular communication (GJIC) has long been proposed to be involved in carcinogenesis. Previously, we reported that the level of gap junctional intercellular communication in mouse skin carcinoma cell lines is significantly lower than in papilloma cell lines and normal mouse keratinocytes Klann et al., Cancer Res 49:699-705, 1989). Here, we present data on expression of the gap-junctional protein connexins (Cx) 26, Cx31.1, and Cx43 in a comprehensive panel of keratinocyte cell lines representing different stages of mouse skin carcinogenesis and the effect of different conditions of propagation on Cx phenotype. Northern and western blot analyses and immunostaining showed that all cell lines studied in vitro expressed Cx43 but most did not express Cx31.1 or Cx26. The abundance of Cx43 expression on plasma membranes correlated well with the level of GJIC. In vivo expression of Cx43 and Cx26 was strongly increased. Whereas none of tumorigenic cell lines expressed Cx26 gap junctions in culture, those growing as tumors in nude mice began to express Cx26 protein. The comparison of Cx expression on the keratinocyte membranes in three different groups of tumors (papillomas and squamous cell and spindle cell carcinomas) clearly revealed that the abundance of Cx43 and Cx26 expression directly correlated with the level of tumor differentiation. All studied tumors were Cx31.1 negative. These results suggest that both Cx expression and gap-junction permeability are gradually reduced during the tumor progression stage of mouse skin carcinogenesis.

  6. Induction of megakaryocytic colony-stimulating activity in mouse skin by inflammatory agents and tumor promoters

    SciTech Connect

    Clark, D.A.; Dessypris, E.N.; Koury, M.J.

    1987-03-01

    The production of megakaryocytic colony-stimulating activity (MEG-CSA) was assayed in acetic acid extracts of skin from mice topically treated with inflammatory and tumor-promoting agents. A rapid induction of MEG-CSA was found in skin treated both with phorbol 12-myristate 13-acetate (PMA), a strong tumor promoter, and with mezerein, a weak tumor promoter, but no induction was found in untreated skin. The time course of induction of MEG-CSA following treatment of skin with PMA or mezerein was very similar to that previously demonstrated for the induction of granulocyte-macrophage colony-stimulating activity in mouse skin by these agents. The induced MEG-CSA was found in both the epidermis and the dermis. Pretreatment of the skin with US -methasone abrogated the MEG-CSA induction. The cell number response curve suggests that the MEG-CSA acts directly on the progenitor cells of the megakaryocyte colonies. That topical administration of diterpene esters results in the rapid, local induction of MEG-CSA which can be blocked by US -methasone pretreatment suggests a mechanism for the thrombocytosis associated with some inflammatory states. The indirect action in which diterpene esters induce in certain cells the production or release of growth regulatory factors for other cell types may also aid in understanding their carcinogenic properties.

  7. Topical application of ochratoxin A causes DNA damage and tumor initiation in mouse skin.

    PubMed

    Kumar, Rahul; Ansari, Kausar M; Chaudhari, Bhushan P; Dhawan, Alok; Dwivedi, Premendra D; Jain, Swatantra K; Das, Mukul

    2012-01-01

    Skin cancer is one of the most common forms of cancer and 2-3 million new cases are being diagnosed globally each year. Along with UV rays, environmental pollutants/chemicals including mycotoxins, contaminants of various foods and feed stuffs, could be one of the aetiological factors of skin cancer. In the present study, we evaluated the DNA damaging potential and dermal carcinogenicity of a mycotoxin, ochratoxin A (OTA), with the rationale that dermal exposure to OTA in workers may occur during their involvement in pre and post harvest stages of agriculture. A single topical application of OTA (20-80 µg/mouse) resulted in significant DNA damage along with elevated γ-H2AX level in skin. Alteration in oxidative stress markers such as lipid peroxidation, protein carbonyl, glutathione content and antioxidant enzymes was observed in a dose (20-80 µg/mouse) and time-dependent (12-72 h) manner. The oxidative stress was further emphasized by the suppression of Nrf2 translocation to nucleus following a single topical application of OTA (80 µg/mouse) after 24 h. OTA (80 µg/mouse) application for 12-72 h caused significant enhancement in- (a) reactive oxygen species generation, (b) activation of ERK1/2, p38 and JNK MAPKs, (c) cell cycle arrest at G0/G1 phase (37-67%), (d) induction of apoptosis (2.0-11.0 fold), (e) expression of p53, p21/waf1, (f) Bax/Bcl-2 ratio, (g) cytochrome c level, (h) activities of caspase 9 (1.2-1.8 fold) and 3 (1.7-2.2 fold) as well as poly ADP ribose polymerase cleavage. In a two-stage mouse skin tumorigenesis protocol, it was observed that a single topical application of OTA (80 µg/mouse) followed by twice weekly application of 12-O-tetradecanoylphorbol-13-acetate for 24 week leads to tumor formation. These results suggest that OTA has skin tumor initiating property which may be related to oxidative stress, MAPKs signaling and DNA damage.

  8. Potent suppressive activity of chlorophyll a and b from green tea (Camellia sinensis) against tumor promotion in mouse skin.

    PubMed

    Higashi-Okai, K; Okai, Y

    1998-09-01

    Potent antigenotoxic and anti-tumor promoting activities of chlorophyll a from green tea (camellia sinensis) have been shown using in vitro cell culture experiments (Okai Y. et al. (1996) Mutation Res., 370, 11-17). In the present study, the authors analyzed in vivo effects of chlorophyll a and b from green tea on tumor promotion in mouse skin in the following ways. 1. When chlorophyll a and b from green tea were applied before each treatment by a tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on BALB/c mouse skin initiated by 7, 12-dimethylbenz [a] an-thracene (DMBA), they caused significant suppression in a dose-dependent manner against BALB/c mouse skin tumorigenesis. 2. Chlorophyll a and b showed significant suppressive effects against TPA-induced inflammatory reaction such as edema formation in BALB/c mouse ear skin in a dose-dependent fashion. These results suggest that chlorophyll a and b possess potent suppressive activities against tumor promotion in mouse skin.

  9. Epidermal proliferation of nude mouse skin, pig skin, and pig skin grafts. Failure of nude mouse skin to respond to the tumor promoter 12- O-tetradecanoyl phorbol 13-acetate

    PubMed Central

    1980-01-01

    Human skin transplanted to nude mice offers a possible experimental system for the study of normal epidermal proliferation and differentiation, and for their pathological counterparts. Crucial to the development of such a system is the demonstration that such grafts retain the responsive features of donor skin. To document that donor proliferative characteristics are maintained in the grafts, a comparative analysis of agents that induce proliferation was made on skin of mice homozygous and heterozygous for nude, on pig skin, and on pig skin transplanted onto nude mice. A wave of epidermal proliferation could be induced in pig skin and pig skin grafted onto nude mice, but not in nude mouse skin after the topical application of 10 ng 12-O- tetradecanoyl phorbol 13-acetate (TPA). A 10-fold greater concentration of TPA or 5% croton oil induced proliferation in all species of epidermis studied. Mice, heterozygous for nude, showed a normal response to 10 ng TPA, suggesting that the ability to respond to TPA may be related, in part, to a recessive genetic trait. Nude mouse skin transplanted to a heterozygous littermate capable of responding to 10 ng TPA does not respond. These observations argue that: the graft retains its donor proliferative characteristics when transplanted to the nude, and the inability of the nude mouse to respond to lower doses of TPA may be related to absorption, the nude gene(s), or an inherent threshold to response. The lack of response to the promoter TPA provides a plausible explanation for the decreased incidence of tumors arising in nude mice during two-stage carcinogenesis experiments. PMID:7000965

  10. Continuous imaging of the blood vessels in tumor mouse dorsal skin window chamber model by using SD-OCT

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Yang, Shaozhuang; Yu, Bin; Wang, Qi; Lin, Danying; Gao, Jian; Zhang, Peiqi; Ma, Yiqun; Qu, Junle; Niu, Hanben

    2016-03-01

    Optical Coherence Tomography (OCT) has been widely applied into microstructure imaging of tissues or blood vessels with a series of advantages, including non-destructiveness, real-time imaging, high resolution and high sensitivity. In this study, a Spectral Domain OCT (SD-OCT) system with higher sensitivity and signal-to-noise ratio (SNR) was built up, which was used to observe the blood vessel distribution and blood flow in the dorsal skin window chamber of the nude mouse tumor model. In order to obtain comparable data, the distribution images of blood vessels were collected from the same mouse before and after tumor injection. In conclusion, in vivo blood vessel distribution images of the tumor mouse model have been continuously obtained during around two weeks.

  11. Disruption of protein kinase Ceta results in impairment of wound healing and enhancement of tumor formation in mouse skin carcinogenesis.

    PubMed

    Chida, Kazuhiro; Hara, Takeshi; Hirai, Takaaki; Konishi, Chieko; Nakamura, Kenji; Nakao, Kazuki; Aiba, Atsu; Katsuki, Motoya; Kuroki, Toshio

    2003-05-15

    We have generated a mouse strain lacking protein kinase C (PKC) eta to evaluate its significance in epithelial organization and tumor formation. The PKCeta-deficient mice exhibited increased susceptibility to tumor formation in two-stage skin carcinogenesis by single application of 7,12-dimethylbenz(a)anthracene (DMBA) for tumor initiation and repeated applications of 12-O-tetradecanoylphorbol-13-acetate (TPA) for tumor promotion. The tumor formation was not enhanced by DMBA or TPA treatment alone, suggesting that PKCeta suppresses tumor promotion. Epidermal hyperplasia induced by topical TPA treatment was prolonged in the mutant mice. The enhanced tumor formation may be closely associated with the prolonged hyperplasia induced by topical TPA treatment. In the mutant mice, after inflicting injury by punch biopsy, wound healing on the dorsal skin, particularly reepithelialization, was significantly delayed and impaired in structure. Impairment of epithelial regeneration in wound healing indicates a possibility that PKCeta plays a role in maintenance of epithelial architecture. Homeostasis in epithelial tissues mediated by PKCeta is important for tumor formation in vivo. We propose that PKCeta is involved in tumor formation modulated by regulation of proliferation and remodeling of epithelial cells in vivo.

  12. Cholera toxin, a potent inducer of epidermal hyperplasia but with no tumor promoting activity in mouse skin carcinogenesis

    SciTech Connect

    Kuroki, T.; Chida, K.; Munakata, K.; Murakami, Y.

    1986-05-29

    Intracutaneous injection of cholera toxin into mice induced epidermal hyperplasia to a greater extent than 12-O-tetra-decanoylphorbol-13-acetate. It also induced adenylate cyclase and through weakly, ornithine decarboxylase of the epidermis. Cholera toxin, however, showed no tumor promoting activity in mouse skin carcinogenesis. In the single stage promotion, cholera toxin (50 ng) was injected once a week for 10 weeks into the skin of SENCAR mice initiated with 25 ..mu..g 7,12-dimethyl-benz(a)anthracene, but no tumors developed. In the two-stage promotion test, cholera toxin (10-100 ng) was injected for one or two weeks into the initiated skin and then mezerein (4 ..mu..g) was applied twice a week for 18 weeks, but the toxin did not increase incidence or numbers of papillomas.

  13. T cell-mediated antitumor immune response eliminates skin tumors induced by mouse papillomavirus, MmuPV1.

    PubMed

    Joh, Joongho; Chilton, Paula M; Wilcher, Sarah A; Zahin, Maryam; Park, Jino; Proctor, Mary L; Ghim, Shin-Je; Jenson, Alfred B

    2017-09-19

    Previous studies of naturally occurring mouse papillomavirus (PV) MmuPV1-induced tumors in B6.Cg-Foxn1(nu/nu) mice suggest that T cell deficiency is necessary and sufficient for the development of such tumors. To confirm this, MmuPV1-induced tumors were transplanted from T cell-deficient mice into immunocompetent congenic mice. Consequently, the tumors regressed and eventually disappeared. The elimination of MmuPV1-infected skin/tumors in immunocompetent mice was consistent with the induction of antitumor T cell immunity. This was confirmed by adoptive cell experiments using hyperimmune splenocytes collected from graft-recipient mice. In the present study, such splenocytes were injected into T cell-deficient mice infected with MmuPV1, and they eliminated both early-stage and fully formed tumors. We clearly show that anti-tumor T cell immunity activated during tumor regression in immunocompetent mice effectively eliminates tumors developing in T cell-deficient congenic mice. The results corroborate the notion that PV-induced tumors are strongly linked to the immune status of the host, and that PV antigens are major anti-tumor antigens. Successful anti-PV T cell responses should, therefore, lead to effective anti-tumor immune therapy in human PV-infected patients. Copyright © 2017. Published by Elsevier Inc.

  14. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis.

    PubMed

    Dahlhoff, Maik; Schäfer, Matthias; Muzumdar, Sukalp; Rose, Christian; Schneider, Marlon R

    2015-11-01

    The epidermal growth factor receptor (EGFR) plays a key role in skin inflammation, wound healing, and carcinogenesis. Less is known about the functions of the structurally related receptor ERBB3 (HER3) in the skin. We assessed the requirement of ERBB3 for skin homeostasis, wound healing, and tumorigenesis by crossing mice carrying a conditional Erbb3 allele with animals expressing cre under the control of the keratin 5 promoter. Erbb3(del) mice, lacking ERBB3 specifically in keratinocytes, showed no obvious abnormalities. The EGFR was upregulated in Erbb3(del) skin, possibly compensating the loss of ERBB3. Nonetheless, healing of full-thickness excisional wounds was negatively affected by ERBB3 deficiency. To analyze the function of ERBB3 during tumorigenesis, we employed the established DMBA/TPA multi-stage chemical carcinogenesis protocol. Erbb3(del) mice remained free of papillomas for a longer time and had significantly reduced tumor burden compared to control littermates. Tumor cell proliferation was considerably reduced in Erbb3(del) mice, and loss of ERBB3 also impaired keratinocyte proliferation after a single application of TPA. In human skin tumor samples, upregulated ERBB3 expression was observed in squamous cell carcinoma, condyloma, and malignant melanoma. Thus, we conclude that ERBB3, while dispensable for the development and the homeostasis of the epidermis and its appendages, is required for proper wound healing and for the progression of skin tumors during multi-stage chemical carcinogenesis in mice. ERBB3 may also be important for human skin cancer progression. The latter effects most probably reflect a key role for ERBB3 in increasing cell proliferation after stimuli as wounding or carcinogenesis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. CDK2 activation in mouse epidermis induces keratinocyte proliferation but does not affect skin tumor development.

    PubMed

    Macias, Everardo; Miliani de Marval, Paula L; De Siervi, Adriana; Conti, Claudio J; Senderowicz, Adrian M; Rodriguez-Puebla, Marcelo L

    2008-08-01

    It has been widely assumed that elevated CDK2 kinase activity plays a contributory role in tumorigenesis. We have previously shown that mice overexpressing CDK4 under control of the keratin 5 promoter (K5CDK4 mice) develop epidermal hyperplasia and increased susceptibility to squamous cell carcinomas. In this model, CDK4 overexpression results in increased CDK2 activity associated with the noncatalytic function of CDK4, sequestration of p21(Cip1) and p27(Kip1). Furthermore, we have shown that ablation of Cdk2 reduces Ras-Cdk4 tumorigenesis, suggesting that increased CDK2 activity plays an important role in Ras-mediated tumorigenesis. To investigate this hypothesis, we generated two transgenic mouse models of elevated CDK2 kinase activity, K5Cdk2 and K5Cdk4(D158N) mice. The D158N mutation blocks CDK4 kinase activity without interfering with its binding capability. CDK2 activation via overexpression of CDK4(D158N), but not of CDK2, resulted in epidermal hyperplasia. We observed elevated levels of p21(Cip1) in K5Cdk2, but not in K5Cdk4(D158N), epidermis, suggesting that CDK2 overexpression elicits a p21(Cip1) response to maintain keratinocyte homeostasis. Surprisingly, we found that neither CDK2 overexpression nor the indirect activation of CDK2 enhanced skin tumor development. Thus, although the indirect activation of CDK2 is sufficient to induce keratinocyte hyperproliferation, activation of CDK2 alone does not induce malignant progression in Ras-mediated tumorigenesis.

  16. Lgr6+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors

    PubMed Central

    van de Glind, Gerline C.; Rebel, Heggert G.; Out-Luiting, Jacoba J.; Zoutman, Wim; Tensen, Cornelis P.; de Gruijl, Frank R.

    2016-01-01

    Lgr6+ cells have been identified as a novel class of proliferating (Ki67+) stem cells in mouse epidermis. We investigated their response to UV exposure in Lgr6-EGFP-Ires-CreERT2/R26R-LacZ haired and hairless mice and whether they become initiating cells of UV- or chemically induced skin tumors. UV overexposure erased Lgr6+ cells (EGFP+) from the interfollicular epidermis (IFE), but - as after wounding - they apparently repopulated the IFE from the hair follicles. Under sub-sunburn chronic UV exposure, Lgr6+ cells and their progeny (LacZ+ after pulse of tamoxifen) diminished strongly in the IFE. Although the inter-tumoral IFE clearly showed Lgr6 progeny, none of the UV- or chemically induced tumors (n = 22 and 41, respectively) appeared to be clonal expansions of Lgr6+ stem cells; i.e. no Lgr6+ cells or progeny in the proliferating tumor bulk. In checking for promoter methylation we found it to occur stochastically for the EGFP-Cre cassette. Lgr6 mRNA measured by qPCR was found to be diminished in skin tumors (also in UV tumors from wt type mice). The ratio of Lgr6/Ki67 was significantly reduced, pointing at a loss of Lgr6+ cells from the proliferative pool. Our data show that Lgr6+ cells are not major tumor-initiating cells in skin carcinogenesis. PMID:27880932

  17. Resveratrol and Black Tea Polyphenol Combination Synergistically Suppress Mouse Skin Tumors Growth by Inhibition of Activated MAPKs and p53

    PubMed Central

    George, Jasmine; Singh, Madhulika; Srivastava, Amit Kumar; Bhui, Kulpreet; Roy, Preeti; Chaturvedi, Pranav Kumar; Shukla, Yogeshwer

    2011-01-01

    Cancer chemoprevention by natural dietary agents has received considerable importance because of their cost-effectiveness and wide safety margin. However, single agent intervention has failed to bring the expected outcome in clinical trials; therefore, combinations of chemopreventive agents are gaining increasing popularity. The present study aims to evaluate the combinatorial chemopreventive effects of resveratrol and black tea polyphenol (BTP) in suppressing two-stage mouse skin carcinogenesis induced by DMBA and TPA. Resveratrol/BTP alone treatment decreased tumor incidence by ∼67% and ∼75%, while combination of both at low doses synergistically decreased tumor incidence even more significantly by ∼89% (p<0.01). This combination also significantly regressed tumor volume and number (p<0.01). Mechanistic studies revealed that this combinatorial inhibition was associated with decreased expression of phosphorylated mitogen-activated protein kinase family proteins: extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase 1/2, p38 and increased in total p53 and phospho p53 (Ser 15) in skin tissue/tumor. Treatment with combinations of resveratrol and BTP also decreased expression of proliferating cell nuclear antigen in mouse skin tissues/tumors than their solitary treatments as determined by immunohistochemistry. In addition, histological and cell death analysis also confirmed that resveratrol and BTP treatment together inhibits cellular proliferation and markedly induces apoptosis. Taken together, our results for the first time lucidly illustrate that resveratrol and BTP in combination impart better suppressive activity than either of these agents alone and accentuate that development of novel combination therapies/chemoprevention using dietary agents will be more beneficial against cancer. This promising combination should be examined in therapeutic trials of skin and possibly other cancers. PMID:21887248

  18. Inhibitory effect of pheophorbide a, a chlorophyll-related compound, on skin tumor promotion in ICR mouse.

    PubMed

    Nakamura, Y; Murakami, A; Koshimizu, K; Ohigashi, H

    1996-11-29

    Anti-tumor-promoting activity of pheophorbide a (PPBa) a chlorophyll-related compound, was examined in a two-stage carcinogenesis experiment in ICR mouse skin by 7,12-dimethylbenz[a] anthracene (DMBA, 0.19 mumol) and 12-O-tetradecanoylphorbol-13-acetate (TPA, 1.6 nmol). Topical application of PPBa (160 nmol) markedly reduced the average number of tumors per mouse and the ratio of tumor-bearing mice (inhibitory ratio: IR = 56%, P < 0.01 and 31%, P < 0.005, respectively). PPBa exhibited potent anti-inflammatory activity in ICR mouse ears and moderate inhibitory activity toward TPA-induced superoxide (O2-) generation in differentiated HL-60 cells. While CuPPBa, a synthetic copper complex of PPBa, exhibited higher anti-inflammatory activity than that of indomethacin, it showed little antioxidative effect against formation of lipid hydroperoxides (LOOHs) and malondialdehyde (MDA), suggesting that the antioxidative effect of PPBa might not be important for anti-inflammatory activity. These results imply that the active mechanism of PPBa for anti-tumor promotion might be partly involved in inhibition of TPA-induced inflammatory responses by suppressing leukocyte activation.

  19. Inhibitory effects of Momordica grosvenori Swingle extracts on 12-O-tetradecanoylphorbol 13-acetate-induced skin inflammation and tumor promotion in mouse skin.

    PubMed

    Weerawatanakorn, Monthana; Yang, Ji-Rui; Tsai, Mei-Ling; Lai, Ching-Shu; Ho, Chi-Tang; Pan, Min-Hsiung

    2014-02-01

    Our previous data showed that the Momordica grosvenori Swingle extract (MSE) exhibited the anti-inflammatory effect through markedly suppressed LPS-induced up-regulation of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and ODC (ornithine decarboxylase) gene expression in RAW 264.7 cells. Regarding the link between inflammation and carcinogenesis, we further investigated the bio-molecular mechanisms of both anti-inflammatory and anti-tumor activities in vivo using a TPA (12-O-tetradecanoyl phorbol 13-acetate)-stimulated mouse skin model. Pretreatment with MSE in mouse skin has led to the reduction of TPA-induced nuclear translocation of the nuclear factor-κB (NFκB) subunits as well as phosphorylation of IκBα and p65 subsequent reduction of IκBα degradation. In addition, the MSE inhibitory effect on upstream of NFκB was found to involve the transcriptional effects of MAPK signaling as indicated by strong suppression on TPA-induced activation of extracellular signal regulate kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK)1/2, phosphatidylinositol 3-kinase (PI3K) and Akt. Moreover, MSE significantly inhibited 7,12-dimethylbenz[a]anthracene (DMBA)-TPA-induced skin tumor formation in mice measured by the tumor multiplicity of papillomas at 20 weeks. The results suggested that MSE contained promising functional ingredients capable of preventing inflammation-associated tumorigenesis.

  20. Nonrandom duplication of the chromosome bearing a mutated Ha-ras-1 allele in mouse skin tumors.

    PubMed Central

    Bianchi, A B; Aldaz, C M; Conti, C J

    1990-01-01

    We analyzed the normal/mutated allelic ratio of the Ha-ras-1 gene in mouse skin squamous cell carcinomas induced by initiation with dimethylbenz[a]anthracene and promotion with phorbol 12-myristate 13-acetate. DNA for these studies was obtained from short-term tumor cultures (24-72 hr) to eliminate the contribution of stromal and inflammatory cells to the sample. The allelotypic analysis was performed in 25 squamous cell carcinomas by quantitative radio-analysis of the Xba I restriction fragment length polymorphism as detected by BS9, a v-Ha-ras probe, and rehybridization of the Southern blots with probes for chromosomes 7 and 8. Approximately 85% of the tumors presented overrepresentation of the mutated allele in the form of 1 normal/2 mutated (12 tumors), 0 normal/3 mutated (4 tumors), 0 normal/2 mutated (3 tumors), and gene amplification (3 tumors). No tumor was found with a 2 normal/1 mutated allelic ratio. These results support our previous cytogenetic studies, indicating that trisomy of chromosome 7 is present in the majority of these tumors and show that nonrandom duplication of the chromosome carrying the mutated Ha-ras-1 allele appears to be a major mechanism by which the mutated gene is overrepresented. Images PMID:1697691

  1. Deoxynivalenol induced mouse skin tumor initiation: Elucidation of molecular mechanisms in human HaCaT keratinocytes.

    PubMed

    Mishra, Sakshi; Tewari, Prachi; Chaudhari, Bhushan P; Dwivedi, Premendra D; Pandey, Haushila P; Das, Mukul

    2016-11-01

    Among food contaminants, mycotoxins are toxic to both human and animal health. Our prior studies suggest that Deoxynivalenol (DON), a mycotoxin, behaves as a tumor promoter by inducing edema, hyperplasia, ODC activity and activation of MAPK's in mouse skin. In this study, topical application of DON, 336 and 672 nmol significantly enhanced ROS levels, DNA damage and apoptosis with concomitant downregulation of Ki-67, cyclin D, cyclin E, cyclin A and cyclin-dependent kinases (CDK4 and CDK2) thereby resulting in tumor initiation in mouse skin. Further, the elucidation of molecular mechanisms of tumor initiation by DON (0.42-3.37 nmol/ml) in HaCaT keratinocytes, revealed (i) enhanced ROS generation with cell cycle phase arrest in G0/G1 phase, (ii) increase in levels of 8-OxoG (6-24 hr) and γH2AX protein, (iii) significant enhancement in oxidative stress marker enzymes LPO, GSH, GR with concomitant decrease in antioxidant enzymes catalase, GPx, GST, SOD and mitochondrial membrane potential after DON (1.68 nmol) treatment, (iv) suppression of Nrf2 translocation to nucleus, enhanced phosphorylation with subsequent activation ERK1/2, p38 and JNK MAPK's following DON (1.68 nmol) treatment, (v) overexpression of c-jun, c-fos proteins, upregulation of Bax along with downregulation of Bcl-2 proteins, (vi) increase in cytochrome-c, caspase-9, caspase-3 and poly ADP ribose polymerase levels leads to apoptosis. Pretreatment of superoxide dismutase, mannitol and ethanol to HaCaT cells resulted in significant reduction in ROS levels and apoptosis indicating the role of superoxide and hydroxyl radicals in DON induced apoptosis as an early event and skin tumor initiation as a late event.

  2. Study of protein modifications induced by phorbol ester tumor promoters in mouse skin

    SciTech Connect

    Nelson, K.G.

    1981-08-01

    The purpose of this study was to determine if the phorbol ester tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) induced any specific changes in mouse epidermal proteins using the high resolution technique of two-dimensional electrophoresis. To accomplish this goal of determining the specificity and possibly the stage in promotion with which these protein changes were associated, epidermal proteins were analyzed (1) after treatment of adult mouse epidermis with several weakly promoting hyperplasiogenic agents, (2) following treatment with TPA in combination with various inhibitors of tumor promotion, (3) in basal kerotinocytes isolated from adult epidermis following treatment with TPA or several weakly promoting agents, and (4) during an initiation-promotion experiment. Evidence was found which indicated that the potent tumor promoter TPA as well as the weakly promoting hyperplasiogenic agents, mezerein, ethylphenylpropiolate (EPP), and mechanical abrasion, induced similar modifications of epidermal proteins, particularly among the keratins. These keratin modifications progressed with time following treatment resulting in a keratin pattern which resembled that of newborn epidermis.

  3. Sterol and triterpene derivatives from plants inhibit the effects of a tumor promoter, and sitosterol and betulinic acid inhibit tumor formation in mouse skin two-stage carcinogenesis.

    PubMed

    Yasukawa, K; Takido, M; Matsumoto, T; Takeuchi, M; Nakagawa, S

    1991-01-01

    A single topical application of 1 microgram of 12-O-tetradecanoylphorbol- 13-acetate (TPA) to the ears of mice was shown to induce edema, and this TPA-induced inflammation was inhibited by 4-methylsterol and triterpene derivatives. The ED50 of these compounds against TPA-induced inflammation was 0.1-3 mumol. Phytosterols had only slight inhibitory effects. Furthermore, application of 5 micrograms TPA to mouse skin rapidly caused accumulation of ornithine decarboxylase (ODC). Similarly, sitosterol and lupane-type triterpene derivatives markedly inhibited this TPA-induced ODC accumulation. In addition, 5 mumol betulinic acid markedly inhibited the promoting effect of 2.5 micrograms TPA applied twice weekly on skin tumor formation in mice initiated with 50 micrograms of 7,12-dimethylbenz[a]anthracene, and 5 mumol of sitosterol caused slight suppression. Thus, the inhibitory effects of sterol and triterpene derivatives on TPA-induced inflammation roughly parallelled their inhibitory activities against tumor promotion.

  4. Alterations in the expression of uvomorulin and Na+,K(+)-adenosine triphosphatase during mouse skin tumor progression.

    PubMed Central

    Ruggeri, B.; Caamano, J.; Slaga, T. J.; Conti, C. J.; Nelson, W. J.; Klein-Szanto, A. J.

    1992-01-01

    Uvomorulin (E-cadherin), a cell adhesion molecule, and Na+,K(+)-adenosine triphosphatase (ATPase), a marker protein of the basal-lateral cell membrane domains of polarized epithelial cells, were investigated in a group of mouse skin tumors induced by a two-stage chemical carcinogenesis protocol and in cell lines derived from mouse skin papillomas and squamous cell carcinomas (SCC). Although these two markers were present in benign tumors and in nontumorigenic cell lines, the Na+,K(+)-ATPase showed an altered pattern of distribution that included the presence of enzyme not only in the basolateral domain but also on the apical domain of the cell membrane of basal and spinous cells in well-differentiated squamous cell carcinomas (SCC). In higher grade SCC, a loss of Na+,K(+)-ATPase immunoreactivity was simultaneously detected with a marginal or absent expression of uvomorulin. The more differentiated SCC and papillomas expressed less uvomorulin immunoreactivity than normal epidermal cells. Both markers were seen in tumor cell lines that produced well-differentiated SCC after subcutaneous inoculation into nude mice. Neither Na+,K(+)-ATPase nor uvomorulin could be detected in cell lines that produced high grade, poorly differentiated SCC. Northern blots confirmed the absence of uvomorulin mRNA in these highly malignant cell lines. These data indicate that progression from premalignant papilloma to low-grade SCC and subsequently to high-grade SCC is accompanied by loss of epithelial cell polarity as detected by changes in Na+,K(+)-ATPase and by decreased or absent expression of uvomorulin in tumors and cell lines characterized by an advanced malignant phenotype. Images Figure 1 Figure 2 Figure 3 PMID:1316085

  5. Potent suppressive activity of pheophytin a and b from the non-polyphenolic fraction of green tea (Camellia sinensis) against tumor promotion in mouse skin.

    PubMed

    Higashi-Okai, K; Otani, S; Okai, Y

    1998-07-17

    Chlorophyll-related compounds pheophytin a and b have been recently identified as antigenotoxic substances in the non-polyphenolic fraction of green tea (Camellia sinensis), which suppressed umu C gene expression in tester bacteria induced by various genotoxins (Okai and Higashi-Okai, Cancer Lett. 118 (1997) 117-123). In the present study, the authors analyzed in vivo and in vitro effects of pheophytin a and b from the non-polyphenolic fraction of green tea on tumor promotion in mouse skin as follows. (1) When pheophytin a and b from green tea were topically applied prior to each treatment with a tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) on BALB/c mouse skin initiated by 7,12 dimethylbenz[a]anthracene (DMBA), they caused suppression in a dose-dependent fashion against skin tumorigenesis. (2) Pheophytin a and b exhibited significant suppressions against TPA-induced inflammatory reaction, such as edema formation, in BALB/c mouse ear skin in a dose-dependent manner. (3) Pheophytin a and b from green tea showed inhibitory effects against early induction of ornithine decarboxylase (ODC) in BALB/c mouse skin fibroblasts caused by TPA. These results suggest that pheophytin a and b from the non-polyphenolic fraction have potent suppressive activities against tumor promotion in mouse skin.

  6. Increased Skin Tumor Incidence and Keratinocyte Hyper-Proliferation in a Mouse Model of Down Syndrome

    PubMed Central

    Yang, Annan; Currier, Duane; Poitras, Jennifer L.; Reeves, Roger H.

    2016-01-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra copy of human chromosome 21 (Hsa21). People with DS display multiple clinical traits as a result of the dosage imbalance of several hundred genes. While many outcomes of trisomy are deleterious, epidemiological studies have shown a significant risk reduction for most solid tumors in DS. Reduced tumor incidence has also been demonstrated in functional studies using trisomic DS mouse models. Therefore, it was interesting to find that Ts1Rhr trisomic mice developed more papillomas than did their euploid littermates in a DMBA-TPA chemical carcinogenesis paradigm. Papillomas in Ts1Rhr mice also proliferated faster. The increased proliferation was likely caused by a stronger response of trisomy to TPA induction. Treatment with TPA caused hyperkeratosis to a greater degree in Ts1Rhr mice than in euploid, reminiscent of hyperkeratosis seen in people with DS. Cultured trisomic keratinocytes also showed increased TPA-induced proliferation compared to euploid controls. These outcomes suggest that altered gene expression in trisomy could elevate a proliferation signalling pathway. Gene expression analysis of cultured keratinocytes revealed upregulation of several trisomic and disomic genes may contribute to this hyperproliferation. The contributions of these genes to hyper-proliferation were further validated in a siRNA knockdown experiment. The unexpected findings reported here add a new aspect to our understanding of tumorigenesis with clinical implications for DS and demonstrates the complexity of the tumor repression phenotype in this frequent condition. PMID:26752700

  7. Snai1 and Snai2 collaborate on tumor growth and metastasis properties of mouse skin carcinoma cell lines.

    PubMed

    Olmeda, D; Montes, A; Moreno-Bueno, G; Flores, J M; Portillo, F; Cano, A

    2008-08-07

    Snai1 (Snail) and Snai2 (Slug), the two main members of Snail family factors, are important mediators of epithelial-mesenchymal transitions and involved in tumor progression. We recently reported that Snai1 plays a major role in tumor growth, invasion and metastasis, but the contribution of Snai2 to tumorigenesis is not yet well understood. To approach this question we have silenced Snai2 and/or Snai1 by stable RNA interference in two independent mouse skin carcinoma (HaCa4 and CarB) cell lines. We demonstrate that Snai2 knockdown has a milder effect, but collaborates with Snai1 silencing in reduction of tumor growth potential of either carcinoma cell line when injected into nude mice. Importantly, Snai1 or Snai2 silencing dramatically influences the metastatic ability of squamous carcinoma HaCa4 cells, inducing a strong reduction in liver and lung distant metastasis. However, only Snai1 knockdown has an effective action on invasiveness and fully abolishes tumor cell dissemination into the spleen. These results demonstrate that Snai1 and Snai2 collaborate on primary tumor growth and specifically contribute to site-specific metastasis of HaCa4 cells. These data also indicate that Snai1 is the major regulator of local invasion, supporting a hierarchical participation of both factors in the metastatic process.

  8. Activation-induced cytidine deaminase is dispensable for virus-mediated liver and skin tumor development in mouse models.

    PubMed

    Nguyen, Tung; Xu, Jianliang; Chikuma, Shunsuke; Hiai, Hiroshi; Kinoshita, Kazuo; Moriya, Kyoji; Koike, Kazuhiko; Marcuzzi, Gian Paolo; Pfister, Herbert; Honjo, Tasuku; Kobayashi, Maki

    2014-07-01

    Activation-induced cytidine deaminase (AID) not only promotes immune diversity by initiating somatic hypermutation and class switch recombination in immunoglobulin genes but also provokes genomic instability by introducing translocations and mutations into non-immunoglobulin genes. To test whether AID is essential for virus-induced tumor development, we used two transgenic tumor models: mice expressing hepatitis C virus (HCV) core proteins (HCV-Tg), driven by the hepatitis B virus promoter, and mice expressing human papillomavirus type 8 proteins (HPV8-Tg), driven by the Keratin 14 promoter. Both strains were analyzed in the absence and presence of AID by crossing each with AID (-/-) mice. There was no difference in the liver tumor frequency between the HCV-Tg/AID (+/+) and HCV-Tg/AID (-/-) mice at 20 months of age although the AID (+/+) mice showed more severe histological findings and increased cytokine expression. Furthermore, a low level of AID transcript was detected in the HCV-Tg/AID (+/+) liver tissue that was not derived from hepatocytes themselves but from intra-hepatic immune cells. Although AID may not be the direct cause of HCV-induced oncogenesis, AID expressed in B cells, not in hepatocytes, may prolong steatosis and cause increased lymphocyte infiltration into HCV core protein-induced liver lesions. Similarly, there was no difference in the time course of skin tumor development between the HPV8-Tg/AID (-/-) and HPV8-Tg/AID (+/+) groups. In conclusion, AID does not appear to be required for tumor development in the two virus-induced tumor mouse models tested although AID expressed in infiltrating B cells may promote inflammatory reactions in HCV core protein-induced liver pathogenesis.

  9. Fractionation of a tumor-initiating UV dose introduces DNA damage-retaining cells in hairless mouse skin and renders subsequent TPA-promoted tumors non-regressing.

    PubMed

    van de Glind, Gerline; Rebel, Heggert; van Kempen, Marika; Tensen, Kees; de Gruijl, Frank

    2016-02-16

    Sunburns and especially sub-sunburn chronic UV exposure are associated with increased risk of squamous cell carcinomas (SCCs). Here we focus on a possible difference in tumor initiation from a single severe-sunburn dose (on day 1, 21 hairless mice) and from an equal dose fractionated into very low sub-sunburn doses not causing any (growth-promoting) epidermal hyperplasia (40 days daily exposure, n=20). From day 47 all mice received 12-O-Tetradecanoylphorbol-13-acetate (TPA) applications (2x/wk) for 20 weeks to promote tumor development within the lifetime of the animals. After the sub-sunburn regimen sparse DNA damage-retaining basal cells (quiescent stem cells, QSCs) remained in the non-hyperplastic epidermis. These cells were forced to divide by TPA. After discontinuation of TPA tumors regressed and disappeared in the 'sunburn group' but persisted and grew in the 'sub-sunburn group' (0.06 vs 2.50 SCCs and precursors ≥4 mm/mouse after 280 days, p=0.03). As the tumors carried no mutations in p53, H/K/N-Ras and Notch1/2, these 'usual suspects' were not involved in the UV-driven tumor initiation. Although we could not selectively eliminate QSCs (unknown phenotype) to establish causality, our data suggest that forcing specifically DNA damage-retaining QSCs to divide--with high mutagenic risk--gives rise to persisting (mainly 'in situ') skin carcinomas.

  10. Fractionation of a tumor-initiating UV dose introduces DNA damage-retaining cells in hairless mouse skin and renders subsequent TPA-promoted tumors non-regressing

    PubMed Central

    van de Glind, Gerline; Rebel, Heggert; van Kempen, Marika; Tensen, Kees; de Gruijl, Frank

    2016-01-01

    Sunburns and especially sub-sunburn chronic UV exposure are associated with increased risk of squamous cell carcinomas (SCCs). Here we focus on a possible difference in tumor initiation from a single severe-sunburn dose (on day 1, 21 hairless mice) and from an equal dose fractionated into very low sub-sunburn doses not causing any (growth-promoting) epidermal hyperplasia (40 days daily exposure, n=20). From day 47 all mice received 12-O-Tetradecanoylphorbol-13-acetate (TPA) applications (2x/wk) for 20 weeks to promote tumor development within the lifetime of the animals. After the sub-sunburn regimen sparse DNA damage-retaining basal cells (quiescent stem cells, QSCs) remained in the non-hyperplastic epidermis. These cells were forced to divide by TPA. After discontinuation of TPA tumors regressed and disappeared in the ‘sunburn group’ but persisted and grew in the ‘sub-sunburn group’ (0.06 vs 2.50 SCCs and precursors ≥4mm/mouse after 280 days, p=0.03). As the tumors carried no mutations in p53, H/K/N-Ras and Notch1/2, these ‘usual suspects' were not involved in the UV-driven tumor initiation. Although we could not selectively eliminate QSCs (unknown phenotype) to establish causality, our data suggest that forcing specifically DNA damage-retaining QSCs to divide – with high mutagenic risk - gives rise to persisting (mainly ‘in situ’) skin carcinomas. PMID:26797757

  11. Populations of p53 codon 270 CGT to TGT mutant cells in SKH-1 mouse skin tumors induced by simulated solar light.

    PubMed

    Verkler, Tracie L; Delongchamp, Robert R; Couch, Letha H; Miller, Barbara J; Warbritton, Alan; Mellick, Paul W; Howard, Paul C; Parsons, Barbara L

    2008-11-01

    The p53 codon 270 CGT to TGT mutation was investigated as a biomarker of sunlight-induced mutagenesis and carcinogenesis. The relationship between tumor development and abundance of this hotspot mutation was analyzed in mouse skin tumors induced by chronic exposure to simulated solar light (SSL). The 24 tumors analyzed had similar growth kinetics, with an average doubling time of approximately 16.4 d. Levels of the p53 codon 270 mutation were quantified in the 24 mouse skin tumors using allele-specific competitive blocker-polymerase chain reaction (ACB-PCR). All tumors contained measurable amounts of the mutation. The p53 codon 270 CGT to TGT mutant fraction (MF) ranged from 2.29 x 10(-3) to 9.42 x 10(-2), with 3.26 x 10(-2) as the median. These p53 MF measurements are lower than expected for an initiating mutation involved in the development of tumors of monoclonal origin. There was no evidence of a correlation between p53 codon 270 MF and either tumor area or an estimate of tumor cell number. Thus, the data do not support the idea that p53 mutation accumulates linearly during tumor development. To investigate how p53 mutation was distributed within tumors, 19 needle biopsies from seven different tumors were analyzed by ACB-PCR. This analysis demonstrated that p53 codon 270 mutation is heterogeneously distributed within tumors. The long-term goal of this research is to combine morphological and p53 MF measurements from tissues corresponding to the various stages of tumor development, in order to derive mathematical models relating the p53 codon 270 mutation to the development of SSL-induced skin tumors.

  12. Skin tumors on squirrels

    USGS Publications Warehouse

    Herman, C.M.; Reilly, J.R.

    1955-01-01

    Skin tumors having the gross appearance of previously reported fibromas are reported on gray squirrels from N. Y., Md., Va., N. C., and W. Va. and from a fox squirrel from W. Va. and a porcupine from Pa.

  13. Lgr5+ stem cells and their progeny in mouse epidermis under regimens of exogenous skin carcinogenesis, and their absence in ensuing skin tumors

    PubMed Central

    van de Glind, Gerline C.; Out, Jacoba J.; Rebel, Heggert G.; Tensen, Cornelis P.; de Gruijl, Frank R.

    2016-01-01

    Actively proliferating Lgr5+ skin stem cells are found deep in the hair follicle (HF). These cells renew the HF and drive its expansion in anagen phase. Their long residence and continuous mitotic activity make them prime candidates to transform into skin tumor-initiating cells. This was investigated by subjecting Lgr5-EGFP-Ires-CreERT2/R26R-LacZ mice (haired and hairless) to chemical and UV carcinogenic regimens. In the course of these regimens Lgr5+ cells (EGFP+) remained exclusively located in HFs, and in deep-seated cysts of hairless skin. In haired mice, progeny of Lgr5+ stem cells (LacZ+ after a pulse of tamoxifen) appeared in the interfollicular epidermis upon UV-induced sunburn and in TPA-induced hyperplasia. In hairless mice the progeny remained located in deep-seated cysts and in HF remnants. Progeny in hairless skin was only detected interfollicularly at a late stage, in between outgrowing tumors. Lgr5+ stem cells were absent in the ultimate tumor masses, and no tumor appeared to be a (clonal) expansion of Lgr5+ cells (52 tumors with tamoxifen at the start of carcinogenesis, 42 tumors with tamoxifen late during tumor outgrowth). In contrast to CD34/K15+ quiescent bulge stem cells, actively proliferating Lgr5+ stem cells do therefore not appear to be tumor drivers in experimental skin carcinogenesis. PMID:27409834

  14. Some lupane-type triterpenes inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin.

    PubMed

    Yasukawa, K; Yu, S; Yamanouchi, S; Takido, M; Akihisa, T; Tamura, T

    1995-04-01

    We have found that several lupane-type triterpenes, including lupeol, its acetate, betulin and betulinic acid, inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation, and that betulinic acid inhibits tumor promotion in two-stage carcinogenesis in mice. Among seven lupane-type triterpenes assayed, these compounds inhibited the inflammatory activity induced by TPA in mice. The 50 % inhibitory dose of these compounds for TPA-induced inflammation was 0.4-4.0 μmol. Furthermore, topical application of lupeol, lupeol 3-acetate and betulin markedly suppressed the tumor-promoting effect of TPA (1 μg/mouse) in mouse skin initiated with 7,12-dimethyl-benz[a]anthracene (50 μg/mouse), at a grade corresponding to that of betulinic acid.

  15. Cancer promotion in a mouse-skin model by a 60-Hz magnetic field: II. Tumor development and immune response.

    PubMed

    McLean, J R; Stuchly, M A; Mitchel, R E; Wilkinson, D; Yang, H; Goddard, M; Lecuyer, D W; Schunk, M; Callary, E; Morrison, D

    1991-01-01

    This paper describes preliminary findings on the influence of 60-Hz (2-mT) magnetic fields on tumor promotion and co-promotion in the skins of mice. The effect of magnetic fields on natural killer (NK) cell activity in spleen and blood was also examined. Groups of 32 juvenile female mice were exposed to the magnetic field as described in part I. The dorsal skin of all animals was treated with a subthreshold dose of the carcinogen 7,12-dimethyl-benz(a)anthracene (DMBA). One week after the treatment, two groups were sham exposed (group A) or field exposed at 2 mT (group B) 6 h/day for 21 weeks, to test whether the field would act as a tumor promoter. No tumors developed in these two groups of mice. To test whether the magnetic field would modify tumor development by directly affecting tumor growth or by suppressing immune surveillance, two additional groups of mice were treated weekly with the tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) and then either sham exposed (group C) or field exposed (group D). The time to appearance of tumors was shorter (but not statistically so) in the group exposed to magnetic fields and TPA. Some differences in NK cell activity and spleen size were observed between the sham- and field-exposed groups.

  16. Induction of granulocyte-macrophage colony-stimulating activity in mouse skin by inflammatory agents and tumor promoters.

    PubMed Central

    Koury, M J; Balmain, A; Pragnell, I B

    1983-01-01

    The granulocyte-macrophage colony stimulating activity (GM-CSA) was assayed in acetic acid extracts of skin from mice which were topically treated with inflammatory and tumor-promoting diterpene esters. Extremely large increases in GM-CSA were found in skin treated with the strongly tumor-promoting 12-O-tetradecanoyl-phorbol-13-acetate (TPA) and the weakly promoting mezerein, while only a very slight increase was found with the non-promoting 4-O-methyl-TPA (4-OMe-TPA). Untreated areas of skin had very little GM-CSA. In the treated skins, the elevated GM-CSA was noted within a few hours and lasted for greater than 24 h after treatment. Although the levels of GM-CSA induced in the skin correspond to the degree of inflammation elicited by the respective treatments, the leukocytes in the acute inflammatory infiltrate did not appear to be responsible for the increased GM-CSA. Both epidermis and dermis had increased GM-CSA following TPA treatment of skin. Treatment of fibroblast and epithelial continuous cell lines with diterpene esters resulted in a similar pattern of GM-CSA induction in their supernatant media as that noted in the skin extracts. A large majority of the colonies stimulated by the diterpene-ester induced GM-CSA were composed of only macrophages. The results demonstrate that the topical administration of an inflammatory diterpene ester results in a rapid, marked yet local GM-CSA induction in the skin of treated mice. This indirect action in which diterpene esters induce in certain cells a growth regulatory factor for other types of cells may be an important element in carcinogenesis. Images Fig. 2. PMID:6605850

  17. II. Capsular vaso-mimicry formed by transgenic mammary tumor spheroids implanted ectopically into mouse dorsal skin fold: implications for cellular mechanisms of metastasis

    PubMed Central

    Witkiewicz, Halina

    2013-01-01

    Most cancer patients die of metastatic disease, not primary tumors, while biological mechanisms leading to metastases remain unclear and effective therapies are missing. Using a mouse dorsal skin chamber model we had observed that tumor growth and vasculature formation could be influenced by the way in vitro cultured (avascular) spheroids of N202 breast tumor cells were implanted; co-implantation of lactating breast tissue created stimulating microenvironment, whereas the absence of the graft resulted in temporary tumor dormancy. This report addressed the issue of cellular mechanisms of the vasculogenic switch that ended the dormancy. In situ ultrastructural analysis revealed that the tumors survived in ectopic microenvironment until some of host and tumor stem cells evolved independently into cells initiating the vasculogenic switch. The tumor cells that survived and proliferated under hypoxic conditions for three weeks were supported by erythrogenic autophagy of others. However, the host microenvironment first responded as it would to non-immunogenic foreign bodies, i.e., by encapsulating the tumor spheroids with collagen-producing fibroblasts. That led to a form of vaso-mimicry consisting of tumor cells amid tumor-derived erythrosomes (synonym of erythrocytes), megakaryocytes and platelets, and encapsulating them all, the host fibroblasts. Such capsular vaso-mimicry could potentially facilitate metastasis by fusing with morphologically similar lymphatic vessels or veins. Once incorporated into the host circulatory system, tumor cells could be carried away passively by blood flow, regardless of their genetic heterogeneity. The fake vascular segment would have permeability properties different from genuine vascular endothelium. The capsular vaso-mimicry was different from vasculogenic mimicry earlier observed in metastases-associated malignant tumors where channels formed by tumor cells were said to contain circulating blood. Structures similar to the vasculogenic

  18. II. Capsular vaso-mimicry formed by transgenic mammary tumor spheroids implanted ectopically into mouse dorsal skin fold: implications for cellular mechanisms of metastasis.

    PubMed

    Witkiewicz, Halina; Oh, Phil; Schnitzer, Jan E

    2013-01-01

    Most cancer patients die of metastatic disease, not primary tumors, while biological mechanisms leading to metastases remain unclear and effective therapies are missing. Using a mouse dorsal skin chamber model we had observed that tumor growth and vasculature formation could be influenced by the way in vitro cultured (avascular) spheroids of N202 breast tumor cells were implanted; co-implantation of lactating breast tissue created stimulating microenvironment, whereas the absence of the graft resulted in temporary tumor dormancy. This report addressed the issue of cellular mechanisms of the vasculogenic switch that ended the dormancy. In situ ultrastructural analysis revealed that the tumors survived in ectopic microenvironment until some of host and tumor stem cells evolved independently into cells initiating the vasculogenic switch. The tumor cells that survived and proliferated under hypoxic conditions for three weeks were supported by erythrogenic autophagy of others. However, the host microenvironment first responded as it would to non-immunogenic foreign bodies, i.e., by encapsulating the tumor spheroids with collagen-producing fibroblasts. That led to a form of vaso-mimicry consisting of tumor cells amid tumor-derived erythrosomes (synonym of erythrocytes), megakaryocytes and platelets, and encapsulating them all, the host fibroblasts. Such capsular vaso-mimicry could potentially facilitate metastasis by fusing with morphologically similar lymphatic vessels or veins. Once incorporated into the host circulatory system, tumor cells could be carried away passively by blood flow, regardless of their genetic heterogeneity. The fake vascular segment would have permeability properties different from genuine vascular endothelium. The capsular vaso-mimicry was different from vasculogenic mimicry earlier observed in metastases-associated malignant tumors where channels formed by tumor cells were said to contain circulating blood. Structures similar to the vasculogenic

  19. Effects of antiinflammatory agents on mouse skin tumor promotion, epidermal DNA synthesis, phorbol ester-induced cellular proliferation, and production of plasminogen activator.

    PubMed

    Viaje, A; Slaga, T J; Wigler, M; Weinstein, I B

    1977-05-01

    The antinflammatory ateroids fluocinoine acetonide, fluocinonide, and fluclorolone acetonide were found to be very effectiveinhibitory agents of mouse skin tumor promotion. These steroids also drastically inhibited epidermal DNA synthesis and epidermal cellular proliferation induced by a phorbal ester tumor promoter. In addition, these compounds were potent inhibitors, of plasminogen activator production in tumor cell cultures. The clinically used non-steroidal antiinflammatory agents oxyphenbutazone, indomethacin, and Seclazone also inhibite tumor promotion but were much less effective. Although these agents are useful against inflammatory disorders in general when given p.o., in our studies they had little effect on inflammation and epidermal cellular proliferation induced by a phorbol ester tumor promoter when given topically. The afore mentioned nonsteroidal antiinflammatory agents also had little effect on epidermal DNA synthesis. Oxyphenbutazone and indomethacin were less potent inhibitors of plasminogen activator production in tumor cells than were the antiinflammatory steroids, and Seclazone produced a negligible inhibition. There is, therefore, a general correlation in the potencies of a series of steroidal antiinflammatory agents for inhibition of tumor promotion and their ability to inhibit plasminogen activator production by tumor cell cultures and epidermal DNA synthesis.

  20. Effects of C-Phycocyanin on the representative genes of tumor development in mouse skin exposed to 12-O-tetradecanoyl-phorbol-13-acetate.

    PubMed

    Gupta, Naresh Kumar; Gupta, Krishna P

    2012-11-01

    C-Phycocyanin (C-PC), a biliprotein from the sea weed, has been shown to have the beneficial effects like antioxidant, anti-inflammatory, neuroprotective, and hepatoprotective properties and is used as food supplement. We are showing the effect of C-Phycocyanin on the early events altered by tumor promoter. TPA induced the expression of critical events of tumorigenesis like ornithine decarboxylase, cyclooxygenase-2, interleukin-6 and pSTAT3 in mouse skin after 5h of application, whereas expression of transglutaminase2 was decreased at this time point. This TPA-caused altered expression of genes was prevented in presence of C-Phycocyanin. This prevention by C-Phycocyanin appeared to be dependent on the dose of C-Phycocyanin used. The results are useful for the detailed study on the preventive effect of C-Phycocyanin on TPA induced tumor promotion.

  1. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model.

    PubMed

    Sørensen, Brita S; Horsman, Michael R; Alsner, Jan; Overgaard, Jens; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Bassler, Niels

    2015-01-01

    The aim of the present study was to compare the biological effectiveness of carbon ions relative to x-rays between tumor control, acute skin reaction and late RIF of CDF1 mice. CDF1 mice with a C3H mouse mammary carcinoma implanted subcutaneously on the foot of the right hind limb were irradiated with single fractions of either photons, or (12)C ions using a 30-mm spread-out Bragg peak. The endpoint of the study was local control (no tumor recurrence within 90 days). For the acute skin reaction, non-tumor bearing CDF1 mice were irradiated with a comparable radiation scheme, and monitored for acute skin damage between Day 7 and 40. Late RIF was assessed in the irradiated mice. The TCD50 (dose producing tumor control in 50% of mice) values with 95% confidence interval were 29.7 (25.4-34.8) Gy for C ions and 43.9 (39.2-49.2) Gy for photons, with a corresponding Relative biological effectiveness (RBE) value of 1.48 (1.28-1.72). For acute skin damage the MDD50 (dose to produce moist desquamation in 50% of mice) values with 95% confidence interval were 26.3 (23.0-30.1) Gy for C ions and 35.8 (32.9-39.0) Gy for photons, resulting in a RBE of 1.36 (1.20-1.54). For late radiation-induced fibrosis the FD50 (dose to produce severe fibrosis in 50% of mice) values with 95% confidence interval were 26.5 (23.1-30.3) Gy for carbon ions and 39.8 (37.8-41.8) Gy for photons, with a RBE of 1.50 (1.33-1.69). The observed RBE values were very similar for tumor response, acute skin damage and late RIF when irradiated with large doses of high- linear energy transfer (LET) carbon ions. This study adds information to the variation in biological effectiveness in different tumor and normal tissue models.

  2. Mouse skin tumor initiation-promotion and complete carcinogenesis bioassays: mechanisms and biological activities of emission samples.

    PubMed Central

    Nesnow, S; Triplett, L L; Slaga, T J

    1983-01-01

    Extracts of soots obtained from various sources were applied to the skin of mice in an effort to identify carcinogens in these mixtures and to link these materials to the etiology of human cancer. Samples of coal chimney soot, coke oven materials, industrial carbon black, oil shale soot, and gasoline vehicle exhaust materials have been examined by this method. The studies reported here have been constructed to compare the carcinogenic and tumorigenic potency of extracts from various particulate emissions: coke ovens, diesel and gasoline vehicles and a roofing tar pot. Automobile emission samples were obtained by collecting the diluted and cooled exhaust on Teflon-coated glass fiber filters. Coke oven and roofing tar samples were particulate emission samples collected by impaction and filtration. The organic components associated with each of the particles were extracted with dichloromethane and dermally applied to SENCAR mice. All agents were applied as tumor initiators by using a five-dose protocol. Selected extracts were also applied as complete carcinogens and as tumor promotors. Statistical analyses of the resulting tumor data were performed by using nonlinear Poisson and probit models. The results from these experiments provide a suitable data base for comparative potency estimation of complex mixtures. PMID:6825618

  3. Independent genetic control of early and late stages of chemically induced skin tumors in a cross of a Japanese wild-derived inbred mouse strain, MSM/Ms.

    PubMed

    Okumura, Kazuhiro; Sato, Miho; Saito, Megumi; Miura, Ikuo; Wakana, Shigeharu; Mao, Jian-Hua; Miyasaka, Yuki; Kominami, Ryo; Wakabayashi, Yuichi

    2012-11-01

    MSM/Ms is an inbred mouse strain derived from a Japanese wild mouse, Mus musculus molossinus. In this study, we showed that MSM/Ms mice exhibit dominant resistance when crossed with susceptible FVB/N mice and subjected to the two-stage skin carcinogenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA)/ 12-O-tetradecanoylphorbol-13-acetate (TPA). A series of F1 backcross mice were generated by crossing p53(+/+) or p53(+/-) F1 (FVB/N × MSM/Ms) males with FVB/N female mice. These generated 228 backcross animals, approximately half of which were p53(+/-), enabling us to search for p53-dependent skin tumor modifier genes. Highly significant linkage for papilloma multiplicity was found on chromosomes 6 and 7 and suggestive linkage was found on chromosomes 3, 5 and 12. Furthermore, in order to identify stage-dependent linkage loci we classified tumors into three categories (<2mm, 2-6mm and >6mm), and did linkage analysis. The same locus on chromosome 7 showed strong linkage in groups with <2mm or 2-6mm papillomas. No linkage was detected on chromosome 7 to papillomas >6mm, but a different locus on chromosome 4 showed strong linkage both to papillomas >6mm and to carcinomas. This locus, which maps near the Cdkn2a/p19(Arf) gene, was entirely p53-dependent, and was not seen in p53 (+/-) backcross animals. Suggestive linkage conferring susceptibility to carcinoma was also found on chromosome 5. These results clearly suggest distinct loci regulate each stage of tumorigenesis, some of which are p53-dependent.

  4. Up-regulation of clusterin during phthalocyanine 4 photodynamic therapy-mediated apoptosis of tumor cells and ablation of mouse skin tumors.

    PubMed

    Kalka, K; Ahmad, N; Criswell, T; Boothman, D; Mukhtar, H

    2000-11-01

    Photodynamic therapy (PDT) using the silicon phthalocyanine photo-sensitizer Pc 4 is an oxidative stress associated with the induction of apoptosis in many cancer cells in vitro and in vivo. The mechanisms of PDT-induced tumor cell killing leading to apoptosis are incompletely understood. Clusterin, a widely expressed glycoprotein, is induced in tissues regressing as a consequence of oxidative stress-mediated cell death. Treatment of apoptosis-sensitive human epidermoid carcinoma cells (A431) with PDT resulted in significant up-regulation of clusterin with a maximum at 12 h after treatment, whereas clusterin levels in Pc 4-PDT-treated, apoptosis-resistant, radiation-induced fibrosarcoma (RIF-1) cells remained unchanged. The i.v. administration of Pc 4 to mice bearing chemically or UVB radiation-induced skin papillomas, followed by light application, led to increased clusterin protein expression, peaking 24 h after the treatment, when tumor regression was apparently visible. These data, for the first time, demonstrate the involvement of clusterin in PDT-mediated cell death and during tumor regression. This may have relevance in improving the efficacy of PDT using pharmacological inducers of clusterin.

  5. The hairless mouse in skin research

    PubMed Central

    Benavides, Fernando; Oberyszyn, Tatiana M.; VanBuskirk, Anne M.; Reeve, Vivienne E.; Kusewitt, Donna F.

    2009-01-01

    Summary The hairless (Hr) gene encodes a transcriptional co-repressor highly expressed in the mammalian skin. In the mouse, several null and hypomorphic Hr alleles have been identified resulting in hairlessness in homozygous animals, characterized by alopecia developing after a single cycle of relatively normal hair growth. Mutations in the human ortholog have also been associated with congenital alopecia. Although a variety of hairless strains have been developed, outbred SKH1 mice are the most widely used in dermatologic research. These unpigmented and immunocompetent mice allow for ready manipulation of the skin, application of topical agents, and exposure to UVR, as well as easy visualization of the cutaneous response. Wound healing, acute photobiologic responses, and skin carcinogenesis have been extensively studied in SKH1 mice and are well characterized. In addition, tumors induced in these mice resemble, both at the morphologic and molecular levels, UVR-induced skin malignancies in man. Two limitations of the SKH1 mouse in dermatologic research are the relatively uncharacterized genetic background and its outbred status, which precludes inter-individual transplantation studies. PMID:18938063

  6. Multistage skin tumor promotion: involvement of a protein kinase

    SciTech Connect

    Mamrack, M.; Slaga, T. J.

    1980-01-01

    Current information suggests that chemical carcinogenesis is a multistep process with one of the best studied models in this regard being the two-stage carcinogenesis system using mouse skin. The effects of several carcinogens and tumor promoters in various sequences of application were studied to examine the nature of the process. The actions of several tumor inhibitors were compared. (ACR)

  7. Altered glucocorticoid receptor expression and function during mouse skin carcinogenesis.

    PubMed

    Budunova, I V; Carbajal, S; Kang, H; Viaje, A; Slaga, T J

    1997-03-01

    Glucocorticoids are the most potent inhibitors of tumor promotion in mouse skin, when applied with a promoting agent at the early stages of promotion. However, established skin papillomas become resistant to growth inhibition by glucocorticoids. Glucocorticoid control of cellular functions is mediated by the glucocorticoid receptor (GR), a well-known transcription factor. Here we present data on GR expression and function in mouse papillomas and squamous cell carcinomas. Tumors were produced in SENCAR mice by a 7,12-dimethylbenz[a]anthracene and 12-O-tetradecanoylphorbol-13-acetate two-stage protocol. In early papillomas (after 15-20 wk of promotion), northern blotting revealed a decrease in the GR mRNA level that was confirmed by a binding assay. However, in late papillomas (after 30-40 wk of promotion), and especially in squamous cell carcinomas, the level of GR in both assays was similar to or higher than the GR level in normal epidermis. To test the functional capability of GR in tumors, we compared the effect of the synthetic glucocorticoid fluocinolone acetonide (FA) on keratinocyte proliferation and on expression of glucocorticoid-responsive genes in normal epidermis, hyperplastic skin surrounding tumors, and mouse skin papillomas. FA strongly inhibited DNA synthesis in keratinocytes in normal skin and tumor-surrounding skin but had no effect on DNA synthesis in papillomas. In addition, FA strongly induced metallothionein 1 expression and inhibited connexin 26 expression in skin but did not affect expression of these genes in tumors. These data suggest that alteration of both the expression and function of GR may be an important mechanism of tumor promotion in skin.

  8. Synthesis and tumor-initiating activity in mouse skin of dibenzo[a,l]pyrene syn- and anti-fjord-region diolepoxides.

    PubMed

    Gill, H S; Kole, P L; Wiley, J C; Li, K M; Higginbotham, S; Rogan, E G; Cavalieri, E L

    1994-11-01

    Dibenzo[a,l]pyrene (DB[a,l]P) is the most potent carcinogen among polycyclic aromatic hydrocarbons. Because the fjord-region diolepoxide (DE) pathway is one of the mechanisms of activation, (+/)-trans-DB[a,l]P-11,12-dihydrodiol, (+/-)-anti-DB[a,l]PDE and (+/-)-syn-DB[a,l]PDE were synthesized. The key intermediate for these syntheses, 12-methoxy-DB[a,l]P, was successfully obtained by cyclization of 6-(3-methoxybenzyl)benzanthrone with methanesulfonic acid, which in turn was prepared by 1,4 conjugate addition of 3-methoxybenzyl magnesium bromide to benzanthrone. The presence of the DB[a,l]P nucleus in the dihydrodiolepoxides and diolepoxides was proven by conversion of 12-methoxyDB[a,l]P into the parent compound in several steps. The tumor-initiating activity of the two diolepoxides in mouse skin was compared to that of DB[a,l]P-11,12-dihydrodiol and the parent DB[a,l]P. Groups of 24 8 week old female SENCAR mice were topically initiated with 12, 4 or 1.33 nmol of compound in 100 microliters of acetone. Starting 1 week later, promotion with 12-O-tetradecanoylphorbol-13-acetate (1.62 nmol in 100 microliters acetone) was begun and continued twice weekly for 30 weeks. At the 12, 4 and 1.33 nmol doses, anti-DB[a,l]PDE induced 2.0, 0.7 and 0.7 tumors per mouse (t/m) respectively, whereas syn-DB[a,l]PDE induced 1.8, 1.5 and 1.8 t/m. At the same three doses, DB[a,l]P-11,12-dihydrodiol induced 4.6, 4.3 and 2.8 t/m, and DB[a,l]P resulted in 9.3, 7.1 and 5.2 t/m. These results confirm that DB[a,l]P is more potent than its 11,12-dihydrodiol and show that the two diolepoxides are less tumorigenic than their precursors. At the medium and low doses, syn-DB[a,l]PDE is more tumorigenic than its congener anti-DB[a,l]PDE.

  9. Both (+/-)syn- and (+/-)anti-7,12-dimethylbenz[a]anthracene-3,4-diol-1,2-epoxides initiate tumors in mouse skin that possess -CAA- to -CTA- mutations at Codon 61 of c-H-ras.

    PubMed

    Tang, M S; Vulimiri, S V; Viaje, A; Chen, J X; Bilolikar, D S; Morris, R J; Harvey, R G; Slaga, T J; DiGiovanni, J

    2000-10-15

    We have determined the tumor-initiating activity of (+/-)syn- and (+/-)anti-7,12-dimethylbenz[a]anthracene-3,4-diol-1,2-epoxide (syn- and anti-DMBADE), the two metabolically formed bay-region diol epoxides of DMBA, and we have also analyzed mutations in the H-ras gene from tumors induced by these compounds. Using a two-stage, initiation-promotion protocol for tumorigenesis in mouse skin, we have found that both syn- and anti-DMBADE are active tumor initiators, and that the occurrence of papillomas is carcinogen dose dependent. All of the papillomas induced by syn-DMBADE (a total of 40 mice), 96% of those induced by anti-DMBADE (a total of 25 mice), and 94% of those induced by DMBA (a total of 16 mice) possessed a -CAA- to -CTA- mutation at codon 61 of H-ras. No mutations in codons 12 or 13 were detected in any tumor. Topical application of syn- and anti-DMBADE produced stable adducts in mouse epidermal DNA, most of which comigrated with stable DNA adducts formed after topical application of DMBA. Further analysis of the data showed that levels of the major syn- and anti-DMBADE-deoxyadenosine adducts formed after topical application of DMBA are sufficient to account for the tumor-initiating activity of this carcinogen on mouse skin. Previously, we showed that both the syn- and anti-DMBADE bind to the adenine (A182) at codon 61 of H-ras. Collectively, these results indicate that the adenine adducts induced by both bay-region diol epoxides of DMBA lead to the mutation at codon 61 of H-ras and, consequently, initiate tumorigenesis in mouse skin.

  10. Characterization of the tumor-promoting activity of m-chloroperoxybenzoic acid in SENCAR mouse skin and its inhibition by gallotannin, oligomeric proanthocyanidin, and their monomeric units

    Treesearch

    Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Fatima K. Johnson; Amy W. Davis; Steven W. Newell; Richard W. Hemingway; Vittorio Bottari; Jean-Pierre Perchellet

    1996-01-01

    m-Chloroperoxybenzoic acid (CPBA). which induces ornithine decarboxylase activity as much as 12-0-tetradecanoylphorbol-13-acetate (TPA ), was tested for its ability to induce DNA synthesis, hydroperoxide (HPx) production, and tumor promotion in mouse epidermis in vivo. After an early inhibition, CPBA stimulates...

  11. Characterization of the tumor-promoting activity of m-chloroperoxybenzoic acid in SENCAR mouse skin and its inhibition by gallotannin, oligomeric proanthocyanidin, and their monomeric units

    Treesearch

    Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Fatima K. Johnson; Amy W. Davis; Steven W. Newell; Richard W. Hemingway; Vittorio Bottari; Jean-Pierre Perchellett

    1996-01-01

    m-Chloroperoxybenzoic acid (CPBA). Which induces ornithine decarboxylase activity as much as 12-0- terradecanoyIp horbol-13-acetate (TPA ). was tested for its ability to induce DNA synthesis. bydroperoxide (HPx) production. and tumor promotion in mouse epidermis in vivo. After an early inhibition. CPBA stimulates DNA synthesis. A response which is maintained between 16...

  12. UCP2 knockout suppresses mouse skin carcinogenesis.

    PubMed

    Li, Wenjuan; Zhang, Chunjing; Jackson, Kasey; Shen, Xingui; Jin, Rong; Li, Guohong; Kevil, Christopher G; Gu, Xin; Shi, Runhua; Zhao, Yunfeng

    2015-06-01

    Mitochondrial uncoupling (uncouples electron transport from ATP production) has recently been proposed as a novel survival mechanism for cancer cells, and reduction in free radical generation is the accepted mechanism of action. However, there is no direct evidence supporting that uncoupling proteins promote carcinogenesis. Herein, we examined whether mitochondrial uncoupling affects mouse skin carcinogenesis using uncoupling protein 2 (UCP2) homozygous knockout and wild-type mice. The results indicate that knockout of Ucp2 significantly reduced the formation of both benign (papilloma) and malignant (squamous cell carcinoma) tumors. UCP2 knockout did not cause increases in apoptosis during skin carcinogenesis. The rates of oxygen consumption were decreased only in the carcinogen-treated UCP2 knockout mice, whereas glycolysis was increased only in the carcinogen-treated wild-type mice. Finally, the levels of metabolites pyruvate, malate, and succinate showed different trends after carcinogen treatments between the wild-type and UCP2 knockout mice. Our study is the first to demonstrate that Ucp2 knockout suppresses carcinogenesis in vivo. Together with early studies showing that UCP2 is overexpressed in a number of human cancers, UCP2 could be a potential target for cancer prevention and/or therapy. Cancer Prev Res; 8(6); 487-91. ©2015 AACR. ©2015 American Association for Cancer Research.

