Sample records for mouse strain lacking

  1. Comparative evaluation of two vaccine candidates against experimental leishmaniasis due to Leishmania major infection in four inbred mouse strains.

    PubMed

    Benhnini, Fouad; Chenik, Mehdi; Laouini, Dhafer; Louzir, Hechmi; Cazenave, Pierre André; Dellagi, Koussay

    2009-11-01

    Experimental leishmaniasis in BALB/c and C57BL/6 mice are the most investigated murine models that were used for the preclinical evaluation of Leishmania vaccine candidates. We have previously described two new inbred mouse strains named PWK and MAI issued from feral founders that also support the development of experimental leishmaniasis due to L. major. In this study, we sought to determine whether different mouse inbred strains generate concordant or discordant results when used to evaluate the potential of Leishmania proteins to protect against experimental leishmaniasis. To this end, two Leishmania proteins, namely, LACK (for Leishmania homolog of receptor for activated C kinase) and LmPDI (for L. major protein disulfide isomerase) were compared for their capacity to protect against experimental leishmaniasis in PWK, MAI, BALB/c, and C57BL/6 inbred mouse strains. Our data show that the capacity of Leishmania proteins to confer protection depends on the mouse strain used, stressing the important role played by the genetic background in shaping the immune response against the pathogen. These results may have important implications for the preclinical evaluation of candidate Leishmania vaccines: rather than using a single mouse strain, a panel of different inbred strains of various genetic backgrounds should be tested in parallel. The antigen that confers protection in the larger range of inbred strains may have better chances to be also protective in outbred human populations and should be selected for clinical trials.

  2. Innate immunity is sufficient for the clearance of Chlamydia trachomatis from the female mouse genital tract.

    PubMed

    Sturdevant, Gail L; Caldwell, Harlan D

    2014-10-01

    Chlamydia muridarum and Chlamydia trachomatis, mouse and human strains, respectively, have been used to study immunity in a murine model of female genital tract infection. Despite evidence that unique genes of these otherwise genomically similar strains could play a role in innate immune evasion in their respective mouse and human hosts, there have been no animal model findings to directly support this conclusion. Here, we infected C57BL/6 and adaptive immune-deficient Rag1(-/-) female mice with these strains and evaluated their ability to spontaneously resolve genital infection. Predictably, C57BL/6 mice spontaneously cleared infection caused by both chlamydial strains. In contrast, Rag1(-/-) mice which lack mature T and B cell immunity but maintain functional innate immune effectors were incapable of resolving C. muridarum infection but spontaneously cleared C. trachomatis infection. This distinct dichotomy in adaptive and innate immune-mediated clearance between mouse and human strains has important cautionary implications for the study of natural immunity and vaccine development in the mouse model. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Comparative Evaluation of Two Vaccine Candidates against Experimental Leishmaniasis Due to Leishmania major Infection in Four Inbred Mouse Strains▿

    PubMed Central

    Benhnini, Fouad; Chenik, Mehdi; Laouini, Dhafer; Louzir, Hechmi; Cazenave, Pierre André; Dellagi, Koussay

    2009-01-01

    Experimental leishmaniasis in BALB/c and C57BL/6 mice are the most investigated murine models that were used for the preclinical evaluation of Leishmania vaccine candidates. We have previously described two new inbred mouse strains named PWK and MAI issued from feral founders that also support the development of experimental leishmaniasis due to L. major. In this study, we sought to determine whether different mouse inbred strains generate concordant or discordant results when used to evaluate the potential of Leishmania proteins to protect against experimental leishmaniasis. To this end, two Leishmania proteins, namely, LACK (for Leishmania homolog of receptor for activated C kinase) and LmPDI (for L. major protein disulfide isomerase) were compared for their capacity to protect against experimental leishmaniasis in PWK, MAI, BALB/c, and C57BL/6 inbred mouse strains. Our data show that the capacity of Leishmania proteins to confer protection depends on the mouse strain used, stressing the important role played by the genetic background in shaping the immune response against the pathogen. These results may have important implications for the preclinical evaluation of candidate Leishmania vaccines: rather than using a single mouse strain, a panel of different inbred strains of various genetic backgrounds should be tested in parallel. The antigen that confers protection in the larger range of inbred strains may have better chances to be also protective in outbred human populations and should be selected for clinical trials. PMID:19726616

  4. Several Classical Mouse Inbred Strains, Including DBA/2, NOD/Lt, FVB/N, and SJL/J, Carry a Putative Loss-of-Function Allele of Gpr84

    PubMed Central

    2013-01-01

    G protein–coupled receptor 84 (GPR84) is a 7-transmembrane protein expressed on myeloid cells that can bind to medium-chain free fatty acids in vitro. Here, we report the discovery of a 2-bp frameshift deletion in the second exon of the Gpr84 gene in several classical mouse inbred strains. This deletion generates a premature stop codon predicted to result in a truncated protein lacking the transmembrane domains 4-7. We sequenced Gpr84 exon 2 from 58 strains representing different groups in the mouse family tree and found that 14 strains are homozygous for the deletion. Some of these strains are DBA/1J, DBA/2J, FVB/NJ, LG/J, MRL/MpJ, NOD/LtJ, and SJL/J. However, the deletion was not found in any of the wild-derived inbred strains analyzed. Haplotype analysis suggested that the deletion originates from a unique mutation event that occurred more than 100 years ago, preceding the development of the first inbred strain (DBA), from a Mus musculus domesticus source. As GPR84 ostensibly plays a role in the biology of myeloid cells, it could be relevant 1) to consider the existence of this Gpr84 nonsense mutation in several mouse strains when choosing a mouse model to study immune processes and 2) to consider reevaluating data obtained using such strains. PMID:23616478

  5. Several classical mouse inbred strains, including DBA/2, NOD/Lt, FVB/N, and SJL/J, carry a putative loss-of-function allele of Gpr84.

    PubMed

    Perez, Carlos J; Dumas, Aline; Vallières, Luc; Guénet, Jean-Louis; Benavides, Fernando

    2013-01-01

    G protein-coupled receptor 84 (GPR84) is a 7-transmembrane protein expressed on myeloid cells that can bind to medium-chain free fatty acids in vitro. Here, we report the discovery of a 2-bp frameshift deletion in the second exon of the Gpr84 gene in several classical mouse inbred strains. This deletion generates a premature stop codon predicted to result in a truncated protein lacking the transmembrane domains 4-7. We sequenced Gpr84 exon 2 from 58 strains representing different groups in the mouse family tree and found that 14 strains are homozygous for the deletion. Some of these strains are DBA/1J, DBA/2J, FVB/NJ, LG/J, MRL/MpJ, NOD/LtJ, and SJL/J. However, the deletion was not found in any of the wild-derived inbred strains analyzed. Haplotype analysis suggested that the deletion originates from a unique mutation event that occurred more than 100 years ago, preceding the development of the first inbred strain (DBA), from a Mus musculus domesticus source. As GPR84 ostensibly plays a role in the biology of myeloid cells, it could be relevant 1) to consider the existence of this Gpr84 nonsense mutation in several mouse strains when choosing a mouse model to study immune processes and 2) to consider reevaluating data obtained using such strains.

  6. Aeromonas Caviae Strain Induces Th1 Cytokine Response in Mouse Intestinal Tract

    EPA Science Inventory

    Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus. Microarray profiling of murine small i...

  7. Aeromonas caviae strain induces Th1 cytokine response in mouse intestinal tract

    EPA Science Inventory

    Aeromonas caviae has been associated with human gastrointestinal disease. Strains of this species typically lack virulence factors (VFs) such as enterotoxins and hemolysins that are produced by other human pathogens of the Aeromonas genus,. Microarray profiling of...

  8. Mucosal-associated invariant T cell-rich congenic mouse strain allows functional evaluation.

    PubMed

    Cui, Yue; Franciszkiewicz, Katarzyna; Mburu, Yvonne K; Mondot, Stanislas; Le Bourhis, Lionel; Premel, Virginie; Martin, Emmanuel; Kachaner, Alexandra; Duban, Livine; Ingersoll, Molly A; Rabot, Sylvie; Jaubert, Jean; De Villartay, Jean-Pierre; Soudais, Claire; Lantz, Olivier

    2015-11-02

    Mucosal-associated invariant T cells (MAITs) have potent antimicrobial activity and are abundant in humans (5%-10% in blood). Despite strong evolutionary conservation of the invariant TCR-α chain and restricting molecule MR1, this population is rare in laboratory mouse strains (≈0.1% in lymphoid organs), and lack of an appropriate mouse model has hampered the study of MAIT biology. Herein, we show that MAITs are 20 times more frequent in clean wild-derived inbred CAST/EiJ mice than in C57BL/6J mice. Increased MAIT frequency was linked to one CAST genetic trait that mapped to the TCR-α locus and led to higher usage of the distal Vα segments, including Vα19. We generated a MAIThi congenic strain that was then crossed to a transgenic Rorcgt-GFP reporter strain. Using this tool, we characterized polyclonal mouse MAITs as memory (CD44+) CD4-CD8lo/neg T cells with tissue-homing properties (CCR6+CCR7-). Similar to human MAITs, mouse MAITs expressed the cytokine receptors IL-7R, IL-18Rα, and IL-12Rβ and the transcription factors promyelocytic leukemia zinc finger (PLZF) and RAR-related orphan receptor γ (RORγt). Mouse MAITs produced Th1/2/17 cytokines upon TCR stimulation and recognized a bacterial compound in an MR1-dependent manner. During experimental urinary tract infection, MAITs migrated to the bladder and decreased bacterial load. Our study demonstrates that the MAIThi congenic strain allows phenotypic and functional characterization of naturally occurring mouse MAITs in health and disease.

  9. Mucosal-associated invariant T cell–rich congenic mouse strain allows functional evaluation

    PubMed Central

    Cui, Yue; Franciszkiewicz, Katarzyna; Mburu, Yvonne K.; Mondot, Stanislas; Le Bourhis, Lionel; Premel, Virginie; Martin, Emmanuel; Kachaner, Alexandra; Duban, Livine; Ingersoll, Molly A.; Rabot, Sylvie; Jaubert, Jean; De Villartay, Jean-Pierre; Soudais, Claire; Lantz, Olivier

    2015-01-01

    Mucosal-associated invariant T cells (MAITs) have potent antimicrobial activity and are abundant in humans (5%–10% in blood). Despite strong evolutionary conservation of the invariant TCR-α chain and restricting molecule MR1, this population is rare in laboratory mouse strains (≈0.1% in lymphoid organs), and lack of an appropriate mouse model has hampered the study of MAIT biology. Herein, we show that MAITs are 20 times more frequent in clean wild-derived inbred CAST/EiJ mice than in C57BL/6J mice. Increased MAIT frequency was linked to one CAST genetic trait that mapped to the TCR-α locus and led to higher usage of the distal Vα segments, including Vα19. We generated a MAIThi congenic strain that was then crossed to a transgenic Rorcgt-GFP reporter strain. Using this tool, we characterized polyclonal mouse MAITs as memory (CD44+) CD4–CD8lo/neg T cells with tissue-homing properties (CCR6+CCR7–). Similar to human MAITs, mouse MAITs expressed the cytokine receptors IL-7R, IL-18Rα, and IL-12Rβ and the transcription factors promyelocytic leukemia zinc finger (PLZF) and RAR-related orphan receptor γ (RORγt). Mouse MAITs produced Th1/2/17 cytokines upon TCR stimulation and recognized a bacterial compound in an MR1-dependent manner. During experimental urinary tract infection, MAITs migrated to the bladder and decreased bacterial load. Our study demonstrates that the MAIThi congenic strain allows phenotypic and functional characterization of naturally occurring mouse MAITs in health and disease. PMID:26524590

  10. Bacterial virulence phenotypes of Escherichia coli and host susceptibility determines risk for urinary tract infections

    PubMed Central

    Schreiber, Henry L.; Conover, Matt S.; Chou, Wen-Chi; Hibbing, Michael E.; Manson, Abigail L.; Dodson, Karen W.; Hannan, Thomas J.; Roberts, Pacita L.; Stapleton, Ann E.; Hooton, Thomas M.; Livny, Jonathan; Earl, Ashlee M.; Hultgren, Scott J.

    2017-01-01

    Urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC) strains. In contrast to many enteric E. coli pathogroups, no genetic signature has been identified for UPEC strains. We conducted a high-resolution comparative genomic study using E. coli isolates collected from the urine of women suffering from frequent recurrent UTIs. These isolates were genetically diverse and varied in urovirulence, or the ability to infect the bladder of a mouse model of cystitis. Importantly, we found no set of genes, including previously defined putative urovirulence factors (PUFs), that were predictive of urovirulence. In addition, in some patients, the E. coli strain causing a recurrent UTI had fewer PUFs than the supplanted strain. In competitive experimental infections in mice, the supplanting strain was more efficient at colonizing the mouse bladder than the supplanted strain. Despite the lack of a clear genomic signature for urovirulence, comparative transcriptomic and phenotypic analyses revealed that the expression of key conserved functions during culture, such as motility and sugar metabolism, could be used to predict subsequent mouse bladder colonization. Taken together, our findings suggest that UTI risk and outcome may be determined by complex interactions between host susceptibility and the urovirulence potential of diverse bacterial strains. PMID:28330863

  11. PAR-2 mediates increased inflammatory cell adhesion and neointima formation following vascular injury in the mouse.

    PubMed

    Tennant, Gail M; Wadsworth, Roger M; Kennedy, Simon

    2008-05-01

    Activation of PAR-2 in the vasculature affects vascular tone and adhesion of leukocytes to the endothelium. Since adhesion of leukocytes is increased following vascular injury and is important in determining the extent of neointima formation, we hypothesised that mice lacking PAR-2 may have reduced neointima formation following vascular injury. PAR-2 activating peptides and trypsin induced endothelium-dependent relaxation of mouse carotid artery which was absent in the knockout mouse. Lack of a PAR-2 receptor did not affect lymphocyte adhesion under basal conditions, but reduced the contractile response produced by lymphocytes. Twenty-eight days after denuding injury, vessel contraction to lymphocytes was reduced in both strains while lymphocyte adhesion was significantly greater in PAR-2(+/+) mice compared to the PAR-2 knockout mice. Neointimal area was markedly reduced in the PAR-2 knockout mouse. Our data show that PAR-2 modulates inflammatory cell adhesion when stimulated and in mice lacking the PAR-2 receptor, adhesion to injured vessels is reduced with a consequent reduction in neointima formation.

  12. Characterization of a genetically engineered mouse model of hemophilia A with complete deletion of the F8 gene.

    PubMed

    Chao, B N; Baldwin, W H; Healey, J F; Parker, E T; Shafer-Weaver, K; Cox, C; Jiang, P; Kanellopoulou, C; Lollar, P; Meeks, S L; Lenardo, M J

    2016-02-01

    ESSENTIALS: Anti-factor VIII (FVIII) inhibitory antibody formation is a severe complication in hemophilia A therapy. We genetically engineered and characterized a mouse model with complete deletion of the F8 coding region. F8(TKO) mice exhibit severe hemophilia, express no detectable F8 mRNA, and produce FVIII inhibitors. The defined background and lack of FVIII in F8(TKO) mice will aid in studying FVIII inhibitor formation. The most important complication in hemophilia A treatment is the development of inhibitory anti-Factor VIII (FVIII) antibodies in patients after FVIII therapy. Patients with severe hemophilia who express no endogenous FVIII (i.e. cross-reacting material, CRM) have the greatest incidence of inhibitor formation. However, current mouse models of severe hemophilia A produce low levels of truncated FVIII. The lack of a corresponding mouse model hampers the study of inhibitor formation in the complete absence of FVIII protein. We aimed to generate and characterize a novel mouse model of severe hemophilia A (designated the F8(TKO) strain) lacking the complete coding sequence of F8 and any FVIII CRM. Mice were created on a C57BL/6 background using Cre-Lox recombination and characterized using in vivo bleeding assays, measurement of FVIII activity by coagulation and chromogenic assays, and anti-FVIII antibody production using ELISA. All F8 exonic coding regions were deleted from the genome and no F8 mRNA was detected in F8(TKO) mice. The bleeding phenotype of F8(TKO) mice was comparable to E16 mice by measurements of factor activity and tail snip assay. Similar levels of anti-FVIII antibody titers after recombinant FVIII injections were observed between F8(TKO) and E16 mice. We describe a new C57BL/6 mouse model for severe hemophilia A patients lacking CRM. These mice can be directly bred to the many C57BL/6 strains of genetically engineered mice, which is valuable for studying the impact of a wide variety of genes on FVIII inhibitor formation on a defined genetic background. © 2015 International Society on Thrombosis and Haemostasis.

  13. The genetic origin of minor histocompatibility antigens.

    PubMed

    Roopenian, D C; Christianson, G J; Davis, A P; Zuberi, A R; Mobraaten, L E

    1993-01-01

    The purpose of this study was to elucidate the genetic origin of minor histocompatibility (H) antigens. Toward this end common inbred mouse strains, distinct subspecies, and species of the subgenus Mus were examined for expression of various minor H antigens. These antigens were encoded by the classical minor H loci H-3 and H-4 or by newly identified minor H antigens detected as a consequence of mutation. Both minor H antigens that stimulate MHC class I-restricted cytotoxic T cells (Tc) and antigens that stimulate MHC class II-restricted helper T cells (Th) were monitored. The results suggested that strains of distinct ancestry commonly express identical or cross-reactive antigens. Moreover, a correlation between the lack of expression of minor H antigens and ancestral heritage was observed. To address whether the antigens found on unrelated strains were allelic with the sensitizing minor H antigens or a consequence of antigen cross-reactivity, classical genetic segregation analysis was carried out. Even in distinct subspecies and species, the minor H antigens always mapped to the site of the appropriate minor H locus. Together the results suggest: 1) minor H antigen sequences are evolutionarily stable in that their pace of antigenic change is slow enough to predate subspeciation and speciation; 2) the minor H antigens originated in the inbred strains as a consequence of a rare polymorphism or loss mutation carried in a founder mouse stock that caused the mouse to perceive the wild-type protein as foreign; 3) there is a remarkable lack of antigenic cross-reactivity between the defined minor H antigens and other gene products.

  14. Genetic characterization and improved genotyping of the dysferlin-deficient mouse strain Dysf (tm1Kcam).

    PubMed

    Wiktorowicz, Tatiana; Kinter, Jochen; Kobuke, Kazuhiro; Campbell, Kevin P; Sinnreich, Michael

    2015-01-01

    Mouse models of dysferlinopathies are valuable tools with which to investigate the pathomechanisms underlying these diseases and to test novel therapeutic strategies. One such mouse model is the Dysf (tm1Kcam) strain, which was generated using a targeting vector to replace a 12-kb region of the dysferlin gene and which features a progressive muscular dystrophy. A prerequisite for successful animal studies using genetic mouse models is an accurate genotyping protocol. Unfortunately, the lack of robustness of currently available genotyping protocols for the Dysf (tm1Kcam) mouse has prevented efficient colony management. Initial attempts to improve the genotyping protocol based on the published genomic structure failed. These difficulties led us to analyze the targeted locus of the dysferlin gene of the Dysf (tm1Kcam) mouse in greater detail. In this study we resequenced and analyzed the targeted locus of the Dysf (tm1Kcam) mouse and developed a novel PCR protocol for genotyping. We found that instead of a deletion, the dysferlin locus in the Dysf (tm1Kcam) mouse carries a targeted insertion. This genetic characterization enabled us to establish a reliable method for genotyping of the Dysf (tm1Kcam) mouse, and thus has made efficient colony management possible. Our work will make the Dysf (tm1Kcam) mouse model more attractive for animal studies of dysferlinopathies.

  15. Histopathological and immunohistochemical evaluation of nitrogen mustard-induced cutaneous effects in SKH-1 hairless and C57BL/6 mice.

    PubMed

    Jain, Anil K; Tewari-Singh, Neera; Inturi, Swetha; Orlicky, David J; White, Carl W; Agarwal, Rajesh

    2014-03-01

    Sulfur mustard (SM) is a vesicant warfare agent which causes severe skin injuries. Currently, we lack effective antidotes against SM-induced skin injuries, in part due to lack of appropriate animal model(s) that can be used for efficacy studies in laboratory settings to identify effective therapies. Therefore, to develop a relevant mouse skin injury model, we examined the effects of nitrogen mustard (NM), a primary vesicant and a bifunctional alkylating agent that induces toxic effects comparable to SM. Specifically, we conducted histopathological and immunohistochemical evaluation of several applicable cutaneous pathological lesions following skin NM (3.2mg) exposure for 12-120h in SKH-1 and C57BL/6 mice. NM caused a significant increase in epidermal thickness, incidence of microvesication, cell proliferation, apoptotic cell death, inflammatory cells (neutrophils, macrophages and mast cells) and myleoperoxidase activity in the skin of both mouse strains. However, there was a more prominent NM-induced increase in epidermal thickness, and macrophages and mast cell infiltration, in SKH-1 mice relative to what was seen in C57BL/6 mice. NM also caused collagen degradation and edema at early time points (12-24h); however, at later time points (72 and 120h), dense collagen staining was observed, indicating either water loss or start of integument repair in both the mouse strains. This study provides quantitative measurement of NM-induced histopathological and immunohistochemical cutaneous lesions in both hairless and haired mouse strains that could serve as useful tools for screening and identification of effective therapies for treatment of skin injuries due to NM and SM. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Metabolic characterization of a mouse deficient in all known leptin receptor isoforms.

    PubMed

    Osborn, Olivia; Sanchez-Alavez, Manuel; Brownell, Sara E; Ross, Brendon; Klaus, Joe; Dubins, Jeffrey; Beutler, Bruce; Conti, Bruno; Bartfai, Tamas

    2010-01-01

    We have characterized a newly generated mouse model of obesity, a mouse strain deficient in all five previously described leptin receptor isoforms. These transgenic mice, named the db (333)/db (333) mice, were identified from an ENU mutagenesis screen and carry a point mutation in the seventh exon of the db gene encoding the leptin receptor, resulting in a premature stop codon (Y(333)Stop) and gene product that lacks STAT signaling domains. db (333)/db (333) mice have a morbidly obese phenotype, with body weights diverging from wild type as early as 4 weeks of age (P < 0.05). To determine the contribution of the short isoforms of the leptin receptor in this metabolic phenotype, we performed an extensive metabolic characterization of the db (333)/db (333) mouse in relation to the well-characterized db/db mouse lacking only the long form of the leptin receptor. db (333)/db (333) mice have similar endocrine and metabolic parameters as previously described in other leptin receptor transgenic mice including db/db mice that lack only the long isoform of the leptin receptor. However, db (333)/db (333) mice show a subtle trend toward higher body weight and insulin levels, lower oxygen, carbon dioxide production, respiratory exchange ratio (RER), and temperature than db/db mice suggesting the short isoforms may play an additional role in energy homeostasis.

  17. Infectious Progression of Canine Distemper Virus from Circulating Cerebrospinal Fluid into the Central Nervous System.