  13. Mouse models of adrenocortical tumors

    PubMed Central

    Basham, Kaitlin J.; Hung, Holly A.; Lerario, Antonio M.; Hammer, Gary D.

    2016-01-01

    The molecular basis of the organogenesis, homeostasis, and tumorigenesis of the adrenal cortex has been the subject of intense study for many decades. Specifically, characterization of tumor predisposition syndromes with adrenocortical manifestations and molecular profiling of sporadic adrenocortical tumors have led to the discovery of key molecular pathways that promote pathological adrenal growth. However, given the observational nature of such studies, several important questions regarding the molecular pathogenesis of adrenocortical tumors have remained. This review will summarize naturally occurring and genetically engineered mouse models that have provided novel tools to explore the molecular and cellular underpinnings of adrenocortical tumors. New paradigms of cancer initiation, maintenance, and progression that have emerged from this work will be discussed. PMID:26678830

  14. Effect of treatment in fractionated schedules with the combination of x-irradiation and six cytotoxic drugs on the RIF-1 tumor and normal mouse skin

    SciTech Connect

    Lelieveld, P.; Scoles, M.A.; Brown, J.M.; Phil, D.; Kallman, R.F.

    1985-01-01

    RIF-1 tumors, implanted syngeneically in the gastrocnemius muscles of the right hind legs of C3H/Km mice, were treated either with X ray alone, drug alone, or drug and X ray combined. The drugs tested were bleomycin, BCNU, cis-diamminedichloro platinum, adriamycin, cyclophosphamide, and actinomycin-D. All drugs were administered either in the maximum tolerated dose or a dose that causes minimal tumor growth delay. Both drugs and X rays were administered either as a single dose or in five daily fractions. In addition to the single modality controls, seven different schedules of combined modalities were tested. Tumors were measured periodically after treatment in order that the day at which each tumor reached 4 times its initial cross-sectional area, i.e., its size at the time of treatment, could be determined. The effect of treatment on tumors was based upon excess growth delay (GD), i.e., T400% (treated)-T400% (untreated control). Treatment effects for the same combined modality schedules were also determined for normal skin, using the early skin reaction as an endpoint. Dose effect factors (DEF) were computed for all combined modality schedules and were based upon calculated radiation dose equivalents. We also calculated supra-additivity ratios, SR/sub I/ and SR/sub II/, therapeutic gain factors and adjusted therapeutic gain factors. The only drugs to produce significant supra-additivity with X rays were cis-Pt and cyclo.

  15. Modulation of miR-203 and its regulators as a function of time during the development of 7, 12 dimethylbenz [a] anthracene induced mouse skin tumors in presence or absence of the antitumor agents

    SciTech Connect

    Tiwari, Prakash; Gupta, Krishna P.

    2014-07-15

    We investigated the chemopreventive effects of naturally occurring compounds like butyric acid (BA), nicotinamide (NA) and calcium glucarate (CAG) individually or in combination in 7, 12-dimethylbenz [a] anthracene (DMBA) treated mouse skin at 4 and 16 weeks, the time before and after the tumor development. DMBA application did not show any skin tumors at 4 weeks but well defined tumors appeared at 16 weeks. BA, NA or CAG prevented the tumor development significantly but the protection was highly enhanced when all these compounds were given together. In order to see the molecular changes progressing with tumors, we showed the downregulation of tumor suppressor miR-203 at 16 weeks and upregulation of histone deacetylases (HDAC), DNA methyltransferase, promoter methylation of miR-203 at 4 or 16 weeks. Regulators of micro RNA biogenesis such as DICER1 and Ago2 were also deregulated by DMBA. Proto-oncogene c-myc and BMI1 were upregulated and tumor suppressor gene p16 was downregulated by DMBA as a function of time. Effects of BA, NA or CAG were more pronounced after 16 weeks as compared to 4 weeks in preventing the tumor development and altered gene expression. Concomitant administration of BA, NA and CAG tried to prevent these alterations more effectively than that of individual compound possibly by regulating miR-203 status through epigenetic or biogenetic modulations before and after the tumor development. Study provides a rationale for chemoprevention by combination of different compounds targeting miR-203. - Highlights: • DMBA modulates miR-203 and its regulator before and after the onset of tumors. • Suppression of miR-203 and p16 could be the result of gene promoter methylation. • BA, NA or CAG prevents the effects of DMBA. • Combination of BA, NA or CAG is more effective in preventing the DMBA modulations.

  16. Mouse model of Staphylococcus aureus skin infection.

    PubMed

    Malachowa, Natalia; Kobayashi, Scott D; Braughton, Kevin R; DeLeo, Frank R

    2013-01-01

    Bacterial skin and soft tissue infections are abundant worldwide and many are caused by Staphylococcus aureus. Indeed, S. aureus is the leading cause of skin and soft tissue infections in the USA. Here, we describe a mouse model of skin and soft tissue infection induced by subcutaneous inoculation of S. aureus. This animal model can be used to investigate a number of factors related to the pathogenesis of skin and soft tissue infections, including strain virulence and the contribution of specific bacterial molecules to disease, and it can be employed to test the potential effectiveness of antibiotic therapies or vaccine candidates.

  17. Mouse Prkar1a haploinsufficiency leads to an increase in tumors in the Trp53+/- or Rb1+/- backgrounds and chemically induced skin papillomas by dysregulation of the cell cycle and Wnt signaling.

    PubMed

    Almeida, Madson Q; Muchow, Michael; Boikos, Sosipatros; Bauer, Andrew J; Griffin, Kurt J; Tsang, Kit Man; Cheadle, Chris; Watkins, Tonya; Wen, Feng; Starost, Matthew F; Bossis, Ioannis; Nesterova, Maria; Stratakis, Constantine A

    2010-04-15

    PRKAR1A inactivation leads to dysregulated cAMP signaling and Carney complex (CNC) in humans, a syndrome associated with skin, endocrine and other tumors. The CNC phenotype is not easily explained by the ubiquitous cAMP signaling defect; furthermore, Prkar1a(+/-) mice did not develop skin and other CNC tumors. To identify whether a Prkar1a defect is truly a generic but weak tumorigenic signal that depends on tissue-specific or other factors, we investigated Prkar1a(+/-) mice when bred within the Rb1(+/-) or Trp53(+/-) backgrounds, or treated with a two-step skin carcinogenesis protocol. Prkar1a(+/-) Trp53(+/-) mice developed more sarcomas than Trp53(+/-) mice (P < 0.05) and Prkar1a(+/-) Rb1(+/-) mice grew more (and larger) pituitary and thyroid tumors than Rb1(+/-) mice. All mice with double heterozygosity had significantly reduced life-spans compared with their single-heterozygous counterparts. Prkar1a(+/-) mice also developed more papillomas than wild-type animals. A whole-genome transcriptome profiling of tumors produced by all three models identified Wnt signaling as the main pathway activated by abnormal cAMP signaling, along with cell cycle abnormalities; all changes were confirmed by qRT-PCR array and immunohistochemistry. siRNA down-regulation of Ctnnb1, E2f1 or Cdk4 inhibited proliferation of human adrenal cells bearing a PRKAR1A-inactivating mutation and Prkar1a(+/-) mouse embryonic fibroblasts and arrested both cell lines at the G0/G1 phase of the cell cycle. In conclusion, Prkar1a haploinsufficiency is a relatively weak tumorigenic signal that can act synergistically with other tumor suppressor gene defects or chemicals to induce tumors, mostly through Wnt-signaling activation and cell cycle dysregulation, consistent with studies in human neoplasms carrying PRKAR1A defects.

  18. Keratinocyte p38δ loss inhibits Ras-induced tumor formation, while systemic p38δ loss enhances skin inflammation in the early phase of chemical carcinogenesis in mouse skin.

    PubMed

    Kiss, Alexi; Koppel, Aaron C; Anders, Joanna; Cataisson, Christophe; Yuspa, Stuart H; Blumenberg, Miroslav; Efimova, Tatiana

    2016-05-01

    p38δ expression and/or activity are increased in human cutaneous malignancies, including invasive squamous cell carcinoma (SCC) and head and neck SCC, but the role of p38δ in cutaneous carcinogenesis has not been well-defined. We have reported that mice with germline loss of p38δ exhibited a reduced susceptibility to skin tumor development compared with wild-type mice in the two-stage 7,12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) chemical skin carcinogenesis model. Here, we report that p38δ gene ablation inhibited the growth of tumors generated from v-ras(Ha) -transformed keratinocytes in skin orthografts to nude mice, indicating that keratinocyte-intrinsic p38δ is required for Ras-induced tumorigenesis. Gene expression profiling of v-ras(Ha) -transformed p38δ-null keratinocytes revealed transcriptional changes associated with cellular responses linked to tumor suppression, such as reduced proliferation and increased differentiation, cell adhesion, and cell communications. Notably, a short-term DMBA/TPA challenge, modeling the initial stages of chemical skin carcinogenesis treatment, elicited an enhanced inflammation in p38δ-null skin compared with skin of wild-type mice, as assessed by measuring the expression of pro-inflammatory cytokines, including IL-1β, IL-6, IL-17, and TNFα. Additionally, p38δ-null skin and p38δ-null keratinocytes exhibited increased p38α activation and signaling in response to acute inflammatory challenges, suggesting a role for p38α in stimulating the elevated inflammatory response in p38δ-null skin during the initial phases of the DMBA/TPA treatment compared with similarly treated p38δ(+/+) skin. Altogether, our results indicate that p38δ signaling regulates skin carcinogenesis not only by keratinocyte cell-autonomous mechanisms, but also by influencing the interaction between between the epithelial compartment of the developing skin tumor and its stromal microenvironment.

  19. Inhibitory effects of chlorophyllin, hemin and tetrakis(4-benzoic acid)porphyrin on oxidative DNA damage and mouse skin inflammation induced by 12-O-tetradecanoylphorbol-13-acetate as a possible anti-tumor promoting mechanism.

    PubMed

    Park, Kwang Kyun; Park, Jae Hee; Jung, Youn Joo; Chung, Won Yoon

    2003-12-09

    Reactive oxygen species (ROS) from both endogenous and exogenous sources can cause oxidative DNA damage and dysregulated cell signaling, which are involved in the multistage process of carcinogenesis such as tumor initiation, promotion and progression. A number of structurally different anticarcinogenic agents inhibit inflammation and tumor promotion as they reduce ROS production and oxidative DNA damage. Evidence suggests that porphyrins can interfere with the actions of various carcinogens and mutagens by forming face-to-face complexes and their antimutagenic or antigenotoxic effects may also be attributed to their antioxidant activities. However, little is known regarding the anti-tumor promoting potential and mechanism of the porphyrin compounds. Based on our previous results on the inhibitory effects of chlorophyllin (CHL), hemin and tetrakis(4-benzoic acid)porphyrin (TBAP) against two-stage mouse skin carcinogenesis, we have investigated their anti-tumor promoting mechanisms. In the present work, CHL, hemin and TBAP reduced superoxide anion generation by 12-O-tetradecanoylphorbol-13-acetate (TPA) in differentiated HL-60 cells and the production of hydroxyl radicals by Fenton reaction. Porphyrins exert a dose-related inhibition of his(+) reversion in Salmonella typhimurium TA102 induced by tert-butylhydroperoxide (t-BOOH). DNA strand breaks by ROS derived from H(2)O(2)/Cu(II) and the formation of 8-hydroxydeoxyguanosine (8-OH-dG) in calf thymus DNA treated with H(2)O(2)/UV also were inhibited markedly by porphyrins in a concentration-dependent manner. Furthermore, CHL, hemin and TBAP decreased myeloperoxidase (MPO) activity and H(2)O(2) formation as well as epidermal ornithine decarboxylase (ODC) activity in mouse skin treated with TPA. These results demonstrate that the antioxidative properties of porphyrins are important for inhibiting TPA-induced tumor promotion.

  20. Enhancement of tumor responsiveness to aminolevulinate-photodynamic therapy (ALA-PDT) using differentiation-promoting agents in mouse models of skin carcinoma

    NASA Astrophysics Data System (ADS)

    Anand, Sanjay; Honari, Golara; Paliwal, Akshat; Hasan, Tayyaba; Maytin, Edward V.

    2009-06-01

    Aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) is an emerging treatment for cancers. ALA, given as a prodrug, selectively accumulates and is metabolized in cancer cells to form protoporphyrin IX (PpIX). Targeted local irradiation with light induces cell death. Since the efficacy of ALA-PDT for large or deep tumors is currently limited, we are developing a new approach that combines differentiation-inducing agents with ALA-PDT to improve the clinical response. Here, we tested this new combination paradigm in the following two models of skin carcinoma in mice: 1) tumors generated by topical application of chemical carcinogens (DMBA-TPA); 2) human SCC cells (A431) implanted subcutaneously. To achieve a differentiated state of the tumors, pretreatment with a low concentration of methotrexate (MTX) or Vitamin D (Vit D) was administered for 72 h prior to exposure to ALA. Confocal images of histological sections were captured and digitally analyzed to determine relative PpIX levels. PpIX in the tumors was also monitored by real-time in vivo fluorescence dosimetry. In both models, a significant increase in levels of PpIX was observed following pretreatment with MTX or Vit D, as compared to no-pretreatment controls. This enhancing effect was observed at very low, non-cytotoxic concentrations, and was highly specific to cancer cells as compared to normal cells. These results suggest that use of differentiating agents such as MTX or Vit D, as a short-term combination therapy given prior to ALA-PDT, can increase the production of PpIX photosensitizer and enhance the therapeutic response of skin cancers.

  1. Modulation of biomarkers related to tumor initiation and promotion in mouse skin by a natural β-glucuronidase inhibitor and its precursors.

    PubMed

    Kowalczyk, Magdalena C; Spears, Erick; Narog, Maciej; Zoltaszek, Robert; Kowalczyk, Piotr; Hanausek, Margaret; Yoshimi, Naoki; Slaga, Thomas J; Walaszek, Zbigniew

    2011-09-01

    Carcinogen-mediated labilization of lysosomal enzymes such as β-glucuronidase (βG) is often associated with the general process of inflammation. Therefore, the primary goal of this study was to demonstrate that exposing the skin of SENCAR mice to the natural βG inhibitor D-glucaro-1,4-lactone (1,4-GL) and its precursor D-glucuronic acid-γ-lactone (GUL), prior to and during 7,12-dimethylbenz[α]anthracene (DMBA) treatment inhibits not only epidermal hyperplasia but also inflammation in the mouse skin complete carcinogenesis model, i.e., the 4-week inflammatory-hyperplasia assay. Topical administration of 1,4-GL or GUL prior to repetitive, high-dose DMBA treatment markedly and in a dose-related manner inhibited DMBA-induced epidermal hyperplasia (i.e., up to 57%). DMBA-mediated Ha-ras mutations in codon 61 were reduced by up to 78% by 1,4-GL. DMBA-induced inflammation, as measured by dermal leukocyte counts and immunologically, was inhibited by up to 37% by topical 1,4-GL but not by GUL. The inhibition of cellular proliferation and inflammation coincided with the inhibition of βG expression. Thus, the present study suggests that in the DMBA-induced complete skin carcinogenesis model, 1,4-GL when applied topically had both anti-proliferative properties as well as anti-inflammatory properties, whereas GUL had only anti-proliferative when applied topically. However, the number of inflammatory cells in the dermal portion of the skin of mice was significantly reduced by dietary treatment of GUL, whereas both topical and dietary treatments with 1,4-GL were very effective.

  2. Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility

    PubMed Central

    2011-01-01

    Background Germline polymorphisms can influence gene expression networks in normal mammalian tissues and can affect disease susceptibility. We and others have shown that analysis of this genetic architecture can identify single genes and whole pathways that influence complex traits, including inflammation and cancer susceptibility. Whether germline variants affect gene expression in tumors that have undergone somatic alterations, and the extent to which these variants influence tumor progression, is unknown. Results Using an integrated linkage and genomic analysis of a mouse model of skin cancer that produces both benign tumors and malignant carcinomas, we document major changes in germline control of gene expression during skin tumor development resulting from cell selection, somatic genetic events, and changes in the tumor microenvironment. The number of significant expression quantitative trait loci (eQTL) is progressively reduced in benign and malignant skin tumors when compared to normal skin. However, novel tumor-specific eQTL are detected for several genes associated with tumor susceptibility, including IL18 (Il18), Granzyme E (Gzme), Sprouty homolog 2 (Spry2), and Mitogen-activated protein kinase kinase 4 (Map2k4). Conclusions We conclude that the genetic architecture is substantially altered in tumors, and that eQTL analysis of tumors can identify host factors that influence the tumor microenvironment, mitogen-activated protein (MAP) kinase signaling, and cancer susceptibility. PMID:21244661

  3. Skin Carcinogenesis Studies Using Mouse Models with Altered Polyamines

    PubMed Central

    Nowotarski, Shannon L; Feith, David J; Shantz, Lisa M

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is a major health concern worldwide. With increasing numbers in high-risk groups such as organ transplant recipients and patients taking photosensitizing medications, the incidence of NMSC continues to rise. Mouse models of NMSC allow us to better understand the molecular signaling cascades involved in skin tumor development in order to identify novel therapeutic strategies. Here we review the models designed to determine the role of the polyamines in NMSC development and maintenance. Elevated polyamines are absolutely required for tumor growth, and dysregulation of their biosynthetic and catabolic enzymes has been observed in NMSC. Studies using mice with genetic alterations in epidermal polyamines suggest that they play key roles in tumor promotion and epithelial cell survival pathways, and recent clinical trials indicate that pharmacological inhibitors of polyamine metabolism show promise in individuals at high risk for NMSC. PMID:26380554

  4. Biological activity of the bryostatin analog Merle 23 on mouse epidermal cells and mouse skin.

    PubMed

    Kelsey, Jessica S; Cataisson, Christophe; Chen, Jinqiu; Herrmann, Michelle A; Petersen, Mark E; Baumann, David O; McGowan, Kevin M; Yuspa, Stuart H; Keck, Gary E; Blumberg, Peter M

    2016-12-01

    Bryostatin 1, a complex macrocyclic lactone, is the subject of multiple clinical trials for cancer chemotherapy. Although bryostatin 1 biochemically functions like the classic mouse skin tumor promoter phorbol 12-myristate 13-acetate (PMA) to bind to and activate protein kinase C, paradoxically, it fails to induce many of the typical phorbol ester responses, including tumor promotion. Intense synthetic efforts are currently underway to develop simplified bryostatin analogs that preserve the critical functional features of bryostatin 1, including its lack of tumor promoting activity. The degree to which bryostatin analogs maintain the unique pattern of biological behavior of bryostatin 1 depends on the specific cellular system and the specific response. Merle 23 is a significantly simplified bryostatin analog that retains bryostatin like activity only to a limited extent. Here, we show that in mouse epidermal cells the activity of Merle 23 was either similar to bryostatin 1 or intermediate between bryostatin 1 and PMA, depending on the specific parameter examined. We then examined the hyperplastic and tumor promoting activity of Merle 23 on mouse skin. Merle 23 showed substantially reduced hyperplasia and was not tumor promoting at a dose comparable to that for PMA. These results suggest that there may be substantial flexibility in the design of bryostatin analogs that retain its lack of tumor promoting activity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Oncogenic Radiation Abscopal Effects In Vivo: Interrogating Mouse Skin

    SciTech Connect

    Mancuso, Mariateresa; Leonardi, Simona; Giardullo, Paola; Pasquali, Emanuela; Tanori, Mirella; De Stefano, Ilaria; Casciati, Arianna; Naus, Christian C.; Pazzaglia, Simonetta; Saran, Anna

    2013-08-01

    Purpose: To investigate the tissue dependence in transmission of abscopal radiation signals and their oncogenic consequences in a radiosensitive mouse model and to explore the involvement of gap junction intercellular communication (GJIC) in mediating radiation tumorigenesis in off-target mouse skin. Methods and Materials: Patched1 heterozygous (Ptch1{sup +/−}) mice were irradiated at postnatal day 2 (P2) with 10 Gy of x-rays. Individual lead cylinders were used to protect the anterior two-thirds of the body, whereas the hindmost part was directly exposed to radiation. To test the role of GJICs and their major constituent connexin43 (Cx43), crosses between Ptch1{sup +/−} and Cx43{sup +/−} mice were similarly irradiated. These mouse groups were monitored for their lifetime, and skin basal cell carcinomas (BCCs) were counted and recorded. Early responses to DNA damage - Double Strand Breaks (DSBs) and apoptosis - were also evaluated in shielded and directly irradiated skin areas. Results: We report abscopal tumor induction in the shielded skin of Ptch1{sup +/−} mice after partial-body irradiation. Endpoints were induction of early nodular BCC-like tumors and macroscopic infiltrative BCCs. Abscopal tumorigenesis was significantly modulated by Cx43 status, namely, Cx43 reduction was associated with decreased levels of DNA damage and oncogenesis in out-of-field skin, suggesting a key role of GJIC in transmission of oncogenic radiation signals to unhit skin. Conclusions: Our results further characterize the nature of abscopal responses and the implications they have on pathologic processes in different tissues, including their possible underlying mechanistic bases.

  6. Anti-tumor-promoting activity of a polyphenolic fraction isolated from grape seeds in the mouse skin two-stage initiation-promotion protocol and identification of procyanidin B5-3'-gallate as the most effective antioxidant constituent.

    PubMed

    Zhao, J; Wang, J; Chen, Y; Agarwal, R

    1999-09-01

    Procyanidins present in grape seeds are known to exert anti-inflammatory, anti-arthritic and anti-allergic activities, prevent skin aging, scavenge oxygen free radicals and inhibit UV radiation-induced peroxidation activity. Since most of these events are associated with the tumor promotion stage of carcinogenesis, these studies suggest that grape seed polyphenols and the procyanidins present therein could be anticarcinogenic and/or anti-tumor-promoting agents. Therefore, we assessed the anti-tumor-promoting effect of a polyphenolic fraction isolated from grape seeds (GSP) employing the 7,12-dimethylbenz[a]anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol 13-acetate (TPA)-promoted SENCAR mouse skin two-stage carcinogenesis protocol as a model system. Following tumor initiation with DMBA, topical application of GSP at doses of 0.5 and 1.5 mg/mouse/application to the dorsal initiated mouse skin resulted in a highly significant inhibition of TPA tumor promotion. The observed anti-tumor-promoting effects of GSP were dose dependent and were evident in terms of a reduction in tumor incidence (35 and 60% inhibition), tumor multiplicity (61 and 83% inhibition) and tumor volume (67 and 87% inhibition) at both 0.5 and 1.5 mg GSP, respectively. Based on these results, we directed our efforts to separate and identify the individual polyphenols present in GSP and assess their antioxidant activity in terms of inhibition of epidermal lipid peroxidation. Employing HPLC followed by comparison with authentic standards for retention times in HPLC profiles, physiochemical properties and spectral analysis, nine individual polyphenols were identified as catechin, epicatechin, procyanidins B1-B5 and C1 and procyanidin B5-3'-gallate. Five of these individual polyphenols with evident structural differences, namely catechin, procyanidin B2, procyanidin B5, procyanidin C1 and procyanidin B5-3'-gallate, were assessed for antioxidant activity. All of them significantly inhibited

  7. Analysis of a Mouse Skin Model of Tuberous Sclerosis Complex

    PubMed Central

    Guo, Yanan; Dreier, John R.; Cao, Juxiang; Du, Heng; Granter, Scott R.; Kwiatkowski, David J.

    2016-01-01

    Tuberous Sclerosis Complex (TSC) is an autosomal dominant tumor suppressor gene syndrome in which patients develop several types of tumors, including facial angiofibroma, subungual fibroma, Shagreen patch, angiomyolipomas, and lymphangioleiomyomatosis. It is due to inactivating mutations in TSC1 or TSC2. We sought to generate a mouse model of one or more of these tumor types by targeting deletion of the Tsc1 gene to fibroblasts using the Fsp-Cre allele. Mutant, Tsc1ccFsp-Cre+ mice survived a median of nearly a year, and developed tumors in multiple sites but did not develop angiomyolipoma or lymphangioleiomyomatosis. They did develop a prominent skin phenotype with marked thickening of the dermis with accumulation of mast cells, that was minimally responsive to systemic rapamycin therapy, and was quite different from the pathology seen in human TSC skin lesions. Recombination and loss of Tsc1 was demonstrated in skin fibroblasts in vivo and in cultured skin fibroblasts. Loss of Tsc1 in fibroblasts in mice does not lead to a model of angiomyolipoma or lymphangioleiomyomatosis. PMID:27907099

  8. Mouse Models of Tumor Immunotherapy.

    PubMed

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients.

  9. Pulsed laser radiation therapy of skin tumors

    SciTech Connect

    Kozlov, A.P.; Moskalik, K.G.

    1980-11-15

    Radiation from a neodymium laser was used to treat 846 patients with 687 precancerous lesions or benign tumors of the skin, 516 cutaneous carcinomas, 33 recurrences of cancer, 51 melanomas, and 508 metastatic melanomas in the skin. The patients have been followed for three months to 6.5 years. No relapses have been observed during this period. Metastases to regional lymph nodes were found in five patients with skin melanoma. Pulsed laser radiation may be successfully used in the treatment of precancerous lesions and benign tumors as well as for skin carcinoma and its recurrences, and for skin melanoma. Laser radiation is more effective in the treatment of tumors inaccessible to radiation therapy and better in those cases in which surgery may have a bad cosmetic or even mutilating effect. Laser beams can be employed in conjunction with chemo- or immunotherapy.

  10. Biological characteristics of mouse skin melanocytes.

    PubMed

    Shi, Zhanquan; Ji, Kaiyuan; Yang, Shanshan; Zhang, Junzhen; Yao, Jianbo; Dong, Changsheng; Fan, Ruiwen

    2016-04-01

    The objective of this research was to evaluate the optimal passage number according to the biological characteristics of mouse skin melanocytes from different passages. Skin punch biopsies harvested from the dorsal region of 2-day old mice were used to establish melanocyte cultures. The cells from passage 4, 7, 10 and 13 were collected and evaluated for their melanogenic activity. Histochemical staining for tyrosinase (TYR) activity and immunostaining for the melanocyte specific markers including S-100 antigen, TYR, tyrosinase related protein 1 (TYRP1), tyrosinase related protein 2 (TYRP2) and micropthalmia associated transcription factor (MITF) confirmed purity and melanogenic capacity of melanocytes from different passages, with better melanogenic activity of passage 10 and 13 cells being observed. Treatment of passage 13 melanocytes with α-melanocyte stimulating hormone (α-MSH) showed increased expression of MITF, TYR and TYRP2 mRNA. However, considering the TYR mRNA dramatically high expression which is the characteristics of melanoma cells, melanocytes from passage 10 was the optimal passage number for the further research. Our results demonstrate culture of pure populations of mouse melanocytes to at least 10 passages and illustrate the potential utility of passage 10 cells for studies of intrinsic and extrinsic regulation of genes controlling pigmentation and coat color in mouse.

  11. Mouse models of gastrointestinal tumors.

    PubMed

    Taketo, Makoto Mark

    2006-05-01

    The laboratory mouse (Mus musculus) has become one of the best model animal species in biomedical research today because of its abundant genetic/genomic information, and easy mutagenesis using transgenic and gene knockout technology. Genetically engineered mice have become essential tools in both mechanistic studies and drug development. In this article I will review recent topics in gastrointestinal cancer model mice, with emphasis on the results obtained in our laboratory. They include: (i) mouse models for familial adenomatous polyposis (Apc mutant mice; modifier genes of Apc intestinal polyposis; stabilizing beta-catenin mutant mice); (ii) mouse models for colon cancer (mouse models for hereditary non-polyposis colon cancer; additional mutations in Apc mutant mice; models with mutations in other genes; models for colon cancer associated with inflammatory bowel diseases); and (iii) mouse models for gastric cancer.

  12. Ultraviolet radiation-induced non-melanoma skin cancer in the Crl:SKH1:hr-BR hairless mouse: augmentation of tumor multiplicity by chlorophyllin and protection by indole-3-carbinol.

    PubMed

    Cope, R B; Loehr, C; Dashwood, R; Kerkvliet, N I

    2006-05-01

    Over 1 million new cases of ultraviolet radiation-induced non-melanoma skin cancers (NMSC) per year now occur in the USA and the incidence of these diseases continues to increase. New preventative strategies are required. The hypothesis tested was that dietary administration of the putative cancer chemopreventatives sodium-copper-chlorophyllin (Chlor) or indole-3-carbinol (I3C) would inhibit UV-induced skin carcinogenesis in the Crl:SKH1:hr-BR hairless mouse. Groups of 20 mice were pre-fed isocaloric/isonutritive 20% corn-oil AIN-76a based diets that contained either Chlor (1.52 g%), I3C (5.08 g%) or no chemopreventative (control) for 2 weeks followed by exposure of their dorsal skin to a 10 week incremental, sub-erythemal, carcinogenic simulated solar UV exposure regime. Feeding was continued for the duration of the experiment. Matched non-UV exposed dietary groups were also included in the experimental design. The diets had no significant (p > 0.05) effect on body weight, feed consumption, cutaneous methanol-extractable UV photoprotective substances or on cutaneous UV-reflective characteristics. By day 180, UV-irradiated mice fed the Chlor had a significantly (p < 0.05) higher tumor multiplicity (33.6 +/- 4.72; mean +/- SEM) than UV-irradiated control animals (22.8 +/- 4.25). UV-irradiated mice fed I3C had a significantly (p < 0.001) lower tumor multiplicity (13.0 +/- 2.42) than that of both the UV-irradiated control and UV-irradiated Chlor-fed mice. The Chlor or I3C diets did not significantly (p > 0.05) affect UV-induced systemic suppression of contact hypersensitivity responses. These results demonstrate augmentation of the UV-induced cutaneous carcinogenic process by dietary chlorophyllin and protection from this carcinogenic process by indole-3-carbinol via mechanisms that do not involve changes in skin optical properties, modulation of photoimmunosuppression or caloric/nutrient effects.

  13. The vitamin D receptor: a tumor suppressor in skin.

    PubMed

    Bikle, Daniel David

    2011-01-01

    Epidemiologic evidence supporting a major chemopreventive role for vitamin D in various malignancies is strong. Likewise the use of the active metabolite of vitamin D, 1,25(OH)(2)D(3), and its analogs to prevent and/or treat a wide variety of malignancies in animals is well established. The evidence has been less compelling for epidermal carcinogenesis perhaps because the same agent that produces vitamin D in the skin, UVB radiation (UVR), is also the same agent that results in most epidermal malignancies. However, recent studies indicate that the role of vitamin D and its receptor (VDR) in protecting against the development of epidermal tumors deserves a closer look. One such study found mice lacking the VDR were quite sensitive to epidermal tumor formation following the administration of the carcinogen DMBA. A more recent study showed that these mice were similarly more sensitive to tumor formation following UVR, results we have confirmed. The epidermis of the VDR null mouse is hyperproliferative with gross distortion of hair follicles, structures that may provide the origin for the tumors found in the skin following such treatment. Two interacting pathways critical for epidermal and hair follicle function, beta-catenin and hedgehog (Hh), result in epidermal tumors when they are activated abnormally. Thus, we considered the possibility that loss of VDR predisposes to epidermal tumor formation by activation of either or both beta-catenin and Hh signaling. We determined that all elements of the Hh signaling pathway are upregulated in the epidermis and utricles of the VDR null mouse, and that 1,25(OH)(2)D(3) suppresses the expression of these elements in normal mouse skin. In addition we observed that the transcriptional activity of beta-catenin was increased in keratinocytes lacking the VDR. These results lead us to the hypothesis that the VDR with its ligand 1,25(OH)(2)D(3) functions as a tumor suppressor with respect to epidermal tumor formation in response to

  14. SENCAR mouse skin tumorigenesis model versus other strains and stocks of mice.

    PubMed Central

    Slaga, T J

    1986-01-01

    The SENCAR mouse stock was selectively bred for eight generations for sensitivity to skin tumor induction by the two-stage tumorigenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as the promoter. The SENCAR mouse was derived by crossing Charles River CD-1 mice with skin-tumor-sensitive mice (STS). The SENCAR mice are much more sensitive to both DMBA tumor initiation and TPA tumor promotion than CD-1, BALB/c, and DBA/2 mice. An even greater difference in the sensitivity to two-stage skin tumorigenesis is apparent between SENCAR and C57BL/6 mice when using DMBA-TPA treatment. However, the SENCAR and C57BL/6 mice have a similar tumor response to DMBA-benzoyl peroxide treatment, suggesting that TPA is not an effective promoter in C57BL/6 mice. The DBA/2 mice respond in a similar manner to the SENCAR mice when using N-methyl-N-nitro-N-nitrosoguanidine (MNNG)-TPA treatment. The SENCAR mouse model provides a good dose-response relationship for many carcinogens used as tumor initiators and for many compounds used as tumor promoter. When compared to other stocks and strains of mice, the SENCAR mouse has one of the largest data bases for carcinogens and promoters. PMID:3096709

  15. SENCAR mouse skin tumorigenesis model versus other strains and stocks of mice

    SciTech Connect

    Slaga, T.J.

    1986-09-01

    The SENCAR mouse stock was selectively bred for eight generations for sensitivity to skin tumor induction by the two-stage tumorigenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA) as the initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as the promoter. The SENCAR mouse was derived by crossing Charles River CD-1 mice with skin-tumor-sensitive mice (STS). The SENCAR mice are much more sensitive to both DMBA tumor initiation and TPA tumor promotion than CD-1, BALB/c, and DBA/2 mice. An even greater difference in the sensitivity to two-stage skin tumorigenesis is apparent between SENCAR and C57BL/6 mice when using DMBA-TPA treatment. However, the SENCAR and C57BL/6 mice have a similar tumor response to DMBA-benzoyl peroxide treatment, suggesting that TPA is not an effective promoter in C57BL/6 mice. The DBA/2 mice respond in a similar manner to the SENCAR mice when using N-methyl-N-nitro-N-nitrosoguanidine (MNNG)-TPA treatment. The SENCAR mouse model provides a good dose-response relationship for many carcinogens used as tumor initiators and for many compounds used as tumor promoter. When compared to other stocks and strains of mice, the SENCAR mouse has one of the largest data bases for carcinogens and promoters.

  16. Mouse Genetic Models Reveal Surprising Functions of IκB Kinase Alpha in Skin Development and Skin Carcinogenesis

    PubMed Central

    Xia, Xiaojun; Park, Eunmi; Fischer, Susan M.; Hu, Yinling

    2013-01-01

    Gene knockout studies unexpectedly reveal a pivotal role for IκB kinase alpha (IKKα) in mouse embryonic skin development. Skin carcinogenesis experiments show that Ikkα heterozygous mice are highly susceptible to chemical carcinogen or ultraviolet B light (UVB) induced benign and malignant skin tumors in comparison to wild-type mice. IKKα deletion mediated by keratin 5 (K5).Cre or K15.Cre in keratinocytes induces epidermal hyperplasia and spontaneous skin squamous cell carcinomas (SCCs) in Ikkα floxed mice. On the other hand, transgenic mice overexpressing IKKα in the epidermis, under the control of a truncated loricrin promoter or K5 promoter, develop normal skin and show no defects in the formation of the epidermis and other epithelial organs, and the transgenic IKKα represses chemical carcinogen or UVB induced skin carcinogenesis. Moreover, IKKα deletion mediated by a mutation, which generates a stop codon in the Ikkα gene, has been reported in a human autosomal recessive lethal syndrome. Downregulated IKKα and Ikkα mutations and deletions are found in human skin SCCs. The collective evidence not only highlights the importance of IKKα in skin development, maintaining skin homeostasis, and preventing skin carcinogenesis, but also demonstrates that mouse models are extremely valuable tools for revealing the mechanisms underlying these biological events, leading our studies from bench side to bedside. PMID:24216703

  17. Intravital imaging of a spheroid-based orthotopic model of melanoma in the mouse ear skin

    PubMed Central

    Chan, Keefe T.; Jones, Stephen W.; Brighton, Hailey E.; Bo, Tao; Cochran, Shelly D.; Sharpless, Norman E.; Bear, James E.

    2017-01-01

    Multiphoton microscopy is a powerful tool that enables the visualization of fluorescently tagged tumor cells and their stromal interactions within tissues in vivo. We have developed an orthotopic model of implanting multicellular melanoma tumor spheroids into the dermis of the mouse ear skin without the requirement for invasive surgery. Here, we demonstrate the utility of this approach to observe the primary tumor, single cell actin dynamics, and tumor-associated vasculature. These methods can be broadly applied to investigate an array of biological questions regarding tumor cell behavior in vivo. PMID:28748125

  18. Photoeffects of near ultraviolet light upon a polycyclic aromatic hydrocarbon exposed to mouse skin microsomes

    SciTech Connect

    Peirano, W.B.

    1991-01-01

    Near ultraviolet (UV) light has been reported to both enhance and inhibit the tumor incidence in mice dermally exposed to benzo(a)pyrene (BaP) or polycyclic aromatic hydrocarbon (PAH) mixtures. Near UV light interacts with PAHs producing a variety of oxygenated products such as phenols, endoperoxides and quinones. However, little is known about BaP products formed from near UV irradiation of BaP-exposed mouse skin. Therefore, [sup 14]C-BaP was incubated with 3-methylcholanthrene (3-MC) induced C[sub 3]H/HeJ and DBA/2J mouse skin microsomes with or without a 365 nm light source. The results indicated that the concurrent 365 nm light irradiation of induced mouse skin microsomes and BaP greatly enhanced the total conversion of BaP to its products, approximately 3-fold for the C[sub 3]H/HeJ and approximately 7-fold for the DBA/2J mouse microsomes, compared to the induced mouse skin microsomes and BaP alone. HPLC analyses of organic extracts indicated a more than additive enhancement of the formation of most of the individual cochromatographed BaP metabolites due to the combined interaction of 365 nm light with BaP and skin microsomes. Similar interactions were observed using benz(a)anthracene (BaA) in this system. These data show that near UV light alters the metabolic profile of PAHs produced by mouse skin microsomes.

  19. The malignant conversion step of mouse skin carcinogenesis

    SciTech Connect

    Yuspa, S.H.; Hennings, H.; Roop, D.; Strickland, J.; Greenhalgh, D.A. )

    1990-08-01

    Multiple benign squamous papillomas commonly precede the development of an occasional squamous cell carcinoma in mouse skin carcinogenesis. The incidence of carcinomas can be enhanced by treating papilloma-bearing mice with mutagens such as urethane, nitroquinoline-N-oxide, or cisplatinum. This observation suggests that a genetic change is required for malignant conversion. The malignant phenotype is characterized by a marked reduction in the transcription of specific epidermal differentiation markers, a pattern which is useful for the early diagnosis of malignant conversion. Cells expressing a benign phenotype can be obtained by introducing the v-ras{sup Ha} oncogene into cultured epidermal cells by a replication-defective retrovirus. Alternatively, benign tumor cells can be cultured from papillomas induced by chemical carcinogens in vivo or from carcinogen-treated mouse epidermis. In all cases, the benign phenotype in vitro is characterized by an altered biological response to changes in extracellular calcium, an important determinant of the differentiation state of cultured normal keratinocytes. Transfection of cloned plasmid DNA into benign tumor cells has revealed that transforming constructs of the fos oncogene induce malignant conversion, whereas myc and adenovirus E1A oncogenes do not. Cultured normal epidermal cells, exposed to the v-ras and the v-fos oncogenes simultaneously, are malignantly transformed. Alone, the fos oncogene does not detectably alter the phenotype of normal keratinocytes. These studies indicate that a limited number of genes is involved in epidermal carcinogenesis.

  20. The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes.

    PubMed

    Gerber, Peter Arne; Buhren, Bettina Alexandra; Schrumpf, Holger; Homey, Bernhard; Zlotnik, Albert; Hevezi, Peter

    2014-06-01

    The mouse represents a key model system for the study of the physiology and biochemistry of skin. Comparison of skin between mouse and human is critical for interpretation and application of data from mouse experiments to human disease. Here, we review the current knowledge on structure and immunology of mouse and human skin. Moreover, we present a systematic comparison of human and mouse skin transcriptomes. To this end, we have recently used a genome-wide database of human gene expression to identify genes highly expressed in skin, with no, or limited expression elsewhere - human skin-associated genes (hSAGs). Analysis of our set of hSAGs allowed us to generate a comprehensive molecular characterization of healthy human skin. Here, we used a similar database to generate a list of mouse skin-associated genes (mSAGs). A comparative analysis between the top human (n=666) and mouse (n=873) skin-associated genes (SAGs) revealed a total of only 30.2% identity between the two lists. The majority of shared genes encode proteins that participate in structural and barrier functions. Analysis of the top functional annotation terms revealed an overlap for morphogenesis, cell adhesion, structure, and signal transduction. The results of this analysis, discussed in the context of published data, illustrate the diversity between the molecular make up of skin of both species and grants a probable explanation, why results generated in murine in vivo models often fail to translate into the human.

  1. Diffusion of (2-/sup 14/C)diazepam across hairless mouse skin and human skin

    SciTech Connect

    Koch, R.L.; Palicharla, P.; Groves, M.J.

    1987-05-01

    The objectives of this study were to investigate the absorption of diazepam applied topically to the hairless mouse in vivo and to determine the diffusion of diazepam across isolated hairless mouse skin and human skin. (/sup 14/C)Diazepam was readily absorbed after topical administration to the intact hairless mouse, a total of 75.8% of the /sup 14/C-label applied being recovered in urine and feces. Diazepam was found to diffuse across human and hairless mouse skin unchanged in experiments with twin-chambered diffusion cells. The variation in diffusion rate or the flux for both human and mouse tissues was greater among specimens than between duplicate or triplicate trials for a single specimen. Fluxes for mouse skin (stratum corneum, epidermis, and dermis) were greater than for human skin (stratum corneum and epidermis): 0.35-0.61 microgram/cm2/h for mouse skin vs 0.24-0.42 microgram/cm2/h for human skin. The permeability coefficients for mouse skin ranged from 1.4-2.4 X 10(-2)cm/h compared with 0.8-1.4 X 10(-2)cm/h for human skin. Although human stratum corneum is almost twice the thickness of that of the hairless mouse, the diffusion coefficients for human skin were 3-12 times greater (0.76-3.31 X 10(-6) cm2/h for human skin vs 0.12-0.27 X 10(-6) cm2/h for hairless mouse) because of a shorter lag time for diffusion across human skin. These differences between the diffusion coefficients and diffusion rates (or permeability coefficients) suggest that the presence of the dermis may present some barrier properties. In vitro the dermis may require complete saturation before the diazepam can be detected in the receiving chamber.

  2. Cooperative Nanoparticle System for Photothermal Tumor Treatment without Skin Damage.

    PubMed

    Piao, Ji-Gang; Liu, Dong; Hu, Kan; Wang, Limin; Gao, Feng; Xiong, Yujie; Yang, Lihua

    2016-02-03

    How to ablate tumors without using skin-harmful high laser irradiance remains an ongoing challenge for photothermal therapy. Here, we achieve this with a cooperative nanosystem consisting of gold nanocage (AuNC) "activator" and a cationic mammalian-membrane-disruptive peptide, cTL, as photothermal antenna and anticancer agent, respectively. Specifically, this nanosystem is prepared by grafting cTL onto AuNC via a Au-S bond, followed by attachment of thiolated polyethylene glycol (PEG) for stealth effects. Upon NIR irradiation at skin-permissible dosage, the resulting cTL/PEG-AuNC nanoparticle effectively ablates both irradiated and nonirradiated cancer cells, likely owing to cTL being responsively unleashed by intracellular thiols exposed to cTL/PEG-AuNC via membrane damage initiated by AuNC's photothermal effects and deteriorated by the as-released cTL. When administered systematically in a mouse model, cTL/PEG-AuNC populates tumors through their porous vessels and effectively destroys them without damaging skin.

  3. Inflammatory myofibroblastic tumor of the skin.

    PubMed

    Vadmal, M S; Pellegrini, A E

    1999-10-01

    We report a case of inflammatory myofibroblastic tumor (IMF) of the skin in a female with a history of Wegeners granulomatosis. The patient had a painless, erythematous, and indurated lesion of the left elbow. The resected specimen revealed a 4 cm x 3 cm nodule involving the entire dermis and superficial portions of subcutis with a stellate profile at scanning magnification. There were spindle cells in fascicles and whorls and a mixed inflammatory cell infiltrate of plasma cells, lymphocytes, neutrophils, and eosinophils. The spindle cells were immunoreactive for vimentin, muscle specific actin, and smooth muscle actin. The polyclonal and polymorphous nature of the inflammatory cells was confirmed by immunohistochemical studies. This is the first case of IMF of the skin documented by immunostaining.

  4. Targeting tissue factor on tumor vascular endothelial cells and tumor cells for immunotherapy in mouse models of prostatic cancer.

    PubMed

    Hu, Z; Garen, A

    2001-10-09

    The efficacy and safety of an immunoconjugate (icon) molecule, composed of a mutated mouse factor VII (mfVII) targeting domain and the Fc effector domain of an IgG1 Ig (mfVII/Fc icon), was tested with a severe combined immunodeficient (SCID) mouse model of human prostatic cancer and an immunocompetent mouse model of mouse prostatic cancer. The SCID mice were first injected s.c. with a human prostatic tumor line, forming a skin tumor that produces a high blood titer of prostate-specific antigen and metastasizes to bone. The icon was encoded in a replication-incompetent adenoviral vector that was injected directly into the skin tumor. The tumor cells infected by the vector synthesize and secrete the icon into the blood, and the blood-borne icon binds with high affinity and specificity to mouse tissue factor expressed on endothelial cells lining the lumen of the tumor vasculature and to human tissue factor expressed on the tumor cells. The Fc domain of the icon activates a cytolytic immune attack against cells that bind the icon. The immunotherapy tests in SCID mice demonstrated that intratumoral injections of the adenoviral vector encoding the mfVII/human Fc icon resulted in long-term regression of the injected human prostatic tumor and also of a distant uninjected tumor, without associated toxicity to the mice. Comparable results were obtained with a SCID mouse model of human melanoma. At the end of the experiments the mice appeared to be free of viable tumor cells. This protocol also could be efficacious for treating cancer patients who have vascularized tumors.

  5. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    SciTech Connect

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-06-27

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C {r_arrow} A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C {r_arrow} T, two C {r_arrow} A, one C {r_arrow} G, and one A {r_arrow} T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab.

  6. Hyperelastic Material Properties of Mouse Skin under Compression

    PubMed Central

    Wang, Yuxiang; Marshall, Kara L.; Baba, Yoshichika; Gerling, Gregory J.; Lumpkin, Ellen A.

    2013-01-01

    The skin is a dynamic organ whose complex material properties are capable of withstanding continuous mechanical stress while accommodating insults and organism growth. Moreover, synchronized hair cycles, comprising waves of hair growth, regression and rest, are accompanied by dramatic fluctuations in skin thickness in mice. Whether such structural changes alter skin mechanics is unknown. Mouse models are extensively used to study skin biology and pathophysiology, including aging, UV-induced skin damage and somatosensory signaling. As the skin serves a pivotal role in the transfer function from sensory stimuli to neuronal signaling, we sought to define the mechanical properties of mouse skin over a range of normal physiological states. Skin thickness, stiffness and modulus were quantitatively surveyed in adult, female mice (Mus musculus). These measures were analyzed under uniaxial compression, which is relevant for touch reception and compression injuries, rather than tension, which is typically used to analyze skin mechanics. Compression tests were performed with 105 full-thickness, freshly isolated specimens from the hairy skin of the hind limb. Physiological variables included body weight, hair-cycle stage, maturity level, skin site and individual animal differences. Skin thickness and stiffness were dominated by hair-cycle stage at young (6–10 weeks) and intermediate (13–19 weeks) adult ages but by body weight in mature mice (26–34 weeks). Interestingly, stiffness varied inversely with thickness so that hyperelastic modulus was consistent across hair-cycle stages and body weights. By contrast, the mechanics of hairy skin differs markedly with anatomical location. In particular, skin containing fascial structures such as nerves and blood vessels showed significantly greater modulus than adjacent sites. Collectively, this systematic survey indicates that, although its structure changes dramatically throughout adult life, mouse skin at a given location

  7. The Tumor Suppressor Actions of the Vitamin D Receptor in Skin

    DTIC Science & Technology

    2014-10-01

    Vitamin D Receptor in Skin PRINCIPAL INVESTIGATOR: Daniel D. Bikle, M.D., Ph.D. CONTRACTING ORGANIZATION: Northern California Institute for...SUBTITLE The Tumor Suppressor Actions of the Vitamin D Receptor in Skin 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-12-1-0235 5c. PROGRAM...13. SUPPLEMENTARY NOTES 14. ABSTRACT The epidermis of the mouse lacking the vitamin D receptor (VDR) is susceptible to chemical and UVB

  8. Ability of m-chloroperoxybenzoic acid to induce the ornithine decarboxylase marker of skin tumor promotion and inhibition of this response by gallotannins, oligomeric proanthocyanidins, and their monomeric units in mouse epidermis in vivo

    Treesearch

    Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Steven W. Newell; Vittorio Bottari; Richard W. Hemingway; Jean-Pierre Perchellet

    1995-01-01

    m-Chloroperoxybenzoic acid (CPBA) was tested for its ability to induce the ornithine decarboxylase (ODC) marker of skin tumor promotion. In contrast to benzoyl peroxide, dicumyl peroxide, and 2-butanol peroxide, 5 mg of CPBA applied twice at a 72-h interval induce DOC activity at least as much as 3 µg of 12-O-tetradecanoylphorbol-13.acetate (TPA)....

  9. Ability of m-chloroperoxybenzoic acid to induce the ornithine decarboxylase marker of skin tumor promotion and inhibition of this response by gallotannins, oligomeric proanthocyanidins, and their monomeric units in mouse epidermis in Vivo

    Treesearch

    Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Steven W. Newell; richard W. Hemingway; Vittorio Bottari; Jean-Pierre Perchellet

    1995-01-01

    m-Chloroperoxybenzoic acid (CPBA) was tested for its ability to induce the ornithine decarboxylase (ODC) marker of skin tumor promotion. In contrast to benzoyl peroxide, dicumyl peroxide, and 2-butanol peroxide, 5 mg of CPBA applied twice at a 72-h interval induce ODC activity at least as much as 3 ug of 12-O-tetradecanoylphorbol-13-acetate (TPA). ODC induction peaks...

  10. Carcinogenesis of nitrated toluenes and benzenes, skin and lung tumor assays in mice. Final report

    SciTech Connect

    Slaga, T.J.; Triplett, L.L.; Smith, L.H.; Witschi, H.P.

    1985-05-01

    A series of nitrated toluenes and benzene were tested for their capability to act as initiators, promoters or complete carcinogens in mouse skin. 2,6- dinitrotoluenes and 2-nitrotoluene were found to have weak skin tumor initiating activity. 2,4-dinitrotoluene, 2,6-dinitrotoluenes and 1,3,5-trinitrobenzene produced histological changes in skin which usually are produced by promoting agents; this finding suggests that the three compounds could have skin tumor promoting activity. However, a firm conclusion can only be reached following appropriate in vivo tests. In the lung tumor assay, none of the chemicals tested gave an unequivocal positive response. A borderline positive result for unpurified 2,6-dinitrotoluene could not be repeated when the purified compound was reassayed in the same assay. 19 refs., 9 tabs.

  11. Cdk4 deficiency inhibits skin tumor development but does not affect normal keratinocyte proliferation.

    PubMed

    Rodriguez-Puebla, Marcelo L; Miliani de Marval, Paula L; LaCava, Margaret; Moons, David S; Kiyokawa, Hiroaki; Conti, Claudio J

    2002-08-01

    Most human tumors have mutations that result in deregulation of the cdk4/cyclin-Ink4-Rb pathway. Overexpression of D-type cyclins or cdk4 and inactivation of Ink4 inhibitors are common in human tumors. Conversely, lack of cyclin D1 expression results in significant reduction in mouse skin and mammary tumor development. However, complete elimination of tumor development was not observed in these models, suggesting that other cyclin/cdk complexes play an important role in tumorigenesis. Here we described the effects of cdk4 deficiency on mouse skin proliferation and tumor development. Cdk4 deficiency resulted in a 98% reduction in the number of tumors generated through the two-stage carcinogenesis model. The absence of cdk4 did not affect normal keratinocyte proliferation and both wild-type and cdk4 knockout epidermis are equally affected after topical treatment with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), resulting in epidermal hyperplasia. In similar fashion, cdk4 knockout keratinocytes proliferated well in an in vivo model of wound-induced proliferation. Biochemical studies in mouse epidermis showed that cdk6 activity increased twofold in cdk4-deficient mice compared to wild-type siblings. These results suggest that therapeutic approaches to inhibit cdk4 activity could provide a target to inhibit tumor development with minimal or no effect in normal tissue.

  12. Safety and Efficacy of Transplantation with Allogeneic Skin Tumors to Treat Chemically-Induced Skin Tumors in Mice

    PubMed Central

    Zhang, Zhiwei; Sun, Hua; Zhang, Jianhua; Ge, Chunlei; Dong, Suwei; Li, Zhen; Li, Ruilei; Chen, Xiaodan; Li, Mei; Chen, Yun; Zou, Yingying; Qian, Zhongyi; Yang, Lei; Yang, Jinyan; Zhu, Zhitao; Liu, Zhimin; Song, Xin

    2016-01-01

    Background Transplantation with allogeneic cells has become a promising modality for cancer therapy, which can induce graft-versus-tumor (GVT) effect. This study was aimed at assessing the safety, efficacy, and tissue type GVT (tGVT) response of transplantation with allogeneic skin tumors to treat chemically-induced skin tumors in mice. Material/Methods FVB/N and ICR mice were exposed topically to chemicals to induce skin tumors. Healthy ICR mice were transplanted with allogeneic skin tumors from FVB/N mice to test the safety. The tumor-bearing ICR mice were transplanted with, or without, allogeneic skin tumors to test the efficacy. The body weights (BW), body condition scores (BCS), tumor volumes in situ, metastasis tumors, overall survival, and serum cytokines were measured longitudinally. Results Transplantation with no more than 0.03 g allogeneic skin tumors from FVB/N mice to healthy ICR mice was safe. After transplantation with allogeneic skin tumors to treat tumor-bearing mice, it inhibited the growth of tumors slightly at early stage, accompanied by fewer metastatic tumors at 24 days after transplantation (21.05% vs. 47.37%), while there were no statistically significant differences in the values of BW, BCS, tumor volumes in situ, metastasis tumors, and overall survival between the transplanted and non-transplanted groups. The levels of serum interleukin (IL)-2 were significantly reduced in the controls (P<0.05), but not in the recipients, which may be associated with the tGVT response. Conclusions Our results suggest that transplantation with allogeneic skin tumors is a safe treatment in mice, which can induce short-term tGVT response mediated by IL-2. PMID:27587310

  13. Suppressive function of RKTG on chemical carcinogen-induced skin carcinogenesis in mouse.

    PubMed

    Xie, Xiaoduo; Zhang, Yixuan; Jiang, Yuhui; Liu, Weizhong; Ma, Hong; Wang, Zhenzhen; Chen, Yan

    2008-08-01

    Raf kinase trapping to Golgi (RKTG) is a newly characterized negative regulator of the Ras-Raf-MEK-ERK signaling pathway via sequestrating Raf-1 to the Golgi apparatus. However, little is known about the physiological functions of RKTG in mitogenic pathway and carcinogenesis. Here, we describe a suppressive role of RKTG in skin carcinogenesis by analyzing chemical carcinogen-induced tumorigenesis. Epidermis hyperplasia and proliferation are increased in RKTG-deficient mice (RKTG(-/-)) after acute treatment with 7, 12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). Using a two-stage DMBA/TPA carcinogenesis protocol on mouse skin, the number and size of papillomas are increased in RKTG(-/-) mice, accompanied by shortened tumor latency and enhanced keratinocyte proliferation. The regression of the carcinogen-induced tumors is also prolonged in RKTG(-/-) mice. Consistently, the levels of Raf-1 and extracellular signal-regulated kinase phosphorylation in primary keratinocytes as well as skin tumors are elevated when RKTG is disrupted. Collectively, our results indicate that RKTG has a suppressive activity in chemical carcinogen-induced mitogenesis and tumor formation in mouse skin.

  14. Hydrocortisone Diffusion Through Synthetic Membrane, Mouse Skin, and Epiderm™ Cultured Skin

    PubMed Central

    Christensen, John Mark; Chuong, Monica Chang; Le, Hang; Pham, Loan; Bendas, Ehab

    2011-01-01

    Objectives The penetration of hydrocortisone (HC) from six topical over-the-counter products along with one prescription cream through cultured normal human-derived epidermal keratinocytes (Epiderm™), mouse skin and synthetic nylon membrane was performed as well as the effect hydrating the skin by pre-washing was explored using the Upright Franz Cell. Method and Results Permeation of HC through EpiDerm™, mouse skin and synthetic membrane was highest with the topical HC gel formulation with prewash treatment of the membranes among seven products evaluated, 198 ± 32 µg/cm2, 746.32 ± 12.43 µg/cm2, and 1882 ± 395.18 µg/cm2, respectively. Pre-washing to hydrate the skin enhanced HC penetration through EpiDerm™ and mouse skin. The 24-hour HC released from topical gel with prewash treatment was 198.495 ± 32 µg/cm2 and 746.32 ± 12.43 µg/cm2 while without prewash, the 24-h HC released from topical gel was 67.2 ± 7.41 µg/cm2 and 653.43 ± 85.62 µg/cm2 though EpiDerm™ and mouse skin, respectively. HC penetration through synthetic membrane was ten times greater than through mouse skin and EpiDerm™. Generally, the shape, pattern, and rank order of HC diffusion from each commercial product was similar through each membrane. PMID:21572515

  15. Inhibition of TPA-induced tumor promotion in CD-1 mouse epidermis by a polyphenolic fraction from grape seeds.

    PubMed

    Bomser, J A; Singletary, K W; Wallig, M A; Smith, M A

    1999-01-29

    The anti-tumor promoting activity of a polyphenolic fraction from grape seeds (GSP) was examined in CD-1 mouse skin epidermis. Specifically, the ability of this fraction to inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced tumor promotion and two markers of promotion in mouse skin, ornithine decarboxylase (ODC) and myeloperoxidase (MPO) activities, was evaluated. Pretreatment of mouse skin with 5, 10, 20 and 30 mg of GSP resulted in a dose-dependent reduction in TPA-induced epidermal ODC activity of 27, 37, 48 and 70%, respectively, compared to controls. In addition, pretreatment of mouse skin with 1, 5, 10 and 20 mg of GSP resulted in a significant 43, 39, 54 and 73% inhibition of MPO activity, respectively, compared to controls. In 7,12-dimethylbenz[a]anthracene (DMBA)-initiated CD-1 mice, biweekly treatment of mouse skin with 5, 10, and 20 mg of GSP 20 min prior to TPA application resulted in a 30, 40, and 60% inhibition of final skin tumor incidence, respectively, compared to controls. In addition, the final number of tumors per mouse in the 5, 10 and 20 mg GSP-treated animals was decreased 63, 51, and 94%, respectively, compared to controls. These studies indicate that GSP possesses anti-tumor promoting activity when applied to CD-1 mouse skin prior to treatment with TPA. The mechanism of this tumor inhibition is due, in part, to a GSP-associated inhibition of TPA-induced epidermal ODC and MPO activities. Thus, GSP warrants further evaluation as a skin cancer chemopreventative agent.

  16. Mouse allergen-specific immunoglobulin G4 and risk of mouse skin test sensitivity.

    PubMed

    Matsui, E C; Diette, G B; Krop, E J M; Aalberse, R C; Smith, A L; Eggleston, P A

    2006-08-01

    High serum levels of cat-specific IgG and IgG4 are associated with protection against allergic sensitization to cat, but whether this association applies to other animal allergens remains unclear. To determine if high levels of mouse-specific IgG and IgG4 are associated with a decreased risk of mouse skin test sensitivity. Two hundred and sixty workers of a mouse facility underwent skin prick testing and completed a questionnaire. Serum levels of mouse-specific IgG and IgG4 were quantified by solid-phase antigen binding assays. Room air samples were collected and airborne Mus m 1 was quantified by ELISA. Forty-nine participants had a positive skin prick test to mouse. Mouse-specific IgG was detected in 219 (84%) participants and IgG4 was detected in 72 (28%) participants. A detectable mouse-specific IgG4 level was associated with an increased risk of mouse skin test sensitivity (odds ratios (OR) 6.4, 95% confidence intervals (CI) 3.3-12.4). Mouse-specific IgG and IgG4 were both positively correlated with mouse allergen exposure (r(s)=0.31, P=0.0001, and r(s)=0.27, P=0.0006, respectively). The odds of skin test sensitivity peaked at moderate levels of IgG4, but decreased at the highest levels of mouse-specific IgG4. In contrast, the odds of skin test sensitivity increased monotonically with IgG levels. A detectable level of mouse-specific IgG4 is associated with an increased risk of skin test sensitivity to mouse. However, the highest IgG4 levels appear to be associated with an attenuated risk of mouse skin test sensitivity, suggesting that induction of high levels of IgG4 through natural exposure may protect against the development of allergic sensitization.

  17. Chk1 is essential for chemical carcinogen-induced mouse skin tumorigenesis.

    PubMed

    Tho, L M; Libertini, S; Rampling, R; Sansom, O; Gillespie, D A

    2012-03-15

    Chk1 is a key regulator of DNA damage checkpoint responses and genome stability in eukaryotes. To better understand how checkpoint proficiency relates to cancer development, we investigated the effects of genetic ablation of Chk1 in the mouse skin on tumors induced by chemical carcinogens. We found that homozygous deletion of Chk1 immediately before carcinogen exposure strongly suppressed benign tumor (papilloma) formation, and that the few, small lesions that formed in the ablated skin always retained Chk1 expression. Remarkably, Chk1 deletion rapidly triggered spontaneous cell proliferation, γ-H2AX staining and apoptosis within the hair follicle, a principal site of origin for carcinogen-induced tumors. At later times, the ablated skin was progressively repopulated by non-recombined Chk1-expressing cells and ultimately normal sensitivity to tumor induction was restored when carcinogen treatment was delayed. In marked contrast, papillomas formed normally in Chk1 hemizygous skin but showed an increased propensity to progress to carcinoma. Thus, complete loss of Chk1 is incompatible with epithelial tumorigenesis, whereas partial loss of function (haploinsufficiency) fosters benign malignant tumor progression.

  18. Heme synthesis in normal mouse liver and mouse liver tumors

    SciTech Connect

    Stout, D.L.; Becker, F.F. )

    1990-04-15

    Hepatic cancers from mice and rats demonstrate decreased levels of delta-aminolevulinic acid synthase, the rate-limiting enzyme in the heme synthetic pathway, and increased heme oxygenase, the heme-catabolizing enzyme. These findings suggest that diminution of P-450, b5, and catalase in these lesions may result from a heme supply that is limited by decreased heme synthesis and increased heme catabolism. Heme synthesis was measured in mouse liver tumors (MLT) and adjacent tumor-free lobes (BKG) by administering the radiolabeled heme precursors {sup 55}FeCl3 and (2-{sup 14}C)glycine and subsequently extracting the heme for determination of specific activity. Despite reduced delta-aminolevulinic acid synthase activity in MLT, both tissues incorporated (2-14C)glycine into heme at similar rates. At early time points, heme extracted from MLT contained less 55Fe than that from BKG. This was attributed to the findings that MLT took up 55Fe at a slower rate than BKG and had larger iron stores than BKG. The amount of heme per milligram of protein was also similar in both tissues. These findings militate against the hypothesis that diminished hemoprotein levels in MLT result from limited availability of heme. It is probable, therefore, that decreased hemoprotein levels in hepatic tumors are linked to a general program of dedifferentiation associated with the cancer phenotype. Diminution of hemoprotein in MLT may result in a relatively increased intracellular heme pool. delta-Aminolevulinic acid synthase and heme oxygenase are, respectively, negatively and positively regulated by heme. Thus, their alteration in MLT may be due to the regulatory influences of the heme pool.

  19. [Accomplishments of tumor surgery in tumors of the skin].

    PubMed

    Kraas, E; Abri, O; Löhde, E

    1988-01-01

    Skin tumours are classified by potential for causing disease and skin layer involvement. Primary diagnosis of skin tumours is established by escision biopsy, i.e. narrow excision of the tumour-adjacent tissue. Depending on the histological results, a secondary excision may be required. In this procedure a malignant tumour is assumed during the primary excision, which is performed according to "relaxed skin tension lines." Besides the fundamental interconnection of diagnostic and therapeutic principles the cosmetic-aesthetic aspects of skin tumour treatment are of utmost importance. Every operation performed for skin tumour follows the rules of plastic surgery.

  20. Lack of involvement of 6-hydroxymethylation in benzo[a]pyrene skin tumor initiation in mice.

    PubMed

    Slaga, T J; Bracken, W M; Viaje, A; Berry, D L; Fischer, S M; Miller, D R

    1978-08-01

    The skin tumor-initiating activities of benzo[a]pyrene (BP), 6-hydroxymethylbenzo[a]pyrene (6-OH-CH2-BP), and 6-methylbenzo[a]pyrene (6-CH3-BP), as well as the effects of 7,8-benzoflavone (7,8-BF), quercetin, and 1-benzylimidazole on their activity, were determined in outbred female CD-1 mice by use of a two stage system of tumorigenesis. The skin tumor-initiating activity of 6-OH-CH2-BP and 6-CH3-BP was 12.5 and 20%, respectively, of the activity of BP, 7,8-BF had little effect on the skin tumor-initiating activity of 6-OH-CH2-BP and 6-CH3-BP. However, a dose-dependent inhibition of BP tumorigenesis by 7,8-BF was noted. Quercetin and 1-benzylimidazole also inhibited BP skin tumor-initiating activity. These findings indicated that direct hydroxymethylation of BP is not an important pathway in the activation of BP in mouse skin tumor initiation.

  1. Chemopreventive effects of pomegranate seed oil on skin tumor development in CD1 mice.

    PubMed

    Hora, Justin J; Maydew, Emily R; Lansky, Ephraim P; Dwivedi, Chandradhar

    2003-01-01

    Pomegranate seed oil was investigated for possible skin cancer chemopreventive efficacy in mice. In the main experiment, two groups consisting each of 30, 4-5-week-old, female CD(1) mice were used. Both groups had skin cancer initiated with an initial topical exposure of 7,12-dimethylbenzanthracene and with biweekly promotion using 12-O-tetradecanoylphorbol 13-acetate (TPA). The experimental group was pretreated with 5% pomegranate seed oil prior to each TPA application. Tumor incidence, the number of mice containing at least one tumor, was 100% and 93%, and multiplicity, the average number of tumors per mouse, was 20.8 and 16.3 per mouse after 20 weeks of promotion in the control and pomegranate seed oil-treated groups, respectively (P <.05). In a second experiment, two groups each consisting of three CD(1) mice were used to assess the effect of pomegranate seed oil on TPA-stimulated ornithine decarboxylase (ODC) activity, an important event in skin cancer promotion. Each group received a single topical application of TPA, with the experimental group receiving a topical treatment 1 h prior with 5% pomegranate seed oil. The mice were killed 5 h later, and ODC activity was assessed by radiometric method. The experimental group showed a 17% reduction in ODC activity. Pomegranate seed oil (5%) significantly decreased (P <.05) tumor incidence, multiplicity, and TPA-induced ODC activity. Overall, the results highlight the potential of pomegranate seed oil as a safe and effective chemopreventive agent against skin cancer.

  2. Biology of human skin transplanted to the nude mouse: I. Response to agents which modify epidermal proliferation.

    PubMed

    Krueger, G G; Shelby, J

    1981-06-01

    To accept human skin transplanted to the congenitally athymic (nude) mouse as a system to study human skin and its physiologic and pathologic states, it must be demonstrated that skin so maintained retains its function as a biologic unit. We have found that responses of grafted human skin and nude mouse skin to various agents differ. This difference in response has been utilized to assess barrier function and proliferative capacity of human skin grafts. Human skin grafts undergo a proliferative response when 10 ng of the tumor promoter, 12-O-tetradecanoyl phorbol 13-acetate (TPA) is applied. Nudes do not respond to this dose. Increasing the dose to 100 ng of TPA evokes a response in both. However, only in the human skin grafts can this response be blocked with betamethasone valerate (BV). In that human skin grafts do not take on their hosts' responsiveness, and the response of domestic pig skin to these agents before and after grafting is identical, the conclusion is reached that human skin appears to retain its inherent biologic unit function. The data also demonstrate some of the potential of this system to study kinetics of the epidermis of human skin.

  3. Recovery and Cultivation of Keratinocytes From Shipped Mouse Skin.

    PubMed

    Yang, Hsin-Ya; La, Thi Dinh; Gurenko, Zhanna; Steenhuis, Pieter; Liu, Wei; Isseroff, R Rivkah

    2015-02-01

    Murine keratinocyte culture from neonatal skin is an important tool for studying the functional role of specific genes in epithelial biology. However, when the transgenic animal is only available in a geographically distant local, obtaining viable keratinocytes can be problematic. A method for transferring the isolated murine skin from collaborating labs could decrease the cost of shipping live animals, and would allow the efficient use of the tissues from the transgenic animals. Here we optimized shipping conditions and characterized the cells retrieved and cultured from mouse skin shipped for 48 h at 0 °C. The cultured keratinocytes from the control, non-shipped skin and the 2-day shipped skin were 43.6 +/- 7.8% viable, doubled every 2 days, and expressed comparable amounts of heat shock proteins and CD29/integrin beta-1. However, under the same shipping conditions, the 3-day shipped tissue failed to establish colonies in the culture. Therefore, this 2-day shipping technique allows the transfer mouse skin from distant locations with recovery of viable, propagatable keratinocytes, facilitating long-distance collaborations.

  4. Adaptor protein p62 promotes skin tumor growth and metastasis and is induced by UVA radiation.

    PubMed

    Sample, Ashley; Zhao, Baozhong; Qiang, Lei; He, Yu-Ying

    2017-09-08

    Skin cancer is the most common cancer, and exposure to ultraviolet (UV) radiation, namely UVA and UVB, is the major risk factor for skin cancer development. UVA is significantly less effective in causing direct DNA damage than UVB, but UVA has been shown to increase skin cancer risk. The mechanism by which UVA contributes to skin cancer remains unclear. Here, using RNA-Seq, we show that UVA induces autophagy and lysosomal gene expression, including the autophagy receptor and substrate p62. We found that UVA activates transcription factor EB (TFEB), a known regulator of autophagy and lysosomal gene expression, which, in turn, induces p62 transcription. Next, we identified a novel relationship between p62 and cyclooxygenase-2 (COX-2), a prostaglandin synthase critical for skin cancer development. COX-2 expression was up-regulated by UVA-induced p62, suggesting that p62 plays a role in UVA-induced skin cancer. Moreover, we found that p62 stabilizes COX-2 protein through the p62 ubiquitin-associated domain and that p62 regulates prostaglandin E2 production in vitro In a syngeneic squamous cell carcinoma mouse model, p62 knockdown inhibited tumor growth and metastasis. Furthermore, p62-deficient tumors exhibited reduced immune cell infiltration and increased cell differentiation. Because prostaglandin E2 is known to promote pro-tumorigenic immune cell infiltration, increase proliferation, and inhibit keratinocyte differentiation in vivo, this work suggests that UVA-induced p62 acts through COX-2 to promote skin tumor growth and progression. These findings expand our understanding of UVA-induced skin tumorigenesis and tumor progression and suggest that targeting p62 can help prevent or treat UVA-associated skin cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Multi-stage chemical carcinogenesis in mouse skin: Fundamentals and applications

    PubMed Central

    Abel, Erika L.; Angel, Joe M; Kiguchi, Kaoru; DiGiovanni, John

    2011-01-01

    For more than 60 years, the chemical induction of tumors in mouse skin has been used to study mechanisms of epithelial carcinogenesis and evaluate modifying factors. In the traditional two-stage skin carcinogenesis model, initiation is accomplished by the application of a subcarcinogenic dose of a carcinogen. Subsequently, tumor development is elicited by repeated treatment with a tumor promoting agent. The initiation protocol can be completed within 1–3 hours depending on the number of mice used, while the promotion phase requires twice weekly treatments (1–2 hours) and once weekly tumor palpation (1–2 hours) for the duration of the study. A highly reproducible papilloma burden is expected within 10–20 weeks with progression of a portion of the tumors to squamous cell carcinomas within 20–50 weeks. In contrast to complete skin carcinogenesis, the two-stage model allows for greater yield of premalignant lesions as well as separation of the initiation and promotion phases. PMID:19713956

  6. Tumors of the skin and soft tissues

    SciTech Connect

    Weller, R.E.

    1991-10-01

    The majority of the body surface is covered by the skin. Many internal disorders are reflected in the condition of the skin. One of the major functions of the skin is protection of the other organ systems from a variety of environmental insults. In this role, the skin itself is exposed to factors that can ultimately cause chronic diseases and cancer. Since it is relatively easy to recognize skin abnormalities, most skin cancers are brought to professional attention sooner than other types of cancer. However, due to the close resemblance between many skin neoplasms and noncancerous dermatologic disorders, these neoplasms may be mistreated for months or even years. In veterinary oncology, as in human medicine, most cancers can be effectively treated or cured following an accurate diagnosis. Once diagnosed, skin neoplasms should be aggressively treated. If causal factors are known, exposure to these factors should be limited through removal of the agent (for chemical carcinogens) or limiting exposure to the agent (for other carcinogens such as sunlight). 10 tabs. (MHB)

  7. Metabolic conversion of 12-O-tetradecanoylphorbol-13-acetate in adult and newborn mouse skin and mouse liver microsomes.

    PubMed

    Berry, D L; Bracken, W M; Fischer, S M; Viaje, A; Slaga, T J

    1978-08-01

    Tritiated 12-O-tetradecanoylphorbol-13-acetate (TPA) was applied to adult mouse skin; at specified time intervals the mice were killed, and the labeled phorbol was extracted and subjected to separation and quantitation by high-pressure liquid chromatography. After 24 hr, TPA comprised greater than 96% of the recovered label from the skin, and its apparent half-life was 17.8 hr. Pretreatment of adult skin with TPA for 4 weeks before treatment with labeled TPA resulted in an increase in the clearance rate of TPA from the skin. Skin from newborn mice was capable of converting TPA into monoesters and phorbol, but the clearance rate in the adult was about 12 times more rapid than it was in the newborn. Epidermal homogenates converted TPA into 12-O-tetradecanoylphorbol, phorbol-13-acetate, and phorbol. Hepatic homogenates were able to convert TPA to monoesters and phorbol at rates 14 to 15 times faster than were epidermal homogenates. Attempts to isolate any previously undescribed metabolites of TPA by use of liver homogenates were unsuccessful, and mixed-function oxidation did not contribute to the metabolism of TPA. From inhibitor studies it was judged that esterases were implicated in the conversion of TPA to monoesters and phorbol. The results support the hypothesis that the tumor-promoting activity of TPA is directly related to its concentration in a specific tissue and that conversion of TPA to an active metabolite probably does not occur.

  8. Studies on inhibitors of skin tumor promotion, XII. Rotenoids from Amorpha fruticosa.

    PubMed

    Konoshima, T; Terada, H; Kokumai, M; Kozuka, M; Tokuda, H; Estes, J R; Li, L; Wang, H K; Lee, K H

    1993-06-01

    As a part of screening studies for chemopreventive agents (anti-tumor-promoters), six North American plants belonging to the Amorpha genus were tested using an in vitro assay system. Of these plants, Amorpha fruticosa exhibited strong inhibitory effects on Epstein-Barr virus early antigen (EBA-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Also six rotenoids, amorphispironone [1], tephrosin [2], amorphigenin [3], 12a-hydroxyamorphigenin [4], 12a-hydroxydalpanol [5], and 6'-O-D-glucopyranosyldalpanol [6], were isolated from the leaves of A. fruticosa. Among these retenoids, 1 and 2 exhibited remarkable inhibitory effects of EBV-EA activation induced by TPA. Further, 1 and 2 exhibited significant anti-tumor-promotion effects on mouse skin tumor promotion in an in vivo two-stage carcinogenesis test. These investigations suggested that these rotenoids might be valuable anti-tumor-promoters.

  9. Indication guidelines for Mohs micrographic surgery in skin tumors*

    PubMed Central

    Cernea, Selma Schuartz; Gontijo, Gabriel; Pimentel, Eugenio Raul de Almeida; Tarlé, Roberto Gomes; Tassara, Glaysson; Ferreira, Juliana Areas de Souza Lima Beltrame; Fernandes, Victor Miguel Coutinho; Bernardo, Wanderley Marques

    2016-01-01

    Mohs micrographic surgery is a technique used to excise skin tumors based on comprehensive surgical mapping, in which the surgeon removes the tumor, followed by a complete histological evaluation of the tumor's margins. The correlation of the presence of a tumor in histological examinations and its precise location on the surgical map result in a complete removal of the tumor with maximum normal tissue preservation. The present article seeks to provide general practitioners and healthcare specialists with guidelines regarding recommendations for Mohs micrographic surgery to treat skin tumors, based on the most reliable evidence available in medical literature on the subject. This bibliographic review of scientific articles in this line of research was conducted based on data collected from MEDLINE/PubMed. The search strategy used in this study was based on structured questions in the Patient, Intervention, Control, and Outcome (PICO) format. MeSH terms were used as descriptors. The indications of this technique are related to recurrence, histology, size, definition of tumor margins, and location of tumors. These guidelines attempt to establish the indications of Mohs surgery for different types of skin tumors. PMID:27828636

  10. Increased dermal elastic fibers in the tight skin mouse.

    PubMed

    Chatterjee, S; Mark, M E; Wooley, P H; Lawrence, W D; Mayes, M D

    2004-01-01

    The tight skin (Tsk-1) mouse has been proposed as a model for systemic sclerosis on the basis of increased accumulation of collagen and glycosaminoglycans in the skin, and by the presence of serum autoantibodies. The genetic basis of the mutation has been identified as a genomic duplication within the fibrillin-1 (Fbn-1) gene that results in a larger than normal Fbn-1 transcript, but the mechanism that leads to dermal fibrosis is unclear Fibrillin molecules associate into a polymer that is coated with elastin molecules to form elastic fibers. To further evaluate the Tsk-1 mouse model of scleroderma, we have studied elastic fibers in the skin of these mice. Skin sections obtained from C57BL/6-TSK+ (Tsk-1) and C57BL6-pa/+ (control) mice were stained with Masson's trichrome for evaluation of collagen and Gomori's aldehyde fuchsin stain for elastic tissue. Computer assisted image analysis was performed to quantify differences in histologic sections. Tsk-1 mice had a highly significant increase in the percentage of elastic fibers (19.6%) in the dermis compared to control mice (7.9%) [p < 0.001]. This correlates with the findings in the skin of systemic sclerosis patients where increased elastic fibers have been observed. In addition, an increased level of dermal collagen staining was also observed in the Tsk-1 dermis (82.9%) compared with the level in normal sections (73.7%) [p < 0.01]. These data support the use of the Tsk-1 mouse as a model for the connective tissue abnormalities of human scleroderma.

  11. Metabolism of Skin-Absorbed Resveratrol into Its Glucuronized Form in Mouse Skin

    PubMed Central

    Pluskal, Tomáš; Ito, Ken; Hori, Kousuke; Ebe, Masahiro; Yanagida, Mitsuhiro; Kondoh, Hiroshi

    2014-01-01

    Resveratrol (RESV) is a plant polyphenol, which is thought to have beneficial metabolic effects in laboratory animals as well as in humans. Following oral administration, RESV is immediately catabolized, resulting in low bioavailability. This study compared RESV metabolites and their tissue distribution after oral uptake and skin absorption. Metabolomic analysis of various mouse tissues revealed that RESV can be absorbed and metabolized through skin. We detected sulfated and glucuronidated RESV metabolites, as well as dihydroresveratrol. These metabolites are thought to have lower pharmacological activity than RESV. Similar quantities of most RESV metabolites were observed 4 h after oral or skin administration, except that glucuronidated RESV metabolites were more abundant in skin after topical RESV application than after oral administration. This result is consistent with our finding of glucuronidated RESV metabolites in cultured skin cells. RESV applied to mouse ears significantly suppressed inflammation in the TPA inflammation model. The skin absorption route could be a complementary, potent way to achieve therapeutic effects with RESV. PMID:25506824

  12. Curcumin Stimulates the Antioxidant Mechanisms in Mouse Skin Exposed to Fractionated γ-Irradiation.

    PubMed

    Jagetia, Ganesh Chandra; Rajanikant, Golgod Krishnamurthy

    2015-01-13

    Fractionated irradiation is one of the important radiotherapy regimens to treat different types of neoplasia. Despite of the immense therapeutic gains accrued by delivering fractionated irradiation to tumors, the radiation burden on skin increases significantly. Low doses of irradiation to skin adversely affect its molecular and metabolic status. The use of antioxidant/s may help to alleviate the radiation-induced changes in the skin and allow delivering a higher dose of radiation to attain better therapeutic gains. Curcumin is an antioxidant and a free radical scavenging dietary supplement, commonly used as a flavoring agent in curries. Therefore, the effect of 100 mg/kg body weight curcumin was studied on the antioxidant status of mice skin exposed to a total dose of 10, 20 and 40 Gy γ-radiation below the rib cage delivered as a single fraction of 2 Gy per day for 5, 10 or 20 days. Skin biopsies from both the curcumin treated or untreated irradiated groups were collected for the biochemical estimations at various post-irradiation times. The irradiation of animals caused a dose dependent decline in the glutathione concentration, glutathione peroxidase, and superoxide dismutase activities and increased the lipid peroxidation in the irradiated skin. Curcumin treatment before irradiation resulted in a significant rise in the glutathione concentration and activities of both the glutathione peroxidase and superoxide dismutase enzymes in mouse skin, whereas lipid peroxidation declined significantly. The present study indicates that curcumin treatment increased the antioxidant status of mouse exposed to different doses of fractionated γ-radiation.

  13. Identification of Tumor Rejection Antigens for Breast Cancer Using a Mouse Tumor Rejection Model

    DTIC Science & Technology

    2007-05-01

    of the mouse antigens. This comprehensive evaluation will only be performed to the antigens that show tumor protection effect in mice ; 3) test the...from the same mouse . The expression profile of these antigens were examined using real time RT-PCR. RNA was extracted from 3 normal...than tumor bearing mice is more likely to yield therapeutically relevant targets. We recognize that tumor implant model is not optimal in testing

  14. Cadmium stimulates mouse skin fibroblast apoptosis by affecting intracellular homeostasis.

    PubMed

    Wang, Hui; Yu, Yang; Li, Jingshuang; Wu, Handong; Sun, Jing; Zhang, Zhen; Geng, Lijing; Yu, Xiaolei; Liu, Zheng

    2017-01-01

    Cadmium (Cd(2+)) is an important industrial and environmental pollutant and has been shown to induce apoptosis in a variety of cell types and tissues. To assess the specific effects of low-dose Cd(2+ )on the skin. This organ is easily exposed to Cd(2+), but how it damages cells is not fully understood. Mouse skin fibroblasts were treated with low doses of Cd(2+ )(0.4, 0.8 or 1.6 μM) for 12-48 h, and we observed cell morphological alterations, measured DNA damage and quantified cell viability changes. Cd(2+)-treated fibroblasts exhibited morphological changes and evidence of DNA damage, as well as higher numbers of apoptotic and necrotic cells. There were increased caspase -3, -8 and -9 activities when fibroblasts were treated with 0.4, 0.8 and 1.6 μM CdCl2 for 24 h. Higher intracellular calcium (Ca(2+)) and reactive oxygen species (ROS) levels, and enhanced efflux of extracellular Ca(2+ )and potassium (K(+)). The mitochondrial membrane potential was lowered in treated cells, and the cell cycle arrested in the G0/G1 phase. Bax and Fas gene expression increased and Bcl-2 gene expression decreased. The results demonstrate that Cd(2+ )exerts typical apoptotic effects in mouse skin fibroblasts. It strongly inhibited proliferation and induced apoptosis in a dose- and duration-dependent manner. Ca(2+ )homeostasis was disturbed by oxidative stress, mitochondrial dysfunction and caspase-mediated apoptosis. K(+ )efflux and Bax, Bcl-2 and Fas gene expression regulation play important roles in Cd(2+)-induced dysfunction by disrupting intracellular homeostasis in mouse skin fibroblasts.

  15. Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors

    PubMed Central

    Kiebish, Michael A; Seyfried, Thomas N

    2005-01-01

    Background Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (OL) and the Arg tRNA. Methods In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. Results Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. Conclusion None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors. PMID:16105171

  16. p38 MAP Kinase Plays a Functional Role in UVB-Induced Mouse Skin Carcinogenesis

    PubMed Central

    Dickinson, Sally E.; Olson, Erik R.; Zhang, Jack; Cooper, Simon J.; Melton, Tania; Criswell, P. Jane; Casanova, Ana; Dong, Zigang; Hu, Chengcheng; Saboda, Kathylynn; Jacobs, Elizabeth T.; Alberts, David S.; Bowden, G. Tim

    2010-01-01

    UVB irradiation of epidermal keratinocytes results in the activation of the p38 MAPK pathway and subsequently activator protein-1 (AP-1) transcription factor activation and COX-2 expression. AP-1 and COX-2 have been shown to play functional roles in UVB-induced mouse skin carcinogenesis. In this study, the experimental approach was to express a dominant negative p38α MAPK (p38DN) in the epidermis of SKH-1 hairless mice and assess UVB-induced AP-1 activation, COX-2 expression and the skin carcinogenesis response in these mice compared to wild-type littermates. We observed a significant inhibition of UVB-induced AP-1 activation and COX-2 expression in p38DN transgenic mice, leading to a significant reduction of UVB-induced tumor number and growth compared to wild-type littermates in a chronic UVB skin carcinogenesis model. A potential mechanism for this reduction in tumor number and growth rate is an inhibition of chronic epidermal proliferation, observed as reduced Ki-67 staining in p38DN mice compared to wild-type. Although we detected no difference in chronic apoptotic rates between transgenic and non-transgenic mice, analysis of acutely irradiated mice demonstrated that expression of the p38DN transgene significantly inhibited UVB-induced apoptosis of keratinocytes. These results counter the concerns that inhibition of p38 MAPK in a chronic situation could compromise the ability of the skin to eliminate potentially tumorigenic cells. Our data indicate that p38 MAPK is a good target for pharmacological intervention for UV induced skin cancer in patients with sun damaged skin, and suggest that inhibition of p38 signaling reduces skin carcinogenesis by inhibiting COX-2 expression and proliferation of UVB-irradiated cells. PMID:21268131

  17. [Study of skin retraction applied to the treatment of skin tumors. Mapping of the human body].

    PubMed

    Dumas, P; Benatar, M; Cardot-Leccia, N; Lebreton, E; Chignon-Sicard, B

    2012-04-01

    Skin, the main organ of the human body, is equipped with own biomechanical characteristics, highly variable depending on intra-individual factors (location, weight status, dermatological diseases…) and interindividual (age, sex…). Despite some recent cutometric studies, our review of the literature shows that there is no currently reliable analytical model representing the biomechanical behavior of the skin. Yet, this is a central issue in dermatology surgery, especially in the treatment of skin tumors, for the proper observance of surgical margins. We studied prospectively on 75 resection specimens (about 71 patient(s)), for the treatment of skin lesions tumor suspicious or known malignant or benign. Room dimensions were measured before and 5 minutes after excision, leading us to calculate a ratio of retraction of the skin surface. This retraction was correlated with age, gender, tumor type, and anatomic location of the site of excision. The power of retraction of the skin varies significantly by region of the body. It is maximum in the upper limb (hand excluded) and in the cervical region. At the cephalic region, skin of the ear and periorbital skin have capacities of important early retraction. Unlike the lower limb (foot excluded), the back skin of the nose and face appear to be a minimum of shrinkage. Age also seems to change on that capacity shrinkage, sex would have no influence. Our study confirms the variations in the ability of skin retraction based on a number of factors. In dermato-oncology, that power retraction could cause significant differences between clinical surgical margins and final pathologist margins. We believe it must be taken into account by the couple surgeon-pathologist, especially in the context of invasive and/or recurrent tumors. Copyright © 2012. Published by Elsevier SAS.

  18. Chemically-induced Mouse Lung Tumors: Applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan

  19. Chemically-induced mouse lung tumors: applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all these three environmental chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that data showing mouse lung tumors with chemical exposures can be relevant for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism

  20. Chemically-induced Mouse Lung Tumors: Applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan

  1. Magnetohydrodynamic thermochemotherapy and MRI of mouse tumors

    NASA Astrophysics Data System (ADS)

    Brusentsov, Nikolay A.; Brusentsova, Tatiana N.; Filinova, Elena Yu.; Jurchenko, Nikolay Y.; Kupriyanov, Dmitry A.; Pirogov, Yuri A.; Dubina, Andry I.; Shumskikh, Maxim N.; Shumakov, Leonid I.; Anashkina, Ekaterina N.; Shevelev, Alexandr A.; Uchevatkin, Andry A.

    2007-04-01

    A dextran-ferrite magnetic fluid was successfully tested as magnetic resonance imaging (MRI) contrast agent. The same magnetic fluid was then combined with Melphalan, a chemotherapeutic drug, and used for magnetohydrodynamic thermochemotherapy of different tumors. The placement of the tumors in an AC magnetic field led to hyperthermia at 46 °C for 30 min. In combination with tumor slime aspiration, a 30% regression of ˜130 mm 3 non-metastatic P388 tumors in BDF 1 mice was reached, together with a life span increase of 290%. The same procedure associated with cyclophosphamide treatment of ˜500 mm 3 metastases tumor increased the animal's life span by 180%.

  2. Indocyanine green enhanced near infrared laser treatment of SCK tumors in a mouse model pilot study

    NASA Astrophysics Data System (ADS)

    Shafirstein, Gal; Bäumler, Wolfgang; Friedman, Ran; Hennings, Leah; Webber, Jessica; Suen, James; Griffin, Robert J.

    2011-03-01

    Background and Purpose. Determine the efficacy of indocyanine green (ICG) dye in enhancing near infrared (NIR) laser ablation of tumors in a mouse model. Methods. Mammary carcinoma cells of A/J mice were injected subcutaneously in the lower back of female A/J mice (n=6). Five to seven days post inoculation the tumors (7-9 mm) were treated with 755-nm laser using 70 J/cm2 radiant exposures and 3-ms pulse time. Epidermal cooling was accomplished by cryogen spray cooling. Two minutes prior to laser irradiation mice were injected, intravenously, with 4 mg/kg body weight of ICG solution. Results. Complete tumor ablation was observed in the tumor region and minor damage was seen in the healthy skin. No major skin damage was observed post treatment. Substantial damage (up to 100% coagulative necrosis) was observed in tissue collected from tumors that were treated with laser/ICG. Conclusions. Intravenous administration of 4 mg/kg ICG significantly enhanced thermal ablation of tumors during NIR laser irradiation while sparing healthy skin.

  3. In vitro percutaneous absorption in mouse skin: influence of skin appendages

    SciTech Connect

    Kao, J.; Hall, J.; Helman, G.

    1988-06-15

    Skin appendages are often envisaged as channels that bypass the stratum corneum barrier and are generally thought to facilitate the dermal absorption of topical agents. However, the significance of this transappendageal pathway in percutaneous absorption remains to be assessed experimentally. With the use of a skin organ culture penetration chamber system, the influence of skin appendages on the in vitro permeation of topically applied benzo(a)pyrene and testosterone (5 micrograms/2 cm2) was examined in skin preparations from both haired and hairless mice. Haired mice examined included the C57BL6, C3H, DBA2, Balbc, and Sencar strains and the hairless mice were the HRS and SKH. In all mouse strains examined, the overall permeation of testosterone (greater than 65% of applied dose) 16 hr following in vitro topical application was greater than that of benzo(a)pyrene (less than 10%). No strain differences were observed with respect to the percutaneous permeation of testosterone; however, percutaneous permeation of benzo(a)pyrene in the haired mice (7-10% of applied dose) was higher than that in the hairless mice (2%). In an in-house derived mouse strain which showed three phenotypic variants due to hair densities, the permeability to both compounds was highest in the skin of the haired phenotype (testosterone 67%, benzo(a)pyrene 7%), lowest in the hairless phenotype (35 and 1%, respectively) and intermediate in the fuzzy-haired animal (57 and 3%, respectively). Examination by fluorescence microscopy of cryosections of skin, prepared 1 hr after topical benzo(a)pyrene, showed areas of intense fluorescence deep within the nonfluorescing dermis of skin from the haired phenotype. These fluorescent areas were correlated with follicular ducts and sebaceous glands.

  4. Exposure of mouse skin to organic peroxides: subchronic effects related to carcinogenic potential.

    PubMed

    Hanausek, Margaret; Walaszek, Zbigniew; Viaje, Aurora; LaBate, Michael; Spears, Erick; Farrell, David; Henrich, Richard; Tveit, Ann; Walborg, Earl F; Slaga, Thomas J

    2004-03-01

    Screening of newly synthesized organic peroxides for tumor initiating/promoting activity would be greatly facilitated if predictive methodologies could be developed using topical exposures shorter than those required for definitive tumor assessment in mouse skin models. Nine organic peroxides [benzoyl peroxide (BZP), di-t-butyl peroxide (DTBP), t-butyl peroxybenzoate (TBPB), p-t-butyl isopropylbenzene hydroperoxide (TBIBHP), cumene hydroperoxide (CHP), dicetyl peroxydicarbonate (DPD), dicumyl peroxide (DCP), methyl ethyl ketone peroxide (MEKP) and O,O-t-butyl-O-(2-ethylhexyl) monoperoxycarbonate (TBEC)] were evaluated for their ability to increase biomarkers of tumor promotion in mouse skin, i.e. sustained epidermal hyperplasia, dermal inflammation and oxidative DNA damage. Evaluations were performed using SENCAR mice exposed topically for 4 weeks. The organic peroxides varied in their effects on these biomarkers. BZP, TBPB and TBIBHP exhibited significant increases in all three biomarkers associated with tumor promoting activity, CHP produced increases only in sustained epidermal hyperplasia and dermal inflammation, MEKP and DCP produced increases only in sustained epidermal hyperplasia and TBEC produced an increase only in dermal inflammation. DTBP and DPD had no effect on the three parameters studied. TBPB and TBIBHP were selected for further examination of their ability to produce mutations in codons 12, 13 and 61 of the c-Ha-ras protooncogene, i.e. those mutations known to be involved in the initiation of mouse skin tumors, because they were the only peroxides to exhibit significant positive results in all assays except the Ha-ras mutation following 4 weeks of exposure. Evaluations were performed using SENCAR mice dosed topically for 8 or 12 weeks in a complete carcinogenesis protocol or 16 weeks in an initiation/promotion protocol using 7,12-dimethylbenz[a]anthracene, urethane, benzo[a]pyrene and N-methyl-N'-nitro-N-nitrosoguanidine as positive controls

  5. The nude mouse model for the study of human skin disorders.

    PubMed

    Gilhar, A; Etzioni, A

    1994-01-01

    Normal human skin grafted onto the nude mouse can be maintained without any signs of rejection throughout the life-span of the animal. Indeed, the nude mouse model is a powerful tool for understanding the pathological process of the skin. Until now many skin diseases such as psoriasis, cutaneous lupus, pemphigus and vitiligo have been looked at using the nude mouse model, which has helped to clarify the role of the various factors involved.

  6. Metformin Inhibits Skin Tumor Promotion in Overweight and Obese Mice

    PubMed Central

    Checkley, L. Allyson; Rho, Okkyung; Angel, Joe M.; Cho, Jiyoon; Blando, Jorge; Beltran, Linda; Hursting, Stephen D.; DiGiovanni, John

    2014-01-01

    In the present study, the ability of metformin to inhibit skin tumor promotion by 12-O- tetradecanoylphorbol-13-acetate (TPA) was analyzed in mice maintained on either an overweight control diet or an obesity inducing diet. Rapamycin was included for comparison, and a combination of metformin and rapamycin was also evaluated. Metformin (given in the drinking water) and rapamycin (given topically) inhibited development of both papillomas and squamous cell carcinomas in overweight and obese mice in a dose-dependent manner. A low dose combination of these two compounds displayed an additive inhibitory effect on tumor development. Metformin treatment also reduced the size of papillomas. Interestingly, all treatments appeared to be at least as effective for inhibiting tumor formation in obese mice and both metformin and rapamycin were more effective at reducing tumor size in obese mice compared to overweight control mice. The effect of metformin on skin tumor development was associated with a significant reduction in TPA-induced epidermal hyperproliferation. Furthermore, treatment with metformin led to activation of epidermal AMPK and attenuated signaling through mTORC1 and p70S6K. Combinations of metformin and rapamycin were more effective at blocking epidermal mTORC1 signaling induced by TPA consistent with the greater inhibitory effect on skin tumor promotion. Collectively, the current data demonstrate that metformin given in the drinking water effectively inhibited skin tumor promotion in both overweight and obese mice and that the mechanism involves activation of epidermal AMPK and attenuated signaling downstream of mTORC1. PMID:24196830

  7. Mouse Tumor Biology Database (MTB): status update and future directions.

    PubMed

    Begley, Dale A; Krupke, Debra M; Vincent, Matthew J; Sundberg, John P; Bult, Carol J; Eppig, Janan T

    2007-01-01

    The Mouse Tumor Biology (MTB) database provides access to data about endogenously arising tumors (both spontaneous and induced) in genetically defined mice (inbred, hybrid, mutant and genetically engineered mice). Data include information on the frequency and latency of mouse tumors, pathology reports and images, genomic changes occurring in the tumors, genetic (strain) background and literature or contributor citations. Data are curated from the primary literature or submitted directly from researchers. MTB is accessed via the Mouse Genome Informatics web site (http://www.informatics.jax.org). Integrated searches of MTB are enabled through use of multiple controlled vocabularies and by adherence to standardized nomenclature, when available. Recently MTB has been redesigned and its database infrastructure replaced with a robust relational database management system (RDMS). Web interface improvements include a new advanced query form and enhancements to already existing search capabilities. The Tumor Frequency Grid has been revised to enhance interactivity, providing an overview of reported tumor incidence across mouse strains and an entrée into the database. A new pathology data submission tool allows users to submit, edit and release data to the MTB system.

  8. Evaluation of seven sunscreens on hairless mouse skin

    SciTech Connect

    Walter, J.F.

    1981-01-01

    The ability of seven sunscreens to protect against ultraviolet (UV)--induced inhibition of epidermal DNA synthesis was evaluated in vivo using a hairless mouse model. There were statistically significant differences among sunscreens in their ability to prevent UV-B (290 to 320 nm) inhibition of DNA synthesis. The protective factor (PF) of a sunscreen was arbitrarily defined as the ratio of the dose required to inhibit DNA synthesis by 50% with and without a sunscreen. The following PF values were determined: Coppertone 4, 4.4; Sundown Extra Protection, 8.4; Supershade 15, 21.0; Eclipse 15, 22.2; Blockout 15, 22.4; and Bain de Soleil 15, 27.6. Zinc oxide ointment protected against any significant suppression of DNA synthesis at all UV-B doses used. There was a relatively good correlation between the PF and the sun protection factor (SPF) claimed for each sunscreen by the manufacturer. However, the PF values determined in mouse skin were generally higher than the SPF values measured in human skin. Further studies are needed to determine if sunscreen substantivity (resistance to removal by water) can be evaluated by this technique.

  9. Efficacy of cabazitaxel in mouse models of pediatric brain tumors

    PubMed Central

    Girard, Emily; Ditzler, Sally; Lee, Donghoon; Richards, Andrew; Yagle, Kevin; Park, Joshua; Eslamy, Hedieh; Bobilev, Dmitri; Vrignaud, Patricia; Olson, James

    2015-01-01

    Background There is an unmet need in the treatment of pediatric brain tumors for chemotherapy that is efficacious, avoids damage to the developing brain, and crosses the blood-brain barrier. These experiments evaluated the efficacy of cabazitaxel in mouse models of pediatric brain tumors. Methods The antitumor activity of cabazitaxel and docetaxel were compared in flank and orthotopic xenograft models of patient-derived atypical teratoid rhabdoid tumor (ATRT), medulloblastoma, and central nervous system primitive neuroectodermal tumor (CNS-PNET). Efficacy of cabazitaxel and docetaxel were also assessed in the Smo/Smo spontaneous mouse medulloblastoma tumor model. Results This study observed significant tumor growth inhibition in pediatric patient-derived flank xenograft tumor models of ATRT, medulloblastoma, and CNS-PNET after treatment with either cabazitaxel or docetaxel. Cabazitaxel, but not docetaxel, treatment resulted in sustained tumor growth inhibition in the ATRT and medulloblastoma flank xenograft models. Patient-derived orthotopic xenograft models of ATRT, medulloblastoma, and CNS-PNET showed significantly improved survival with treatment of cabazitaxel. Conclusion These data support further testing of cabazitaxel as a therapy for treating human pediatric brain tumors. PMID:25140037

  10. Carcinogenesis of Nitrated Toluenes and Benzenes Skin and Lung Tumor Assays in Mice

    DTIC Science & Technology

    1985-05-01

    SLAGA ET AL. NAY 85 ORNL -TOX-82-1 UNCLASSIFIED DOE-IRG-40-i~i6-79 F/G 6/29 N LmhmhhII -4I LI 1. .6 I1.8 111jj 12511 .4 I1 . MICROCOPY RESOLUTION TEST...November 1979--March 1983 SKIN AND LUNG TUMOR ASSAYS IN MICE 6. PERFORMING ORG. REPORT NUMBER - ORNL TOX 82-i 7. AUTI4OR(a) S. CONTRACT OR GRANT NUMBER...mouse Ure than UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGErIYIon Data Ento.e) QI AD ORNL /TM-9645 P CARCINOGENESIS OF NITRATED TOLUENES AND

  11. Radiation effect in mouse skin: Dose fractionation and wound healing

    SciTech Connect

    Gorodetsky, R.; Mou, X.D.; Fisher, D.R.; Taylor, J.M.; Withers, H.R. )

    1990-05-01

    Radiation induced dermal injury was measured by the gain in the physical strength of healing wounds in mouse skin. A sigmoid dose response for the inhibition of wound healing 14 days after surgery was found for single doses of X rays. The sparing of dermal damage from fractionation of the X-ray dose was quantified in terms of the alpha/beta ratio in the linear-quadratic (LQ) model, at a wide range of doses per fraction reaching as low as about 1 Gy. The fit and the appropriateness of the LQ model for the skin wound healing assay was examined with the use of the Fe-plot in which inverse total dose is plotted versus dose per fraction for wound strength isoeffects. The alpha/beta ratio of the skin was about 2.5 Gy (95% confidence of less than +/- 1 Gy) and was appropriate over a dose range of 1 Gy to about 8 Gy. The low alpha/beta value is typical for a late responding tissue. This assay, therefore, has the advantage of measuring and forecasting late radiation responses of the dermis within a short time after irradiation.

  12. Genetic architecture of mouse skin inflammation and tumour susceptibility.

    PubMed

    Quigley, David A; To, Minh D; Pérez-Losada, Jesús; Pelorosso, Facundo G; Mao, Jian-Hua; Nagase, Hiroki; Ginzinger, David G; Balmain, Allan

    2009-03-26

    Germline polymorphisms in model organisms and humans influence susceptibility to complex trait diseases such as inflammation and cancer. Mice of the Mus spretus species are resistant to tumour development, and crosses between M. spretus and susceptible Mus musculus strains have been used to map locations of genetic variants that contribute to skin cancer susceptibility. We have integrated germline polymorphisms with gene expression in normal skin from a M. musculus x M. spretus backcross to generate a network view of the gene expression architecture of mouse skin. Here we demonstrate how this approach identifies expression motifs that contribute to tissue organization and biological functions related to inflammation, haematopoiesis, cell cycle control and tumour susceptibility. Motifs associated with inflammation, epidermal barrier function and proliferation are differentially regulated in backcross mice susceptible or resistant to tumour development. The intestinal stem cell marker Lgr5 is identified as a candidate master regulator of the hair follicle, and the vitamin D receptor (Vdr) is linked to coordinated control of epidermal barrier function, inflammation and tumour susceptibility.

  13. Overexpression of the prostaglandin E2 receptor EP2 results in enhanced skin tumor development.

    PubMed

    Sung, Y M; He, G; Hwang, D H; Fischer, S M

    2006-09-07

    We previously showed that the EP2 knockout mice were resistant to chemically induced skin carcinogenesis. The purpose of this study was to investigate the role of the overexpression of the EP2 receptor in mouse skin carcinogenesis. To determine the effect of overexpression of EP2, we used EP2 transgenic (TG) mice and wild-type (WT) mice in a DMBA (7,12-dimethylbenz[alpha]anthracene)/TPA (12-O-tetradecanoylphorbol-13-acetate) two-stage carcinogenesis protocol. EP2 TG mice developed significantly more tumors compared with WT mice. Overexpression of the EP2 receptor increased TPA-induced keratinocyte proliferation both in vivo and in vitro. In addition, the epidermis of EP2 TG mice 48 h after topical TPA treatment was significantly thicker compared to that of WT mice. EP2 TG mice showed significantly increased cyclic adenosine monophosphate levels in the epidermis after prostaglandin E2 (PGE2) treatment. The inflammatory response to TPA was increased in EP2 TG mice, as demonstrated by an increased number of macrophages in the dermis. Tumors and 7 x TPA-treated and DMBA-TPA-treated (6 weeks) skins from EP2 TG mice produced more blood vessels than those of WT mice as determined by CD-31 immunostaining. Vascular endothelial growth factor (VEGF) protein expression was significantly increased in squamous cell carcinoma (SCC) samples from EP2 TG mice compared that of WT mice. There was, however, no difference in the number of apoptotic cells in tumors from WT and EP2 TG mice. Together, our results suggest that the overexpression of the EP2 receptor plays a significant role in the protumorigenic action of PGE2 in mouse skin.

  14. Relevance of the mouse skin initiation-promotion model for the classification of carcinogenic substances encountered at the workplace.

    PubMed

    Schwarz, Michael; Thielmann, Heinz W; Meischner, Veronika; Fartasch, Manigé

    2015-06-01

    The Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area (MAK Commission of the Deutsche Forschungsgemeinschaft) evaluates chemical substances using scientific criteria to prevent adverse effects on health at the work place. As part of this task there is a need to evaluate tumor promoting activity of chemicals (enhancement of formation of squamous cell carcinomas via premalignant papillomas) obtained from two-stage initiation/promotion experiments using the mouse skin model. In the present communication we address this issue by comparing responses seen in mouse skin with those in humans. We conclude that tumor promotional effects seen in such animal models be carefully analyzed on a case by case basis. Substances that elicit a rather non-specific effect that is restricted to the high dose range are considered to be irrelevant to humans and thus do not require classification as carcinogens. In contrast, substances that might have both a mode of action and a potency similar to the specific effects seen with TPA (12-O-tetradecanoylphorbol-13-acetate), the prototype tumor promoter in mouse skin, which triggers receptor-mediated signal cascades in the very low dose range, have to be classified in a category for carcinogens.

  15. CD34 Expression by Hair Follicle Stem Cells Is Required for Skin Tumor Development in Mice

    PubMed Central

    Trempus, Carol S.; Morris, Rebecca J.; Ehinger, Matthew; Elmore, Amy; Bortner, Carl D.; Ito, Mayumi; Cotsarelis, George; Nijhof, Joanne G.W.; Peckham, John; Flagler, Norris; Kissling, Grace; Humble, Margaret M.; King, Leon C.; Adams, Linda D.; Desai, Dhimant; Amin, Shantu; Tennant, Raymond W.

    2007-01-01

    The cell surface marker CD34 marks mouse hair follicle bulge cells, which have attributes of stem cells, including quiescence and multipotency. Using a CD34 knockout (KO) mouse, we tested the hypothesis that CD34 may participate in tumor development in mice because hair follicle stem cells are thought to be a major target of carcinogens in the two-stage model of mouse skin carcinogenesis. Following initiation with 200 nmol 7,12-dimethylbenz(a)anthracene (DMBA), mice were promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 20 weeks. Under these conditions, CD34KO mice failed to develop papillomas. Increasing the initiating dose of DMBA to 400 nmol resulted in tumor development in the CD34KO mice, albeit with an increased latency and lower tumor yield compared with the wild-type (WT) strain. DNA adduct analysis of keratinocytes from DMBA-initiated CD34KO mice revealed that DMBA was metabolically activated into carcinogenic diol epoxides at both 200 and 400 nmol. Chronic exposure to TPA revealed that CD34KO skin developed and sustained epidermal hyperplasia. However, CD34KO hair follicles typically remained in telogen rather than transitioning into anagen growth, confirmed by retention of bromodeoxyuridine-labeled bulge stem cells within the hair follicle. Unique localization of the hair follicle progenitor cell marker MTS24 was found in interfollicular basal cells in TPA-treated WT mice, whereas staining remained restricted to the hair follicles of CD34KO mice, suggesting that progenitor cells migrate into epidermis differently between strains. These data show that CD34 is required for TPA-induced hair follicle stem cell activation and tumor formation in mice. PMID:17483328

  16. Expression analysis of the mouse S100A7/psoriasin gene in skin inflammation and mammary tumorigenesis

    PubMed Central

    Webb, Meghan; Emberley, Ethan D; Lizardo, Michael; Alowami, Salem; Qing, Gefei; Alfia'ar, Abdullah; Snell-Curtis, Linda J; Niu, Yulian; Civetta, Alberto; Myal, Yvonne; Shiu, Robert; Murphy, Leigh C; Watson, Peter H

    2005-01-01

    Background The human psoriasin (S100A7) gene has been implicated in inflammation and tumor progression. Implementation of a mouse model would facilitate further investigation of its function, however little is known of the murine psoriasin gene. In this study we have cloned the cDNA and characterized the expression of the potential murine ortholog of human S100A7/psoriasin in skin inflammation and mammary tumorigenesis. Methods On the basis of chromosomal location, phylogenetic analysis, amino acid sequence similarity, conservation of a putative Jab1-binding motif, and similarities of the patterns of mouse S100A7/psoriasin gene expression (measured by RT-PCR and in-situ hybridization) with those of human S100A7/psoriasin, we propose that mouse S100A7/psoriasin is the murine ortholog of human psoriasin/S100A7. Results Although mouse S100A7/psoriasin is poorly conserved relative to other S100 family members, its pattern of expression parallels that of the human psoriasin gene. In murine skin S100A7/psoriasin was significantly upregulated in relation to inflammation. In murine mammary gland expression is also upregulated in mammary tumors, where it is localized to areas of squamous differentiation. This mirrors the context of expression in human tumor types where both squamous and glandular differentiation occur, including cervical and lung carcinomas. Additionally, mouse S100A7/psoriasin possesses a putative Jab1 binding motif that mediates many downstream functions of the human S100A7 gene. Conclusion These observations and results support the hypothesis that the mouse S100A7 gene is structurally and functionally similar to human S100A7 and may offer a relevant model system for studying its normal biological function and putative role in tumor progression. PMID:15717926

  17. Expression analysis of the mouse S100A7/psoriasin gene in skin inflammation and mammary tumorigenesis.

    PubMed

    Webb, Meghan; Emberley, Ethan D; Lizardo, Michael; Alowami, Salem; Qing, Gefei; Alfia'ar, Abdullah; Snell-Curtis, Linda J; Niu, Yulian; Civetta, Alberto; Myal, Yvonne; Shiu, Robert; Murphy, Leigh C; Watson, Peter H

    2005-02-17

    The human psoriasin (S100A7) gene has been implicated in inflammation and tumor progression. Implementation of a mouse model would facilitate further investigation of its function, however little is known of the murine psoriasin gene. In this study we have cloned the cDNA and characterized the expression of the potential murine ortholog of human S100A7/psoriasin in skin inflammation and mammary tumorigenesis. On the basis of chromosomal location, phylogenetic analysis, amino acid sequence similarity, conservation of a putative Jab1-binding motif, and similarities of the patterns of mouse S100A7/psoriasin gene expression (measured by RT-PCR and in-situ hybridization) with those of human S100A7/psoriasin, we propose that mouse S100A7/psoriasin is the murine ortholog of human psoriasin/S100A7. Although mouse S100A7/psoriasin is poorly conserved relative to other S100 family members, its pattern of expression parallels that of the human psoriasin gene. In murine skin S100A7/psoriasin was significantly upregulated in relation to inflammation. In murine mammary gland expression is also upregulated in mammary tumors, where it is localized to areas of squamous differentiation. This mirrors the context of expression in human tumor types where both squamous and glandular differentiation occur, including cervical and lung carcinomas. Additionally, mouse S100A7/psoriasin possesses a putative Jab1 binding motif that mediates many downstream functions of the human S100A7 gene. These observations and results support the hypothesis that the mouse S100A7 gene is structurally and functionally similar to human S100A7 and may offer a relevant model system for studying its normal biological function and putative role in tumor progression.

  18. Opening a Window into Living Tissue: Histopathologic Features of Confocal Microscopic Findings in Skin Tumors.

    PubMed

    Tavoloni Braga, Juliana Casagrande; de Paula Ramos Castro, Raquel; Moraes Pinto Blumetti, Tatiana Cristina; Rocha Mendes, Fernanda Berti; Arêas de Souza Lima Beltrame Ferreira, Juliana; Rezze, Gisele Gargantini

    2016-10-01

    The knowledge of histopathology and in vivo reflectance confocal microscopy correlation has several potential applications. Reflectance confocal microscopy can be performed in all skin tumors, and in this article, the most common histopathologic features of confocal microscopic findings in melanocytic skin tumors and nonmelanocytic skin tumors are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Primary carcinoid tumor of the skin: a literature review.

    PubMed

    Jedrych, Jaroslaw; Pulitzer, Melissa

    2014-04-01

    Primary carcinoid tumor of the skin (PCTS) is an uncommon indolent neoplasm, with 10 cases described in the literature. The tumors affect patients in the sixth to ninth decades of life (mean = 66.3 years) with an equal gender distribution and predilection for the head and trunk. They present as slowly enlarging nodules of variable duration, ranging from 1 to 60 years (mean = 11.4 years). PCTS is characterized by architectural, cytomorphologic, ultrastructural, and immunohistochemical features typical of a low-grade neoplasm with neuroendocrine differentiation. PCTS typically follows a benign clinical course and therefore has to be distinguished from cutaneous metastases of visceral carcinoid tumors, which herald dissemination of malignancy and poor prognosis. While the distinction from other histologically similar entities can be achieved by histopathological examination, PCTS can be distinguished from a visceral metastasis only by a judicious clinicopathologic correlation. Herein we describe the clinical presentation, histological appearance, and management of these tumors.

  20. Overlapping loss of heterozygosity by mitotic recombination on mouse chromosome 7F1-ter in skin carcinogenesis.

    PubMed Central

    Bianchi, A B; Navone, N M; Aldaz, C M; Conti, C J

    1991-01-01

    A significant role for mouse chromosome 7 abnormalities during chemically induced skin carcinogenesis has been advanced based on previous cytogenetic and molecular studies. To determine the frequency of allelic losses at different loci of chromosome 7 in skin tumors induced in the outbred SENCAR mouse stock by a two-stage initiation-promotion protocol, we compared the constitutional and tumor genotypes of premalignant papillomas and squamous cell carcinomas for loss of heterozygosity at different informative loci. In a previous study, these tumors had been analyzed for their allelic composition at the Harvey ras-1 (Ha-ras-1) locus and it was found that 39% of squamous cell carcinomas had lost the normal Ha-ras-1 allele exhibiting 3 or 2 copies of the mutated counterpart or gene amplification. In the present study, by combining Southern blot and polymerase chain reaction fragment length polymorphism analyses, we detected complete loss of heterozygosity at the beta-globin (Hbb) locus, distal to Ha-ras-1, in 15 of 20 (75%) skin carcinomas. In addition, 5 of 5 informative cases attained homozygosity at the int-2 locus, 27 centimorgans distal to Hbb. Polymerase chain reaction analysis of DNA extracted from papillomas devoid of stromal contamination by fluorescence-activated sorting of single cell dispersions immunolabeled with anti-keratin 13 antibody revealed loss of heterozygosity at the Hbb locus, demonstrating that this event occurs during premalignant stages of tumor development. Interestingly, loss of heterozygosity was only detected in late-stage lesions exhibiting a high degree of dysplasia and areas of microinvasion. Analysis of allelic ratios by densitometric scanning of tumors that had become homozygous at Hbb but retained heterozygosis at Ha-ras-1 indicated mitotic recombination as the mechanism underlying loss of heterozygosity on mouse chromosome 7 during chemically induced skin carcinogenesis. These findings are consistent with the presence of a putative

  1. Deoxynivalenol induced mouse skin cell proliferation and inflammation via MAPK pathway

    SciTech Connect

    Mishra, Sakshi; Tripathi, Anurag; Chaudhari, Bhushan P.; Dwivedi, Premendra D.; Pandey, Haushila P.; Das, Mukul

    2014-09-01

    Several toxicological manifestations of deoxynivalenol (DON), a mycotoxin, are well documented; however, dermal toxicity is not yet explored. The effect of topical application of DON to mice was studied using markers of skin proliferation, inflammation and tumor promotion. Single topical application of DON (84–672 nmol/mouse) significantly enhanced dermal hyperplasia and skin edema. DON (336 and 672 nmol) caused significant enhancement in [{sup 3}H]-thymidine uptake in DNA along with increased myeloperoxidase and ornithine decarboxylase activities, suggesting tissue inflammation and cell proliferation. Furthermore, DON (168 nmol) caused enhanced expression of RAS, and phosphorylation of PI3K/Akt, ERK, JNK and p38 MAPKs. DON exposure also showed activation of transcription factors, c-fos, c-jun and NF-κB along with phosphorylation of IkBα. Enhanced phosphorylation of NF-κB by DON caused over expression of target proteins, COX-2, cyclin D1 and iNOS in skin. Though a single topical application of DMBA followed by twice weekly application of DON (84 and 168 nmol) showed no tumorigenesis after 24 weeks, however, histopathological studies suggested hyperplasia of the epidermis and hypertrophy of hair follicles. Interestingly, intestine was also found to be affected as enlarged Peyer's patches were observed, suggesting inflammatory effects which were supported by elevation of inflammatory cytokines after 24 weeks of topical application of DON. These results suggest that DON induced cell proliferation in mouse skin is through the activation of MAPK signaling pathway involving transcription factors NFκB and AP-1, further leading to transcriptional activation of downstream target proteins c-fos, c-jun, cyclin D1, iNOS and COX-2 which might be responsible for its inflammatory potential. - Highlights: • Topical application of DON enhanced epidermal inflammation and cell proliferation. • DON follows PI3K/Akt/MAPK signaling cascade, with activation of AP-1 and NF

  2. Preventive effect of antihistaminics on mouse skin photosensitization with hematoporphyrin derivative

    NASA Astrophysics Data System (ADS)

    Fu, Nai-wu; Yan, Li-xue

    1993-03-01

    Beta-carotene 100 mg/kg per day or vitamin C 50 mg/kg per day was administered orally for two days and did not prevent mouse skin photosensitization caused by hematoporphyrin derivative (HpD). However, (beta) -carotene 100 mg/kg per day administered intramuscularly for two days prevented mouse skin reaction. Cimetidine and benadryl 10 mg/kg per day, P.O.X 2, effectively prevented mouse skin reaction. This suggests histamine may be involved in skin photoreaction induced by HpD.

  3. Effect of Combined Treatment with Ursolic Acid and Resveratrol on Skin Tumor Promotion by 12-O-Tetradecanoylphorbol-13-Acetate.

    PubMed

    Cho, Jiyoon; Rho, Okkyung; Junco, Jacob; Carbajal, Steve; Siegel, Dionicio; Slaga, Thomas J; DiGiovanni, John

    2015-09-01

    In this study, the effects of combining ursolic acid + resveratrol, for possible combined inhibitory effects on skin tumor promotion, were evaluated. Ursolic acid, resveratrol, and the combination of ursolic acid + resveratrol were applied topically prior to 12-O-tetracanoylphorbol-13-acetate (TPA) treatment on mouse skin to examine their effect on TPA-induced signaling pathways, epidermal hyperproliferation, skin inflammation, inflammatory gene expression, and skin tumor promotion. The combination of ursolic acid + resveratrol produced a greater inhibition of TPA-induced epidermal hyperproliferation. The combination of ursolic acid + resveratrol inhibited TPA-induced signaling pathways, including EGFR, STAT3, Src, Akt, Cox-2, Fas, NF-κB, p38 MAPK, c-Jun, and JNK1/2 while increasing levels of tumor suppressors, such as p21 and PDCD4, to a greater extent compared with the groups treated with the individual compounds. Ursolic acid + resveratrol also induced a dramatic increase of p-AMPK-α(Thr172). Combined treatment with ursolic acid + resveratrol resulted in a greater inhibition of expression of proinflammatory cytokines, including Il1a, Il1b, and Il22. Furthermore, NF-κB, Egr-1, and AP-1 DNA binding activities after TPA treatment were dramatically decreased by the combination of ursolic acid + resveratrol. Treatment with ursolic acid + resveratrol during skin tumor promotion with TPA produced greater inhibition of tumor multiplicity and tumor size than with either agent alone. Collectively, the greater ability of the combination of ursolic acid + resveratrol to inhibit skin tumor promotion was due to the greater inhibitory effects on growth factor and inflammatory signaling, skin inflammation, and epidermal hyperproliferation induced by TPA treatment.

  4. Effect of Combined Treatment with Ursolic Acid and Resveratrol on Skin Tumor Promotion by 12-O-tetradecanoylphorbol-13-acetate

    PubMed Central

    Cho, Jiyoon; Rho, Okkyung; Junco, Jacob; Carbajal1, Steve; Siegel, Dionicio; Slaga, Thomas J.; DiGiovanni, John

    2015-01-01

    In this study, the effects of combining ursolic acid (UA) + resveratrol (Res), for possible combined inhibitory effects on skin tumor promotion were evaluated. UA, Res and the combination of UA + Res were applied topically prior to TPA treatment on mouse skin to examine their effect on TPA-induced signaling pathways, epidermal hyperproliferation, skin inflammation, inflammatory gene expression and skin tumor promotion. The combination of UA + Res produced a greater inhibition of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced epidermal hyperproliferation. The combination of UA + Res inhibited TPA-induced signaling pathways, including EGFR, STAT3, Src, Akt, Cox-2, Fas, NF-κB, p38 MAPK, c-Jun, and JNK1/2 while increasing levels of tumor suppressors such as p21 and PDCD4 to a greater extent compared to the groups treated with the individual compounds. UA + Res also induced a dramatic increase of p-AMPK-αThr172. Combined treatment with UA + Res resulted in a greater inhibition of expression of proinflammatory cytokines including IL-1α, IL-1β, and IL-22. Furthermore, NF-κB, Egr-1, and AP-1 DNA binding activities after TPA treatment were dramatically decreased by the combination of UA + Res. Treatment with UA + Res during skin tumor promotion with TPA produced greater inhibition of tumor multiplicity and tumor size than with either agent alone. Collectively, the greater ability of the combination of UA + Res to inhibit skin tumor promotion was due to the greater inhibitory effects on growth factor and inflammatory signaling, skin inflammation and epidermal hyperproliferation induced by TPA treatment. PMID:26100520

  5. The vitamin D receptor: a tumor suppressor in skin.

    PubMed

    Bikle, Daniel D

    2014-01-01

    Cutaneous malignancies including melanomas and non melanoma skin cancers (NMSC) are the most common types of cancer, occurring at a rate of over 1 million per year in the United States. The major cell in the epidermis, the keratinocyte, not only produces vitamin D but contains the enzymatic machinery to metabolize vitamin D to its active metabolite, 1,25(OH)2D, and expresses the receptor for this metabolite, the vitamin D receptor (VDR), allowing the cell to respond to the 1,25(OH)2D that it produces. In vitro, 1,25(OH)2D stimulates the differentiation and inhibits the proliferation of these cells and so would be expected to be tumor suppressive. However, epidemiologic evidence demonstrating a negative relationship between circulating levels of the substrate for CYP27B1, 25OHD, and the incidence of these malignancies is mixed, raising the question whether vitamin D is protective in the in vivo setting. UV radiation (UV), both UVB and UVA, as occurs with sunlight exposure is generally regarded as causal for these malignancies, but UVB is also required for vitamin D synthesis in the skin. This complicates conclusions reached from epidemiologic studies in that UVB is associated with higher 25OHD levels as well as increased incidence of cutaneous malignancies. Based on our own data and that reported in the literature we hypothesize that vitamin D signaling in the skin suppresses UVR induced epidermal tumor formation. In this chapter we will first discuss recent data regarding potential mechanisms by which vitamin D signaling suppresses tumor formation, then focus on three general mechanisms that mediate tumor suppression by VDR in the skin: inhibition of proliferation and stimulation of differentiation, immune regulation, and stimulation of DNA damage repair (DDR).

  6. Quantitative analysis of tumor burden in mouse lung via MRI.

    PubMed

    Tidwell, Vanessa K; Garbow, Joel R; Krupnick, Alexander S; Engelbach, John A; Nehorai, Arye

    2012-02-01

    Lung cancer is the leading cause of cancer death in the United States. Despite recent advances in screening protocols, the majority of patients still present with advanced or disseminated disease. Preclinical rodent models provide a unique opportunity to test novel therapeutic drugs for targeting lung cancer. Respiratory-gated MRI is a key tool for quantitatively measuring lung-tumor burden and monitoring the time-course progression of individual tumors in mouse models of primary and metastatic lung cancer. However, quantitative analysis of lung-tumor burden in mice by MRI presents significant challenges. Herein, a method for measuring tumor burden based upon average lung-image intensity is described and validated. The method requires accurate lung segmentation; its efficiency and throughput would be greatly aided by the ability to automatically segment the lungs. A technique for automated lung segmentation in the presence of varying tumor burden levels is presented. The method includes development of a new, two-dimensional parametric model of the mouse lungs and a multi-faceted cost function to optimally fit the model parameters to each image. Results demonstrate a strong correlation (0.93), comparable with that of fully manual expert segmentation, between the automated method's tumor-burden metric and the tumor burden measured by lung weight.

  7. The effects of anti-inflammatory agents on skin tumor initiation and aryl hydrocarbon hydroxylase.

    PubMed

    Slaga, T J; Viaje, A; Bracken, W

    1977-02-01

    The effects of various clinically used anti-inflammatory agents on mouse skin tumorigenesis and aryl hydrocarbon hydroxylase (AHH) were investigated. Oxyphenbutazone, a nonsteroidal anti-inflammatory agent, inhibited 3-methylcholanthrene (MC) tumor initiation but was less effective than the steroidal anti-inflammatory agent, dexamethasone. Oxyphenbutazone was not found to induce AHH activity in mouse epidermis, whereas indomethacin and Seclazone had a slight inducing effect. When these agents were added directly to the in vitro AHH assay, they did not inhibit AHH activity. However, additional experiments have shown a decreased epidermally mediated covalent binding of MC to DNA in vitro when the epidermal homogenates were isolated from mice pretreated with either dexamethasone or oxyphenbutazone and MC at 3 or 12 hr before killing.

  8. A genetic variant of Aurora Kinase A promotes genomic instability leading to highly malignant skin tumors

    PubMed Central

    Torchia, Enrique C.; Chen, Yiyun; Sheng, Hong; Katayama, Hiroshi; Fitzpatrick, James; Brinkley, William R.; Sen, Subrata; Roop, Dennis R.

    2009-01-01

    Aurora Kinase A (Aurora-A) belongs to a highly conserved family of mitotis-regulating serine/threonine kinases implicated in epithelial cancers. Initially we examined Aurora-A expression levels at different stages of human skin cancer. Nuclear Aurora-A was detected in benign lesions, and became more diffused but broadly expressed in well and poorly differentiated SCC, indicating that Aurora-A deregulation may contribute to SCC development. To mimic the overexpression of Aurora-A observed in human skin cancers, we established a gene-switch (GS) mouse model in which the human variant of Aurora-A (Phe31Ile) was expressed in the epidermis upon topical application of the inducer, RU486 (Aurora-AGS). Overexpression of Aurora-A alone or in combination with the tumor promoter, TPA, did not result in SCC formation in Aurora-AGS mice. Moreover, Aurora-A overexpression in naive keratinocytes resulted in spindle defects in vitro and marked cell death in vivo, suggesting that the failure of Aurora-A to initiate tumorigenesis was due to induction of catastrophic cell death. However, Aurora-A overexpression combined with exposure to TPA and the mutagen, DMBA, accelerated SCC development with greater metastastic activity than control mice, indicating that Aurora-A cannot initiate skin carcinogenesis, but rather promotes the malignant conversion of skin papillomas. Further characterization of SCCs revealed centrosome amplification and genomic alterations by array CGH analysis, indicating that Aurora-A overexpression induces a high level of genomic instability that favors the development of aggressive and metastatic tumors. Our findings strongly implicate Aurora-A overexpression in the malignant progression of skin tumors and suggest that Aurora-Amay be an important therapeutic target. PMID:19738056

  9. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking?

    PubMed Central

    Leccia, Felicia; Batisse-Lignier, Marie; Sahut-Barnola, Isabelle; Val, Pierre; Lefrançois-Martinez, A-Marie; Martinez, Antoine

    2016-01-01

    Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely “functional,” i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing’s syndrome (hypercortisolism) or Conn’s syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases. PMID:27471492

  10. Automatic Differential Diagnosis of Melanocytic Skin Tumors Using Ultrasound Data.

    PubMed

    Andrėkutė, Kristina; Linkevičiūtė, Gintarė; Raišutis, Renaldas; Valiukevičienė, Skaidra; Makštienė, Jurgita

    2016-12-01

    We describe a novel automatic diagnostic system based on quantitative analysis of ultrasound data for differential diagnosis of melanocytic skin tumors. The proposed method has been tested on 160 ultrasound data sets (80 of malignant melanoma and 80 of benign melanocytic nevi). Acoustical, textural and shape features have been evaluated for each segmented lesion. Using parameters selected according to Mahalanobis distance and linear support vector machine classifier, we are able to differentiate malignant melanoma from benign melanocytic skin tumors with 82.4% accuracy (sensitivity = 85.8%, specificity = 79.6%). The results indicate that high-frequency ultrasound has the potential to be used for differential diagnosis of melanocytic skin tumors and to provide supplementary information on lesion penetration depth. The proposed system can be used as an additional tool for clinical decision support to improve the early-stage detection of malignant melanoma. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Genetic ablation of caspase-7 promotes solar-simulated light-induced mouse skin carcinogenesis: the involvement of keratin-17

    PubMed Central

    Lee, Mee-Hyun; Lim, Do Young; Kim, Myoung Ok; Lee, Sung-Young; Shin, Seung Ho; Kim, Jae Young; Kim, Sung-Hyun; Kim, Dong Joon; Jung, Sung Keun; Yao, Ke; Kundu, Joydeb Kumar; Lee, Hye Suk; Lee, Cheol-Jung; Dickinson, Sally E.; Alberts, David; Bowden, G.Timothy; Stratton, Steven; Curiel, Clara; Einspahr, Janine; Bode, Ann M.; Surh, Young-Joon; Dong, Zigang

    2015-01-01

    Solar ultraviolet irradiation is an environmental carcinogen that causes skin cancer. Caspase-7 is reportedly expressed at reduced levels in many cancers. The present study was designed to examine the role of caspase-7 in solar-simulated light (SSL)-induced skin cancer and to elucidate its underlying molecular mechanisms. Our study revealed that mice with genetic deficiency of caspase-7 are highly susceptible to SSL-induced skin carcinogenesis. Epidermal hyperplasia, tumor volume and the average number of tumors were significantly increased in caspase-7 knockout (KO) mice compared with SKH1 wild-type mice irradiated with SSL. The expression of cell proliferation markers, such as survivin and Ki-67, was elevated in SSL-irradiated skin of caspase-7 KO mice compared with those observed in SSL-exposed wild-type SKH1 mouse skin. Moreover, SSL-induced apoptosis was abolished in skin from caspase-7 KO mice. Two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization-time-of-flight analysis of skin tissue lysates from SSL-irradiated SKH1 wild-type and caspase-7 KO mice revealed an aberrant induction of keratin-17 in caspase-7 KO mice. Immunohistochemical analysis of skin tumors also showed an increase of keratin-17 expression in caspase-7 KO mice compared with SKH1 wild-type mice. The expression of keratin-17 was also elevated in SSL-irradiated caspase-7 KO keratinocytes as well as in human basal cell carcinomas. The in vitro caspase activity assay showed keratin-17 as a substrate of caspase-7, but not caspase-3. Overall, our study demonstrates that genetic loss of caspase-7 promotes SSL-induced skin carcinogenesis by blocking caspase-7-mediated cleavage of keratin-17. PMID:26271098

  12. Genetic ablation of caspase-7 promotes solar-simulated light-induced mouse skin carcinogenesis: the involvement of keratin-17.

    PubMed

    Lee, Mee-Hyun; Lim, Do Young; Kim, Myoung Ok; Lee, Sung-Young; Shin, Seung Ho; Kim, Jae Young; Kim, Sung-Hyun; Kim, Dong Joon; Jung, Sung Keun; Yao, Ke; Kundu, Joydeb Kumar; Lee, Hye Suk; Lee, Cheol-Jung; Dickinson, Sally E; Alberts, David; Bowden, G Timothy; Stratton, Steven; Curiel, Clara; Einspahr, Janine; Bode, Ann M; Surh, Young-Joon; Cho, Yong-Yeon; Dong, Zigang

    2015-11-01

    Solar ultraviolet irradiation is an environmental carcinogen that causes skin cancer. Caspase-7 is reportedly expressed at reduced levels in many cancers. The present study was designed to examine the role of caspase-7 in solar-simulated light (SSL)-induced skin cancer and to elucidate its underlying molecular mechanisms. Our study revealed that mice with genetic deficiency of caspase-7 are highly susceptible to SSL-induced skin carcinogenesis. Epidermal hyperplasia, tumor volume and the average number of tumors were significantly increased in caspase-7 knockout (KO) mice compared with SKH1 wild-type mice irradiated with SSL. The expression of cell proliferation markers, such as survivin and Ki-67, was elevated in SSL-irradiated skin of caspase-7 KO mice compared with those observed in SSL-exposed wild-type SKH1 mouse skin. Moreover, SSL-induced apoptosis was abolished in skin from caspase-7 KO mice. Two-dimensional gel electrophoresis, followed by matrix-assisted laser desorption/ionization-time-of-flight analysis of skin tissue lysates from SSL-irradiated SKH1 wild-type and caspase-7 KO mice revealed an aberrant induction of keratin-17 in caspase-7 KO mice. Immunohistochemical analysis of skin tumors also showed an increase of keratin-17 expression in caspase-7 KO mice compared with SKH1 wild-type mice. The expression of keratin-17 was also elevated in SSL-irradiated caspase-7 KO keratinocytes as well as in human basal cell carcinomas. The in vitro caspase activity assay showed keratin-17 as a substrate of caspase-7, but not caspase-3. Overall, our study demonstrates that genetic loss of caspase-7 promotes SSL-induced skin carcinogenesis by blocking caspase-7-mediated cleavage of keratin-17. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. A transgenic mouse for imaging caspase-dependent apoptosis within the skin.

    PubMed

    Khanna, Divya; Hamilton, Christin A; Bhojani, Mahaveer S; Lee, Kuei C; Dlugosz, Andrej; Ross, Brian D; Rehemtulla, Alnawaz

    2010-07-01

    Apoptosis is an essential process for the maintenance of normal physiology. The ability to noninvasively image apoptosis in living animals would provide unique insights into its role in normal and disease processes. Herein, a recombinant reporter consisting of beta-galactosidase gene flanked by two estrogen receptor regulatory domains and intervening Asp-Glu-Val-Glu sequences was constructed to serve as a tool for in vivo assessment of apoptotic activity. The results demonstrate that when expressed in its intact form, the hybrid reporter had undetectable beta-galactosidase activity. Caspase 3 activation in response to an apoptotic stimulus resulted in cleavage of the reporter, and thereby reconstitution of beta-galactosidase activity. Enzymatic activation of the reporter during an apoptotic event enabled noninvasive measurement of beta-galactosidase activity in living cells, which correlated with traditional measures of apoptosis in a dose- and time-dependent manner. Using a near-infrared fluorescent substrate of beta-galactosidase (9H-{1,3-dichloro-9,9-dimethylacridin-2-one-7-yl} beta-D-galactopyranoside), noninvasive in vivo imaging of apoptosis was achieved in a xenograft tumor model in response to proapoptotic therapy. Finally, a transgenic mouse model was developed expressing the ER-LACZ-ER reporter within the skin. This reporter and transgenic mouse could serve as a unique tool for the study of apoptosis in living cells and animals, especially in the context of skin biology.

  14. Enhanced chemoprevention by the combined treatment of pterostilbene and lupeol in B[a]P-induced mouse skin tumorigenesis.

    PubMed

    Singh, Payal; Arora, Deepika; Shukla, Yogeshwer

    2017-01-01

    The present study is aimed to evaluate the inhibitory effect of the combination of two phytochemicals; pterostilbeneand lupeol (generally obtained from blue berries, grapes, white cabbage, green pepper, olive and mangoes) on mouse skin tumorigenesis. We hypothesized that the concomitant topical treatment of selected phytochemicals would lead to improved impediment of skin cancer. Swiss albino mice (n = 25) received a topical dose of Benzo[a]pyrene (B[a]P, 5 μg/animal) with pre/post application of pterostilbene (16 μM/0.2 ml acetone/animal) and/or lupeol (500 μM/0.2 ml acetone/animal) for 32 weeks. Results showed that pterostilbene and/or lupeol treatment resulted in a significant delay in onset of tumorigenesis. However, a more promising effect on tumor suppression was noted with the combination of both the phytochemicals. A significant reduction in average tumor volume, cumulative number of tumors and tumor multiplicity was recorded in combination treated group. The histopathological analysis illustrated the marked suppression in epidermal hyperplasia and necrotic cells in combination treated groups. Our study suggests that the combination of pterostilbene and lupeol was more effective in prevention of skin cancer as compared to either of the phytochemical alone. Therefore, the combined treatment of phytochemicals has better potential to prevent skin carcinogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-02

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity.

  16. Impairment of skin barrier function via cholinergic signal transduction in a dextran sulphate sodium-induced colitis mouse model.

    PubMed

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2015-10-01

    Dry skin has been clinically associated with visceral diseases, including liver disease, as well as for our previously reported small intestinal injury mouse model, which have abnormalities in skin barrier function. To clarify this disease-induced skin disruption, we used a dextran sulphate sodium (DSS)-induced colitis mouse model. Following treatment with DSS, damage to the colon and skin was monitored using histological and protein analysis methods as well as the detection of inflammatory mediators in the plasma. Notably, transepidermal water loss was higher, and skin hydration was lower in DSS-treated mice compared to controls. Tumor necrosis factor-alpha (TNF-α), interleukin 6 and NO2-/NO3- levels were also upregulated in the plasma, and a decrease in body weight and colon length was observed in DSS-treated mice. However, when administered TNF-α antibody or an iNOS inhibitor, no change in skin condition was observed, indicating that another signalling mechanism is utilized. Interestingly, the number of tryptase-expressing mast cells, known for their role in immune function via cholinergic signal transduction, was elevated. To evaluate the function of cholinergic signalling in this context, atropine (a muscarinic cholinoceptor antagonist) or hexamethonium (a nicotinic cholinergic ganglion-blocking agent) was administered to DSS-treated mice. Our data indicate that muscarinic acetylcholine receptors (mAChRs) are the primary receptors functioning in colon-to-skin signal transduction, as DSS-induced skin disruption was suppressed by atropine. Thus, skin disruption is likely associated with DSS-induced colitis, and the activation of mast cells via mAChRs is critical to this association.

  17. Inhibitory effects of chlorophyllin on 7,12-dimethylbenz[a]anthracene-induced bacterial mutagenesis and mouse skin carcinogenesis.