    PubMed

    Takenaka, Akiko; Sato, Hiroki; Ikeda, Fusako; Yoneda, Misako; Kai, Chieko

    2016-10-15

    In the current study, we generated recombinant chimeric canine distemper viruses (CDVs) by replacing the hemagglutinin (H) and/or phosphoprotein (P) gene in an avirulent strain expressing enhanced green fluorescent protein (EGFP) with those of a mouse-adapted neurovirulent strain. An in vitro experimental infection indicated that the chimeric CDVs possessing the H gene derived from the mouse-adapted CDV acquired infectivity for neural cells. These cells lack the CDV receptors that have been identified to date (SLAM and nectin-4), indicating that the H protein defines infectivity in various cell lines. The recombinant viruses were administered intracerebrally to 1-week-old mice. Fatal neurological signs of disease were observed only with a recombinant CDV that possessed both the H and P genes of the mouse-adapted strain, similar to the parental mouse-adapted strain, suggesting that both genes are important to drive virulence of CDV in mice. Using this recombinant CDV, we traced the intracerebral propagation of CDV by detecting EGFP. Widespread infection was observed in the cerebral hemispheres and brainstems of the infected mice. In addition, EGFP fluorescence in the brain slices demonstrated a sequential infectious progression in the central nervous system: CDV primarily infected the neuroependymal cells lining the ventricular wall and the neurons of the hippocampus and cortex adjacent to the ventricle, and it then progressed to an extensive infection of the brain surface, followed by the parenchyma and cortex. In the hippocampal formation, CDV spread in a unidirectional retrograde pattern along neuronal processes in the hippocampal formation from the CA1 region to the CA3 region and the dentate gyrus. Our mouse model demonstrated that the main target cells of CDV are neurons in the acute phase and that the virus spreads via neuronal transmission pathways in the hippocampal formation. CDV is the etiological agent of distemper in dogs and other carnivores, and in many respects, the pathogenesis of CDV infection in animals resembles that of measles virus infection in humans. We successfully generated a recombinant CDV containing the H and P genes from a mouse-adapted neurovirulent strain and expressing EGFP. The recombinant CDV exhibited severe neurovirulence with high mortality, comparable to the parental mouse-adapted strain. The mouse-infectious model could become a useful tool for analyzing CDV infection of the central nervous system subsequent to passing through the blood-cerebrospinal fluid barrier and infectious progression in the target cells in acute disease. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Infectious Progression of Canine Distemper Virus from Circulating Cerebrospinal Fluid into the Central Nervous System

    PubMed Central

    Takenaka, Akiko; Sato, Hiroki; Ikeda, Fusako; Yoneda, Misako

    2016-01-01

    ABSTRACT In the current study, we generated recombinant chimeric canine distemper viruses (CDVs) by replacing the hemagglutinin (H) and/or phosphoprotein (P) gene in an avirulent strain expressing enhanced green fluorescent protein (EGFP) with those of a mouse-adapted neurovirulent strain. An in vitro experimental infection indicated that the chimeric CDVs possessing the H gene derived from the mouse-adapted CDV acquired infectivity for neural cells. These cells lack the CDV receptors that have been identified to date (SLAM and nectin-4), indicating that the H protein defines infectivity in various cell lines. The recombinant viruses were administered intracerebrally to 1-week-old mice. Fatal neurological signs of disease were observed only with a recombinant CDV that possessed both the H and P genes of the mouse-adapted strain, similar to the parental mouse-adapted strain, suggesting that both genes are important to drive virulence of CDV in mice. Using this recombinant CDV, we traced the intracerebral propagation of CDV by detecting EGFP. Widespread infection was observed in the cerebral hemispheres and brainstems of the infected mice. In addition, EGFP fluorescence in the brain slices demonstrated a sequential infectious progression in the central nervous system: CDV primarily infected the neuroependymal cells lining the ventricular wall and the neurons of the hippocampus and cortex adjacent to the ventricle, and it then progressed to an extensive infection of the brain surface, followed by the parenchyma and cortex. In the hippocampal formation, CDV spread in a unidirectional retrograde pattern along neuronal processes in the hippocampal formation from the CA1 region to the CA3 region and the dentate gyrus. Our mouse model demonstrated that the main target cells of CDV are neurons in the acute phase and that the virus spreads via neuronal transmission pathways in the hippocampal formation. IMPORTANCE CDV is the etiological agent of distemper in dogs and other carnivores, and in many respects, the pathogenesis of CDV infection in animals resembles that of measles virus infection in humans. We successfully generated a recombinant CDV containing the H and P genes from a mouse-adapted neurovirulent strain and expressing EGFP. The recombinant CDV exhibited severe neurovirulence with high mortality, comparable to the parental mouse-adapted strain. The mouse-infectious model could become a useful tool for analyzing CDV infection of the central nervous system subsequent to passing through the blood-cerebrospinal fluid barrier and infectious progression in the target cells in acute disease. PMID:27489268

  19. Role of the Yersinia pestis yersiniabactin iron acquisition system in the incidence of flea-borne plague.

    PubMed

    Sebbane, Florent; Jarrett, Clayton; Gardner, Donald; Long, Daniel; Hinnebusch, B Joseph

    2010-12-17

    Plague is a flea-borne zoonosis caused by the bacterium Yersinia pestis. Y. pestis mutants lacking the yersiniabactin (Ybt) siderophore-based iron transport system are avirulent when inoculated intradermally but fully virulent when inoculated intravenously in mice. Presumably, Ybt is required to provide sufficient iron at the peripheral injection site, suggesting that Ybt would be an essential virulence factor for flea-borne plague. Here, using a flea-to-mouse transmission model, we show that a Y. pestis strain lacking the Ybt system causes fatal plague at low incidence when transmitted by fleas. Bacteriology and histology analyses revealed that a Ybt-negative strain caused only primary septicemic plague and atypical bubonic plague instead of the typical bubonic form of disease. The results provide new evidence that primary septicemic plague is a distinct clinical entity and suggest that unusual forms of plague may be caused by atypical Y. pestis strains.

  20. Limited Activity of Clofazimine as a Single Drug in a Mouse Model of Tuberculosis Exhibiting Caseous Necrotic Granulomas

    PubMed Central

    Irwin, Scott M.; Gruppo, Veronica; Brooks, Elizabeth; Gilliland, Janet; Scherman, Michael; Reichlen, Matthew J.; Leistikow, Rachel; Kramnik, Igor; Nuermberger, Eric L.; Voskuil, Martin I.

    2014-01-01

    New drugs and drugs with a novel mechanism of action are desperately needed to shorten the duration of tuberculosis treatment, to prevent the emergence of drug resistance, and to treat multiple-drug-resistant strains of Mycobacterium tuberculosis. Recently, there has been renewed interest in clofazimine (CFZ). In this study, we utilized the C3HeB/FeJ mouse model, possessing highly organized, hypoxic pulmonary granulomas with caseous necrosis, to evaluate CFZ monotherapy in comparison to results with BALB/c mice, which form only multifocal, coalescing cellular aggregates devoid of caseous necrosis. While CFZ treatment was highly effective in BALB/c mice, its activity was attenuated in the lungs of C3HeB/FeJ mice. This lack of efficacy was directly related to the pathological progression of disease in these mice, since administration of CFZ prior to the formation of hypoxic, necrotic granulomas reconstituted bactericidal activity in this mouse strain. These results support the continued use of mouse models of tuberculosis infection which exhibit a granulomatous response in the lungs that more closely resembles the pathology found in human disease. PMID:24798275

  1. The Justy mutant mouse strain produces a spontaneous murine model of salivary gland cancer with myoepithelial and basal cell differentiation

    PubMed Central

    Simons, Andrean L.; Lu, Ping; Gibson-Corley, Katherine N.; Robinson, Robert A.; Meyerholz, David K.; Colgan, John D.

    2013-01-01

    We previously identified a novel mutant mouse strain on the C3HeB/FeJ background named Justy. This strain bears a recessive mutation in the Gon4l gene that greatly reduces expression of the encoded protein, a nuclear factor implicated in transcriptional regulation. Here, we report that Justy mutant mice aged 6 months or older spontaneously developed carcinomas with myoepithelial and basaloid differentiation in salivary glands with an incidence of ~25%. Tumors developed proximate to submandibular glands and to a lesser extent in the sublingual and parotid glands. Histologically, tumors often had central cavitary lesions filled with necrotic debris that was lined by tumors cells and had spindle and epithelioid cell differentiation with lesser basaloid to clear cell features. Tumor tissue often had variable evidence of a high mitotic rate, pleomorphism and invasion into adjacent salivary glands. Neoplastic cells had diffuse immunoreactivity for pancytokeratin (AE1/AE3) and p63. While CK5/6 immunostaining was seen in the much of the tumor cells, it was often lacking in pleomorphic areas. Tumor cells lacked immunoreactivity for alpha-smooth muscle actin, S100, c-Kit and glial fibrillary acid protein. Additionally, tumors had immunoreactivity for phosphorylated and total epidermal growth factor receptor (EGFR), suggesting that EGFR signaling may participate in growth regulation of these tumors. These findings indicate that the salivary gland carcinomas occur spontaneously in Justy mice and that these tumors may offer a valuable model for study of EGFR regulation. Combined, our data suggest that Justy mice warrant further investigation for use as a mouse model for human salivary gland neoplasia. PMID:23608756

  2. NCI Mouse Repository | FNLCR Staging

    Cancer.gov

    The NCI Mouse Repository is an NCI-funded resource for mouse cancer models and associated strains. The repository makes strains available to all members of the scientific community (academic, non-profit, and commercial). NCI Mouse Repository strains

  3. Impact of conditional deletion of the pro-apoptotic BCL-2 family member BIM in mice.

    PubMed

    Herold, M J; Stuchbery, R; Mérino, D; Willson, T; Strasser, A; Hildeman, D; Bouillet, P

    2014-10-09

    The pro-apoptotic BH3-only BCL-2 family member BIM is a critical determinant of hematopoietic cell development and homeostasis. It has been argued that the striking hematopoietic abnormalities of BIM-deficient mice (accumulation of lymphocytes and granulocytes) may be the result of the loss of the protein throughout the whole animal rather than a consequence intrinsic to the loss of BIM in hematopoietic cells. To address this issue and allow the deletion of BIM in specific cell types in future studies, we have developed a mouse strain with a conditional Bim allele as well as a new Cre transgenic strain, Vav-CreER, in which the tamoxifen-inducible CreER recombinase (fusion protein) is predominantly expressed in the hematopoietic system. We show that acute loss of BIM in the adult mouse rapidly results in the hematopoietic phenotypes previously observed in mice lacking BIM in all tissues. This includes changes in thymocyte subpopulations, increased white blood cell counts and resistance of lymphocytes to BIM-dependent apoptotic stimuli, such as cytokine deprivation. We have validated this novel conditional Bim knockout mouse model using established and newly developed CreER strains (Rosa26-CreER and Vav-CreER) and will make these exciting new tools for studies on cell death and cancer available.

  4. Motor and cognitive stereotypies in the BTBR T+tf/J mouse model of autism

    PubMed Central

    Pearson, BL; Pobbe, RLH; Defensor, EB; Oasay, L; Bolivar, VJ; Blanchard, DC; Blanchard, RJ

    2010-01-01

    The BTBR T+tf/J inbred mouse strain displays a variety of persistent phenotypic alterations similar to those exhibited in autism spectrum disorders. The unique genetic background of the BTBR strain is thought to underlie its lack of reciprocal social interactions, elevated repetitive self-directed grooming and restricted exploratory behaviors. In order to clarify the existence, range and mechanisms of abnormal repetitive behaviors within BTBR mice, we performed detailed analyses of the microstructure of self-grooming patterns and noted increased overall grooming, higher percentages of interruptions in grooming bouts and a concomitant decrease in the proportion of incorrect sequence transitions compared to C57BL/6J inbred mice. Analyses of active phase home cage behavior also revealed an increase in stereotypic bar-biting behavior in the BTBR strain relative to B6 mice. Finally, in a novel object investigation task, BTBR mice exhibited greater baseline preference for specific unfamiliar objects as well as more patterned sequences of sequential investigations of those items. These results suggest that the repetitive, stereotyped behavior patterns of BTBR mice are relatively pervasive and reflect both motor and cognitive mechanisms. Furthermore, other pre-clinical mouse models of autism spectrum disorders may benefit from these more detailed analyses of stereotypic behavior. PMID:21040460

  5. Ectromelia virus lacking the E3L ortholog is replication-defective and nonpathogenic but does induce protective immunity in a mouse strain susceptible to lethal mousepox.

    PubMed

    Frey, Tiffany R; Forsyth, Katherine S; Sheehan, Maura M; De Haven, Brian C; Pevarnik, Julia G; Hand, Erin S; Pizzorno, Marie C; Eisenlohr, Laurence C; Hersperger, Adam R

    2018-05-01

    All known orthopoxviruses, including ectromelia virus (ECTV), contain a gene in the E3L family. The protein product of this gene, E3, is a double-stranded RNA-binding protein. It can impact host range and is used by orthopoxviruses to combat cellular defense pathways, such as PKR and RNase L. In this work, we constructed an ECTV mutant with a targeted disruption of the E3L open reading frame (ECTVΔE3L). Infection with this virus resulted in an abortive replication cycle in all cell lines tested. We detected limited transcription of late genes but no significant translation of these mRNAs. Notably, the replication defects of ECTVΔE3L were rescued in human and mouse cells lacking PKR. ECTVΔE3L was nonpathogenic in BALB/c mice, a strain susceptible to lethal mousepox disease. However, infection with ECTVΔE3L induced protective immunity upon subsequent challenge with wild-type virus. In summary, E3L is an essential gene for ECTV. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. NCI Mouse Repository | Frederick National Laboratory for Cancer Research

    Cancer.gov

    The NCI Mouse Repository is an NCI-funded resource for mouse cancer models and associated strains. The repository makes strains available to all members of the scientific community (academic, non-profit, and commercial). NCI Mouse Repository strains

  7. University of California San Francisco (UCSF-2): Gene Expression Profiling of Normal Mouse Skin, Hras WT and Hras -/- | Office of Cancer Genomics

    Cancer.gov

    University of California San Francisco (UCSF-2): Gene Expression Profiling of Normal Mouse Skin, Hras WT and Hras -/- This data set contains the transcriptional profiles of 20 dorsal skin samples from eight-week-old mice. Mice were generated by crossing FVB/N to Mus spretus mice to generate F1 mice, and then crossing F1 mice back to the FVB/N strain. 10  FVB/N mice lacking Hras1 (aka HrasKO, Hras-/-) and 10  FVB/N mice with wild-type Hras1 were generated. Read the abstract.

  8. The Mouse Genomes Project: a repository of inbred laboratory mouse strain genomes.

    PubMed

    Adams, David J; Doran, Anthony G; Lilue, Jingtao; Keane, Thomas M

    2015-10-01

    The Mouse Genomes Project was initiated in 2009 with the goal of using next-generation sequencing technologies to catalogue molecular variation in the common laboratory mouse strains, and a selected set of wild-derived inbred strains. The initial sequencing and survey of sequence variation in 17 inbred strains was completed in 2011 and included comprehensive catalogue of single nucleotide polymorphisms, short insertion/deletions, larger structural variants including their fine scale architecture and landscape of transposable element variation, and genomic sites subject to post-transcriptional alteration of RNA. From this beginning, the resource has expanded significantly to include 36 fully sequenced inbred laboratory mouse strains, a refined and updated data processing pipeline, and new variation querying and data visualisation tools which are available on the project's website ( http://www.sanger.ac.uk/resources/mouse/genomes/ ). The focus of the project is now the completion of de novo assembled chromosome sequences and strain-specific gene structures for the core strains. We discuss how the assembled chromosomes will power comparative analysis, data access tools and future directions of mouse genetics.

  9. Differences in susceptibility of mouse strains to tetrodotoxin.

    PubMed

    Suzuki, Hodaka

    2016-09-01

    The mouse bioassay for tetrodotoxin has been used for many years in Japan. To the best of our knowledge, however, there have only been a few reports that have specifically investigated differences in susceptibility to tetrodotoxin among mouse strains. In this study, we investigated the response of various mouse strains to tetrodotoxin. Tetrodotoxin solution was injected intraperitoneally into male mice of 5 inbred strains (A/J, BALB/c, C3H/He, C57BL/6, and DBA/2) and male and female mice of 2 non-inbred strains (ddY and ICR). Significant differences in susceptibility to tetrodotoxin were found among the mouse strains tested. In comparison to the ddY male mice, which are designated to be used in the Japanese reference method, the 5 inbred strains of mice tested were significantly more resistant to tetrodotoxin. However, no significant differences in tetrodotoxin susceptibility were observed between ddY male and female mice or between ddY male mice and ICR male and female mice. These results indicate that the users of the mouse bioassay should pay attention to differences in mouse strain in susceptibility to tetrodotoxin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Motor and cognitive stereotypies in the BTBR T+tf/J mouse model of autism.

    PubMed

    Pearson, B L; Pobbe, R L H; Defensor, E B; Oasay, L; Bolivar, V J; Blanchard, D C; Blanchard, R J

    2011-03-01

    The BTBR T+tf/J inbred mouse strain displays a variety of persistent phenotypic alterations similar to those exhibited in autism spectrum disorders (ASDs). The unique genetic background of the BTBR strain is thought to underlie its lack of reciprocal social interactions, elevated repetitive self-directed grooming, and restricted exploratory behaviors. In order to clarify the existence, range, and mechanisms of abnormal repetitive behaviors within BTBR mice, we performed detailed analyses of the microstructure of self-grooming patterns and noted increased overall grooming, higher percentages of interruptions in grooming bouts and a concomitant decrease in the proportion of incorrect sequence transitions compared to C57BL/6J inbred mice. Analyses of active phase home-cage behavior also revealed an increase in stereotypic bar-biting behavior in the BTBR strain relative to B6 mice. Finally, in a novel object investigation task, the BTBR mice exhibited greater baseline preference for specific unfamiliar objects as well as more patterned sequences of sequential investigations of those items. These results suggest that the repetitive, stereotyped behavior patterns of BTBR mice are relatively pervasive and reflect both motor and cognitive mechanisms. Furthermore, other pre-clinical mouse models of ASDs may benefit from these more detailed analyses of stereotypic behavior. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  11. Anaerobic respiration of Escherichia coli in the mouse intestine.

    PubMed

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in the intestine.

  12. Genomic variants in an inbred mouse model predict mania-like behaviors.

    PubMed

    Saul, Michael C; Stevenson, Sharon A; Zhao, Changjiu; Driessen, Terri M; Eisinger, Brian E; Gammie, Stephen C

    2018-01-01

    Contemporary rodent models for bipolar disorders split the bipolar spectrum into complimentary behavioral endophenotypes representing mania and depression. Widely accepted mania models typically utilize single gene transgenics or pharmacological manipulations, but inbred rodent strains show great potential as mania models. Their acceptance is often limited by the lack of genotypic data needed to establish construct validity. In this study, we used a unique strategy to inexpensively explore and confirm population allele differences in naturally occurring candidate variants in a manic rodent strain, the Madison (MSN) mouse strain. Variants were identified using whole exome resequencing on a small population of animals. Interesting candidate variants were confirmed in a larger population with genotyping. We enriched these results with observations of locomotor behavior from a previous study. Resequencing identified 447 structural variants that are mostly fixed in the MSN strain relative to control strains. After filtering and annotation, we found 11 non-synonymous MSN variants that we believe alter protein function. The allele frequencies for 6 of these variants were consistent with explanatory variants for the Madison strain's phenotype. The variants are in the Npas2, Cp, Polr3c, Smarca4, Trpv1, and Slc5a7 genes, and many of these genes' products are in pathways implicated in human bipolar disorders. Variants in Smarca4 and Polr3c together explained over 40% of the variance in locomotor behavior in the Hsd:ICR founder strain. These results enhance the MSN strain's construct validity and implicate altered nucleosome structure and transcriptional regulation as a chief molecular system underpinning behavior.

  13. Dissecting the Mechanisms of Linezolid Resistance in a Drosophila melanogaster Infection Model of Staphylococcus aureus

    PubMed Central

    Diaz, Lorena; Kontoyiannis, Dimitrios P.; Panesso, Diana; Albert, Nathaniel D.; Singh, Kavindra V.; Tran, Truc T.; Munita, Jose M.; Murray, Barbara E.; Arias, Cesar A.

    2013-01-01

    Background. Mini-host models are simple experimental systems to study host-pathogen interactions. We adapted a Drosophila melanogaster infection model to evaluate the in vivo effect of different mechanisms of linezolid (LNZ) resistance in Staphylococcus aureus. Methods. Fly survival was evaluated after infection with LNZ-resistant S. aureus strains NRS119 (which has mutations in 23S ribosomal RNA [rRNA]), CM-05 and 004-737X (which carry cfr), LNZ-susceptible derivatives of CM-05 and 004-737X (which lack cfr), and ATCC 29213 (an LNZ-susceptible control). Flies were then fed food mixed with LNZ (concentration, 15–500 µg/mL). Results were compared to those in mouse peritonitis, using LNZ via oral gavage at 80 and 120 mg/kg every 12 hours. Results. LNZ at 500 µg/mL in fly food protected against all strains, while concentrations of 15–250 µg/mL failed to protect against NRS119 (survival, 1.6%–20%). An in vivo effect of cfr was only detected at concentrations of 30 and 15 µg/mL. In the mouse peritonitis model, LNZ (at doses that mimic human pharmacokinetics) protected mice from challenge with the cfr+ 004-737X strain but was ineffective against the NRS119 strain, which carried 23S rRNA mutations. Conclusions. The fly model offers promising advantages to dissect the in vivo effect of LNZ resistance in S. aureus, and findings from this model appear to be concordant with those from the mouse peritonitis model. PMID:23547139

  14. Olivocochlear neuron central anatomy is normal in alpha 9 knockout mice.

    PubMed

    Brown, M Christian; Vetter, Douglas E

    2009-03-01

    Olivocochlear (OC) neurons were studied in a transgenic mouse with deletion of the alpha 9 nicotinic acetylcholine receptor subunit. In this alpha 9 knockout mouse, the peripheral effects of OC stimulation are lacking and the peripheral terminals of OC neurons under outer hair cells have abnormal morphology. To account for this mouse's apparently normal hearing, it has been proposed to have central compensation via collateral branches to the cochlear nucleus. We tested this idea by staining OC neurons for acetylcholinesterase and examining their morphology in knockout mice, wild-type mice of the same background strain, and CBA/CaJ mice. Knockout mice had normal OC systems in terms of numbers of OC neurons, dendritic patterns, and numbers of branches to the cochlear nucleus. The branch terminations were mainly to edge regions and to a lesser extent the core of the cochlear nucleus, and were similar among the strains in terms of the distribution and staining density. These data demonstrate that there are no obvious changes in the central morphology of the OC neurons in alpha 9 knockout mice and make less attractive the idea that there is central compensation for deletion of the peripheral receptor in these mice.

  15. Fatal autoimmunity in mice reconstituted with human hematopoietic stem cells encoding defective FOXP3

    PubMed Central

    Goettel, Jeremy A.; Biswas, Subhabrata; Lexmond, Willem S.; Yeste, Ada; Passerini, Laura; Patel, Bonny; Yang, Siyoung; Sun, Jiusong; Ouahed, Jodie; Shouval, Dror S.; McCann, Katelyn J.; Horwitz, Bruce H.; Mathis, Diane; Milford, Edgar L.; Notarangelo, Luigi D.; Roncarolo, Maria-Grazia; Fiebiger, Edda; Marasco, Wayne A.; Bacchetta, Rosa; Quintana, Francisco J.; Pai, Sung-Yun; Klein, Christoph; Muise, Aleixo M.

    2015-01-01

    Mice reconstituted with a human immune system provide a tractable in vivo model to assess human immune cell function. To date, reconstitution of murine strains with human hematopoietic stem cells (HSCs) from patients with monogenic immune disorders have not been reported. One obstacle precluding the development of immune-disease specific “humanized” mice is that optimal adaptive immune responses in current strains have required implantation of autologous human thymic tissue. To address this issue, we developed a mouse strain that lacks murine major histocompatibility complex class II (MHC II) and instead expresses human leukocyte antigen DR1 (HLA-DR1). These mice displayed improved adaptive immune responses when reconstituted with human HSCs including enhanced T-cell reconstitution, delayed-type hypersensitivity responses, and class-switch recombination. Following immune reconstitution of this novel strain with HSCs from a patient with immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, associated with aberrant FOXP3 function, mice developed a lethal inflammatory disorder with multiorgan involvement and autoantibody production mimicking the pathology seen in affected humans. This humanized mouse model permits in vivo evaluation of immune responses associated with genetically altered HSCs, including primary immunodeficiencies, and should facilitate the study of human immune pathobiology and the development of targeted therapeutics. PMID:25833964

  16. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne

    2012-10-15

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with themore » latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.« less

  17. Unique Footprint in the scl1.3 Locus Affects Adhesion and Biofilm Formation of the Invasive M3-Type Group A Streptococcus.

    PubMed

    Bachert, Beth A; Choi, Soo J; LaSala, Paul R; Harper, Tiffany I; McNitt, Dudley H; Boehm, Dylan T; Caswell, Clayton C; Ciborowski, Pawel; Keene, Douglas R; Flores, Anthony R; Musser, James M; Squeglia, Flavia; Marasco, Daniela; Berisio, Rita; Lukomski, Slawomir

    2016-01-01

    The streptococcal collagen-like proteins 1 and 2 (Scl1 and Scl2) are major surface adhesins that are ubiquitous among group A Streptococcus (GAS). Invasive M3-type strains, however, have evolved two unique conserved features in the scl1 locus: (i) an IS1548 element insertion in the scl1 promoter region and (ii) a nonsense mutation within the scl1 coding sequence. The scl1 transcript is drastically reduced in M3-type GAS, contrasting with a high transcription level of scl1 allele in invasive M1-type GAS. This leads to a lack of Scl1 expression in M3 strains. In contrast, while scl2 transcription and Scl2 production are elevated in M3 strains, M1 GAS lack Scl2 surface expression. M3-type strains were shown to have reduced biofilm formation on inanimate surfaces coated with cellular fibronectin and laminin, and in human skin equivalents. Repair of the nonsense mutation and restoration of Scl1 expression on M3-GAS cells, restores biofilm formation on cellular fibronectin and laminin coatings. Inactivation of scl1 in biofilm-capable M28 and M41 strains results in larger skin lesions in a mouse model, indicating that lack of Scl1 adhesin promotes bacterial spread over localized infection. These studies suggest the uniquely evolved scl1 locus in the M3-type strains, which prevents surface expression of the major Scl1 adhesin, contributed to the emergence of the invasive M3-type strains. Furthermore these studies provide insight into the molecular mechanisms mediating colonization, biofilm formation, and pathogenesis of group A streptococci.

  18. Functional genomics reveals an essential and specific role for Stat1 in protection of the central nervous system following herpes simplex virus corneal infection.

    PubMed

    Pasieka, Tracy Jo; Cilloniz, Cristian; Carter, Victoria S; Rosato, Pamela; Katze, Michael G; Leib, David A

    2011-12-01

    Innate immune deficiencies result in a spectrum of severe clinical outcomes following infection. In particular, there is a strong association between loss of the signal transducer and activator of transcription (Stat) pathway, breach of the blood-brain barrier (BBB), and virus-induced neuropathology. The gene signatures that characterize resistance, disease, and mortality in the virus-infected nervous system have not been defined. Herpes simplex virus type 1 (HSV-1) is commonly associated with encephalitis in humans, and humans and mice lacking Stat1 display increased susceptibility to HSV central nervous system (CNS) infections. In this study, two HSV-1 strains were used, KOS (wild type [WT]), and Δvhs, an avirulent recombinant lacking the virion host shutoff (vhs) function. In addition, two mouse strains were used: strain 129 (control) and a Stat1-deficient (Stat1(-/-)) strain. Using combinations of these virus and mouse strains, we established a model of infection resulting in three different outcomes: viral clearance without neurological disease (Δvhs infection of control mice), neurological disease followed by viral clearance (Δvhs infection of Stat1(-/-) mice and WT infection of control mice), or neurological disease followed by death (WT infection of Stat1(-/-) mice). Through the use of functional genomics on the infected brain stems, we determined gene signatures that were representative of the three infection outcomes. We demonstrated a pathological signature in the brain stem of Stat1-deficient mice characterized by upregulation of transcripts encoding chemokine receptors, inflammatory markers, neutrophil chemoattractants, leukocyte adhesion proteins, and matrix metalloproteases. Additionally, there was a greater than 100-fold increase in the inflammatory markers interleukin 1β (IL-1β) and IL-6. Consistent with this gene signature, we demonstrated profound CNS inflammation with a concomitant lethal breach of the BBB. Taken together, our results indicated an essential role for normal Stat1-dependent signaling in mediating a nonpathological immune response to viral CNS infection.

  19. Number and location of mouse mammary tumor virus proviral DNA in mouse DNA of normal tissue and of mammary tumors.

    PubMed Central

    Groner, B; Hynes, N E

    1980-01-01

    The Southern DNA filter transfer technique was used to characterize the genomic location of the mouse mammary tumor proviral DNA in different inbred strains of mice. Two of the strains (C3H and CBA) arose from a cross of a Bagg albino (BALB/c) mouse and a DBA mouse. The mouse mammary tumor virus-containing restriction enzyme DNA fragments of these strains had similar patterns, suggesting that the proviruses of these mice are in similar genomic locations. Conversely, the pattern arising from the DNA of the GR mouse, a strain genetically unrelated to the others, appeared different, suggesting that its mouse mammary tumor proviruses are located in different genomic sites. The structure of another gene, that coding for beta-globin, was also compared. The mice strains which we studied can be categorized into two classes, expressing either one or two beta-globin proteins. The macroenvironment of the beta-globin gene appeared similar among the mice strains belonging to one genetic class. Female mice of the C3H strain exogenously transmit mouse mammary tumor virus via the milk, and their offspring have a high incidence of mammary tumor occurrence. DNA isolated from individual mammary tumors taken from C3H mice or from BALB/c mice foster nursed on C3H mothers was analyzed by the DNA filter transfer technique. Additional mouse mammary tumor virus-containing fragments were found in the DNA isolated from each mammary tumor. These proviral sequences were integrated into different genomic sites in each tumor. Images PMID:6245257

  20. Strain-specific variations in cation content and transport in mouse erythrocytes

    PubMed Central

    Rivera, Alicia; Zee, Robert Y. L.; Alper, Seth L.; Peters, Luanne L.

    2013-01-01

    Studies of ion transport pathophysiology in hematological disorders and tests of possible new therapeutic agents for these disorders have been carried out in various mouse models because of close functional similarities between mouse and human red cells. We have explored strain-specific differences in erythrocyte membrane physiology in 10 inbred mouse strains by determining erythrocyte contents of Na+, K+, and Mg2+, and erythrocyte transport of ions via the ouabain-sensitive Na-K pump, the amiloride-sensitive Na-H exchanger (NHE1), the volume and chloride-dependent K-Cl cotransporter (KCC), and the charybdotoxin-sensitive Gardos channel (KCNN4). Our data reveal substantial strain-specific and sex-specific differences in both ion content and trans-membrane ion transport in mouse erythrocytes. These differences demonstrate the feasibility of identifying specific quantitative trait loci for erythroid ion transport and content in genetically standardized inbred mouse strains. PMID:23482811

  1. Strain-specific variations in cation content and transport in mouse erythrocytes.

    PubMed

    Rivera, Alicia; Zee, Robert Y L; Alper, Seth L; Peters, Luanne L; Brugnara, Carlo

    2013-05-01

    Studies of ion transport pathophysiology in hematological disorders and tests of possible new therapeutic agents for these disorders have been carried out in various mouse models because of close functional similarities between mouse and human red cells. We have explored strain-specific differences in erythrocyte membrane physiology in 10 inbred mouse strains by determining erythrocyte contents of Na(+), K(+), and Mg(2+), and erythrocyte transport of ions via the ouabain-sensitive Na-K pump, the amiloride-sensitive Na-H exchanger (NHE1), the volume and chloride-dependent K-Cl cotransporter (KCC), and the charybdotoxin-sensitive Gardos channel (KCNN4). Our data reveal substantial strain-specific and sex-specific differences in both ion content and trans-membrane ion transport in mouse erythrocytes. These differences demonstrate the feasibility of identifying specific quantitative trait loci for erythroid ion transport and content in genetically standardized inbred mouse strains.

  2. Centralized mouse repositories.

    PubMed

    Donahue, Leah Rae; Hrabe de Angelis, Martin; Hagn, Michael; Franklin, Craig; Lloyd, K C Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T

    2012-10-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world.

  3. Centralized Mouse Repositories

    PubMed Central

    Donahue, Leah Rae; de Angelis, Martin Hrabe; Hagn, Michael; Franklin, Craig; Lloyd, K. C. Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T.

    2013-01-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world. PMID:22945696

  4. An Immunocompetent Mouse Model of Zika Virus Infection.

    PubMed

    Gorman, Matthew J; Caine, Elizabeth A; Zaitsev, Konstantin; Begley, Matthew C; Weger-Lucarelli, James; Uccellini, Melissa B; Tripathi, Shashank; Morrison, Juliet; Yount, Boyd L; Dinnon, Kenneth H; Rückert, Claudia; Young, Michael C; Zhu, Zhe; Robertson, Shelly J; McNally, Kristin L; Ye, Jing; Cao, Bin; Mysorekar, Indira U; Ebel, Gregory D; Baric, Ralph S; Best, Sonja M; Artyomov, Maxim N; Garcia-Sastre, Adolfo; Diamond, Michael S

    2018-05-09

    Progress toward understanding Zika virus (ZIKV) pathogenesis is hindered by lack of immunocompetent small animal models, in part because ZIKV fails to effectively antagonize Stat2-dependent interferon (IFN) responses in mice. To address this limitation, we first passaged an African ZIKV strain (ZIKV-Dak-41525) through Rag1 -/- mice to obtain a mouse-adapted virus (ZIKV-Dak-MA) that was more virulent than ZIKV-Dak-41525 in mice treated with an anti-Ifnar1 antibody. A G18R substitution in NS4B was the genetic basis for the increased replication, and resulted in decreased IFN-β production, diminished IFN-stimulated gene expression, and the greater brain infection observed with ZIKV-Dak-MA. To generate a fully immunocompetent mouse model of ZIKV infection, human STAT2 was introduced into the mouse Stat2 locus (hSTAT2 KI). Subcutaneous inoculation of pregnant hSTAT2 KI mice with ZIKV-Dak-MA resulted in spread to the placenta and fetal brain. An immunocompetent mouse model of ZIKV infection may prove valuable for evaluating countermeasures to limit disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis

    PubMed Central

    Lionakis, Michail S.; Nickerson, Kenneth W.

    2016-01-01

    Formation of chlamydospores by Candida albicans was an established medical diagnostic test to confirm candidiasis before the molecular era. However, the functional role and pathological relevance of this in vitro morphological transition to pathogenesis in vivo remain unclear. We compared the physical properties of in vitro-induced chlamydospores with those of large C. albicans cells purified by density gradient centrifugation from Candida-infected mouse kidneys. The morphological and physical properties of these cells in kidneys of mice infected intravenously with wild type C. albicans confirmed that chlamydospores can form in infected kidneys. A previously reported chlamydospore-null Δisw2/Δisw2 mutant was used to investigate its role in virulence and chlamydospore induction. Virulence of the Δisw2/Δisw2 mutant strain was reduced 3.4-fold compared to wild type C. albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null mutant further indicate that ISW2 is a virulence factor in C. albicans. ISW2 deletion abolished chlamydospore formation within infected mouse kidneys, whereas the reconstituted strain restored chlamydospore formation in kidneys. Under chlamydospore inducing conditions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those late induced chlamydospores lacked associated suspensor cells while attaching laterally to hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydospores by C. albicans during mouse kidney colonization. Our results indicate that ISW2 is not strictly required for chlamydospores formation but is necessary for suspensor cell formation. The importance of ISW2 in chlamydospore morphogenesis and virulence may lead to additional insights into morphological differentiation and pathogenesis of C. albicans in the host microenvironment. PMID:27727302

  6. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines.

    PubMed

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2017-03-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However, 12 of the 80 cell lines (15%) were found to differ from registered information. Of them, 4 cell lines originated from the same mouse, which had been generated through mating between two different inbred strains. The genotype of the mouse sample had not been examined after the backcross, leading to strain misidentification in those cell lines. Although 8 other cell lines had been established as sublines of a BALB/c cell line, their SSLP profiles are similar to a Swiss cell line. This affects differences in genotypes between inbred and outbred strains. Because the use of inbred samples and interbreeding between strains are not involved in human materials, our results suggest that the cause and influence of misidentification in mouse cell lines are different from those in human.

  7. Isolation of Novel Synthetic Prion Strains by Amplification in Transgenic Mice Coexpressing Wild-Type and Anchorless Prion Proteins

    PubMed Central

    Raymond, Gregory J.; Race, Brent; Hollister, Jason R.; Offerdahl, Danielle K.; Moore, Roger A.; Kodali, Ravindra; Raymond, Lynne D.; Hughson, Andrew G.; Rosenke, Rebecca; Long, Dan; Dorward, David W.

    2012-01-01

    Mammalian prions are thought to consist of misfolded aggregates (protease-resistant isoform of the prion protein [PrPres]) of the cellular prion protein (PrPC). Transmissible spongiform encephalopathy (TSE) can be induced in animals inoculated with recombinant PrP (rPrP) amyloid fibrils lacking mammalian posttranslational modifications, but this induction is inefficient in hamsters or transgenic mice overexpressing glycosylphosphatidylinositol (GPI)-anchored PrPC. Here we show that TSE can be initiated by inoculation of misfolded rPrP into mice that express wild-type (wt) levels of PrPC and that synthetic prion strain propagation and selection can be affected by GPI anchoring of the host's PrPC. To create prions de novo, we fibrillized mouse rPrP in the absence of molecular cofactors, generating fibrils with a PrPres-like protease-resistant banding profile. These fibrils induced the formation of PrPres deposits in transgenic mice coexpressing wt and GPI-anchorless PrPC (wt/GPI−) at a combined level comparable to that of PrPC expression in wt mice. Secondary passage into mice expressing wt, GPI−, or wt plus GPI− PrPC induced TSE disease with novel clinical, histopathological, and biochemical phenotypes. Contrary to laboratory-adapted mouse scrapie strains, the synthetic prion agents exhibited a preference for conversion of GPI− PrPC and, in one case, caused disease only in GPI− mice. Our data show that novel TSE agents can be generated de novo solely from purified mouse rPrP after amplification in mice coexpressing normal levels of wt and anchorless PrPC. These observations provide insight into the minimal elements required to create prions in vitro and suggest that the PrPC GPI anchor can modulate the propagation of synthetic TSE strains. PMID:22915801

  8. Strain preservation of experimental animals: vitrification of two-cell stage embryos for multiple mouse strains.

    PubMed

    Eto, Tomoo; Takahashi, Riichi; Kamisako, Tsutomu

    2015-04-01

    Strain preservation of experimental animals is crucial for experimental reproducibility. Maintaining complete animal strains, however, is costly and there is a risk for genetic mutations as well as complete loss due to disasters or illness. Therefore, the development of effective vitrification techniques for cryopreservation of multiple experimental animal strains is important. We examined whether a vitrification method using cryoprotectant solutions, P10 and PEPeS, is suitable for preservation of multiple inbred and outbred mouse strains. First, we investigated whether our vitrification method using cryoprotectant solutions was suitable for two-cell stage mouse embryos. In vitro development of embryos exposed to the cryoprotectant solutions was similar to that of fresh controls. Further, the survival rate of the vitrified embryos was extremely high (98.1%). Next, we collected and vitrified two-cell stage embryos of 14 mouse strains. The average number of embryos obtained from one female was 7.3-33.3. The survival rate of vitrified embryos ranged from 92.8% to 99.1%, with no significant differences among mouse strains. In vivo development did not differ significantly between fresh controls and vitrified embryos of each strain. For strain preservation using cryopreserved embryos, two offspring for inbred lines and one offspring for outbred lines must be produced from two-cell stage embryos collected from one female. The expected number of surviving fetuses obtained from embryos collected from one female of either the inbred or outbred strains ranged from 2.9 to 19.5. The findings of the present study indicated that this vitrification method is suitable for strain preservation of multiple mouse strains. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Characterization of inter-tissue and inter-strain variability of TCE glutathione conjugation metabolites DCVG, DCVC, and NAcDCVC in the mouse.

    PubMed

    Luo, Yu-Syuan; Furuya, Shinji; Chiu, Weihsueh; Rusyn, Ivan

    2018-01-01

    Trichloroethylene (TCE) is a ubiquitous environmental toxicant that is a liver and kidney carcinogen. Conjugation of TCE with glutathione (GSH) leads to formation of nepthrotoxic and mutagenic metabolites postulated to be critical for kidney cancerdevelopment; however, relatively little is known regarding their tissue levels as previous analytical methods for their detection lacked sensitivity. Here, an LC-MS/MS-based method for simultaneous detection of S-(1,2-dichlorovinyl)-glutathione (DCVG), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), and N-acetyl-S-(1,2-dichlorovinyl)-L-cysteine (NAcDCVC) in multiple mouse tissues was developed. This analytical method is rapid, sensitive (limits of detection (LOD) 3-30 fmol across metabolites and tissues), and robust to quantify all three metabolites in liver, kidneys, and serum. The method was used to characterize inter-tissue and inter-strain variability in formation of conjugative metabolites of TCE. Single oral dose of TCE (24, 240 or 800 mg/kg) was administered to male mice from 20 inbred strains of Collaborative Cross. Inter-strain variability in the levels of DCVG, DCVC, and NAcDCVC (GSD = 1.6-2.9) was observed. Whereas NAcDCVC was distributed equally among analyzed tissues, highest levels of DCVG were detected in liver and DCVC in kidneys. Evidence indicated that inter-strain variability in conjugative metabolite formation of TCE might affect susceptibility to adverse health effects and that this method might aid in filling data gaps in human health assessment of TCE.

  10. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep☆

    PubMed Central

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J.; Foster, Russell G.; Peirson, Stuart N.; Nolan, Patrick M.

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. PMID:25179226

  11. Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep.

    PubMed

    Banks, Gareth; Heise, Ines; Starbuck, Becky; Osborne, Tamzin; Wisby, Laura; Potter, Paul; Jackson, Ian J; Foster, Russell G; Peirson, Stuart N; Nolan, Patrick M

    2015-01-01

    The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Quantifying the vascular response to ischemia with speckle variance optical coherence tomography

    PubMed Central

    Poole, Kristin M.; McCormack, Devin R.; Patil, Chetan A.; Duvall, Craig L.; Skala, Melissa C.

    2014-01-01

    Longitudinal monitoring techniques for preclinical models of vascular remodeling are critical to the development of new therapies for pathological conditions such as ischemia and cancer. In models of skeletal muscle ischemia in particular, there is a lack of quantitative, non-invasive and long term assessment of vessel morphology. Here, we have applied speckle variance optical coherence tomography (OCT) methods to quantitatively assess vascular remodeling and growth in a mouse model of peripheral arterial disease. This approach was validated on two different mouse strains known to have disparate rates and abilities of recovering following induction of hind limb ischemia. These results establish the potential for speckle variance OCT as a tool for quantitative, preclinical screening of pro- and anti-angiogenic therapies. PMID:25574425

  13. Development of Bioluminescent Cronobacter sakazakii ATCC 29544 in a Mouse Model.

    PubMed

    Wang, Xiwen; Li, Zhiping; Dong, Xiaolin; Chi, Hang; Wang, Guannan; Li, Jiakuan; Sun, Rui; Chen, Man; Zhang, Xinying; Wang, Yuanyuan; Qu, Han; Sun, Yu; Xia, Zhiping; Li, Qianxue

    2015-05-01

    Cronobacter sakazakii is an emerging pathogen that causes severe and life-threatening conditions including meningitis, bacteremia, and necrotizing enterocolitis. An animal model study for extrapolation of C. sakazakii infection can provide a better understanding of pathogenesis. However, methods for real-time monitoring of the course of C. sakazakii infection in living animals have been lacking. We developed a bioluminescent C. sakazakii strain (ATCC 29544) that can be used for real-time monitoring of C. sakazakii infection in BALB/c mice. C. sakazakii ATCC 29544 mainly colonized brain, liver, spleen, kidney, and gastrointestinal tract, as indicated by bioluminescence imaging. This work provides a novel approach for studying the progression of C. sakazakii infection and evaluating therapeutics in a living mouse model.

  14. Pre-crisis mouse cells show strain-specific covariation in the amount of 54-kilodalton phosphoprotein and in susceptibility to transformation by simian virus 40.

    PubMed

    Chen, S; Blanck, G; Pollack, R E

    1983-09-01

    We have used several inbred mouse strains to examine the role of the 54-kilodalton (kDa) cellular phosphoprotein in transformation by the papovavirus simian virus 40. We have measured the endogenous 54-kDa phosphoprotein in cells obtained from these inbred mouse strains. To study the effect of passage, cell cultures were measured for amount of the 54-kDa phosphoprotein at the 2nd and 12th passages. In the absence of any transforming agent, the amount of endogenous 54-kDa phosphoprotein in early pre-crisis mouse cells varied in a strain-specific way. Transformation frequency varied coordinately with endogenous 54-kDa expression. Mouse strains whose cells produced a high level of endogenous 54-kDa phosphoprotein on passage did not further increase its expression after simian virus 40 transformation.

  15. Pre-crisis mouse cells show strain-specific covariation in the amount of 54-kilodalton phosphoprotein and in susceptibility to transformation by simian virus 40.

    PubMed Central

    Chen, S; Blanck, G; Pollack, R E

    1983-01-01

    We have used several inbred mouse strains to examine the role of the 54-kilodalton (kDa) cellular phosphoprotein in transformation by the papovavirus simian virus 40. We have measured the endogenous 54-kDa phosphoprotein in cells obtained from these inbred mouse strains. To study the effect of passage, cell cultures were measured for amount of the 54-kDa phosphoprotein at the 2nd and 12th passages. In the absence of any transforming agent, the amount of endogenous 54-kDa phosphoprotein in early pre-crisis mouse cells varied in a strain-specific way. Transformation frequency varied coordinately with endogenous 54-kDa expression. Mouse strains whose cells produced a high level of endogenous 54-kDa phosphoprotein on passage did not further increase its expression after simian virus 40 transformation. Images PMID:6310588

  16. A Murine Hypertrophic Cardiomyopathy Model: The DBA/2J Strain.

    PubMed

    Zhao, Wenyuan; Zhao, Tieqiang; Chen, Yuanjian; Zhao, Fengbo; Gu, Qingqing; Williams, Robert W; Bhattacharya, Syamal K; Lu, Lu; Sun, Yao

    2015-01-01

    Familial hypertrophic cardiomyopathy (HCM) is attributed to mutations in genes that encode for the sarcomere proteins, especially Mybpc3 and Myh7. Genotype-phenotype correlation studies show significant variability in HCM phenotypes among affected individuals with identical causal mutations. Morphological changes and clinical expression of HCM are the result of interactions with modifier genes. With the exceptions of angiotensin converting enzyme, these modifiers have not been identified. Although mouse models have been used to investigate the genetics of many complex diseases, natural murine models for HCM are still lacking. In this study we show that the DBA/2J (D2) strain of mouse has sequence variants in Mybpc3 and Myh7, relative to widely used C57BL/6J (B6) reference strain and the key features of human HCM. Four-month-old of male D2 mice exhibit hallmarks of HCM including increased heart weight and cardiomyocyte size relative to B6 mice, as well as elevated markers for cardiac hypertrophy including β-myosin heavy chain (MHC), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and skeletal muscle alpha actin (α1-actin). Furthermore, cardiac interstitial fibrosis, another feature of HCM, is also evident in the D2 strain, and is accompanied by up-regulation of type I collagen and α-smooth muscle actin (SMA)-markers of fibrosis. Of great interest, blood pressure and cardiac function are within the normal range in the D2 strain, demonstrating that cardiac hypertrophy and fibrosis are not secondary to hypertension, myocardial infarction, or heart failure. Because D2 and B6 strains have been used to generate a large family of recombinant inbred strains, the BXD cohort, the D2 model can be effectively exploited for in-depth genetic analysis of HCM susceptibility and modifier screens.

  17. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  18. Myelin/oligodendrocyte glycoprotein–deficient (MOG-deficient) mice reveal lack of immune tolerance to MOG in wild-type mice

    PubMed Central

    Delarasse, Cécile; Daubas, Philippe; Mars, Lennart T.; Vizler, Csaba; Litzenburger, Tobias; Iglesias, Antonio; Bauer, Jan; Della Gaspera, Bruno; Schubart, Anna; Decker, Laurence; Dimitri, Dalia; Roussel, Guy; Dierich, Andrée; Amor, Sandra; Dautigny, André; Liblau, Roland; Pham-Dinh, Danielle

    2003-01-01

    We studied the immunological basis for the very potent encephalitogenicity of myelin/oligodendrocyte glycoprotein (MOG), a minor component of myelin in the CNS that is widely used to induce experimental autoimmune encephalomyelitis (EAE). For this purpose, we generated a mutant mouse lacking a functional mog gene. This MOG-deficient mouse presents no clinical or histological abnormalities, permitting us to directly assess the role of MOG as a target autoantigen in EAE. In contrast to WT mice, which developed severe EAE following immunization with whole myelin, MOG-deficient mice had a mild phenotype, demonstrating that the anti-MOG response is a major pathogenic component of the autoimmune response directed against myelin. Moreover, while MOG transcripts are expressed in lymphoid organs in minute amounts, both MOG-deficient and WT mice show similar T and B cell responses against the extracellular domain of MOG, including the immunodominant MOG 35–55 T cell epitope. Furthermore, no differences in the fine specificity of the T cell responses to overlapping peptides covering the complete mouse MOG sequence were observed between MOG+/+ and MOG–/– mice. In addition, upon adoptive transfer, MOG-specific T cells from WT mice and those from MOG-deficient mice are equally pathogenic. This total lack of immune tolerance to MOG in WT C57BL/6 mice may be responsible for the high pathogenicity of the anti-MOG immune response as well as the high susceptibility of most animal strains to MOG-induced EAE. PMID:12925695

  19. Human but Not Mouse Hepatocytes Respond to Interferon-Lambda In Vivo

    PubMed Central

    Hermant, Pascale; Demarez, Céline; Mahlakõiv, Tanel; Staeheli, Peter; Meuleman, Philip; Michiels, Thomas

    2014-01-01

    The type III interferon (IFN) receptor is preferentially expressed by epithelial cells. It is made of two subunits: IFNLR1, which is specific to IFN-lambda (IFN-λ) and IL10RB, which is shared by other cytokine receptors. Human hepatocytes express IFNLR1 and respond to IFN-λ. In contrast, the IFN-λ response of the mouse liver is very weak and IFNLR1 expression is hardly detectable in this organ. Here we investigated the IFN-λ response at the cellular level in the mouse liver and we tested whether human and mouse hepatocytes truly differ in responsiveness to IFN-λ. When monitoring expression of the IFN-responsive Mx genes by immunohistofluorescence, we observed that the IFN-λ response in mouse livers was restricted to cholangiocytes, which form the bile ducts, and that mouse hepatocytes were indeed not responsive to IFN-λ. The lack of mouse hepatocyte response to IFN-λ was observed in different experimental settings, including the infection with a hepatotropic strain of influenza A virus which triggered a strong local production of IFN-λ. With the help of chimeric mice containing transplanted human hepatocytes, we show that hepatocytes of human origin readily responded to IFN-λ in a murine environment. Thus, our data suggest that human but not mouse hepatocytes are responsive to IFN-λ in vivo. The non-responsiveness is an intrinsic property of mouse hepatocytes and is not due to the mouse liver micro-environment. PMID:24498220

  20. Technical note: a pilot study using a mouse mastitis model to study differences between bovine associated coagulase-negative staphylococci.