    PubMed

    Chung, W Y; Lee, J M; Park, M Y; Yook, J I; Kim, J; Chung, A S; Surh, Y J; Park, K K

    1999-10-18

    Chlorophyllin (CHL), a water-soluble derivative of chlorophyll, has been used for the treatment of several abnormal human conditions without apparent toxicity. Recent studies have revealed that CHL has the excellent chemopreventive potential. In the present investigation, we have found the inhibitory activities of CHL against 7,12-dimethylbenz[a]anthracene (DMBA)-induced mutagenesis in Salmonella typhimurium TA100 and also on DMBA-initiated and 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-promoted mouse skin tumor formation. The incidence and the multiplicity of skin tumors were not significantly decreased in mice by a single topical application of CHL prior to the DMBA treatment, but there was a marked suppression of papillomagenesis in mice treated with CHL during the promotional stage. Furthermore, the formation of DMBA-induced papillomagenesis was reduced in all mice that had received CHL for 6 weeks following treatment with TPA for 6, 18 and 24 weeks. These results indicate that CHL can inhibit both tumor promotion and the progression of papillomagenesis in the two-stage mouse skin carcinogenesis induced by DMBA and TPA.

  18. Uptake of topically applied 5-aminolevulinic acid and production of protoporphyrin IX in normal mouse skin: dependence on skin temperature.

    PubMed

    Juzenas, P; Sørensen, R; Iani, V; Moan, J

    1999-04-01

    The temperature dependence of the uptake phase of 5-aminolevulinic acid (ALA) and the following production phase of protoporphyrin IX (PpIX) in normal mouse skin was investigated. A cream containing 20% ALA was topically applied on the skin for 10 min. The amount of ALA-induced PpIX was evaluated by measuring the fluorescence of PpIX from the treated skin. No measurable amount of PpIX was found in the skin immediately after 10 min application of ALA. The penetration of ALA into the skin was almost temperature independent while the following production of PpIX was found to be a strongly temperature-dependent process. Practically no PpIX was formed in the skin as long as skin temperature was kept low (12 degrees C).

  19. Urokinase Receptor Promotes Skin Tumor Formation by Preventing Epithelial Cell Activation of Notch1.

    PubMed

    Mazzieri, Roberta; Pietrogrande, Giovanni; Gerasi, Laura; Gandelli, Alessandro; Colombo, Piergiuseppe; Moi, Davide; Brombin, Chiara; Ambrosi, Alessandro; Danese, Silvio; Mignatti, Paolo; Blasi, Francesco; D'Alessio, Silvia

    2015-11-15

    The urokinase-type plasminogen activator receptor (uPAR) has a well-established role in cancer progression, but it has been little studied at earlier stages of cancer initiation. Here, we show that uPAR deficiency in the mouse dramatically reduces susceptibility to the classical two-stage protocol of inflammatory skin carcinogenesis. uPAR genetic deficiency decreased papilloma formation and accelerated keratinocyte differentiation, effects mediated by Notch1 hyperactivation. Notably, Notch1 inhibition in uPAR-deficient mice rescued their susceptibility to skin carcinogenesis. Clinically, we found that human differentiated keratoacanthomas expressed low levels of uPAR and high levels of activated Notch1, with opposite effects in proliferating tumors, confirming the relevance of the observations in mice. Furthermore, we found that TACE-dependent activation of Notch1 in basal kerantinocytes was modulated by uPAR. Mechanistically, uPAR sequestered TACE within lipid rafts to prevent Notch1 activation, thereby promoting cell proliferation and tumor formation. Given that uPAR signaling is nonessential for normal epidermal homeostasis, our results argue that uPAR may present a promising disease-specific target for preventing skin cancer development.

  20. Sunscreens for delay of ultraviolet induction of skin tumors

    SciTech Connect

    Wulf, H.C.; Poulsen, T.; Brodthagen, H.; Hou-Jensen, K.

    1982-08-01

    Sunscreens with different sun protection factors (SPFs) have been tested for their capability of delaying or preventing actinic damage and skin cancer development in groups of hairless, pigmented mice exposed to artificial ultraviolet (UV) light of increasing intensity. The dose delivered was less than or equal to 1 minimal erythema dose (MED) in the group of untreated mice, so that the mice to which sunscreens were applied never obtained a sunburn after UV exposure. The quality of UV light was similar to bright midday sun at a latitude of 56 degrees (city of Copenhagen). Tumorigenesis was demonstrated to be delayed corresponding to the SPF claimed by the manufacturer, but almost all of the UV-irradiated mice developed skin tumors. Histologic examination revealed actinic degeneration and tumors of squamous cell type with marked variation in differentiation. Metastases to lymph nodes and lungs were found in only 10%. Toxic reactions, such as eczematous-like skin reactions, dark coloring, and amyloidosis, were observed predominantly in the group treated with the sunscreen of highest SPF value. Long-term investigations seem to be necessary to unveil these problems--in particular, the specific SPF value, in sunscreens, that should be recommended to the public for prevention or delay of actinic damage and/or cancer development.

  1. Xeroderma pigmentosum skin: an immune privilege site for tumor development.

    PubMed

    Abid, Kalthoum; El Mezni, Faouzi; Kamoun, Mohamed Ridha; Fazaa, Becima; Zermani, Rachida; Hadouchi, Chokri; Hamzaoui, Kamel

    2010-04-01

    A unique feature of the skin immune system is its proximity to cells continuously exposed to sun rays, as it is located in the interface between the body and the environment. In this study, we aimed to determine the impact of DNA damaged keratinocytes on the expression of apoptotic-related molecules, in T-cells of the inflammatory component of the tumor environment. Immunohistochemistry was performed on tissue sections derived from skin biopsies of basal cell carcinomas (BCCs) of xeroderma pigmentosum (XP) patients, non-XP patients and nevoid basal cell carcinoma syndrome (NBCCS) patients, using antibodies against B-cell lymphoma/leukemia-2 (Bcl-2), Bcl-2 associated X protein (Bax), CD95, CD3, CD8 and CD56. Our results showed significantly lower levels of expression of the antiapoptotic Bcl-2 molecule, in XP, in comparison with non-XP and NBCCS T-lymphocytes, leading to the highest Bax/Bcl-2 ratio for XP T-cells. For the CD95 receptor expression levels, there were significant differences among T-cells of the three patient subgroups as well. The higher propensity of XP T-cells to undergo apoptosis may have evolved in individual XP patients, apparently during the course of their disease, to maintain a special skin as an immune privilege site for tumors' development.

  2. Cutis rhomboidalis protects skin from malignant epithelial tumors.

    PubMed

    Bonkevitch, F; Souza, P R M

    2014-06-01

    Cutis rhomboidalis nuchae is a skin alteration which comes from chronic sun exposure and it integrates the solar elastosis group, acquiring a coriaceous aspect, with a yellowish and grooved surface. There is the occurrence of elastic and collagen fibers degeneration found in the dermis caused by ultraviolet radiation [1]. Another group of skin diseases which has solar exposure as a determining factor is the group of actinic keratoses, the non-melanoma malignant epithelial tumors {basal cell carcinoma (CBC) and squamous cell carcinoma (CEC)} [2]. However, the occurrence of actinic keratoses, CBCs or CECs on the area of cutis rhomboidalis is infrequent in dermatology clinical practice. The authors do not know why people with neoplasias and pre neoplastic lesions in some areas with chronic photo damage amendments (face and upper limbs), do not present the same pre and neoplastic lesions in areas with similar appearance of chronic sun damage (nape). The authors seek to understand why the nape is protected for pre and neoplastic lesions. We suggest that cutis rhomboidalis protects skin from malignant epithelial tumors in nuchae.

  3. Simultaneous dual modality optical and MR imaging of mouse dorsal skin-fold window chamber

    NASA Astrophysics Data System (ADS)

    Salek, Mir Farrokh; Pagel, Mark D.; Gmitro, Arthur F.

    2011-02-01

    Optical imaging and MRI have both been used extensively to study tumor microenvironment. The two imaging modalities are complementary and can be used to cross-validate one another for specific measurements. We have developed a modular platform that is capable of doing optical microscopy inside an MRI instrument. To do this, an optical relay system transfers the image to outside of the MR bore to a commercial grade CCD camera. This enables simultaneous optical and MR imaging of the same tissue and thus creates the ideal situation for comparative or complementary studies using both modalities. Initial experiments have been done using GFP labeled prostate cancer cells implanted in mouse dorsal skin fold window chamber. Vascular hemodynamics and vascular permeability were studied using our imaging system. Towards this goal, we developed a dual MR-Optical contrast agent by labeling BSA with both Gd-DTPA and Alexa Fluor. Overall system design and results of these preliminary vascular studies are presented.

  4. THE INFLUENCE OF DIET ON TRANSPLANTED AND SPONTANEOUS MOUSE TUMORS

    PubMed Central

    Rous, Peyton

    1914-01-01

    Previous work has shown that the growth of grafts of transplantable tumors can be in many cases prevented or retarded by underfeeding the new host or by putting it on a special diet. The effect of such treatment on large tumors has been little studied; and the effect on metastases and recurrences has not been studied at all. Apart from certain clinical observations nothing is known as to the influence on spontaneous tumors of alterations in the diet. Experiments with transplanted rat and mouse tumors along the lines thus suggested show that large growths of certain strains are checked in their development by underfeeding the host upon a special diet (Sweet's modification of one of Mendel and Osborne's foods) or in some cases by simple underfeeding. Two metastasizing mouse tumors are instances in point. They stopped growing or grew very slowly in hosts underfed on the special diet. The Flexner-Jobling rat carcinoma, on the other hand, was unaffected by the most rigorous underfeeding on a mixed diet when this was begun after the tumor had been growing for a short period. Experiments to test the influence of underfeeding upon recurrences of this tumor gave results that varied from series to series of animals. The findings strongly indicate that generalizations from work with transplanted tumors as regards the effects of diet on spontaneous growths are unwarranted. By underfeeding on Sweet's food mice with spontaneous tumors, beginning some days prior to operation, it has proved possible in most cases to delay for a relatively long period the development of recurrences and the growth of tumor bits (grafts) disseminated at the time of surgical interference. The treatment entailed great loss of weight. Tumor mice kept on ordinary diet previous to operation, but put thereafter on an abundant ration of Sweet's food, developed recurrences as early as the tumor mice on ordinary diet; whereas the growth of auto-implants was, relatively speaking, much delayed. These results

  5. Mouse Tumor Biology (MTB): a database of mouse models for human cancer.

    PubMed

    Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T

    2015-01-01

    The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers.

  6. Developing genetically engineered mouse models to study tumor suppression

    PubMed Central

    Xiong, Shunbin; Parker-Thornburg, Jan; Lozano, Guillermina

    2012-01-01

    Since the late 1980s, the tools to generate mice with deletions of tumor suppressors have made it possible to study such deletions in the context of a whole animal. Deletion of some tumor suppressors results in viable mice while deletion of others yield embryo lethal phenotypes cementing the concept that genes that often go awry in cancer are also of developmental importance. More sophisticated mouse models were subsequently developed to delete a gene in a specific cell type at a specific time point. Additionally, incorporation of point mutations in a specific gene as observed in human tumors has also revealed their contributions to tumorigenesis. On the other hand, some models never develop cancer unless combined with other deletions suggesting a modifying role in tumorigenesis. This review will describe the technical aspects of generating these mice and provide examples of the outcomes obtained from alterations of different tumor suppressors. PMID:22582146

  7. Vitamin D receptor, a tumor suppressor in skin.

    PubMed

    Bikle, Daniel D

    2015-05-01

    Vitamin D and calcium are well-established regulators of keratinocyte proliferation and differentiation. Therefore, it was not a great surprise that deletion of the vitamin D receptor (VDR) should predispose the skin to tumor formation, and that the combination of deleting both the VDR and calcium sensing receptor (CaSR) should be especially pro-oncogenic. In this review I have examined 4 mechanisms that appear to underlie the means by which VDR acts as a tumor suppressor in skin. First, DNA damage repair is curtailed in the absence of the VDR, allowing mutations in DNA to accumulate. Second and third involve the increased activation of the hedgehog and β-catenin pathways in the epidermis in the absence of the VDR, leading to poorly regulated proliferation with reduced differentiation. Finally, VDR deletion leads to a shift in the expression of long noncoding RNAs toward a more oncogenic profile. How these different mechanisms interact and their relative importance in the predisposition of the VDR null epidermis to tumor formation remain under active investigation.

  8. Effects of radiation on the visual appearance and mechanical properties of mouse skin.

    PubMed

    Burlin, T E; Challoner, A V; Hutton, W C; Magnus, I A; Ranu, H S; Spittle, M

    1977-02-01

    A study of the long term effects of radiation on the visual appearance and mechanical properties of mouse skin is presented. The effects associated with the hair follicle (greying and alopecia) increase monotonically with exposure. Other effects (load, extension and stress at rupture and scarring of the skin) all show a reversal at the highest exposures. The skin thickness changes little with exposure, while the skin stiffness exhibits a shoulder on the response curve. Possible mechanisms underlying these effects are discussed.

  9. A mouse surgical model for metastatic ovarian granulosa cell tumor.

    PubMed

    Nadeau, Marie-Eve; Kaartinen, M Johanna; Laguë, Marie-Noëlle; Paquet, Marilène; Huneault, Louis M; Boerboom, Derek

    2009-12-01

    We recently described a genetically engineered mouse model that develops ovarian granulosa cell tumors (GCTs) that mimic many aspects of the advanced human disease, including distant dissemination. However, because the primary tumors killed their hosts before metastases were able to form, the use of these mice to study metastatic disease required the development of a simple, reliable, and humane surgical protocol for the excision of large GCTs from debilitated mice. Here we describe a protocol involving multimodal anesthesia, tumor removal through ventral midline celiotomy and perioperative fluid therapy, and analgesia that led to the postoperative survival of more than 90% of mice, despite the removal of tumors representing as much as 10% of the animal's body weight. Intraabdominal recurrence of the GCT did not occur in surviving animals, but most developed pulmonary or adrenal metastases (or both) by 12 wk after surgery. We propose that this mouse model of metastatic GCT will serve as a useful preclinical model for the development of novel treatment modalities and diagnostic techniques. Furthermore, our results delineate anesthetic and surgical principles for the removal of large abdominal tumors from mice that will be applicable to other models of human cancers.

  10. Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes.

    PubMed

    Hobbs, Ryan P; DePianto, Daryle J; Jacob, Justin T; Han, Minerva C; Chung, Byung-Min; Batazzi, Adriana S; Poll, Brian G; Guo, Yajuan; Han, Jingnan; Ong, SuFey; Zheng, Wenxin; Taube, Janis M; Čiháková, Daniela; Wan, Fengyi; Coulombe, Pierre A

    2015-08-01

    Expression of the intermediate filament protein keratin 17 (K17) is robustly upregulated in inflammatory skin diseases and in many tumors originating in stratified and pseudostratified epithelia. We report that autoimmune regulator (Aire), a transcriptional regulator, is inducibly expressed in human and mouse tumor keratinocytes in a K17-dependent manner and is required for timely onset of Gli2-induced skin tumorigenesis in mice. The induction of Aire mRNA in keratinocytes depends on a functional interaction between K17 and the heterogeneous nuclear ribonucleoprotein hnRNP K. Further, K17 colocalizes with Aire protein in the nucleus of tumor-prone keratinocytes, and each factor is bound to a specific promoter region featuring an NF-κB consensus sequence in a relevant subset of K17- and Aire-dependent proinflammatory genes. These findings provide radically new insight into keratin intermediate filament and Aire function, along with a molecular basis for the K17-dependent amplification of inflammatory and immune responses in diseased epithelia.

  11. Regulation of Retinoid-Mediated Signaling Involved in Skin Homeostasis by RAR and RXR Agonists/Antagonists in Mouse Skin

    PubMed Central

    Gericke, Janine; Ittensohn, Jan; Mihály, Johanna; Álvarez, Susana; Álvarez, Rosana; Töröcsik, Dániel; de Lera, Ángel R.; Rühl, Ralph

    2013-01-01

    Endogenous retinoids like all-trans retinoic acid (ATRA) play important roles in skin homeostasis and skin-based immune responses. Moreover, retinoid signaling was found to be dysregulated in various skin diseases. The present study used topical application of selective agonists and antagonists for retinoic acid receptors (RARs) α and γ and retinoid-X receptors (RXRs) for two weeks on mouse skin in order to determine the role of retinoid receptor subtypes in the gene regulation in skin. We observed pronounced epidermal hyperproliferation upon application of ATRA and synthetic agonists for RARγ and RXR. ATRA and the RARγ agonist further increased retinoid target gene expression (Rbp1, Crabp2, Krt4, Cyp26a1, Cyp26b1) and the chemokines Ccl17 and Ccl22. In contrast, a RARα agonist strongly decreased the expression of ATRA-synthesis enzymes, of retinoid target genes, markers of skin homeostasis, and various cytokines in the skin, thereby markedly resembling the expression profile induced by RXR and RAR antagonists. Our results indicate that RARα and RARγ subtypes possess different roles in the skin and may be of relevance for the auto-regulation of endogenous retinoid signaling in skin. We suggest that dysregulated retinoid signaling in the skin mediated by RXR, RARα and/or RARγ may promote skin-based inflammation and dysregulation of skin barrier properties. PMID:23638129

  12. The role of polycyclic aromatic hydrocarbon-DNA adducts in inducing mutations in mouse skin

    PubMed Central

    Chakravarti, Dhrubajyoti; Venugopal, Divya; Mailander, Paula C.; Meza, Jane L.; Higginbotham, Sheila; Cavalieri, Ercole L.; Rogan, Eleanor G.

    2008-01-01

    Polycyclic aromatic hydrocarbons (PAH) form stable and depurinating DNA adducts in mouse skin to induce preneoplastic mutations. Some mutations transform cells, which then clonally expand to establish tumors. Strong clues about the mutagenic mechanism can be obtained if the PAH-DNA adducts can be correlated with both preneoplastic and tumor mutations. To this end, we studied mutagenesis in PAH-treated early preneoplastic skin (1 day after exposure) and in the induced papillomas in SENCAR mice. Papillomas were studied by PCR amplification of the H-ras gene and sequencing. For benzo[a]pyrene (BP), BP-7,8-dihydrodiol (BPDHD), 7,12-dimethylbenz[a]anthracene (DMBA) and dibenzo[a,l]pyrene (DB[a,l]P), the codon 13 (GGC to GTC) and codon 61 (CAA to CTA) mutations in papillomas corresponded to the relative levels of Gua and Ade-depurinating adducts, despite BP and BPDHD forming significant amounts of stable DNA adducts. Such a relationship was expected for DMBA and DB[a,l]P, as they formed primarily depurinating adducts. These results suggest that depurinating adducts play a major role in forming the tumorigenic mutations. To validate this correlation, preneoplastic skin mutations were studied by cloning H-ras PCR products and sequencing individual clones. DMBA- and DB[a,l]P-treated skin showed primarily A.T to G.C mutations, which correlated with the high ratio of the Ade/Gua-depurinating adducts. Incubation of skin DNA with T.G-DNA glycosylase eliminated most of these A.T to G.C mutations, indicating that they existed as G.T heteroduplexes, as would be expected if they were formed by errors in the repair of abasic sites generated by the depurinating adducts. BP and its metabolites induced mainly G.C to T.A mutations in preneoplastic skin. However, PCR over unrepaired anti-BPDE-N2dG adducts can generate similar mutations as artifacts of the study protocol, making it difficult to establish an adduct-mutation correlation for determining which BP-DNA adducts induce the early

  13. New outbred colony derived from Mus musculus castaneus to identify skin tumor susceptibility loci.

    PubMed

    Fujiwara, Kyoko; Wie, Benjamin; Elliott, Rosemary; Nagase, Hiroki

    2010-07-01

    Susceptibility to tumor development varies among mice strains. Using inbred NIH and wild-derived outbred Mus spretus backcrosses, skin cancer-susceptibility loci were mapped [Nagase et al. 1995. Nat Genet 10: 424-429; Nagase et al. 1999. Proc Natl Acad Sci USA 96: 15032-15037], and Skts13 was identified as the Aurka gene using a conventional linkage in conjunction with haplotype analysis [Ewart-Toland et al. 2003. Nat Genet 34: 403-412]. In the present study, we examined another wild-derived outbred Mus musculus castaneus in which 10.3% of the analyzed SNPs showed heterogeneity among the colony. All mice examined were completely resistant to the two-stage skin carcinogenesis protocol using 7.12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA), and this resistant phenotype was dominant when we crossed them with the highly susceptible strain FVB. By scanning F1 backcross progeny between M. m. castaneus and FVB, we found a highly significant linkage for tumor multiplicity on Chromosome 4, which was overlapped with the Skts-fp1 locus, found in the previous study using FVB and PWK cross [Fujiwara et al. 2007. BMC Genet 8: 39]. The linkage was observed in all pedigrees from the five F1 founders, while the linkage for papilloma size on Chromosome 4 was mapped only in pedigrees from founders 1 and 2. By scanning the whole Chromosome 4 of the five F1 founders, founders 1- and 2-specific haplotype block was found between D4Mit293 (20.6 Mbp) and D4Mit171 (22.4 Mbp). In this study we exploited the outbred nature of M. m. castaneus stock to identify a haplotype contributing to papilloma size on mouse Chromosome 4. These data illustrate the strength of using outbred mice in identification of the genetic component of a mouse complex trait such as the skin cancer-susceptibility phenotype.

  14. New outbred colony derived from Mus musculus castaneus to identify skin tumor susceptibility loci

    PubMed Central

    Fujiwara, Kyoko; Wie, Benjamin; Elliott, Rosemary

    2010-01-01

    Susceptibility to tumor development varies among mice strains. Using inbred NIH and wild-derived outbred Mus spretus backcrosses, skin cancer-susceptibility loci were mapped [1][2], and Skts13 was identified as the Aurka gene using a conventional linkage in conjunction with haplotype analysis [3]. In the present study, we examined another wild-derived outbred Mus musculus castaneus (M.m.castaneus) in which 10.3% of the analyzed SNPs showed heterogeneity among the colony. All mice examined were completely resistant to the two-stage skin carcinogenesis protocol using 7.12-dimethylbenz(a)anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA), and this resistant phenotype was dominant when we crossed them with the highly susceptible strain FVB. By scanning F1 backcross progeny between M.m.castaneus and FVB, we found a highly significant linkage for tumor multiplicity on Chromosome 4, which was overlapped with the Skts-fp1 locus, found in the previous study using FVB and PWK cross [4]. The linkage was observed in all pedigrees from the five F1 founders, while the linkage for papilloma size on Chromosome 4 was mapped only in pedigrees from founders 1 and 2. By scanning the whole Chromosome 4 of the five F1 founders, founder1, 2-specific haplotype block was found between D4Mit293 (20.6 Mbp) and D4Mit171 (22.4 Mbp). In this study we exploited the outbred nature of M.m.castaneus stock to identify a haplotype contributing to papilloma size on mouse chromosome 4. These data illustrate the strength of using outbred mice in identification of the genetic component of a mouse complex trait such as the skin cancer-susceptibility phenotype. PMID:20564342

  15. Induction of apoptosis by calcium D-glucarate in 7,12-dimethyl benz [a] anthracene-exposed mouse skin.

    PubMed

    Singh, Jaya; Gupta, Krishna P

    2007-01-01

    Calcium glucarate (Cag), a naturally occurring nontoxic compound, suppresses the DMBA-induced tumor development in mouse skin. In the process of understanding the mechanisms of tumor suppression by Cag, we investigated the effect of topical application of Cag on selective and critical events of apoptotic pathway in DMBA-exposed mouse epidermis. Varied doses of DMBA or Cag were used for the study. DMBA had an inhibitory effect on proteases in general and on caspases in particular. Cag tried to reverse the inhibitory effect of DMBA on 3, 8, or 9 caspase in a dose-dependent manner. Cag inhibited activity of Poly ADP-ribose polymerase enzyme, a substrate of caspses, after DMBA exposure. As indicated by western blotting, Cag treatment also inhibited PARP expression induced by DMBA at the level of protein. Cag induced the DMBA-inhibited Ca++/Mg++-dependent endonuclease, an enzyme responsible for the DNA fragmentation during apoptosis. DMBA induced the expression of mutant-p53 and Bcl-2. This induced expression of proteins was reversed when Cag was given along with DMBA. Cag showed a dose-dependent inhibition of DMBA-induced mutant-p53 expression. Similarly Bcl-2 overexpression by DMBA was also inhibited by topical treatment of Cag when given along with DMBA. Inhibition of mutant-p53 and Bcl-2 expression by Cag in DMBA-exposed mouse skin might contribute to the apoptogenic effect possibly exerted by Cag while suppressing the tumor development. The study indicates that Cag induces apoptosis in mouse epidermis, a possible mechanism for tumor suppression, and thus could be considered a promising anticancer agent.

  16. Iontophoretic transdermal delivery of buspirone hydrochloride in hairless mouse skin.

    PubMed

    Al-Khalili, Mohammad; Meidan, Victor M; Michniak, Bozena B

    2003-01-01

    The transdermal delivery of buspirone hydrochloride across hairless mouse skin and the combined effect of iontophoresis and terpene enhancers were evaluated in vitro using Franz diffusion cells. Iontophoretic delivery was optimized by evaluating the effect of drug concentration, current density, and pH of the vehicle solution. Increasing the current density from 0.05 to 0.1 mA/cm2 resulted in doubling of the iontophoretic flux of buspirone hydrochloride, while increasing drug concentration from 1% to 2% had no effect on flux. Using phosphate buffer to adjust the pH of the drug solution decreased the buspirone hydrochloride iontophoretic flux relative to water solutions. Incorporating buspirone hydrochloride into ethanol:water (50:50 vol/vol) based gel formulations using carboxymethylcellulose and hydroxypropylmethylcellulose had no effect on iontophoretic delivery. Incorporation of three terpene enhancers (menthol, cineole, and terpineol) into the gel resulted in a synergistic effect when combined with iontophoresis. Menthol was the most active enhancer, and when combined with iontophoresis it was possible to deliver 10 mg/cm2/day of buspirone hydrochloride.

  17. Localization of the defect in skin diseases analyzed in the human skin graft-nude mouse model.

    PubMed

    Briggaman, R A

    1980-01-01

    Human skin can be grown away from its donor for prolonged periods as grafts on congenitally athymic "nude" mice. This system has been used to analyze the defect in several skin diseases, specifically to localize the site of the defect to the skin itself or to the epidermal or dermal components of the skin. In order to validate the use of the nude mouse human skin graft system in the analysis of skin defects, we have demonstrated that a systemic metabolic defect which involves the skin, namely essential fatty acid deficiency, can be differentiated from a defect residing primarily in the skin itself. Skin-marker systems have been developed for use with the nude mouse-human skin graft model to document the identity of human skin grafts and epidermal and dermal components of the grafts after prolonged periods of growth on the nude athymic mice. Y-body, a small fluorescent segment of the Y-chromosome seen in interphase cells, is used as a sex marker and serves to distinguish sex differences between the graft and the mouse recipient or between skin components of the graft. The ABH "blood-group" antigens are present on differentiated epidermal cell surfaces and identify the grafted epidermis according to the blood groups of the donor. In previous studies, lamellar ichthyosis was shown to be well maintained after prolonged periods of growth on nude athymic mice, indicating that the defect in this disease resides in the skin itself. Recombinant grafts composed of normal and lamellar ichthyosis epidermis and dermis further localize the defect to lamellar ichthyosis epidermis. Psoriasis is well maintained on the nude mouse-skin graft model. The epidermal hyperplasia and hyperproliferative epidermal cell kinetics of psoriasis are manifested in the grafts of active psoriasis maintained for prolonged periods on the nude mice, but the inflammatory component of psoriasis is absent. Recombinant graft studies utilizing normal and psoriatic epidermis and dermis demonstrate psoriasis

  18. Keratinocyte-specific stat3 heterozygosity impairs development of skin tumors in human papillomavirus 8 transgenic mice.

    PubMed

    De Andrea, Marco; Rittà, Massimo; Landini, Manuela M; Borgogna, Cinzia; Mondini, Michele; Kern, Florian; Ehrenreiter, Karin; Baccarini, Manuela; Marcuzzi, Gian Paolo; Smola, Sigrun; Pfister, Herbert; Landolfo, Santo; Gariglio, Marisa

    2010-10-15

    Human papillomaviruses (HPV) of the genus β are thought to play a role in human skin cancers, but this has been difficult to establish using epidemiologic approaches. To gain insight into the transforming activities of β-HPV, transgenic mouse models have been generated that develop skin tumors. Recent evidence suggests a central role of signal transducer and activator of transcription 3 (Stat3) as a transcriptional node for cancer cell-autonomous initiation of a tumor-promoting gene signature associated with cell proliferation, cell survival, and angiogenesis. Moreover, high levels of phospho-Stat3 have been detected in tumors arising in HPV8-CER transgenic mice. In this study, we investigate the in vivo role of Stat3 in HPV8-induced skin carcinogenesis by combining our established experimental model of HPV8-induced skin cancer with epidermis-restricted Stat3 ablation. Stat3 heterozygous epidermis was less prone to tumorigenesis than wild-type epidermis. Three of the 23 (13%) Stat3(+/-):HPV8 animals developed tumors within 12 weeks of life, whereas 54.3% of Stat3(+/+):HPV8 mice already exhibited tumors in the same observation period (median age for tumor appearance, 10 weeks). The few tumors that arose in the Stat3(+/-):HPV8 mice were benign and never progressed to a more malignant phenotype. Collectively, these results offer direct evidence of a critical role for Stat3 in HPV8-driven epithelial carcinogenesis. Our findings imply that targeting Stat3 activity in keratinocytes may be a viable strategy to prevent and treat HPV-induced skin cancer.

  19. Multimodality pH imaging in a mouse dorsal skin fold window chamber model

    NASA Astrophysics Data System (ADS)

    Leung, Hui Min; Schafer, Rachel; Pagel, Mark M.; Robey, Ian F.; Gmitro, Arthur F.

    2013-03-01

    Upregulate levels of expression and activity of membrane H+ ion pumps in cancer cells drives the extracellular pH (pHe,) to values lower than normal. Furthermore, disregulated pH is indicative of the changes in glycolytic metabolism in tumor cells and has been shown to facilitate extracellular tissue remodeling during metastasis Therefore, measurement of pHe could be a useful cancer biomarker for diagnostic and therapy monitoring evaluation. Multimodality in-vivo imaging of pHe in tumorous tissue in a mouse dorsal skin fold window chamber (DSFWC) model is described. A custom-made plastic window chamber structure was developed that is compatible with both imaging optical and MR imaging modalities and provides a model system for continuous study of the same tissue microenvironment on multiple imaging platforms over a 3-week period. For optical imaging of pHe, SNARF-1 carboxylic acid is injected intravenously into a SCID mouse with an implanted tumor. A ratiometric measurement of the fluorescence signal captured on a confocal microscope reveals the pHe of the tissue visible within the window chamber. This imaging method was used in a preliminary study to evaluate sodium bicarbonate as a potential drug treatment to reverse tissue acidosis. For MR imaging of pHe the chemical exchange saturation transfer (CEST) was used as an alternative way of measuring pHe in a DSFWC model. ULTRAVIST®, a FDA approved x-ray/CT contrast agent has been shown to have a CEST effect that is pH dependent. A ratiometric analysis of water saturation at 5.6 and 4.2 ppm chemical shift provides a means to estimate the local pHe.

  20. Multimodality pH imaging in a mouse dorsal skin fold window chamber model.

    PubMed

    Leung, Hui Min; Schafer, Rachel; Pagel, Mark M; Robey, Ian F; Gmitro, Arthur F

    2013-02-02

    Upregulate levels of expression and activity of membrane H(+) ion pumps in cancer cells drives the extracellular pH (pHe,) to values lower than normal. Furthermore, disregulated pH is indicative of the changes in glycolytic metabolism in tumor cells and has been shown to facilitate extracellular tissue remodeling during metastasis Therefore, measurement of pHe could be a useful cancer biomarker for diagnostic and therapy monitoring evaluation. Multimodality in-vivo imaging of pHe in tumorous tissue in a mouse dorsal skin fold window chamber (DSFWC) model is described. A custom-made plastic window chamber structure was developed that is compatible with both imaging optical and MR imaging modalities and provides a model system for continuous study of the same tissue microenvironment on multiple imaging platforms over a 3-week period. For optical imaging of pHe, SNARF-1 carboxylic acid is injected intravenously into a SCID mouse with an implanted tumor. A ratiometric measurement of the fluorescence signal captured on a confocal microscope reveals the pHe of the tissue visible within the window chamber. This imaging method was used in a preliminary study to evaluate sodium bicarbonate as a potential drug treatment to reverse tissue acidosis. For MR imaging of pHe the chemical exchange saturation transfer (CEST) was used as an alternative way of measuring pHe in a DSFWC model. ULTRAVIST®, a FDA approved x-ray/CT contrast agent has been shown to have a CEST effect that is pH dependent. A ratiometric analysis of water saturation at 5.6 and 4.2 ppm chemical shift provides a means to estimate the local pHe.

  1. Tumorigenesis of diesel exhaust, gasoline exhaust, and related emission extracts on SENCAR mouse skin

    SciTech Connect

    Nesnow, S; Triplett, L L; Slaga, T J

    1980-01-01

    The tumorigenicity of diesel exhaust particulate emissions was examined using a sensitive mouse skin tumorigenesis model (SENCAR). The tumorigenic potency of particulate emissions from diesel, gasoline, and related emission sources was compared.

  2. Endpoints for Mouse Abdominal Tumor Models: Refinement of Current Criteria

    PubMed Central

    Paster, Eden V; Villines, Kimberly A; Hickman, Debra L

    2009-01-01

    Accurate, rapid, and noninvasive health assessments are required to establish more appropriate endpoints in mouse cancer models where tumor size is not easily measured. We evaluated potential endpoints in mice with experimentally induced peritoneal lymphoma, an abdominal tumor model, by comparing body weight, body condition, and behavior with those of a control group of mice not developing lymphoma. Our hypothesis was that body weight would increase or plateau, whereas body condition and behavioral scores would decrease, as disease progressed. Results indicated that body weight did not differ significantly between the control and experimental groups, but the experimental group experienced significant decreases in both body condition and behavioral scores. Our results support the use of body condition and behavioral scoring as adjunctive assessment methods for mice involved in abdominal lymphoma tumor studies in which health may decline despite an increase or plateau in body weight. PMID:19619413

  3. Lessons Learned from Mouse Mammary Tumor Virus in Animal Models

    PubMed Central

    Dudley, Jaquelin P.; Golovkina, Tatyana V.; Ross, Susan R.

    2016-01-01

    Mouse mammary tumor virus (MMTV), which was discovered as a milk-transmitted, infectious, cancer-inducing agent in the 1930s, has been used as an animal model for the study of retroviral infection and transmission, antiviral immune responses, and breast cancer and lymphoma biology. The main target cells for MMTV infection in vivo are cells of the immune system and mammary epithelial cells. Although the host mounts an immune response to the virus, MMTV has evolved multiple means of evading this response. MMTV causes mammary tumors when the provirus integrates into the mammary epithelial and lymphoid cell genome during viral replication and thereby activates cellular oncogene expression. Thus, tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer. PMID:27034391

  4. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models.

    PubMed

    Oesch, F; Fabian, E; Guth, K; Landsiedel, R

    2014-12-01

    The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the "Overview and Conclusions" section in the end of this review.

  5. Diminution of mouse epidermal superoxide dismutase and catalase activities by tumor promotors

    SciTech Connect

    Solanki, V.; Rana, R.S.; Slaga, T.J.

    1981-01-01

    The effects of phorbol ester tumor promoters and related compounds on superoxide dismutase (SOD) and catalase were examined. The treatment of adult mouse skin with 2 ..mu..g 12-0-tetradecanoylphorbol-13-acetate (TPA) resulted in a sustained decrease in the basal levels of both SOD and catalase activities in the epidermis. A decline in SOD activity occurred within 2 h after application and the maximum effect was seen at 16-17 h. The decrease in SOD activity was always accompanied by a similar decline in the epidermal catalase activity. The alterations in both enzymes occurred against a high background of enhanced protein synthesis which indicates that the effect of TPA is selective for SOD and catalase. Other tumor promoters such as phorbol 12,13-dibutyrate and the non-phorbol tumor promoter anthraline also lowered the activities of both the enzymes. Mezerein, a resiniferonol derivative with weak promoting activity but a potent stage-II promoter, appeared to be more potent than TPA in lowering the basal levels. These results indicate that damage which favors neoplastic progression would occur in TPA-treated mouse skin due to the accumulation of free radicals resulting from low levels of SOD and catalase activity. In addition, the TPA-caused decrease in the levels of SOD and catalase was not prevented by either retinoic acid, fluocinolone acetonide, tosyl amino-2-phenylethyl chloromethyl ketone, or butylated hydroxytoluene, suggesting that inhibition of tumor promotion by these agents is not mediated through alterations in the levels of enzymatic activities which decrease free radical concentrations.

  6. Feature selection for optimized skin tumor recognition using genetic algorithms.

    PubMed

    Handels, H; Ross, T; Kreusch, J; Wolff, H H; Pöppl, S J

    1999-07-01

    In this paper, a new approach to computer supported diagnosis of skin tumors in dermatology is presented. High resolution skin surface profiles are analyzed to recognize malignant melanomas and nevocytic nevi (moles), automatically. In the first step, several types of features are extracted by 2D image analysis methods characterizing the structure of skin surface profiles: texture features based on cooccurrence matrices, Fourier features and fractal features. Then, feature selection algorithms are applied to determine suitable feature subsets for the recognition process. Feature selection is described as an optimization problem and several approaches including heuristic strategies, greedy and genetic algorithms are compared. As quality measure for feature subsets, the classification rate of the nearest neighbor classifier computed with the leaving-one-out method is used. Genetic algorithms show the best results. Finally, neural networks with error back-propagation as learning paradigm are trained using the selected feature sets. Different network topologies, learning parameters and pruning algorithms are investigated to optimize the classification performance of the neural classifiers. With the optimized recognition system a classification performance of 97.7% is achieved.

  7. Microwave detection of breast tumors: comparison of skin subtraction algorithms

    NASA Astrophysics Data System (ADS)

    Fear, Elise C.; Stuchly, Maria A.

    2000-07-01

    Early detection of breast cancer is an important part of effective treatment. Microwave detection of breast cancer is of interest due to the contrast in dielectric properties of normal and malignant breast tissues. We are investigating a confocal microwave imaging system that adapts ideas from ground penetrating radar to breast cancer detection. In the proposed system, the patient lies prone with the breast extending through a hole in the examining table and encircled by an array of antennas. The breast is illuminated sequentially by each antenna with an ultrawideband signal, and the returns are recorded at the same antenna. Because the antennas are offset from the breast, the dominant component of the recorded returns is the reflection from the thin layer of breast skin. Two methods of reducing this reflection are compared, namely approximation of the signal with two time shifted, scaled and summed returns from a cylinder of skin, and subtraction of the mean of the set of aligned returns. Both approaches provide effective decrease of the skin signal, allowing for tumor detection.

  8. Mechanistic Investigation of Toxaphene Induced Mouse Liver Tumors.

    PubMed

    Wang, Zemin; Neal, Barbara H; Lamb, James C; Klaunig, James E

    2015-10-01

    Chronic exposure to toxaphene resulted in an increase in liver tumors in B6C3F1 mice. This study was performed to investigate the mode of action of toxaphene induced mouse liver tumors. Following an initial 14 day dietary dose range-finding study in male mice, a mechanistic study (0, 3, 32, and 320 ppm toxaphene in diet for 7, 14, and 28 days of treatment) was performed to examine the potential mechanisms of toxaphene induced mouse liver tumors. Toxaphene induced a significant increase in expression of constitutive androstane receptor (CAR) target genes (Cyp2b10, Cyp3a11) at 32 and 320 ppm toxaphene. aryl hydrocarbon receptor (AhR) target genes (Cyp1a1 and Cyp1a2) were slightly increased in expression at the highest toxaphene dose (320 ppm). No increase in peroxisome proliferator-activated receptor alpha activity or related genes was seen following toxaphene treatment. Lipid peroxidation was seen following treatment with 320 ppm toxaphene. These changes correlated with increases in hepatic DNA synthesis. To confirm the role of CAR in this mode of action, CAR knockout mice (CAR(-/-)) treated with toxaphene confirmed that the induction of CAR responsive genes seen in wild-type mice was abolished following treatment with toxaphene for 14 days. These findings, taken together with previously reported studies, support the mode of action of toxaphene induced mouse liver tumors is through a nongenotoxic mechanism involving primarily a CAR-mediated processes that results in an increase in cell proliferation in the liver, promotes the clonal expansion of preneoplastic lesions leading to adenoma formation.

  9. Characterization of the serotoninergic system in the C57BL/6 mouse skin.

    PubMed

    Slominski, Andrzej; Pisarchik, Alexander; Semak, Igor; Sweatman, Trevor; Wortsman, Jacobo

    2003-08-01

    We showed expression of the tryptophan hydroxylase gene and of tryptophan hydroxylase protein immunoreactivity in mouse skin and skin cells. Extracts from skin and melanocyte samples acetylated serotonin to N-acetylserotonin and tryptamine to N-acetyltryptamine. A different enzyme from arylalkylamine N-acetyltransferase mediated this reaction, as this gene was defective in the C57BL6 mouse, coding predominantly for a protein without enzymatic activity. Serotonin (but not tryptamine) acetylation varied according to hair cycle phase and anatomic location. Serotonin was also metabolized to 5-hydroxytryptophol and 5-hydroxyindole acetic acid, probably through stepwise transformation catalyzed by monoamine oxidase, aldehyde dehydrogenase and aldehyde reductase. Activity of the melatonin-forming enzyme hydroxyindole-O-methyltransferase was notably below detectable levels in all samples of mouse corporal skin, although it was detectable at low levels in the ears and in Cloudman melanoma (derived from the DBA/2 J mouse strain). In conclusion, mouse skin has the molecular and biochemical apparatus necessary to produce and metabolize serotonin and N-acetylserotonin, and its activity is determined by topography, physiological status of the skin, cell type and mouse strain.

  10. Epidermal CYLD inactivation sensitizes mice to the development of sebaceous and basaloid skin tumors

    PubMed Central

    Jin, Yingai Jane; Wang, Sally; Cho, Joshua; Selim, M. Angelica; Wright, Tim; Mosialos, George; Zhang, Jennifer Y.

    2016-01-01

    The deubiquitinase-encoding gene Cyld displays a dominant genetic linkage to a wide spectrum of skin-appendage tumors, which could be collectively designated as CYLD mutant–syndrome (CYLDm-syndrome). Despite recent advances, little is understood about the molecular mechanisms responsible for this painful and difficult-to-treat skin disease. Here, we generated a conditional mouse model with epidermis-targeted expression of a catalytically deficient CYLDm through K14-Cre–mediated deletion of exon 9 (hereafter refer to CyldEΔ9/Δ9). CyldEΔ9/Δ9 mice were born alive but developed hair and sebaceous gland abnormalities and dental defects at 100% and 60% penetrance, respectively. Upon topical challenge with DMBA/TPA, these animals primarily developed sebaceous and basaloid tumors resembling human CYLDm-syndrome as opposed to papilloma, which is most commonly induced in WT mice by this treatment. Molecular analysis revealed that TRAF6-K63-Ubiquitination (K63-Ub), c-Myc-K63-Ub, and phospho-c–Myc (S62) were markedly elevated in CyldEΔ9/Δ9 skin. Topical treatment with a pharmacological c-Myc inhibitor induced sebaceous and basal cell apoptosis in CyldEΔ9/Δ9 skin. Consistently, c-Myc activation was readily detected in human cylindroma and sebaceous adenoma. Taken together, our findings demonstrate that CyldEΔ9/Δ9 mice represent a disease-relevant animal model and identify TRAF6 and c-Myc as potential therapeutic targets for CYLDm-syndrome. PMID:27478875

  11. A novel non-mouse mammary tumor virus activation of the Int-3 gene in a spontaneous mouse mammary tumor.

    PubMed Central

    Kordon, E C; Smith, G H; Callahan, R; Gallahan, D

    1995-01-01

    In a mouse mammary tumor model system in which carcinogenic progression can be investigated, we have found a unique mutation of Int-3 associated with progression from premalignant lobular hyperplasia to tumor. Sequence analysis of the rearranged fragment revealed an insertion of an intracisternal type A particle (IAP) within the Int-3 gene. Int-3 is mutated frequently in mouse mammary tumor virus (MMTV)-induced mammary tumors by insertion of MMTV proviral DNA into this intragenic region. In these mutations, the insertion produces a chimeric Int-3 transcript encoding the cytoplasmic portion of the Int-3 protein driven by the MMTV long terminal repeat promoter. In this case, the IAP DNA was inserted in the opposite transcriptional orientation relative to Int-3; nevertheless, a similar chimeric RNA transcript driven by a cryptic promoter in the oppositely oriented 5' IAP long terminal repeat was generated. This is the first demonstration that an insertional mutation unrelated to MMTV activates an Int gene commonly associated with mammary tumorigenesis. PMID:7494323

  12. The nature of the chromophore responsible for naturally occurring fluorescence in mouse skin.

    PubMed

    Weagle, G; Paterson, P E; Kennedy, J; Pottier, R

    1988-11-01

    Normal mouse skin has a prominent fluorescence peak at 674 nm. Fluorescence emission and fluorescence excitation spectroscopy, carried out both in vitro and in vivo, led to the conclusion that the chromophore(s) responsible for this naturally occurring fluorescence is/are pheophorbide a and/or pheophytin a, degradation products of chlorophyll a that are derived from the mouse food.

  13. The role of neutralizing antibodies for mouse mammary tumor virus transmission and mammary cancer development

    NASA Astrophysics Data System (ADS)

    Finke, Daniela; Luther, Sanjiv A.; Acha-Orbea, Hans

    2003-01-01

    Mouse mammary tumor virus (MMTV) infection establishes chronic germinal centers and a lifelong neutralizing Ab response. We show that removal of the draining lymph node after establishment of the germinal center reaction led to complete loss of neutralizing Abs despite comparable infection levels in peripheral lymphocytes. Importantly, in the absence of neutralization, only the exocrine organs mammary gland, salivary gland, pancreas, and skin showed strikingly increased infection, resulting in accelerated mammary tumor development. Induction of stronger neutralization did not influence chronic infection levels of peripheral lymphoid organs but strongly inhibited mammary gland infection and virus transmission to the next generation. Taken together, we provide evidence that a tight equilibrium in virus neutralization allows limited infection of exocrine organs and controls cancer development in susceptible mouse strains. These experiments show that a strong neutralizing Ab response induced after infection is not able to control lymphoid MMTV infection. Strong neutralization, however, is capable of blocking amplification of mammary gland infection, tumor development, and virus transmission to the next generation. The results also indicate a role of neutralization in natural resistance to MMTV infection.

  14. Mouse mammary tumor virus-like nucleotide sequences in canine and feline mammary tumors.

    PubMed

    Hsu, Wei-Li; Lin, Hsing-Yi; Chiou, Shyan-Song; Chang, Chao-Chin; Wang, Szu-Pong; Lin, Kuan-Hsun; Chulakasian, Songkhla; Wong, Min-Liang; Chang, Shih-Chieh

    2010-12-01

    Mouse mammary tumor virus (MMTV) has been speculated to be involved in human breast cancer. Companion animals, dogs, and cats with intimate human contacts may contribute to the transmission of MMTV between mouse and human. The aim of this study was to detect MMTV-like nucleotide sequences in canine and feline mammary tumors by nested PCR. Results showed that the presence of MMTV-like env and LTR sequences in canine malignant mammary tumors was 3.49% (3/86) and 18.60% (16/86), respectively. For feline malignant mammary tumors, the presence of both env and LTR sequences was found to be 22.22% (2/9). Nevertheless, the MMTV-like LTR and env sequences also were detected in normal mammary glands of dogs and cats. In comparisons of the MMTV-like DNA sequences of our findings to those of NIH 3T3 (MMTV-positive murine cell line) and human breast cancer cells, the sequence similarities ranged from 94 to 98%. Phylogenetic analysis revealed that intermixing among sequences identified from tissues of different hosts, i.e., mouse, dog, cat, and human, indicated the MMTV-like DNA existing in these hosts. Moreover, the env transcript was detected in 1 of the 19 MMTV-positive samples by reverse transcription-PCR. Taken together, our study provides evidence for the existence and expression of MMTV-like sequences in neoplastic and normal mammary glands of dogs and cats.

  15. Finding Mouse Models of Human Lymphomas and Leukemia’s using The Jackson Laboratory Mouse Tumor Biology Database

    PubMed Central

    Begley, Dale A.; Sundberg, John P.; Krupke, Debra M.; Neuhauser, Steven B.; Bult, Carol J.; Eppig, Janan T.; Morse, Herbert C.; Ward, Jerrold M.

    2015-01-01

    Many mouse models have been created to study hematopoietic cancer types. There are over thirty hematopoietic tumor types and subtypes, both human and mouse, with various origins, characteristics and clinical prognoses. Determining the specific type of hematopoietic lesion produced in a mouse model and identifying mouse models that correspond to the human subtypes of these lesions has been a continuing challenge for the scientific community. The Mouse Tumor Biology Database (MTB; http://tumor.informatics.jax.org) is designed to facilitate use of mouse models of human cancer by providing detailed histopathologic and molecular information on lymphoma subtypes, including expertly annotated, on line, whole slide scans, and providing a repository for storing information on and querying these data for specific lymphoma models. PMID:26302176

  16. Potent inhibitory effects of suicide inhibitors of P450 isozymes on 7,12-dimethylbenz[a]anthracene and benzo[a]pyrene initiated skin tumors.

    PubMed

    Alworth, W L; Viaje, A; Sandoval, A; Warren, B S; Slaga, T J

    1991-07-01

    A single dose of 1-ethynylpyrene (EP), 1-vinylpyrene (VP) or 2-ethynylnaphthalene (EN) was applied to the skin of SENCAR mice 5 min before an initiating dose of 7,12-dimethylbenz[a]anthracene (DMBA) or benzo[a]pyrene (B[a]P) and the development of skin tumors then promoted with biweekly topical applications of 12-O-tetradecanoylphorbol-13-acetate (TPA). The application of EP strongly inhibited the formation of skin tumors initiated by either DMBA or B[a]P in a dose-dependent manner. Application of 44 pmol of EP inhibited tumor initiation by 10 nmol of DMBA approximately 25%; application of 440 nmol of EP inhibited tumor initiation by 200 nmol of B[a]P approximately 51%. A high single dose of EP (4.4-44 mumol) nearly eliminated skin tumor initiation by either 10 nmol of DMBA or 200 nmol of B[a]P. Application of VP also inhibited the formation of skin tumors initiated by either DMBA or B[a]P in a dose-dependent manner, but higher doses of VP than of EP were required to produce comparable inhibitions. Application of 44 nmol of VP inhibited tumor initiation by 10 nmol of DMBA approximately 30%; application of 4.4 mumol of VP inhibited tumor initiation by 200 nmol of B[a]P approximately 56%. Application of EN yielded contrasting results. EN inhibited the formation of skin tumors initiated by 10 nmol of DMBA, but the observed dose-dependence was minimal; tumors were decreased about 40% by 3.3 mumol of EN and only about 65% by 132 mumol of EN. A high single dose of EN (132 mumol) increased both the mean number of tumors per mouse and the percentage of mice that developed tumors after initiation by 200 nmol of B[a]P. Topical application of 4.4 mumol of EP, 22 mumol of VP or 33 mumol of EN to the skin of SENCAR mice 5 min before a single initiation dose of 2.5 mumol of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) had a minimal inhibitory effect (14-28%) on the development of skin tumors produced by subsequent biweekly promotion with TPA. A single dose of 44 mumol of EP or

  17. 13C Tracer Studies of Metabolism in Mouse Tumor Xenografts

    PubMed Central

    Lane, Andrew N.; Yan, Jun; Fan, Teresa W-M.

    2015-01-01

    Mice are widely used for human tumor xenograft studies of cancer development and drug efficacy and toxicity. Stable isotope tracing coupled with metabolomic analysis is an emerging approach for assaying metabolic network activity. In mouse models there are several routes of tracer introduction, which have particular advantages and disadvantages that depend on the model and the questions addressed. This protocol describes the bolus i.v. route via repeated tail vein injections of solutions of stable isotope enriched tracers including 13C6-glucose and 13C5,15N2-glutamine. Repeated injections give higher enrichments and over longer labeling periods than a single bolus. Multiple injections of glutamine are necessary to achieve adequate enrichment in engrafted tumors. PMID:26693168

  18. Fine mapping reveals that promotion susceptibility locus 1 (Psl1) is a compound locus with multiple genes that modify susceptibility to skin tumor development.

    PubMed

    Angel, Joe M; Abel, Erika L; Riggs, Penny K; McClellan, S Alex; DiGiovanni, John

    2014-04-03

    Although it is well known that the majority of human cancers occur as the result of exposure to environmental carcinogens, it is clear that not all individuals exposed to a specific environmental carcinogen have the same risk of developing cancer. Considerable evidence indicates that common allelic variants of low-penetrance, tumor susceptibility genes are responsible for this interindividual variation in risk. We previously reported a skin tumor promotion susceptibility locus, Psl1, which maps to the distal portion of chromosome 9, that modified skin tumor promotion susceptibility in the mouse. Furthermore, Psl1 was shown to consist of at least two subloci (i.e., Psl1.1 and Psl1.2) and that glutathione S-transferase alpha 4 (Gsta4), which maps to Psl1.2, is a skin tumor promotion susceptibility gene. Finally, variants of human GSTA4 were found to be associated with risk of nonmelanoma skin cancer. In the current study, a combination of nested and contiguous C57BL/6 congenic mouse strains, each inheriting a different portion of the Psl1 locus from DBA/2, were tested for susceptibility to skin tumor promotion with 12-O-tetradecanoylphorbol-13-acetate. These analyses indicate that Psl1 is a compound locus with at least six genes, including Gsta4, that modify skin tumor promotion susceptibility. More than 550 protein-coding genes map within the Psl1 locus. Fine mapping of the Psl1 locus, along with two-strain haplotype analysis, gene expression analysis, and the identification of genes with amino acid variants, has produced a list of fewer than 25 candidate skin tumor promotion susceptibility genes.

  19. Chronic liver injury in mice promotes impairment of skin barrier function via tumor necrosis factor-alpha.

    PubMed

    Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya

    2016-09-01

    Alcohol is frequently used to induce chronic liver injury in laboratory animals. Alcohol causes oxidative stress in the liver and increases the expression of inflammatory mediators that cause hepatocellular damage. However, during chronic liver injury, it is unclear if/how these liver-derived factors affect distal tissues, such as the skin. The purpose of this study was to evaluate skin barrier function during chronic liver injury. Hairless mice were administered 5% or 10% ethanol for 8 weeks, and damages to the liver and skin were assessed using histological and protein-analysis methods, as well as by detecting inflammatory mediators in the plasma. After alcohol administration, the plasma concentration of the aspartate and alanine aminotransferases increased, while albumin levels decreased. In mice with alcohol-induced liver injury, transepidermal water loss was significantly increased, and skin hydration decreased concurrent with ceramide and type I collagen degradation. The plasma concentrations of [Formula: see text]/[Formula: see text] and tumor necrosis factor-alpha (TNF-α) were significantly increased in mice with induced liver injury. TNF receptor (TNFR) 2 expression was upregulated in the skin of alcohol-administered mice, while TNFR1 levels remained constant. Interestingly, the impairment of skin barrier function in mice administered with 10% ethanol was ameliorated by administering an anti-TNF-α antibody. We propose a novel mechanism whereby plasma TNF-α, via TNFR2 alone or with TNFR1, plays an important role in skin barrier function during chronic liver disease in these mouse models.

  20. Molecular dynamics in mouse atrial tumor sarcoplasmic reticulum.

    PubMed Central

    Voss, J C; Mahaney, J E; Jones, L R; Thomas, D D

    1995-01-01

    We have determined directly the effects of the inhibitory peptide phospholamban (PLB) on the rotational dynamics of the calcium pump (Ca-ATPase) of cardiac sarcoplasmic reticulum (SR). This was accomplished by comparing mouse ventricular SR, which has PLB levels similar to those found in other mammals, with mouse atrial SR, which is effectively devoid of PLB and thus has much higher (unregulated) calcium pump activity. To obtain sufficient quantities of atrial SR, we isolated the membranes from atrial tumor cells. We used time-resolved phosphorescence anisotropy of an erythrosin isothiocyanate label attached selectively and rigidly to the Ca-ATPase, to detect the microsecond rotational motion of the Ca-ATPase in the two preparations. The time-resolved phosphorescence anisotropy decays of both preparations at 25 degrees C were multi-exponential, because of the presence of different oligomeric species. The rotational correlation times for the different oligomers were similar for the two preparations, but the total decay amplitude was substantially greater for atrial tumor SR, indicating that a smaller fraction of the Ca-ATPase molecules exists as large aggregates. Phosphorylation of PLB in ventricular SR decreased the population of large-scale Ca-ATPase aggregates to a level similar to that of atrial tumor SR. Lipid chain mobility (fluidity), detected by electron paramagnetic resonance of stearic acid spin labels, was very similar in the two preparations, indicating that the higher protein mobility in atrial tumor SR is not due to higher lipid fluidity. We conclude that PLB inhibits by inducing Ca-ATPase lateral aggregation, which can be relieved either by phosphorylating or removing PLB. Images FIGURE 1 FIGURE 2 PMID:7612820

  1. Skin fragility in the wild-derived, inbred mouse strain Mus pahari/EiJ.

    PubMed

    Herbert Pratt, C; Potter, Christopher S; Kuiper, Raoul V; Karst, Son Yong; Dadras, Soheil S; Roopenian, Derry C; Sundberg, John P

    2017-02-01

    Mus pahari is a wild-derived, inbred mouse strain. M. pahari colony managers observed fragility of this strain's skin resulting in separation of tail skin from the mouse if handled incorrectly. Tail skin tension testing of M. pahari resulted in significantly lowered force threshold for caudal skin rupture and loss in comparison to closely related inbred mouse species and subspecies and even more than a model for junctional epidermolysis bullosa. Histologically, the tail skin separated at the subdermal level with the dermis firmly attached to the epidermis, excluding the epidermolysis bullosa complex of diseases. The dermal collagen bundles were abnormally thickened and branched. Elastin fiber deposition was focally altered in the dermis adjacent to the hair follicle. Collagens present in the skin could not be differentiated between the species in protein gels following digestion with pepsin. Together these data suggest that M. pahari have altered extracellular matrix development resulting in separation of the skin below the level of the dermis with moderate force similar to the African spiny mouse (Acomys spp.). Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Enhanced radiation lethality in partially synchronized solid mouse tumors

    SciTech Connect

    Todoroki, T.; Koike, S.; Tsunemoto, H.; Watanabe, I.

    1982-12-01

    We studied the combined effects of local irradiation on in vivo partially synchronized solid mouse tumors. Syngeneic fibrosarcoma cells were transplanted s.c. into the thighs of C3H/He mice. When the tumors grew to 179 cu mm in volume, 1-beta-D-arabinofuranosylcytosine (ara-C) was repeatedly injected i.p. followed by a single injection of vinblastine sulfate at 5 hr after the end of the ara-C treatment. The mitotic indexes increased from 4% in control to 22 to 23% at 5 hr after the ara-C treatment, and the level continued for another 5 hr. Further treatment with vinblastine sulfate after the ara-C injections resulted in more effective accumulation of mitotic cells, i.e., 30% at the sixth hr. The tumor was locally irradiated with a single dose of 3000 rads of gamma-rays at the maximum level of mitotic index. The results indicated a synergistic inhibition of tumor growth and an 84% prolongation of the 50% survival day beyond that of the nontreated control mice.

  3. Epistatic interactions between skin tumor modifier loci in interspecific (spretus/musculus) backcross mice.

    PubMed

    Nagase, H; Mao, J H; de Koning, J P; Minami, T; Balmain, A

    2001-02-15

    The development of cancer is influenced both by exposure to environmental carcinogens and by the host genetic background. Epistatic interactions between genes are important in determining phenotype in plant and animal systems and are likely to be major contributors to cancer susceptibility in humans. Several tumor modifier loci have been identified from studies of mouse models of human cancer, and genetic interactions between modifier loci have been detected by genome scanning using recombinant congenic strains of mice (R. Fijneman et al., Nat. Genet., 14: 465-467, 1996; T. van Wezel et al., Nat. Genet., 14: 468-470, 1996; W. N. Frankel et al., Nat. Genet., 14, 371-373, 1996). We demonstrate here that strong genetic interactions between skin tumor modifier loci can be detected by hierarchical whole genome scanning of a complete interspecific backcross [outbred Mus spretus X Mus musculus (NIH/Ola)]. A locus on chromosome 7 (Skts1) showed a highly significant interaction with Skts5 on chromosome 12 (P < 10(-16)), whereas additional significant interactions were detected between loci on chromosomes 4 and 5, and 16 and 15. Some of these quantitative trait loci and their interactions, in particular the Skts1-Skts5 interaction, were confirmed in two completely independent backcrosses using inbred spretus strains (SEG/Pas and SPRET/Ei) and NIH/Ola. These results, therefore, illustrate the general use of interspecific crosses between Mus musculus and Mus spretus for the detection of strong genetic interactions between tumor modifier genes.

  4. Safety aspects of atmospheric pressure helium plasma jet operation on skin: In vivo study on mouse skin.

    PubMed

    Kos, Spela; Blagus, Tanja; Cemazar, Maja; Filipic, Gregor; Sersa, Gregor; Cvelbar, Uros

    2017-01-01

    Biomedical applications of plasma require its efficacy for specific purposes and equally importantly its safety. Herein the safety aspects of cold plasma created with simple atmospheric pressure plasma jet produced with helium gas and electrode discharge are evaluated in skin damage on mouse, at different duration of exposure and gas flow rates. The extent of skin damage and treatments are systematically evaluated using stereomicroscope, labelling with fluorescent dyes, histology, infrared imaging and optical emission spectroscopy. The analyses reveal early and late skin damages as a consequence of plasma treatment, and are attributed to direct and indirect effects of plasma. The results indicate that direct skin damage progresses with longer treatment time and increasing gas flow rates which reflect changes in plasma properties. With increasing flow rates, the temperature on treated skin grows and the RONS formation rises. The direct effects were plasma treatment dependent, whereas the disclosed late-secondary effects were more independent on discharge parameters and related to diffusion of RONS species. Thermal effects and skin heating are related to plasma-coupling properties and are separated from the effects of other RONS. It is demonstrated that cumulative topical treatment with helium plasma jet could lead to skin damage. How these damages can be mitigated is discussed in order to provide guidance, when using atmospheric pressure plasma jets for skin treatments.

  5. Protection against 12-O-tetradecanoylphorbol-13-acetate-caused inflammation in SENCAR mouse ear skin by polyphenolic fraction isolated from green tea.

    PubMed

    Katiyar, S K; Agarwal, R; Ekker, S; Wood, G S; Mukhtar, H

    1993-03-01

    Earlier studies conducted in our laboratory have shown that a polyphenolic fraction isolated from green tea (GTP) possesses anti-skin tumor initiating and anti-skin tumor promoting activity in the two-stage skin tumorigenesis protocol in SENCAR mouse. We have also shown that topical application of GTP inhibits tumor promoter-caused induction of epidermal ornithine decarboxylase activity in SENCAR mice in a dose-dependent manner, and that its oral feeding in drinking water to SKH-1 hairless mice enhances antioxidant and phase II enzyme activity in liver, lung, small bowel and skin. In this study, we show that single or multiple applications of GTP on SENCAR mouse ear prior to or after the application of 12-O-tetradecanoylphorbol-13-acetate (TPA) afford significant protection (P < 0.05) against TPA-induced edema. Pre-application of GTP also afforded significant protection against TPA-induced hyperplasia in the ear skin. The percentage protection by GTP both in terms of epidermal thickness and vertical cell layers was 75 and 90% respectively (P < 0.005). In further studies, we assessed the protective effect of GTP against TPA-caused infiltration of neutrophils in the ear skin of SENCAR mouse, by determining a naturally occurring constituent of neutrophils, myeloperoxidase, as a quantitative marker of tissue neutrophil content. Prior application of GTP resulted in significant protection against TPA-caused infiltration of neutrophils (P < 0.005). These results suggest that GTP possesses potential as a cancer chemopreventive agent against stage I tumor promotion.

  6. Single Unpurified Breast Tumor-Initiating Cells from Multiple Mouse Models Efficiently Elicit Tumors in Immune-Competent Hosts

    PubMed Central

    Kurpios, Natasza A.; Girgis-Gabardo, Adele; Hallett, Robin M.; Rogers, Stephen; Gludish, David W.; Kockeritz, Lisa; Woodgett, James; Cardiff, Robert; Hassell, John A.

    2013-01-01

    The tumor-initiating cell (TIC) frequency of bulk tumor cell populations is one of the criteria used to distinguish malignancies that follow the cancer stem cell model from those that do not. However, tumor-initiating cell frequencies may be influenced by experimental conditions and the extent to which tumors have progressed, parameters that are not always addressed in studies of these cells. We employed limiting dilution cell transplantation of minimally manipulated tumor cells from mammary tumors of several transgenic mouse models to determine their tumor-initiating cell frequency. We determined whether the tumors that formed following tumor cell transplantation phenocopied the primary tumors from which they were isolated and whether they could be serially transplanted. Finally we investigated whether propagating primary tumor cells in different tissue culture conditions affected their resident tumor-initiating cell frequency. We found that tumor-initiating cells comprised between 15% and 50% of the bulk tumor cell population in multiple independent mammary tumors from three different transgenic mouse models of breast cancer. Culture of primary mammary tumor cells in chemically-defined, serum-free medium as non-adherent tumorspheres preserved TIC frequency to levels similar to that of the primary tumors from which they were established. By contrast, propagating the primary tumor cells in serum-containing medium as adherent populations resulted in a several thousand-fold reduction in their tumor-initiating cell fraction. Our findings suggest that experimental conditions, including the sensitivity of the transplantation assay, can dramatically affect estimates of tumor initiating cell frequency. Moreover, conditional on cell culture conditions, the tumor-initiating cell fraction of bulk mouse mammary tumor cell preparations can either be maintained at high or low frequency in vitro thus permitting comparative studies of tumorigenic and non-tumorigenic cancer cells

  7. Single unpurified breast tumor-initiating cells from multiple mouse models efficiently elicit tumors in immune-competent hosts.

    PubMed

    Kurpios, Natasza A; Girgis-Gabardo, Adele; Hallett, Robin M; Rogers, Stephen; Gludish, David W; Kockeritz, Lisa; Woodgett, James; Cardiff, Robert; Hassell, John A

    2013-01-01

    The tumor-initiating cell (TIC) frequency of bulk tumor cell populations is one of the criteria used to distinguish malignancies that follow the cancer stem cell model from those that do not. However, tumor-initiating cell frequencies may be influenced by experimental conditions and the extent to which tumors have progressed, parameters that are not always addressed in studies of these cells. We employed limiting dilution cell transplantation of minimally manipulated tumor cells from mammary tumors of several transgenic mouse models to determine their tumor-initiating cell frequency. We determined whether the tumors that formed following tumor cell transplantation phenocopied the primary tumors from which they were isolated and whether they could be serially transplanted. Finally we investigated whether propagating primary tumor cells in different tissue culture conditions affected their resident tumor-initiating cell frequency. We found that tumor-initiating cells comprised between 15% and 50% of the bulk tumor cell population in multiple independent mammary tumors from three different transgenic mouse models of breast cancer. Culture of primary mammary tumor cells in chemically-defined, serum-free medium as non-adherent tumorspheres preserved TIC frequency to levels similar to that of the primary tumors from which they were established. By contrast, propagating the primary tumor cells in serum-containing medium as adherent populations resulted in a several thousand-fold reduction in their tumor-initiating cell fraction. Our findings suggest that experimental conditions, including the sensitivity of the transplantation assay, can dramatically affect estimates of tumor initiating cell frequency. Moreover, conditional on cell culture conditions, the tumor-initiating cell fraction of bulk mouse mammary tumor cell preparations can either be maintained at high or low frequency in vitro thus permitting comparative studies of tumorigenic and non-tumorigenic cancer cells.

  8. Twist1 regulates keratinocyte proliferation and skin tumor promotion.

    PubMed

    Srivastava, Jaya; Rho, Okkyung; Youssef, Ronnie M; DiGiovanni, John

    2016-05-01

    In the present study, we evaluated the effect of deleting Twist1 on keratinocyte proliferation and on skin tumor development using the two-stage chemical carcinogenesis model. BK5.Cre × Twist1(flox/flox) mice, which have a keratinocyte-specific Twist1 knockout (Twist1 KO), developed significantly reduced numbers of papilloma (70% reduction) and squamous cell carcinoma (75% reduction) as well as delayed tumor latency compared to wild-type (WT) mice. Interestingly, knockdown of Twist1 in primary keratinocytes impeded cell cycle progression at the G1/S transition that coincided with reduced levels of the cell cycle proteins c-Myc, Cyclin E1, and E2F1 and increased levels of p53 and p21. Furthermore, ChIP analyses revealed that Twist1 bound to the promoter regions of Cyclin E1, E2F1, and c-Myc at the canonical E-box binding motif suggesting a direct transcriptional regulation. Further analyses of Twist1 KO mice revealed a significant reduction in the number of label-retaining cells as well as the number of α6-integrin(+) /CD34(+) cells in the hair follicles of untreated mice compared to WT mice. These mice also exhibited significantly reduced epidermal proliferation in response to TPA treatment that again correlated with reduced levels of cell cycle regulators and increased levels of p53 and p21. Finally, Twist1 deficiency in keratinocytes led to an upregulation of p53 via its stabilization and nuclear localization, which is responsible for the increased expression of p21 in these cells. Collectively, these findings indicate that Twist1 has a novel role in epithelial carcinogenesis by regulating proliferation of keratinocytes, including keratinocyte stem cells during tumor promotion. © 2015 Wiley Periodicals, Inc.