    PubMed

    Breyne, K; De Vliegher, S; De Visscher, A; Piepers, S; Meyer, E

    2015-02-01

    Coagulase-negative staphylococci (CNS) are a group of bacteria classified as either minor mastitis pathogens or commensal microbiota. Recent research suggests species- and even strain-related epidemiological and genetic differences within the large CNS group. The current pilot study investigated in 2 experiments whether a mouse mastitis model validated for bovine Staphylococcus aureus can be used to explore further differences between CNS species and strains. In a first dose titration experiment, a low inoculum dose of S. aureus Newbould 305 (positive control) was compared with increasing inoculum doses of a Staphylococcus chromogenes strain originating from a chronic bovine intramammary infection to a sham-inoculated mammary glands (negative control). In contrast to the high bacterial growth following inoculation with S. aureus, S. chromogenes was retrieved in very low levels at 24 h postinduction (p.i.). In a second experiment, the inflammation inflicted by 3 CNS strains was studied in mice. The host immune response induced by the S. chromogenes intramammary strain was compared with the one induced by a Staphylococcus fleurettii strain originating from cow bedding sawdust and by a S. chromogenes strain originating from a teat apex of a heifer. As expected, at 28 and 48 h p.i., low bacterial growth and local neutrophil influx in the mammary gland were induced by all CNS strains. As hypothesized, bacterial growth p.i. was the lowest for S. fleurettii compared with that induced by the 2 S. chromogenes strains, and the overall immune response established by the 3 CNS strains was less pronounced compared with the one induced by S. aureus. Proinflammatory cytokine profiling revealed that S. aureus locally induced IL-6 and IL-1β but not TNF-α, whereas, overall, CNS-inoculated glands lacked a strong cytokine host response but also induced IL-1β locally. Compared with both other CNS strains, S. chromogenes from the teat apex inflicted a more variable IL-1β response characterized by a more intense local reaction in several mice. This pilot study suggests that an intraductal mouse model can mimic bovine CNS mastitis and has potential as a complementary in vivo tool for future CNS mastitis research. Furthermore, it indicates that epidemiologically different bovine CNS species or strains induce a differential host innate immune response in the murine mammary gland. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Reflex Modification Audiometry Reveals Dual Roles for Olivocochlear Neurotransmission

    PubMed Central

    Allen, Paul D.; Luebke, Anne E.

    2017-01-01

    Approximately 15% of American adults report some degree of difficulty hearing in a noisy environment or have auditory filtering difficulties. There are objective clinical tests of auditory filtering, yet few tests exist for mouse models that do not rely on extensive training. We have used reflex modification audiometry (RMA) and developed exclusion criteria for the mouse model. This RMA based test makes use of the acoustic startle response (ASR) and the ability of prepulses to inhibit the ASR [i.e., prepulse inhibition (PPI)] to assess the mouse's ability to detect prepulse signals presented in quiet or embedded in masking noise. We have studied PPI behavior across four inbred mouse strains with normal cochlear function and developed pre-testing exclusion criteria and test/retest reliability measures. Moreover, because both the medial (MOC) and the lateral (LOC) olivocochlear efferent feedback systems have been proposed to improve auditory behavior performance, especially in noisy backgrounds, we have examined PPI abilities in mice (with their littermate controls) either lacking the MOC receptor subunit α9 nicotinic acetylcholine receptor [α9 nAChR (–/–)] or expressing an overactive receptor [Ld'T mutation in α9 nAChR KI], or lacking an LOC efferent neuropeptide, alpha calcitonin gene-related peptide [αCGRP (–/–)] only in the CNS. Because CGRP receptor formation has been shown to mature from juvenile to adult ages, we also studied if this maturation would be reflected in PPI behavioral responses in juvenile and adult (+/+) controls and in adult αCGRP (–/–) animals. We show that 50% PPI response thresholds (sound level with 50% correct responses) in quiet are decreased in the (–/–) α9 nAChR animals, and 50% PPI responses are increased for mice with an overactive receptor (α9 nAChR KI) and are increased in adult mice lacking αCGRP (–/–). However, in background noise, only mice lacking αCGRP exhibited increased 50% PPI response thresholds, as there were no significant differences between α9 nAChR adult mouse lines and their littermate controls. These findings suggest that MOC and LOC olivocochlear neurotransmission work in tandem to improve behavioral responses to sound. These experiments further pave the way for rapid behavioral hearing assessments in other mouse models. PMID:29213229

  2. University of California San Francisco (UCSF-2): Gene Expression Profiling of Normal Mouse Skin, Hras WT and Hras -/- | Office of Cancer Genomics

    Cancer.gov

    This data set contains the transcriptional profiles of 20 dorsal skin samples from eight-week-old mice. Mice were generated by crossing FVB/N to Mus spretus mice to generate F1 mice, and then crossing F1 mice back to the FVB/N strain. 10  FVB/N mice lacking Hras1 (aka HrasKO, Hras-/-) and 10  FVB/N mice with wild-type Hras1 were generated. Read the abstract.

  3. Penicillin resistance compromises Nod1-dependent proinflammatory activity and virulence fitness of neisseria meningitidis.

    PubMed

    Zarantonelli, Maria Leticia; Skoczynska, Anna; Antignac, Aude; El Ghachi, Meriem; Deghmane, Ala-Eddine; Szatanik, Marek; Mulet, Céline; Werts, Catherine; Peduto, Lucie; d'Andon, Martine Fanton; Thouron, Françoise; Nato, Faridabano; Lebourhis, Lionel; Philpott, Dana J; Girardin, Stephen E; Vives, Francina Langa; Sansonetti, Philippe; Eberl, Gérard; Pedron, Thierry; Taha, Muhamed-Kheir; Boneca, Ivo G

    2013-06-12

    Neisseria meningitidis is a life-threatening human bacterial pathogen responsible for pneumonia, sepsis, and meningitis. Meningococcal strains with reduced susceptibility to penicillin G (Pen(I)) carry a mutated penicillin-binding protein (PBP2) resulting in a modified peptidoglycan structure. Despite their antibiotic resistance, Pen(I) strains have failed to expand clonally. We analyzed the biological consequences of PBP2 alteration among clinical meningococcal strains and found that peptidoglycan modifications of the Pen(I) strain resulted in diminished in vitro Nod1-dependent proinflammatory activity. In an influenza virus-meningococcal sequential mouse model mimicking human disease, wild-type meningococci induced a Nod1-dependent inflammatory response, colonizing the lungs and surviving in the blood. In contrast, isogenic Pen(I) strains were attenuated for such response and were out-competed by meningococci sensitive to penicillin G. Our results suggest that antibiotic resistance imposes a cost to the success of the pathogen and may potentially explain the lack of clonal expansion of Pen(I) strains. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Enhanced Antibody Responses in a Novel NOG Transgenic Mouse with Restored Lymph Node Organogenesis

    PubMed Central

    Takahashi, Takeshi; Katano, Ikumi; Ito, Ryoji; Goto, Motohito; Abe, Hayato; Mizuno, Seiya; Kawai, Kenji; Sugiyama, Fumihiro; Ito, Mamoru

    2018-01-01

    Lymph nodes (LNs) are at the center of adaptive immune responses. Various exogenous substances are transported into LNs and a series of immune responses ensue after recognition by antigen–specific lymphocytes. Although humanized mice have been used to reconstitute the human immune system, most lack LNs due to deficiency of the interleukin (IL)-2Rγ gene (cytokine common γ chain, γc). In this study, we established a transgenic strain, NOG-pRORγt-γc, in the NOD/shi-scid-IL-2Rγnull (NOG) background, in which the γc gene was expressed in a lymph-tissue inducer (LTi) lineage by the endogenous promoter of RORγt. In this strain, LN organogenesis was normalized and the number of human T cells substantially increased in the periphery after reconstitution of the human immune system by human hematopoietic stem cell transplantation. The distribution of human T cells differed between NOG-pRORγt-γc Tg and NOG-non Tg mice. About 40% of human T cells resided in LNs, primarily the mesenteric LNs. The LN-complemented humanized mice exhibited antigen-specific immunoglobulin G responses together and an increased number of IL-21+–producing CD4+ T cells in LNs. This novel mouse strain will facilitate recapitulation of human immune responses. PMID:29387068

  5. Alternative splicing at exon 2 results in the loss of the catalytic activity of mouse DNA polymerase iota in vitro.

    PubMed

    Kazachenko, Konstantin Y; Miropolskaya, Nataliya A; Gening, Leonid V; Tarantul, Vyacheslav Z; Makarova, Alena V

    2017-02-01

    Y-family DNA polymerase iota (Pol ι) possesses both DNA polymerase and dRP lyase activities and was suggested to be involved in DNA translesion synthesis and base excision repair in mammals. The 129 strain of mice and its derivatives have a natural nonsense codon mutation in the second exon of the Pol ι gene resulting in truncation of the Pol ι protein. These mice were widely used as a Pol ι-null model for in vivo studies of the Pol ι function. However whether 129-derived strains of mice are fully deficient in the Pol ι functions was a subject of discussion since Pol ι mRNA undergoes alternative splicing at exon 2. Here we report purification of mouse Pol ι lacking the region encoded by exon 2, which includes several conserved residues involved in catalysis. We show that the deletion abrogates both the DNA polymerase and dRP lyase activities of Pol ι in the presence of either Mg 2+ or Mn 2+ ions. Thus, 129-derived strains of mice express catalytically inactive alternatively spliced Pol ι variant, whose cellular functions, if any exist, remain to be established. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Maternal Weight Gain as a Predictor of Litter Size in Swiss Webster, C57BL/6J, and BALB/cJ mice.

    PubMed

    Finlay, James B; Liu, Xueli; Ermel, Richard W; Adamson, Trinka W

    2015-11-01

    An important task facing both researchers and animal core facilities is producing sufficient mice for a given project. The inherent biologic variability of mouse reproduction and litter size further challenges effective research planning. A lack of precision in project planning contributes to the high cost of animal research, overproduction (thus waste) of animals, and inappropriate allocation of facility resources. To examine the extent daily prepartum maternal weight gain predicts litter size in 2 commonly used mouse strains (BALB/cJ and C57BL/6J) and one mouse stock (Swiss Webster), we weighed ≥ 25 pregnant dams of each strain or stock daily from the morning on which a vaginal plug (day 0) was present. On the morning when dams delivered their pups, we recorded the weight of the dam, the weight of the litter itself, and the number of pups. Litter sizes ranged from 1 to 7 pups for BALB/cJ, 2 to 13 for Swiss Webster, and 5 to 11 for C57BL/6J mice. Linear regression models (based on weight change from day 0) demonstrated that maternal weight gain at day 9 (BALB/cJ), day 11 (Swiss Webster), or day 14 (C57BL/6J) was a significant predictor of litter size. When tested prospectively, the linear regression model for each strain or stock was found to be accurate. These data indicate that the number of pups that will be born can be estimated accurately by using maternal weight gain at specific or stock-specific time points.

  7. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B.; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk.

  8. The NOTCH3 score: a pre-clinical CADASIL biomarker in a novel human genomic NOTCH3 transgenic mouse model with early progressive vascular NOTCH3 accumulation.

    PubMed

    Rutten, Julie W; Klever, Roselin R; Hegeman, Ingrid M; Poole, Dana S; Dauwerse, Hans G; Broos, Ludo A M; Breukel, Cor; Aartsma-Rus, Annemieke M; Verbeek, J Sjef; van der Weerd, Louise; van Duinen, Sjoerd G; van den Maagdenberg, Arn M J M; Lesnik Oberstein, Saskia A J

    2015-12-29

    CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) is a hereditary small vessel disease caused by mutations in the NOTCH3 gene, leading to toxic NOTCH3 protein accumulation in the small- to medium sized arterioles. The accumulation is systemic but most pronounced in the brain vasculature where it leads to clinical symptoms of recurrent stroke and dementia. There is no therapy for CADASIL, and therapeutic development is hampered by a lack of feasible clinical outcome measures and biomarkers, both in mouse models and in CADASIL patients. To facilitate pre-clinical therapeutic interventions for CADASIL, we aimed to develop a novel, translational CADASIL mouse model. We generated transgenic mice in which we overexpressed the full length human NOTCH3 gene from a genomic construct with the archetypal c.544C > T, p.Arg182Cys mutation. The four mutant strains we generated have respective human NOTCH3 RNA expression levels of 100, 150, 200 and 350 % relative to endogenous mouse Notch3 RNA expression. Immunohistochemistry on brain sections shows characteristic vascular human NOTCH3 accumulation in all four mutant strains, with human NOTCH3 RNA expression levels correlating with age at onset and progression of NOTCH3 accumulation. This finding was the basis for developing the 'NOTCH3 score', a quantitative measure for the NOTCH3 accumulation load. This score proved to be a robust and sensitive method to assess the progression of NOTCH3 accumulation, and a feasible biomarker for pre-clinical therapeutic testing. This novel, translational CADASIL mouse model is a suitable model for pre-clinical testing of therapeutic strategies aimed at delaying or reversing NOTCH3 accumulation, using the NOTCH3 score as a biomarker.

  9. Physiological and genetic analyses of inbred mouse strains with a type I iodothyronine 5' deiodinase deficiency.

    PubMed

    Berry, M J; Grieco, D; Taylor, B A; Maia, A L; Kieffer, J D; Beamer, W; Glover, E; Poland, A; Larsen, P R

    1993-09-01

    Inbred mouse strains differ in their capacity to deiodinate iododioxin and iodothyronines, with strains segregating into high or low activity groups. Metabolism of iododioxin occurs via the type I iodothyronine 5'deiodinase (5'DI), one of two enzymes that metabolize thyroxine (T4) to 3,5,3'-triiodothyronine (T3). Recombinant inbred strains derived from crosses between high and low activity strains exhibit segregation characteristic of a single allele difference. Hepatic and renal 5'DI mRNA in a high (C57BL/6J) and low (C3H/HeJ) strain paralleled enzyme activity and concentration, in agreement with a recent report. 5'DI-deficient mice had twofold higher serum free T4 but normal free T3 and thyrotropin. Brown adipose tissue 5'DII was invariant between the two strains. Southern analyses using a 5'DI probe identified a restriction fragment length variant that segregated with 5'DI activity in 33 of 35 recombinant inbred strains derived from four different pairs of high and low activity parental strains. Recombination frequencies using previously mapped loci allowed assignment of the 5'DI gene to mouse chromosome 4 and identified its approximate chromosomal position. We propose the symbol Dio1 to denote the mouse 5'DI gene. Conserved linkage between this segment of mouse chromosome 4 and human HSA1p predicts this location for human Dio1.

  10. An imputed genotype resource for the laboratory mouse

    PubMed Central

    Szatkiewicz, Jin P.; Beane, Glen L.; Ding, Yueming; Hutchins, Lucie; de Villena, Fernando Pardo-Manuel; Churchill, Gary A.

    2009-01-01

    We have created a high-density SNP resource encompassing 7.87 million polymorphic loci across 49 inbred mouse strains of the laboratory mouse by combining data available from public databases and training a hidden Markov model to impute missing genotypes in the combined data. The strong linkage disequilibrium found in dense sets of SNP markers in the laboratory mouse provides the basis for accurate imputation. Using genotypes from eight independent SNP resources, we empirically validated the quality of the imputed genotypes and demonstrate that they are highly reliable for most inbred strains. The imputed SNP resource will be useful for studies of natural variation and complex traits. It will facilitate association study designs by providing high density SNP genotypes for large numbers of mouse strains. We anticipate that this resource will continue to evolve as new genotype data become available for laboratory mouse strains. The data are available for bulk download or query at http://cgd.jax.org/. PMID:18301946

  11. Clinically isolated enterovirus A71 subgenogroup C4 strain with lethal pathogenicity in 14-day-old mice and the application as an EV-A71 mouse infection model.

    PubMed

    Xu, Yi; Ma, Shuzhi; Zhu, Limeng; Huang, Zhiqiu; Chen, Liyun; Xu, Yuhua; Yin, Haibin; Peng, Tao; Wang, Yi

    2017-01-01

    The Enterovirus A71 (EV-A71) subgenogroup C4 is prevalent in China. EV-A71 causes hand, foot and mouth disease (HFMD) in children and may lead to severe neurological diseases. The development of antiviral and protective vaccines against EV-A71 is significantly hindered by the lack of suitable animal models to recapitulate human neurological symptoms. In this study, GZ-CII, a highly virulent EV-A71 subgenogroup C4 strain, was isolated from hospitalized children with HFMD. Intraperitoneal infections of GZ-CII resulted in progressive neurological disease in mice as old as 14 days. Administration of an inactivated EV-A71 vaccine or an anti-EV-A71 immune serum protected the mice against the GZ-CII infection. This demonstrated that a mouse model with EV-A71 GZ-CII could be used to evaluate potential vaccine candidates and therapeutics for subgenogroup C4. Comparing the genome sequence of GZ-CII with that of the avirulent EV-A71 subgenogroup C4 strain revealed unique mutations in GZ-CII. When mutation VP2-K149I was introduced into the nonpathogenic EV-A71 subgenogroup C4 strain, the variant similar to GZ-CII significantly increased viral replication and virulence in mice. These results indicated that the VP2-K149I mutation played an important role in enhancing the virulence of the EV-A71 subgenogroup C4 strain in mice, and that mice infected with the GZ-CII strain are a promising model for evaluating vaccines and therapeutics against the EV-A71 subgenogroup C4. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Identification of the Gene for Scleroderma in the Tsk/2 Mouse Strain: Implications for Human Scleroderma Pathogenesis and Subset Distinctions

    DTIC Science & Technology

    2012-07-01

    Scleroderma in the Tsk/2 Mouse Strain: Implications for Human Scleroderma Pathogenesis and Subset Distinctions PRINCIPAL INVESTIGATOR: Michael...SUBTITLE Identification of the Gene Scleroderma in the Tsk/2 Mouse Strain: Implications 5a. CONTRACT NUMBER for Human Scleroderma Pathogenesis and...Tsk2/+
 mouse
 model
 of
 scleroderma .”
 Drexel
 University
 College
 of
 Medicine,
Discovery
Day
Research
Symposium,
Philadelphia,
Pennsylvania

  13. Lethal Zika Virus Disease Models in Young and Older Interferon α/β Receptor Knock Out Mice.

    PubMed

    Marzi, Andrea; Emanuel, Jackson; Callison, Julie; McNally, Kristin L; Arndt, Nicolette; Chadinha, Spencer; Martellaro, Cynthia; Rosenke, Rebecca; Scott, Dana P; Safronetz, David; Whitehead, Stephen S; Best, Sonja M; Feldmann, Heinz

    2018-01-01

    The common small animal disease models for Zika virus (ZIKV) are mice lacking the interferon responses, but infection of interferon receptor α/β knock out (IFNAR -/- ) mice is not uniformly lethal particularly in older animals. Here we sought to advance this model in regard to lethality for future countermeasure efficacy testing against more recent ZIKV strains from the Asian lineage, preferably the American sublineage. We first infected IFNAR -/- mice subcutaneously with the contemporary ZIKV-Paraiba strain resulting in predominantly neurological disease with ~50% lethality. Infection with ZIKV-Paraiba by different routes established a uniformly lethal model only in young mice (4-week old) upon intraperitoneal infection. However, intraperitoneal inoculation of ZIKV-French Polynesia resulted in uniform lethality in older IFNAR -/- mice (10-12-weeks old). In conclusion, we have established uniformly lethal mouse disease models for efficacy testing of antivirals and vaccines against recent ZIKV strains representing the Asian lineage.

  14. The development of inter-strain variation in cortical and trabecular traits during growth of the mouse lumbar vertebral body.

    PubMed

    Ramcharan, M A; Faillace, M E; Guengerich, Z; Williams, V A; Jepsen, K J

    2017-03-01

    How cortical and trabecular bone co-develop to establish a mechanically functional structure is not well understood. Comparing early postnatal differences in morphology of lumbar vertebral bodies for three inbred mouse strains identified coordinated changes within and between cortical and trabecular traits. These early coordinate changes defined the phenotypic differences among the inbred mouse strains. Age-related changes in cortical and trabecular traits have been well studied; however, very little is known about how these bone tissues co-develop from day 1 of postnatal growth to establish functional structures by adulthood. In this study, we aimed to establish how cortical and trabecular tissues within the lumbar vertebral body change during growth for three inbred mouse strains that express wide variation in adult bone structure and function. Bone traits were quantified for lumbar vertebral bodies of female A/J, C57BL/6J (B6), and C3H/HeJ (C3H) inbred mouse strains from 1 to 105 days of age (n = 6-10 mice/age/strain). Inter-strain differences in external bone size were observed as early as 1 day of age. Reciprocal and rapid changes in the trabecular bone volume fraction and alignment in the direction of axial compression were observed by 7 days of age. Importantly, the inter-strain difference in adult trabecular bone volume fraction was established by 7 days of age. Early variation in external bone size and trabecular architecture was followed by progressive increases in cortical area between 28 and 105 days of age, with the greatest increases in cortical area seen in the mouse strain with the lowest trabecular mass. Establishing the temporal changes in bone morphology for three inbred mouse strains revealed that genetic variation in adult trabecular traits were established early in postnatal development. Early variation in trabecular architecture preceded strain-specific increases in cortical area and changes in cortical thickness. This study established the sequence of how cortical and trabecular traits co-develop during growth, which is important for identifying critical early ages to further focus on intervention studies that optimize adult bone strength.

  15. Disease Model Discovery from 3,328 Gene Knockouts by The International Mouse Phenotyping Consortium

    PubMed Central

    Meehan, Terrence F.; Conte, Nathalie; West, David B.; Jacobsen, Julius O.; Mason, Jeremy; Warren, Jonathan; Chen, Chao-Kung; Tudose, Ilinca; Relac, Mike; Matthews, Peter; Karp, Natasha; Santos, Luis; Fiegel, Tanja; Ring, Natalie; Westerberg, Henrik; Greenaway, Simon; Sneddon, Duncan; Morgan, Hugh; Codner, Gemma F; Stewart, Michelle E; Brown, James; Horner, Neil; Haendel, Melissa; Washington, Nicole; Mungall, Christopher J.; Reynolds, Corey L; Gallegos, Juan; Gailus-Durner, Valerie; Sorg, Tania; Pavlovic, Guillaume; Bower, Lynette R; Moore, Mark; Morse, Iva; Gao, Xiang; Tocchini-Valentini, Glauco P; Obata, Yuichi; Cho, Soo Young; Seong, Je Kyung; Seavitt, John; Beaudet, Arthur L.; Dickinson, Mary E.; Herault, Yann; Wurst, Wolfgang; de Angelis, Martin Hrabe; Lloyd, K.C. Kent; Flenniken, Ann M; Nutter, Lauryl MJ; Newbigging, Susan; McKerlie, Colin; Justice, Monica J.; Murray, Stephen A.; Svenson, Karen L.; Braun, Robert E.; White, Jacqueline K.; Bradley, Allan; Flicek, Paul; Wells, Sara; Skarnes, William C.; Adams, David J.; Parkinson, Helen; Mallon, Ann-Marie; Brown, Steve D.M.; Smedley, Damian

    2017-01-01

    Although next generation sequencing has revolutionised the ability to associate variants with human diseases, diagnostic rates and development of new therapies are still limited by our lack of knowledge of function and pathobiological mechanism for most genes. To address this challenge, the International Mouse Phenotyping Consortium (IMPC) is creating a genome- and phenome-wide catalogue of gene function by characterizing new knockout mouse strains across diverse biological systems through a broad set of standardised phenotyping tests, with all mice made readily available to the biomedical community. Analysing the first 3328 genes reveals models for 360 diseases including the first for type C Bernard-Soulier, Bardet-Biedl-5 and Gordon Holmes syndromes. 90% of our phenotype annotations are novel, providing the first functional evidence for 1092 genes and candidates in unsolved diseases such as Arrhythmogenic Right Ventricular Dysplasia 3. Finally, we describe our role in variant functional validation with the 100,000 Genomes and other projects. PMID:28650483

  16. Murine norovirus infection in Brazilian animal facilities

    PubMed Central

    Rodrigues, Daniele Masselli; Moreira, Josélia Cristina de Oliveira; Lancellotti, Marcelo; Gilioli, Rovilson; Corat, Marcus Alexandre Finzi

    2016-01-01

    Murine norovirus (MNV) is a single-stranded positive-sense RNA virus of the Caliciviridae family. MNV has been reported to infect laboratory mice with the ability to cause lethal infections in strains lacking components of the innate immune response. Currently, MNV is considered the most prevalent infectious agent detected in laboratory mouse facilities. In this study, mice in 22 laboratory animal facilities within Brazil were analyzed for MNV infection. Using primers targeting a conserved region of the viral capsid, MNV was detected by RT-PCR in 137 of 359 mice from all 22 facilities. Nucleotide sequencing and phylogenetic analysis of the capsid region from the viral genome showed identity ranging from 87% to 99% when compared to reported MNV sequences. In addition, RAW264.7 cells inoculated with a mouse fecal suspension displayed cytopathic effect after the fifth passage. This study represents the first report of MNV in mouse colonies in Brazilian laboratory animal facilities, emphasizing the relevance of a health surveillance program in such environments. PMID:28049885

  17. Strategies for assessment of Botanical action on Metabolic Syndrome in the mouse and evidence for a Genotype-specific effect of Russian Tarragon in the regulation of insulin sensitivity

    PubMed Central

    Zuberi, Aamir R.

    2008-01-01

    Published reports of botanical action are often hampered by lack of generalized systematic approaches or by the failure to explore mechanisms that could confirm and extend the reported observations. Choice of housing conditions (singly or group housed) and imposed stress during handling procedures are often variable and can contribute significantly to differences in base-line phenotypes measured across studies. Differences can also be observed in the role of the extract in either the treatment of the metabolic syndrome or roles in the regulation of the emergence of metabolic syndrome. The choice of diet used can also vary between the different studies and diet-botanical interactions must be considered. This mini-review highlights the strategies being pursued by the Botanical Research Center Animal Research Core to evaluate the in vivo phenotypes of several Botanical extracts during chronic feeding studies. We describe a phenotyping strategy that promotes a more rigorous interpretation of botanical action and can suggest or eliminate possible mechanisms that may be involved. We discuss the importance of selecting the mouse model, as background strain can significantly alter the underlying susceptibilities to the various components of Metabolic Syndrome. Finally, we present data suggesting the one of the major botanical extracts being studied, an extract of Russian Tarragon, may manifest a mouse strain genotypic-specific insulin-sensitizing phenotype. PMID:18555848

  18. Genomic landscapes of endogenous retroviruses unveil intricate genetics of conventional and genetically-engineered laboratory mouse strains.

    PubMed

    Lee, Kang-Hoon; Lim, Debora; Chiu, Sophia; Greenhalgh, David; Cho, Kiho

    2016-04-01

    Laboratory strains of mice, both conventional and genetically engineered, have been introduced as critical components of a broad range of studies investigating normal and disease biology. Currently, the genetic identity of laboratory mice is primarily confirmed by surveying polymorphisms in selected sets of "conventional" genes and/or microsatellites in the absence of a single completely sequenced mouse genome. First, we examined variations in the genomic landscapes of transposable repetitive elements, named the TREome, in conventional and genetically engineered mouse strains using murine leukemia virus-type endogenous retroviruses (MLV-ERVs) as a probe. A survey of the genomes from 56 conventional strains revealed strain-specific TREome landscapes, and certain families (e.g., C57BL) of strains were discernible with defined patterns. Interestingly, the TREome landscapes of C3H/HeJ (toll-like receptor-4 [TLR4] mutant) inbred mice were different from its control C3H/HeOuJ (TLR4 wild-type) strain. In addition, a CD14 knock-out strain had a distinct TREome landscape compared to its control/backcross C57BL/6J strain. Second, an examination of superantigen (SAg, a "TREome gene") coding sequences of mouse mammary tumor virus-type ERVs in the genomes of the 46 conventional strains revealed a high diversity, suggesting a potential role of SAgs in strain-specific immune phenotypes. The findings from this study indicate that unexplored and intricate genomic variations exist in laboratory mouse strains, both conventional and genetically engineered. The TREome-based high-resolution genetics surveillance system for laboratory mice would contribute to efficient study design with quality control and accurate data interpretation. This genetics system can be easily adapted to other species ranging from plants to humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Strain and Torsion Quantification in Mouse Hearts under Dobutamine Stimulation using 2D Multi-Phase MR DENSE

    PubMed Central

    Zhong, Jia; Yu, Xin

    2010-01-01

    In the current study, a 2D multi-phase MR displacement encoding with stimulated echoes (DENSE) imaging and analysis method was developed for direct quantification of Lagrangian strain in the mouse heart. Using the proposed method, less than 10 ms temporal resolution and 0.56 mm in-plane resolution were achieved. A validation study that compared strain calculation by DENSE and by MR tagging showed high correlation between the two methods (R2 > 0.80). Regional ventricular wall strain and twist were characterized in mouse hearts at baseline and under dobutamine stimulation. Dobutamine stimulation induced significant increase in radial and circumferential strains and torsion at peak-systole. A rapid untwisting was also observed during early diastole. This work demonstrates the capability of characterizing cardiac functional response to dobutamine stimulation in the mouse heart using 2D multi-phase MR DENSE. PMID:20740659

  20. Type I interferon signals in macrophages and dendritic cells control dengue virus infection: implications for a new mouse model to test dengue vaccines.

    PubMed

    Züst, Roland; Toh, Ying-Xiu; Valdés, Iris; Cerny, Daniela; Heinrich, Julia; Hermida, Lisset; Marcos, Ernesto; Guillén, Gerardo; Kalinke, Ulrich; Shi, Pei-Yong; Fink, Katja

    2014-07-01

    Dengue virus (DENV) infects an estimated 400 million people every year, causing prolonged morbidity and sometimes mortality. Development of an effective vaccine has been hampered by the lack of appropriate small animal models; mice are naturally not susceptible to DENV and only become infected if highly immunocompromised. Mouse models lacking both type I and type II interferon (IFN) receptors (AG129 mice) or the type I IFN receptor (IFNAR(-/-) mice) are susceptible to infection with mouse-adapted DENV strains but are severely impaired in mounting functional immune responses to the virus and thus are of limited use for study. Here we used conditional deletion of the type I IFN receptor (IFNAR) on individual immune cell subtypes to generate a minimally manipulated mouse model that is susceptible to DENV while retaining global immune competence. Mice lacking IFNAR expression on CD11c(+) dendritic cells and LysM(+) macrophages succumbed completely to DENV infection, while mice deficient in the receptor on either CD11c(+) or LysM(+) cells were susceptible to infection but often resolved viremia and recovered fully from infection. Conditional IFNAR mice responded with a swift and strong CD8(+) T-cell response to viral infection, compared to a weak response in IFNAR(-/-) mice. Furthermore, mice lacking IFNAR on either CD11c(+) or LysM(+) cells were also sufficiently immunocompetent to raise a protective immune response to a candidate subunit vaccine against DENV-2. These data demonstrate that mice with conditional deficiencies in expression of the IFNAR represent improved models for the study of DENV immunology and screening of vaccine candidates. Dengue virus infects 400 million people every year worldwide, causing 100 million clinically apparent infections, which can be fatal if untreated. Despite many years of research, there are no effective vaccine and no antiviral treatment available for dengue. Development of vaccines has been hampered in particular by the lack of a suitable small animal model. Mouse models used to test dengue vaccine are deficient in interferon (IFN) type I signaling and severely immunocompromised and therefore likely not ideal for the testing of vaccines. In this study, we explored alternative models lacking the IFN receptor only on certain cell types. We show that mice lacking the IFN receptor on either CD11c- or LysM-expressing cells (conditional IFNAR mice) are susceptible to dengue virus infection. Importantly, we demonstrate that conditional IFN receptor knockout mice generate a better immune response to live virus and a candidate dengue vaccine compared to IFNAR mice and are resistant to subsequent challenge. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Immunogenicity and protection induced by a Mycobacterium tuberculosis sigE mutant in a BALB/c mouse model of progressive pulmonary tuberculosis.

    PubMed

    Hernandez Pando, Rogelio; Aguilar, Leon Diana; Smith, Issar; Manganelli, Riccardo

    2010-07-01

    Tuberculosis is still one of the main challenges to human global health, leading to about two million deaths every year. One of the reasons for its success is the lack of efficacy of the widely used vaccine Mycobacterium bovis BCG. In this article, we analyze the potential use of an attenuated mutant of Mycobacterium tuberculosis H37Rv lacking the sigma factor sigma(E) as a live vaccine. We have demonstrated that BALB/c mice infected by the intratracheal route with this mutant strain showed significantly higher survival rates and less tissue damage than animals infected with the parental or complemented mutant strain. Although animals infected with the sigE mutant had low bacillary loads, their lungs showed significantly higher production of the protective factors gamma interferon (IFN-gamma), tumor necrosis factor alpha (TNF-alpha), inducible nitric oxide synthase (iNOS), and beta-defensins than those of animals infected with the parental or complemented mutant strain. Moreover, we demonstrate that the sigE mutant, when inoculated subcutaneously, was more attenuated than BCG in immunodeficient nude mice, thus representing a good candidate for a novel attenuated live vaccine strain. Finally, when we used the sigE mutant as a subcutaneous vaccine, it was able to induce a higher level of protection than did BCG with both H37Rv and a highly virulent strain of M. tuberculosis (Beijing code 9501000). Taken together, our findings suggest that the sigE mutant is a very promising strain for the development of a new vaccine against tuberculosis.

  2. CYCLOPENTA-FUSED POLYCYCLIC AROMATIC HYDROCARBONS IN STRAIN A/J MOUSE LUNG: DNA ADDUCTS, ONCOGENE MUTATIONS, & TUMORIGENESIS

    EPA Science Inventory

    Cyclopenta-fused Polycyclic Aromatic Hydrocarbons in Strain AJJ Mouse Lung: DNA Adducts, Oncogene Mutations, and Tumorigenesis.

    We have examined the relationships between DNA adducts, Ki-ras oncogene mutations, DNA adducts, and adenoma induction in the lungs of strain A/J...

  3. Dysregulation of protein degradation pathways may mediate the liver injury and phospholipidosis associated with a cationic amphiphilic antibiotic drug

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosedale, Merrie; Wu, Hong; Kurtz, C. Lisa

    A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response.more » Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis • Decreased gene expression associated with protein ubiquitination in sensitive mice • Altered protein ubiquitination may cause oxidized protein accumulation in the liver.« less

  4. Neurodegeneration and Vision Loss after Mild Blunt Trauma in the C57Bl/6 and DBA/2J Mouse

    PubMed Central

    Bricker-Anthony, Courtney; Rex, Tonia S.

    2015-01-01

    Damage to the eye from blast exposure can occur as a result of the overpressure air-wave (primary injury), flying debris (secondary injury), blunt force trauma (tertiary injury), and/or chemical/thermal burns (quaternary injury). In this study, we investigated damage in the contralateral eye after a blast directed at the ipsilateral eye in the C57Bl/6J and DBA/2J mouse. Assessments of ocular health (gross pathology, electroretinogram recordings, optokinetic tracking, optical coherence tomography and histology) were performed at 3, 7, 14 and 28 days post-trauma. Olfactory epithelium and optic nerves were also examined. Anterior pathologies were more common in the DBA/2J than in the C57Bl/6 and could be prevented with non-medicated viscous eye drops. Visual acuity decreased over time in both strains, but was more rapid and severe in the DBA/2J. Retinal cell death was present in approximately 10% of the retina at 7 and 28 days post-blast in both strains. Approximately 60% of the cell death occurred in photoreceptors. Increased oxidative stress and microglial reactivity was detected in both strains, beginning at 3 days post-injury. However, there was no sign of injury to the olfactory epithelium or optic nerve in either strain. Although our model directs an overpressure air-wave at the left eye in a restrained and otherwise protected mouse, retinal damage was detected in the contralateral eye. The lack of damage to the olfactory epithelium and optic nerve, as well as the different timing of cell death as compared to the blast-exposed eye, suggests that the injuries were due to physical contact between the contralateral eye and the housing chamber of the blast device and not propagation of the blast wave through the head. Thus we describe a model of mild blunt eye trauma. PMID:26148200

  5. Immune Status, Strain Background, and Anatomic Site of Inoculation Affect Mouse Papillomavirus (MmuPV1) Induction of Exophytic Papillomas or Endophytic Trichoblastomas

    PubMed Central

    Sundberg, John P.; Proctor, Mary; Ingle, Arvind; Silva, Kathleen A.; Dadras, Soheil S.; Jenson, A. Bennett; Ghim, Shin-je

    2014-01-01

    Papillomaviruses (PVs) induce papillomas, premalignant lesions, and carcinomas in a wide variety of species. PVs are classified first based on their host and tissue tropism and then their genomic diversities. A laboratory mouse papillomavirus, MmuPV1 (formerly MusPV), was horizontally transmitted within an inbred colony of NMRI-Foxn1nu/Foxn1nu (nude; T cell deficient) mice of an unknown period of time. A ground-up, filtered papilloma inoculum was not capable of infecting C57BL/6J wild-type mice; however, immunocompetent, alopecic, S/RV/Cri-ba/ba (bare) mice developed small papillomas at injection sites that regressed. NMRI-Foxn1nu and B6.Cg-Foxn1nu, but not NU/J-Foxn1nu, mice were susceptible to MmuPV1 infection. B6 congenic strains, but not other congenic strains carrying the same allelic mutations, lacking B- and T-cells, but not B-cells alone, were susceptible to infection, indicating that mouse strain and T-cell deficiency are critical to tumor formation. Lesions initially observed were exophytic papillomas around the muzzle, exophytic papillomas on the tail, and condylomas of the vaginal lining which could be induced by separate scarification or simultaneous scarification of MmuPV1 at all four sites. On the dorsal skin, locally invasive, poorly differentiated tumors developed with features similar to human trichoblastomas. Transcriptome analysis revealed significant differences between the normal skin in these anatomic sites and in papillomas versus trichoblastomas. The primarily dysregulated genes involved molecular pathways associated with cancer, cellular development, cellular growth and proliferation, cell morphology, and connective tissue development and function. Although trichoepitheliomas are benign, aggressive tumors, few of the genes commonly associated with basal cell carcinoma or squamous cells carcinoma were highly dysregulated. PMID:25474466

  6. IDENTIFICATION OF STEREOCHEMICAL CONFIGURATIONS OF CYCLOPENTA[CD]PYRENE-DNA ADDUCTS IN STRAIN A/J MOUSE LUNG AND C3H10T1/2CL8 CELLS

    EPA Science Inventory

    Identification of Sterochemical Configurations of Cyclopent A[cd]Pyrene DNA Adducts in Strain A/J Mouse Lung and C3H10T1/2CL8 Cells.

    Four major and several minor DNA adducts were resolved by 32P-postlabeling analysis of DNA from strain A/J mouse lung and C3H10T1/2CL8 (C3H...

  7. Serotonin transporter, 5-HT1A receptor, and behavior in DBA/2J mice in comparison with four inbred mouse strains.

    PubMed

    Popova, Nina K; Naumenko, Vladimir S; Tibeikina, Marina A; Kulikov, Alexander V

    2009-12-01

    Prepulse inhibition (PPI), the reduction in acoustic startle produced when it is preceded by a weak prepulse stimulus, is impaired in schizophrenic patients. The DBA/2J mouse strain displayed deficient PPI and is therefore suggested as an experimental animal model for the loss of sensorimotor gating in schizophrenia. Brain serotonin (5-HT) has been implicated in the pathophysiology of several psychiatric disorders, including major depressive disorder and schizophrenia. In the present study, behavior, 5-HT transporter (5-HTT) mRNA level, 5-HT(1A) receptor mRNA level, and 5-HT(1A) receptor density in the brain regions were studied in DBA/2J mice in comparison with four inbred mouse strains (CBA/Lac, C57BL/6, BALB/c, and ICR). A decrease in 5-HTT mRNA level in the midbrain and a reduced density of 5-HT(1A) receptors in the frontal cortex without significant changes in 5-HT(1A) receptor mRNA level in DBA/2J mice were found. It was shown that, along with decreased PPI, DBA/2J mice demonstrated considerably reduced immobility in the tail suspension test and in the forced swim test. No significant interstrain differences in intermale aggression, or in light-dark box and elevated plus-maze tests, were found. The results suggested the involvement of decreased 5-HTT gene expression and 5-HT(1A) receptor density in genetically defined PPI deficiency and showed a lack of any association between PPI deficiency and predisposition to aggressive, anxiety, and depressive-like behaviors. Copyright 2009 Wiley-Liss, Inc.

  8. Missing Optomotor Head-Turning Reflex in the DBA/2J Mouse

    PubMed Central

    Huang, Wei; Chen, Hui; Koehler, Christopher L.; Howell, Gareth; John, Simon W. M.; Tian, Ning; Rentería, René C.; Križaj, David

    2011-01-01

    Purpose. The optomotor reflex of DBA/2J (D2), DBA/2J-Gpnmb+ (D2-Gpnmb+), and C57BL/6J (B6) mouse strains was assayed, and the retinal ganglion cell (RGC) firing patterns, direction selectivity, vestibulomotor function and central vision was compared between the D2 and B6 mouse lines. Methods. Intraocular pressure (IOP) measurements, real-time PCR, and immunohistochemical analysis were used to assess the time course of glaucomatous changes in D2 retinas. Behavioral analyses of optomotor head-turning reflex, visible platform Morris water maze and Rotarod measurements were conducted to test vision and vestibulomotor function. Electroretinogram (ERG) measurements were used to assay outer retinal function. The multielectrode array (MEA) technique was used to characterize RGC spiking and direction selectivity in D2 and B6 retinas. Results. Progressive increase in IOP and loss of Brn3a signals in D2 animals were consistent with glaucoma progression starting after 6 months of age. D2 mice showed no response to visual stimulation that evoked robust optomotor responses in B6 mice at any age after eye opening. Spatial frequency threshold was also not measurable in the D2-Gpnmb+ strain control. ERG a- and b-waves, central vision, vestibulomotor function, the spiking properties of ON, OFF, ON-OFF, and direction-selective RGCs were normal in young D2 mice. Conclusions. The D2 strain is characterized by a lack of optomotor reflex before IOP elevation and RGC degeneration are observed. This behavioral deficit is D2 strain–specific, but is independent of retinal function and glaucoma. Caution is advised when using the optomotor reflex to follow glaucoma progression in D2 mice. PMID:21757588

  9. Mouse Sperm Cryopreservation and Recovery using the I·Cryo Kit

    PubMed Central

    Liu, Ling; Sansing, Steven R.; Morse, Iva S.; Pritchett-Corning, Kathleen R.

    2011-01-01

    Thousands of new genetically modified (GM) strains of mice have been created since the advent of transgenesis and knockout technologies. Many of these valuable animals exist only as live animals, with no backup plan in case of emergency. Cryopreservation of embryos can provide this backup, but is costly, can be a lengthy procedure, and generally requires a large number of animals for success. Since the discovery that mouse sperm can be successfully cryopreserved with a basic cryoprotective agent (CPA) consisting of 18% raffinose and 3% skim milk, sperm cryopreservation has become an acceptable and cost-effective procedure for archiving, distributing and recovery of these valuable strains. Here we demonstrate a newly developed I•Cryo kit for mouse sperm cryopreservation. Sperm from five commonly-used strains of inbred mice were frozen using this kit and then recovered. Higher protection ratios of sperm motility (> 60%) and rapid progressive motility (> 45%) compared to the control (basic CPA) were seen for sperm frozen with this kit in 5 inbred mouse strains. Two cell stage embryo development after IVF with the recovered sperm was improved consistently in all 5 mouse strains examined. Over a 1.5 year period, 49 GM mouse lines were archived by sperm cryopreservation with the I•Cryo kit and later recovered by IVF. PMID:22214993

  10. Rodent models of congenital and hereditary cataract in man.

    PubMed

    Tripathi, B J; Tripathi, R C; Borisuth, N S; Dhaliwal, R; Dhaliwal, D

    1991-01-01

    Because the organogenesis and physiology of the lens are essentially similar in various mammals, an understanding of the etiology and pathogenesis of the formation of cataract in an animal model will enhance our knowledge of cataractogenesis in man. In this review, we summarize the background, etiology, and pathogenesis of cataracts that occur in rodents. The main advantages of using rodent mutants include the well-researched genetics of the animals and the comparative ease of breeding of large litters. Numerous rodent models of congenital and hereditary cataracts have been studied extensively. In mice, the models include the Cts strain, Fraser mouse, lens opacity gene (Lop) strain, Lop-2 and Lop-3 strains, Philly mouse, Nakano mouse, Nop strain, Deer mouse, Emory mouse, Swiss Webster strain, Balb/c-nct/nct mouse, and SAM-R/3 strain. The rat models include BUdR, ICR, Sprague-Dawley, and Wistar rats, the spontaneously hypertensive rat (SHR), the John Rapp inbred strain of Dahl salt-sensitive rat, as well as WBN/Kob, Royal College of Surgeons (RCS), and Brown-Norway rats. Other proposed models for the study of hereditary cataract include the degu and the guinea pig. Because of the ease of making clinical observations in vivo and the subsequent availability of the intact lens for laboratory analyses at different stages of cataract formation, these animals provide excellent models for clinicopathologic correlations, for monitoring of the natural history of the aging process and of metabolic defects, as well as for investigations on the effect of cataract-modulating agents and drugs, including the prospect of gene therapy.

  11. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease

    PubMed Central

    Brochard, Vanessa; Combadière, Béhazine; Prigent, Annick; Laouar, Yasmina; Perrin, Aline; Beray-Berthat, Virginie; Bonduelle, Olivia; Alvarez-Fischer, Daniel; Callebert, Jacques; Launay, Jean-Marie; Duyckaerts, Charles; Flavell, Richard A.; Hirsch, Etienne C.; Hunot, Stéphane

    2008-01-01

    Parkinson disease (PD) is a neurodegenerative disorder characterized by a loss of dopamine-containing neurons. Mounting evidence suggests that dopaminergic cell death is influenced by the innate immune system. However, the pathogenic role of the adaptive immune system in PD remains enigmatic. Here we showed that CD8+ and CD4+ T cells but not B cells had invaded the brain in both postmortem human PD specimens and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD during the course of neuronal degeneration. We further demonstrated that MPTP-induced dopaminergic cell death was markedly attenuated in the absence of mature T lymphocytes in 2 different immunodeficient mouse strains (Rag1–/– and Tcrb–/– mice). Importantly, similar attenuation of MPTP-induced dopaminergic cell death was seen in mice lacking CD4 as well as in Rag1–/– mice reconstituted with FasL-deficient splenocytes. However, mice lacking CD8 and Rag1–/– mice reconstituted with IFN-γ–deficient splenocytes were not protected. These data indicate that T cell–mediated dopaminergic toxicity is almost exclusively arbitrated by CD4+ T cells and requires the expression of FasL but not IFNγ. Further, our data may provide a rationale for targeting the adaptive arm of the immune system as a therapeutic strategy in PD. PMID:19104149

  12. The significance of avian influenza virus mouse-adaptation and its application in characterizing the efficacy of new vaccines and therapeutic agents

    PubMed Central

    2017-01-01

    Due to the increased frequency of interspecies transmission of avian influenza viruses, studies designed to identify the molecular determinants that could lead to an expansion of the host range have been increased. A variety of mouse-based mammalian-adaptation studies of avian influenza viruses have provided insight into the genetic alterations of various avian influenza subtypes that may contribute to the generation of a pandemic virus. To date, the studies have focused on avian influenza subtypes H5, H6, H7, H9, and H10 which have recently caused human infection. Although mice cannot fully reflect the course of human infection with avian influenza, these mouse studies can be a useful method for investigating potential mammalian adaptive markers against newly emerging avian influenza viruses. In addition, due to the lack of appropriate vaccines against the diverse emerging influenza viruses, the generation of mouse-adapted lethal variants could contribute to the development of effective vaccines or therapeutic agents. Within this review, we will summarize studies that have demonstrated adaptations of avian influenza viruses that result in an altered pathogenicity in mice which may suggest the potential application of mouse-lethal strains in the development of influenza vaccines and/or therapeutics in preclinical studies. PMID:28775972

  13. Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development

    PubMed Central

    Rella, Antonella; Mor, Visesato; Farnoud, Amir M.; Singh, Ashutosh; Shamseddine, Achraf A.; Ivanova, Elitza; Carpino, Nicholas; Montagna, Maria T.; Luberto, Chiara; Del Poeta, Maurizio

    2015-01-01

    Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4+ T-cells dependent. Immunocompromised mice, which lack CD4+ T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis. PMID:26322039

  14. Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans: potential applications for vaccine development.

    PubMed

    Rella, Antonella; Mor, Visesato; Farnoud, Amir M; Singh, Ashutosh; Shamseddine, Achraf A; Ivanova, Elitza; Carpino, Nicholas; Montagna, Maria T; Luberto, Chiara; Del Poeta, Maurizio

    2015-01-01

    Cryptococcosis caused by Cryptococcus neoformans and Cryptococcus gattii affects a large population and is a cause of significant morbidity and mortality. Despite its public health burden, there are currently no vaccines against cryptococcosis and new strategies against such infections are needed. In this study, we demonstrate that C. neoformans has the biochemical ability to metabolize sterylglucosides (SGs), a class of immunomodulatory glycolipids. Genetic manipulations that eliminate cryptococccal sterylglucosidase lead to the accumulation of SGs and generate a mutant strain (Δsgl1) that is non-pathogenic in the mouse models of cryptococcosis. Interestingly, this mutant strain acts as a vaccine strain and protects mice against cryptococcosis following infection with C. neoformans or C. gattii. The immunity induced by the Δsgl1 strain is not CD4(+) T-cells dependent. Immunocompromised mice, which lack CD4(+) T-cells, are able to control the infection by Δsgl1 and acquire immunity against the challenge by wild-type C. neoformans following vaccination with the Δsgl1 strain. These findings are particularly important in the context of HIV/AIDS immune deficiency and suggest that the Δsgl1 strain might provide a potential vaccination strategy against cryptococcosis.