  9. Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin

    NASA Astrophysics Data System (ADS)

    Song, Eunjoo; Ahn, YoonJoon; Ahn, Jinhyo; Ahn, Soyeon; Kim, Changhwan; Choi, Sanghoon; Boutilier, Richard Martin; Lee, Yongjoong; Kim, Pilhan; Lee, Ho

    2015-10-01

    We examined the optical clearing assisted confocal microscopy of the transgenic mouse skin. The pinna and dorsal skin were imaged with a confocal microscope after the application of glycerol and FocusClear. In case of the glycerol-treated pinna, the clearing was minimal due to the inefficient permeability. However, the imaging depth was improved when the pinna was treated with FocusClear. In case of dorsal skin, we were able to image deeply to the subcutaneous connective tissue with both agents. Various skin structures such as the vessel, epithelium cells, cartilage, dermal cells, and hair follicles were clearly imaged.

  10. Incidence of malignant skin tumors in 14,140 patients after grenz-ray treatment for benign skin disorders

    SciTech Connect

    Lindeloef, B.E.; Eklund, G.

    1986-12-01

    During the years 1949 to 1975, 14,237 patients received therapeutic doses of grenz rays for the treatment of benign skin disorders such as chronic eczema, psoriasis, and warts. The records of 14,140 of these patients (99.3%) formed the basis for an epidemiologic study of the incidence of skin malignancies in this population. Information about the patients, diagnoses, doses, and sites of treatment was obtained from separate records. The follow-up time was 15 years on the average. We searched the Swedish Cancer Registry, Stockholm, for records reporting the incidence of malignant skin tumors in the study population (incidences of basal cell carcinoma are not registered). The expected number of malignancies was calculated on the basis of age- and sex-standardized incidence data from the Swedish Cancer Registry. In 58 patients, a malignant skin tumor was diagnosed more than five years after grenz-ray therapy had first been administered. Nineteen patients had malignant melanomas, and 39 patients had other malignant skin tumors. The expected number of melanomas was 17.8, and that of other malignant skin tumors was 26.9. None of the patients with melanomas, and only eight of the patients with other malignant skin tumors, had received grenz-ray therapy at the site of the tumor. Six of these eight patients had also been exposed to other known carcinogens. Four hundred eighty-one patients had received an accumulated high dose of grenz rays (greater than or equal to 10 000 rad (greater than or equal to 100 Gy)) on one and the same area. No malignancies were found on those areas. Although we cannot exclude grenz-ray therapy as a risk factor in the development of nonmelanoma skin malignancies, this risk, if any, is small, if recommendations for therapy are followed.

  11. Genes affected by mouse mammary tumor virus (MMTV) proviral insertions in mouse mammary tumors are deregulated or mutated in primary human mammary tumors

    PubMed Central

    Callahan, Robert; Mudunuri, Uma; Bargo, Sharon; Raafat, Ahmed; McCurdy, David; Boulanger, Corinne; Lowther, William; Stephens, Robert; Luke, Brian T.; Stewart, Claudia; Wu, Xiaolin; Munroe, David; Smith, Gilbert H.

    2012-01-01

    The accumulation of mutations is a contributing factor in the initiation of premalignant mammary lesions and their progression to malignancy and metastasis. We have used a mouse model in which the carcinogen is the mouse mammary tumor virus (MMTV) which induces clonal premalignant mammary lesions and malignant mammary tumors by insertional mutagenesis. Identification of the genes and signaling pathways affected in MMTV-induced mouse mammary lesions provides a rationale for determining whether genetic alteration of the human orthologues of these genes/pathways may contribute to human breast carcinogenesis. A high-throughput platform for inverse PCR to identify MMTV-host junction fragments and their nucleotide sequences in a large panel of MMTV-induced lesions was developed. Validation of the genes affected by MMTV-insertion was carried out by microarray analysis. Common integration site (CIS) means that the gene was altered by an MMTV proviral insertion in at least two independent lesions arising in different hosts. Three of the new genes identified as CIS for MMTV were assayed for their capability to confer on HC11 mouse mammary epithelial cells the ability for invasion, anchorage independent growth and tumor development in nude mice. Analysis of MMTV induced mammary premalignant hyperplastic outgrowth (HOG) lines and mammary tumors led to the identification of CIS restricted to 35 loci. Within these loci members of the Wnt, Fgf and Rspo gene families plus two linked genes (Npm3 and Ddn) were frequently activated in tumors induced by MMTV. A second group of 15 CIS occur at a low frequency (2-5 observations) in mammary HOGs or tumors. In this latter group the expression of either Phf19 or Sdc2 was shown to increase HC11 cells invasion capability. Foxl1 expression conferred on HC11 cells the capability for anchorage-independent colony formation in soft agar and tumor development in nude mice. The published transcriptome and nucleotide sequence analysis of gene

  12. Establishment of a cell line with features of early dendritic cell precursors from fetal mouse skin.

    PubMed

    Girolomoni, G; Lutz, M B; Pastore, S; Assmann, C U; Cavani, A; Ricciardi-Castagnoli, P

    1995-08-01

    During ontogeny, the skin is progressively populated by major histocompatibility complex class II-negative dendritic cell (DC) precursors that then mature into efficient antigen-presenting cells (APC). To characterize these DC progenitors better, we generated myeloid cell lines from fetal mouse skin by infecting cell suspensions with a retroviral vector carrying an envAKR-mycMH2 fusion gene. These cells, represented by the line FSDC, displayed a dendritic morphology and their proliferation in serum-free medium was promoted by granulocyte/macrophage colony-stimulating factor (GM-CSF), but not macrophage-CSF. FSDC expressed strong surface-membrane ATP/ADPase activity, intracellular staining for 2A1 antigen, and a surface phenotype consistent with a myeloid precursor: H-2d,b+, I-Ad,b+, CD54+, CD11b+, CD11c+, 2.4G2+, F4/80+, CD44+, 2F8+, ER-MP 12-, Sca-1+, Sca-2+, NLDC-145-, B7.2+, B7.1-, J11d-, B220-, Thy-1-, and CD3-. FSDC stimulated poorly allogeneic or syngeneic T cells in the primary mixed-leukocyte reaction, and markedly increased this function after treatment with GM-CSF, GM-CSF and interleukin (IL)-4 or interferon-gamma (IFN-gamma); in contrast, stem cell factor, IL-1 alpha and tumor necrosis factor-alpha had no effect. Preculture with IFN-gamma was required for presentation of haptens to primed T cells in vitro. However, FSDC, even after cytokine activation, were less potent APC than adult epidermal Langerhans cells in both of the above assays. Finally, FSDC derivatized with haptens and injected either intravenously or subcutaneously could efficiently induce contact sensitivity responses in naive syngeneic mice. The results indicate that fetal mouse skin is colonized by myeloid precursors possessing a macrophage/immature DC-like surface phenotype and priming capacity in vivo. These cells need further differentiation and activation signals (e.g. cytokines) to express their antigen presenting potential in vitro.

  13. DOSE-RESPONSE STUDIES OF SODIUM ARSENITE IN THE SKIN OF K6/ODC TRANSGENIC MOUSE

    EPA Science Inventory

    It has previously been observed that chronic exposure to inorganic arsenic and/or its metabolites increase(s) tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, gene expression profiles w...

  14. DOSE-RESPONSE STUDIES OF SODIUM ARSENITE IN THE SKIN OF K6/ODC TRANSGENIC MOUSE

    EPA Science Inventory

    It has previously been observed that chronic exposure to inorganic arsenic and/or its metabolites increase(s) tumor frequency in the skin of K6/ODC transgenic mice. To identify potential biomarkers and modes of action for this skin tumorigenicity, gene expression profiles w...

  15. Effects of the co-carcinogen catechol on benzo(a)pyrene metabolism and DNA adduct formation in mouse skin

    SciTech Connect

    Melikian, A.A.; Leszczynska, J.M.; Hecht, S.S.; Hoffmann, D.

    1986-01-01

    We have studied the effects of the co-carcinogen catechol (1,2-dihydroxybenzene) on the metabolic activation of (/sup 3/H) benzo(a)pyrene (BaP) in mouse skin, in vivo and on the binding of BaP metabolites to DNA and protein at intervals from 0.5-24 h. Upon topical application of 0.015 mg (/sup 3/H)BaP and 0.25 or 0.5 mg catechol per mouse, catechol had little effect on the total amount of (/sup 3/H)BaP metabolized in mouse skin, but it affected the relative proportions of (/sup 3/H)BaP metabolites. Catechol (0.5 mg/mouse) decreased the proportion of water-soluble (/sup 3/H)BaP metabolites, ethyl acetate-soluble polar metabolites and quinones, but doubled the levels of unconjugated 3-hydroxy-BaP at all measured intervals after treatment. Catechol also caused a small increase in the levels of trans-7,8-dihydroxy-7,8-dihydroBaP and trans-9,10-dihydroxy-9,10-dihydroBaP 0.5 h after treatment. Two hours after treatment, the levels of these metabolites subsided to those of the controls. Catechol did not affect the levels of glutathione conjugates of BaP. However, it caused a decrease in glucuronide and sulphate conjugate formation from BaP. Catechol caused an approximately 2-fold increase in the formation of anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydroBaP (BPDE) DNA adducts and elevated the ratio of anti-syn-BPDE-DNA adducts 1.6 to 2.9-fold. Catechol treatment increased the radioactivity associated with epidermal proteins after (/sup 3/H)BaP application. Because catechol increased levels of 3-hydroxyBaP, we considered the possibility that 3-hydroxyBaP might enhance the tumor initiating activities of BaP or BPDE in mouse skin; a bioassay demonstrated that this was not the case. The results of this study indicate that one important effect of catechol related to its co-carcinogenicity is its ability to enhance formation of anti-BPDE-DNA adducts in mouse skin.

  16. Chemoprevention of skin cancer: effect of Lawsonia inermis L. (Henna) leaf powder and its pigment artifact, lawsone in the Epstein- Barr virus early antigen activation assay and in two-stage mouse skin carcinogenesis models.

    PubMed

    Kapadia, Govind J; Rao, G Subba; Sridhar, Rajagopalan; Ichiishi, Eiichiro; Takasaki, Midori; Suzuki, Nobutaka; Konoshima, Takao; Iida, Akira; Tokuda, Harukuni

    2013-12-01

    In continuation of our studies with chemoprevention potential of plant-derived naphthoquinone derivatives, leaf powder of the medicinal plant Lawsonia inermis L, commonly known as 'henna', was evaluated by its inhibition of the Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Lawsone (2-hydroxy- 1,4-naphthoquinone), the reddish orange pigment artifact formed during the extraction or preparation of the dye from henna leaves and believed to be the active component, was also assessed in this in vitro assay. Both showed a profound inhibition (>88%) of EBV-EA activation. In the in vivo two-stage mouse skin carcinogenesis study using UV-B radiation for initiation and TPA for tumor promotion, oral feeding of henna (0.0025%) in drinking water ad libitum decreased tumor incidence by 66% and multiplicity by 40% when compared to the positive control at 10 weeks of treatment. Similarly, in the above mouse model, orally fed lawsone (0.0025%) decreased tumor incidence by 72% and multiplicity by 50%. The tumor inhibitory trend continued throughout the 20-week test period. Similar antitumor activities were observed when henna (0.5 mg/ml) was applied topically on the back skin in the UV-B initiated, TPA promoted and peroxynitrite initiated, TPA promoted mouse skin carcinogenesis models. Topically applied lawsone (0.015 mg/ml) also exhibited similar protection against tumor formation in the 7,12-dimtehylbenz(a)anthracene induced and TPA promoted skin cancer in mice. Also, there was a delay of 1 to 2 weeks in tumor appearance in both henna and lawsone treated groups compared to control in all three test models. This study ascertains the skin cancer chemopreventive activity of henna leaf powder and lawsone when administered by either oral (through drinking water) or topical (by application on the back skin) routes. Further, it emphasizes the need for the evaluation of these henna-derived green

  17. Intake of high-fat diet stimulates the risk of ultraviolet radiation-induced skin tumors and malignant progression of papillomas to carcinoma in SKH-1 hairless mice

    SciTech Connect

    Vaid, Mudit; Singh, Tripti; Prasad, Ram; Katiyar, Santosh K.

    2014-01-01

    Previously, we showed that administration of a high-fat diet (HF-diet) to C57BL/6 mice exacerbates their response to short-term UVB radiation-induced inflammation in the skin. To explore the effects of an HF-diet on UVB-induced tumorigenesis, we have used the SKH-1 hairless mouse model in which the mice are exposed to UVB radiation (180 mJ/cm{sup 2}) three times a week for 24 weeks. The development of UVB-induced skin tumors was rapid and the tumor multiplicity and tumor size were significantly higher (P < 0.01–0.005) in the mice fed an HF-diet than the mice fed a control-diet (C-diet). Moreover, the malignant progression of UVB-induced papillomas to carcinomas was higher in HF-diet-fed mice. On analysis of tumors and tumor-uninvolved skin samples from the tumor-bearing mice, we found that administration of an HF-diet significantly enhanced the levels of UVB-induced expression of cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (P < 0.01), and PGE{sub 2} receptors, and activation of NF-κB in the UVB-exposed skin as well as in tumors. In addition the HF-diet enhanced the expression of proinflammatory cytokines, including tumor necrosis factor-α (P < 0.01), interleukin (IL)-1β (P < 0.01) and IL-6 (P < 0.05) in the UVB-exposed skin as well as in tumors. Western blot analysis revealed that HF-diet enhanced the levels of epidermal cell proliferation, phosphatidylinositol 3-kinase and phosphorylation of Akt at Ser{sup 473} in UVB-exposed skin and skin tumors. Collectively, these data demonstrate that the regular consumption of an HF-diet increases the risk of photocarcinogenesis in mice and that this is associated with enhanced expression of inflammatory mediators in the UVB-exposed skin and tumors. - Highlights: • Consumption of high-fat diet increases UVB-induced skin tumor development in mice. • Intake of high-fat diet stimulates progression of UV-induced papilloma to carcinoma. • Intake of high-fat diet enhances inflammation in UV-exposed skin • Regular

  18. Photodynamic therapy stimulates anti-tumor immune response in mouse models: the role of regulatory Tcells, anti-tumor antibodies, and immune attacks on brain metastases

    NASA Astrophysics Data System (ADS)

    Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.

    2013-02-01

    We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.

  19. Insights into granulosa cell tumors using spontaneous or genetically engineered mouse models

    PubMed Central

    2016-01-01

    Granulosa cell tumors (GCTs) are rare sex cord-stromal tumors that have been studied for decades. However, their infrequency has delayed efforts to research their etiology. Recently, mutations in human GCTs have been discovered, which has led to further research aimed at determining the molecular mechanisms underlying the disease. Mouse models have been important tools for studying GCTs, and have provided means to develop and improve diagnostics and therapeutics. Thus far, several genetically modified mouse models, along with one spontaneous mouse model, have been reported. This review summarizes the phenotypes of these mouse models and their applicability in elucidating the mechanisms of granulosa cell tumor development. PMID:27104151

  20. Insights into granulosa cell tumors using spontaneous or genetically engineered mouse models.

    PubMed

    Kim, So-Youn

    2016-03-01

    Granulosa cell tumors (GCTs) are rare sex cord-stromal tumors that have been studied for decades. However, their infrequency has delayed efforts to research their etiology. Recently, mutations in human GCTs have been discovered, which has led to further research aimed at determining the molecular mechanisms underlying the disease. Mouse models have been important tools for studying GCTs, and have provided means to develop and improve diagnostics and therapeutics. Thus far, several genetically modified mouse models, along with one spontaneous mouse model, have been reported. This review summarizes the phenotypes of these mouse models and their applicability in elucidating the mechanisms of granulosa cell tumor development.

  1. In vitro and in vivo transdermal delivery capacity of quantum dots through mouse skin

    NASA Astrophysics Data System (ADS)

    Chu, Maoquan; Wu, Qiang; Wang, Jiaxu; Hou, Shengke; Miao, Yi; Peng, Jinliang; Sun, Ye

    2007-11-01

    CdTe quantum dots (QDs) with red fluorescence have been used to study their transdermal delivery capacity through mouse skin. The results showed that the QDs could permeate through skin, either separated from or still attached to live mice. Although the fluorescence emitted by the QDs could only be found in the skin and muscle cells located under the mouse skins coated with QDs, an inductive coupled plasma atomic emission spectrometry (ICP-AES) study indicated that the main organs, such as the heart, liver, spleen, lung, kidney and brain, all contained a significant quantity of Cd atoms. Moreover, these Cd atoms could remain in vivo for at least one week. As a control, the concentration of Cd atoms in normal mice not coated with QDs was very low.

  2. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models

    PubMed Central

    Rollakanti, Kishore; Anand, Sanjay; Maytin, Edward V.

    2015-01-01

    Non-melanoma skin cancers (NMSCs) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common form of human cancer worldwide, and their incidence is increasing. Photodynamic therapy (PDT), mediated by topically applied aminolevulinic acid (ALA) and subsequent exposure to light (either a laser or a noncoherent source), is being increasingly used for the treatment of dermatological disorders, including BCC and SCC. However, therapeutic responses of NMSCs to ALA-PDT are currently not superior to standard therapies, although the latter have undesirable side effects including scarring. In this study, we report that preconditioning of skin tumors with calcitriol (active form of Vitamin D; Vit D) prior to ALA-PDT, significantly improves the treatment outcome. In BCC and UVB-induced SCC mouse models, we identified an increase in tumor-specific accumulation of ALA induced photosensitizer (protoporphyrin IX, PpIX) due to Vit D preconditioning, of up to 6-fold in vivo. In addition, increased expression of differentiation (145 fold, p < 0.02) and proliferation (42 fold, p < 0.005) markers were identified in BCC tumors, all leading to increased tumor destruction (18.3 fold, p < 0.03) with the combination approach, as compared to ALA-PDT alone. Histomorphological changes identified using hematoxylin and eosin staining, and results of TUNEL staining, together documented a beneficial effect of Vit D pretreatment upon tumor cell death. We conclude that this new combination approach with Vit D and ALA-PDT has great potential to achieve complete remission of NMSC tumors, with excellent cosmetic results and an overall beneficial impact upon patient care. PMID:25983370

  3. Topical calcitriol prior to photodynamic therapy enhances treatment efficacy in non-melanoma skin cancer mouse models

    NASA Astrophysics Data System (ADS)

    Rollakanti, Kishore; Anand, Sanjay; Maytin, Edward V.

    2015-03-01

    Non-melanoma skin cancers (NMSCs) such as basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common form of human cancer worldwide, and their incidence is increasing. Photodynamic therapy (PDT), mediated by topically applied aminolevulinic acid (ALA) and subsequent exposure to light (either a laser or a noncoherent source), is being increasingly used for the treatment of dermatological disorders, including BCC and SCC. However, therapeutic responses of NMSCs to ALA-PDT are currently not superior to standard therapies, although the latter have undesirable side effects including scarring. In this study, we report that preconditioning of skin tumors with calcitriol (active form of Vitamin D; Vit D) prior to ALA-PDT, significantly improves the treatment outcome. In BCC and UVB-induced SCC mouse models, we identified an increase in tumor-specific accumulation of ALA induced photosensitizer (protoporphyrin IX, PpIX) due to Vit D preconditioning, of up to 6- fold in vivo. In addition, increased expression of differentiation (145 fold, p < 0.02) and proliferation (42 fold, p <0.005) markers were identified in BCC tumors, all leading to increased tumor destruction (18.3 fold, p < 0.03) with the combination approach, as compared to ALA-PDT alone. Histomorphological changes identified using hematoxylin and eosin staining, and results of TUNEL staining, together documented a beneficial effect of Vit D pretreatment upon tumor cell death. We conclude that this new combination approach with Vit D and ALA-PDT has great potential to achieve complete remission of NMSC tumors, with excellent cosmetic results and an overall beneficial impact upon patient care.

  4. Utility of high-frequency ultrasonography in the diagnosis of benign and malignant skin tumors.

    PubMed

    Bhatt, Kalpana Deepak; Tambe, Swagata Arvind; Jerajani, Hemangi Rajiv; Dhurat, Rachita S

    2017-01-01

    Various benign and malignant tumors may arise from the skin. These may be of epidermal, dermal, subcutaneous or appendageal origin. Skin biopsy is the gold standard for diagnosis of skin tumors. There is paucity of published data on the role of imaging modalities in diagnosis of skin tumors. High-frequency ultrasonography (7-50 MHz) is a potential non-invasive, objective modality which can be utilized in the diagnosis and localization of skin tumors. It provides valuable information about the tumor characteristics such as size, shape, depth, consistency and vascularity before invasive skin biopsy or surgery is planned. Sentinel lymph nodes in malignant melanoma can be well visualized and studied by this technique. It is also a good modality to detect local recurrence of tumors during post-operative follow up, especially those with a high likelihood of local recurrence or lesions excised with inadequate margins. High-frequency ultrasonography is additive to clinical diagnosis and can be considered a useful non-invasive method to plan the management of various skin tumors and is of prognostic value in some cases.

  5. Chemopreventive effects of the juice of Vitis coignetiae Pulliat on two-stage mouse skin carcinogenesis.

    PubMed

    Arimoto-Kobayashi, Sakae; Zhang, Xiaomeng; Yuhara, Yuta; Kamiya, Tomonori; Negishi, Tomoe; Okamoto, Goro

    2013-01-01

    Our study revealed the inhibitory effect of Vitis coignetiae Pulliat, known as Yamabudo in Japan, at the stages of multi-step carcinogenesis. The juice of Vitis coignetiae (Y-grape juice) was antimutagenic toward dimethylbenzo[a]anthracene (DMBA), aflatoxin B1, and benzo[a]pyrene in the Ames test. The Y-grape juice was also antigenotoxic in the micronucleus test using HepG2 cells toward DMBA and aflatoxin B1. Topical and oral administration of the Y-grape juice to mice inhibited the induction of inflammation of 12-O-tetradecanoylphorbol-13-acetate (TPA). Topical and oral administration of the Y-grape juice significantly decreased the incidence and mean number of tumors in mice skin with the 2-stage tumorigenesis protocol. To elucidate the mechanisms underlying the antiinflammatory and antitumor promotion activity of the Y-grape juice, the effect of Y-grape juice on cyclooxygenase-2 (COX-2) activity in mouse ear treated with TPA was studied. Both topical and oral application of the Y-grape juice inhibited the TPA-induced increase in COX-2 activity. Caftaric acid, isolated and identified from the Y-grape juice, was antimutagenic toward DMBA and prevented TPA-induced inflammation in mice, suggesting caftaric acid participates in chemopreventive effect/activities of Y-grape juice.

  6. Needle-free jet injection of hyaluronic acid improves skin remodeling in a mouse model.

    PubMed

    Kwon, Tae-Rin; Seok, Joon; Jang, Ji-Hye; Kwon, Min Kyung; Oh, Chang Taek; Choi, Eun Ja; Hong, Hyuck Ki; Choi, Yeon Shik; Bae, Joonho; Kim, Beom Joon

    2016-08-01

    The purpose of this study was to improve methods of jet injection using a mouse model. We investigated the mechanism of action, efficacy, and safety of the pneumatic device using injection of hyaluronic acid (HA) solution into a mouse model. We evaluated the efficacy and safety of an INNOJECTOR™ pneumatic device that pneumatically accelerates a jet of HA solution under high pressure into the dermis of mouse skin. We examined the treatment effects using skin hybrid model jet dispersion experiments, photographic images, microscopy, and histological analyses. Use of the INNOJECTOR™ successfully increased dermal thickness and collagen synthesis in our mouse model. Jet dispersion experiments were performed using agarose gels and a polyacrylamide gel model to understand the dependence of jet penetration on jet power. The mechanisms by which pneumatic injection using HA solution exerts its effects may involve increased dermal thickening, triggering of a wound healing process, and activation of vimentin and collagen synthesis. Collagen synthesis and increased dermal thickening were successfully achieved in our mouse model using the INNOJECTOR™. Pneumatic injection of HA under high pressure provides a safe and effective method for improving the appearance of mouse skin. Our findings indicate that use of the INNOJECTOR™ may induce efficient collagen remodeling with subsequent marked dermal layer thickening by targeting vimentin. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Permeation of antigen protein-conjugated nanoparticles and live bacteria through microneedle-treated mouse skin

    PubMed Central

    Kumar, Amit; Li, Xinran; Sandoval, Michael A; Rodriguez, B Leticia; Sloat, Brian R; Cui, Zhengrong

    2011-01-01

    Background: The present study was designed to evaluate the extent to which pretreatment with microneedles can enhance skin permeation of nanoparticles in vitro and in vivo. Permeation of live bacteria, which are physically nanoparticles or microparticles, through mouse skin pretreated with microneedles was also studied to evaluate the potential risk of microbial infection. Methods and results: It was found that pretreatment of mouse skin with microneedles allowed permeation of solid lipid nanoparticles, size 230 nm, with ovalbumin conjugated on their surface. Transcutaneous immunization in a mouse skin area pretreated with microneedles with ovalbumin nanoparticles induced a stronger antiovalbumin antibody response than using ovalbumin alone. The dose of ovalbumin antigen determined whether microneedle-mediated transcutaneous immunization with ovalbumin nanoparticles induced a stronger immune response than subcutaneous injection of the same ovalbumin nanoparticles. Microneedle treatment permitted skin permeation of live Escherichia coli, but the extent of the permeation was not greater than that enabled by hypodermic injection. Conclusion: Transcutaneous immunization on a microneedle-treated skin area with antigens carried by nanoparticles can potentially induce a strong immune response, and the risk of bacterial infection associated with microneedle treatment is no greater than that with a hypodermic injection. PMID:21753877

  8. SKHIN/Sprd, a new genetically defined inbred hairless mouse strain for UV-induced skin carcinogenesis studies

    PubMed Central

    Perez, Carlos; Parker-Thornburg, Jan; Mikulec, Carol; Kusewitt, Donna F.; Fischer, Susan M.; DiGiovanni, John; Conti, Claudio J.; Benavides, Fernando

    2013-01-01

    Strains of mice vary in their susceptibility to ultra-violet (UV) radiation-induced skin tumors. Some strains of hairless mice (homozygous for the spontaneous Hrhr mutation) are particularly susceptible to these tumors. The skin tumors that develop in hairless mice resemble, both at the morphologic and molecular levels, UV-induced squamous cell carcinomas (SCC) and their precursors in human. The most commonly employed hairless mice belong to the SKH1 stock. However, these mice are outbred and their genetic background is not characterized, which makes them a poor model for genetic studies. We have developed a new inbred strain from outbred SKH1 mice that we named SKHIN/Sprd (now at generation F31). In order to characterize the genetic background of this new strain, we genotyped a cohort of mice at F30 with 92 microsatellites and 140 single nucleotide polymorphisms (SNP) evenly distributed throughout the mouse genome. We also exposed SKHIN/Sprd mice to chronic UV irradiation and showed that they are as susceptible to UV-induced skin carcinogenesis as outbred SKH1 mice. In addition, we proved that, albeit with low efficiency, inbred SKHIN/Sprd mice are suitable for transgenic production by classical pronuclear microinjection. This new inbred strain will be useful for the development of transgenic and congenic strains on a hairless inbred background as well as the establishment of syngeneic tumor cell lines. These new tools can potentially help elucidate a number of features of the cutaneous response to UV irradiation in humans, including the effect of genetic background and modifier genes. PMID:22379968

  9. Absence of BRAF gene mutation in non-melanoma skin tumors.

    PubMed

    Libra, Massimo; Malaponte, Grazia; Bevelacqua, Valentina; Siciliano, Roberta; Castrogiovanni, Paola; Fulvi, Alberto; Micali, Giuseppe; Ligresti, Giovanni; Mazzarino, Maria C; Stivala, Franca; Travali, Salvatore; McCubrey, James A

    2006-05-01

    Basal cell carcinoma (BCC) is the most common skin cancer, and its incidence is increasing. It was proposed that the RAS oncogene significantly contributes to skin cancer development. Numerous BRAF mutations have been detected in melanoma biopsy specimens and cell lines. For the first time, in the present study, tumor biopsy specimens from 78 patients with BCC were screened for BRAF mutation within exons 11 and 15. Our results indicate that the BRAF gene does not appear to be frequently mutated in nonmelanoma skin tumors such as BCC. These data suggest that other gene alterations may cause tumor development.

  10. Responsiveness of human prostate carcinoma bone tumors to interleukin-2 therapy in a mouse xenograft tumor model.

    PubMed

    Kocheril, S V; Grignon, D J; Wang, C Y; Maughan, R L; Montecillo, E J; Talati, B; Tekyi-Mensah, S; Pontes, J e; Hillman, G G

    1999-01-01

    We have tested an immunotherapy approach for the treatment of metastatic prostate carcinoma using a bone tumor model. Human PC-3 prostate carcinoma tumor cells were heterotransplanted into the femur cavity of athymic Balb/c nude mice. Tumor cells replaced marrow cells in the bone cavity, invaded adjacent bone and muscle tissues, and formed a palpable tumor at the hip joint. PC-3/IF cell lines, generated from bone tumors by serial in vivo passages, grew with faster kinetics in the femur and metastasized to inguinal lymph nodes. Established tumors were treated with systemic interleukin-2 (IL-2) injections. IL-2 significantly inhibited the formation of palpable tumors and prolonged mouse survival at nontoxic low doses. Histologically IL-2 caused vascular damage and infiltration of polymorphonuclear cells and lymphocytes in the tumor as well as necrotic areas with apoptotic cells. These findings suggest destruction of tumor cells by systemic IL-2 therapy and IL-2 responsiveness of prostate carcinoma bone tumors.

  11. Orthotopic mouse models of tumor metastasis expressing fluorescent reporters produce imageable circulating tumor cells.

    PubMed

    Hoffman, Robert M

    2014-12-01

    Circulating tumor cells (CTC) are of high importance, since they are potential metastatic precursors and are readily available for prognostic analysis and treatment testing. In this review, we demonstrate the great power that green fluorescent protein (GFP) labeling and orthotopic mouse models of cancer confer to the study of CTCs for isolation and characterization, including metastatic testing in mice and the chick embryo as well as drug response testing in vitro. We also describe a facile method to label patient CTCs ex vivo using a telomerase-expressing GFP-containing adenovirus that will allow the CTC studies described in this review to be translated clinically.

  12. Rac1 regulates skin tumors by regulation of keratin 17 through recruitment and interaction with CD11b+Gr1+ cells

    PubMed Central

    Zhou, Ying; Zhu, Shaojun; Liu, Juanjuan; Wang, Dong; Deng, Anmei; Wang, Zhipeng

    2014-01-01

    Rac1 is a member of the Rho family of small GTPases that control cells proliferation, differentiation, migration, and inflammation. Rac1 is crucial in tumorigenesis and development. Keratin17 and CD11b+Gr1+ cells are considered to regulate skin inflmmation. Here we discuss the regulation of Rac1 on skin tumor formation and its relationship. In samples from human skin squamous cell carcinoma (SCC), Rac1 activity was higher in cancer tissues than in normal skin and activity correlated with keratin 17 overexpression. In a DMBA/TPA-induced mouse skin tumor model, inhibition of Rac1 activity and depletion of CD11b+Gr1+ cells resulted in significant tumor formation. TPA induced recruitment of CD11b+Gr1+ cells into dermis; however, Rac1 inhibitor abolished this recruitment. In vitro, Rac1 induced interferon (IFN) and interlukin (IL6) production in keratinocytes, repression of keratin 17 inhibited IFN and IL6 production induced by Rac1. Moreover, both inhibition of Rac1 activity and repression of keratin 17 restricted proliferation and induction of differentiation in keratinocytes. Coculture of CD11b+Gr1+ cells with keratinocytes activated Wnt pathway in keratinocytes, resulting in enhanced Rac1 activity, overexpression of keratin 17, and hyperproliferation of keratinocytes. Our results suggested that hyperactive Rac1 recruited and interacted with CD11b+Gr1+ cells, inducing keratin 17-regulated inflammation and promoting skin tumor formation. PMID:24962779

  13. Intravital imaging of multicolor-labeled tumor immune microenvironment through skin-fold window chamber

    NASA Astrophysics Data System (ADS)

    Qi, Shuhong; Zhang, Zhihong

    2015-03-01

    Tumor immune microenvironment became very important for the tumor immunotherapy. There were several kinds of immune cells in tumor stromal, and they played very different roles in tumor growth. In order to observe the behaviors of multiple immune cells in tumor microenvironment and the interaction between immune cells and tumor cells at the same time, we generated a multicolor-labeled tumor immune microenvironment model. The tumor cells and immune cells were labeled by different fluorescent proteins. By using of skin-fold window chamber implanted into mice and intravital imaging technology, we could dynamically observe the different immune cells in tumor microenvironment. After data analysis from the video, we could know the behavior of TILs, DCs and Tregs in tumor immune microenvironment; furthermore, we could know these immune cells play different roles in the tumor microenvironment.

  14. Numerical sensitivity modeling for the detection of skin tumors by using tetrapolar probe.

    PubMed

    Ramos, Airton; Bertemes-Filho, Pedro

    2011-12-01

    The measurement of electrical impedance of skin using surface electrodes permits the assessment of changes in local properties of the skin and can be used in the detection of tumors. The sensitivity of this technique depends mainly on the geometry of the probe and the size of the tumor. In this article, the impedance method was used to estimate the sensitivity of a tetrapolar probe in detecting small regions of increased conductivity in a stratified model of human skin. The impedance method was used to model the potential distribution using fasorial analysis to solve the node equations of the equivalent circuit. Interpolation was applied to reduce discretization error. The skin was modeled as a three-layer structure with different conductivity and permittivity obtained from the literature. A tumor was modeled as a small volume with admittivity four times higher than the normal tissue. Sensitivity calculation was made as a function of electrode diameter and separation, tumor size, and excitation frequency. The simulations indicated that by inserting a one square millimeter tumor in the epidermis, the load impedance to the current source varies about 1% while the transfer impedance varied 8%. The sensitivity also increases nonlinearly with increasing tumor area and thickness. Additionally, it was found that the sensitivity of the transfer impedance has a maximum value when the electrodes are separated by 1.8 mm. The results show that transfer impedance measurements of the skin may detect small skin tumors with a reasonable sensitivity by using an appropriate tetrapolar probe.

  15. Preparation of Single-cell Suspensions for Cytofluorimetric Analysis from Different Mouse Skin Regions.

    PubMed

    Broggi, Achille; Cigni, Clara; Zanoni, Ivan; Granucci, Francesca

    2016-04-20

    The skin is a barrier organ that interacts with the external environment. Being continuously exposed to potential microbial invasion, the dermis and epidermis home a variety of immune cells in both homeostatic and inflammatory conditions. Tools to obtain skin cell release for cytofluorimetric analyses are, therefore, very useful in order to study the complex network of immune cells residing in the skin and their response to microbial stimuli. Here, we describe an efficient methodology for the digestion of mouse skin to rapidly and efficiently obtain single-cell suspensions. This protocol allows maintenance of maximum cell viability without compromising surface antigen expression. We also describe how to take and digest skin samples from different anatomical locations, such as the ear, trunk, tail, and footpad. The obtained suspensions are then stained and analyzed by flow cytometry to discriminate between different leukocyte populations.

  16. Protective effects of black rice bran against chemically-induced inflammation of mouse skin

    USDA-ARS?s Scientific Manuscript database

    We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitroflurobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran...

  17. The optical properties of mouse skin in the visible and near infrared spectral regions.

    PubMed

    Sabino, Caetano P; Deana, Alessandro M; Yoshimura, Tania M; da Silva, Daniela F T; França, Cristiane M; Hamblin, Michael R; Ribeiro, Martha S

    2016-07-01

    Visible and near-infrared radiation is now widely employed in health science and technology. Pre-clinical trials are still essential to allow appropriate translation of optical methods into clinical practice. Our results stress the importance of considering the mouse strain and gender when planning pre-clinical experiments that depend on light-skin interactions. Here, we evaluated the optical properties of depilated albino and pigmented mouse skin using reproducible methods to determine parameters that have wide applicability in biomedical optics. Light penetration depth (δ), absorption (μa), reduced scattering (μ's) and reduced attenuation (μ't) coefficients were calculated using the Kubelka-Munk model of photon transport and spectrophotometric measurements. Within a broad wavelength coverage (400-1400nm), the main optical tissue interactions of visible and near infrared radiation could be inferred. Histological analysis was performed to correlate the findings with tissue composition and structure. Disperse melanin granules present in depilated pigmented mouse skin were shown to be irrelevant for light absorption. Gender mostly affected optical properties in the visible range due to variations in blood and abundance of dense connective tissue. On the other hand, mouse strains could produce more variations in the hydration level of skin, leading to changes in absorption in the infrared spectral region. A spectral region of minimal light attenuation, commonly referred as the "optical window", was observed between 600 and 1350nm.

  18. Drug permeation and barrier damage in Leishmania-infected mouse skin.

    PubMed

    Van Bocxlaer, Katrien; Yardley, Vanessa; Murdan, Sudaxshina; Croft, Simon L

    2016-06-01

    Pathological disorder can disrupt the barrier integrity of the skin, thereby altering the drug delivery from topical formulations to the target site. Cutaneous leishmaniasis (CL) is an infection of the dermal layers of the skin and manifests as a variety of skin lesions from defined nodular forms to plaques and chronic ulcers. The aim of this work was to characterize the physiology and barrier integrity of the Leishmania-infected BALB/c mouse skin and how they impacted delivery of drugs into the skin. A histological evaluation of the structural differences between uninfected and infected skin was performed using haematoxylin/eosin, elastic Van Gieson and Iba-1 stains. As a CL nodule developed and progressed, the skin pH, hydration and trans-epidermal water loss (TEWL) were recorded. Finally, Franz diffusion cells were used to evaluate the influence of the infection on drug delivery through the skin. We found: (i) structural changes in both the epidermal and dermal layers due to the ingress of inflammatory cells, as shown by immunohistochemistry; (ii) a significant increase in TEWL; and (iii) significantly higher permeation of the model permeants caffeine and ibuprofen and the antileishmanial drugs buparvaquone and paromomycin, for Leishmania-infected skin compared with uninfected skin. The infection had no measurable influence on skin pH and hydration. We report profound changes in the skin barrier physiology, function and permeability to drugs of Leishmania-infected skin. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Development of a Bioengineered Skin-Humanized Mouse Model for Psoriasis

    PubMed Central

    Guerrero-Aspizua, Sara; García, Marta; Murillas, Rodolfo; Retamosa, Luisa; Illera, Nuria; Duarte, Blanca; Holguín, Almudena; Puig, Susana; Hernández, Maria Isabel; Meana, Alvaro; Jorcano, Jose Luis; Larcher, Fernando; Carretero, Marta; Del Río, Marcela

    2010-01-01

    Over the past few years, whole skin xenotransplantation models that mimic different aspects of psoriasis have become available. However, these models are strongly constrained by the lack of skin donor availability and homogeneity. We present in this study a bioengineering-based skin-humanized mouse model for psoriasis, either in an autologous version using samples derived from psoriatic patients or, more importantly, in an allogeneic context, starting from skin biopsies and blood samples from unrelated healthy donors. After engraftment, the regenerated human skin presents the typical architecture of normal human skin but, in both cases, immunological reconstitution through intradermal injection in the regenerated skin using in vitro-differentiated T1 subpopulations as well as recombinant IL-17 and IL-22 Th17 cytokines, together with removal of the stratum corneum barrier by a mild abrasive treatment, leads to the rapid conversion of the skin into a bona fide psoriatic phenotype. Major hallmarks of psoriasis were confirmed by the evaluation of specific epidermal differentiation and proliferation markers as well as the mesenchymal milieu, including angiogenesis and infiltrate. Our bioengineered skin-based system represents a robust platform to reliably assess the molecular and cellular mechanisms underlying the complex interdependence between epidermal cells and the immune system. The system may also prove suitable to assess preclinical studies that test the efficacy of novel therapeutic treatments and to predict individual patient response to therapy. PMID:20971736

  20. Regulation of p53, nuclear factor {kappa}B and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin

    SciTech Connect

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-{kappa}B), we also investigated the effect of bromelain on Cox-2 and NF-{kappa}B expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-{kappa}B by blocking phosphorylation and subsequent degradation of I{kappa}B{alpha}. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-{kappa}B-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.

  1. Regulation of p53, nuclear factor kappaB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin.

    PubMed

    Kalra, Neetu; Bhui, Kulpreet; Roy, Preeti; Srivastava, Smita; George, Jasmine; Prasad, Sahdeo; Shukla, Yogeshwer

    2008-01-01

    Bromelain is a pharmacologically active compound, present in stems and immature fruits of pineapples (Ananas cosmosus), which has been shown to have anti-edematous, anti-inflammatory, anti-thrombotic and anti-metastatic properties. In the present study, antitumorigenic activity of bromelain was recorded in 7,12-dimethylbenz(a)anthracene (DMBA)-initiated and 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted 2-stage mouse skin model. Results showed that bromelain application delayed the onset of tumorigenesis and reduced the cumulative number of tumors, tumor volume and the average number of tumors/mouse. To establish a cause and effect relationship, we targeted the proteins involved in the cell death pathway. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in antiapoptotic protein Bcl-2 in mouse skin. Since persistent induction of cyclooxygenase-2 (Cox-2) is frequently implicated in tumorigenesis and is regulated by nuclear factor-kappa B (NF-kappaB), we also investigated the effect of bromelain on Cox-2 and NF-kappaB expression. Results showed that bromelain application significantly inhibited Cox-2 and inactivated NF-kappaB by blocking phosphorylation and subsequent degradation of IkappaBalpha. In addition, bromelain treatment attenuated DMBA-TPA-induced phosphorylation of extracellular signal-regulated protein kinase (ERK1/2), mitogen-activated protein kinase (MAPK) and Akt. Taken together, we conclude that bromelain induces apoptosis-related proteins along with inhibition of NF-kappaB-driven Cox-2 expression by blocking the MAPK and Akt/protein kinase B signaling in DMBA-TPA-induced mouse skin tumors, which may account for its anti-tumorigenic effects.

  2. FATAL KERATOMAS DUE TO DEEP HOMOGRAFTS OF THE BENIGN PAPILLOMAS OF TARRED MOUSE SKIN

    PubMed Central

    Rous, Peyton; Allen, Raymond A.

    1958-01-01

    enlarging, fluid-filled cyst forms, with walls that are bare except where a stalked or cauliflower papilloma exists, projecting inwards. At last the cyst ruptures and a second dissecting cyst forms, also devoid of papilloma tissue; or else the overlying skin undergoes pressure necrosis, the cyst fluid escapes through a rent, and fatal infection ensues. All gradations exist between Type A and Type C. The cancers derivative from both exhibit a marked disability,—though invasive they are almost or quite unable to extend along bare connective tissue. The papillomas that are possessed of this faculty spread beyond them along the cyst wall, and kill the host through their unceasing activity. In collateral work a papilloma was transplanted that was found protruding from the external auditory canal of a mouse which had received an intramuscular injection of methylcholanthrene many months previously. The tumor is now in its 5th generation, after 15 months. The growths it forms are of Type A. All of the papillomas are functioning tumors, with their own cells as the functioning product. Their papilliferous shape, when on the skin, is due solely to inability of their cells to gain space in other ways. Intrinsically they are keratomas. The papillomas do well after transfer to deep situations because the growth of their cells is indirectly promoted, through favoring local conditions. No direct promotion takes place like that when the cells of prostatic and mammary tumors are stimulated to multiply by hormones. Doubtless many agents act in both ways, that is to say by dual promotion. PMID:13481256

  3. Pericentriolar Targeting of the Mouse Mammary Tumor Virus GAG Protein

    PubMed Central

    Zhang, Guangzhi; Sharon, David; Jovel, Juan; Liu, Lei; Wine, Eytan; Tahbaz, Nasser; Indik, Stanislav; Mason, Andrew

    2015-01-01

    The Gag protein of the mouse mammary tumor virus (MMTV) is the chief determinant of subcellular targeting. Electron microscopy studies show that MMTV Gag forms capsids within the cytoplasm and assembles as immature particles with MMTV RNA and the Y box binding protein-1, required for centrosome maturation. Other betaretroviruses, such as Mason-Pfizer monkey retrovirus (M-PMV), assemble adjacent to the pericentriolar region because of a cytoplasmic targeting and retention signal in the Matrix protein. Previous studies suggest that the MMTV Matrix protein may also harbor a similar cytoplasmic targeting and retention signal. Herein, we show that a substantial fraction of MMTV Gag localizes to the pericentriolar region. This was observed in HEK293T, HeLa human cell lines and the mouse derived NMuMG mammary gland cells. Moreover, MMTV capsids were observed adjacent to centrioles when expressed from plasmids encoding either MMTV Gag alone, Gag-Pro-Pol or full-length virus. We found that the cytoplasmic targeting and retention signal in the MMTV Matrix protein was sufficient for pericentriolar targeting, whereas mutation of the glutamine to alanine at position 56 (D56/A) resulted in plasma membrane localization, similar to previous observations from mutational studies of M-PMV Gag. Furthermore, transmission electron microscopy studies showed that MMTV capsids accumulate around centrioles suggesting that, similar to M-PMV, the pericentriolar region may be a site for MMTV assembly. Together, the data imply that MMTV Gag targets the pericentriolar region as a result of the MMTV cytoplasmic targeting and retention signal, possibly aided by the Y box protein-1 required for the assembly of centrosomal microtubules. PMID:26121257

  4. Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin

    PubMed Central

    Tong, Tao; Kim, Nahyun; Park, Taesun

    2015-01-01

    We observed that oleuropein, the main constituent of the leaves and unprocessed olive drupes of Olea europaea, protected mice from high-fat diet-induced adiposity by up-regulation of genes involved in Wnt10b-mediated signaling in adipose tissue. The activation of Wnt/β-catenin pathway is also well established to positively regulate the anagen phase of hair growth cycle in mice skin. Methodology and Principal Findings Oleuropein promoted cultured human follicle dermal papilla cell proliferation and induced LEF1 and Cyc-D1 mRNA expression and β-catenin protein expression in dermal papilla cells. Nuclear accumulation of β-catenin in dermal papilla cells was observed after oleuropein treatment. Topical application of oleuropein (0.4 mg/mouse/day) to C57BL/6N mice accelerated the hair-growth induction and increased the size of hair follicles in telogenic mouse skin. The oleuropein-treated mouse skin showed substantial upregulation of Wnt10b, FZDR1, LRP5, LEF1, Cyc-D1, IGF-1, KGF, HGF, and VEGF mRNA expression and β-catenin protein expression. Conclusions and Significance These results demonstrate that topical oleuroepin administration induced anagenic hair growth in telogenic C57BL/6N mouse skin. The hair-growth promoting effect of oleuropein in mice appeared to be associated with the stimulation of the Wnt10b/β-catenin signaling pathway and the upregulation of IGF-1, KGF, HGF, and VEGF gene expression in mouse skin tissue. PMID:26060936

  5. SAG/ROC2/RBX2 E3 ligase promotes UVB-induced skin hyperplasia, but not skin tumors, by simultaneously targeting c-Jun/AP-1 and p27.

    PubMed

    He, Hongbin; Gu, Qingyang; Zheng, Min; Normolle, Daniel; Sun, Yi

    2008-04-01

    Sensitive to apoptosis gene (SAG)/regulator of cullins-2/RING box protein 2 is a stress-responsive RING component of Skp-1/Cullins/F-box protein E3 ubiquitin ligase. When overexpressed, SAG inhibits apoptosis induced by reactive oxygen species or hypoxia. Here, we report that SAG overexpression inhibits ultraviolet (UV) B-induced apoptosis in mouse JB6 epidermal cells. Using a transgenic mouse model, in which SAG expression was targeted primarily to epidermis by a K14 promoter, we showed that, at the early stage of UVB skin carcinogenesis (10 weeks post-UVB exposure), c-Jun, p27, p53, c-Fos and cyclin D1 were strongly induced. While having no effect on UVB-induced p53, c-Fos and cyclin D1, SAG-transgenic expression reduced the levels of c-Jun and p27 and inhibited AP-1 activity. The net outcome of SAG-mediated inhibition of c-Jun/AP-1 (pro-tumor promotion) and of p27 (antiproliferation) increased skin hyperplasia, with no apparent effect on apoptosis, as evidenced by increased skin thickness, and increased rate of DNA synthesis, but hardly any apoptosis. Although skin hyperplasia was promoted, SAG-transgenic expression had no significant effect on tumor formation in the later stage of UVB carcinogenesis. Thus, by simultaneously targeting c-Jun and p27, SAG accelerates UVB-induced skin hyperplasia, but not carcinogenesis.

  6. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  7. Detection of canine skin and subcutaneous tumors by visible and near-infrared diffuse reflectance spectroscopy.

    PubMed

    Cugmas, Blaž; Plavec, Tanja; Bregar, Maksimilijan; Naglič, Peter; Pernuš, Franjo; Likar, Boštjan; Bürmen, Miran

    2015-03-01

    Cancer is the main cause of canine morbidity and mortality. The existing evaluation of tumors requires an experienced veterinarian and usually includes invasive procedures (e.g., fine-needle aspiration) that can be unpleasant for the dog and the owner. We investigate visible and near-infrared diffuse reflectance spectroscopy (DRS) as a noninvasive optical technique for evaluation and detection of canine skin and subcutaneous tumors ex vivo and in vivo. The optical properties of tumors and skin were calculated in a spectrally constrained manner, using a lookup table-based inverse model. The obtained optical properties were analyzed and compared among different tumor groups. The calculated parameters of the absorption and reduced scattering coefficients were subsequently used for detection of malignant skin and subcutaneous tumors. The detection sensitivity and specificity of malignant tumors ex vivo were 90.0% and 73.5%, respectively, while corresponding detection sensitivity and specificity of malignant tumors in vivo were 88.4% and 54.6%, respectively. The obtained results show that the DRS is a promising noninvasive optical technique for detection and classification of malignant and benign canine skin and subcutaneous tumors. The method should be further investigated on tumors with common origin.

  8. Protandim, a fundamentally new antioxidant approach in chemoprevention using mouse two-stage skin carcinogenesis as a model.

    PubMed

    Liu, Jianfeng; Gu, Xin; Robbins, Delira; Li, Guohong; Shi, Runhua; McCord, Joe M; Zhao, Yunfeng

    2009-01-01

    Oxidative stress is an important contributor to cancer development. Consistent with that, antioxidant enzymes have been demonstrated to suppress tumorigenesis when being elevated both in vitro and in vivo, making induction of these enzymes a more potent approach for cancer prevention. Protandim, a well-defined combination of widely studied medicinal plants, has been shown to induce superoxide dismutase (SOD) and catalase activities and reduce superoxide generation and lipid peroxidation in healthy human subjects. To investigate whether Protandim can suppress tumor formation by a dietary approach, a two-stage mouse skin carcinogenesis study was performed. At the end of the study, the mice on a Protandim-containing basal diet had similar body weight compared with those on the basal diet, which indicated no overt toxicity by Protandim. After three weeks on the diets, there was a significant increase in the expression levels of SOD and catalase, in addition to the increases in SOD activities. Importantly, at the end of the carcinogenesis study, both skin tumor incidence and multiplicity were reduced in the mice on the Protandim diet by 33% and 57% respectively, compared with those on basal diet. Biochemical and histological studies revealed that the Protandim diet suppressed tumor promoter-induced oxidative stress (evidenced by reduction of protein carbonyl levels), cell proliferation (evidenced by reduction of skin hyperplasia and suppression of PKC/JNK/Jun pathway), and inflammation (evidenced by reduction of ICAM-1/VCAM-1 expression, NF-kappaB binding activity, and nuclear p65/p50 levels). Overall, induction of antioxidant enzymes by Protandim may serve as a practical and potent approach for cancer prevention.

  9. Protandim, a Fundamentally New Antioxidant Approach in Chemoprevention Using Mouse Two-Stage Skin Carcinogenesis as a Model

    PubMed Central

    Liu, Jianfeng; Gu, Xin; Robbins, Delira; Li, Guohong; Shi, Runhua; McCord, Joe M.; Zhao, Yunfeng

    2009-01-01

    Oxidative stress is an important contributor to cancer development. Consistent with that, antioxidant enzymes have been demonstrated to suppress tumorigenesis when being elevated both in vitro and in vivo, making induction of these enzymes a more potent approach for cancer prevention. Protandim, a well-defined combination of widely studied medicinal plants, has been shown to induce superoxide dismutase (SOD) and catalase activities and reduce superoxide generation and lipid peroxidation in healthy human subjects. To investigate whether Protandim can suppress tumor formation by a dietary approach, a two-stage mouse skin carcinogenesis study was performed. At the end of the study, the mice on a Protandim-containing basal diet had similar body weight compared with those on the basal diet, which indicated no overt toxicity by Protandim. After three weeks on the diets, there was a significant increase in the expression levels of SOD and catalase, in addition to the increases in SOD activities. Importantly, at the end of the carcinogenesis study, both skin tumor incidence and multiplicity were reduced in the mice on the Protandim diet by 33% and 57% respectively, compared with those on basal diet. Biochemical and histological studies revealed that the Protandim diet suppressed tumor promoter-induced oxidative stress (evidenced by reduction of protein carbonyl levels), cell proliferation (evidenced by reduction of skin hyperplasia and suppression of PKC/JNK/Jun pathway), and inflammation (evidenced by reduction of ICAM-1/VCAM-1 expression, NF-κB binding activity, and nuclear p65/p50 levels). Overall, induction of antioxidant enzymes by Protandim may serve as a practical and potent approach for cancer prevention. PMID:19384424

  10. Enhancement of thermal diagnostics on tumors underneath the skin by induced evaporation.

    PubMed

    Deng, Zhong-Shan; Liu, Jing

    2005-01-01

    Infrared imaging has frequently been used in clinics to detect changes in skin surface temperature associated with some superficial tumors. In order to accurately detect and diagnose tumors (especially in their early stages) using infrared thermography, enhancement of thermal expression on the skin over the tumor is desired. This study proposed a novel approach to effectively enhance the skin thermal expression of tumor by induced evaporation on skin surface. To illustrate its feasibility, numerical calculation was first applied to simulate the corresponding heat transfer process, from which the three-dimensional transient temperatures of the biological bodies subjected to induced evaporation were theoretically predicted. Further, preliminary infrared imaging experiments on human forearm were also performed, in which water and 75% (V/V) medical ethanol were particularly chosen to be respectively sprayed on the skin surface. Both the numerical and experimental results indicate that the induced evaporation can significantly enhance the sensitivity of temperature mapping on skin surface over the tumor. The results also suggest that the induced evaporation method can be used to improve the diagnostic accuracy of infrared thermography, especially for tumors at early stages and/or deeply embedded.

  11. Topical gene silencing by iontophoretic delivery of an antisense oligonucleotide-dendrimer nanocomplex: the proof of concept in a skin cancer mouse model

    NASA Astrophysics Data System (ADS)

    Venuganti, , Venkata Vamsi K.; Saraswathy, Manju; Dwivedi, Chandradhar; Kaushik, Radhey S.; Perumal, Omathanu P.

    2015-02-01

    The study was aimed at investigating the feasibility of using a poly (amidoamine) (PAMAM) dendrimer as a carrier for topical iontophoretic delivery of an antisense oligonucleotide (ASO). Bcl-2, an anti-apoptotic protein implicated in skin cancer, was used as the model target protein to demonstrate the topical gene silencing approach. Confocal laser scanning microscopy studies demonstrated that the iontophoretically delivered ASO-dendrimer complex can reach the viable epidermis in porcine skin. In contrast, passively delivered free or dendrimer complexed ASO was mainly localized to the stratum corneum. The cell uptake of ASO was significantly enhanced by the dendrimer complex and the complex suppressed Bcl-2 levels in the cell. In the skin cancer mouse model, the iontophoretically delivered ASO-dendrimer complex reduced the tumor volume by 45% and was consistent with the reduction in Bcl-2 protein levels. The iontophoretically delivered ASO-dendrimer complex caused significant apoptosis in skin tumor. Overall, the findings from this study demonstrate that dendrimers are promising nanocarriers for developing topical gene silencing approaches for skin diseases.The study was aimed at investigating the feasibility of using a poly (amidoamine) (PAMAM) dendrimer as a carrier for topical iontophoretic delivery of an antisense oligonucleotide (ASO). Bcl-2, an anti-apoptotic protein implicated in skin cancer, was used as the model target protein to demonstrate the topical gene silencing approach. Confocal laser scanning microscopy studies demonstrated that the iontophoretically delivered ASO-dendrimer complex can reach the viable epidermis in porcine skin. In contrast, passively delivered free or dendrimer complexed ASO was mainly localized to the stratum corneum. The cell uptake of ASO was significantly enhanced by the dendrimer complex and the complex suppressed Bcl-2 levels in the cell. In the skin cancer mouse model, the iontophoretically delivered ASO-dendrimer complex

  12. Studies on the mechanism of skin tumor promotion: Evidence for several stages in promotion

    PubMed Central

    Slaga, T. J.; Fischer, S. M.; Nelson, K.; Gleason, G. L.

    1980-01-01

    The effects of nonpromoting and weakly promoting diterpenes on skin tumor promotion by 12-O-tetradecanoylphorbol 13-acetate (TPA) were investigated. When phorbol and phorbol 12,13-diacetate (both nonpromoting) were given simultaneously with TPA after 7,12-dimethylbenz[a]-anthracene (DMBA) initiation in female mice, they had no effect on TPA promotion. However, the nonpromoter 4-O-methyl-TPA and the weak promoter mezerein were found to inhibit TPA promotion in a dose-dependent manner when given simultaneously with TPA. Because mezerein was found to be an effective inhibitor of TPA promotion when given simultaneously and because it induces many biological responses similar to those to TPA, the capacity of mezerein to act as an incomplete promoter in a two-stage promotion protocol was also investigated. Twice-weekly applications of 1,2, or 5 μg of TPA for 2 weeks after DMBA initiation produced 0, 0, and 0.5 papilloma per mouse, respectively, at 20 weeks. When the twice-weekly applications of TPA for 2 weeks were followed by twice-weekly treatments with 2 μg of mezerein for 18 weeks, the number of papillomas per mouse was 2.2, 3.5, and 9.0, respectively. Twice-weekly applications of 2 μg of TPA for 2 weeks followed by twice-weekly treatments with 1, 2, or 4 μg of mezerein for 18 weeks produced 2.1, 3.5, and 6.8 papillomas per mouse, respectively, in DMBA-treated mice. Twice-weekly doses as high as 40 μg of 4-O-methyl-TPA were not effective in producing tumors when given after a limited treatment with TPA; however, 4-O-methyl-TPA had weak activity as a first-stage promoter. The results suggest that although mezerein by itself is a weak promoter and mimics TPA in many biochemical and morphological effects it is a potent second-stage promoter in a two-stage promotion regimen. PMID:6774342

  13. Resveratrol modulates phorbol ester-induced pro-inflammatory signal transduction pathways in mouse skin in vivo: NF-kappaB and AP-1 as prime targets.

    PubMed

    Kundu, Joydeb Kumar; Shin, Young Kee; Surh, Young-Joon

    2006-11-30

    Functional abnormalities of intracellular signaling network cause the disruption in homeostasis maintained by critical cellular components, thereby accelerating premalignant and malignant transformation. Multiple lines of evidence suggest that an elevated expression of cyclooxygenase-2 (COX-2) is causally linked to tumorigenesis. The exposure to oxidative/pro-inflammatory stimuli turns on signaling arrays mediated by diverse classes of kinases and transcription factors, which may lead to aberrant expression of COX-2. We have attempted to unravel the signal transduction pathways involved in elevated COX-2 expression in mouse skin stimulated with a prototype tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and its modulation by resveratrol, a phytoalexin known to exert potential chemopreventive effects. Our study revealed that topical application of TPA induced COX-2 expression in mouse skin via activation of nuclear factor-kappaB (NF-kappaB), which is regulated by upstream IkappaB kinase (IKK) or differentially by mitogen-activated protein (MAP) kinases. Besides NF-kappaB, the p38 MAP kinase-mediated activation of activator protein-1 (AP-1) has also been attributed to TPA-induced COX-2 expression in mouse skin. Among the MAP kinases, extracellular signal-regulated protein kinase (ERK) and p38 MAP kinase have been shown to regulate TPA-induced NF-kappaB activation, while p38 MAP kinase and c-Jun-N-terminal kinase are preferentially involved in TPA-induced activation of AP-1 in mouse skin in vivo. This commentary focuses on resveratrol modulation of intracellular signaling pathways involved in aberrant COX-2 expression in TPA-stimulated mouse skin to delineate molecular mechanisms underlying antitumor promoting effects of resveratrol.

  14. Nonselective expression of simian virus 40 large tumor antigen fragments in mouse cells.

    PubMed Central

    Reddy, V B; Tevethia, S S; Tevethia, M J; Weissman, S M

    1982-01-01

    To understand the role of various functional domains of simian virus 40 early tumor antigens, we have cloned and introduced into mouse cells portions of early simian virus 40 DNA. Two types of truncated large tumor antigen (33 and 12.3 kilodaltons), as well as small tumor antigen, were identified by immunoprecipitation. Both truncated large tumor antigens have been found to be overproduced with respect to the small tumor antigen, although the 12.3-kilodalton truncated large tumor antigen was more stable than the 33-kilodalton one. Nonviral 53-kilodalton protein was not found associated with either truncated large tumor antigen in immunoprecipitations. Images PMID:6281793

  15. Influence of the hair cycle on the thickness of mouse skin

    SciTech Connect

    Hansen, L.S.; Coggle, J.E.; Wells, J.; Charles, M.W.

    1984-12-01

    The data on mouse skin thickness reported here was prompted by the need to know the true position of basal cells of the epidermis and hair follicles as these are important cells at risk for a variety of skin reactions including carcinogenesis following exposure to radiation. There is little reliable data in the literature and most previous reports have ignored the shrinkage of skin that occurs because of its natural elasticity. The values determined for mouse flank skin in telogen--the resting phase of the hair cycle for the different skin layers--are epidermis 10 micron, corium 250 micron, adipose layer 150 micron, and hair follicle depth 150 micron. Three days after chemical depilation which triggers the hair follicles into active cycle (anagen) the epidermis doubles in thickness, remains at this value for 7 days, and then gradually returns to telogen values by day 18. The corium and adipose layers also increase significantly to reach approximately 390 micron and approximately 260 micron, respectively, by day 10 and then return to control values from day 15 onward. The change in hair follicles depths are more dramatic with active follicle basal cells reaching approximately 450-550 micron into the adipose layer between days 7 and 15. One important finding is that chemical depilation does not affect the telogen thickness of skin-the teleogen values for the epidermis and dermis immediately prior to and immediately after depilation were similar to those 23 days later at the beginning of the next telogen phase.

  16. [Observation on the growth and metastasis of cross-strain transplanted tumors in different mouse strains].

    PubMed

    Gu, Bei; Feng, Hai-Liang; Liu, Yu-qin

    2013-07-01

    Mouse tumors were subcutaneously transplanted into different mouse strains and their growth and metastatic properties were checked, to explore the possibility of establishing animal tumor models in different mouse strains other than their normal host strains. Seven mouse tumor cell lines: H22, S180, U14, FC, Ca761, SMG-A and DCS were transplanted into C57BL/6J, ICR or KM mice, and their tumorigenicity, growth and metastasis were recorded and analyzed. The tumor formation rate of H22 cells in both the C57BL/6J and ICR mice was 100%, but the growth of H22 tumors was significantly faster in the C57BL/6J (2.8 ± 0.4)g than in the ICR mice (1.5 ± 0.5)g at the 17th day after transplantation (P<0.001). The S180 tumors grew stably in C57BL/6J mice and the tumor formation rate was 100%. The U14 inoculated into C57BL/6J and KM mice showed both lymphatic and lung metastasis and formed significantly larger tumors in KM mice [(12.6 ± 3.4)g] than that in the C57BL/6J mice [(10.2 ± 2.2)g] on the 32rd day after transplantation (P = 0.002). Transplantation of FC, Ca761, and SMG-A did not form tumors or the tumors were completely regressed later in C57BL/6J mice. DCS cells formed tumors in C57BL/6J mice, but some of the tumors regressed. The retained tumors were passaged in C57BL/6J mice, and the substrain DCS-C57 cells was established which showed stable growth and had a 100% tumor formation rate and 100% lung metastasis rate in C57BL/6J mice. Cross-strain transplanted tumors can be successfully established by inoculation of poorly differentiated and highly malignant tumor cells into different mouse strains. Some highly immunogenic tumor cells may form tumor, however, the tumors are regressed later, and can not establish cross-strain transplanted tumors in other mouse strains. Stable transplanted tumor models can be obtained from the partially regressed tumors after continuous passages in vivo.

  17. Phytoestrogens regulate vitamin D metabolism in the mouse colon: relevance for colon tumor prevention and therapy.

    PubMed

    Kállay, Enikö; Adlercreutz, Herman; Farhan, Hesso; Lechner, Daniel; Bajna, Erika; Gerdenitsch, Waltraud; Campbell, Moray; Cross, Heide S

    2002-11-01

    Soybean products are highly represented in the traditional Asian diet. Major components of soy proteins are phytoestrogens, such as isoflavones. They may be responsible for the extremely low incidence of prostate and mammary tumors and possibly also of colon cancer in countries such as China and Japan. Serum 1,25-dihydroxyvitamin D3 level is inversely related to incidence of some cancers. Levels are determined by skin exposure to ultraviolet light or, to a minor extent, nutritional uptake and by subsequent conversion of the precursor vitamin D to the active hormone by the cytochrome P450 hydroxylases CYP27A1, CYP27B1 (responsible for synthesis) and CYP24 (responsible for catabolism) in liver and kidney. However, vitamin D synthesis is also found in colonocytes and is enhanced during incipient malignancy. This may indicate an autocrine/paracrine role for this differentiation-inducing hormone in defense against progression. We were able to demonstrate that either a single large oral dose of genistein or feeding soy protein for 4 mo elevated CYP27B1 and decreased CYP24 expression in the mouse colon. Our data therefore suggest that an inverse correlation of soy product consumption with colon tumor incidence may be consequent to enhanced colonic synthesis of the antimitotic hormone 1,25-dihydroxyvitamin D3.

  18. The Raman spectrum character of skin tumor induced by UVB

    NASA Astrophysics Data System (ADS)

    Wu, Shulian; Hu, Liangjun; Wang, Yunxia; Li, Yongzeng

    2016-03-01

    In our study, the skin canceration processes induced by UVB were analyzed from the perspective of tissue spectrum. A home-made Raman spectral system with a millimeter order excitation laser spot size combined with a multivariate statistical analysis for monitoring the skin changed irradiated by UVB was studied and the discrimination were evaluated. Raman scattering signals of the SCC and normal skin were acquired. Spectral differences in Raman spectra were revealed. Linear discriminant analysis (LDA) based on principal component analysis (PCA) were employed to generate diagnostic algorithms for the classification of skin SCC and normal. The results indicated that Raman spectroscopy combined with PCA-LDA demonstrated good potential for improving the diagnosis of skin cancers.

  19. Histology and Ultrastructure of Transitional Changes in Skin Morphology in the Juvenile and Adult Four-Striped Mouse (Rhabdomys pumilio)

    PubMed Central

    Stewart, Eranée; Ajao, Moyosore Salihu

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin. PMID:24288469

  20. Histology and ultrastructure of transitional changes in skin morphology in the juvenile and adult four-striped mouse (Rhabdomys pumilio).

    PubMed

    Stewart, Eranée; Ajao, Moyosore Salihu; Ihunwo, Amadi Ogonda

    2013-01-01

    The four-striped mouse has a grey to brown coloured coat with four characteristic dark stripes interspersed with three lighter stripes running along its back. The histological differences in the skin of the juvenile and adult mouse were investigated by Haematoxylin and Eosin and Masson Trichrome staining, while melanocytes in the skin were studied through melanin-specific Ferro-ferricyanide staining. The ultrastructure of the juvenile skin, hair follicles, and melanocytes was also explored. In both the juvenile and adult four-striped mouse, pigment-containing cells were observed in the dermis and were homogeneously dispersed throughout this layer. Apart from these cells, the histology of the skin of the adult four-striped mouse was similar to normal mammalian skin. In the juvenile four-striped mouse, abundant hair follicles of varying sizes were observed in the dermis and hypodermis, while hair follicles of similar size were only present in the dermis of adult four-striped mouse. Ultrastructural analysis of juvenile hair follicles revealed that the arrangement and differentiation of cellular layers were typical of a mammal. This study therefore provides unique transition pattern in the four-striped mouse skin morphology different from the textbook description of the normal mammalian skin.

  1. Identification of Stmm3 locus Conferring Resistance to Late-stage Chemically Induced Skin Papillomas on Mouse Chromosome 4 by Congenic Mappingand Allele-specific Alteration Analysis

    PubMed Central

    Saito, Megumi; Okumura, Kazuhiro; Miura, Ikuo; Wakana, Shigeharu; Kominami, Ryo; Wakabayashi, Yuichi

    2014-01-01

    Genome-wide association studies have revealed that many low-penetrance cancer susceptibility loci are located throughout the genome; however, a very limited number of genes have been identified so far. Using a forward genetics approach to map such loci in a mouse skin cancer model, we previously identified strong genetic loci conferring resistance to chemically induced skin papillomas on chromosome 4 and 7 with a large number of [(FVB/N × MSM/Ms) F1 × FVB/N] backcross mice. In this report, we describe a combination of congenic mapping and allele-specific alteration analysis of the loci on chromosome 4. We used linkage analysis and a congenic mouse strain, FVB.MSM-Stmm3 to refine the location of Stmm3 (Skin tumor modifier of MSM 3) locus within a physical interval of about 34 Mb on distal chromosome 4. In addition, we used patterns of allele-specific imbalances in tumors from N2 and N10 congenic mice to narrow down further the region of Stmm3 locus to a physical distance of about 25 Mb. Furthermore, immunohistochemical analysis showed papillomas from congenic mice had less proliferative activity. These results suggest that Stmm3 responsible genes may have an influence on papilloma formation in the two-stage skin carcinogenesis by regulating papilloma growth rather than development. PMID:25077764

  2. Novel skin phenotypes revealed by a genome-wide mouse reverse genetic screen

    PubMed Central

    Liakath-Ali, Kifayathullah; Vancollie, Valerie E.; Heath, Emma; Smedley, Damian P.; Estabel, Jeanne; Sunter, David; DiTommaso, Tia; White, Jacqueline K.; Ramirez-Solis, Ramiro; Smyth, Ian; Steel, Karen P.; Watt, Fiona M.

    2014-01-01

    Permanent stop-and-shop large-scale mouse mutant resources provide an excellent platform to decipher tissue phenogenomics. Here we analyse skin from 538 knockout mouse mutants generated by the Sanger Institute Mouse Genetics Project. We optimize immunolabelling of tail epidermal wholemounts to allow systematic annotation of hair follicle, sebaceous gland and interfollicular epidermal abnormalities using ontology terms from the Mammalian Phenotype Ontology. Of the 50 mutants with an epidermal phenotype, 9 map to human genetic conditions with skin abnormalities. Some mutant genes are expressed in the skin, whereas others are not, indicating systemic effects. One phenotype is affected by diet and several are incompletely penetrant. In-depth analysis of three mutants, Krt76, Myo5a (a model of human Griscelli syndrome) and Mysm1, provides validation of the screen. Our study is the first large-scale genome-wide tissue phenotype screen from the International Knockout Mouse Consortium and provides an open access resource for the scientific community. PMID:24721909

  3. CD34 EXPRESSION BY HAIR FOLLICLE STEM CELLS IS REQUIRED FOR SKIN TUMOR DEVELOPMENT IN MICE

    EPA Science Inventory

    We used knockout mice to show that a cell surface protein called CD34 is required for skin tumor formation in mice. Wild type mice treated with 7-12-Dimethylbenz(a)anthracene (DMBA) and a tumor promoter developed papillomas. When we treated CD34 knockout (KO) mice the same way, n...

  4. CD34 EXPRESSION BY HAIR FOLLICLE STEM CELLS IS REQUIRED FOR SKIN TUMOR DEVELOPMENT IN MICE

    EPA Science Inventory

    We used knockout mice to show that a cell surface protein called CD34 is required for skin tumor formation in mice. Wild type mice treated with 7-12-Dimethylbenz(a)anthracene (DMBA) and a tumor promoter developed papillomas. When we treated CD34 knockout (KO) mice the same way, n...

  5. Raised expression of the antiapoptotic protein ped/pea-15 increases susceptibility to chemically induced skin tumor development.

    PubMed

    Formisano, Pietro; Perruolo, Giuseppe; Libertini, Silvana; Santopietro, Stefania; Troncone, Giancarlo; Raciti, Gregory Alexander; Oriente, Francesco; Portella, Giuseppe; Miele, Claudia; Beguinot, Francesco

    2005-10-27

    ped/pea-15 is a cytosolic protein performing a broad antiapoptotic function. We show that, upon DMBA/TPA-induced skin carcinogenesis, transgenic mice overexpressing ped/pea-15 (Tg(ped/pea-15)) display early development of papillomas and a four-fold increase in papilloma number compared to the nontransgenic littermates (P<0.001). The malignant conversion frequency was 24% for the Tg(ped/pea-15) mice and only 5% in controls (P<0.01). The isolated application of TPA, but not that of DMBA, was sufficient to reversibly upregulate ped/pea-15 in both untransformed skin and cultured keratinocytes. ped/pea-15 protein levels were also increased in DMBA/TPA-induced papillomas of both Tg(ped/pea-15) and control mice. Isolated TPA applications induced Caspase-3 activation and apoptosis in nontransformed mouse epidermal tissues. The induction of both Caspase-3 and apoptosis by TPA were four-fold inhibited in the skin of the Tg(ped/pea-15) compared to the nontransgenic mice, accompanied by a similarly sized reduction in TPA-induced JNK and p38 stimulation and by constitutive induction of cytoplasmic ERK activity in the transgenics. ped/pea-15 expression was stably increased in cell lines from DMBA/TPA-induced skin papillomas and carcinomas, paralleled by protection from TPA apoptosis. In the A5 spindle carcinoma cell line, antisense inhibition of ped/pea-15 expression simultaneously rescued sensitivity to TPA-induced Caspase-3 function and apoptosis. The antisense also reduced A5 cell ability to grow in semisolid media by 65% (P<0.001) and increased by three-fold tumor latency time (P<0.01). Thus, the expression levels of ped/pea-15 control Caspase-3 function and epidermal cell apoptosis in vivo and determine susceptibility to skin tumor development.

  6. Receptive properties of mouse sensory neurons innervating hairy skin.

    PubMed

    Koltzenburg, M; Stucky, C L; Lewin, G R

    1997-10-01

    Using an in vitro nerve skin preparation and controlled mechanical or thermal stimuli, we analyzed the receptive properties of 277 mechanosensitive single primary afferents with myelinated (n = 251) or unmyelinated (n = 26) axons innervating the hairy skin in adult or 2-wk-old mice. Afferents were recorded from small filaments of either sural or saphenous nerves in an outbred mice strain or in the inbred Balb/c strain. On the basis of their receptive properties and conduction velocity, several receptor types could be distinguished. In adult animals (>6 wk old), 54% of the large myelinated fibers (Abeta, n = 83) showed rapidly adapting (RA) discharges to constant force stimuli and probably innervated hair follicles, whereas 46% displayed a slowly adapting (SA) response and probably innervated Merkel cells in touch domes. Among thin myelinated fibers (Adelta, n = 91), 34% were sensitive D hair receptors and 66% were high-threshold mechanoreceptors (AM fibers). Unmyelinated fibers had high mechanical thresholds and nociceptive functions. All receptor types had characteristic stimulus-response functions to suprathreshold force stimuli. Noxious heat stimuli (15-s ramp from 32 to 47 degrees C measured at the corium side of the skin) excited 26% (5 of 19) of AM fibers with a threshold of 42.5 +/- 1.4 degrees C (mean +/- SE) and an average discharge of 15.8 +/- 9.7 action potentials and 41% (7 of 17) C fibers with a mean threshold of 37.6 +/- 1.9 degrees C and an average discharge of 22.0 +/- 6.0 action potentials. Noxious cold stimuli activated 1 of 10 AM fibers and 3 of 10 C fibers. One of 10 C units responded to both heat and cold stimuli. All types of afferent fibers present in adult mice could readily be recognized in mice at postnatal day 14. However, fibers had reduced conduction velocities and the stimulus-response function to mechanical stimuli was more shallow in all fibers except for the D hairs. In juvenile mice, 22% of RA units also displayed an SA response at

  7. Defining the clonal dynamics leading to mouse skin tumour initiation

    PubMed Central

    Sánchez-Danés, Adriana; Hannezo, Edouard; Larsimont, Jean-Christophe; Liagre, Mélanie; Youssef, Khalil Kass; Simons, Benjamin D; Blanpain, Cédric

    2016-01-01

    The changes that occur in cell dynamics following oncogenic mutation that lead to the development of tumours are currently unknown. Here, using skin epidermis as a model, we assessed the impact of oncogenic hedgehog signalling in distinct cell populations and their capacity to induce basal cell carcinoma, the most frequent cancer in humans. We found that only stem cells, and not progenitors, were competent to initiate tumour formation upon oncogenic hedgehog signalling. Interestingly, this difference was due to the hierarchical organization of tumour growth in oncogene-targeted stem cells, characterized by an increase of symmetric self-renewing divisions and a higher p53-dependent resistance to apoptosis, leading to rapid clonal expansion and progression into invasive tumours. Our work reveals that the capacity of oncogene-targeted cells to induce tumour formation is not only dependent on their long-term survival and expansion, but also on the specific clonal dynamics of the cancer cell of origin. PMID:27459053

  8. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    SciTech Connect

    Jain, Anil K.; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J.; Agarwal, Chapla; White, Carl W.; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. - Highlights: • Silibinin treatment attenuated nitrogen mustard (NM)-induced skin injury. • Silibinin affects pathways associated with DNA damage, inflammation and vesication. • The efficacy of silibinin could also be associated with oxidative stress. • These results support testing and optimization of

  9. Regulation of ornithine decarboxylase gene expression in mouse epidermis and epidermal tumors during two-stage tumorigenesis.

    PubMed

    Gilmour, S K; Verma, A K; Madara, T; O'Brien, T G

    1987-03-01

    Topical treatment of mouse skin with the potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) results in an array of biochemical alterations, one of the earliest being a more than 200-fold transient induction of epidermal ornithine decarboxylase (ODC) activity. There is an excellent correlation between the induction of epidermal ODC activity and changes in the level of immunoreactive ODC protein following a single TPA treatment to skin. Both ODC activity and protein levels peak at 4.5 h after TPA treatment and rapidly fall to basal levels by 24 h. Cycloheximide treatment of mice in which ODC had been previously induced by TPA indicated a similar rapid turnover of both ODC catalytic activity and protein levels. Northern blot analysis of polyadenylated RNA isolated from mouse epidermis after a single TPA treatment revealed the stimulation of one species of ODC mRNA of 2.0 kilobases with a maximum at 3.5 h declining by 16 h. The same-sized species of ODC mRNA was detected 4.5 h after multiple biweekly treatments with TPA as well as in mouse papillomas and carcinomas not treated with TPA for at least 1 week. Southern blot analysis of EcoRI or BamHI digests of DNA derived from mouse liver, papillomas, or carcinomas revealed no ODC gene amplification or rearrangement during neoplastic progression. These observations indicate that the induction of epidermal ODC activity following TPA treatment results in a transient increase in the steady state levels of ODC mRNA and in the rate of synthesis of ODC protein, in contrast to epidermal tumors where the levels of ODC mRNA and protein are constitutively elevated.

  10. Elevated Epidermal Thymic Stromal Lymphopoietin Levels Establish an Anti-Tumor Environment in the Skin

    PubMed Central

    Demehri, Shadmehr; Turkoz, Ahu; Manivasagam, Sindhu; Yockey, Laura J.; Turkoz, Mustafa; Kopan, Raphael

    2012-01-01

    Summary Thymic Stromal Lymphopoietin (TSLP), a cytokine implicated in induction of T helper 2 (Th2)-mediated allergic inflammation, has recently been shown to stimulate solid tumor growth and metastasis. Conversely, studying mice with clonal loss of Notch signaling in their skin revealed that high levels of TSLP released by barrier-defective skin caused a severe inflammation, resulting in gradual elimination of Notch-deficient epidermal clones and resistance to skin tumorigenesis. We found CD4+ T cells to be both required and sufficient to mediate these effects of TSLP. Importantly, TSLP overexpression in wild-type skin also caused resistance to tumorigenesis, confirming that TSLP functions as a tumor suppressor in the skin. PMID:23079659

  11. Distinct expression profile of stem cell markers, LGR5 and LGR6, in basaloid skin tumors.

    PubMed

    Jang, Bo Gun; Lee, Cheol; Kim, Hye Sung; Shin, Myung Soo; Cheon, Min Seok; Kim, Jae Wang; Kim, Woo Ho

    2017-03-01

    Mammalian epidermis, which is composed of hair follicles, sebaceous glands, and interfollicular epidermis, is maintained by discrete stem cells. In vivo lineage tracing demonstrated that murine LGR5 cells are mainly responsible for hair follicle regeneration whereas LGR6 cells generate sebaceous glands and interfollicular epidermis. However, little is known about their expression in the human skin tumors. In this study, we investigated the expression profile of LGR5 and LGR6 in a variety of human skin tumors including basaloid tumors with follicular differentiation (94 basal cell carcinomas, 18 trichoepitheliomas, 3 basaloid follicular hamartomas, and 12 pilomatricomas) and tumors with ductal differentiation (7 eccrine poromas, 8 hidradenomas, and 5 spiradenomas). LGR5 expression was highest in basal cell carcinomas (BCCs) followed by trichoepitheliomas (TEs) and basaloid follicular hamartomas. LGR6 had the same expression pattern as LGR5, even though its expression was lower. Interestingly, LGR6 expression was detected in stromal cells around the tumor and papillary mesenchymal bodies of TEs but not in stromal cells of BCCs, suggesting different characteristics of tumor-associated fibroblasts between TEs and BCCs. It was unexpected to find that pilomatricomas exclusively expressed LGR6, and its expression was limited to the basaloid cells. Notably, LGR6-positive cells were observed in sweat gland ductal cells in normal skin. This might explain, in part, the finding that LGR6 expression was relatively higher in basaloid tumors with ductal differentiation than in those with follicular differentiation. In particular, spiradenomas displayed the same distribution pattern of LGR6 as normal sweat glands, suggesting the possibility of LGR6-positive cells as tumor stem cells. In conclusion, we documented the different expression patterns of stem cell markers, LGR5 and LGR6 in various skin tumors. These data may provide important insights to understand the origin and

  12. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-08-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo.

  13. Effects of housing conditions on the development of wet skin lesions in the NOA mouse.

    PubMed

    Kondo, Taizo; Kondo, Toshio; Shiomoto, Yasuhisa; Momii, Akira

    2005-04-01

    The effects of housing on the onset time and prevalence of wet skin lesions were investigated in NOA mice, which spontaneously develop these lesions at a high rate. Wet skin lesions developed earliest in mice that were housed individually. For mice that were housed in groups, the lesions developed earlier in mice with non-littermate group housing than in mice with littermate group housing. The prevalence of lesions was in the following order: individual housing > non-littermate group housing > littermate group housing. These results suggest that socio-psychological factors are involved in the etiology of wet skin lesions in the NOA mouse. Under individual housing conditions, two other novel characters of the NOA mouse were also observed, specifically, development of dry skin and wet skin lesions at the tail root. These characteristics developed early and with high prevalence and were easily observed on external examination. Therefore, these novel characteristics observed in NOA mice are potential markers of the psychological state of the animals.

  14. Gas chromatography-mass spectrometry analysis of effects of dietary fish oil on total fatty acid composition in mouse skin

    PubMed Central

    Wang, Peiru; Sun, Min; Ren, Jianwei; Djuric, Zora; Fisher, Gary J.; Wang, Xiuli; Li, Yong

    2017-01-01

    Altering the fatty acid (FA) composition in the skin by dietary fish oil could provide therapeutic benefits. Although it has been shown that fish oil supplementation enhances EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) abundance in the skin, comprehensive skin FA profiling is needed. We established a gas chromatography-mass spectrometry method, which allows precise quantification of FA profile using small (<24 mm2 for mice and <12 mm2 for humans) skin specimens that can be readily obtained from live mice and humans. We determined mouse skin FA composition after 2, 4 and 8 weeks of consuming a control diet or a diet supplemented with fish oil. Fish oil markedly enhanced EPA and DHA in mouse skin within 2 weeks, and this increase plateaued after 4 weeks. The FA composition in mouse skin was different from that of serum, indicating that skin has homeostatic control of FA metabolism. Mice fed the control diet designed to simulate Western human diet displayed similar skin FA composition as that of humans. The present study presents a validated method for FA quantification that is needed to investigate the mechanisms of actions of dietary treatments in both mouse and human skin. PMID:28195161

  15. Sprouty2 downregulates angiogenesis during mouse skin wound healing

    PubMed Central

    Wietecha, Mateusz S.; Chen, Lin; Ranzer, Matthew J.; Anderson, Kimberly; Ying, Chunyi; Patel, Tarun B.

    2011-01-01

    Angiogenesis is regulated by signals received by receptor tyrosine kinases such as vascular endothelial growth factor receptors. Mammalian Sprouty (Spry) proteins are known to function by specifically antagonizing the activation of the mitogen-activated protein kinase signaling pathway by receptor tyrosine kinases, a pathway known to promote angiogenesis. To examine the role of Spry2 in the regulation of angiogenesis during wound repair, we used a model of murine dermal wound healing. Full-thickness excisional wounds (3 mm) were made on the dorsum of anesthetized adult female FVB mice. Samples were harvested at multiple time points postwounding and analyzed using real-time RT-PCR, Western blot analysis, and immunofluorescent histochemistry. Spry2 mRNA and protein levels in the wound bed increased significantly during the resolving phases of healing, coincident with the onset of vascular regression in this wound model. In another experiment, intracellular levels of Spry2 or its dominant-negative mutant (Y55F) were elevated by a topical application to the wounds of controlled-release gel containing cell permeable, transactivator of transcription-tagged Spry2, Spry2Y55F, or green fluorescent protein (as control). Wound samples were analyzed for vascularity using CD31 immunofluorescent histochemistry as well as for total and phospho-Erk1/2 protein content. The treatment of wounds with Spry2 resulted in a significant decrease in vascularity and a reduced abundance of phospho-Erk1/2 compared with wounds treated with the green fluorescent protein control. In contrast, the wounds treated with the dominant-negative Spry2Y55F exhibited a moderate increase in vascularity and elevated phospho-Erk1/2 content. These results indicate that endogenous Spry2 functions to downregulate angiogenesis in the healing murine skin wound, potentially by inhibiting the mitogen-activated protein kinase signaling pathway. PMID:21076020

  16. Sprouty2 downregulates angiogenesis during mouse skin wound healing.

    PubMed

    Wietecha, Mateusz S; Chen, Lin; Ranzer, Matthew J; Anderson, Kimberly; Ying, Chunyi; Patel, Tarun B; DiPietro, Luisa A

    2011-02-01

    Angiogenesis is regulated by signals received by receptor tyrosine kinases such as vascular endothelial growth factor receptors. Mammalian Sprouty (Spry) proteins are known to function by specifically antagonizing the activation of the mitogen-activated protein kinase signaling pathway by receptor tyrosine kinases, a pathway known to promote angiogenesis. To examine the role of Spry2 in the regulation of angiogenesis during wound repair, we used a model of murine dermal wound healing. Full-thickness excisional wounds (3 mm) were made on the dorsum of anesthetized adult female FVB mice. Samples were harvested at multiple time points postwounding and analyzed using real-time RT-PCR, Western blot analysis, and immunofluorescent histochemistry. Spry2 mRNA and protein levels in the wound bed increased significantly during the resolving phases of healing, coincident with the onset of vascular regression in this wound model. In another experiment, intracellular levels of Spry2 or its dominant-negative mutant (Y55F) were elevated by a topical application to the wounds of controlled-release gel containing cell permeable, transactivator of transcription-tagged Spry2, Spry2Y55F, or green fluorescent protein (as control). Wound samples were analyzed for vascularity using CD31 immunofluorescent histochemistry as well as for total and phospho-Erk1/2 protein content. The treatment of wounds with Spry2 resulted in a significant decrease in vascularity and a reduced abundance of phospho-Erk1/2 compared with wounds treated with the green fluorescent protein control. In contrast, the wounds treated with the dominant-negative Spry2Y55F exhibited a moderate increase in vascularity and elevated phospho-Erk1/2 content. These results indicate that endogenous Spry2 functions to downregulate angiogenesis in the healing murine skin wound, potentially by inhibiting the mitogen-activated protein kinase signaling pathway.

  17. Human skin carcinoma arising from kidney transplant-derived tumor cells.

    PubMed

    Verneuil, Laurence; Varna, Mariana; Ratajczak, Philippe; Leboeuf, Christophe; Plassa, Louis-François; Elbouchtaoui, Morad; Schneider, Pierre; Sandid, Wissam; Lebbé, Celeste; Peraldi, Marie-Noelle; Sigaux, François; de Thé, Hugues; Janin, Anne

    2013-09-01

    Tumor cells with donor genotype have been identified in human skin cancer after allogeneic transplantation; however, the donor contribution to the malignant epithelium has not been established. Kidney transplant recipients have an increased risk of invasive skin squamous cell carcinoma (SCC), which is associated with accumulation of the tumor suppressor p53 and TP53 mutations. In 21 skin SCCs from kidney transplant recipients, we systematically assessed p53 expression and donor/recipient origin in laser-microdissected p53+ tumor cells. In one patient, molecular analyses demonstrated that skin tumor cells had the donor genotype and harbored a TP53 mutation in codon 175. In a kidney graft biopsy performed 7 years before the skin SCC diagnosis, we found p53+ cells in the renal tubules. We identified the same TP53 mutation in these p53+ epithelial cells from the kidney transplant. These findings provide evidence for a donor epithelial cell contribution to the malignant skin epithelium in the recipient in the setting of allogeneic kidney transplantation. This finding has theoretical implications for cancer initiation and progression and clinical implications in the context of prolonged immunosuppression and longer survival of kidney transplant patients.

  18. Human skin carcinoma arising from kidney transplant–derived tumor cells

    PubMed Central

    Verneuil, Laurence; Varna, Mariana; Ratajczak, Philippe; Leboeuf, Christophe; Plassa, Louis-François; Elbouchtaoui, Morad; Schneider, Pierre; Sandid, Wissam; Lebbé, Celeste; Peraldi, Marie-Noelle; Sigaux, François; de Thé, Hugues; Janin, Anne

    2013-01-01

    Tumor cells with donor genotype have been identified in human skin cancer after allogeneic transplantation; however, the donor contribution to the malignant epithelium has not been established. Kidney transplant recipients have an increased risk of invasive skin squamous cell carcinoma (SCC), which is associated with accumulation of the tumor suppressor p53 and TP53 mutations. In 21 skin SCCs from kidney transplant recipients, we systematically assessed p53 expression and donor/recipient origin in laser-microdissected p53+ tumor cells. In one patient, molecular analyses demonstrated that skin tumor cells had the donor genotype and harbored a TP53 mutation in codon 175. In a kidney graft biopsy performed 7 years before the skin SCC diagnosis, we found p53+ cells in the renal tubules. We identified the same TP53 mutation in these p53+ epithelial cells from the kidney transplant. These findings provide evidence for a donor epithelial cell contribution to the malignant skin epithelium in the recipient in the setting of allogeneic kidney transplantation. This finding has theoretical implications for cancer initiation and progression and clinical implications in the context of prolonged immunosuppression and longer survival of kidney transplant patients. PMID:23979160

  19. Carnosine retards tumor growth in vivo in an NIH3T3-HER2/neu mouse model

    PubMed Central

    2010-01-01

    Background It was previously demonstrated that the dipeptide carnosine inhibits growth of cultured cells isolated from patients with malignant glioma. In the present work we investigated whether carnosine also affects tumor growth in vivo and may therefore be considered for human cancer therapy. Results A mouse model was used to investigate whether tumor growth in vivo can be inhibited by carnosine. Therefore, NIH3T3 fibroblasts, conditionally expressing the human epidermal growth factor receptor 2 (HER2/neu), were implanted into the dorsal skin of nude mice, and tumor growth in treated animals was compared to control mice. In two independent experiments nude mice that received tumor cells received a daily intra peritoneal injection of 500 μl of 1 M carnosine solution. Measurable tumors were detected 12 days after injection. Aggressive tumor growth in control animals, that received a daily intra peritoneal injection of NaCl solution started at day 16 whereas aggressive growth in mice treated with carnosine was delayed, starting around day 19. A significant effect of carnosine on tumor growth was observed up to day 24. Although carnosine was not able to completely prevent tumor growth, a microscopic examination of tumors revealed that those from carnosine treated animals had a significant lower number of mitosis (p < 0.0003) than untreated animals, confirming that carnosine affects proliferation in vivo. Conclusion As a naturally occurring substance with a high potential to inhibit growth of malignant cells in vivo, carnosine should be considered as a potential anti-cancer drug. Further experiments should be performed in order to understand how carnosine acts at the molecular level. PMID:20053283

  20. Multiphoton tomography of skin tumors after ALA application

    NASA Astrophysics Data System (ADS)

    Riemann, Iris; Ehlers, Alexander; Dill-Müller, Dorothee; Martin, Sven; König, Karsten

    2007-02-01

    In skin, the most common form of cancer is the basal cell carcinoma, affecting about 800.000 people in US each year. One of the treatments is photodynamic therapy (PDT) with a topical application of 5-aminolevulinic acid (ALA) derivates. These photosensitizers accumulate mainly in cancerous cells and can be activated by light resulting in a destruction of the cells. We performed multiphoton tomography based on near-infrared (NIR) femtosecond laser pulses on skin biopsies in order to study the biosynthesis of protoporphyrine IX and the effect of treatment with submicron resolution. The fluorescence of the photosensitizer was excited using two-photon processes and monitored through the epidermis towards the basal layer. In comparison with normal skin the cancerous cells showed different morphology and fluorescence behavior. Multiphoton tomography might become a useful tool for high resolution imaging of cancerous tissue and to evaluate the therapeutical effects.

  1. Squaraine PDT induces oxidative stress in skin tumor of swiss albino mice

    NASA Astrophysics Data System (ADS)

    Cibin, T. R.; Gayathri, Devi D.; Ramaiah, D.; Abraham, Annie

    2010-02-01

    Photodynamic Therapy (PDT) using a sensitizing drug is recognized as a promising medical technique for cancer treatment. It is a two step process that requires the administration of a photosensitizer followed by light exposure to treat a disease. Following light exposure the photosensitizer is excited to a higher energy state which generates free radicals and singlet oxygen. The present study was carried out to assess the oxidative damage induced by bis (3, 5-diiodo-2, 4, 6- trihydroxyphenyl) squaraine in skin tumor tissues of mice with/ without light treatment. Skin tumor was induced using 7, 12-Dimethyl Benz(a)anthracene and croton oil. The tumor bearing mice were given an intraperitoneal injection with the squaraine dye. After 24h, the tumor area of a few animals injected with the dye, were exposed to visible light from a 1000 W halogen lamp and others kept away from light. All the mice were sacrificed one week after the PDT treatment and the oxidative profile was analyzed (TBARS, SOD, catalase, GSH, GPx and GR) in tumor/ skin tissues. The dye induces oxidative stress in the tumor site only on illumination and the oxidative status of the tumor tissue was found to be unaltered in the absence of light. The results of the study clearly shows that the tumor destruction mediated by PDT using bis (3, 5-diiodo-2, 4, 6-trihydroxyphenyl) squaraine as a photosensitizer is due to the generation of reactive oxygen species, produced by the light induced changes in the dye.

  2. Photodynamic therapy using a novel irradiation source, LED lamp, is similarly effective to photodynamic therapy using diode laser or metal-halide lamp on DMBA- and TPA-induced mouse skin papillomas.

    PubMed

    Takahashi, Hidetoshi; Nakajima, Susumu; Ogasawara, Koji; Asano, Ryuji; Nakae, Yoshinori; Sakata, Isao; Iizuka, Hajime

    2014-08-01

    Photodynamic therapy (PDT) is useful for superficial skin tumors such as actinic keratosis and Bowen disease. Although PDT is non-surgical and easily-performed treatment modality, irradiation apparatus is large and expensive. Using 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-ο-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin papilloma model, we compared the efficacy of TONS501- and ALA-PDT with a LED lamp, a diode laser lamp or a metal-halide lamp on the skin tumor regression. TONS501-PDT using 660 nm LED lamp showed anti-tumor effect at 1 day following the irradiation and the maximal anti-tumor effect was observed at 3 days following the irradiation. There was no significant difference in the anti-tumor effects among TONS501-PDT using LED, TONS501-PDT using diode laser, and 5-aminolevulinic acid hydrochloride (ALA)-PDT using metal-halide lamp. Potent anti-tumor effect on DMBA- and TPA-induced mouse skin papilloma was observed by TONS501-PDT using 660 nm LED, which might be more useful for clinical applications.

  3. Immunohistochemical study of cyclooxygenase-2 and p53 expression in skin tumors.

    PubMed

    Kim, Kwang Ho; Park, Eun Joo; Seo, Young Ju; Cho, Han Suk; Kim, Chul Woo; Kim, Kwang Joong; Park, Hye Rim

    2006-05-01

    Overexpression of cyclooxygenase-2 (COX-2) has been demonstrated in various cancers, including experimentally promoted tumors, gastrointestinal cancers, breast tumors and skin tumors. The mechanism that controls COX-2 expression is not yet clear. Currently, it is reported that COX-2 expression is frequently associated with mutated p53 genes. The goal of this study was to evaluate the expression patterns of COX-2 and p53 in several skin tumors and their correlation. An immunohistochemical method was used to investigate the expression of COX-2 and p53 proteins on formalin-fixed, paraffin-embedded tissue specimens of squamous cell carcinomas (SCC), basal cell carcinomas (BCC), Bowen's disease (BD), actinic keratosis (AK) and porokeratosis. The expression of COX-2 increased in 50% (5/10) of SCC, 80% (8/10) of BCC, 40% (4/10) of BD, 50% (5/10) of AK, and 20% (2/10) of porokeratosis cases. The expression of p53 increased in 90% (9/10) of SCC, 70% (7/10) of BCC, 70% (7/10) of BD, 50% (5/10) of AK, and 40% (4/10) of porokeratosis cases. COX-2 positivity rates of the p53-positive skin tumors were 56%, 100%, 57%, 80% and 25% in SCC, BCC, BD, AK and porokeratosis, respectively. However, the correlation between p53 and COX-2 expression in skin tumors was not statistically significant (P > 0.05). Our results indicate that skin COX-2 and p53 may play roles in skin tumors, but that there is no apparent correlation between the two markers.

  4. Studies on the mechanisms involved in multistage carcinogenesis in mouse skin

    SciTech Connect

    Slaga, T.J.; Fischer, S.M.; Weeks, C.E.; Klein-Szanto, A.J.P.; Reiners, J.

    1982-01-01

    Skin tumors can be effectively induced in mice by the repetitive application of a carcinogen. The relative order of sensitivity to complete carcinogenesis is Sencar > CD-1 > C57BL/6 greater than or equal to BALB/c greater than or equal to ICR/Ha Swiss > C3H. Skin tumors in mice can also be induced by the sequential application of a subthreshold dose of a carcinogen (initiation phase) followed by repetitive treatment with a weak or noncarcinogenic tumor promoter (promotion phase) followed by repetitive treatment with a weak or noncarcinogenic tumor promoter (promotion phase). The relative order of sensitivity to initiation-promotion is Sencar > > CD-1 > ICR/Ha Swiss greater than or equal to Balb/c > C57BL/6 greater than or equal to C3H greater than or equal to DBA/2. The phorbol ester tumor promoters have been shown to have several cellular and biochemical effects on the skin. Of all the observed phorbol ester related effects on the skin, the induction of epidermal cell proliferation, polyamines, prostagladins, and dark basal keratinocytes as well as other embryonic conditions appear to correlate the best with promotion. Mezerein, a weak promoter, was found to induce many cellular and biochemical changes similar to 12-O-tetradecanoylphorbol-13 acetate (TPA), especially epidermal hyperplasia and polyamines; however, it was not a potent inducer of dark cells. Although C57BL/6 mice are relatively resistant to initiation-promotion by PAH initiation and phorbol ester promotion, they are fairly sensitive to complete carcinogenesis by PAH. This suggests that the C57BL/6 mice are resistant to phorbol ester tumor promotion. Preliminary experiments suggest that C57BL/6 and Sencar mice respond qualitatively but not quantitatively to a single treatment with TPA.

  5. Effect of inositol hexaphosphate on the development of UVB-induced skin tumors in SKH1 hairless mice.

    PubMed

    Kolappaswamy, Krishnan; Williams, Kendra A; Benazzi, Cinzia; Sarli, Giuseppe; McLeod, Charles G; Vucenik, Ivana; DeTolla, Louis J

    2009-04-01

    Inositol hexaphosphate (IP6) is a naturally occurring polyphosphorylated carbohydrate that is abundant in many plants and in various high-fiber foods, such as cereals and legumes. IP6 has a striking, broad-spectrum anticancer activity in various in vitro and animal models, in which it interferes with key pathways in malignancy to inhibit cell proliferation, cell-cycle progression, metastasis, invasion, and angiogenesis and to induce apoptosis. In this study, we investigated the protective effects of IP6 in drinking water on the incidence of UVB-induced skin cancer in the SKH1 (Crl: SKH1-hr) mouse model. One group of 15 mice received 2% IP6 in drinking water and UVB exposure, and the other group (n = 15) received UVB exposure only. All mice in both groups were fed an IP6-deficient diet (AIN 76A). The treatment group started receiving 2% IP6 in the drinking water 3 d before irradiation. Mice were irradiated 3 times each week, starting at a dose of 1.5 kJ/m2, with weekly increases in increments of 1.5 kJ/m2 to a final dose of 7.5 kJ/m2. Tumor formation was monitored until the week 31. IP6 in drinking water significantly decreased tumor incidence by 5-fold and tumor multiplicity by 4-fold. These results show that IP6 has an antiphotocarcinogenic effect and can protect against UVB-induced tumor formation.

  6. Local Rhomboid Flap Reconstruction for Skin Defects After Excising Large Parotid Gland Tumors.

    PubMed

    Hung, Min-Hui; Liao, Chun-Ta; Kang, Chung-Jan; Huang, Shiang-Fu

    2017-01-01

    Most parotid tumors grow slowly, and sometimes these patients do not request surgical treatment until the tumors become large and affect their appearance. The surgical treatment of these large tumors is usually accompanied by large skin defects after excision, and it is challenging for surgeons to close the defect primarily. This report describes the case of a 68-year-old man with a left parotid gland tumor (largest dimension, 110 mm) and the case of a 79-year-old man with a left parotid gland tumor measuring approximately 77 mm that had existed for decades. These patients underwent facial nerve dissection and parotidectomy with skin sacrifice. The large skin defects after the parotidectomy were successfully reconstructed with local rhomboid flaps. No facial palsy, wound disruption, flap edge loss, or major complications occurred after the surgeries. Except for the scars, the color of the cheek flap was not apparent from the periphery. In conclusion, local rhomboid flap reconstruction is a rapid and practical technique for reconstructing medium to large skin defects in the cheek and upper neck regions after tumor excisions. The flap was reliable in blood supply and cosmetic outcome.

  7. Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing.

    PubMed

    Chen, Dongsheng; Zeng, Nan; Xie, Qiaolin; He, Honghui; Tuchin, Valery V; Ma, Hui

    2017-08-01

    We investigate the polarization features corresponding to changes in the microstructure of nude mouse skin during immersion in a glycerol solution. By comparing the Mueller matrix imaging experiments and Monte Carlo simulations, we examine in detail how the Mueller matrix elements vary with the immersion time. The results indicate that the polarization features represented by Mueller matrix elements m22&m33&m44 and the absolute values of m34&m43 are sensitive to the immersion time. To gain a deeper insight on how the microstructures of the skin vary during the tissue optical clearing (TOC), we set up a sphere-cylinder birefringence model (SCBM) of the skin and carry on simulations corresponding to different TOC mechanisms. The good agreement between the experimental and simulated results confirm that Mueller matrix imaging combined with Monte Carlo simulation is potentially a powerful tool for revealing microscopic features of biological tissues.

  8. Dermal penetration potential of perfluorooctanoic acid (PFOA) in human and mouse skin.

    PubMed

    Franko, Jennifer; Meade, B J; Frasch, H Frederick; Barbero, Ana M; Anderson, Stacey E

    2012-01-01

    Recent data, using a murine model, have indicated that dermal exposure to perfluorooctanoic acid (PFOA) induces immune modulation, suggesting that this may be an important route of PFOA exposure. To investigate the dermal penetration potential of PFOA, serum concentrations were analyzed in mice following topical application. Statistically significant and dose-responsive increases in serum PFOA concentrations were identified. In vitro dermal penetration studies also demonstrated that PFOA permeates both mouse and human skin. Investigation into the mechanisms mediating PFOA penetration demonstrated that dermal absorption was strongly dependent upon the ionization status of PFOA. In addition, PFOA solid, but not 1% PFOA/acetone solution, was identified as corrosive using a cultured epidermis in vitro model. Despite its corrosive potential, expression of inflammatory cytokines in the skin of topically exposed mice was not altered. These data suggest that PFOA is dermally absorbed and that under certain conditions the skin may be a significant route of exposure.

  9. Ultraviolet light induction of skin carcinoma in the mouse; influence of cAMP modifying agents.

    PubMed

    Zajdela, F; Latarjet, R

    1978-01-01

    A short review of pathogenic factors in U.V. light skin carcinogenesis in the mouse is presented. Caffeine and theophylline applied locally during U.V. irradiation caused a 50 percent reduction of skin tumour induction in Swiss mice. These two chemicals are inhibitors of DNA postreplication repair, but they also raise the intracellular level of cyclic AMP by inhibiting cAMP phosphodiesterase with, as a consequence, a possible slowing down of cellular growth. Control experiments using three different chemicals capable of raising the cAMP level in epidermal cells gave negative results. These experimental data are compatible with our original hypothesis according to which production of skin cancers by U.V. radiation is in same way related to DNA repair which helps the cell to survive but allows or favours the occurrence of errors in cellular DNA.

  10. The use of reflectance confocal microscopy for examination of benign and malignant skin tumors

    PubMed Central

    Wielowieyska-Szybińska, Dorota; Białek-Galas, Kamila; Podolec, Katarzyna

    2014-01-01

    Reflectance confocal microscopy (RCM) is a modern, non-invasive diagnostic method that enables real-time imaging of epidermis and upper layers of the dermis with a nearly histological precision and high contrast. The application of this technology in skin imaging in the last few years has resulted in the progress of dermatological diagnosis, providing virtual access to the living skin erasing the need for conventional histopathology. The RCM has a potential of wide application in the dermatological diagnostic process with a particular reference to benign and malignant skin tumors. This article provides a summary of the latest reports and previous achievements in the field of RCM application in the diagnostic process of skin neoplasms. A range of dermatological indications and general characteristics of confocal images in various types of tumors are presented. PMID:25610353

  11. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-05-15

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51%reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants.

  12. Flavanone silibinin treatment attenuates nitrogen mustard-induced toxic effects in mouse skin

    PubMed Central

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Kumar, Dileep; Orlicky, David J; Agarwal, Chapla; White, Carl W; Agarwal, Rajesh

    2015-01-01

    Currently, there is no effective antidote to prevent skin injuries by sulfur mustard (SM) and nitrogen mustard (NM), which are vesicating agents with potential relevance to chemical warfare, terrorist attacks, or industrial/laboratory accidents. Our earlier report has demonstrated the therapeutic efficacy of silibinin, a natural flavanone, in reversing monofunctional alkylating SM analog 2-chloroethyl ethyl sulfide-induced toxic effects in mouse skin. To translate this effect to a bifunctional alkylating vesicant, herein, efficacy studies were carried out with NM. Topical application of silibinin (1 or 2 mg) 30 min after NM exposure on the dorsal skin of male SKH-1 hairless mice significantly decreased NM-induced toxic lesions at 24, 72 or 120 h post-exposure. Specifically, silibinin treatment resulted in dose-dependent reduction of NM-induced increase in epidermal thickness, dead and denuded epidermis, parakeratosis and microvesication. Higher silibinin dose also caused a 79% and 51% reversal in NM-induced increases in myeloperoxidase activity and COX-2 levels, respectively. Furthermore, silibinin completely prevented NM-induced H2A.X phosphorylation, indicating reversal of DNA damage which could be an oxidative DNA damage as evidenced by high levels of 8-oxodG in NM-exposed mouse skin that was significantly reversed by silibinin. Together, these findings suggest that attenuation of NM-induced skin injury by silibinin is due to its effects on the pathways associated with DNA damage, inflammation, vesication and oxidative stress. In conclusion, results presented here support the optimization of silibinin as an effective treatment of skin injury by vesicants. PMID:25791923

  13. Detection of coding microsatellite frameshift mutations in DNA mismatch repair-deficient mouse intestinal tumors.

    PubMed

    Woerner, Stefan M; Tosti, Elena; Yuan, Yan P; Kloor, Matthias; Bork, Peer; Edelmann, Winfried; Gebert, Johannes

    2015-11-01

    Different DNA mismatch repair (MMR)-deficient mouse strains have been developed as models for the inherited cancer predisposing Lynch syndrome. It is completely unresolved, whether coding mononucleotide repeat (cMNR) gene mutations in these mice can contribute to intestinal tumorigenesis and whether MMR-deficient mice are a suitable molecular model of human microsatellite instability (MSI)-associated intestinal tumorigenesis. A proof-of-principle study was performed to identify mouse cMNR-harboring genes affected by insertion/deletion mutations in MSI murine intestinal tumors. Bioinformatic algorithms were developed to establish a database of mouse cMNR-harboring genes. A panel of five mouse noncoding mononucleotide markers was used for MSI classification of intestinal matched normal/tumor tissues from MMR-deficient (Mlh1(-/-) , Msh2(-/-) , Msh2(LoxP/LoxP) ) mice. cMNR frameshift mutations of candidate genes were determined by DNA fragment analysis. Murine MSI intestinal tumors but not normal tissues from MMR-deficient mice showed cMNR frameshift mutations in six candidate genes (Elavl3, Tmem107, Glis2, Sdccag1, Senp6, Rfc3). cMNRs of mouse Rfc3 and Elavl3 are conserved in type and length in their human orthologs that are known to be mutated in human MSI colorectal, endometrial and gastric cancer. We provide evidence for the utility of a mononucleotide marker panel for detection of MSI in murine tumors, the existence of cMNR instability in MSI murine tumors, the utility of mouse subspecies DNA for identification of polymorphic repeats, and repeat conservation among some orthologous human/mouse genes, two of them showing instability in human and mouse MSI intestinal tumors. MMR-deficient mice hence are a useful molecular model system for analyzing MSI intestinal carcinogenesis.

  14. Antitumor effect of kigamicin D on mouse tumor models.

    PubMed

    Masuda, Toru; Ohba, Shunichi; Kawada, Manabu; Osono, Michiyo; Ikeda, Daishiro; Esumi, Hiroyasu; Kunimoto, Setsuko

    2006-04-01

    Kigamicin D is a novel anticancer agent that was identified using a new screening strategy that targets the tolerance of cancer cells to nutrient starvation [1, 2]. Oral administration of kigamicin D was previously described to show a strong antitumor effect in human tumor xenograft models of pancreatic tumors [2]. In this paper we describe that kigamicin D shows the same selective cytotoxicity against normal human cells such as lung fibroblast and prostate stromal cells under nutrient starved condition as against cancer cells. Kigamicin D inhibited tumor cell-induced angiogenesis in a dorsal air sac assay. On the basis of these results we tested other human tumor xenograft models and transplantable syngeneic tumor models in order to determine the spectrum of activity of kigamicin D against various cancers. Kigamicin D showed a weak antitumor effect against LX-1 and DMS-273 lung cancers, but had no effect on DLD-1 colon cancers. When tested against syngeneic tumors, kigamicin D showed a weak antitumor effect against colon26, but showed augmentation of tumor growth on IMC carcinoma at a broad dosage level. Kigamicin D does not show good antitumor activity against human xenograft tumors except pancreatic tumors and murine syngeneic tumors. We found that kigamicin D has excellent antitumor effect specific to pancreatic cancers. Surprisingly, high dosage of kigamicin D increased tumor growth of IMC carcinoma by than 200%. The phenomenon suggests that kigamicin D may cause some immunological response to the tumor.

  15. p38delta Mitogen-activated protein kinase is essential for skin tumor development in mice.

    PubMed

    Schindler, Eva M; Hindes, Anna; Gribben, Erin L; Burns, Carole J; Yin, Yan; Lin, Meei-Hua; Owen, Robert J; Longmore, Gregory D; Kissling, Grace E; Arthur, J Simon C; Efimova, Tatiana

    2009-06-01

    Activating Ras mutations occur in a large portion of human tumors. Yet, the signaling pathways involved in Ras-induced tumor formation remain incompletely understood. The mitogen-activated protein kinase pathways are among the best studied Ras effector pathways. The p38 mitogen-activated protein kinase isoforms are important regulators of key biological processes including cell proliferation, differentiation, survival, inflammation, senescence, and tumorigenesis. However, the specific in vivo contribution of individual p38 isoforms to skin tumor development has not been elucidated. Recent studies have shown that p38delta, a p38 family member, functions as an important regulator of epidermal keratinocyte differentiation and survival. In the present study, we have assessed the effect of p38delta deficiency on skin tumor development in vivo by subjecting p38delta knockout mice to a two-stage 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate chemical skin carcinogenesis protocol. We report that mice lacking p38delta gene exhibited a marked resistance to development of 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-induced skin papillomas, with increased latency and greatly reduced incidence, multiplicity, and size of tumors compared with wild-type mice. Our data suggest that the underlying mechanism for reduced susceptibility to skin carcinogenesis in p38delta-null mice involves a defect in proliferative response associated with aberrant signaling through the two major transformation-promoting pathways: extracellular signal-regulated kinase 1/2-activator protein 1 and signal transducer and activator of transcription 3. These findings strongly suggest an in vivo role for p38delta in promoting cell proliferation and tumor development in epidermis and may have therapeutic implication for skin cancer.

  16. YAP Regulates the Expression of Hoxa1 and Hoxc13 in Mouse and Human Oral and Skin Epithelial Tissues

    PubMed Central

    Liu, Ming; Zhao, Shuangyun; Lin, Qingjie

    2015-01-01

    Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans. PMID:25691658

  17. YAP regulates the expression of Hoxa1 and Hoxc13 in mouse and human oral and skin epithelial tissues.

    PubMed

    Liu, Ming; Zhao, Shuangyun; Lin, Qingjie; Wang, Xiu-Ping

    2015-04-01

    Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans.

  18. Activation of proto-oncogenes in human and mouse lung tumors

    SciTech Connect

    Reynolds, S.H.; Anderson, M.W. )

    1991-06-01

    Lung cancer is a leading cause of cancer-related deaths in several nations. Epidemiological studies have indicated that 85% of all lung cancer deaths and 30% of all cancer deaths in the US are associated with tobacco smoking. Various chemicals in tobacco smoke are thought to react with DNA and to ultimately yield heritable mutations. In an effort to understand the molecular mechanisms involved in lung tumorigenesis, the authors have analyzed proto-oncogene activation in a series of human lung tumors from smokers and spontaneously occurring and chemically induced lung tumors in mice. Approximately 86% of the human lung tumors and > 90% of the mouse lung tumors were found to contain activated oncogenes. ras Oncogenes activated by point mutations were detected in many of the human lung adenocarcinomas and virtually all of the mouse lung adenomas and adenocarcinomas. The mutation profiles of the activated K-ras genes detected in the chemically induced mouse lung tumors suggest that the observed mutations result from genotoxic effects of the chemicals. Comparison of the K-ras mutations observed in the human lung adenocarcinomas with mutation profiles observed in the mouse lung tumors suggest that bulky hydrophobic DNA adducts may be responsible for the majority of the mutations observed in the activated human K-ras genes. Other data indicate that approximately 20% of human lung tumors contain potentially novel transforming genes that may also be targets for mutagens in cigarette smoke.

  19. Combined Raman spectroscopy and autofluoresence imaging method for in vivo skin tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Myakinin, O. O.; Artemyev, D. N.; Khristoforova, Y. A.; Kozlov, S. V.; Moryatov, A. A.

    2014-09-01

    The fluorescence and Raman spectroscopy (RS) combined method of in vivo detection of malignant human skin cancer was demonstrated. The fluorescence analysis was used for detection of abnormalities during fast scanning of large tissue areas. In suspected cases of malignancy the Raman spectrum analysis of biological tissue was performed to determine the type of neoplasm. A special RS phase method was proposed for in vivo identification of skin tumor. Quadratic Discriminant Analysis was used for tumor type classification on phase planes. It was shown that the application of phase method provides a diagnosis of malignant melanoma with a sensitivity of 89% and a specificity of 87%.

  20. Dose-Dependent Onset of Regenerative Program in Neutron Irradiated Mouse Skin

    PubMed Central

    Artibani, Mara; Kobos, Katarzyna; Colautti, Paolo; Negri, Rodolfo; Amendola, Roberto

    2011-01-01

    Background Tissue response to irradiation is not easily recapitulated by cell culture studies. The objective of this investigation was to characterize, the transcriptional response and the onset of regenerative processes in mouse skin irradiated with different doses of fast neutrons. Methodology/Principal Findings To monitor general response to irradiation and individual animal to animal variation, we performed gene and protein expression analysis with both pooled and individual mouse samples. A high-throughput gene expression analysis, by DNA oligonucleotide microarray was done with three months old C57Bl/6 mice irradiated with 0.2 and 1 Gy of mono-energetic 14 MeV neutron compared to sham irradiated controls. The results on 440 irradiation modulated genes, partially validated by quantitative real time RT-PCR, showed a dose-dependent up-regulation of a sub-class of keratin and keratin associated proteins, and members of the S100 family of Ca2+-binding proteins. Immunohistochemistry confirmed mRNA expression data enabled mapping of protein expression. Interestingly, proteins up-regulated in thickening epidermis: keratin 6 and S100A8 showed the most significant up-regulation and the least mouse-to-mouse variation following 0.2 Gy irradiation, in a concerted effort toward skin tissue regeneration. Conversely, mice irradiated at 1 Gy showed most evidence of apoptosis (Caspase-3 and TUNEL staining) and most 8-oxo-G accumulation at 24 h post-irradiation. Moreover, no cell proliferation accompanied 1 Gy exposure as shown by Ki67 immunohistochemistry. Conclusions/Significance The dose-dependent differential gene expression at the tissue level following in vivo exposure to neutron radiation is reminiscent of the onset of re-epithelialization and wound healing and depends on the proportion of cells carrying multiple chromosomal lesions in the entire tissue. Thus, this study presents in vivo evidence of a skin regenerative program exerted independently from DNA repair

  1. Screening of urocanic acid isomers in human basal and squamous cell carcinoma tumors compared with tumor periphery and healthy skin.

    PubMed

    Decara, Juan Manuel; Aguilera, José; Abdala, Roberto; Sánchez, Purificación; Figueroa, Félix L; Herrera, Enrique

    2008-10-01

    Trans-urocanic acid is a major chromophore for ultraviolet (UV) radiation in human epidermis. The UV induces photoisomerization of trans-urocanic acid (tUCA) form to cis-urocanic acid (cUCA) and has been reported as an important mediator in the immunosuppression induced by UV. This immunomodulation has been recognized as an important factor related to skin cancer development. This is the first time that UCA isomers have been measured in epidermis of skin biopsies from patients with squamous cell carcinoma (SCC) and with basal cell carcinoma (BCC) and compared with the tumor periphery and biopsies of healthy photoexposed and non-photoexposed skin as controls. The UCA isomers were separated and quantified by high performance liquid chromatography. Analysis of UCA in healthy skin showed significant increase in total UCA content in non-photoexposed body sites compared with highly exposed skins. In contrast, the percentage of cUCA was higher in photoexposed body sites. Maximal levels of cUCA were found in cheek, forehead and forearm and lower levels in abdomen and thigh. No differences were found in total UCA concentration between the tumor samples and healthy photoexposed skin. However, differences were found in relation between isomers. Higher levels of cUCA were detected in SCC biopsies (44% of total UCA) compared with samples of BCC and that of healthy photoexposed skin (30%). These results suggest that the UV radiation exposure, a main factor in development of SCC can be mediated, apart from direct effect to cells (DNA damage), by immunosuppression pathways mediated by high production of cUCA.

  2. Combined autofluorescence and Raman spectroscopy method for skin tumor detection in visible and near infrared regions

    NASA Astrophysics Data System (ADS)

    Zakharov, V. P.; Bratchenko, I. A.; Artemyev, D. N.; Myakinin, O. O.; Khristoforova, Y. A.; Kozlov, S. V.; Moryatov, A. A.

    2015-07-01

    The combined application of Raman and autofluorescence spectroscopy in visible and near infrared regions for the analysis of malignant neoplasms of human skin was demonstrated. Ex vivo experiments were performed for 130 skin tissue samples: 28 malignant melanomas, 19 basal cell carcinomas, 15 benign tumors, 9 nevi and 59 normal tissues. Proposed method of Raman spectra analysis allows for malignant melanoma differentiating from other skin tissues with accuracy of 84% (sensitivity of 97%, specificity of 72%). Autofluorescence analysis in near infrared and visible regions helped us to increase the diagnostic accuracy by 5-10%. Registration of autofluorescence in near infrared region is realized in one optical unit with Raman spectroscopy. Thus, the proposed method of combined skin tissues study makes possible simultaneous large skin area study with autofluorescence spectra analysis and precise neoplasm type determination with Raman spectroscopy.

  3. Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vasculature in transgenic mouse models

    PubMed Central

    Maione, Federica; Molla, Fabiola; Meda, Claudia; Latini, Roberto; Zentilin, Lorena; Giacca, Mauro; Seano, Giorgio; Serini, Guido; Bussolino, Federico; Giraudo, Enrico

    2009-01-01

    Tumor growth and progression rely upon angiogenesis, which is regulated by pro- and antiangiogenic factors, including members of the semaphorin family. By analyzing 3 different mouse models of multistep carcinogenesis, we show here that during angiogenesis, semaphorin 3A (Sema3A) is expressed in ECs, where it serves as an endogenous inhibitor of angiogenesis that is present in premalignant lesions and lost during tumor progression. Pharmacologic inhibition of endogenous Sema3A during the angiogenic switch, the point when pretumoral lesions initiate an angiogenic phase that persists throughout tumor growth, enhanced angiogenesis and accelerated tumor progression. By contrast, when, during the later stages of carcinogenesis following endogenous Sema3A downmodulation, Sema3A was ectopically reintroduced into islet cell tumors by somatic gene transfer, successive waves of apoptosis ensued, first in ECs and then in tumor cells, resulting in reduced vascular density and branching and inhibition of tumor growth and substantially extended survival. Further, long-term reexpression of Sema3A markedly improved pericyte coverage of tumor blood vessels, something that is thought to be a key property of tumor vessel normalization, and restored tissue normoxia. We conclude, therefore, that Sema3A is an endogenous and effective antiangiogenic agent that stably normalizes the tumor vasculature. PMID:19809158

  4. Comparative efficacy of DMP 840 against mouse and human solid tumor models.

    PubMed

    LoRusso, P; Demchik, L; Dan, M; Polin, L; Gross, J L; Corbett, T H

    1995-01-01

    DMP 840 is a compound from a class of bis-naphthalimide antitumor agents that recently completed Phase I clinical trials at three North American centers and is currently undergoing Phase II testing. Preclinically, it was shown to have curative activity against a variety of human tumor xenograft models. To test DMP 840 both in vitro and in vivo for antiproliferative activity against predominantly mouse tumor models. A disk diffusion soft agar colony formation assay was used to determine the in vitro growth inhibitory activity against a selection of mouse and human tumor cell lines, and the comparable selective mouse solid tumors were used for in vivo testing. In vitro DMP 840 exhibited equal cytotoxicity for human tumors (including MX-1 directly cultured from nude mice), mouse tumors and normal cells. In vivo DMP 840 was only modestly active or inactive against the following mouse tumors: Mam 16/C, T/C = 30% (T/C = Percent Tumor Growth Inhibition); Mam 16/C/ADR, T/C = 33%; Colon 38, T/C = 9%; Panc 03, T/C = 53%; Colon 51/A, T/C = 28%; Panc 02, T/C = 52%; P388/0, 36% ILS (Percent Increased Life Span) and P388/ADR, 14% ILS. Furthermore, the antitumor activity was only observed at the highest non-toxic dose and was associated with a large body weight loss. In contrast, the agent was highly active against the human breast tumor MX-1 implanted subcutaneously in either athymic nude or SCID mice (Nudes: T/C = 0%; 1/5 cures; SCIDS: T/C = 0%; 5/5 cures). Although there was no selective cytotoxicity in our clonogenic assay for human versus mouse tumor cell lines, selective activity in vivo for human xenograft tumors was noted. Overall, this compound is rather unique in its differential degree of in vivo activity for human versus mouse tumors. Phase II trials, which are ongoing, will help determine if the preclinical in vivo selective activity of DMP 840 translates to clinical activity in man.

  5. Inhibition of akt enhances the chemopreventive effects of topical rapamycin in mouse skin

    USGS Publications Warehouse

    Dickinson, Sally E; Janda, Jaroslav; Criswell, Jane; Blohm-Mangone, Karen; Olson, Erik R.; Liu, Zhonglin; Barber, Christie; Rusche, Jadrian J.; Petricoin, Emmanuel; Calvert, Valerie; Einspahr, Janine G.; Dickinson, Jesse; Stratton, Steven P.; Curiel-Lewandrowski, Clara; Saboda, Kathylynn; Hu, Chengcheng; Bode, Ann M.; Dong, Zigang; Alberts, David S.; Bowden, G. Timothy

    2016-01-01

    The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced non-melanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin, (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared to those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here we explored the use of topical rapamycin as a chemopreventive agent in the context of solar simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared to controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared to vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC.

  6. Inhibition of Akt Enhances the Chemopreventive Effects of Topical Rapamycin in Mouse Skin.

    PubMed

    Dickinson, Sally E; Janda, Jaroslav; Criswell, Jane; Blohm-Mangone, Karen; Olson, Erik R; Liu, Zhonglin; Barber, Christy; Petricoin, Emanuel F; Calvert, Valerie S; Einspahr, Janine; Dickinson, Jesse E; Stratton, Steven P; Curiel-Lewandrowski, Clara; Saboda, Kathylynn; Hu, Chengcheng; Bode, Ann M; Dong, Zigang; Alberts, David S; Timothy Bowden, G

    2016-03-01

    The PI3Kinase/Akt/mTOR pathway has important roles in cancer development for multiple tumor types, including UV-induced nonmelanoma skin cancer. Immunosuppressed populations are at increased risk of aggressive cutaneous squamous cell carcinoma (SCC). Individuals who are treated with rapamycin (sirolimus, a classical mTOR inhibitor) have significantly decreased rates of developing new cutaneous SCCs compared with those that receive traditional immunosuppression. However, systemic rapamycin use can lead to significant adverse events. Here, we explored the use of topical rapamycin as a chemopreventive agent in the context of solar-simulated light (SSL)-induced skin carcinogenesis. In SKH-1 mice, topical rapamycin treatment decreased tumor yields when applied after completion of 15 weeks of SSL exposure compared with controls. However, applying rapamycin during SSL exposure for 15 weeks, and continuing for 10 weeks after UV treatment, increased tumor yields. We also examined whether a combinatorial approach might result in more significant tumor suppression by rapamycin. We validated that rapamycin causes increased Akt (S473) phosphorylation in the epidermis after SSL, and show for the first time that this dysregulation can be inhibited in vivo by a selective PDK1/Akt inhibitor, PHT-427. Combining rapamycin with PHT-427 on tumor prone skin additively caused a significant reduction of tumor multiplicity compared with vehicle controls. Our findings indicate that patients taking rapamycin should avoid sun exposure, and that combining topical mTOR inhibitors and Akt inhibitors may be a viable chemoprevention option for individuals at high risk for cutaneous SCC.

  7. Laser-induced enhancement of transdermal drug delivery for lidocaine through hairless mouse skin

    NASA Astrophysics Data System (ADS)

    Uchizono, Takeyuki; Awazu, Kunio

    2006-02-01

    Transdermal drug delivery system (TDDS), which is one of drug delivery system (DDS) for increasing the effectiveness of drugs, is enhanced absorption of drugs by laser irradiation. The purpose of this study is to investigate the optimum laser parameter for enhancing TDD and to examine the mechanism of TDD enhancement. In this study, hairless mouse skins (in vitro) were irradiated with Er:YAG laser, Nd:YAG laser and free electron laser (FEL), which were set up energy density of 0.5 J/cm2/pulse and exposure time of 5 second. We examined the flux (μg/cm2/h) of lidocaine (C 14H 22N IIO, FW: 234.38) through the skins using high pressure liquid chromatography (HPLC), observed cross section of the irradiated samples using light microscope, and measured electrical resistance of the surface of skins. The HPLC results demonstrated that the TDD of the irradiated samples was enhanced 200-350 times faster than it of the non-irradiated samples. It of Nd:YAG laser, however, had no enhancement. The observation of cross section and the electrical resistance of skins were found to not remove the stratum corneum (SC), completely. These results show that laser irradiations, which has the strong absorption to skins, enhance TDD dramatically with low invasive.

  8. Time course pathogenesis of sulphur mustard-induced skin lesions in mouse model.

    PubMed

    Lomash, Vinay; Jadhav, Sunil E; Vijayaraghavan, Rajagopalan; Pant, Satish C

    2013-08-01

    Sulphur mustard (SM) is a bifunctional alkylating agent that causes cutaneous blistering in humans and animals. In this study, we have presented closer views on pathogenesis of SM-induced skin injury in a mouse model. SM diluted in acetone was applied once dermally at a dose of 5 or 10 mg/kg to Swiss albino mice. Skin was dissected out at 0, 1, 3, 6, 12, 24, 48, 72 and 168 hours, post-SM exposure for studying histopathological changes and immunohistochemistry of inflammatory-reparative biomarkers, namely, transforming growth factor alpha (TGF-α), fibroblast growth factor (FGF), endothelial nitric oxide synthase (eNOS) and interlukin 6 (IL-6). Histopathological changes were similar to other mammalian species and basal cell damage resembled the histopathological signs observed with vesication in human skin. Inflammatory cell recruitment at the site of injury was supported by differential expressions of IL-6 at various stages. Time-dependent expressions of eNOS played pivotal roles in all the events of wound healing of SM-induced skin lesions. TGF-α and FGF were strongly associated with keratinocyte migration, re-epithelialisation, angiogenesis, fibroblast proliferation and cell differentiation. Furthermore, quantification of the tissue leukocytosis and DNA damage along with semiquantitative estimation of re-epithelialisation, fibroplasia and neovascularisation on histomorphologic scale could be efficiently used for screening the efficacy of orphan drugs against SM-induced skin injury. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  9. Osteopontin expression in normal skin and non-melanoma skin tumors.

    PubMed

    Chang, Pi-Ling; Harkins, Louie; Hsieh, Yu-Hua; Hicks, Patricia; Sappayatosok, Kraisorn; Yodsanga, Somchai; Swasdison, Somporn; Chambers, Ann F; Elmets, Craig A; Ho, Kang-Jey

    2008-01-01

    Osteopontin (OPN) is an adhesive, matricellular glycoprotein, whose expression is elevated in many types of cancer and has been shown to facilitate tumorigenesis in vivo. To understand the role of OPN in human skin cancer, this study is designed to determine whether OPN is expressed in premalignant [solar/actinic keratosis (AK)] and in malignant skin lesions such as squamous cell carcinomas (SCC) and basal cell carcinomas (BCC), as well as in normal skin exposed or not exposed to sunlight. Immunohistochemical analyses showed that OPN is expressed in SCC (20/20 cases) and in AK (16/16 cases), which are precursors to SCC, but is absent or minimally expressed in solid BCC (17 cases). However, positive staining for OPN was observed in those BCC that manifest differentiation toward epidermal appendages such as keratotic BCC. In sunlight-exposed normal skin, OPN is minimally expressed in the basal cell layer, but in contrast to those not exposed to sunlight, OPN is more prominent in the spinous cell layer with increasing intensity toward the granular cell layer. Additionally, OPN is expressed in the hair follicles, sebaceous glands, and sweat glands of normal skin. In conclusion, these data suggest that OPN is associated with keratinocyte differentiation and that it is expressed in AK and SCC, which have metastatic potential, but minimally expressed in solid BCC.

  10. Luminol-based bioluminescence imaging of mouse mammary tumors.

    PubMed

    Alshetaiwi, Hamad S; Balivada, Sivasai; Shrestha, Tej B; Pyle, Marla; Basel, Matthew T; Bossmann, Stefan H; Troyer, Deryl L

    2013-10-05

    Polymorphonuclear neutrophils (PMNs) are the most abundant circulating blood leukocytes. They are part of the innate immune system and provide a first line of defense by migrating toward areas of inflammation in response to chemical signals released from the site. Some solid tumors, such as breast cancer, also cause recruitment and activation of PMNs and release of myeloperoxidase. In this study, we demonstrate that administration of luminol to mice that have been transplanted with 4T1 mammary tumor cells permits the detection of myeloperoxidase activity, and consequently, the location of the tumor. Luminol allowed detection of activated PMNs only two days after cancer cell transplantation, even though tumors were not yet palpable. In conclusion, luminol-bioluminescence imaging (BLI) can provide a pathway towards detection of solid tumors at an early stage in preclinical tumor models. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Photoreactivation of ultraviolet radiation-induced pyrimidine dimers in neonatal BALB/c mouse skin.

    PubMed

    Ananthaswamy, H N; Fisher, M S

    1981-05-01

    The numbers of ultraviolet light (UV)-induced pyrimidine dimers in the DNA of neonatal BALB/c mouse skin were measured by assessing the sensitivity of the DNA to Micrococcus luteus UV endonuclease. Irradiation of neonatal BALB/c mice with FS40 sunlamps caused a dose-dependent induction of endonuclease-sensitive sites (pyrimidine dimers) in DNA extracted from back skin. Exposure of these UV-irradiated neonatal mice to photoreactivating (PR) light ("cool white" fluorescent lamp and incandescent lamp) caused a reduction in the number of pyrimidine dimers in the DNA, as revealed by a shift in low-molecular-weight DNA to high-molecular-weight DNA. In contrast, DNA profiles of the skin of either UV-irradiated mice or UV-irradiated mice kept in the dark for the same duration as those exposed to PR light did not show a loss of UV-induced endonuclease-sensitive sites. Furthermore, reversing the order of treatment, i.e., administering PR light first and then UV, did not produce a reduction in pyrimidine dimers. These results demonstrate that PR or UV-induced pyrimidine dimers occurs in neonatal BALB/c mouse skin. The optimal wavelength range for in vivo PR appears to be in the visible region of the spectrum (greater than 400 nm). Although dimer formation could be detected in both dermis and epidermis, PR occurred only in the dermis. Furthermore, the PR phenomenon could not be detected in the skin of adult mice from the same inbred strain.

  12. SNEV(Prp19/PSO4) deficiency increases PUVA-induced senescence in mouse skin.

    PubMed

    Monteforte, Rossella; Beilhack, Georg F; Grausenburger, Reinhard; Mayerhofer, Benjamin; Bittner, Reginald; Grillari-Voglauer, Regina; Sibilia, Maria; Dellago, Hanna; Tschachler, Erwin; Gruber, Florian; Grillari, Johannes

    2016-03-01

    Senescent cells accumulate during ageing in various tissues and contribute to organismal ageing. However, factors that are involved in the induction of senescence in vivo are still not well understood. SNEV(P) (rp19/) (PSO) (4) is a multifaceted protein, known to be involved in DNA damage repair and senescence, albeit only in vitro. In this study, we used heterozygous SNEV(+/-) mice (SNEV-knockout results in early embryonic lethality) and wild-type littermate controls as a model to elucidate the role of SNEV(P) (rp19/) (PSO) (4) in DNA damage repair and senescence in vivo. We performed PUVA treatment as model system for potently inducing cellular senescence, consisting of 8-methoxypsoralen in combination with UVA on mouse skin to induce DNA damage and premature skin ageing. We show that SNEV(P) (rp19/) (PSO) (4) expression decreases during organismal ageing, while p16, a marker of ageing in vivo, increases. In response to PUVA treatment, we observed in the skin of both SNEV(P) (rp19/) (PSO) (4) and wild-type mice an increase in γ-H2AX levels, a DNA damage marker. In old SNEV(P) (rp19/) (PSO) (4) mice, this increase is accompanied by reduced epidermis thickening and increase in p16 and collagenase levels. Thus, the DNA damage response occurring in the mouse skin upon PUVA treatment is dependent on SNEV(P) (rp19/) (PSO) (4) expression and lower levels of SNEV(P) (rp19/) (PSO) (4) , as in old SNEV(+/-) mice, result in increase in cellular senescence and acceleration of premature skin ageing.

  13. Photoreactivation of ultraviolet radiation-induced pyrimidine dimers in neonatal BALB/c mouse skin

    SciTech Connect

    Ananthaswamy, H.N.; Fisher, M.S.

    1981-05-01

    The numbers of ultraviolet light (uv)-induced pyrimidine dimers in the DNA of neonatal BALB/c mouse skin were measured by assessing the sensitivity of the DNA to Micrococcus luteus uv endonuclease. Irradiation of neonatal BALB/c mice with FS40 sunlamps caused a dose-dependent induction of endonuclease-sensitive sites (pyrimidine dimers) in DNA extracted from back skin. Exposure of these uv-irradiated neonatal mice to photoreactivating (PR) light (cool white fluorescent lamp and incandescent lamp) caused a reduction in the number of pyrimidine dimers in the DNA, as revealed by a shift in low-molecular-weight DNA to high-molecular-weight DNA. In contrast, DNA profiles of the skin of either uv-irradiated mice or uv-irradiated mice kept in the dark for the same duration as those exposed to PR light did not show a loss of uv-induced endonuclease-sensitive sites. Furthermore, reversing the order of treatment, i.e., administering PR light first and then uv, did not produce a reduction in pyrimidine dimers. These results demonstrate that PR or uv-induced pyrimidine dimers occurs in neonatal BALB/c mouse skin. The optimal wavelength range for in vivo PR appears to be in the visible region of the spectrum (greater than 400 nm). Although dimer formation could be detected in both dermis and epidermis, PR occurred only in the dermis. Furthermore, the PR phenomenon could not be detected in the skin of adult mice from the same inbred strain.

  14. Enalapril and ASS inhibit tumor growth in a transgenic mouse model of islet cell tumors.

    PubMed

    Fendrich, V; Lopez, C L; Manoharan, J; Maschuw, K; Wichmann, S; Baier, A; Holler, J P; Ramaswamy, A; Bartsch, D K; Waldmann, J

    2014-10-01

    Accumulating evidence suggests a role for angiotensin-converting enzymes involving the angiotensin II-receptor 1 (AT1-R) and the cyclooxygenase pathway in carcinogenesis. The effects of ASS and enalapril were assessed in vitro and in a transgenic mouse model of pancreatic neuroendocrine neoplasms (pNENs). The effects of enalapril and ASS on proliferation and expression of the AGTR1A and its target gene vascular endothelial growth factor (Vegfa) were assessed in the neuroendocrine cell line BON1. Rip1-Tag2 mice were treated daily with either 0.6 mg/kg bodyweight of enalapril i.p., 20 mg/kg bodyweight of ASS i.p., or a vehicle in a prevention (weeks 5-12) and a survival group (week 5 till death). Tumor surface, weight of pancreatic glands, immunostaining for AT1-R and nuclear factor kappa beta (NFKB), and mice survival were analyzed. In addition, sections from human specimens of 20 insulinomas, ten gastrinomas, and 12 non-functional pNENs were evaluated for AT1-R and NFKB (NFKB1) expression and grouped according to the current WHO classification. Proliferation was significantly inhibited by enalapril and ASS in BON1 cells, with the combination being the most effective. Treatment with enalapril and ASS led to significant downregulation of known target genes Vegf and Rela at RNA level. Tumor growth was significantly inhibited by enalapril and ASS in the prevention group displayed by a reduction of tumor size (84%/67%) and number (30%/45%). Furthermore, daily treatment with enalapril and ASS prolonged the overall median survival compared with vehicle-treated Rip1-Tag2 (107 days) mice by 9 and 17 days (P=0.016 and P=0.013). The AT1-R and the inflammatory transcription factor NFKB were abolished completely upon enalapril and ASS treatment. AT1-R and NFKB expressions were observed in 80% of human pNENs. Enalapril and ASS may provide an approach for chemoprevention and treatment of pNENs.