  15. The IgG2a antibody response to thyroglobulin is linked to the Igh locus in mouse.

    PubMed

    Kuppers, R C; Epstein, L D; Outschoorn, I M; Rose, N R

    1994-01-01

    The IgG-subclass usage by several strains of mice in the response to immunization with mouse thyroglobulin (mTg) was examined in the experimental autoimmune thyroiditis model. While the subclass usage by most mouse strains was similar, the Ighb allotype-bearing mice consistently produced lower IgG2a levels to mTg. Using CBA-Ighb congenic and recombinant inbred strains of mice, the lower level of IgG2a in the Ighb mouse was mapped to the Igh locus. The regulation of IgG2a appeared to be cis controlled, as the CBA x C57BL/6F1 mouse also produced reduced IgG2a of the Ighb (B6) allotype but not of the Ighj (CBA) allotype.

  16. The Candida albicans Pho4 Transcription Factor Mediates Susceptibility to Stress and Influences Fitness in a Mouse Commensalism Model

    PubMed Central

    Urrialde, Verónica; Prieto, Daniel; Pla, Jesús; Alonso-Monge, Rebeca

    2016-01-01

    The Pho4 transcription factor is required for growth under low environmental phosphate concentrations in Saccharomyces cerevisiae. A characterization of Candida albicans pho4 mutants revealed that these cells are more susceptible to both osmotic and oxidative stress and that this effect is diminished in the presence of 5% CO2 or anaerobiosis, reflecting the relevance of oxygen metabolism in the Pho4-mediated response. A pho4 mutant was as virulent as wild type strain when assayed in the Galleria mellonella infection model and was even more resistant to murine macrophages in ex vivo killing assays. The lack of Pho4 neither impairs the ability to colonize the murine gut nor alters the localization in the gastrointestinal tract. However, we found that Pho4 influenced the colonization of C. albicans in the mouse gut in competition assays; pho4 mutants were unable to attain high colonization levels when inoculated simultaneously with an isogenic wild type strain. Moreover, pho4 mutants displayed a reduced adherence to the intestinal mucosa in a competitive ex vivo assays with wild type cells. In vitro competitive assays also revealed defects in fitness for this mutant compared to the wild type strain. Thus, Pho4, a transcription factor involved in phosphate metabolism, is required for adaptation to stress and fitness in C. albicans. PMID:27458452

  17. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro

    PubMed Central

    Ufimtseva, Elena

    2016-01-01

    The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccine in vitro has demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infected in vitro had increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infected in vitro or in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells both in vivo and in ex vivo culture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infection in vitro, when no expression of the activation-related molecules was detected in these cells. PMID:27066505

  18. Lrit3 deficient mouse (nob6): a novel model of complete congenital stationary night blindness (cCSNB).

    PubMed

    Neuillé, Marion; El Shamieh, Said; Orhan, Elise; Michiels, Christelle; Antonio, Aline; Lancelot, Marie-Elise; Condroyer, Christel; Bujakowska, Kinga; Poch, Olivier; Sahel, José-Alain; Audo, Isabelle; Zeitz, Christina

    2014-01-01

    Mutations in LRIT3, coding for a Leucine-Rich Repeat, immunoglobulin-like and transmembrane domains 3 protein lead to autosomal recessive complete congenital stationary night blindness (cCSNB). The role of the corresponding protein in the ON-bipolar cell signaling cascade remains to be elucidated. Here we genetically and functionally characterize a commercially available Lrit3 knock-out mouse, a model to study the function and the pathogenic mechanism of LRIT3. We confirm that the insertion of a Bgeo/Puro cassette in the knock-out allele introduces a premature stop codon, which presumably codes for a non-functional protein. The mouse line does not harbor other mutations present in common laboratory mouse strains or in other known cCSNB genes. Lrit3 mutant mice exhibit a so-called no b-wave (nob) phenotype with lacking or severely reduced b-wave amplitudes in the scotopic and photopic electroretinogram (ERG), respectively. Optomotor tests reveal strongly decreased optomotor responses in scotopic conditions. No obvious fundus auto-fluorescence or histological retinal structure abnormalities are observed. However, spectral domain optical coherence tomography (SD-OCT) reveals thinned inner nuclear layer and part of the retina containing inner plexiform layer, ganglion cell layer and nerve fiber layer in these mice. To our knowledge, this is the first time that SD-OCT technology is used to characterize an animal model for CSNB. This phenotype is noted at 6 weeks and at 6 months. The stationary nob phenotype of mice lacking Lrit3, which we named nob6, confirms the findings previously reported in patients carrying LRIT3 mutations and is similar to other cCSNB mouse models. This novel mouse model will be useful for investigating the pathogenic mechanism(s) associated with LRIT3 mutations and clarifying the role of LRIT3 in the ON-bipolar cell signaling cascade.

  19. Effects of mutation and some environmental factors on the physiology and pathogenicity of selected bacteria

    NASA Technical Reports Server (NTRS)

    Decicco, B. T.

    1974-01-01

    Studies with mutants of Staphylococcus aureus lacking some virulence factors suggest that the presence of deoxyribonuclease correlates with mouse pathogenicity of S. aureus, while the ability to ferment mannitol or the possession of coagulases are not required for virulence. Autotrophy investigations on mycobacteria demonstrate a complete correlation between the ability to grow with hydrogen and the species of scotochromogenic mycobacterium tested. All tested strains of M. gordonae, a saprophyte, could grow autotrophically while none of the tested strains of M. scrofulaceum, a clinically important species, possessed this ability. A series of heat tolerant mutants of Pseudomonas fluorescences were obtained which can grow at temperatures up to 54 C, in contrast to a maximum growth temperature of 37 C for the wild type.

  20. Lessons learned using different mouse models during space radiation-induced lung tumorigenesis experiments.

    PubMed

    Wang, Jian; Zhang, Xiangming; Wang, Ping; Wang, Xiang; Farris, Alton B; Wang, Ya

    2016-06-01

    Unlike terrestrial ionizing radiation, space radiation, especially galactic cosmic rays (GCR), contains high energy charged (HZE) particles with high linear energy transfer (LET). Due to a lack of epidemiologic data for high-LET radiation exposure, it is highly uncertain how high the carcinogenesis risk is for astronauts following exposure to space radiation during space missions. Therefore, using mouse models is necessary to evaluate the risk of space radiation-induced tumorigenesis; however, which mouse model is better for these studies remains uncertain. Since lung tumorigenesis is the leading cause of cancer death among both men and women, and low-LET radiation exposure increases human lung carcinogenesis, evaluating space radiation-induced lung tumorigenesis is critical to enable safe Mars missions. Here, by comparing lung tumorigenesis obtained from different mouse strains, as well as miR-21 in lung tissue/tumors and serum, we believe that wild type mice with a low spontaneous tumorigenesis background are ideal for evaluating the risk of space radiation-induced lung tumorigenesis, and circulating miR-21 from such mice model might be used as a biomarker for predicting the risk. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  1. A Modified R-Type Bacteriocin Specifically Targeting Clostridium difficile Prevents Colonization of Mice without Affecting Gut Microbiota Diversity

    PubMed Central

    Gebhart, Dana; Lok, Stephen; Clare, Simon; Tomas, Myreen; Stares, Mark; Scholl, Dean; Donskey, Curtis J.; Lawley, Trevor D.

    2015-01-01

    ABSTRACT Clostridium difficile is a leading cause of nosocomial infections worldwide and has become an urgent public health threat requiring immediate attention. Epidemic lineages of the BI/NAP1/027 strain type have emerged and spread through health care systems across the globe over the past decade. Limiting person-to-person transmission and eradicating C. difficile, especially the BI/NAP1/027 strain type, from health care facilities are difficult due to the abundant shedding of spores that are impervious to most interventions. Effective prophylaxis for C. difficile infection (CDI) is lacking. We have genetically modified a contractile R-type bacteriocin (“diffocin”) from C. difficile strain CD4 to kill BI/NAP1/027-type strains for this purpose. The natural receptor binding protein (RBP) responsible for diffocin targeting was replaced with a newly discovered RBP identified within a prophage of a BI/NAP1/027-type target strain by genome mining. The resulting modified diffocins (a.k.a. Avidocin-CDs), Av-CD291.1 and Av-CD291.2, were stable and killed all 16 tested BI/NAP1/027-type strains. Av-CD291.2 administered in drinking water survived passage through the mouse gastrointestinal (GI) tract, did not detectably alter the mouse gut microbiota or disrupt natural colonization resistance to C. difficile or the vancomycin-resistant Enterococcus faecium (VREF), and prevented antibiotic-induced colonization of mice inoculated with BI/NAP1/027-type spores. Given the high incidence and virulence of the pathogen, preventing colonization by BI/NAP1/027-type strains and limiting their transmission could significantly reduce the occurrence of the most severe CDIs. This modified diffocin represents a prototype of an Avidocin-CD platform capable of producing targetable, precision anti-C. difficile agents that can prevent and potentially treat CDIs without disrupting protective indigenous microbiota. PMID:25805733

  2. A mouse model for the human pathogen Salmonella Typhi

    PubMed Central

    Song, Jeongmin; Willinger, Tim; Rongvaux, Anthony; Eynon, Elizabeth E.; Stevens, Sean; Manz, Markus G.; Flavell, Richard A.; Galán, Jorge E.

    2010-01-01

    SUMMARY Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, a life-threatening disease of humans. The lack of an animal model due to S. typhi's strict human host specificity has been a significant obstacle in the understanding of its pathogenesis and the development of a safe and effective vaccine against typhoid fever. We report here the development of a mouse model for S. Typhi infection. We showed that immunodeficient Rag2 -/- γc -/- mice engrafted with human fetal liver hematopoietic stem and progenitor cells were able to support S. Typhi replication and persistent infection. A S. Typhi strain carrying a mutation in a gene required for its virulence in humans was not able to replicate in these humanized mice. In contrast, another mutant strain unable to produce the recently identified typhoid toxin, exhibited increased replication suggesting a potential role for this toxin in the establishment of persistent infection. Furthermore, infected animals mounted a human innate and adaptive immune response to S. Typhi resulting in the production of cytokines and pathogen-specific antibodies. These results therefore indicate that this animal model can be used to study S. Typhi pathogenesis and to evaluate potential vaccine candidates against typhoid fever. PMID:20951970

  3. Mouse Hepatitis Virus Strain A59 and Blocking Antireceptor Monoclonal Antibody Bind to the N-Terminal Domain of Cellular Receptor

    NASA Astrophysics Data System (ADS)

    Dveksler, Gabriela S.; Pensiero, Michael N.; Dieffenbach, Carl W.; Cardellichio, Christine B.; Basile, Alexis A.; Elia, Patrick E.; Holmes, Kathryn V.

    1993-03-01

    Mouse hepatitis virus (MHV) strain A59 uses as cellular receptors members of the carcinoembryonic antigen family in the immunoglobulin superfamily. Recombinant receptor proteins with deletions of whole or partial immunoglobulin domains were used to identify the regions of receptor glycoprotein recognized by virus and by antireceptor monoclonal antibody CC1, which blocks infection of murine cells. Monoclonal antibody CC1 and MHV-A59 virions bound only to recombinant proteins containing the entire first domain of MHV receptor. To determine which of the proteins could serve as functional virus receptors, receptor-negative hamster cells were transfected with recombinant deletion clones and then challenged with MHV-A59 virions. Receptor activity required the entire N-terminal domain with either the second or the fourth domain and the transmembrane and cytoplasmic domains. Recombinant proteins lacking the first domain or its C-terminal portion did not serve as viral receptors. Thus, like other virus receptors in the immunoglobulin superfamily, including CD4, poliovirus receptor, and intercellular adhesion molecule 1, the N-terminal domain of MHV receptor is recognized by the virus and the blocking monoclonal antibody.

  4. BP180 dysfunction triggers spontaneous skin inflammation in mice.

    PubMed

    Zhang, Yang; Hwang, Bin-Jin; Liu, Zhen; Li, Ning; Lough, Kendall; Williams, Scott E; Chen, Jinbo; Burette, Susan W; Diaz, Luis A; Su, Maureen A; Xiao, Shengxiang; Liu, Zhi

    2018-06-04

    BP180, also known as collagen XVII, is a hemidesmosomal component and plays a key role in maintaining skin dermal/epidermal adhesion. Dysfunction of BP180, either through genetic mutations in junctional epidermolysis bullosa (JEB) or autoantibody insult in bullous pemphigoid (BP), leads to subepidermal blistering accompanied by skin inflammation. However, whether BP180 is involved in skin inflammation remains unknown. To address this question, we generated a BP180-dysfunctional mouse strain and found that mice lacking functional BP180 (termed Δ NC16A ) developed spontaneous skin inflammatory disease, characterized by severe itch, defective skin barrier, infiltrating immune cells, elevated serum IgE levels, and increased expression of thymic stromal lymphopoietin (TSLP). Severe itch is independent of adaptive immunity and histamine, but dependent on increased expression of TSLP by keratinocytes. In addition, a high TSLP expression is detected in BP patients. Our data provide direct evidence showing that BP180 regulates skin inflammation independently of adaptive immunity, and BP180 dysfunction leads to a TSLP-mediated itch. The newly developed mouse strain could be a model for elucidation of disease mechanisms and development of novel therapeutic strategies for skin inflammation and BP180-related skin conditions.

  5. Regional Fluctuation in the Functional Consequence of LINE-1 Insertion in the Mitf Gene: The Black Spotting Phenotype Arisen from the Mitfmi-bw Mouse Lacking Melanocytes.

    PubMed

    Takeda, Kazuhisa; Hozumi, Hiroki; Ohba, Koji; Yamamoto, Hiroaki; Shibahara, Shigeki

    2016-01-01

    Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf deficiency. Here, we have established the black spotting mouse that was spontaneously arisen from the homozygous Mitfmi-bw mouse lacking melanocytes. The black spotting mouse shows multiple black patches on the white coat, with age-related graying. Importantly, each black patch also contains hair follicles lacking melanocytes, whereas the white-coat area completely lacks melanocytes. RT-PCR analyses of the pigmented patches confirmed that the LINE-1 insertion is retained in the Mitf gene of the black spotting mouse, thereby excluding the possibility of the somatic reversion of the Mitfmi-bw allele. The immunohistochemical analysis revealed that the staining intensity for beta-catenin was noticeably lower in hair follicles lacking melanocytes of the homozygous Mitfmi-bw mouse and the black spotting mouse, compared to the control mouse. In contrast, the staining intensity for beta-catenin and cyclin D1 was higher in keratinocytes of the black spotting mouse, compared to keratinocytes of the control mouse and the Mitfmi-bw mouse. Moreover, the keratinocyte layer appears thicker in the Mitfmi-bw mouse, with the overexpression of Ki-67, a marker for cell proliferation. We also show that the presumptive black spots are formed by embryonic day 15.5. Thus, the black spotting mouse provides the unique model to explore the molecular basis for the survival and death of developing melanoblasts and melanocyte stem cells in the epidermis. These results indicate that follicular melanocytes are responsible for maintaining the epidermal homeostasis; namely, the present study has provided evidence for the link between melanocyte development and the epidermal microenvironment.

  6. Asthma progression to airway remodeling and bone marrow eosinophil responses in genetically distinct strains of mice.

    PubMed

    Hogan, Mary Beth; Piktel, Debra; Hubbs, Ann F; McPherson, Leslie E; Landreth, Kenneth S

    2008-12-01

    Patient factors that cause long-term airway remodeling are largely unidentified. This suggests that genetic differences may determine which asthmatic patients develop airway remodeling. A murine model with repeated allergen exposure leading to peribronchial fibrosis in complement factor 5 (C5)-deficient A/J mice has been used to study asthma progression. No studies have addressed the systemic effects of allergen sensitization or chronic allergen exposure on bone marrow eosinophilopoiesis in this mouse strain. To investigate bone marrow eosinophil responses during acute sensitization and chronic allergen exposure using genetically distinct mouse strains differing in persistent airway reactivity and remodeling. The C5-sufficient BALB/c and C5-deficient A/J mice were repetitively exposed to intranasal ovalbumin for 12 weeks. Subsequently, the mice were evaluated for airway eosinophilia, mucus-containing goblet cells, and peribronchial fibrosis. Both strains of mice were also acutely sensitized to ovalbumin. Bone marrow eosinophil progenitor cells and mature eosinophils were enumerated. BALB/c and A/J mice have similar bone marrow responses after acute allergen exposure, with elevations in bone marrow eosinophil progenitor cell and eosinophil numbers. After chronic allergen exposure, only C5-deficient A/J mice that developed peribronchial fibrosis exhibited bone marrow eosinophilia. BALB/c mice lacked peribronchial fibrosis and extinguished accelerated eosinophil production after long-term allergen challenge. Chronic airway remodeling after repeated allergen exposure in genetically different mice correlated with differences in long-term bone marrow eosinophilopoiesis. Preventing asthma from progressing to chronic airway remodeling with fibrosis may involve identifying genetically determined influences on bone marrow responses to chronic allergen exposure.

  7. Characteristics of Sleep and Wakefulness inWild-Derived Inbred Mice

    PubMed Central

    HIYOSHI, Hideyuki; TERAO, Akira; OKAMATSU-OGURA, Yuko; KIMURA, Kazuhiro

    2014-01-01

    Genetic variations in the wild-derived inbred mouse strains are more diverse than that of classical laboratory inbred mouse strains, including C57BL/6J (B6). The sleep/wake and monoamine properties of six wild-derived inbred mouse strains (PGN2, NJL, BLG2, KJR, MSM, HMI) were characterized and compared with those of B6 mice. All examined mice were nocturnal and had a polyphasic sleep pattern with a “main sleep period” identified during the light period. However, there were three sleep/wake phenotypic differences between the wild-derived mouse strains and B6 strain. First, the amount of sleep during the dark phase was comparable with that of B6 mice. However, the amount of sleep during the light phase was more varied among strains, in particular, NJL and HMI had significantly less sleep compared with that of B6 mice. Second, PGN2, NJL, BLG2, and KJR mice showed a “highly awake period” (in which the hourly total sleep time was <10%) immediately after the onset of the dark period, which was not seen in B6 mice. Third, relative to that of B6 mice, PGN2 and KJR mice showed longer duration of wakefulness episodes during the 12-h dark phase. Differences in whole brain noradrenaline, dopamine, and 5-hydroxy-tryptamine contents between the wild-derived mouse strains and B6 strain were also found. These identified phenotypes might be potentially under strong genetic control. Hence, wild-derived inbred mice could be useful for identifying the genetic factors underlying the regulation of sleep and wakefulness. PMID:24770646

  8. Selection against BALB/c strain cells in mouse chimaeras

    PubMed Central

    Tang, Pin-Chi; MacKay, Gillian E.; Flockhart, Jean H.; Keighren, Margaret A.; Kopakaki, Anna

    2018-01-01

    ABSTRACT It has been shown previously that BALB/c strain embryos tend to contribute poorly to mouse aggregation chimaeras. In the present study we showed that BALB/c cells were not preferentially allocated to any extraembryonic lineages of mouse aggregation chimaeras, but their contribution decreased during the early postimplantation period and they were significantly depleted by E8.5. The development of BALB/c strain preimplantation embryos lagged behind embryos from some other strains and the contribution that BALB/c and other embryos made to chimaeras correlated with their developmental stage at E2.5. This relationship suggests that the poor contribution of BALB/c embryos to aggregation chimaeras is at least partly a consequence of generalised selection related to slow or delayed preimplantation development. The suitability of BALB/c embryos for maximising the ES cell contribution to mouse ES cell chimaeras is also discussed. PMID:29330350

  9. The Homolog of the Gene bstA of the BTP1 Phage from Salmonella enterica Serovar Typhimurium ST313 Is an Antivirulence Gene in Salmonella enterica Serovar Dublin.

    PubMed

    Herrero-Fresno, Ana; Espinel, Irene Cartas; Spiegelhauer, Malene Roed; Guerra, Priscila Regina; Andersen, Karsten Wiber; Olsen, John Elmerdahl

    2018-01-01

    In a previous study, a novel virulence gene, bstA , identified in a Salmonella enterica serovar Typhimurium sequence type 313 (ST313) strain was found to be conserved in all published Salmonella enterica serovar Dublin genomes. In order to analyze the role of this gene in the host-pathogen interaction in S Dublin, a mutant where this gene was deleted ( S Dublin Δ bstA ) and a mutant which was further genetically complemented with bstA ( S Dublin 3246-C) were constructed and tested in models of in vitro and in vivo infection as well as during growth competition assays in M9 medium, Luria-Bertani broth, and cattle blood. In contrast to the results obtained for a strain of S Typhimurium ST313, the lack of bstA was found to be associated with increased virulence in S Dublin. Thus, S Dublin Δ bstA showed higher levels of uptake than the wild-type strain during infection of mouse and cattle macrophages and higher net replication within human THP-1 cells. Furthermore, during mouse infections, S Dublin Δ bstA was more virulent than the wild type following a single intraperitoneal infection and showed an increased competitive index during competitive infection assays. Deletion of bstA did not affect either the amount of cytokines released by THP-1 macrophages or the cytotoxicity toward these cells. The histology of the livers and spleens of mice infected with the wild-type strain and the S Dublin Δ bstA mutant revealed similar levels of inflammation between the two groups. The gene was not important for adherence to or invasion of human epithelial cells and did not influence bacterial growth in rich medium, minimal medium, or cattle blood. In conclusion, a lack of bstA affects the pathogenicity of S Dublin by decreasing its virulence. Therefore, it might be regarded as an antivirulence gene in this serovar. Copyright © 2017 American Society for Microbiology.

  10. [On the role of selective silencer Freud-1 in the regulation of the brain 5-HT(1A) receptor gene expression].

    PubMed

    Naumenko, V S; Osipova, D V; Tsybko, A S

    2010-01-01

    Selective 5-HT(1A) receptor silencer (Freud-1) is known to be one of the main factors for transcriptional regulation of brain serotonin 5-HT(1A) receptor. However, there is a lack of data on implication of Freud-1 in the mechanisms underlying genetically determined and experimentally altered 5-HT(1A) receptor system state in vivo. In the present study we have found a difference in the 5-HT(1A) gene expression in the midbrain of AKR and CBA inbred mouse strains. At the same time no distinction in Freud-1 expression was observed. We have revealed 90.3% of homology between mouse and rat 5-HT(1A) receptor DRE-element, whereas there was no difference in DRE-element sequence between AKR and CBA mice. This indicates the absence of differences in Freud-1 binding site in these mouse strains. In the model of 5-HT(1A) receptor desensitization produced by chronic 5-HT(1A) receptor agonist administration, a significant reduction of 5-HT(1A) receptor gene expression together with considerable increase of Freud-1 expression were found. These data allow us to conclude that the selective silencer of 5-HT(1A) receptor, Freud-1, is involved in the compensatory mechanisms that modulate the functional state of brain serotonin system, although it is not the only factor for 5-HT(1A) receptor transcriptional regulation.

  11. Denervation affects regenerative responses in MRL/MpJ and repair in C57BL/6 ear wounds

    PubMed Central

    Buckley, Gemma; Wong, Jason; Metcalfe, Anthony D; Ferguson, Mark W J

    2012-01-01

    The MRL/MpJ mouse displays the rare ability amongst mammals to heal injured ear tissue without scarring. Numerous studies have shown that the formation of a blastema-like structure leads to subsequent tissue regeneration in this model, indicating many parallels with amphibian limb regeneration and mammalian embryogenesis. We have recently shown that the MRL/MpJ mouse also possesses an enhanced capacity for peripheral nerve regeneration within the ear wound. Indeed, nerves are vital for the initial phase of blastema formation in the amphibian limb. In this study we investigated the capacity for wound regeneration in a denervated ear. The left ears of MRL/MpJ mice and C57BL/6 (a control strain known to have a poorer regenerative capacity) were surgically denervated at the base via an incision and nerve transection, immediately followed by a 2-mm ear punch wound. Immunohistochemical analysis showed a lack of neurofilament expression in the denervated ear wound. Histology revealed that denervation prevented blastema formation and chrondrogenesis, and also severely hindered normal healing, with disrupted re-epithelialisation, increasing wound size and progressive necrosis towards the ear tip. Denervation of the ear obliterated the regenerative capacity of the MRL/MpJ mouse, and also had a severe negative effect on the ear wound repair mechanisms of the C57BL/6 strain. These data suggest that innervation may be important not only for regeneration but also for normal wound repair processes. PMID:22066944

  12. Exome sequencing and arrayCGH detection of gene sequence and copy number variation between ILS and ISS mouse strains.

    PubMed

    Dumas, Laura; Dickens, C Michael; Anderson, Nathan; Davis, Jonathan; Bennett, Beth; Radcliffe, Richard A; Sikela, James M

    2014-06-01

    It has been well documented that genetic factors can influence predisposition to develop alcoholism. While the underlying genomic changes may be of several types, two of the most common and disease associated are copy number variations (CNVs) and sequence alterations of protein coding regions. The goal of this study was to identify CNVs and single-nucleotide polymorphisms that occur in gene coding regions that may play a role in influencing the risk of an individual developing alcoholism. Toward this end, two mouse strains were used that have been selectively bred based on their differential sensitivity to alcohol: the Inbred long sleep (ILS) and Inbred short sleep (ISS) mouse strains. Differences in initial response to alcohol have been linked to risk for alcoholism, and the ILS/ISS strains are used to investigate the genetics of initial sensitivity to alcohol. Array comparative genomic hybridization (arrayCGH) and exome sequencing were conducted to identify CNVs and gene coding sequence differences, respectively, between ILS and ISS mice. Mouse arrayCGH was performed using catalog Agilent 1 × 244 k mouse arrays. Subsequently, exome sequencing was carried out using an Illumina HiSeq 2000 instrument. ArrayCGH detected 74 CNVs that were strain-specific (38 ILS/36 ISS), including several ISS-specific deletions that contained genes implicated in brain function and neurotransmitter release. Among several interesting coding variations detected by exome sequencing was the gain of a premature stop codon in the alpha-amylase 2B (AMY2B) gene specifically in the ILS strain. In total, exome sequencing detected 2,597 and 1,768 strain-specific exonic gene variants in the ILS and ISS mice, respectively. This study represents the most comprehensive and detailed genomic comparison of ILS and ISS mouse strains to date. The two complementary genome-wide approaches identified strain-specific CNVs and gene coding sequence variations that should provide strong candidates to contribute to the alcohol-related phenotypic differences associated with these strains.