  15. Blue Light Eliminates Community-Acquired Methicillin-Resistant Staphylococcus aureus in Infected Mouse Skin Abrasions

    PubMed Central

    Dai, Tianhong; Gupta, Asheesh; Huang, Ying-Ying; Sherwood, Margaret E.; Murray, Clinton K.; Vrahas, Mark S.; Kielian, Tammy

    2013-01-01

    Abstract Background and objective: Bacterial skin and soft tissue infections (SSTI) affect millions of individuals annually in the United States. Treatment of SSTI has been significantly complicated by the increasing emergence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) strains. The objective of this study was to demonstrate the efficacy of blue light (415±10 nm) therapy for eliminating CA-MRSA infections in skin abrasions of mice. Methods: The susceptibilities of a CA-MRSA strain (USA300LAC) and human keratinocytes (HaCaT) to blue light inactivation were compared by in vitro culture studies. A mouse model of skin abrasion infection was developed using bioluminescent USA300LAC::lux. Blue light was delivered to the infected mouse skin abrasions at 30 min (acute) and 24 h (established) after the bacterial inoculation. Bioluminescence imaging was used to monitor in real time the extent of infection in mice. Results: USA300LAC was much more susceptible to blue light inactivation than HaCaT cells (p=0.038). Approximately 4.75-log10 bacterial inactivation was achieved after 170 J/cm2 blue light had been delivered, but only 0.29 log10 loss of viability in HaCaT cells was observed. Transmission electron microscopy imaging of USA300LAC cells exposed to blue light exhibited disruption of the cytoplasmic content, disruption of cell walls, and cell debris. In vivo studies showed that blue light rapidly reduced the bacterial burden in both acute and established CA-MRSA infections. More than 2-log10 reduction of bacterial luminescence in the mouse skin abrasions was achieved when 41.4 (day 0) and 108 J/cm2 (day 1) blue light had been delivered. Bacterial regrowth was observed in the mouse wounds at 24 h after the blue light therapy. Conclusions: There exists a therapeutic window of blue light for bacterial infections where bacteria are selectively inactivated by blue light while host tissue cells are preserved. Blue light therapy has

  16. Blue light eliminates community-acquired methicillin-resistant Staphylococcus aureus in infected mouse skin abrasions.

    PubMed

    Dai, Tianhong; Gupta, Asheesh; Huang, Ying-Ying; Sherwood, Margaret E; Murray, Clinton K; Vrahas, Mark S; Kielian, Tammy; Hamblin, Michael R

    2013-11-01

    Bacterial skin and soft tissue infections (SSTI) affect millions of individuals annually in the United States. Treatment of SSTI has been significantly complicated by the increasing emergence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) strains. The objective of this study was to demonstrate the efficacy of blue light (415 ± 10 nm) therapy for eliminating CA-MRSA infections in skin abrasions of mice. The susceptibilities of a CA-MRSA strain (USA300LAC) and human keratinocytes (HaCaT) to blue light inactivation were compared by in vitro culture studies. A mouse model of skin abrasion infection was developed using bioluminescent USA300LAC::lux. Blue light was delivered to the infected mouse skin abrasions at 30 min (acute) and 24 h (established) after the bacterial inoculation. Bioluminescence imaging was used to monitor in real time the extent of infection in mice. USA300LAC was much more susceptible to blue light inactivation than HaCaT cells (p=0.038). Approximately 4.75-log10 bacterial inactivation was achieved after 170 J/cm(2) blue light had been delivered, but only 0.29 log10 loss of viability in HaCaT cells was observed. Transmission electron microscopy imaging of USA300LAC cells exposed to blue light exhibited disruption of the cytoplasmic content, disruption of cell walls, and cell debris. In vivo studies showed that blue light rapidly reduced the bacterial burden in both acute and established CA-MRSA infections. More than 2-log10 reduction of bacterial luminescence in the mouse skin abrasions was achieved when 41.4 (day 0) and 108 J/cm(2) (day 1) blue light had been delivered. Bacterial regrowth was observed in the mouse wounds at 24 h after the blue light therapy. There exists a therapeutic window of blue light for bacterial infections where bacteria are selectively inactivated by blue light while host tissue cells are preserved. Blue light therapy has the potential to rapidly reduce the bacterial load in SSTI.

  17. Mustard vesicants alter expression of the endocannabinoid system in mouse skin.

    PubMed

    Wohlman, Irene M; Composto, Gabriella M; Heck, Diane E; Heindel, Ned D; Lacey, C Jeffrey; Guillon, Christophe D; Casillas, Robert P; Croutch, Claire R; Gerecke, Donald R; Laskin, Debra L; Joseph, Laurie B; Laskin, Jeffrey D

    2016-07-15

    Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Rare Skin Adnexal and Melanocytic Tumors Arising in Ovarian Mature Cystic Teratomas: A Report of 3 Cases and Review of the Literature.

    PubMed

    Moulla, Alexandra A; Magdy, Nesreen; Francis, Nicholas; Taube, Janis; Ronnett, Brigitte M; El-Bahrawy, Mona

    2016-09-01

    Mature teratoma of the ovary is the most common primary ovarian tumor accounting for 15% (10%-20%) of all ovarian neoplasms. Skin and skin adnexal structures are the most common elements identified in mature teratomas. Benign and malignant skin tumors can arise in ovarian teratomas, the most common being epithelial tumors. Melanocytic and adnexal tumors developing in a teratoma are rare and can be easily overlooked. We report 3 cases and review melanocytic and skin adnexal tumors encountered in ovarian teratomas.

  19. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells.

    PubMed

    Ziegler, C G; Ullrich, M; Schally, A V; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, S R

    2013-05-22

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells

    PubMed Central

    Ziegler, CG; Ullrich, M; Schally, AV; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, SR

    2013-01-01

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPC) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing. PMID:23267837

  1. Phloroglucinol inhibits ultraviolet B radiation-induced oxidative stress in the mouse skin.

    PubMed

    Piao, Mei Jing; Ahn, Mee Jung; Kang, Kyoung Ah; Kim, Ki Cheon; Zheng, Jian; Yao, Cheng Wen; Cha, Ji Won; Hyun, Chang Lim; Kang, Hee Kyoung; Lee, Nam Ho; Hyun, Jin Won

    2014-10-01

    Previously we demonstrated that phloroglucinol (1,3,5-trihydroxybenzene) protected human HaCaT keratinocytes against ultraviolet B (UVB, 280-320 nm)-induced oxidative stress in vitro by scavenging intracellular reactive oxygen species (ROS). The current study investigated whether phloroglucinol could similarly protect the mouse skin against UVB-induced oxidative tissue damage in vivo. Male 7-week-old Balb/c mice were divided into the following untreated normal control, phloroglucinol only-treated, vehicle plus UVB (30 or 60 mJ/cm(2))-exposed, and phloroglucinol (10 or 50 mg/ml) plus UVB (30 or 60 mJ/cm(2))-treated groups. Following UVB exposure, phloroglucinol or phosphate buffered saline vehicle was applied to the dorsal skin of each mouse daily for 3 days. Studies were conducted at 24 h after the last of the UVB exposures. Histopathological analyses of dorsal skin lesions were performed on all mice. In addition, the levels of UVB-provoked injury to cellular components, including DNA, proteins, and lipids were detected by levels of 8-oxoguanine (8-oxoG), protein carbonyls, and 8-isoprostane. Apoptosis were assessed by using western blot for B-cell lymphoma-2-associated X protein (Bax) and activated caspase-3 expression, by using immunohistochemistry. UVB radiation increased the thickness of the epidermis and the dermis, and also stimulated the accumulation of mast cells in the irradiated skin. However, treatment with phloroglucinol significantly decreased all of these parameters. Furthermore, phloroglucinol decreased UVB-provoked injury to cellular components, including DNA, proteins, and lipids; down-regulated the expression of phospho-histone H2A.X in the injured skin; and reduced the UVB-generated levels of 8-oxoG, protein carbonyls, and 8-isoprostane, which are all markers of oxidative stress. In addition, phloroglucinol attenuated the UVB-induced expression of the pro-apoptotic proteins, Bax protein, and activated caspase-3. These results suggest that

  2. Examination of Blood-Brain Barrier (BBB) Integrity In A Mouse Brain Tumor Model

    PubMed Central

    On, Ngoc; Mitchell, Ryan; Savant, Sanjot D.; Bachmeier, Corbin. J.; Hatch, Grant M.; Miller, Donald W.

    2013-01-01

    The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma (3LL) cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood-brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging (MRI) with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a 2-fold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor. PMID:23184143

  3. Unexpected reduction of skin tumorigenesis on expression of cyclin-dependent kinase 6 in mouse epidermis.

    PubMed

    Wang, Xian; Sistrunk, Christopher; Rodriguez-Puebla, Marcelo L

    2011-01-01

    Cyclin-dependent kinases (CDKs) 4 and 6 are important regulators of the G(1) phase of the cell cycle, share 71% amino acid identity, and are expressed ubiquitously. As a result, it was assumed that each of these kinases plays a redundant role regulating normal and neoplastic proliferation. In previous reports, we have described the effects of CDK4 expression in transgenic mice, including the development of epidermal hyperplasia and increased malignant progression to squamous cell carcinoma. To study the role of CDK6 in epithelial growth and tumorigenesis, we generated transgenic mice carrying the CDK6 gene under the keratin 5 promoter (K5CDK6). Similar to K5CDK4 mice, epidermal proliferation increased substantially in K5CDK6 mice; however, no hyperplasia was observed. CDK6 overexpression also triggered keratinocyte apoptosis in interfollicular and follicular epidermis as a compensatory mechanism to override aberrant proliferation. Unexpectedly, CDK6 overexpression results in decreased skin tumor development compared with wild-type siblings. The inhibition in skin tumorigenesis was similar to that previously reported in K5-cyclin D3 mice. Furthermore, biochemical analysis of the K5CDK6 epidermis showed preferential complex formation between CDK6 and cyclin D3, suggesting that this particular complex plays an important role in tumor restraint. These studies provide in vivo evidence that CDK4 and CDK6 play a similar role as a mediator of keratinocyte proliferation but differ in apoptosis activation and skin tumor development.

  4. Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models

    PubMed Central

    Park, Jesung; Mroz, Pawel; Hamblin, Michael R.; Yaroslavsky, Anna N.

    2010-01-01

    Skin cancer is the most common form of human cancer. Its early diagnosis and timely treatment is of paramount importance for dermatology and surgical oncology. In this study, we evaluate the use of reflectance and fluorescence confocal microscopy for detecting skin cancers in an in-vivo trial with B16F10 melanoma and SCCVII squamous cell carcinoma in mice. For the experiments, the mice are anesthetized, then the tumors are infiltrated with aqueous solution of methylene blue and imaged. Reflectance images are acquired at 658 nm. Fluorescence is excited at 658 nm and registered in the range between 690 and 710 nm. After imaging, the mice are sacrificed. The tumors are excised and processed for hematoxylin and eosin histopathology, which is compared to the optical images. The results of the study indicate that in-vivo reflectance images provide valuable information on vascularization of the tumor, whereas the fluorescence images mimic the structural features seen in histopathology. Simultaneous dye-enhanced reflectance and fluorescence confocal microscopy shows promise for the detection, demarcation, and noninvasive monitoring of skin cancer development. PMID:20459268

  5. Dye-enhanced multimodal confocal microscopy for noninvasive detection of skin cancers in mouse models

    NASA Astrophysics Data System (ADS)

    Park, Jesung; Mroz, Pawel; Hamblin, Michael R.; Yaroslavsky, Anna N.

    2010-03-01

    Skin cancer is the most common form of human cancer. Its early diagnosis and timely treatment is of paramount importance for dermatology and surgical oncology. In this study, we evaluate the use of reflectance and fluorescence confocal microscopy for detecting skin cancers in an in-vivo trial with B16F10 melanoma and SCCVII squamous cell carcinoma in mice. For the experiments, the mice are anesthetized, then the tumors are infiltrated with aqueous solution of methylene blue and imaged. Reflectance images are acquired at 658 nm. Fluorescence is excited at 658 nm and registered in the range between 690 and 710 nm. After imaging, the mice are sacrificed. The tumors are excised and processed for hematoxylin and eosin histopathology, which is compared to the optical images. The results of the study indicate that in-vivo reflectance images provide valuable information on vascularization of the tumor, whereas the fluorescence images mimic the structural features seen in histopathology. Simultaneous dye-enhanced reflectance and fluorescence confocal microscopy shows promise for the detection, demarcation, and noninvasive monitoring of skin cancer development.

  6. [Efficient way in early detection of malignant skin tumors by applying epiluminescence microscopy in skin screening].

    PubMed

    Nikolić, Dejan V; Nikolić, Aleksandra T; Stanimirović, Violeta V; Granić, Miroslav K; Randelović, Tomislav; Bilanović, Dragoljub

    2008-01-01

    Screening is the identification of a preclinical disease by a relatively simple test. It is usually regarded as public health policy that is applied to population. The aim is to identify disease not recognized by the health services and the term preclinical refers rather to such an unrecognized disease than to clinical detectability or recognition. The majority of pigmented lesions of the skin can be diagnosed on the basis of clinical criteria, although there is an astonishing number of discrete pigmented lesions where the difference between melanocytic and non-melanocytic, benign and malignant lesions, melanoma and non-melanoma, is very hard or almost impossible to detect by a simple examination with the naked eye. With the use of the computer system for melanomoscopy and melanomography, Mole Max II, with digital epiluminescence microscopy, it is possible to see and record the changes on the skin that are located in the surface layer of the skin, as well as the changes that appear more deeply under the surface, on the border between the epidermis and the dermis, the place where melanocytes are placed. With such examination it is possible to differentiate benign from malignant lesions in the very early stage of the development. An early recognition of malignant alterations on the skin increases the chances of cure and total recovery to over 90%.

  7. Face-to-face diagnosis vs telediagnosis of pigmented skin tumors: a teledermoscopic study.

    PubMed

    Piccolo, D; Smolle, J; Wolf, I H; Peris, K; Hofmann-Wellenhof, R; Dell'Eva, G; Burroni, M; Chimenti, S; Kerl, H; Soyer, H P

    1999-12-01

    Teledermoscopy uses telecommunication technologies to transfer images of pigmented skin lesions, including clinical and anamnestic data, via e-mail to specialized centers for teleconsultation. Sixty-six pigmented skin lesions examined on a face-to-face basis in a skin lesion clinic in L'Aquila, Italy, were sent via e-mail on a standard-resolution color monitor for consultation at a university dermatology department in Graz, Austria. Digital photographs of the clinical and dermoscopic images of all pigmented tumors were taken with a stereomicroscope connected to a high-resolution video camera in Truevision advanced graphic array (Targa) format file and converted successively into a Joint Photographic Expert Group (PEG) format file. All lesions were excised surgically and diagnosed histopathologically. Diagnostic concordance between face-to-face diagnosis and telediagnosis. The diagnostic concordance was 60 (91%) of 66 cases. The number of correct telediagnoses was lower, but the difference was not statistically significant (Wilcoxon test, P = .10). The accuracy of the telediagnoses was not related to the quality of the images, but highly depended on the level of diagnostic difficulty of a given pigmented skin tumor (Spearman correlation, P= .01). Teleconsultation of clinical and dermoscopic images of skin tumors via e-mail provides a similar degree of diagnostic accuracy as face-to-face diagnosis.

  8. Mouse lung-tumor assay: a final report

    SciTech Connect

    Smith, L.H.; Witschi, H.P.

    1983-05-01

    The objective was to validate a lung tumor assay. Agents evaluated included 5 complex mixtures from modern synfuel processes, 8 nitrated toluenes and 30 compounds which had been tested previously in a standard 2-year NCI-type carcinogenesis bioassay. Male A/Jax mice were injected 3 times a week, for eight consecutive weeks, with different test substances. After the last injection, the animals were left undisturbed for another 4 months, and then they were killed. The carcinogenic potential of the substances was evaluated by counting the number of visible tumors on the lung surface. The average number of tumors per lung was calculated for each group (tumor multiplicity). Tumor incidence and tumor multiplicity for each treatment group was compared to appropriate vehicle control groups. Statistical tests used were Chi-square for tumor incidence and Student's t-test for tumor multiplicity; a p value of 0.05 or less was considered to be significant. Very few of the substances tested were found to give an unequivocally positive response. Shale oil and two of its derivatives and two tar mixtures from a coal gasifier were clearly positive. No positives were found in a series of nitrated toluenes. Out of 18 compounds known with certainty to be animal or human carcinogens, the lung tumor assay correctly identified only 5 as having carcinogenic potential. In view of these data we concluded that the lung tumor assay, as developed and advocated (Advances in Cancer Research 21, 1 to 58, 1975), was not sensitive or accurate enough to serve as a short-term in vivo screening procedure for carcinogens.

  9. POULTRY SKIN TUMOR DETECTION IN HYPERSPECTRAL REFLECTANCE IMAGES BY COMBINING CLASSIFIERS

    USDA-ARS?s Scientific Manuscript database

    This paper presents a new method for detecting poultry skin tumors in hyperspectral reflectance images. We employ the principal component analysis (PCA), discrete wavelet transform (DWT), and kernel discriminant analysis (KDA) to extract the independent feature sets in hyperspectral reflectance imag...

  10. Skin Flaps for the Repair of Multiple Adjacent Tumors.

    PubMed

    Suárez-Valladares, M J; Pérez-Bustillo, A; González-Sixto, B; Otero-Rivas, M; Rodríguez-Prieto, M A

    2016-03-01

    In daily clinical practice, the dermatologic surgeon frequently has to excise closely adjacent tumors in the facial region. In such cases, planning of an appropriate reconstruction technique is essential. The aim is to treat all of the lesions in a single surgical intervention, if possible, and to achieve a good functional and cosmetic outcome. We present 5 patients in whom a single flap was used to repair multiple adjacent defects. Copyright © 2015 AEDV. Published by Elsevier España, S.L.U. All rights reserved.

  11. Multiple angiomatous nodules: a novel skin tumor in Birt-Hogg-Dubé syndrome.

    PubMed

    Nikolaidou, C; Moscarella, E; Longo, C; Rosato, S; Cavazza, A; Piana, S

    2016-12-01

    Birt-Hogg-Dubé syndrome (BHDS), first described in 1977, is a rare autosomal dominant disorder, linked to germline mutations in the FLCN (folliculin) gene. Patients may present with different skin tumors, pulmonary cysts with recurrent spontaneous pneumothorax, and renal cancers, but it has also been estimated that about 25% of carriers older than 20 years do not show skin involvement. So far, besides the triad of skin lesions of the original description (fibrofolliculomas, trichodischomas and acrochordons), a wide range of neoplastic and non-neoplastic skin conditions have been reported, i.e. melanomas, trichoblastoma, neural- and connective tissue tumors, lipomas, angiolipomas and focal cutaneous mucinosis. We describe a patient with BHDS developing multiple skin angiomatous lesions with prominent signet-ring features, an association never reported so far. As renal carcinomas represent the most threatening complication in BHDS and the identification of the patients with BHDS is mainly based on the clinical and histopathologic identification of the diagnostic skin lesions, the role of the dermatologist can be crucial in the prevention and early detection of a potentially aggressive renal cancer.

  12. Serotonin transporter antagonists target tumor-initiating cells in a transgenic mouse model of breast cancer

    PubMed Central

    Hallett, Robin M.; Girgis-Gabardo, Adele; Gwynne, William D.; Giacomelli, Andrew O.; Bisson, Jennifer N.P.; Jensen, Jeremy E.; Dvorkin-Gheva, Anna; Hassell, John A.

    2016-01-01

    Accumulating data suggests that the initiation and progression of human breast tumors is fueled by a rare subpopulation of tumor cells, termed breast tumor-initiating cells (BTIC), which resist radiotherapy and chemotherapy. Consequently, therapies that abrogate BTIC activity are needed to achieve durable cures for breast cancer patients. To identify such therapies we used a sensitive assay to complete a high-throughput screen of small molecules, including approved drugs, with BTIC-rich mouse mammary tumor cell populations. We found that inhibitors of the serotonin reuptake transporter (SERT) and serotonin receptors, which include approved drugs used to treat mood disorders, were potent inhibitors of mouse BTIC activity as determined by functional sphere-forming assays and the initiation of tumor formation by transplant of drug-exposed tumor cells into syngeneic mice. Moreover, sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), synergized with docetaxel (Taxotere) to shrink mouse breast tumors in vivo. Hence drugs targeting the serotonergic system might be repurposed to treat breast cancer patients to afford more durable breast cancer remissions. PMID:27447971

  13. Hair follicle-derived blood vessels vascularize tumors in skin and are inhibited by Doxorubicin.

    PubMed

    Amoh, Yasuyuki; Li, Lingna; Yang, Meng; Jiang, Ping; Moossa, Abdool R; Katsuoka, Kensei; Hoffman, Robert M

    2005-03-15

    We have recently shown that the neural-stem cell marker nestin is expressed in hair follicle stem cells and the blood vessel network interconnecting hair follicles in the skin of transgenic mice with nestin regulatory element-driven green fluorescent protein (ND-GFP). The hair follicles were shown to give rise to the nestin-expressing blood vessels in the skin. In the present study, we visualized tumor angiogenesis by dual-color fluorescence imaging in ND-GFP transgenic mice after transplantation of the murine melanoma cell line B16F10 expressing red fluorescent protein. ND-GFP was highly expressed in proliferating endothelial cells and nascent blood vessels in the growing tumor. Results of immunohistochemical staining showed that the blood vessel-specific antigen CD31 was expressed in ND-GFP-expressing nascent blood vessels. ND-GFP expression was diminished in the vessels with increased blood flow. Progressive angiogenesis during tumor growth was readily visualized during tumor growth by GFP expression. Doxorubicin inhibited the nascent tumor angiogenesis as well as tumor growth in the ND-GFP mice transplanted with B16F10-RFP. This model is useful for direct visualization of tumor angiogenesis and evaluation of angiogenic inhibitors.

  14. Tumorigenesis in athymic nude mouse skin by chemical carcinogens and ultraviolet light

    SciTech Connect

    Anderson, L.M.; Rice, J.M.

    1987-01-01

    A variety of established skin tumorigenesis protocols were tested for efficacy on athymic nu/nu mice (BALB/c background) and compared on euthymic nu/+ counterparts. Chemical carcinogens and UV light were applied to the ears of 10 mice of each sex and genotype for each group. Treatments were: 0.5 mg 7,12-dimethylbenz(a)anthracene ((DMBA) CAS: 57-97-6) to each ear; 0.125 mg DMBA to each ear, followed by 0.1 microgram 12-O-tetradecanoylphorbol-13-acetate ((TPA) CAS: 16561-29-8) twice weekly for 56 weeks; 0.2 mg N-nitroso-N-methylurea ((NMU) CAS: 684-93-5; 1% in acetone, 20 microliter) to each ear; 0.1 mg NMU to each ear weekly for 30 weeks; 0.2 mg NMU to each ear, followed by TPA twice weekly for 56 weeks; two ip doses of N-nitroso-N-ethylurea ((NEU) CAS: 759-73-9; 25 mg/kg each), followed by TPA twice weekly topically for 56 weeks; and exposure to sunlamps (250- to 400-nm emission) two or three times per week for 20 weeks, for a total dose of 3.7 X 10(5) J/m2. The chemical treatments caused mainly squamous papillomas and carcinomas, sebaceous adenomas and adenocarcinomas, and basal cell tumors, which appeared both on the skin of the ears and elsewhere. UV light caused squamous tumors, basal cell tumors, and sarcomas. Ear skin of the nu/nu mice developed significantly more squamous tumors than those of nu/+ mice after DMBA-TPA, NMU-TPA, NEU-TPA, repeated NMU, or UV light. Similar results were obtained for the skin of the heads and bodies. Even a single dose of NMU caused a few tumors on the nude, but not the euthymic, mice. A single dose of DMBA caused primarily sebaceous adenomas, distributed at random over the entire bodies. These results show that, contrary to previous reports, nude mice are sensitive to skin tumorigenesis, more so than euthymic nu/+ mice similarly exposed to diverse types of carcinogen and treatment protocols.

  15. Imaging the electric field associated with mouse and human skin wounds

    PubMed Central

    Nuccitelli, Richard; Nuccitelli, Pamela; Ramlatchan, Samdeo; Sanger, Richard; Smith, Peter J.S.

    2011-01-01

    We have developed a noninvasive instrument called the bioelectric field imager (BFI) for mapping the electric field between the epidermis and the stratum corneum near wounds in both mouse and human skin. Rather than touching the skin, the BFI vibrates a small metal probe with a displacement of 180 μm in air above the skin to detect the surface potential of the epidermis through capacitative coupling. Here we describe our first application of the BFI measuring the electric field between the stratum corneum and epidermis at the margin of skin wounds in mice. We measured an electric field of 177 ± 14 (61) mV/mm immediately upon wounding and the field lines pointed away from the wound in all directions around it. Because the wound current flows immediately upon wounding, this is the first signal indicating skin damage. This electric field is generated at the outer surface of the epidermis by the outward flow of the current of injury. An equal and opposite current must flow within the multilayered epidermis to generate an intraepidermal field with the negative pole at the wound site. Because the current flowing within the multilayered epidermis is spread over a larger area, the current density and subsequent E field generated in that region is expected to be smaller than that measured by the BFI beneath the stratum corneum. The field beneath the stratum corneum typically remained in the 150–200 mV/mm range for 3 days and then began to decline over the next few days, falling to zero once wound healing was complete. The mean wound field strength decreased by 64 ± 7% following the application of the sodium channel blocker, amiloride, to the skin near the wound and increased by 82 ± 21% following the application of the Cl– channel activator, prostaglandin E2. PMID:18471262

  16. Compressive viscoelasticity of freshly excised mouse skin is dependent on specimen thickness, strain level and rate.

    PubMed

    Wang, Yuxiang; Marshall, Kara L; Baba, Yoshichika; Lumpkin, Ellen A; Gerling, Gregory J

    2015-01-01

    Although the skin's mechanical properties are well characterized in tension, little work has been done in compression. Here, the viscoelastic properties of a population of mouse skin specimens (139 samples from 36 mice, aged 5 to 34 weeks) were characterized upon varying specimen thickness, as well as strain level and rate. Over the population, we observed the skin's viscoelasticity to be quite variable, yet found systematic correlation of residual stress ratio with skin thickness and strain, and of relaxation time constants with strain rates. In particular, as specimen thickness ranged from 211 to 671 μm, we observed significant variation in both quasi-linear viscoelasticity (QLV) parameters, the relaxation time constant (τ1 = 0.19 ± 0.10 s) and steady-state residual stress ratio (G∞ = 0.28 ± 0.13). Moreover, when τ1 was decoupled and fixed, we observed that G∞ positively correlated with skin thickness. Second, as steady-state stretch was increased (λ∞ from 0.22 to 0.81), we observed significant variation in both QLV parameters (τ1 = 0.26 ± 0.14 s, G∞ = 0.47 ± 0.17), and when τ1 was fixed, G∞ positively correlated with stretch level. Third, as strain rate was increased from 0.06 to 22.88 s-1, the median time constant τ1 varied from 1.90 to 0.31 s, and thereby negatively correlated with strain rate. These findings indicate that the natural range of specimen thickness, as well as experimental controls of compression level and rate, significantly influence measurements of skin viscoelasticity.

  17. Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin

    PubMed Central

    DePianto, Daryle; Kerns, Michelle; Dlugosz, Andrzej A.; Coulombe, Pierre A.

    2010-01-01

    Basaloid skin tumors, including basal cell carcinoma (BCC) and basaloid follicular hamartoma (BFH), are associated with aberrant Hedgehog (Hh) signaling1 and, in the case of BCC, an expanding set of genetic variants including keratin 5 (K5)2, an intermediate filament-forming protein. We show that genetic ablation of keratin 17 (K17) protein, which is induced in basaloid skin tumors3,4 and co-polymerizes with K5 in vivo5, delays BFH tumor initiation and growth in mice with constitutive Hh signaling in epidermis6,7. The delay is preceded by reduced inflammation and a polarization of inflammatory cytokines from a Th1/Th17- to a Th2-dominated profile. Absence of K17 also attenuates hyperplasia and inflammation in a model of acute dermatitis. Re-expression of K17 in Gli2tg K17−/− keratinocytes induces select Th1 chemokines with established roles in BCC. Our findings establish a novel immunomodulatory role for K17 in Hh-driven basaloid skin tumors that could impact additional tumor settings, psoriasis, and wound repair. PMID:20871598

  18. THE EFFECT OF TESTICLE EXTRACT ON THE GROWTH OF TRANSPLANTABLE MOUSE TUMORS

    PubMed Central

    Tanzer, Radford C.

    1932-01-01

    Grafts of a transplantable mouse sarcoma designated as No. 180, and those of an attenuated strain of a more malignant Sarcoma S/37, treated with testicle extract, either fail to grow on inoculation or result in tumors of a lower growth rate than the controls. Autografts of spontaneous mouse tumors so treated show little if any effect, while the Bashford adenocarcinoma and the unattenuated S/37 are unaffected. The factor in testicle extract responsible for the retarding activity passes readily through a Berkefeld filter and is thermostable. PMID:19870004

  19. Expression of the Integrin-Linked Kinase (ILK) in Mouse Skin

    PubMed Central

    Xie, Wen; Li, Fugang; Kudlow, Jeffrey E.; Wu, Chuanyue

    1998-01-01

    Integrin-linked kinase (ILK) is a newly identified serine/threonine protein kinase implicated in integrin signaling. To investigate the functions of ILK in vivo, we have analyzed the expression and regulation of ILK in the skin, in which proper control of cell-extracellular matrix interactions and cell proliferation is essential for its normal development and homeostasis. We report here that ILK is abundantly expressed throughout the extracellular matrix-rich dermis. ILK mRNA was also detected in the hair follicles and the basal cells of the interfollicular epidermis. However, ILK expression is lost in the suprabasal layers of keratinocytes that are undergoing terminal differentiation. PINCH, an ILK-binding protein, exhibited a similar expression pattern in the skin. Recent studies have indicated that erbB-2, a member of the epidermal growth factor receptor family, plays a pivotal role in epidermal growth, differentiation, and hair follicle morphogenesis. Using a transgenic mouse system in which an activated erbB-2 is overexpressed in the epidermis, we show that ILK expression is regulated by erbB-2. The in vivo expression and regulation patterns of ILK, together with its biochemical activities, suggest an important role of ILK in coordinating the integrin signaling pathways and the growth factor signaling pathways in the development of the skin and the pathogenesis of skin diseases. PMID:9708797

  20. The Tumor Suppressor Actions of the Vitamin D Receptor in Skin

    DTIC Science & Technology

    2013-08-01

    sonic edgehog pathway (BCC) [8–10]. Together, sun exposure-induced remature skin aging, sunburns, immunesuppression and activa- ion of latent viruses ...and CYP27B1 null mice after 40 weeks of UVB exposure. (B lassified into papillomas , squamous cell carcinomas (SCC), keratoacanthomas and dapted from...pɘ.05. B. Shh, Ptch1, Smoh, Gli1 and Gli2 proteins as detected by immunohistochemistry in a papilloma from a VDR null mouse treated with DMBA and

  1. Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging

    PubMed Central

    Johansson, Fredrik K.; Brodd, Josefin; Eklöf, Charlotta; Ferletta, Maria; Hesselager, Göran; Tiger, Carl-Fredrik; Uhrbom, Lene; Westermark, Bengt

    2004-01-01

    Murine retroviruses may cause malignant tumors in mice by insertional mutagenesis of host genes. The use of retroviral tagging as a means of identifying cancer-causing genes has, however, almost entirely been restricted to hematopoietic tumors. The aim of this study was to develop a system allowing for the retroviral tagging of candidate genes in malignant brain tumors. Mouse gliomas were induced by a recombinant Moloney murine leukemia virus encoding platelet-derived growth factor (PDGF) B-chain. The underlying idea was that tumors evolve through a combination of PDGF-mediated autocrine growth stimulation and insertional mutagenesis of genes that cooperate with PDGF in gliomagenesis. Common insertion sites (loci that were tagged in more than one tumor) were identified by cloning and sequencing retroviral flanking segments, followed by blast searches of mouse genome databases. A number of candidate brain tumor loci (Btls) were identified. Several of these Btls correspond to known tumor-causing genes; these findings strongly support the underlying idea of our experimental approach. Other Btls harbor genes with a hitherto unproven role in transformation or oncogenesis. Our findings indicate that retroviral tagging with a growth factor-encoding virus may be a powerful means of identifying candidate tumor-causing genes in nonhematopoietic tumors. PMID:15273287

  2. Relating aromatic hydrocarbon-induced DNA adducts and c-H-ras mutations in mouse skin papillomas: the role of apurinic sites.

    PubMed Central

    Chakravarti, D; Pelling, J C; Cavalieri, E L; Rogan, E G

    1995-01-01

    Mouse skin tumors contain activated c-H-ras oncogenes, often caused by point mutations at codons 12 and 13 in exon 1 and codons 59 and 61 in exon 2. Mutagenesis by the noncoding apurinic sites can produce G-->T and A-->T transversions by DNA misreplication with more frequent insertion of deoxyadenosine opposite the apurinic site. Papillomas were induced in mouse skin by several aromatic hydrocarbons, and mutations in the c-H-ras gene were determined to elucidate the relationship among DNA adducts, apurinic sites, and ras oncogene mutations. Dibenzo[a,l]pyrene (DB[a,l]P), DB[a,l]P-11,12-dihydrodiol, anti-DB[a,l]P-11,12-diol-13,14-epoxide, DB[a,l]P-8,9-dihydrodiol, 7,12-dimethylbenz[a]anthracene (DMBA), and 1,2,3,4-tetrahydro-DMBA consistently induced a CAA-->CTA mutation in codon 61 of the c-H-ras oncogene. Benzo[a]pyrene induced a GGC-->GTC mutation in codon 13 in 54% of tumors and a CAA-->CTA mutation in codon 61 in 15%. The pattern of mutations induced by each hydrocarbon correlated with its profile of DNA adducts. For example, both DB[a,l]P and DMBA primarily form DNA adducts at the N-3 and/or N-7 of deoxyadenosine that are lost from the DNA by depurination, generating apurinic sites. Thus, these results support the hypothesis that misreplication of unrepaired apurinic sites generated by loss of hydrocarbon-DNA adducts is responsible for transforming mutations leading to papillomas in mouse skin. PMID:7479797

  3. [Undifferentiated blastic cell crisis of chronic myelogenous leukemia with myeloblastic tumor in the skin].

    PubMed

    Kawakami, K; Kiyosaki, M; Amaya, H; Nakamaki, T; Hino, K; Tomoyasu, S

    2000-04-01

    A 54-year-old female, who had been treated for 4 years in the chronic phase of chronic myelogenous leukemia (CML) was admitted for management of a CML blastic crisis. Blast cells showed strong positive expression of CD7 and HLA-DR, and weakly expressed CD2, CD5 and CD10, as well. The cells were peroxidase negative in peripheral blood and bone marrow. An undifferentiated blastic crisis was diagnosed and she was treated with Interferon-alpha and VP(vincristine 2 mg/week; prednisolone 30 mg/day). A 5-7 mm in diameter tumor in the skin of the anterior right chest appeared one week after VP therapy. The tumor consisted of blasts which were CD13, CD33 and peroxidase positive, unlike the peripheral undifferentiated blasts. This is a rare case of mixed blast crisis with an increase in undifferentiated blasts in peripheral blood and bone marrow, and myeloblastic tumor formation in the skin.

  4. Dietary catechin delays tumor onset in a transgenic mouse model.

    PubMed

    Ebeler, Susan E; Brenneman, Charles A; Kim, Gap-Soon; Jewell, William T; Webb, Michael R; Chacon-Rodriguez, Leticia; MacDonald, Emily A; Cramer, Amanda C; Levi, Andrew; Ebeler, John D; Islas-Trejo, Alma; Kraus, Amber; Hinrichs, Steven H; Clifford, Andrew J

    2002-10-01

    Evidence exists that red wine, which contains a large array of polyphenols, is protective against cardiovascular disease and possibly cancer. We tested the hypothesis that catechin, the major monomeric polyphenol in red wine, can delay tumor onset in transgenic mice that spontaneously develop tumors. Mice were fed a nutritionally complete amino acid-based diet supplemented with (+)-catechin (0-8 mmol/kg diet) or alcohol-free solids from red wine. Mice were examined daily; the age at which a first tumor appeared was recorded as the age at tumor onset. Plasma catechin and metabolite concentrations were quantified at the end of the study. Dietary catechin significantly delayed tumor onset; a positive, linear relation was observed between the age at tumor onset and either the amount of dietary catechin (r(2) = 0.761, P < 0.001) or plasma catechin and metabolite concentrations (r(2) = 0.408, P = 0.003). No significant effects on tumor onset were observed when mice consumed a diet supplemented with wine solids containing <0.22 mmol catechin/kg diet, whereas a previous study showed that wine solids with a similar total polyphenol concentration but containing approximately 4 times more catechin significantly delayed tumor onset by approximately 30 d compared with a control diet. The catechin composition of the wines is directly related to processing conditions during vinification. Physiologic intakes of specific dietary polyphenols, such as catechin, may play an important role in cancer chemoprevention. Wines have different polyphenol concentrations and compositions; therefore, the overall health benefits of individual wines differ.

  5. Electrochemical treatment of mouse Ehrlich tumor with direct electric current.

    PubMed

    Cabrales, L B; Ciria, H C; Bruzón, R P; Quevedo, M S; Aldana, R H; De Oca, L M; Salas, M F; Peña, O G

    2001-07-01

    Electrochemical treatment of cancer utilizes direct electric current (DEC) to produce direct alterations and chemical changes in tumors. However, the DEC treatment is not established and mechanisms are not well understood. In vivo studies were conducted to evaluate the effectiveness of DEC on animal tumor models. Ehrlich tumors were implanted subcutaneously in sixty male BALB/c mice. When the tumor volumes reached 850 mm(3), four platinum electrodes were inserted into the tumors. DEC of 4 mA was applied for 21 min to the treated group; the total charge was 5 C. The healthy and sick control groups were subjected to the same conditions but without DEC. Hematological and chemical parameters as well as histopathological and peritumoral findings were studied. After the electrochemical therapy it was observed that both tumor volume decrease and necrosis percentage increase were significant in the treated group. Moreover, 24 h after treatment an acute inflammatory response, as well as sodium ion decrease, and potassium ion and spleen weight increase were observed in this group. It was concluded that both electrochemical reactions (fundamentally those in which reactive oxygen species are involved), and immune system stimulation induced by cytotoxic action of the DEC could constitute the most important antitumor mechanisms. Copyright 2001 Wiley-Liss, Inc.

  6. Common Fragile Site Tumor Suppressor Genes and Corresponding Mouse Models of Cancer

    PubMed Central

    Drusco, Alessandra; Pekarsky, Yuri; Costinean, Stefan; Antenucci, Anna; Conti, Laura; Volinia, Stefano; Aqeilan, Rami I.; Huebner, Kay; Zanesi, Nicola

    2011-01-01

    Chromosomal common fragile sites (CFSs) are specific mammalian genomic regions that show an increased frequency of gaps and breaks when cells are exposed to replication stress in vitro. CFSs are also consistently involved in chromosomal abnormalities in vivo related to cancer. Interestingly, several CFSs contain one or more tumor suppressor genes whose structure and function are often affected by chromosomal fragility. The two most active fragile sites in the human genome are FRA3B and FRA16D where the tumor suppressor genes FHIT and WWOX are located, respectively. The best approach to study tumorigenic effects of altered tumor suppressors located at CFSs in vivo is to generate mouse models in which these genes are inactivated. This paper summarizes our present knowledge on mouse models of cancer generated by knocking out tumor suppressors of CFS. PMID:21318118

  7. Common fragile site tumor suppressor genes and corresponding mouse models of cancer.

    PubMed

    Drusco, Alessandra; Pekarsky, Yuri; Costinean, Stefan; Antenucci, Anna; Conti, Laura; Volinia, Stefano; Aqeilan, Rami I; Huebner, Kay; Zanesi, Nicola

    2011-01-01

    Chromosomal common fragile sites (CFSs) are specific mammalian genomic regions that show an increased frequency of gaps and breaks when cells are exposed to replication stress in vitro. CFSs are also consistently involved in chromosomal abnormalities in vivo related to cancer. Interestingly, several CFSs contain one or more tumor suppressor genes whose structure and function are often affected by chromosomal fragility. The two most active fragile sites in the human genome are FRA3B and FRA16D where the tumor suppressor genes FHIT and WWOX are located, respectively. The best approach to study tumorigenic effects of altered tumor suppressors located at CFSs in vivo is to generate mouse models in which these genes are inactivated. This paper summarizes our present knowledge on mouse models of cancer generated by knocking out tumor suppressors of CFS.

  8. Establishment and Genomic Characterization of Mouse Xenografts of Human Primary Prostate Tumors

    PubMed Central

    Priolo, Carmen; Agostini, Michelle; Vena, Natalie; Ligon, Azra H.; Fiorentino, Michelangelo; Shin, Eyoung; Farsetti, Antonella; Pontecorvi, Alfredo; Sicinska, Ewa; Loda, Massimo

    2010-01-01

    Serum prostate-specific antigen screening has led to earlier detection and surgical treatment of prostate cancer, favoring an increasing incidence-to-mortality ratio. However, about one third of tumors that are diagnosed when still confined to the prostate can relapse within 10 years from the first treatment. The challenge is therefore to identify prognostic markers of aggressive versus indolent tumors. Although several preclinical models of advanced prostate tumors are available, a model that recapitulates the genetic and growth behavior of primary tumors is still lacking. Here, we report a complete histopathological and genomic characterization of xenografts derived from primary localized low- and high-grade human prostate tumors that were implanted under the renal capsule of immunodeficient mice. We obtained a tumor take of 56% and show that these xenografts maintained the histological as well as most genomic features of the parental tumors. Serum prostate-specific antigen levels were measurable only in tumor xenograft-bearing mice, but not in those implanted with either normal prostate tissue or in tumors that likely regressed. Finally, we show that a high proliferation rate, but not the pathological stage or the Gleason grade of the original tumor, was a fundamental prerequisite for tumor take in mice. This mouse xenograft model represents a useful preclinical model of primary prostate tumors for their biological characterization, biomarker discovery, and drug testing. PMID:20167861

  9. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha.

    PubMed

    Doki, Tomoyoshi; Takano, Tomomi; Hohdatsu, Tsutomu

    2016-10-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2-4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2-4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2-4) by fusing the variable region of mouse mAb 2-4 to the constant region of feline antibody. The chimeric mAb 2-4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2-4 and chimeric mAb 2-4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2-4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2-4 was reduced. In contrast, in cats treated with chimeric mAb 2-4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2-4-treated cats.

  10. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha

    PubMed Central

    DOKI, Tomoyoshi; TAKANO, Tomomi; HOHDATSU, Tsutomu

    2016-01-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2–4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2–4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2–4) by fusing the variable region of mouse mAb 2–4 to the constant region of feline antibody. The chimeric mAb 2–4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2–4 and chimeric mAb 2–4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2–4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2–4 was reduced. In contrast, in cats treated with chimeric mAb 2–4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2–4-treated cats. PMID:27264736

  11. Inhibition of skin tumor promoter-caused induction of epidermal ornithine decarboxylase in SENCAR mice by polyphenolic fraction isolated from green tea and its individual epicatechin derivatives.

    PubMed

    Agarwal, R; Katiyar, S K; Zaidi, S I; Mukhtar, H

    1992-07-01

    Green tea, next to water, is the most popular and commonly consumed beverage in the world, especially in eastern countries. In prior studies we have shown that the polyphenolic fraction isolated from green tea (GTP) exerts antigenotoxic effects in various mutagenicity test systems (Mutat. Res., 223: 273-285, 1989) and that its topical application or oral feeding in drinking water protects against polycyclic aromatic hydrocarbon-induced skin tumor initiation and complete carcinogenesis in SENCAR and BALB/c mice [Cancer Lett., 42: 7-12, 1988; Carcinogenesis (Lond.), 10: 411-415, 1989] and UV B radiation-induced photocarcinogenesis in SKH-1 hairless mice [Carcinogenesis (Lond.), 12: 1527-1530, 1991]. In the present study we assessed the effect of skin application of GTP to SENCAR mice on 12-O-tetradecanoylphorbol-13-acetate (TPA) and other skin tumor promoter-caused induction of epidermal ornithine decarboxylase (ODC) activity. Topical application of GTP to mouse skin inhibited TPA-induced epidermal ODC activity in a dose-dependent manner. The inhibitory effect of GTP was also dependent on the time of its application relative to TPA treatment. Maximum inhibitory effect was observed when GTP was applied 30 min prior to topical application of TPA. GTP application to animals also inhibited the induction of epidermal ODC activity caused by several structurally different mouse skin tumor promoters. In order to identify which of the specific epicatechin derivatives present in GTP is responsible for these inhibitory effects, they were isolated from GTP and evaluated for their inhibitory effects against TPA-caused induction of epidermal ODC activity. Among these, (-)epigallocatechin-3-gallate (EGCG), which was the major constituent present in GTP by weight, exerted the maximum inhibition. EGCG also showed greater inhibitory effects against TPA-caused induction of epidermal ODC activity when compared with several other naturally occurring polyphenols. The results of this study

  12. Potent suppressive effect of a Japanese edible seaweed, Enteromorpha prolifera (Sujiao-nori) on initiation and promotion phases of chemically induced mouse skin tumorigenesis.

    PubMed

    Higashi-Okai, K; Otani, S; Okai, Y; Hiqashi-Okaj, K

    1999-06-01

    Potent antigenotoxic and anti-tumor promoting activities of a Japanese edible seaweed, Enteromorpha prolifera (Sujiao-nori in Japanese) were previously identified using an in vitro cell culture experiment (Y. Okai, K. Higashi-Okai, S. Nakamura, Y. Yano, S. Otani, Cancer Lett. 87 (1994) 25-32). However, in vivo anti-carcinogenic activity of this seaweed has not been elucidated until now. In the present study, the anticarcinogenic activity of E. prolifera was analyzed using an initiation and promotion model experiment of mouse skin tumorigenesis caused by 7,12-dimethylbenz[a]anthracene (initiator) and 12-O-tetradecanoylphorbol-13-acetate (promoter). (1) Application of the extract of E. prolifera prior to the treatment with a tumor initiator or promoter caused a significant suppression against skin tumorigenesis, and the combined application of the extract prior to both treatments with initiator and promoter exhibited much stronger suppression against the same skin tumorigenesis. (2) As a possible active principle for the anticarcinogenic activity of the extract, we propose a chlorophyll-related compound, pheophytin-a, which has been recently identified in the extract of this alga as an antigenotoxic substance (Y. Okai, K. Higashi-Okai, J. Sci. Food Agric. 74 (1997) 531-535), and showed significant suppressive effects in the same tumorigenesis experiment. These results suggest that E. prolifera has a potent suppressive activity against chemically induced mouse skin tumorigenesis through the suppression at the initiation and promotion phases, and that pheophytin-a might be partially associated with the in vivo anticarcinogenic activity.

  13. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model

    PubMed Central

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D.; Shetake, Neena; Balla, Murali M. S.; Kumar, Amit; Ray, Pritha; Ghosh, Anu

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  14. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    PubMed

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D; Shetake, Neena; Balla, Murali M S; Kumar, Amit; Ray, Pritha; Ghosh, Anu; Pandey, B N

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  15. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model.

    PubMed

    Zeidler-Erdely, Patti C; Meighan, Terence G; Erdely, Aaron; Battelli, Lori A; Kashon, Michael L; Keane, Michael; Antonini, James M

    2013-09-05

    Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk.

  16. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model

    PubMed Central

    2013-01-01

    Background Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Methods Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. Results MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. Conclusions GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk. PMID:24107379

  17. Sarcophine-diol, a skin cancer chemopreventive agent, inhibits proliferation and stimulates apoptosis in mouse melanoma B₁₆F₁₀ cell line.

    PubMed

    Szymanski, Pawel T; Kuppast, Bhimanna; Ahmed, Safwat A; Khalifa, Sherief; Fahmy, Hesham

    2012-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B₁₆F₁₀ cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B₁₆F₁₀ tumor cells.

  18. Sarcophine-Diol, a Skin Cancer Chemopreventive Agent, Inhibits Proliferation and Stimulates Apoptosis in Mouse Melanoma B16F10 Cell Line

    PubMed Central

    Szymanski, Pawel T.; Kuppast, Bhimanna; Ahmed, Safwat A.; Khalifa, Sherief; Fahmy, Hesham

    2011-01-01

    Sarcodiol (SD) is a semi-synthetic derivative of sarcophine, a marine natural product. In our previous work, we reported the significant chemopreventive effects of SD against non-melanoma skin cancer both in vitro and in vivo mouse models. In this investigation, we extended this work to study the effect of sarcodiol on melanoma development, the more deadly form of skin cancer, using the mouse melanoma B16F10 cell line. In this study we report that SD inhibits the de novo DNA synthesis and enhances fragmentation of DNA. We also evaluated the antitumor effect of SD on melanoma cell viability using several biomarkers for cell proliferation and apoptosis. SD inhibits the expression levels of signal transducers and activators of transcription protein (STAT-3) and cyclin D1, an activator of cyclin-dependent kinase 4 (Cdk4). SD treatment also enhances cellular level of tumor suppressor protein 53 (p53) and stimulates cleavage of the nuclear poly (ADP-ribose) polymerase (cleaved-PARP). SD also enhances cellular levels of cleaved Caspase-3, -8, -9 and stimulates enzymatic activities of Caspase-3, -8 and -9. These results, in addition to inhibition of cell viability, suggest that SD inhibits melanoma cell proliferation by arresting the cell-division cycle in a Go quiescent phase and activates programmed cell death (apoptosis) via extrinsic and intrinsic pathways. Finally, these studies demonstrate that SD shows a very promising chemopreventive effect in melanoma B16F10 tumor cells. PMID:22363217

  19. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway.

    PubMed

    Bhui, Kulpreet; Prasad, Sahdeo; George, Jasmine; Shukla, Yogeshwer

    2009-09-18

    Chemoprevention impels the pursuit for either single targeted or cocktail of multi-targeted agents. Bromelain, potential agent in this regard, is a pharmacologically active compound, present in stems and fruits of pineapple (Ananas cosmosus), endowed with anti-inflammatory, anti-invasive and anti-metastatic properties. Herein, we report the anti tumor-initiating effects of bromelain in 2-stage mouse skin tumorigenesis model. Pre-treatment of bromelain resulted in reduction in cumulative number of tumors (CNT) and average number of tumors per mouse. Preventive effect was also comprehended in terms of reduction in tumor volume up to a tune of approximately 65%. Components of the cell signaling pathways, connecting proteins involved in cell death were targeted. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in Bcl-2. A marked inhibition in cyclooxygenase-2 (Cox-2) expression and inactivation of nuclear factor-kappa B (NF-kappaB) was recorded, as phosphorylation and consequent degradation of I kappa B alpha was blocked by bromelain. Also, bromelain treatment curtailed extracellular signal regulated protein kinase (ERK1/2), p38 mitogen-activated protein kinase (MAPK) and Akt activity. The basis of anti tumor-initiating activity of bromelain was revealed by its time dependent reduction in DNA nick formation and increase in percentage prevention. Thus, modulation of inappropriate cell signaling cascades driven by bromelain is a coherent approach in achieving chemoprevention.

  20. High Resolution X-Ray Microangiography of 4T1 Tumor in Mouse Using Synchrotron Radiation

    SciTech Connect

    Sun Jianqi; Liu Ping; Gu Xiang; Liu Xiaoxia; Zhao Jun; Xiao Tiqiao; Xu, Lisa X.

    2010-07-23

    Angiogenesis is very important in tumor growth and metastasis. But in clinic, only vessels lager than 200 {mu}m in diameter, can be observed using conventional medical imaging. Synchrotron radiation (SR) phase contrast imaging, whose spatial resolution can reach as high as 1 {mu}m, has great advantages in imaging soft tissue structures, such as blood vessels and tumor tissues. In this paper, the morphology of newly formed micro-vessels in the mouse 4T1 tumor samples was firstly studied with contrast agent. Then, the angiogenesis in nude mice tumor window model was observed without contrast agent using the SR phase contrast imaging at the beamline for X-ray imaging and biomedical applications, Shanghai Synchrotron Radiation Facility (SSRF). The images of tumors showed dense, irregular and tortuous tumor micro-vessels with the smallest size of 20-30 {mu}m in diameter.

  1. In Vivo Imaging of Human and Mouse Skin with a Handheld Dual-Axis Confocal Fluorescence Microscope

    PubMed Central

    Gonzalez-Gonzalez, Emilio; Mandella, Michael J.; Kino, Gordon S.; Solgaard, Olav; Leake, Devin; Kaspar, Roger L.; Oro, Anthony; Contag, Christopher H.

    2013-01-01

    Advancing molecular therapies for the treatment of skin diseases will require the development of new tools that can reveal spatiotemporal changes in the microanatomy of the skin and associate these changes with the presence of the therapeutic agent. For this purpose, we evaluated a handheld dual-axis confocal (DAC) microscope that is capable of in vivo fluorescence imaging of skin, using both mouse models and human skin. Individual keratinocytes in the epidermis were observed in three-dimensional image stacks after topical administration of near-infrared (NIR) dyes as contrast agents. This suggested that the DAC microscope may have utility in assessing the clinical effects of a small interfering RNA (siRNA)-based therapeutic (TD101) that targets the causative mutation in pachyonychia congenita (PC) patients. The data indicated that (1) formulated indocyanine green (ICG) readily penetrated hyperkeratotic PC skin and normal callused regions compared with nonaffected areas, and (2) TD101-treated PC skin revealed changes in tissue morphology, consistent with reversion to nonaffected skin compared with vehicle-treated skin. In addition, siRNA was conjugated to NIR dye and shown to penetrate through the stratum corneum barrier when topically applied to mouse skin. These results suggest that in vivo confocal microscopy may provide an informative clinical end point to evaluate the efficacy of experimental molecular therapeutics. PMID:21191407

  2. Mouse mammary tumors display Stat3 activation dependent on leukemia inhibitory factor signaling

    PubMed Central

    Quaglino, Ana; Schere-Levy, Carolina; Romorini, Leonardo; Meiss, Roberto P; Kordon, Edith C

    2007-01-01

    Introduction It has been demonstrated that leukemia inhibitory factor (LIF) induces epithelium apoptosis through Stat3 activation during mouse mammary gland involution. In contrast, it has been shown that this transcription factor is commonly activated in breast cancer cells, although what causes this effect remains unknown. Here we have tested the hypothesis that locally produced LIF can be responsible for Stat3 activation in mouse mammary tumors. Methods The studies were performed in different tumorigenic and non-tumorigenic mammary cells. The expression of LIF and LIF receptor was tested by RT-PCR analysis. In tumors, LIF and Stat3 proteins were analyzed by immunohistochemistry, whereas Stat3 and extracellular signal-regulated kinase (ERK)1/2 expression and phosphorylation were studied by Western blot analysis. A LIF-specific blocking antibody was used to determine whether this cytokine was responsible for Stat3 phosphorylation induced by conditioned medium. Specific pharmacological inhibitors (PD98059 and Stat3ip) that affect ERK1/2 and Stat3 activation were used to study their involvement in LIF-induced effects. To analyze cell survival, assays with crystal violet were performed. Results High levels of LIF expression and activated Stat3 were found in mammary tumors growing in vivo and in their primary cultures. We found a single mouse mammary tumor cell line, LM3, that showed low levels of activated Stat3. Incidentally, these cells also showed very little expression of LIF receptor. This suggested that autocrine/paracrine LIF would be responsible for Stat3 activation in mouse mammary tumors. This hypothesis was confirmed by the ability of conditioned medium of mammary tumor primary cultures to induce Stat3 phosphorylation, activity that was prevented by pretreatment with LIF-blocking antibody. Besides, we found that LIF increased tumor cell viability. Interestingly, blocking Stat3 activation enhanced this effect in mammary tumor cells. Conclusion LIF is

  3. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2015-10-01

    Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...SUBTITLE Developiing Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER Carcinoma Using Genetically Engineered Mouse Models and 5b...biomarkers. 15. SUBJECT TERMS Small cell lung cancer (SCLC), Genetically engineered mouse model (GEMM), BH3 mimetic, TORC inhibitor, Apoptosis

  4. Mechanisms of pruritogen-induced activation of itch nerves in isolated mouse skin.

    PubMed

    Ru, F; Sun, H; Jurcakova, D; Herbstsomer, R A; Meixong, J; Dong, X; Undem, B J

    2017-02-19

    Chloroquine (CQ) and histamine are pruritogens commonly used to study itch in the mouse. A novel skin-nerve preparation was used to evaluate chloroquine (CQ)- and histamine- induced activation of afferent nerves in the dorsal thoracic skin of the mouse. All CQ sensitive nerves were C-fibres, and were also sensitive to histamine. The response to CQ, but not histamine, was largely absent in mrgpr cluster Δ -/- mice supporting the hypothesis that CQ evokes itch largely via stimulation of MrgprA3 receptors. The CQ-induced action potential discharge was largely absent in phospholipase Cβ3 knockout animals. The CQ and histamine responses were not influenced by removal of TRPA1, TRPV1, TRPC3 or TRPC6, nor by the TRP channel blocker Ruthenium Red. The bouts of scratching in response to CQ was not different between wild type and TRPA1 deficient mice. A selective inhibitor of TMEM16A, N-((4-methoxy)-2-naphthyl)-5-nitroanthranilic acid (MONNA) inhibited CQ-induced action potential discharge at itch nerve terminals and bouts of scratching by about 50%. Although TRPA1 and TRPV1 channels may be involved in the scratching responses to intradermal pruitogens, this is unlikely due to an effect at the nerve terminals, where chloride channels may play a more important role. This article is protected by copyright. All rights reserved.

  5. PKK suppresses tumor growth and is decreased in squamous cell carcinoma of the skin.

    PubMed

    Poligone, Brian; Gilmore, Elaine S; Alexander, Carolina V; Oleksyn, David; Gillespie, Kathleen; Zhao, Jiyong; Ibrahim, Sherrif F; Pentland, Alice P; Brown, Marc D; Chen, Luojing

    2015-03-01

    Non-melanoma skin cancer represents the most common cancer in the United States. Squamous cell carcinoma (SCC) of the skin is a subtype of NMSC that shows a greater potential for invasion and metastasis. The current study identifies the protein kinase C-associated kinase (PKK), which is also known as the receptor-interacting protein kinase 4, as a suppressor of tumor growth in SCC of the skin. We show that expression of PKK is decreased in human SCC of the skin compared with normal skin. Further, suppression of PKK in human keratinocytes leads to increased cell proliferation. The use of RNA interference to reduce PKK expression in keratinocytes leads to an increase in S phase and in proteins that promote cell cycle progression. Consistent with the results obtained from cell culture, there is a marked increased tumorigenesis after PKK knockdown in a xenotransplant model and in soft agar assays. The loss of tumor suppression involves the NF-κB and p63 pathways. NF-κB is inhibited through inhibition of inhibitor of NF-κB kinase function and there is increased nuclear TP63 activity after PKK knockdown. This study opens new avenues both in the discovery of disease pathogenesis and for potential treatments.

  6. PKK Suppresses Tumor Growth and is Decreased in Squamous Cell Carcinoma of the Skin

    PubMed Central

    Poligone, Brian; Gilmore, Elaine S.; Alexander, Carolina; Oleksyn, David; Gillespie, Kathleen; Zhao, Jiyong; Ibrahim, Sherrif; Pentland, Alice P.; Brown, Marc; Chen, Luojing

    2014-01-01

    Non-melanoma skin cancer (NMSC) represents the most common cancer in the United States. Squamous cell carcinoma (SCC) of the skin is a sub-type of NMSC that shows a greater potential for invasion and metastasis. The current study identifies the Protein Kinase C-associated Kinase (PKK), which is also known as the Receptor-Interacting Protein Kinase 4 (RIPK4), as a suppressor of tumor growth in SCC of the skin. We show that expression of PKK is decreased in human SCC of the skin compared to normal skin. Further, suppression of PKK in human keratinocytes leads to increased cell proliferation. Use of RNA interference to reduce PKK expression in keratinocytes leads to an increase in S phase and in proteins that promote cell cycle progression. Consistent with the results obtained from cell culture, there is a dramatic increased tumorigenesis after PKK knockdown in a xenotransplant model and in soft agar assays. The loss of tumor suppression involves the NF-κB and p63 pathways. NF-κB is inhibited through inhibition of IKK function and there is increased nuclear TP63 activity after PKK knockdown. This study opens new avenues both in the discovery of disease pathogenesis and for potential treatments. PMID:25285922

  7. Collagen metabolism in ultraviolet irradiated hairless mouse skin and its correlation to histochemical observations.

    PubMed

    Kligman, L H; Gebre, M; Alper, R; Kefalides, N A

    1989-08-01

    Early biochemical studies of ultraviolet (UV) irradiated human skin reported a loss of insoluble collagen with a concomitant increase in the soluble fraction. Recent work has described an early increase in type III collagen during chronic irradiation of hairless mice as determined by cyanogen bromide digests of whole skin. In order to understand the correlation of these events and those seen with histochemistry, in the present study we irradiated hairless mice for up to 24 weeks with approximately 4 minimal erythema doses (MEDs) of UVB thrice weekly with Westinghouse FS-40 bulbs. Skin samples were taken at 4-week intervals from irradiated and age-matched control mice. Collagen was isolated from other skin proteins by acid extraction, pepsin digestion, and salt precipitation. Estimates of types I and III collagen were made by interrupted polyacrylamide gel electrophoresis and densitometric scanning. Compared with unirradiated controls, there was a small increase in the ratio of type III to total collagen after 8 weeks of UV. There were no significant increases at later time points until after 24 weeks of radiation. Total collagen in normal mouse skin, determined by hydroxyproline content, remained constant over the 24 weeks, while UV radiation produced significant increases at 4, 8, 12, and 16 weeks, returning to control levels at week 20. There was no change in the degree of hydroxylation at any time point in either group. Thus, chronic UV exposure resulted in increased collagen synthesis until late in the course of irradiation. Because there is a lack of consistent change in the ratio of type III to total collagen, the early increases in collagen content may represent both types I and III, synthesized in relatively unchanging proportions.

  8. Postnatal changes and sexual dimorphism in collagen expression in mouse skin.

    PubMed

    Arai, Koji Y; Hara, Takuya; Nagatsuka, Toyofumi; Kudo, Chikako; Tsuchiya, Sho; Nomura, Yoshihiro; Nishiyama, Toshio

    2017-01-01

    To investigate sexual dimorphism and postnatal changes in skin collagen expression, mRNA levels of collagens and their regulatory factors in male and female skin were examined during the first 120 days of age by quantitative realtime PCR. Levels of mRNAs encoding extracellular matrices did not show any differences between male and female mice until day 15. Col1a1 and Col1a2 mRNAs noticeably increased at day 30 and remained at high levels until day 120 in male mice, while those in female mice remained at low levels during the period. Consistent with the mRNA expression, pepsin-soluble type I collagen contents in skin was very high in mature male as compared to female. Col3a1 mRNA in male mice also showed significantly high level at day 120 as compared to female. On the other hand, expression of mRNAs encoding TGF-ßs and their receptors did not show apparent sexual dimorphism although small significant differences were observed at some points. Castration at 60 days of age resulted in a significant decrease in type I collagen mRNA expression within 3 days, and noticeably decreased expression of all fibril collagen mRNAs examined within 14 days, while administration of testosterone tube maintained the mRNA expression at high levels. Despite the in vivo effect of testosterone, administration of physiological concentrations of testosterone did not affect fibril collagen mRNA expression in either human or mouse skin fibroblasts in vitro, suggesting that testosterone does not directly affect collagen expression in fibroblasts. In summary, present study demonstrated dynamic postnatal changes in expression of collagens and their regulatory factors, and suggest that testosterone and its effects on collagen expression are responsible for the skin sexual dimorphism but the effects of testosterone is not due to direct action on dermal fibroblasts.

  9. A splice variant of alpha 6 integrin is associated with malignant conversion in mouse skin tumorigenesis.

    PubMed Central

    Tennenbaum, T; Belanger, A J; Glick, A B; Tamura, R; Quaranta, V; Yuspa, S H

    1995-01-01

    The epithelial-specific integrin alpha 6 beta 4 is suprabasally expressed in benign skin tumors (papillomas) and is diffusely expressed in carcinomas associated with an increase in the proliferating compartment. Analysis of RNA samples by reverse transcriptase-PCR and DNA sequencing revealed that chemically or oncogenically induced papillomas (n = 8) expressed a single transcript of the alpha 6 subunit, identified as the alpha 6 A splice variant. In contrast, carcinomas (n = 13) expressed both alpha 6A and an alternatively spliced form, alpha 6B. Primary keratinocytes and a number of keratinocyte cell lines that vary in biological potential from normal skin, to benign papillomas, to well-differentiated slowly growing carcinomas exclusively expressed alpha 6A. However, I7, an oncogene-induced cell line that produces highly invasive carcinomas, expressed both alpha 6A and alpha 6B transcript and protein. The expression of alpha 6B in I7 cells was associated with increased attachment to a laminin matrix compared to cell lines exclusively expressing alpha 6A. Furthermore, introduction of an alpha 6B expression vector into a papilloma cell line expressing alpha 6A increased laminin attachment. When a papilloma cell line was converted to an invasive carcinoma by introduction of the v-fos oncogene, the malignant cells expressed both alpha 6A and alpha 6B, while the parent cell line and cells transduced with v-jun or c-myc, which retained the papilloma phenotype, expressed only alpha 6A. Comparative analysis of alpha 6B expression in cell lines and their derived tumors indicate that alpha 6B transcripts are more abundant in tumors than cell lines, and alpha 6B is expressed to a greater extent in poorly differentiated tumors. These results establish a link between malignant conversion and invasion of squamous tumor cells and the regulation of transcript processing of the alpha 6 beta 4 integrin. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7624366

  10. Combination of PDT and a DNA demethylating agent produces anti-tumor immune response in a mouse tumor model

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Hamblin, Michael R.

    2009-06-01

    Epigenetic mechanisms, which involve DNA methylation and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. However, these changes must be actively maintained after each cell division rendering them a promising target for pharmacologic inhibition. DNA methyltransferase inhibitors like 5-aza-deoxycytidine (5-aza-dC) induce and/or up-regulate the expression of MAGE-type antigens in human and mice cancer cells. Photodynamic therapy (PDT) has been shown to be an effective locally ablative anti-cancer treatment that has the additional advantage of stimulating tumor-directed immune response. We studied the effects of a new therapy that combined the demethylating agent 5-aza-dC with PDT in the breast cancer model 4T1 syngenic to immunocompetent BALB/c mice. PDT was used as a locally ablating tumor treatment that is capable of eliciting strong and tumor directed immune response while 5-aza-dC pretreatment was used promote de novo induction of the expression of P1A.protein. This is the mouse homolog of human MAGE family antigens and is reported to function as a tumor rejection antigen in certain mouse tumors. This strategy led to an increase in PDT-mediated immune response and better treatment outcome. These results strongly suggest that the MAGE family antigens are important target for PDT mediated immune response but that their expression can be silenced by epigenetic mechanisms. Therefore the possibility that PDT can be combined with epigenetic strategies to elicit anti-tumor immunity in MAGE-positive tumor models is highly clinically significant and should be studied in detail.

  11. A Compendium of the Mouse Mammary Tumor Biologist: From the Initial Observations in the House Mouse to the Development of Genetically Engineered Mice

    PubMed Central

    Cardiff, Robert D.; Kenney, Nicholas

    2011-01-01

    For over a century, mouse mammary tumor biology and the associated mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration in 1984. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skill sets to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this compendium is to extend an “olive branch” while simultaneously deepen the knowledge of the novice mouse mammary tumor biologist as they journey into a field rich in pathology and genetics spanning several centuries. PMID:20961975

  12. A compendium of the mouse mammary tumor biologist: from the initial observations in the house mouse to the development of genetically engineered mice.

    PubMed

    Cardiff, Robert D; Kenney, Nicholas

    2011-06-01

    For over a century, mouse mammary tumor biology and the associated mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration in 1984. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skill sets to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this compendium is to extend an "olive branch" while simultaneously deepen the knowledge of the novice mouse mammary tumor biologist as they journey into a field rich in pathology and genetics spanning several centuries.

  13. Gene therapy with IL-12 induced enhanced anti-tumor activity in fibrosarcoma mouse model.

    PubMed

    Razi Soofiyani, Saiedeh; Kazemi, Tohid; Lotfipour, Farzaneh; Mohammad Hosseini, Akbar; Shanehbandi, Dariush; Hallaj-Nezhadi, Somayeh; Baradaran, Behzad

    2016-12-01

    Context Immunotherapy is among the most promising modalities for treatment of cancer. Recently, interleukin 12 (IL-12) has been used as an immunotherapeutic agent in cancer gene therapy. IL-12 can activate dendritic cells (DCs) and boost anti-tumor immune responses. Objective In the current study, we have investigated if IL-12 gene therapy can lead to the regression of tumor mass in a mouse model of fibrosarcoma. Material and methods To investigate the therapeutic efficacy of IL-12, WEHI-164 tumor cells were transfected with murine-IL12 plasmids using Lipofectamine. Enzyme linked immunosorbent assay (ELISA) was used to confirm IL-12 expression in transfected cells. The fibrosarcoma mouse model was established by subcutaneous injection of transfected cells to Balb/C mice. Mice were sacrificed and the tumors were extracted. Tumor sizes were measured by caliper. The expression of IL-12 and IFN-γ was studied with real-time PCR and western blotting. The expression of Ki-67(a tumor proliferation marker) in tumor mass was studied by immunohistochemistry staining. Results and discussion The group treated with IL-12 showed a significant decrease in tumor mass volume (P: 0.000). The results of real-time PCR and western blotting showed that IL-12 and IFN-γ expression increased in the group treated with IL-12 (relative expression of IL-12: 1.9 and relative expression of IFN-γ: 1.766). Immunohistochemistry staining showed that Ki-67 expression was reduced in the group treated with IL-12. Conclusion IL-12 gene therapy successfully led to regress of tumor mass in the fibrosarcoma mouse model. This may serve as a candidate therapeutic approach for treatment of cancer.