  13. Differential compartmentalization of Streptococcus pyogenes virulence factors and host protein binding properties as a mechanism for host adaptation.

    PubMed

    Kilsgård, Ola; Karlsson, Christofer; Malmström, Erik; Malmström, Johan

    2016-11-01

    Streptococcus pyogenes is an important human pathogen responsible for substantial morbidity and mortality worldwide. Although S. pyogenes is a strictly human pathogen with no other known animal reservoir, several murine infection models exist to explore different aspects of the bacterial pathogenesis. Inoculating mice with wild-type S. pyogenes strains can result in the generation of new bacterial phenotypes that are hypervirulent compared to the original inoculum. In this study, we used a serial mass spectrometry based proteomics strategy to investigate if these hypervirulent strains have an altered distribution of virulence proteins across the intracellular, surface associated and secreted bacterial compartments and if any change in compartmentalization can alter the protein-protein interaction network between bacteria and host proteins. Quantitative analysis of the S. pyogenes surface and secreted proteomes revealed that animal passaged strains are associated with significantly higher amount of virulence factors on the bacterial surface and in the media. This altered virulence factor compartmentalization results in increased binding of several mouse plasma proteins to the bacterial surface, a trend that was consistent for mouse plasma from several different mouse strains. In general, both the wild-type strain and animal passaged strain were capable of binding high amounts of human plasma proteins. However, compared to the non-passaged strains, the animal passaged strains displayed an increased ability to bind mouse plasma proteins, in particular for M protein binders, indicating that the increased affinity for mouse blood plasma proteins is a consequence of host adaptation of this pathogen to a new host. In conclusion, plotting the total amount of virulence factors against the total amount of plasma proteins associated to the bacterial surface could clearly separate out animal passaged strains from wild type strains indicating a virulence model that could predict the virulence of a S. pyogenes strain in mice and which could be used to identify key aspects of this bacteria's pathogenesis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scoville, David K.; White, Collin C.; Botta, Dianne

    Quantum dots (QDs) are engineered semiconductor nanoparticles with unique physicochemical properties that make them potentially useful in clinical, research and industrial settings. However, a growing body of evidence indicates that like other engineered nanomaterials, QDs have the potential to be respiratory hazards, especially in the context of the manufacture of QDs and products containing them, as well as exposures to consumers using these products. The overall goal of this study was to investigate the role of mouse strain in determining susceptibility to QD-induced pulmonary inflammation and toxicity. Male mice from 8 genetically diverse inbred strains (the Collaborative Cross founder strains)more » were exposed to CdSe–ZnS core–shell QDs stabilized with an amphiphilic polymer. QD treatment resulted in significant increases in the percentage of neutrophils and levels of cytokines present in bronchoalveolar lavage fluid (BALF) obtained from NOD/ShiLtJ and NZO/HlLtJ mice relative to their saline (Sal) treated controls. Cadmium measurements in lung tissue indicated strain-dependent differences in disposition of QDs in the lung. Total glutathione levels in lung tissue were significantly correlated with percent neutrophils in BALF as well as with lung tissue Cd levels. Our findings indicate that QD-induced acute lung inflammation is mouse strain dependent, that it is heritable, and that the choice of mouse strain is an important consideration in planning QD toxicity studies. These data also suggest that formal genetic analyses using additional strains or recombinant inbred strains from these mice could be useful for discovering potential QD-induced inflammation susceptibility loci. - Highlights: • Quantum dot acute lung inflammation was evaluated in a multi-strain mouse model. • QD disposition differed across 8 Collaborative Cross (CC) founder strains. • Neutrophil and cytokine levels in BALF were also mouse strain dependent. • NOD/ShiLtJ, NZO/HlLtJ, and A/J were more sensitive to QDs than C57BL/6J mice. • The cytokines KC and Mip1α were strongly correlated with Cd and BALF neutrophils.« less

  15. Genetic correlational analysis reveals no association between MPP+ and the severity of striatal dopaminergic damage following MPTP treatment in BXD mouse strains.

    PubMed

    Jones, Byron C; O'Callaghan, James P; Lu, Lu; Williams, Robert W; Alam, Gelareh; Miller, Diane B

    2014-01-01

    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a pro-neurotoxicant that must be metabolized to 1-methyl-4-phenylpyridinium (MPP(+)) and taken up into striatal dopaminergic neurons to produce neurodegeneration. Recently, we showed wide genetic variability in MPTP-associated neuronal damage in a panel of recombinant inbred mouse strains. Here we examined the amount of MPP(+) produced in the striatum in the same strains of inbred BXD mice. This allowed us to determine if the differences in the dopaminergic neurotoxicity and associated astrogliosis among the BXD mouse strains were due to differential metabolism of MPTP to MPP(+). Using the same BXD mouse strains examined previously (Jones et al., 2013) we found that the extent of the striatal damage produced following MPTP treatment is not correlated quantitatively with the production of MPP(+) in the striatum. Our findings also extend those of others regarding strain differences in MPTP-induced dopaminergic neurotoxicity. Importantly, our finding suggests that additional factors influence the neurodegenerative response other than the presence and amount of the toxicant at the target site. Published by Elsevier Inc.

  16. Successful mouse cloning of an outbred strain by trichostatin A treatment after somatic nuclear transfer.

    PubMed

    Kishigami, Satoshi; Bui, Hong-Thuy; Wakayama, Sayaka; Tokunaga, Kenzo; Van Thuan, Nguyen; Hikichi, Takafusa; Mizutani, Eiji; Ohta, Hiroshi; Suetsugu, Rinako; Sata, Tetsutaro; Wakayama, Teruhiko

    2007-02-01

    Although the somatic cloning technique has been used for numerous applications and basic research of reprogramming in various species, extremely low success rates have plagued this technique for a decade. Further in mice, the "clonable" strains have been limited to mainly hybrid F1 strains such as B6D2F1. Recently, we established a new efficient cloning technique using trichostatin A (TSA) which leads to a 2-5 fold increase in success rates for mouse cloning of B6D2F1 cumulus cells. To further test the validity of this TSA cloning technique, we tried to clone the adult ICR mouse, an outbred strain, which has never been directly cloned before. Only when TSA was used did we obtain both male and female cloned mice from cumulus and fibroblast cells of adult ICR mice with 4-5% success rates, which is comparable to 5-7% of B6D2F1. Thus, the TSA treatment is the first cloning technique to allow us to successfully clone outbred mice, demonstrating that this technique not only improves the success rates of cloning from hybrid strains, but also enables mouse cloning from normally "unclonable" strains.

  17. Identification of Mouse Serum miRNA Endogenous References by Global Gene Expression Profiles

    PubMed Central

    Mi, Qing-Sheng; Weiland, Matthew; Qi, Rui-Qun; Gao, Xing-Hua; Poisson, Laila M.; Zhou, Li

    2012-01-01

    MicroRNAs (miRNAs) are recently discovered small non-coding RNAs and can serve as serum biomarkers for disease diagnosis and prognoses. Lack of reliable serum miRNA endogenous references for normalization in miRNA gene expression makes single miRNA assays inaccurate. Using TaqMan® real-time PCR miRNA arrays with a global gene expression normalization strategy, we have analyzed serum miRNA expression profiles of 20 female mice of NOD/ShiLtJ (n = 8), NOR/LtJ (n = 6), and C57BL/6J (n = 6) at different ages and disease conditions. We identified five miRNAs, miR-146a, miR-16, miR-195, miR-30e and miR-744, to be stably expressed in all strains, which could serve as mouse serum miRNA endogenous references for single assay experiments. PMID:22348064

  18. Host Genotype and Gut Microbiome Modulate Insulin Secretion and Diet-Induced Metabolic Phenotypes.

    PubMed

    Kreznar, Julia H; Keller, Mark P; Traeger, Lindsay L; Rabaglia, Mary E; Schueler, Kathryn L; Stapleton, Donald S; Zhao, Wen; Vivas, Eugenio I; Yandell, Brian S; Broman, Aimee Teo; Hagenbuch, Bruno; Attie, Alan D; Rey, Federico E

    2017-02-14

    Genetic variation drives phenotypic diversity and influences the predisposition to metabolic disease. Here, we characterize the metabolic phenotypes of eight genetically distinct inbred mouse strains in response to a high-fat/high-sucrose diet. We found significant variation in diabetes-related phenotypes and gut microbiota composition among the different mouse strains in response to the dietary challenge and identified taxa associated with these traits. Follow-up microbiota transplant experiments showed that altering the composition of the gut microbiota modifies strain-specific susceptibility to diet-induced metabolic disease. Animals harboring microbial communities with enhanced capacity for processing dietary sugars and for generating hydrophobic bile acids showed increased susceptibility to metabolic disease. Notably, differences in glucose-stimulated insulin secretion between different mouse strains were partially recapitulated via gut microbiota transfer. Our results suggest that the gut microbiome contributes to the genetic and phenotypic diversity observed among mouse strains and provide a link between the gut microbiome and insulin secretion. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Decoding mechanisms of loss of fertilization ability of cryopreserved mouse sperm

    NASA Astrophysics Data System (ADS)

    Gray, Jeffrey Earl

    Cryopreservation of mouse sperm is an important technology for management of biomedical research resources. Dramatic progress has been made recently in the development of protocols that combat mouse-strain specific reduction of IVF after cryopreservation. Equal emphasis, however, has not been placed on investigating the biological mechanisms underlying these improvements to IVF. This dissertation broadly investigates the basic question of how mouse-strain specific reduction of IVF occurs after cryopreservation, and how recently developed protocols prevent this process. My research investigated the effects of antioxidants, the cholesterol-acceptor CD, reduced calcium media, and TYH capacitation media on sperm function and oxidative stress after cryopreservation in a variety of mouse strains. I found that reduced IVF was associated with loss of capacitation-dependent sperm function in three strains, B6/J, B6/N, and 129X1, and CD improved sperm function and IVF in all three strains. These findings suggest that cryopreservation inhibits cholesterol efflux resulting in reduced IVF of many mouse strains. I also found that cryopreservation induces uniquely high production of mitochondrial H2O2 by B6/J sperm. H2O2 present in other cellular compartments of B6/J sperm was not elevated compared to other strains. High levels of mitochondrial H2O2 were associated with lipid peroxidation of the sperm head and inability to acrosome react. Antioxidants reduced mitochondrial H2O2 production, decreased sperm head lipid peroxidation, and improved acrosome reaction. The cryopreservation-induced increase in mitochondrial H2O2 production of B6/J and B6129XF1 sperm was associated with elevation of intracellular calcium after cryopreservation and dependent on mitochondrial metabolic substrates. Reducing intracellular calcium levels or removing mitochondrial metabolic substrates decreased mitochondrial H2O2 production and increased IVF rates of cryopreserved B6/J sperm. Many of the strains I tested exhibited increased H2O2 production after cryopreservation, but cryopreservation-induced H2O2 only interfered with IVF of B6/J sperm. This dissertation describes two means to improve IVF of cryopreserved sperm, mitigation of oxidative stress in B6/J sperm and improvement of capacitation-dependent sperm function for several mouse strains.

  20. Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Stephanie M.; Bradford, Blair U.; Soldatow, Valerie Y.

    2010-12-15

    Numerous studies support the fact that a genetically diverse mouse population may be useful as an animal model to understand and predict toxicity in humans. We hypothesized that cultures of hepatocytes obtained from a large panel of inbred mouse strains can produce data indicative of inter-individual differences in in vivo responses to hepato-toxicants. In order to test this hypothesis and establish whether in vitro studies using cultured hepatocytes from genetically distinct mouse strains are feasible, we aimed to determine whether viable cells may be isolated from different mouse inbred strains, evaluate the reproducibility of cell yield, viability and functionality overmore » subsequent isolations, and assess the utility of the model for toxicity screening. Hepatocytes were isolated from 15 strains of mice (A/J, B6C3F1, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, BALB/cByJ, AKR/J, MRL/MpJ, NOD/LtJ, NZW/LacJ, PWD/PhJ and WSB/EiJ males) and cultured for up to 7 days in traditional 2-dimensional culture. Cells from B6C3F1, C57BL/6J, and NOD/LtJ strains were treated with acetaminophen, WY-14,643 or rifampin and concentration-response effects on viability and function were established. Our data suggest that high yield and viability can be achieved across a panel of strains. Cell function and expression of key liver-specific genes of hepatocytes isolated from different strains and cultured under standardized conditions are comparable. Strain-specific responses to toxicant exposure have been observed in cultured hepatocytes and these experiments open new opportunities for further developments of in vitro models of hepatotoxicity in a genetically diverse population.« less

  1. Assessing Autism-like Behavior in Mice: Variations in Social Interactions Among Inbred Strains.

    PubMed Central

    Bolivar, Valerie J.; Walters, Samantha R.; Phoenix, Jennifer L.

    2007-01-01

    Autism is a pervasive developmental disorder, with characteristics including impairments in reciprocal social interaction, impaired communication, and repetitive/stereotyped behaviors. Despite decades of research, the etiology of autism remains elusive. Thus, it is important that we pursue all avenues, in attempting to understand this complicated disorder. One such avenue is the development of animal models. While autism may be uniquely human, there are behavioral characteristics of the disorder that can be established in animal models. Evidence supports a genetic component for this disorder, and over the past few decades the mouse has been a highly valuable tool for the elucidation of pathways involved in many human disorders (e.g., Huntington’s disease). As a first step toward establishing a mouse model of autism, we studied same-sex social behavior in a number of inbred mouse strains. In Study 1, we examined intra-strain social behavior of male pairs after one mouse had 15 minutes prior exposure to the testing chamber. In Study 2, we evaluated intra-strain and inter-strain social behavior when both mice were naive to the testing chamber. The amount and type of social behavior seen differed between these studies, but overall there were general inbred strain differences in social behavior. Some strains were highly social (e.g., FVB/NJ, while others displayed low levels of social behavior (e.g., A/J, BTBR T+ tf/J). These strains may be useful in future genetic studies to determine specific genes involved in mouse social behavior, the findings of which should in turn help us to determine some of the genes involved in human social behavior and its disorders (e.g., autism). PMID:17097158

  2. Host Genetic and Environmental Effects on Mouse Cecum Microbiota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, James H; Foster, Carmen M; Vishnivetskaya, Tatiana A

    2012-01-01

    The mammalian gut harbors complex and variable microbial communities, across both host phylogenetic space and conspecific individuals. A synergy of host genetic and environmental factors shape these communities and account for their variability, but their individual contributions and the selective pressures involved are still not well understood. We employed barcoded pyrosequencing of V1-2 and V4 regions of bacterial small subunit ribosomal RNA genes to characterize the effects of host genetics and environment on cecum assemblages in 10 genetically distinct, inbred mouse strains. Eight of these strains are the foundation of the Collaborative Cross (CC), a panel of mice derived frommore » a genetically diverse set of inbred founder strains, designed specifically for complex trait analysis. Diversity of gut microbiota was characterized by complementing phylogenetic and distance-based, sequence-clustering approaches. Significant correlations were found between the mouse strains and their gut microbiota, reflected by distinct bacterial communities. Cohabitation and litter had a reduced, although detectable effect, and the microbiota response to these factors varied by strain. We identified bacterial phylotypes that appear to be discriminative and strain-specific to each mouse line used. Cohabitation of different strains of mice revealed an interaction of host genetic and environmental factors in shaping gut bacterial consortia, in which bacterial communities became more similar but retained strain specificity. This study provides a baseline analysis of intestinal bacterial communities in the eight CC progenitor strains and will be linked to integrated host genotype, phenotype and microbiota research on the resulting CC panel.« less

  3. Regional Fluctuation in the Functional Consequence of LINE-1 Insertion in the Mitf Gene: The Black Spotting Phenotype Arisen from the Mitfmi-bw Mouse Lacking Melanocytes

    PubMed Central

    Yamamoto, Hiroaki; Shibahara, Shigeki

    2016-01-01

    Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf deficiency. Here, we have established the black spotting mouse that was spontaneously arisen from the homozygous Mitfmi-bw mouse lacking melanocytes. The black spotting mouse shows multiple black patches on the white coat, with age-related graying. Importantly, each black patch also contains hair follicles lacking melanocytes, whereas the white-coat area completely lacks melanocytes. RT-PCR analyses of the pigmented patches confirmed that the LINE-1 insertion is retained in the Mitf gene of the black spotting mouse, thereby excluding the possibility of the somatic reversion of the Mitfmi-bw allele. The immunohistochemical analysis revealed that the staining intensity for beta-catenin was noticeably lower in hair follicles lacking melanocytes of the homozygous Mitfmi-bw mouse and the black spotting mouse, compared to the control mouse. In contrast, the staining intensity for beta-catenin and cyclin D1 was higher in keratinocytes of the black spotting mouse, compared to keratinocytes of the control mouse and the Mitfmi-bw mouse. Moreover, the keratinocyte layer appears thicker in the Mitfmi-bw mouse, with the overexpression of Ki-67, a marker for cell proliferation. We also show that the presumptive black spots are formed by embryonic day 15.5. Thus, the black spotting mouse provides the unique model to explore the molecular basis for the survival and death of developing melanoblasts and melanocyte stem cells in the epidermis. These results indicate that follicular melanocytes are responsible for maintaining the epidermal homeostasis; namely, the present study has provided evidence for the link between melanocyte development and the epidermal microenvironment. PMID:26930598

  4. Double-hit mouse model of cigarette smoke priming for acute lung injury.

    PubMed

    Sakhatskyy, Pavlo; Wang, Zhengke; Borgas, Diana; Lomas-Neira, Joanne; Chen, Yaping; Ayala, Alfred; Rounds, Sharon; Lu, Qing

    2017-01-01

    Epidemiological studies indicate that cigarette smoking (CS) increases the risk and severity of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The mechanism is not understood, at least in part because of lack of animal models that reproduce the key features of the CS priming process. In this study, using two strains of mice, we characterized a double-hit mouse model of ALI induced by CS priming of injury caused by lipopolysaccharide (LPS). C57BL/6 and AKR mice were preexposed to CS briefly (3 h) or subacutely (3 wk) before intratracheal instillation of LPS and ALI was assessed 18 h after LPS administration by measuring lung static compliance, lung edema, vascular permeability, inflammation, and alveolar apoptosis. We found that as little as 3 h of exposure to CS enhanced LPS-induced ALI in both strains of mice. Similar exacerbating effects were observed after 3 wk of preexposure to CS. However, there was a strain difference in susceptibility to CS priming for ALI, with a greater effect in AKR mice. The key features we observed suggest that 3 wk of CS preexposure of AKR mice is a reproducible, clinically relevant animal model that is useful for studying mechanisms and treatment of CS priming for a second-hit-induced ALI. Our data also support the concept that increased susceptibility to ALI/ARDS is an important adverse health consequence of CS exposure that needs to be taken into consideration when treating critically ill individuals.

  5. Double-hit mouse model of cigarette smoke priming for acute lung injury

    PubMed Central

    Sakhatskyy, Pavlo; Wang, Zhengke; Borgas, Diana; Lomas-Neira, Joanne; Chen, Yaping; Ayala, Alfred; Rounds, Sharon

    2016-01-01

    Epidemiological studies indicate that cigarette smoking (CS) increases the risk and severity of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). The mechanism is not understood, at least in part because of lack of animal models that reproduce the key features of the CS priming process. In this study, using two strains of mice, we characterized a double-hit mouse model of ALI induced by CS priming of injury caused by lipopolysaccharide (LPS). C57BL/6 and AKR mice were preexposed to CS briefly (3 h) or subacutely (3 wk) before intratracheal instillation of LPS and ALI was assessed 18 h after LPS administration by measuring lung static compliance, lung edema, vascular permeability, inflammation, and alveolar apoptosis. We found that as little as 3 h of exposure to CS enhanced LPS-induced ALI in both strains of mice. Similar exacerbating effects were observed after 3 wk of preexposure to CS. However, there was a strain difference in susceptibility to CS priming for ALI, with a greater effect in AKR mice. The key features we observed suggest that 3 wk of CS preexposure of AKR mice is a reproducible, clinically relevant animal model that is useful for studying mechanisms and treatment of CS priming for a second-hit-induced ALI. Our data also support the concept that increased susceptibility to ALI/ARDS is an important adverse health consequence of CS exposure that needs to be taken into consideration when treating critically ill individuals. PMID:27864287

  6. Using the Textpresso Site-Specific Recombinases Web server to identify Cre expressing mouse strains and floxed alleles.

    PubMed

    Condie, Brian G; Urbanski, William M

    2014-01-01

    Effective tools for searching the biomedical literature are essential for identifying reagents or mouse strains as well as for effective experimental design and informed interpretation of experimental results. We have built the Textpresso Site Specific Recombinases (Textpresso SSR) Web server to enable researchers who use mice to perform in-depth searches of a rapidly growing and complex part of the mouse literature. Our Textpresso Web server provides an interface for searching the full text of most of the peer-reviewed publications that report the characterization or use of mouse strains that express Cre or Flp recombinase. The database also contains most of the publications that describe the characterization or analysis of strains carrying conditional alleles or transgenes that can be inactivated or activated by site-specific recombinases such as Cre or Flp. Textpresso SSR complements the existing online databases that catalog Cre and Flp expression patterns by providing a unique online interface for the in-depth text mining of the site specific recombinase literature.

  7. Linkage of genes for laminin B1 and B2 subunits on chromosome 1 in mouse.

    PubMed

    Elliott, R W; Barlow, D; Hogan, B L

    1985-08-01

    We have used cDNA clones for the B1 and B2 subunits of laminin to find restriction fragment length DNA polymorphisms for the genes encoding these polypeptides in the mouse. Three alleles were found for LamB2 and two for LamB1 among the inbred mouse strains. The segregation of these polymorphisms among recombinant inbred strains showed that these genes are tightly linked in the central region of mouse Chromosome 1 between Sas-1 and Ly-m22, 7.4 +/- 3.2 cM distal to the Pep-3 locus. There is no evidence in the mouse for pseudogenes for these proteins.

  8. Genome Wide Analysis of Inbred Mouse Lines Identifies a Locus Containing Ppar-γ as Contributing to Enhanced Malaria Survival

    PubMed Central

    Henson, Kerstin; Luzader, Angelina; Lindstrom, Merle; Spooner, Muriel; Steffy, Brian M.; Suzuki, Oscar; Janse, Chris; Waters, Andrew P.; Zhou, Yingyao; Wiltshire, Tim; Winzeler, Elizabeth A.

    2010-01-01

    The genetic background of a patient determines in part if a person develops a mild form of malaria and recovers, or develops a severe form and dies. We have used a mouse model to detect genes involved in the resistance or susceptibility to Plasmodium berghei malaria infection. To this end we first characterized 32 different mouse strains infected with P. berghei and identified survival as the best trait to discriminate between the strains. We found a locus on chromosome 6 by linking the survival phenotypes of the mouse strains to their genetic variations using genome wide analyses such as haplotype associated mapping and the efficient mixed-model for association. This new locus involved in malaria resistance contains only two genes and confirms the importance of Ppar-γ in malaria infection. PMID:20531941

  9. Phylogeographic, genomic, and meropenem susceptibility analysis of Burkholderia ubonensis

    PubMed Central

    Sarovich, Derek S.; Webb, Jessica R.; Hall, Carina M.; Jaramillo, Sierra A.; Sahl, Jason W.; Kaestli, Mirjam; Mayo, Mark; Harrington, Glenda; Baker, Anthony L.; Sidak-Loftis, Lindsay C.; Settles, Erik W.; Lummis, Madeline; Schupp, James M.; Gillece, John D.; Tuanyok, Apichai; Warner, Jeffrey; Busch, Joseph D.; Keim, Paul; Currie, Bart J.; Wagner, David M.