  14. Defective TGFβ signaling in bone marrow-derived cells prevents Hedgehog-induced skin tumors

    PubMed Central

    Liu, Hailan; Yang, Ling; Zhang, Xiaoli; Yoder, Mervin C.; Kaplan, Mark H.; Xie, Jingwu

    2013-01-01

    Hedgehog (Hh) signaling in cancer cells drives changes in the tumor microenvironment that are incompletely understood. Here we report that Hh- driven tumors exhibit an increase in myeloid-derived suppressor cells (MDSC) and a decrease in T cells, indicative of an immune suppressive tumor microenvironment. This change was associated with activated TGFβ signaling in several cell types in BCCs. We determined that TGFβ signaling in bone marrow (BM)-derived cells, not keratinocytes, regulates MDSC and promotes tumor development. Tgfbr2 deficiency in the BM-derived cells also reduced the size of previously developed tumors in mice. We identified CCL2 as the major chemokine attracting MDSC to tumor, whose expression was Tgfbr2-dependent, whereas its receptor CCR2 was highly expressed in MDSC population. CCL2 alone was sufficient to induce migration of MDSC. Moreover, the CCR2 inhibitors prevented MDSC migration towards skin cells in vitro, reduced MDSC accumulation and Hh signaling-driven tumor development in mice. Our results reveal a signaling network critical for Hh signaling in cancer cells to establish an effective immune suppressive microenvironment during tumor development. PMID:24282281

  15. Effect of trichloropropene oxide on the ability of polyaromatic hydrocarbons and their "K-region" oxides to initiate skin tumors in mice and to bind to DNA in vitro.

    PubMed

    Berry, D L; Slaga, T J; Viaje, A; Wilson, N M; DiGiovanni, J; Juchau, M R; Selkirk, J K

    1977-04-01

    The potent epoxide hydrase inhibitor, 1,1,1-trichloro-2,3-propene oxide (TCPO), enhanced the tumor-initiating ability of benzo[alpha]pyrene (BP) and 3-methylcholanthrene (MCA) but had no effect on 9,10-dimethyl-1,2-anthracene (DMBA) initiation in a two-stage system of tumorigenesis in female Charles River CD-1 mice. The tumor-initiating ability of dibenz[alpha,h]-anthracene (DBA) was decreased by prior topical treatment with 10 mumoles of TCPO. The tumor latency period of BP and MCA was decreased by TCPO but had no effect on DMBA or DBA. Topical treatment with 10 mumoles of TCPO did not initiate tumors in a two-stage system in mouse skin nor did it cause any histopathologic changes in the skin. The "K-region" epoxides of BP, DMBA, and MCA were weak tumor initiators when compared to the parent compounds. TCPO only slightly increased or had no effect on the tumor-initiating activity of the above epoxides. Pretreatment with Croton oil 18 hours prior to initiation with BP-4,5-epoxide also slightly enhanced the tumorigenic response in mouse skin. DBA-5,6-epoxide, when tested as a complete carcinogen at high doses (1 mg daily/10 days), was found to be a weak carcinogen but with activity comparable to that of DBA. TCPO only slightly increased the in vitro epidermally mediated covalent binding of the above parent polycyclic hydrocarbons to DNA.

  16. Cellular events during scar-free skin regeneration in the spiny mouse, Acomys.

    PubMed

    Brant, Jason O; Yoon, Jung H; Polvadore, Trey; Barbazuk, William Brad; Maden, Malcolm

    2016-01-01

    In contrast to the lab mouse, Mus musculus, several species of spiny mouse, Acomys, can regenerate epidermis, dermis, hairs, sebaceous glands with smooth muscle erector pili muscles and skeletal muscle of the panniculus carnonsus after full thickness skin wounding. Here, we have compared the responses of these scarring and nonscarring organisms concentrating on the immune cells and wound cytokines, cell proliferation, and the collagenous components of the wound bed and scar. The blood of Acomys is very neutropenic but there are greater numbers of mast cells in the Acomys wound than the Mus wound. Most importantly there are no F4/80 macrophages in the Acomys wound and many proinflammatory cytokines are either absent or in very low levels which we suggest may be primarily responsible for the excellent regenerative properties of the skin of this species. There is little difference in cell proliferation in the two species either in the epidermis or mesenchymal tissues but the cell density and matrix composition of the wound is very different. In Mus there are 8 collagens which are up-regulated at least 5-fold in the wound creating a strongly trichrome-positive matrix whereas in Acomys there are very few collagens present and the matrix shows only light trichrome staining. The major component of the Mus matrix is collagen XII which is up-regulated between 10 and 30-fold after wounding. These results suggest that in the Acomys wound the absence of many cytokines resulting in the lack of macrophages is responsible for the failure to up-regulate fibrotic collagens, a situation which permits a regenerative response within the skin rather than the generation of a scar.

  17. Antitopoisomerase I monoclonal autoantibodies from scleroderma patients and tight skin mouse interact with similar epitopes.

    PubMed

    Muryoi, T; Kasturi, K N; Kafina, M J; Cram, D S; Harrison, L C; Sasaki, T; Bona, C A

    1992-04-01

    We have generated for the first time monoclonal antibodies (mAbs) specific for topoisomerase I (topo I) from scleroderma patients, and tight skin mice which develop a scleroderma-like syndrome. The epitope specificity of these antibodies has been determined using a series of fusion proteins containing contiguous portions of topo I polypeptide. Western blot analysis demonstrated that both human and mouse mAbs bound strongly to fusion protein C encompassing the NH2-terminal portion of the enzyme, and weakly to fusion proteins F and G containing regions close to the COOH-terminal end of the molecule. This crossreactivity is related to a tripeptide sequence homology in F, G, and C fusion proteins. It is interesting that a pentapeptide sequence homologous to that in fusion protein C was identified in the UL70 protein of cytomegalovirus, suggesting that activation of autoreactive B cell clones by molecular mimicry is possible. Both human and mouse mAbs exhibiting the same antigen specificity, also share an interspecies cross-reactive idiotope. These data suggest that B cell clones producing antitopo autoantibodies present in human and mouse repertoire are conserved during phylogeny, and are activated during the development of scleroderma disease.

  18. Antitopoisomerase I monoclonal autoantibodies from scleroderma patients and tight skin mouse interact with similar epitopes

    PubMed Central

    1992-01-01

    We have generated for the first time monoclonal antibodies (mAbs) specific for topoisomerase I (topo I) from scleroderma patients, and tight skin mice which develop a scleroderma-like syndrome. The epitope specificity of these antibodies has been determined using a series of fusion proteins containing contiguous portions of topo I polypeptide. Western blot analysis demonstrated that both human and mouse mAbs bound strongly to fusion protein C encompassing the NH2-terminal portion of the enzyme, and weakly to fusion proteins F and G containing regions close to the COOH-terminal end of the molecule. This crossreactivity is related to a tripeptide sequence homology in F, G, and C fusion proteins. It is interesting that a pentapeptide sequence homologous to that in fusion protein C was identified in the UL70 protein of cytomegalovirus, suggesting that activation of autoreactive B cell clones by molecular mimicry is possible. Both human and mouse mAbs exhibiting the same antigen specificity, also share an interspecies cross-reactive idiotope. These data suggest that B cell clones producing antitopo autoantibodies present in human and mouse repertoire are conserved during phylogeny, and are activated during the development of scleroderma disease. PMID:1372644

  19. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    PubMed

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  20. Scintillation Studies of the Mouse Mammary Tumor Virus with ^125I

    NASA Astrophysics Data System (ADS)

    Yazdi, Amir; Blue, Eric; Bradley, Eric; Majewski, Stan; Mohammed, Shira; Qian, Jianguo; Saha, Margaret; Schworer, Stephen; Sutton, Jonathan; Weisenberger, Andrew; Welsh, Robert

    2007-10-01

    We have applied the techniques of scintillation imaging to studies of the mouse mammary tumor virus (MMTV). In these studies, Sodium Iodide Symporter (NIS) transfers the radioactive ^125I to the mammary glands of lactating mice and in particular to those mammaries with visible tumors. These studies have principally been carried out using pixellated scintillators coupled to position sensitive photomultiplier tubes (PSPMTs). More recently, we have initiated such studies with a monolithic slab of LaBr3 scintillator coupled to an array of PSPMTs. Several techniques of mapping and measuring the development of such tumors have been employed. These will be discussed in detail and preliminary results will be reported.

  1. Evaluation of the factors influencing the radiosensitivity of mouse ascites tumors

    SciTech Connect

    Okamoto, M.; Tsuboi, A.; Tsuchiya, T.

    1983-02-01

    Factors influencing the radiosensitivity of the newly established mouse ascites tumor TMT-3 line were studied. In vivo radiosensitivity of the tumor cells decreased with the progression of the growth phase in mice. Oxygen depletion was the major cause of the decreased radiosensitivity. Polarographic measurement of the oxygen dissolved in suspension of various cell densities suggested that high cell density such as in the ascites might well cause severe hypoxia. Humoral factors in the ascites and cell-to-cell contact had no effect on tumor cell radiosensitivity when the influence of the repair of potentially lethal damage was excluded.

  2. Incidence of pigmented skin tumors in a population of wild Montseny brook newt (Calotriton arnoldi).

    PubMed

    Martínez-Silvestre, Albert; Amat, Fèlix; Bargalló, Ferran; Carranza, Salvador

    2011-04-01

    We report the presence of pigmented skin tumors in three populations of the endangered amphibian Montseny brook newt, Calotriton arnoldi, one of the European amphibian species with the smallest distribution range (40 km(2) in the Montseny Natural Park, Catalonia, Spain). Examination of one of the tumors by light microscopy was consistent with chromatophoroma and was most suggestive of a melanophoroma. Tumors were not found in juveniles. In adults, only two of three populations were affected. The proportions of males and females affected were not significantly different, but there was a positive correlation between body size and presence of tumors in both sexes. The etiology of chromatophoromas remains unknown but, in our study, they do not appear to have been caused by water quality or Ultraviolet B.

  3. Schistosoma japonicum migration through mouse skin compared histologically and immunologically with S. mansoni.

    PubMed

    Wang, Lin; Li, Yong-Long; Fishelson, Zvi; Kusel, John R; Ruppel, Andreas

    2005-02-01

    The migration of Schistosoma japonicum and S. mansoni through mouse skin epidermis and dermis was compared by immunofluorescence techniques from 4 to 22 h after infection. At all times, the percentage of parasites detected in the dermis was significantly higher for S. japonicum than for S. mansoni. Thus, S. japonicum migrates more rapidly very early after infection. This agrees with the quicker migration observed previously by this species for later times. Both species expressed antigens related to the cercarial glycocalyx on the parasite body and antigenically detectable elastase in the acetabular glands, at least until 22 h after infection. Bot sets of antigens were also left as "traces" in cercarial migration channels in the skin as well as in skin tissue in the absence of detectable worms or migration channels. The data further substantiate differences between schistosome species in the speed of migration, and suggest that glycocalyx-related antigens and cercarial elastase continue to be expressed for at least 1 day after infection.

  4. Codiffusion of propylene glycol and dimethyl isosorbide in hairless mouse skin.

    PubMed

    Squillante, E; Needham, T; Maniar, A; Kislalioglu, S; Zia, H

    1998-11-01

    The in vitro percutaneous fluxes of propylene glycol (PG), cis-oleic acid (OA) and dimethyl isosorbide (DI) were determined and their effect on nifedipine (N) flux and lag time evaluated. PG, OA and DI flux through hairless mouse (HM) skin was measured in vitro by beta-scintigraphy and N permeation was measured by HPLC under finite and infinite dose conditions. Evaluation of each of the solvents separately showed that pure DI possessed the inherent ability to traverse the skin (12% in 24 h). For the tested formulation after 24 h, 57% of the PG and 40% of the DI had permeated across the skin with nearly linear permeation between 4 and 18 h and the relative order of permeation was PG > DI > N. DI permeation was further aided in the presence of PG and OA. N flux was dependent on concomitant solvent permeation. Over a 24-h test period a dose dependent response was observed for N, with 4.9-15.6 mg of N delivered from the lowest and highest doses, respectively, and the highest dose yielding zero-order flux of 146 (g/h per cm2).

  5. Noninvasive Optical Imaging of UV-Induced Squamous Cell Carcinoma in Murine Skin: Studies of Early Tumor Development and Vitamin D Enhancement of Protoporphyrin IX Production.

    PubMed

    Rollakanti, Kishore R; Anand, Sanjay; Davis, Scott C; Pogue, Brian W; Maytin, Edward V

    2015-11-01

    Better noninvasive techniques are needed to monitor protoporphyrin IX (PpIX) levels before and during photodynamic therapy (PDT) of squamous cell carcinoma (SCC) of the skin. Our aim was to evaluate (1) multispectral fluorescent imaging of ultraviolet light (UV)-induced cancer and precancer in a mouse model of SCC and (2) multispectral imaging and probe-based fluorescence detection as a tool to study vitamin D (VD) effects on aminolevulinic acid (ALA)-induced PpIX synthesis. Dorsal skin of hairless mice was imaged weekly during a 24-week UV carcinogenesis protocol. Hot spots of PpIX fluorescence were detectable by multispectral imaging beginning at 14 weeks of UV exposure. Many hot spots disappeared after cessation of UV at week 20, but others persisted or became visible after week 20, and corresponded to tumors that eventually became visible by eye. In SCC-bearing mice pretreated with topical VD before ALA application, our optical techniques confirmed that VD preconditioning induces a tumor-selective increase in PpIX levels. Fluorescence-based optical imaging of PpIX is a promising tool for detecting early SCC lesions of the skin. Pretreatment with VD can increase the ability to detect early tumors, providing a potential new way to improve efficacy of ALA-PDT. © 2015 The American Society of Photobiology.

  6. Noninvasive Optical Imaging of UV-Induced Squamous Cell Carcinoma in Murine Skin: Studies of Early Tumor Development and Vitamin D Enhancement of Protoporphyrin IX Production

    PubMed Central

    Rollakanti, Kishore R.; Anand, Sanjay; Davis, Scott C.; Pogue, Brian W.; Maytin, Edward V.

    2015-01-01

    Better noninvasive techniques are needed to monitor protoporphyrin IX (PpIX) levels before and during photodynamic therapy (PDT) of squamous cell carcinoma (SCC) of the skin. Our aim was to evaluate: (1) multispectral fluorescent imaging of ultraviolet light (UV)-induced cancer and precancer in a mouse model of SCC; (2) multispectral imaging and probe-based fluorescence detection as a tool to study Vitamin D (VD) effects on aminolevulinic acid (ALA)-induced PpIX synthesis. Dorsal skin of hairless mice was imaged weekly during a 24-week UV carcinogenesis protocol. Hot spots of PpIX fluorescence were detectable by multispectral imaging beginning at 14 weeks of UV exposure. Many hot spots disappeared after cessation of UV at week 20, but others persisted or became visible after week 20, and corresponded to tumors that eventually became visible by eye. In SCC-bearing mice pretreated with topical VD before ALA application, our optical techniques confirmed that VD preconditioning induces a tumor-selective increase in PpIX levels. Fluorescence-based optical imaging of PpIX is a promising tool for detecting early SCC lesions of the skin. Pretreatment with VD can increase the ability to detect early tumors, providing a potential new way to improve efficacy of ALA-PDT. PMID:26223149

  7. Bioluminescence-Based Tumor Quantification Method for Monitoring Tumor Progression and Treatment Effects in Mouse Lymphoma Models

    PubMed Central

    Cosette, Jeremie; Ben Abdelwahed, Rym; Donnou-Triffault, Sabrina; Sautès-Fridman, Catherine

    2016-01-01

    Although bioluminescence imaging (BLI) shows promise for monitoring tumor burden in animal models of cancer, these analyses remain mostly qualitative. Here we describe a method for bioluminescence imaging to obtain a semi-quantitative analysis of tumor burden and treatment response. This method is based on the calculation of a luminoscore, a value that allows comparisons of two animals from the same or different experiments. Current BLI instruments enable the calculation of this luminoscore, which relies mainly on the acquisition conditions (back and front acquisitions) and the drawing of the region of interest (manual markup around the mouse). Using two previously described mouse lymphoma models based on cell engraftment, we show that the luminoscore method can serve as a noninvasive way to verify successful tumor cell inoculation, monitor tumor burden, and evaluate the effects of in situ cancer treatment (CpG-DNA). Finally, we show that this method suits different experimental designs. We suggest that this method be used for early estimates of treatment response in preclinical small-animal studies. PMID:27501019

  8. The effects of benzoflavones on polycyclic hydrocarbon metabolism and skin tumor initiation.

    PubMed

    Slaga, T J; Thompson, S; Berry, D L; Digiovanni, J; Juchau, M R; Viaje, A

    1977-06-01

    The effects of benzoflavones on skin tumor initiation by polycyclic hydrocarbons and epidermal aryl hydrocarbon hydroxylase were investigated. 7,8-Benzoflavone (7,8-BF) was found to be a potent inhibitor of the inhibition of skin tumors by 3-methylcholanthrene (MC) as well as 7,12-dimethylbenz(a)anthracene (DMBA). 5,6-Benzoflavone(5,6-BF) inhibited tumor initiation by MC and DMBA, but to a lesser degree than 7,8-BF. Dose-response studies of the capacity of 7,8-BF to inhibit DMBA tumor initiation revealed that 7,8-BF was an effective inhibitor at 2.5 microgram and a maximum inhibition of 90% occurred at 100 microgram of 7,8-FB. The tumor initiating ability of 7-hydroxymethyl-12-methylbenz(a)anthracene (7-OHMe-12MeBA) was not inhibited by 7,8-BF. Epidermal aryl hydrocarbon(benzo(a)pyrene hydroxylase(AHH) was increased by 5,6-BF and either had no effect or was slightly inhibited by 7,8-BF when given either topically or i.p. Both flavones when added directly to the assay tubes inhibited the in vitro epidermal AHH activity from control and MC pretreated mice by greater than 75%. When added in vitro, 7,8-BF and 5,6-BF inhibited epidermally mediated covalent binding of radioactive DMBA and dibenz(a,h)anthracene to DNA by 50% or more. The inhibition of skin tumor initiation by 7,8-BF and 5,6-BF appears to be partially related to its ability to inhibit the formation of electrophilic intermediates.

  9. Salient Points in Reconstruction of Nasal Skin after Tumor Ablation with Local Flaps

    PubMed Central

    Ebrahimi, Ali; Motamedi, Mohammad Hosein Kalantar; Nejadsarvari, Nasrin; Ebrahimi, Azin; Rasouli, Hamid Reza

    2016-01-01

    Objective: A variety of nasal skin reconstruction methods are available to meet the esthetic patient's needs. In this article, we review some of modifications of these procedures and share our experience in reconstruction of different parts of the nasal skin following skin tumor ablation. Patients and Methods: From January 2010 to January 2014, 171 patients underwent nasal skin reconstruction after excising cancerous lesions of the involved nasal skin. The patient's history, pre- and post-operation photographs, and the surgery data were collected and assessed. Demographic data related to the type of cancer, defect size and location, type of reconstruction were collected. Results: A variety of local flaps were used based on location and defect features. Nearly all flaps healed primarily without postsurgical significant complications. Conclusion: According to the results and the outcomes of the operations, we concluded that a certain flaps are more effective than others in nasal skin reconstruction. Local flap reconstruction of the nose has good esthetic result with low complication rate. PMID:27761088

  10. Salmonella Bacterial Monotherapy Reduces Autochthonous Prostate Tumor Burden in the TRAMP Mouse Model

    PubMed Central

    Kazmierczak, Robert A.; Gentry, Bettina; Mumm, Tyler; Schatten, Heide; Eisenstark, Abraham

    2016-01-01

    Attenuated Salmonella typhimurium injected in the circulatory system of mammals selectively targets tumors. Using weekly intraperitoneal injections of attenuated Salmonella strain CRC2631, we tested for regression and/or inhibition of tumor development in the TRAMP prostate tumor mouse model, which utilizes SV40 early region expression for autochthonous formation of prostate tumors that progress into metastatic, poorly differentiated prostatic carcinomas in an immunocompetent murine model. Thirteen weekly intraperitoneal administrations of 105–107 CFU CRC2631 into 10 week old mice were well tolerated by the TRAMP model. Sacrifice and histological analysis of TRAMP prostates at 22 weeks indicated that Salmonella monotherapy at administrated levels decrease visible tumor size (>29%) but did not significantly inhibit previously described SV40 expression-driven TRAMP tumor progression to undifferentiated carcinomas when histologically examined. In conclusion, this work demonstrates baseline results for CRC2631 Salmonella monotherapy using the immunocompetent TRAMP prostate tumor model in preparation for study of combination therapies that resolve autochthonously generated TRAMP prostate tumors, further reduce tumor size, or inhibit prostate tumor progression. PMID:27504973

  11. Epithelialization of mouse ovarian tumor cells originating in the fallopian tube stroma

    PubMed Central

    Hua, Yuanyuan; Choi, Pui-Wah; Trachtenberg, Alexander J.; Ng, Allen C.; Kuo, Winston P.; Ng, Shu-Kay; Dinulescu, Daniela M.; Matzuk, Martin M.; Berkowitz, Ross S.; Ng, Shu-Wing

    2016-01-01

    Epithelial ovarian carcinoma accounts for 90% of all ovarian cancer and is the most deadly gynecologic malignancy. Recent studies have suggested that fallopian tube fimbriae can be the origin of cells for high-grade serous subtype of epithelial ovarian carcinoma (HGSOC). A mouse HGSOC model with conditional Dicer-Pten double knockout (Dicer-Pten DKO) developed primary tumors, intriguingly, from the fallopian tube stroma. We examined the growth and epithelial phenotypes of the Dicer-Pten DKO mouse tumor cells contributable by each gene knockout. Unlike human ovarian epithelial cancer cells that expressed full-length E-cadherin, the Dicer-Pten DKO stromal tumor cells expressed cleaved E-cadherin fragments and metalloproteinase 2, a mixture of epithelial and mesenchymal markers. Although the Dicer-Pten DKO tumor cells lost the expression of mature microRNAs as expected, they showed high levels of tRNA fragment expression and enhanced AKT activation due to the loss of PTEN function. Introduction of a Dicer1-expressing construct into the DKO mouse tumor cells significantly reduced DNA synthesis and the cell growth rate, with concurrent diminished adhesion and ZO1 epithelial staining. Hence, it is likely that the loss of Dicer promoted mesenchymal-epithelial transition in fallopian tube stromal cells, and in conjunction with Pten loss, further promoted cell proliferation and epithelial-like tumorigenesis. PMID:27602775

  12. Overexpression of Galectin-7 in Mouse Epidermis Leads to Loss of Cell Junctions and Defective Skin Repair

    PubMed Central

    Dang, Tien; Deshayes, Frédérique; Delacour, Delphine; Pichard, Evelyne; Advedissian, Tamara; Sidhu, Sukhvinder S.; Viguier, Mireille; Magnaldo, Thierry; Poirier, Francoise

    2015-01-01

    Background The proteins of the galectin family are implicated in many cellular processes, including cell interactions, polarity, intracellular trafficking, and signal transduction. In human and mouse, galectin-7 is almost exclusively expressed in stratified epithelia, notably in the epidermis. Galectin-7 expression is also altered in several human tumors of epithelial origin. This study aimed at dissecting the consequences of galectin-7 overexpression on epidermis structure and functions in vivo. Methods We established transgenic mice specifically overexpressing galectin-7 in the basal epidermal keratinocytes and analyzed the consequences on untreated skin and after UVB irradiation or mechanical injury. Results The intercellular cohesion of the epidermis is impaired in transgenic animals, with gaps developing between adjacent keratinocytes, associated with loss of adherens junctions. The epidermal architecture is aberrant with perturbations in the multilayered cellular organisation of the tissue, and structural defects in the basement membrane. These transgenic animals displayed a reduced re-epithelialisation potential following superficial wound, due to a defective collective migration of keratinocytes. Finally, a single mild dose of UVB induced an abnormal apoptotic response in the transgenic epidermis. Conclusion These results indicate that an excess of galectin-7 leads to a destabilisation of adherens junctions associated with defects in epidermal repair. As this phenotype shares similarities with that of galectin-7 null mutant mice, we conclude that a critical level of this protein is required for maintaining proper epidermal homeostasis. This study brings new insight into the mode of action of galectins in normal and pathological situations. PMID:25741714

  13. Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair.

    PubMed

    Gendronneau, Gaëlle; Sanii, Sadaf; Dang, Tien; Deshayes, Frédérique; Delacour, Delphine; Pichard, Evelyne; Advedissian, Tamara; Sidhu, Sukhvinder S; Viguier, Mireille; Magnaldo, Thierry; Poirier, Francoise

    2015-01-01

    The proteins of the galectin family are implicated in many cellular processes, including cell interactions, polarity, intracellular trafficking, and signal transduction. In human and mouse, galectin-7 is almost exclusively expressed in stratified epithelia, notably in the epidermis. Galectin-7 expression is also altered in several human tumors of epithelial origin. This study aimed at dissecting the consequences of galectin-7 overexpression on epidermis structure and functions in vivo. We established transgenic mice specifically overexpressing galectin-7 in the basal epidermal keratinocytes and analyzed the consequences on untreated skin and after UVB irradiation or mechanical injury. The intercellular cohesion of the epidermis is impaired in transgenic animals, with gaps developing between adjacent keratinocytes, associated with loss of adherens junctions. The epidermal architecture is aberrant with perturbations in the multilayered cellular organisation of the tissue, and structural defects in the basement membrane. These transgenic animals displayed a reduced re-epithelialisation potential following superficial wound, due to a defective collective migration of keratinocytes. Finally, a single mild dose of UVB induced an abnormal apoptotic response in the transgenic epidermis. These results indicate that an excess of galectin-7 leads to a destabilisation of adherens junctions associated with defects in epidermal repair. As this phenotype shares similarities with that of galectin-7 null mutant mice, we conclude that a critical level of this protein is required for maintaining proper epidermal homeostasis. This study brings new insight into the mode of action of galectins in normal and pathological situations.

  14. Targeting Tumor Vasculature Endothelial Cells and Tumor Cells for Immunotherapy of Human Melanoma in a Mouse Xenograft Model

    NASA Astrophysics Data System (ADS)

    Hu, Zhiwei; Sun, Ying; Garen, Alan

    1999-07-01

    An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells.

  15. Chemo-immunotherapy induces tumor regression in a mouse model of spontaneous mammary carcinogenesis

    PubMed Central

    Carpinelli, Giulia; Canese, Rossella; Cecchetti, Serena; Schiavoni, Giovanna; D'Urso, Maria Teresa; Belardelli, Filippo; Proietti, Enrico

    2016-01-01

    Tumor-specific immune tolerance represents an obstacle for the development of effective anti-tumor immune responses through cancer vaccines. We here evaluated the efficacy of chemo-immunotherapy in breaking tumor-specific immune tolerance in an almost incurable mouse model of spontaneous carcinogenesis. Transgenic HER-2/neu mice bearing large mammary tumors received the adoptive transfer of splenocytes and serum isolated from immune donors, with or without pre-conditioning with cyclophosphamide. Treatment efficacy was assessed by monitoring tumor growth by manual inspection and by magnetic resonance imaging. The same chemo-immunotherapy protocol was tested on tumor-free HER-2/neu mice, to evaluate the effects on tumor emergence. Our data show that chemo-immunotherapy hampered carcinogenesis and caused the regression of large mammary tumor lesions in tumor-bearing HER-2/neu mice. The complete eradication of a significant number of tumor lesions occurred only in mice receiving cyclophosphamide shortly before immunotherapy, and was associated with increased serum anti HER-2/p185 antibodies and tumor leukocyte infiltration. The same protocol significantly delayed the appearance of mammary tumors when administered to tumor-free HER-2/neu mice, indicating that this chemo-immunotherapy approach acted through the elicitation of an effective anti-tumor immune response. Overall, our data support the immune-modulatory role of chemotherapy in overcoming cancer immune tolerance when administered at lymphodepleting non-myeloablative doses shortly before transfer of antigen-specific immune cells and immunoglobulins. These findings open new perspectives on combining immune-modulatory chemotherapy and immunotherapy to overcome immune tolerance in cancer patients. PMID:27486759

  16. New mouse tumor model system (RIF-1) for comparison of end-point studies

    SciTech Connect

    Twentyman, P.R.; Brown, J.M.; Gray, J.W.; Franko, A.J.; Scoles, M.A.; Kallman, R.F.

    1980-03-01

    A new tumor model system (RIF-1) was developed that is very suitable for studies in which clonogenic survival is compared with growth delay and control probability following various forms of treatment. The tumor was a radiation-induced sarcoma in the inbred female C3H/Km mouse. It had a low median tumor dose, had a satisfactory plating efficiency direct from in vivo to in vitro, was nonimmunogenic or minimally immunogenic, and metastasized only at a relatively advanced stage of growth. The cell line grew either as a monolayer on plastic dishes, as tumor spheroids in spinner culture, as lung nodules following injection of a single-cell suspension into the tall veins of syngeneic mice, or as a solid tumor. Both diploid and tetraploid clonogenic cells were found in monolayer cultures of the RIF-1 line.

  17. Effect of intermittent fasting on prostate cancer tumor growth in a mouse model.

    PubMed

    Thomas, J A; Antonelli, J A; Lloyd, J C; Masko, E M; Poulton, S H; Phillips, T E; Pollak, M; Freedland, S J

    2010-12-01

    Caloric restriction (CR) has been shown to have anti-cancer properties. However, CR may be difficult to apply in humans secondary to compliance and potentially deleterious effects. An alternative is intermittent CR, or in the extreme case intermittent fasting (IF). In a previous small pilot study, we found 2 days per week of IF with ad libitum feeding on the other days resulted in trends toward prolonged survival of mice bearing prostate cancer xenografts. We sought to confirm these findings in a larger study. A total of 100 (7- to 8-week-old) male severe combined immunodeficiency mice were injected subcutaneously with 1 × 10(5) LAPC-4 prostate cancer cells. Mice were randomized to either ad libitum Western Diet (44% carbohydrates, 40% fat and 16% protein) or ad libitum Western Diet with twice-weekly 24 h fasts (IF). Tumor volumes and mouse bodyweights were measured twice weekly. Mice were killed when tumor volumes reached 1000 mm(3). Serum and tumor were collected for analysis of the insulin/insulin-like growth factor 1 (IGF-1) hormonal axis. Overall, there was no difference in mouse survival (P=0.37) or tumor volumes (P ≥ 0.10) between groups. Mouse body weights were similar between arms (P=0.84). IF mice had significantly higher serum IGF-1 levels and IGF-1/IGFBP-3 ratios at killing (P<0.001). However, no difference was observed in serum insulin, IGFBP-3 or tumor phospho-Akt levels (P ≥ 0.39). IF did not improve mouse survival nor did it delay prostate tumor growth. This may be secondary to metabolic adaptations to the 24 h fasting periods. Future studies are required to optimize CR for application in humans.

  18. Bisected, complex N-glycans and galectins in mouse mammary tumor progression and human breast cancer

    PubMed Central

    Miwa, Hazuki E; Koba, Wade R; Fine, Eugene J; Giricz, Orsi; Kenny, Paraic A; Stanley, Pamela

    2013-01-01

    Bisected, complex N-glycans on glycoproteins are generated by the glycosyltransferase MGAT3 and cause reduced cell surface binding of galectins. Previously, we showed that MGAT3 reduces growth factor signaling and retards mammary tumor progression driven by the Polyoma middle T antigen (PyMT) expressed in mammary epithelium under the mouse mammary tumor virus (MMTV) promoter. However, the penetrance of the tumor phenotype became variable in mixed FVB/N and C57BL/6 female mice and we therefore investigated a congenic C57BL/6 Mgat3−/−/MMTV-PyMT model. In the absence of MGAT3, C57BL/6 Mgat3−/−/MMTV-PyMT females exhibited accelerated tumor appearance and increased tumor burden, glucose uptake in tumors and lung metastasis. Nevertheless, activation of extracellular signal-regulated kinase (ERK)1/2 or protein kinase B (AKT) was reduced in ∼20-week C57BL/6 MMTV-PyMT tumors lacking MGAT3. Activation of focal adhesion kinase (FAK), protein tyrosine kinase Src, and p38 mitogen-activated protein kinase were similar to that of controls. All the eight mouse galectin genes were expressed in mammary tumors and tumor epithelial cells (TECs), but galectin-2 and -12 were not detected by western analysis in tumors, and galectin-7 was not detected in 60% of the TEC lines. From microarray data reported for human breast cancers, at least 10 galectin and 7 N-glycan N-acetylglucosaminyl (GlcNAc)-transferase (MGAT) genes are expressed in tumor tissue, and expression often varies significantly between different breast cancer subtypes. Thus, in summary, while MGAT3 and bisected complex N-glycans retard mouse mammary tumor progression, genetic background may modify this effect; identification of key galectins that promote mammary tumor progression in mice is not straightforward because all the eight galectin genes are expressed; and high levels of MGAT3, galectin-4, -8, -10, -13 and -14 transcripts correlate with better relapse-free survival in human breast cancer. PMID:24037315

  19. Bisected, complex N-glycans and galectins in mouse mammary tumor progression and human breast cancer.

    PubMed

    Miwa, Hazuki E; Koba, Wade R; Fine, Eugene J; Giricz, Orsi; Kenny, Paraic A; Stanley, Pamela

    2013-12-01

    Bisected, complex N-glycans on glycoproteins are generated by the glycosyltransferase MGAT3 and cause reduced cell surface binding of galectins. Previously, we showed that MGAT3 reduces growth factor signaling and retards mammary tumor progression driven by the Polyoma middle T antigen (PyMT) expressed in mammary epithelium under the mouse mammary tumor virus (MMTV) promoter. However, the penetrance of the tumor phenotype became variable in mixed FVB/N and C57BL/6 female mice and we therefore investigated a congenic C57BL/6 Mgat3(-/-)/MMTV-PyMT model. In the absence of MGAT3, C57BL/6 Mgat3(-/-)/MMTV-PyMT females exhibited accelerated tumor appearance and increased tumor burden, glucose uptake in tumors and lung metastasis. Nevertheless, activation of extracellular signal-regulated kinase (ERK)1/2 or protein kinase B (AKT) was reduced in ∼20-week C57BL/6 MMTV-PyMT tumors lacking MGAT3. Activation of focal adhesion kinase (FAK), protein tyrosine kinase Src, and p38 mitogen-activated protein kinase were similar to that of controls. All the eight mouse galectin genes were expressed in mammary tumors and tumor epithelial cells (TECs), but galectin-2 and -12 were not detected by western analysis in tumors, and galectin-7 was not detected in 60% of the TEC lines. From microarray data reported for human breast cancers, at least 10 galectin and 7 N-glycan N-acetylglucosaminyl (GlcNAc)-transferase (MGAT) genes are expressed in tumor tissue, and expression often varies significantly between different breast cancer subtypes. Thus, in summary, while MGAT3 and bisected complex N-glycans retard mouse mammary tumor progression, genetic background may modify this effect; identification of key galectins that promote mammary tumor progression in mice is not straightforward because all the eight galectin genes are expressed; and high levels of MGAT3, galectin-4, -8, -10, -13 and -14 transcripts correlate with better relapse-free survival in human breast cancer.

  20. The prognosis of tumors with only microscopic skin involvement without clinical T4b signs is significantly better than T4b tumors in breast carcinoma.

    PubMed

    Duraker, Nüvit; Batı, Bakır; Caynak, Zeynep Civelek; Demir, Davut; Kurtuluş, Idris

    2011-01-01

    The number of studies forming a base for tumor (T)-node (N)-metastasis (M) classification by comparing T4b tumors with only histological skin involvement in breast carcinoma is limited and results are contradictory. In this study, the survival of patients with T4b tumor and patients whose tumor had only microscopic skin involvement without clinical T4b signs were compared. The file records of 101 patients with T4b tumor (group A) and 79 patients whose tumor had only microscopic skin involvement (group B) were reviewed. The endpoint was disease recurrence. For the whole series, disease-free survival (DFS) of group B patients was significantly better compared with group A patients treated with either adjuvant (p<0.001) or neoadjuvant (p<0.001) therapies. When patients were subgrouped according to tumor size, DFS of group B patients was significantly better than group A patients receiving either adjuvant or neoadjuvant therapy for all tumor size subgroups of ≤3, >3, ≤5, and >5cm. Presence of T4b clinical signs had independent prognostic value in multivariate Cox analysis. In conclusion, tumors with only histological skin involvement without clinical T4b signs should be classified as T1-T3 according to their size instead of T4 as stated in the TNM classification. © 2010 Wiley Periodicals, Inc.

  1. Biological and metabolic response in STS-135 space-flown mouse skin.

    PubMed

    Mao, X W; Pecaut, M J; Stodieck, L S; Ferguson, V L; Bateman, T A; Bouxsein, M L; Gridley, D S

    2014-08-01

    There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p < 0.05) altered in the flight group, with fold changes >1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p < 0.05) between space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue.

  2. Compressive Viscoelasticity of Freshly Excised Mouse Skin Is Dependent on Specimen Thickness, Strain Level and Rate

    PubMed Central

    Wang, Yuxiang; Marshall, Kara L.; Baba, Yoshichika; Lumpkin, Ellen A.; Gerling, Gregory J.

    2015-01-01

    Although the skin’s mechanical properties are well characterized in tension, little work has been done in compression. Here, the viscoelastic properties of a population of mouse skin specimens (139 samples from 36 mice, aged 5 to 34 weeks) were characterized upon varying specimen thickness, as well as strain level and rate. Over the population, we observed the skin’s viscoelasticity to be quite variable, yet found systematic correlation of residual stress ratio with skin thickness and strain, and of relaxation time constants with strain rates. In particular, as specimen thickness ranged from 211 to 671 μm, we observed significant variation in both quasi-linear viscoelasticity (QLV) parameters, the relaxation time constant (τ1 = 0.19 ± 0.10 s) and steady-state residual stress ratio (G∞ = 0.28 ± 0.13). Moreover, when τ1 was decoupled and fixed, we observed that G∞ positively correlated with skin thickness. Second, as steady-state stretch was increased (λ∞ from 0.22 to 0.81), we observed significant variation in both QLV parameters (τ1 = 0.26 ± 0.14 s, G∞ = 0.47 ± 0.17), and when τ1 was fixed, G∞ positively correlated with stretch level. Third, as strain rate was increased from 0.06 to 22.88 s−1, the median time constant τ1 varied from 1.90 to 0.31 s, and thereby negatively correlated with strain rate. These findings indicate that the natural range of specimen thickness, as well as experimental controls of compression level and rate, significantly influence measurements of skin viscoelasticity. PMID:25803703

  3. Thresholds for hemorrhages in mouse skin and intestine induced by lithotripter shock waves.

    PubMed

    Miller, D L; Thomas, R M

    1995-01-01

    In vivo biological effects of ultrasound should be characterized as thermal or cavitational to understand their etiology and significance. A spark-gap shock-wave lithotripter was built and used to compare cavitation-induced hemorrhages to the heat-induced petechial hemorrhages caused by continuous-wave ultrasound in mouse intestine. Intestinal hemorrhages induced in anesthetized hairless mice by the lithotripter pulses involved tissue destruction with bleeding into the lumen of the intestine, and were associated with intestinal gas bubbles. Skin hemorrhages were also observed, which appeared to be contusions, with no actual breakage of the skin. Administration of 100 shock waves with peak positive amplitude of 18.5 MPa produced an average of 7.6 (standard error [SE] 3.1, n = 6) intestinal hemorrhages and 45 (SE 11) skin hemorrhages. The counts and severity of hemorrhages increased with increasing numbers (3 to 300) of shock waves. Absorbers of varying thickness were used to reduce the pressure amplitude of the shock waves, which were thereby modified into low frequency ultrasound pulses. For 100 pulse exposures, apparent thresholds for effects occurred between 1.6 and 4.0 MPa for the intestinal hemorrhages and between 0.6 and 1.6 MPa for the skin hemorrhages. The low 1-Hz pulse repetition frequency precluded significant heating, and so these effects were the result of cavitation, which probably occurred inside the intestines or in the surrounding water. Compared to the previously observed thermal petechia, the cavitation-induced hemorrhages could be distinguished on the basis of their appearance upon histological examination, and also by the relative values of the thermal and mechanical exposure indices associated with the two different exposure modes.

  4. Riboflavin as adjuvant with cisplatin: study in mouse skin cancer model.

    PubMed

    Salman, Maria; Naseem, Imrana

    2015-01-01

    Cisplatin used in treatment of solid tumor induces oxidative stress which leads to hepatotoxicity and nephrotoxicity. New strategies are therefore needed to combat toxicity and optimize its therapeutic potential. Riboflavin (VitaminB2) under photoillumination works as an anti proliferative agent and induces apoptosis. These properties of riboflavin have been exploited to mitigate cisplatin induced toxicities. 9,10-dimethylbenz(a)anthracene /12-O-tetradecanoylphorbol-13-acetate  were used to induce skin tumor in Swiss albino mice. The tumor induced mice were treated with cisplatin, riboflavin as well as their combination under photo illumination. In comparison to tumor control group the cisplatin and riboflavin treated groups showed a compromised level of antioxidant enzymes, functional markers and a higher degree of lipid peroxidation. However these parameters tended towards normal in the combination treated group. The results from histopathology indicate that apoptosis was favored mode of cell death and that necrosis was reduced in combination treated groups. Our findings indicate that combination of cisplatin with riboflavin under photo illumination synergizes its anti cancer activity towards cancer cells and attenuates the cisplatin induced toxicities.

  5. Dermal Delivery of Constructs Encoding Cre Recombinase to Induce Skin Tumors in PtenLoxP/LoxP;BrafCA/+ Mice

    PubMed Central

    Deken, Marcel A.; Song, Ji-Ying; Gadiot, Jules; Bins, Adriaan D.; Kroon, Paula; Verbrugge, Inge; Blank, Christian U.

    2016-01-01

    Current genetically-engineered mouse melanoma models are often based on Tyr::CreERT2-controlled MAPK pathway activation by the BRAFV600E mutation and PI3K pathway activation by loss of PTEN. The major drawback of these models is the occurrence of spontaneous tumors caused by leakiness of the Tyr::CreERT2 system, hampering long-term experiments. To address this problem, we investigated several approaches to optimally provide local delivery of Cre recombinase, including injection of lentiviral particles, DNA tattoo administration and particle-mediated gene transfer, to induce melanomas in PtenLoxP/LoxP;BrafCA/+ mice lacking the Tyr::CreERT2 allele. We found that dermal delivery of the Cre recombinase gene under the control of a non-specific CAG promoter induced the formation of melanomas, but also keratoacanthoma and squamous cell carcinomas. Delivery of Cre recombinase DNA under the control of melanocyte-specific promoters in PtenLoxP/LoxP;BrafCA/+ mice resulted in sole melanoma induction. The growth rate and histological features of the induced tumors were similar to 4-hydroxytamoxifen-induced tumors in Tyr::CreERT2;PtenLoxP/LoxP;BrafCA/+ mice, while the onset of spontaneous tumors was prevented completely. These novel induction methods will allow long-term experiments in mouse models of skin malignancies. PMID:27999416

  6. Polyamines and nonmelanoma skin cancer

    SciTech Connect

    Gilmour, Susan K.

    2007-11-01

    Elevated levels of polyamines have long been associated with skin tumorigenesis. Tightly regulated metabolism of polyamines is critical for cell survival and normal skin homeostasis, and these controls are dysregulated in skin tumorigenesis. A key enzyme in polyamine biosynthesis, ornithine decarboxylase (ODC) is upregulated in skin tumors compared to normal skin. Use of transgenic mouse models has demonstrated that polyamines play an essential role in the early promotional phase of skin tumorigenesis. The formation of skin tumors in these transgenic mice is dependent upon polyamine biosynthesis, especially putrescine, since treatment with inhibitors of ODC activity blocks the formation of skin tumors and causes the rapid regression of existing tumors. Although the mechanism by which polyamines promote skin tumorigenesis are not well understood, elevated levels of polyamines have been shown to stimulate epidermal proliferation, alter keratinocyte differentiation status, increase neovascularization, and increase synthesis of extracellular matrix proteins in a manner similar to that seen in wound healing. It is becoming increasingly apparent that elevated polyamine levels activate not only epidermal cells but also underlying stromal cells in the skin to promote the development and progression of skin tumors. The inhibition of polyamine biosynthesis has potential to be an effective chemoprevention strategy for nonmelanoma skin cancer.

  7. Targeting of Ras-mediated FGF signaling suppresses Pten-deficient skin tumor.

    PubMed

    Mathew, Grinu; Hannan, Abdul; Hertzler-Schaefer, Kristina; Wang, Fen; Feng, Gen-Sheng; Zhong, Jian; Zhao, Jean J; Downward, Julian; Zhang, Xin

    2016-11-15

    Deficiency in PTEN (phosphatase and tensin homolog deleted on chromosome 10) is the underlying cause of PTEN hamartoma tumor syndrome and a wide variety of human cancers. In skin epidermis, we have previously identified an autocrine FGF signaling induced by loss of Pten in keratinocytes. In this study, we demonstrate that skin hyperplasia requires FGF receptor adaptor protein Frs2α and tyrosine phosphatase Shp2, two upstream regulators of Ras signaling. Although the PI3-kinase regulatory subunits p85α and p85β are dispensable, the PI3-kinase catalytic subunit p110α requires interaction with Ras to promote hyperplasia in Pten-deficient skin, thus demonstrating an important cross-talk between Ras and PI3K pathways. Furthermore, genetic and pharmacological inhibition of Ras-MAPK pathway impeded epidermal hyperplasia in Pten animals. These results reveal a positive feedback loop connecting Pten and Ras pathways and suggest that FGF-activated Ras-MAPK pathway is an effective therapeutic target for preventing skin tumor induced by aberrant Pten signaling.

  8. Effects of peroxides on rodent skin: epidermal hyperplasia and tumor promotion

    SciTech Connect

    Klein-Szanto, A.J.P.; Slaga, T.J.

    1982-01-01

    Free radical generating peroxides are potent skin irritants. After a single topical application of either 10, 20, or 40 mg of lauroyl peroxide or benzoyl peroxide on the dorsal skin of Sencar mice, the epidermal thickness increased markedly. No major inflammatory or vascular alterations were noted. On the other hand, 15 or 30% hydrogen peroxide produced an extensive epidermolysis, as well as inflammation and vascular injury, followed by quick regeneration and epidermal hyperplasia. Both lauroyl peroxide- and benzoyl peroxide-induced hyperplasias were characterized by a sustained production of dark basal keratinocytes, which constituted approximately 10% of the basal cell population during the first week after single topical application. Hydrogen peroxide-induced epidermal hyperplasias also exhibited numerous dark cells, buth their presence was less sustained. Although all these peroxides were inactive either as initiators or as complete carcinogens, lauroyl peroxide was as effective as benzoyl peroxide when used as a skin tumor promoter in a two-stage carcinogenesis protocol. In a similar experimental protocol, hydrogen peroxide proved to be a very weak skin tumor promoter.

  9. TIPE2 regulates tumor-associated macrophages in skin squamous cell carcinoma.

    PubMed

    Li, Xin

    2016-04-01

    Tumor-associated macrophages (TAMs) play an essential role in the immunology, growth, invasion, and metastases of skin squamous cell carcinoma (SCC). However, the molecular mechanisms underlying the activation and regulation of TAMs by SCC are not completely understood. Here, in a Transwell co-culture system, we found that SCC cells induced polarization of macrophages to a M2 phenotype, evident by expression of surface markers CD163, CD206, and CD301, as well as reduction of cellular iNOS levels and augmentation of cellular arginase levels. Moreover, tumor necrosis factor (TNF)-alpha-induced protein 8-like 2 (TIPE2) was induced in macrophages by co-culturing with SCC cells. Depletion of TIPE2 in macrophages abolished the effects of co-cultured SCC cells on phenotypic modification of macrophages. Furthermore, patients with SCC were divided into two groups based on TIPE2 levels in TAMs at the time of tumor resection. We found that patients with high-TIPE2 TAMs had an overall poor 5-year survival. Together, our data suggest a previously unappreciated role of TIPE2 in the crosstalk between skin SCC and TAMs and highlight TIPE2 as a promising novel target for skin SCC treatment.

  10. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity.

    PubMed

    Nguyen-Hoai, Tam; Kobelt, Dennis; Hohn, Oliver; Vu, Minh D; Schlag, Peter M; Dörken, Bernd; Norley, Steven; Lipp, Martin; Walther, Wolfgang; Pezzutto, Antonio; Westermann, Jörg

    2012-12-01

    DNA vaccines are potential tools for the induction of immune responses against both infectious disease and cancer. The dermal application of DNA vaccines is of particular interest since the epidermal and dermal layers of the skin are characterized by an abundance of antigen-presenting cells (APCs). The aim of our study was to compare tumor protection as obtained by two different methods of intradermal DNA delivery (gene gun and jet injector) in a well-established HER2/neu mouse tumor model. BALB/c mice were immunized twice with a HER2/neu-coding plasmid by gene gun or jet injector. Mice were then subcutaneously challenged with HER2/neu(+) syngeneic D2F2/E2 tumor cells. Protection against subsequent challenges with tumor cells as well as humoral and T-cell immune responses induced by the vaccine were monitored. Gene gun immunization was far superior to jet injector both in terms of tumor protection and induction of HER2/neu-specific immune responses. After gene gun immunization, 60% of the mice remained tumor-free until day 140 as compared with 25% after jet injector immunization. Furthermore, gene gun vaccination was able to induce both a strong T(H)1-polarized T-cell response with detectable cytotoxic T-lymphocyte (CTL) activity and a humoral immune response against HER2/neu, whereas the jet injector was not. Although the disadvantages that were associated with the use of the jet injector in our model may be overcome with methodological modifications and/or in larger animals, which exhibit a thicker skin and/or subcutaneous muscle tissue, we conclude that gene gun delivery constitutes the method of choice for intradermal DNA delivery in preclinical mouse models and possibly also for the clinical development of DNA-based vaccines.

  11. Transdermal prodrug concepts: permeation of buprenorphine and its alkyl esters through hairless mouse skin and influence of vehicles.

    PubMed

    Imoto, H; Zhou, Z; Stinchcomb, A L; Flynn, G L

    1996-02-01

    In vitro skin permeation of buprenorphine (BUP) and three of its alkyl ester prodrugs was evaluated using hairless mouse skin. The three esters selected were the acetyl ester (Ac-BUP), butyl ester (Bu-BUP), and isobutyl ester (Isb-BUP). These drugs were applied on the skin as saturated slurries in three vehicles commonly used to formulate agents for transdermal purposes: propylene glycol, polyethylene glycol 400 (PEG 400), and light mineral oil. Unique solubilities were found for each drug on each vehicle. Fluxes through hairless mouse skin were evaluated for each combination of drug and vehicle using Franz diffusion cells. From PEG 400 formulations, the skin fluxes of BUP, Ac-BUP, Bu-BUP, and Isb-BUP were 0.47 +/- 0.08, 1.64 +/- 0.31, 0.33 +/- 0.05, 0.75 +/- 0.20 micrograms/cm2/h, respectively. Thus, among the three potential prodrugs chosen, only Ac-BUP showed significantly higher skin flux than BUP. There were no inter-vehicle differences in the fluxes from saturated slurries between the vehicles. Moreover, all the esters were detected substantially in the form of regenerated parent drug (BUP) in the receptor compartment. Indeed, only Ac-BUP exited the skin in a measurably intact form, but the fraction escaping metabolism in transit was small (approximately 2%). However, based on drug dispositions in the skin, the regeneration of buprenorphine seems to depend on the alkyl chain length of the ester moiety. The molar percentages of regenerated parent drug in whole drug collected from the skin following the permeation experiments were: Ac-BUP, 9.2%; Bu-BUP, 40.7%; Isb-BUP, 9.6%, respectively. Thus, only Ac-BUP appears promising as a prodrug of buprenorphine, because it is not overly hydrophilic for skin permeation and is also highly metabolized to the parent compound while in the skin.

  12. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression.

    PubMed

    Neufert, Clemens; Becker, Christoph; Neurath, Markus F

    2007-01-01

    Colorectal cancer is a life-threatening disease that can develop spontaneously or as a complication of inflammatory bowel diseases. Mouse models are essential tools for the preclinical testing of novel therapeutic options in vivo. Here, we provide a highly reliable protocol for an experimental mouse model to study the development of colon cancers. It is based on the mutagenic agent azoxymethane (AOM), which exerts colonotropic carcinogenicity. Repeated intraperitoneal administration of AOM results in the development of spontaneous tumors within 30 weeks. As an alternative option, inflammation-dependent tumor growth can be investigated by combining the administration of AOM with the inflammatory agent dextran sodium sulfate in drinking water, which causes rapid growth of multiple colon tumors per mouse within 10 weeks. Different scoring systems including number of tumors and tumor size identify factors promoting or inhibiting tumor initiation and/or tumor progression, respectively.

  13. Modulatory influence of chlorophyllin on the mouse skin papillomagenesis and xenobiotic detoxication system.

    PubMed

    Singh, A; Singh, S P; Bamezai, R

    1996-07-01

    The present study evaluates the modulatory potential of chlorophyllin (CHL) on the murine skin papillomagenesis pattern and its influence on the levels of biotransformation system enzymes. Topical application of CHL (100 mg/kg body weight/day) during peri-, post- or peri- and post-initiational stages of 7,12-dimethylbenz[a]anthracene (DMBA)-induced papillomagenesis, significantly (P < 0.01) reduced the (i) tumor burden to 3.68, 3.56 and 3.33 (positive control value: 5.89); (ii) cumulative number of papillomas to 59, 57 and 60 (positive control value: 112); and (iii) incidence of mice bearing papillomas to 88%, 88% and 90%, respectively (positive control value 100%). CHL treatment alone or during peri-, post-, or peri- and post-initiational stages significantly elevated the glutathione S-transferase (GST) and -SH levels in the liver and skin tissue of the murine system. The potential of CHL in modulating the process of carcinogenesis is suggested by the altered levels of biotransformation system enzymes. The implications of the biochemical changes and inhibition of tumor incidence by CHL are discussed.

  14. Fluorescence laparoscopy imaging of pancreatic tumor progression in an orthotopic mouse model

    PubMed Central

    Tran Cao, Hop S.; Kaushal, Sharmeela; Lee, Claudia; Snyder, Cynthia S.; Thompson, Kari J.; Horgan, Santiago; Talamini, Mark A.; Hoffman, Robert M.

    2010-01-01

    Background The use of fluorescent proteins to label tumors is revolutionizing cancer research, enabling imaging of both primary and metastatic lesions, which is important for diagnosis, staging, and therapy. This report describes the use of fluorescence laparoscopy to image green fluorescent protein (GFP)-expressing tumors in an orthotopic mouse model of human pancreatic cancer. Methods The orthotopic mouse model of human pancreatic cancer was established by injecting GFP-expressing MiaPaCa-2 human pancreatic cancer cells into the pancreas of 6-week-old female athymic mice. On postoperative day 14, diagnostic laparoscopy using both white and fluorescent light was performed. A standard laparoscopic system was modified by placing a 480-nm short-pass excitation filter between the light cable and the laparoscope in addition to using a 2-mm-thick emission filter. A camera was used that allowed variable exposure time and gain setting. For mouse laparoscopy, a 3-mm 0° laparoscope was used. The mouse’s abdomen was gently insufflated to 2 mm Hg via a 22-gauge angiocatheter. After laparoscopy, the animals were sacrificed, and the tumors were collected and processed for histologic review. The experiments were performed in triplicate. Results Fluorescence laparoscopy enabled rapid imaging of the brightly fluorescent tumor in the pancreatic body. Use of the proper filters enabled simultaneous visualization of the tumor and the surrounding structures with minimal autofluorescence. Fluorescence laparoscopy thus allowed exact localization of the tumor, eliminating the need to switch back and forth between white and fluorescence lighting, under which the background usually is so darkened that it is difficult to maintain spatial orientation. Conclusion The use of fluorescence laparoscopy permits the facile, real-time imaging and localization of tumors labeled with fluorescent proteins. The results described in this report should have important clinical potential. PMID:20533064

  15. Circadian Clock in a Mouse Colon Tumor Regulates Intracellular Iron Levels to Promote Tumor Progression*

    PubMed Central

    Okazaki, Fumiyasu; Matsunaga, Naoya; Okazaki, Hiroyuki; Azuma, Hiroki; Hamamura, Kengo; Tsuruta, Akito; Tsurudome, Yuya; Ogino, Takashi; Hara, Yukinori; Suzuki, Takuya; Hyodo, Kenji; Ishihara, Hiroshi; Kikuchi, Hiroshi; To, Hideto; Aramaki, Hironori; Koyanagi, Satoru; Ohdo, Shigehiro

    2016-01-01

    Iron is an important biological catalyst and is critical for DNA synthesis during cell proliferation. Cellular iron uptake is enhanced in tumor cells to support increased DNA synthesis. Circadian variations in DNA synthesis and proliferation have been identified in tumor cells, but their relationship with intracellular iron levels is unclear. In this study, we identified a 24-h rhythm in iron regulatory protein 2 (IRP2) levels in colon-26 tumors implanted in mice. Our findings suggest that IRP2 regulates the 24-h rhythm of transferrin receptor 1 (Tfr1) mRNA expression post-transcriptionally, by binding to RNA stem-loop structures known as iron-response elements. We also found that Irp2 mRNA transcription is promoted by circadian clock genes, including brain and muscle Arnt-like 1 (BMAL1) and the circadian locomotor output cycles kaput (CLOCK) heterodimer. Moreover, growth in colon-26(Δ19) tumors expressing the clock-mutant protein (CLOCKΔ19) was low compared with that in wild-type colon-26 tumor. The time-dependent variation of cellular iron levels, and the proliferation rate in wild-type colon-26 tumor was decreased by CLOCKΔ19 expression. Our findings suggest that circadian organization contributes to tumor cell proliferation by regulating iron metabolism in the tumor. PMID:26797126

  16. Defining stem cell dynamics and migration during wound healing in mouse skin epidermis

    PubMed Central

    Aragona, Mariaceleste; Dekoninck, Sophie; Rulands, Steffen; Lenglez, Sandrine; Mascré, Guilhem; Simons, Benjamin D.; Blanpain, Cédric

    2017-01-01

    Wound healing is essential to repair the skin after injury. In the epidermis, distinct stem cells (SCs) populations contribute to wound healing. However, how SCs balance proliferation, differentiation and migration to repair a wound remains poorly understood. Here, we show the cellular and molecular mechanisms that regulate wound healing in mouse tail epidermis. Using a combination of proliferation kinetics experiments and molecular profiling, we identify the gene signatures associated with proliferation, differentiation and migration in different regions surrounding the wound. Functional experiments show that SC proliferation, migration and differentiation can be uncoupled during wound healing. Lineage tracing and quantitative clonal analysis reveal that, following wounding, progenitors divide more rapidly, but conserve their homoeostatic mode of division, leading to their rapid depletion, whereas SCs become active, giving rise to new progenitors that expand and repair the wound. These results have important implications for tissue regeneration, acute and chronic wound disorders. PMID:28248284

  17. Exposure-dependent incorporation of trifluridine into DNA of tumors and white blood cells in tumor-bearing mouse.

    PubMed

    Yamashita, Fumiaki; Komoto, Ikumi; Oka, Hiroaki; Kuwata, Keizo; Takeuchi, Mayuko; Nakagawa, Fumio; Yoshisue, Kunihiro; Chiba, Masato

    2015-08-01

    Trifluridine (TFT) is an antitumor component of a novel nucleoside antitumor agent, TAS-102, which consists of TFT and tipiracil hydrochloride (thymidine phosphorylase inhibitor). Incorporation of TFT into DNA is a probable mechanism of antitumor activity and hematological toxicity. The objective of this study was to examine the TFT incorporation into tumor- and white blood cell-DNA, and to elucidate the mechanism of TFT-related effect and toxicity. TFT effect on the colony formation of mouse bone marrow cells was also investigated. Pharmacokinetics of TFT was determined in nude mice after single oral administration of TAS-102, while the antitumor activity and body weight change were evaluated in the tumor-bearing nude mice after multiple oral administrations for 2 weeks. TFT concentrations in the blood- and tumor-DNA were determined by LC/MS/MS. The colony formation was evaluated by CFU-GM assay. TFT systemic exposure in plasma increased dose-dependently. The tumor growth rate and body weight gain decreased dose-dependently, but TFT concentrations in the DNA of tumor tissues and white blood cells increased dose-dependently. TFT inhibited colony formation of bone marrow cells in a concentration-dependent manner. A significant relationship between systemic exposure of TFT and pharmacological effects including the antitumor activity and body weight change was well explained by the TFT incorporation into DNA. TFT inhibited proliferations of mouse bone marrow cells and human colorectal carcinoma cells implanted to nude mice dose-dependently. The highest tolerable TFT exposure provides the highest antitumor activity, and the hematological toxicity may serve as a potential surrogate indicator of TAS-102 efficacy.

  18. Mouse Mammary Tumor Virus-Like Nucleotide Sequences in Canine and Feline Mammary Tumors▿

    PubMed Central

    Hsu, Wei-Li; Lin, Hsing-Yi; Chiou, Shyan-Song; Chang, Chao-Chin; Wang, Szu-Pong; Lin, Kuan-Hsun; Chulakasian, Songkhla; Wong, Min-Liang; Chang, Shih-Chieh

    2010-01-01

    Mouse mammary tumor virus (MMTV) has been speculated to be involved in human breast cancer. Companion animals, dogs, and cats with intimate human contacts may contribute to the transmission of MMTV between mouse and human. The aim of this study was to detect MMTV-like nucleotide sequences in canine and feline mammary tumors by nested PCR. Results showed that the presence of MMTV-like env and LTR sequences in canine malignant mammary tumors was 3.49% (3/86) and 18.60% (16/86), respectively. For feline malignant mammary tumors, the presence of both env and LTR sequences was found to be 22.22% (2/9). Nevertheless, the MMTV-like LTR and env sequences also were detected in normal mammary glands of dogs and cats. In comparisons of the MMTV-like DNA sequences of our findings to those of NIH 3T3 (MMTV-positive murine cell line) and human breast cancer cells, the sequence similarities ranged from 94 to 98%. Phylogenetic analysis revealed that intermixing among sequences identified from tissues of different hosts, i.e., mouse, dog, cat, and human, indicated the MMTV-like DNA existing in these hosts. Moreover, the env transcript was detected in 1 of the 19 MMTV-positive samples by reverse transcription-PCR. Taken together, our study provides evidence for the existence and expression of MMTV-like sequences in neoplastic and normal mammary glands of dogs and cats. PMID:20881168

  19. Immune-mediated inflammatory reactions and tumors as skin side effects of inflammatory bowel disease therapy.

    PubMed

    Marzano, Angelo V; Borghi, Alessandro; Meroni, Pier Luigi; Crosti, Carlo; Cugno, Massimo

    2014-05-01

    All drugs currently used for treating patients with inflammatory bowel disease (IBD - including Crohn's disease and ulcerative colitis) have the potential to induce skin lesions ranging from mild eruptions to more serious and widespread clinical presentations. The number of cutaneous adverse reactions due to IBD therapies is progressively increasing and the most frequently involved drugs are thiopurines and biologics like tumor necrosis factor (TNF)-α antagonists. The main drug-induced cutaneous manifestations are non-melanoma skin cancer (NMSC), notably basal cell and squamous cell carcinomas, and viral skin infections for thiopurines and psoriasiform, eczematoid and lichenoid eruptions as well as skin infections and cutaneous lupus erythematosus for biologics. Cutaneous manifestations should be promptly recognized and correctly diagnosed in order to quickly establish an adequate therapy. The main treatment for NMSC is surgical excision whereas the management of immune-mediated inflammatory skin reactions varies from topical therapy for mild presentations to the shift to another drug alone or in combination with corticosteroids for extensive eruptions.

  20. [Utilization of Werner syndrome mouse model in studying premature aging and tumor].

    PubMed

    Jia, Shu-Ting; Yang, Shi-Hua; Luo, Ying

    2009-08-01

    Werner syndrome (WS) is a rare autosomal recessive genetic disease in human. It is considered as a good model disease in studying human premature syndrome. Werner protein (WRN) is a nuclear protein mutated in WS. Recent biochemical and genetic studies indicated that WRN plays important roles in DNA replication, DNA repair, and telomere maintenance. Here, we reviewed the molecular genetics of WS and the importance of telomere and WRN in the development of WS. Knocking out both telomerase and Wrn genes in mouse faithfully manifests human WS. The mouse model provides a unique genetic platform to explore the crosstalk of premature aging and tumor.

  1. A Novel Mechanism of Skin Tumor Promotion Involving Interferon-gamma (IFNγ)/Signal Transducer and Activator of Transcription-1 (Stat1) Signaling

    PubMed Central

    Bozeman, Ronald; Abel, Erika L.; Macias, Everardo; Cheng, Tianyi; Beltran, Linda; DiGiovanni, John

    2014-01-01

    The current study was designed to explore the role of signal transducer and activator of transcription 1 (Stat1) during tumor promotion using the mouse skin multistage carcinogenesis model. Topical treatment with both 12-O-tetradecanoylphorbol-13-acetate (TPA) and 3-methyl-1,8-dihydroxy-9-anthrone (chrysarobin or CHRY) led to rapid phosphorylation of Stat1 on both tyrosine (Y701) and serine (S727) residues in epidermis. CHRY treatment also led to upregulation of unphosphorylated Stat1 (uStat1) at later time points. CHRY treatment also led to upregulation of interferon regulatory factor 1 (IRF-1) mRNA and protein, which was dependent on Stat1. Further analyses demonstrated that topical treatment with CHRY but not TPA upregulated interferon-gamma (IFNγ) mRNA in the epidermis and that the induction of both IRF-1 and uStat1 was dependent on IFNγ signaling. Stat1 deficient (Stat1-/-) mice were highly resistant to skin tumor promotion by CHRY. In contrast, the tumor response (in terms of both papillomas and squamous cell carcinomas) was similar in Stat1-/- mice and wild-type littermates with TPA as the promoter. Maximal induction of both cyclooxygenase-2 and inducible nitric oxide synthase in epidermis following treatment with CHRY was also dependent on the presence of functional Stat1. These studies define a novel mechanism associated with skin tumor promotion by the anthrone class of tumor promoters involving upregulation of IFNγ signaling in the epidermis and downstream signaling through activated (phosphorylated) Stat1, IRF-1 and uStat1. PMID:24464587

  2. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    SciTech Connect

    Sharma, Som D.; Katiyar, Santosh K.

    2010-05-01

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm{sup 2}) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E{sub 2} production, proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-kappaB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  3. Sulforaphane induces phase II detoxication enzymes in mouse skin and prevents mutagenesis induced by a mustard gas analog

    SciTech Connect

    Abel, E.L.; Boulware, S.; Fields, T.; McIvor, E.; Powell, K.L.; DiGiovanni, J.; Vasquez, K.M.; MacLeod, M.C.

    2013-02-01

    Mustard gas, used in chemical warfare since 1917, is a mutagenic and carcinogenic agent that produces severe dermal lesions for which there are no effective therapeutics; it is currently seen as a potential terrorist threat to civilian populations. Sulforaphane, found in cruciferous vegetables, is known to induce enzymes that detoxify compounds such as the sulfur mustards that react through electrophilic intermediates. Here, we observe that a single topical treatment with sulforaphane induces mouse epidermal levels of the regulatory subunit of glutamate-cysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, and also increases epidermal levels of reduced glutathione. Furthermore, a glutathione S-transferase, GSTA4, is also induced in mouse skin by sulforaphane. In an in vivo model in which mice are given a single mutagenic application of the sulfur mustard analog 2-(chloroethyl) ethyl sulfide (CEES), we now show that therapeutic treatment with sulforaphane abolishes the CEES-induced increase in mutation frequency in the skin, measured four days after exposure. Sulforaphane, a natural product currently in clinical trials, shows promise as an effective therapeutic against mustard gas. -- Highlights: ► Sulforaphane induces increased levels of glutathione in mouse skin. ► Sulforaphane induces increased levels of GSTA4 in mouse skin. ► Sulforaphane, applied after CEES-treatment, completely abolishes CEES-mutagenesis. ► The therapeutic effect may suggest a long biological half-life for CEES in vivo.

  4. Skin tumor-promoting activity of benzoyl peroxide, a widely used free radical-generating compound

    SciTech Connect

    Slaga, T.J.; Klein-Szanto, A.J.P.; Triplett, L.L.; Yotti, L.P.; Trosko, J.E.

    1981-08-28

    Benzoyl peroxide, a widely used free radical-generating compound, promoted both papillomas and carcinomas when it was topically applied to mice after 7, 12-dimethylbenz(a)anthracene initiation. Benzoyl peroxide was inactive on the skin as a complete carcinogen or as a tumor initiator. A single topical application of benzoyl peroxide produced a marked epidermal hyperplasia and induced a large number of dark basal keratinocytes, effects similar to those produced by the potent tumor promoter 12-O-tetradecanoyl phorbol-13-acetate. Benzoyl peroxide, like other known tumor promoters, also inhibited metabolic cooperation (intercellular communication) in Chinese hamster cells. In view of these results caution should be recommended in the use of this and other free radical-generating compounds.

  5. Tumor Blood Flow Differs between Mouse Strains: Consequences for Vasoresponse to Photodynamic Therapy

    PubMed Central

    Mesquita, Rickson C.; Han, Sung Wan; Miller, Joann; Schenkel, Steven S.; Pole, Andrew; Esipova, Tatiana V.; Vinogradov, Sergei A.; Putt, Mary E.; Yodh, Arjun G.; Busch, Theresa M.

    2012-01-01

    Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies. PMID:22624014

  6. Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy.

    PubMed

    Mesquita, Rickson C; Han, Sung Wan; Miller, Joann; Schenkel, Steven S; Pole, Andrew; Esipova, Tatiana V; Vinogradov, Sergei A; Putt, Mary E; Yodh, Arjun G; Busch, Theresa M

    2012-01-01

    Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies.

  7. Analyzing the miRNA-Gene Networks to Mine the Important miRNAs under Skin of Human and Mouse

    PubMed Central

    Gong, Husile

    2016-01-01

    Genetic networks provide new mechanistic insights into the diversity of species morphology. In this study, we have integrated the MGI, GEO, and miRNA database to analyze the genetic regulatory networks under morphology difference of integument of humans and mice. We found that the gene expression network in the