    2017-01-01

    The bacterium Burkholderia ubonensis is commonly co-isolated from environmental specimens harbouring the melioidosis pathogen, Burkholderia pseudomallei. B. ubonensis has been reported in northern Australia and Thailand but not North America, suggesting similar geographic distribution to B. pseudomallei. Unlike most other Burkholderia cepacia complex (Bcc) species, B. ubonensis is considered non-pathogenic, although its virulence potential has not been tested. Antibiotic resistance in B. ubonensis, particularly towards drugs used to treat the most severe B. pseudomallei infections, has also been poorly characterised. This study examined the population biology of B. ubonensis, and includes the first reported isolates from the Caribbean. Phylogenomic analysis of 264 B. ubonensis genomes identified distinct clades that corresponded with geographic origin, similar to B. pseudomallei. A small proportion (4%) of strains lacked the 920kb chromosome III replicon, with discordance of presence/absence amongst genetically highly related strains, demonstrating that the third chromosome of B. ubonensis, like other Bcc species, probably encodes for a nonessential pC3 megaplasmid. Multilocus sequence typing using the B. pseudomallei scheme revealed that one-third of strains lack the “housekeeping” narK locus. In comparison, all strains could be genotyped using the Bcc scheme. Several strains possessed high-level meropenem resistance (≥32 μg/mL), a concern due to potential transmission of this phenotype to B. pseudomallei. In silico analysis uncovered a high degree of heterogeneity among the lipopolysaccharide O-antigen cluster loci, with at least 35 different variants identified. Finally, we show that Asian B. ubonensis isolate RF23-BP41 is avirulent in the BALB/c mouse model via a subcutaneous route of infection. Our results provide several new insights into the biology of this understudied species. PMID:28910350

  10. Phylogeographic, genomic, and meropenem susceptibility analysis of Burkholderia ubonensis.

    PubMed

    Price, Erin P; Sarovich, Derek S; Webb, Jessica R; Hall, Carina M; Jaramillo, Sierra A; Sahl, Jason W; Kaestli, Mirjam; Mayo, Mark; Harrington, Glenda; Baker, Anthony L; Sidak-Loftis, Lindsay C; Settles, Erik W; Lummis, Madeline; Schupp, James M; Gillece, John D; Tuanyok, Apichai; Warner, Jeffrey; Busch, Joseph D; Keim, Paul; Currie, Bart J; Wagner, David M

    2017-09-01

    The bacterium Burkholderia ubonensis is commonly co-isolated from environmental specimens harbouring the melioidosis pathogen, Burkholderia pseudomallei. B. ubonensis has been reported in northern Australia and Thailand but not North America, suggesting similar geographic distribution to B. pseudomallei. Unlike most other Burkholderia cepacia complex (Bcc) species, B. ubonensis is considered non-pathogenic, although its virulence potential has not been tested. Antibiotic resistance in B. ubonensis, particularly towards drugs used to treat the most severe B. pseudomallei infections, has also been poorly characterised. This study examined the population biology of B. ubonensis, and includes the first reported isolates from the Caribbean. Phylogenomic analysis of 264 B. ubonensis genomes identified distinct clades that corresponded with geographic origin, similar to B. pseudomallei. A small proportion (4%) of strains lacked the 920kb chromosome III replicon, with discordance of presence/absence amongst genetically highly related strains, demonstrating that the third chromosome of B. ubonensis, like other Bcc species, probably encodes for a nonessential pC3 megaplasmid. Multilocus sequence typing using the B. pseudomallei scheme revealed that one-third of strains lack the "housekeeping" narK locus. In comparison, all strains could be genotyped using the Bcc scheme. Several strains possessed high-level meropenem resistance (≥32 μg/mL), a concern due to potential transmission of this phenotype to B. pseudomallei. In silico analysis uncovered a high degree of heterogeneity among the lipopolysaccharide O-antigen cluster loci, with at least 35 different variants identified. Finally, we show that Asian B. ubonensis isolate RF23-BP41 is avirulent in the BALB/c mouse model via a subcutaneous route of infection. Our results provide several new insights into the biology of this understudied species.

  11. Virulence factors in Escherichia coli strains isolated from Swedish piglets with diarrhea.

    PubMed Central

    Söderlind, O; Thafvelin, B; Möllby, R

    1988-01-01

    Parenteral vaccination of sows against Escherichia coli diarrhea in their newborn piglets has become more common during the last decade in Sweden, and the vaccination has generally had positive effects. For more than 20 years we have investigated E. coli strains isolated from piglets and weaned pigs with enteric disorders, noting the presence of O groups, enterotoxins, and adhesins. There has been a continuous change in the frequency of these virulence factors. The present study was performed during 1983 and 1984 to follow this change, since such information is essential for the proper choice of vaccines. A total of 856 E. coli strains were obtained from 683 herds divided into three age groups: 1 to 6 days old, 1 to 6 weeks old, and weaned pigs. O group 149 still dominated in the last two age groups, while O group 101 was, for the first time, the most frequent O group in neonatal piglets. All but four O149 strains carried the K88 antigen, which was found in only one other strain (O group 8). K99 antigen was most often found in O groups 101 and 64, and among all the K99 strains ST mouse was the most common (44 of 57), followed by ST mouse-ST pig strains (12 of 57). The 987P antigen was demonstrated in 26 strains belonging to O groups 141 and OX46 and nontypable strains. Two strains belonging to O group 101 were positive for F41 antigen; one of them also carried the K99 antigen. Among all non-O149 strains, ST mouse was the most common type of enterotoxigenic E. coli ( n = 88), followed in decreasing order by ST mouse-ST pig strains ( n = 69) and ST pig strains ( n = 33). In 114 strains producing enterotoxins no adhesive factor was found. Thus, vaccination of the Swedish sow population for more than 5 years with vaccines containing O149 and K88 antigens has apparently changed the pattern of enterotoxigenic E. coli in neonatal diarrhea. The frequency of O149:K88 strains has been reduced, and O101:K99:ST mouse strains now dominate. However, O149 strains remain the dominant O group in piglets older than 1 week. In spite of all our diagnostic efforts, no virulence factors were detected in about one third of the piglets and weaned pigs with enteric disorders. PMID:2454939

  12. Ectromelia virus upregulates the expression of heat shock protein 70 to promote viral replication.

    PubMed

    Cheng, Wenyu; Jia, Huaijie; Wang, Xiaoxia; He, Xiaobing; Jin, Qiwang; Cao, Jingxin; Jing, Zhizhong

    2018-08-01

    The ectromelia virus (ECTV) is a mouse specific Orthopoxvirus that causes lethal infection in some mouse strains. ECTV infection of these mouse strains has been used as a valuable model for understanding the interplay between Orthopoxvirus species and their hosts, including variola virus in humans. Although poxviruses encode numerous proteins required for DNA and RNA synthesis, and are less dependent on host functions than other DNA viruses, a detailed understanding of the host factors required for the replication of poxviruses is lacking. Heat shock protein 70 (Hsp70) isoforms have been reported to serve various roles in the replication cycle of numerous viruses. In the present study, microarray and reverse transcription‑quantitative polymerase chain reaction analysis were conducted to investigate the host gene expression profiles following ECTV infection in mice and cell cultures. The results indicated that one Hsp70 isoform, Hsp70 member 1B (Hspa1b), was highly upregulated during ECTV infection in vitro and in vivo. Subsequently, overexpression of Hspa1b protein and small interfering RNA‑mediated gene silencing of Hspa1b revealed that Hspa1b is required for efficient replication of ECTV. Furthermore, the results demonstrated that ECTV replication may be significantly suppressed by two chemical Hspa1b inhibitors: Quercetin and VER155008. In conclusion, the present study clearly demonstrated that ECTV infection upregulates the expression of Hspa1b in order to promote its replication. The dependence on Hsp70 may be used as a novel therapeutic target for the treatment of Orthopoxvirus infection.

  13. Recombinant MCF247 Virus, Leukemogenesis, and Immunosuppression in AKR Mice

    DTIC Science & Technology

    1990-06-01

    knowledge of thymic leukemia and lymphoma in the AKR mouse system. Early leukemia and lymphoma development in the AKR mouse strain is caused by the ...inevitable in all individuals in a high incidence strain (e.g. AKR), as the retrovirus is integrated into the germline and is transmitted by vertical...Only those strains in which virus could induce suppressor cells * developed leukemia (Kumar et al., 1976). The association of immunosuppression and

  14. Pathogenicity evaluation of twelve West Nile virus strains belonging to four lineages from five continents in a mouse model: discrimination between three pathogenicity categories.

    PubMed

    Pérez-Ramírez, Elisa; Llorente, Francisco; Del Amo, Javier; Fall, Gamou; Sall, Amadou Alpha; Lubisi, Alison; Lecollinet, Sylvie; Vázquez, Ana; Jiménez-Clavero, Miguel Ángel

    2017-04-01

    Rodent models have been used extensively to study West Nile virus (WNV) infection because they develop severe neurological symptoms similar to those observed in human WNV neuroinvasive disease. Most of this research has focused on old lineage (L) 1 strains, while information about pathogenicity is lacking for the most recent L1 and L2 strains, as well as for newly defined lineages. In this study, 4-week-old Swiss mice were inoculated with a collection of 12 WNV isolates, comprising 10 old and recent L1 and L2 strains, the putative L6 strain from Malaysia and the proposed L7 strain Koutango (KOU). The intraperitoneal inoculation of 10-fold dilutions of each strain allowed the characterization of the isolates in terms of LD50, median survival times, ID50, replication in neural and extraneural tissues and antibody production. Based on these results, we classified the isolates in three groups: high virulence (all L1a strains, recent L2 strains and KOU), moderate virulence (B956 strain) and low virulence (Kunjin and Malaysian isolates). We determined that the inoculation of a single dose of 1000 p.f.u. would be sufficient to classify WNV strains by pathotype. We confirmed the enhanced virulence of the KOU strain with a high capacity to cause rapid systemic infection. We also corroborated that differences in pathogenicity among strains do not correlate with phylogenetic lineage or geographic origin, and confirmed that recent European and African WNV strains belonging to L1 and L2 are highly virulent and do not differ in their pathotype profile compared to the prototype NY99 strain.

  15. Comparison of three methods of calculating strain in the mouse ulna in exogenous loading studies.

    PubMed

    Norman, Stephanie C; Wagner, David W; Beaupre, Gary S; Castillo, Alesha B

    2015-01-02

    Axial compression of mouse limbs is commonly used to induce bone formation in a controlled, non-invasive manner. Determination of peak strains caused by loading is central to interpreting results. Load-strain calibration is typically performed using uniaxial strain gauges attached to the diaphyseal, periosteal surface of a small number of sacrificed animals. Strain is measured as the limb is loaded to a range of physiological loads known to be anabolic to bone. The load-strain relationship determined by this subgroup is then extrapolated to a larger group of experimental mice. This method of strain calculation requires the challenging process of strain gauging very small bones which is subject to variability in placement of the strain gauge. We previously developed a method to estimate animal-specific periosteal strain during axial ulnar loading using an image-based computational approach that does not require strain gauges. The purpose of this study was to compare the relationship between load-induced bone formation rates and periosteal strain at ulnar midshaft using three different methods to estimate strain: (A) Nominal strain values based solely on load-strain calibration; (B) Strains calculated from load-strain calibration, but scaled for differences in mid-shaft cross-sectional geometry among animals; and (C) An alternative image-based computational method for calculating strains based on beam theory and animal-specific bone geometry. Our results show that the alternative method (C) provides comparable correlation between strain and bone formation rates in the mouse ulna relative to the strain gauge-dependent methods (A and B), while avoiding the need to use strain gauges. Published by Elsevier Ltd.

  16. FACS selection of valuable mutant mouse round spermatids and strain rescue via round spermatid injection.

    PubMed

    Zhu, Lian; Zhou, Wei; Kong, Peng-Cheng; Wang, Mei-Shan; Zhu, Yan; Feng, Li-Xin; Chen, Xue-Jin; Jiang, Man-Xi

    2015-06-01

    Round spermatid injection (ROSI) into mammalian oocytes can result in the development of viable embryos and offspring. One current limitation to this technique is the identification of suitable round spermatids. In the current paper, round spermatids were selected from testicular cells with phase contrast microscopy (PCM) and fluorescence-activated cell sorting (FACS), and ROSI was performed in two strains of mice. The rates of fertilization, embryonic development and offspring achieved were the same in all strains. Significantly, round spermatids selected by PCM and FACS were effectively used to rescue the infertile Pten-null mouse. The current results indicate that FACS selection of round spermatids can not only provide high-purity and viable round spermatids for use in ROSI, but also has no harmful effects on the developmental capacity of subsequently fertilized embryos. It was concluded that round spermatids selected by FACS are useful for mouse strain rederivation and rescue of infertile males; ROSI should be considered as a powerful addition to the armamentarium of assisted reproduction techniques applicable in the mouse.

  17. Virulence, immunopathology and transmissibility of selected strains of Mycobacterium tuberculosis in a murine model

    PubMed Central

    Marquina-Castillo, Brenda; García-García, Lourdes; Ponce-de-León, Alfredo; Jimenez-Corona, Maria-Eugenia; Bobadilla-del Valle, Miriam; Cano-Arellano, Bulmaro; Canizales-Quintero, Sergio; Martinez-Gamboa, Areli; Kato-Maeda, Midori; Robertson, Brian; Young, Douglas; Small, Peter; Schoolnik, Gary; Sifuentes-Osornio, Jose; Hernandez-Pando, Rogelio

    2009-01-01

    After encounter with Mycobacterium tuberculosis, a series of non-uniform immune responses are triggered that define the course of the infection. Eight M. tuberculosis strains were selected from a prospective population-based study of pulmonary tuberculosis patients (1995–2003) based on relevant clinical/epidemiological patterns and tested in a well-characterized BALB/c mouse model of progressive pulmonary tuberculosis. In addition, a new mouse model of transmissibility consisting of prolonged cohousing (up to 60 days) of infected and naïve animals was tested. Four phenotypes were defined based on strain virulence (mouse survival, lung bacillary load and tissue damage), immunology response (cytokine expression determined by real-time polymerase chain reaction) and transmissibility (lung bacillary loads and cutaneous delayed-type hypersensitivity in naïve animals).We identified four clearly defined strain phenotypes: (1) hypervirulent strain with non-protective immune response and highly transmissible; (2) virulent strain, associated with high expression of proinflammatory cytokines (tumour necrosis factor and interferon) and very low anti-inflammatory cytokine expression (interleukins 4 and 10), which induced accelerated death by immunopathology; (3) strain inducing efficient protective immunity with lower virulence, and (4) strain demonstrating strong and early macrophage activation (innate immunity) with delayed participation of acquired immunity (interferon expression). We were able to correlate virulent and transmissible phenotypes in the mouse model and markers of community transmission such as tuberculin reactivity among contacts, rapid progression to disease and cluster status. However, we were not able to find correlation with the other two phenotypes. Our new transmission model supported the hypothesis that among these strains increased virulence was linked to increased transmission. PMID:19191912

  18. Strain screen and haplotype association mapping of wheel running in inbred mouse strains.

    PubMed

    Lightfoot, J Timothy; Leamy, Larry; Pomp, Daniel; Turner, Michael J; Fodor, Anthony A; Knab, Amy; Bowen, Robert S; Ferguson, David; Moore-Harrison, Trudy; Hamilton, Alicia

    2010-09-01

    Previous genetic association studies of physical activity, in both animal and human models, have been limited in number of subjects and genetically homozygous strains used as well as number of genomic markers available for analysis. Expansion of the available mouse physical activity strain screens and the recently published dense single-nucleotide polymorphism (SNP) map of the mouse genome (approximately 8.3 million SNPs) and associated statistical methods allowed us to construct a more generalizable map of the quantitative trait loci (QTL) associated with physical activity. Specifically, we measured wheel running activity in male and female mice (average age 9 wk) in 41 inbred strains and used activity data from 38 of these strains in a haplotype association mapping analysis to determine QTL associated with activity. As seen previously, there was a large range of activity patterns among the strains, with the highest and lowest strains differing significantly in daily distance run (27.4-fold), duration of activity (23.6-fold), and speed (2.9-fold). On a daily basis, female mice ran further (24%), longer (13%), and faster (11%). Twelve QTL were identified, with three (on Chr. 12, 18, and 19) in both male and female mice, five specific to males, and four specific to females. Eight of the 12 QTL, including the 3 general QTL found for both sexes, fell into intergenic areas. The results of this study further support the findings of a moderate to high heritability of physical activity and add general genomic areas applicable to a large number of mouse strains that can be further mined for candidate genes associated with regulation of physical activity. Additionally, results suggest that potential genetic mechanisms arising from traditional noncoding regions of the genome may be involved in regulation of physical activity.

  19. Novel object exploration in the C58/J mouse model of autistic-like behavior.

    PubMed

    Blick, Mikkal G; Puchalski, Breann H; Bolanos, Veronica J; Wolfe, Kaitlin M; Green, Matthew C; Ryan, Bryce C

    2015-04-01

    Mouse models of autistic like behaviors are a valuable tool to use when studying the causes, symptoms, and potential treatments for autism. The inbred C58/J strain is a strain of interest for this model and has previously been shown to possess face validity for some of the core traits of autism, including low social behavior and elevated motor stereotypies. Higher order repetitive behaviors have not been extensively studied in this strain, or in mice in general. In this study, we looked for evidence of higher-order repetitive behaviors in the C58/J strain using a novel object assay. This assay utilized a mouse's natural exploratory behavior among unfamiliar objects to identify potential sequencing patterns in motor activity. The motor stereotypies displayed by the C58/J strain during testing were consistent with past studies. The C58/J strain also displayed a high preference for a single object in the round arena assays and the females demonstrating elevated sequencing patterns in the round arena. Although the C58/J strain did not show pervasive evidence of higher-order repetitive behaviors across all measures, there was evidence of higher order repetitive behaviors in certain situations. This study further demonstrates the potential of the C58/J mouse strains as a model for lower-order and potentially, higher-order repetitive behaviors. This study also demonstrates that the shape of the novel object arena can change the behavior displayed by the test animals. Further studies utilizing the C58/J strain and further validation of the novel object assay are warranted. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Differentiation of minute virus of mice and mouse parvovirus by high resolution melting curve analysis.

    PubMed

    Rao, Dan; Wu, Miaoli; Wang, Jing; Yuan, Wen; Zhu, Yujun; Cong, Feng; Xu, Fengjiao; Lian, Yuexiao; Huang, Bihong; Wu, Qiwen; Chen, Meili; Zhang, Yu; Huang, Ren; Guo, Pengju

    2017-12-01

    Murine parvovirus is one of the most prevalent infectious pathogens in mouse colonies. A specific primer pair targeting the VP2 gene of minute virus of mice (MVM) and mouse parvovirus (MPV) was utilized for high resolution melting (HRM) analysis. The resulting melting curves could distinguish these two virus strains and there was no detectable amplification of the other mouse pathogens which included rat parvovirus (KRV), ectromelia virus (ECT), mouse adenovirus (MAD), mouse cytomegalovirus (MCMV), polyoma virus (Poly), Helicobactor hepaticus (H. hepaticus) and Salmonella typhimurium (S. typhimurium). The detection limit of the standard was 10 copies/μL. This study showed that the PCR-HRM assay could be an alternative useful method with high specificity and sensitivity for differentiating murine parvovirus strains MVM and MPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Single Targeted Exon Mutation Creates a True Congenic Mouse for Competitive Hematopoietic Stem Cell Transplantation: The C57BL/6-CD45.1(STEM) Mouse.

    PubMed

    Mercier, Francois E; Sykes, David B; Scadden, David T

    2016-06-14

    Defining the molecular regulators of hematopoietic stem and progenitor cells (HSPCs) requires in vivo functional analyses. Competitive bone marrow transplants (BMTs) compare control and test HSPCs to demonstrate the functional role of a genetic change or chemical perturbation. Competitive BMT is enabled by antibodies that specifically recognize hematopoietic cells from congenic mouse strains due to variants of the cell surface protein CD45, designated CD45.1 and CD45.2. The current congenic competitor strain, B6.SJL-Ptprc(a) Pepc(b)/BoyJ (CD45.1), has a substantial inherent disadvantage in competition against the C57BL/6 (CD45.2) strain, confounding experimental interpretation. Despite backcrossing, the congenic interval over which the B6.SJL-Ptprc(a) Pepc(b)/BoyJ strain differs is almost 40 Mb encoding ∼300 genes. Here, we demonstrate that a single amino acid change determines the CD45.1 epitope. Further, we report on the single targeted exon mutant (STEM) mouse strain, CD45.1(STEM), which is functionally equivalent to CD45.2 cells in competitive BMT. This strain will permit the precise definition of functional roles for candidate genes using in vivo HSPC assays. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. A Novel Animal Model for Pseudoxanthoma Elasticum

    PubMed Central

    Li, Qiaoli; Berndt, Annerose; Guo, Haitao; Sundberg, John P.; Uitto, Jouni

    2013-01-01

    Pseudoxanthoma elasticum is a multisystem ectopic mineralization disorder caused by mutations in the ABCC6 gene. A mouse model with targeted ablation of the corresponding gene (Abcc6tm1JfK) develops ectopic mineralization on the dermal sheath of vibrissae as biomarker of the progressive mineralization disorder. Survey of 31 mouse strains in a longitudinal aging study has identified three mouse strains with similar ectopic mineralization of the vibrissae, particularly the KK/HlJ strain. We report here that this mouse strain depicts, in addition to ectopic mineralization of the dermal sheath of vibrissae, mineral deposits in a number of internal organs. Energy dispersive X-ray analysis and topographic mapping found the presence of calcium and phosphate as the principal ions in the mineral deposits, similar to that in Abcc6tm1JfK mice, suggesting the presence of calcium hydroxyapatite. The mineralization was associated with a splice junction mutation at the 3′ end of exon 14 of the Abcc6 gene, resulting in a 5-bp deletion from the coding region and causing frame-shift of translation. As a consequence, essentially no Abcc6 protein was detected in the liver of the KK/HlJ mice, similar to that in Abcc6tm1JfK mice. Collectively, our studies found that the KK/HlJ mouse strain is characterized by ectopic mineralization due to a mutation in the Abcc6 gene and therefore provides a novel model system to study pseudoxanthoma elasticum. PMID:22846719

  3. Evaluation of synthetic vascular grafts in a mouse carotid grafting model.

    PubMed

    Chan, Alex H P; Tan, Richard P; Michael, Praveesuda L; Lee, Bob S L; Vanags, Laura Z; Ng, Martin K C; Bursill, Christina A; Wise, Steven G

    2017-01-01

    Current animal models for the evaluation of synthetic grafts are lacking many of the molecular tools and transgenic studies available to other branches of biology. A mouse model of vascular grafting would allow for the study of molecular mechanisms of graft failure, including in the context of clinically relevant disease states. In this study, we comprehensively characterise a sutureless grafting model which facilitates the evaluation of synthetic grafts in the mouse carotid artery. Using conduits electrospun from polycaprolactone (PCL) we show the gradual development of a significant neointima within 28 days, found to be greatest at the anastomoses. Histological analysis showed temporal increases in smooth muscle cell and collagen content within the neointima, demonstrating its maturation. Endothelialisation of the PCL grafts, assessed by scanning electron microscopy (SEM) analysis and CD31 staining, was near complete within 28 days, together replicating two critical aspects of graft performance. To further demonstrate the potential of this mouse model, we used longitudinal non-invasive tracking of bone-marrow mononuclear cells from a transgenic mouse strain with a dual reporter construct encoding both luciferase and green fluorescent protein (GFP). This enabled characterisation of mononuclear cell homing and engraftment to PCL using bioluminescence imaging and histological staining over time (7, 14 and 28 days). We observed peak luminescence at 7 days post-graft implantation that persisted until sacrifice at 28 days. Collectively, we have established and characterised a high-throughput model of grafting that allows for the evaluation of key clinical drivers of graft performance.

  4. Pleiotropy of Glycogen Synthase Kinase-3 Inhibition by CHIR99021 Promotes Self-Renewal of Embryonic Stem Cells from Refractory Mouse Strains

    PubMed Central

    Ye, Shoudong; Tan, Li; Yang, Rongqing; Fang, Bo; Qu, Su; Schulze, Eric N.; Song, Houyan; Ying, Qilong; Li, Ping

    2012-01-01

    Background Inhibition of glycogen synthase kinase-3 (GSK-3) improves the efficiency of embryonic stem (ES) cell derivation from various strains of mice and rats, as well as dramatically promotes ES cell self-renewal potential. β-catenin has been reported to be involved in the maintenance of self-renewal of ES cells through TCF dependent and independent pathway. But the intrinsic difference between ES cell lines from different species and strains has not been characterized. Here, we dissect the mechanism of GSK-3 inhibition by CHIR99021 in mouse ES cells from refractory mouse strains. Methodology/Principal Findings We found that CHIR99021, a GSK-3 specific inhibitor, promotes self-renewal of ES cells from recalcitrant C57BL/6 (B6) and BALB/c mouse strains through stabilization of β-catenin and c-Myc protein levels. Stabilized β-catenin promoted ES self-renewal through two mechanisms. First, β-catenin translocated into the nucleus to maintain stem cell pluripotency in a lymphoid-enhancing factor/T-cell factor–independent manner. Second, β-catenin binds plasma membrane-localized E-cadherin, which ensures a compact, spherical morphology, a hallmark of ES cells. Further, elevated c-Myc protein levels did not contribute significantly to CH-mediated ES cell self-renewal. Instead, the role of c-Myc is dependent on its transformation activity and can be replaced by N-Myc but not L-Myc. β-catenin and c-Myc have similar effects on ES cells derived from both B6 and BALB/c mice. Conclusions/Significance Our data demonstrated that GSK-3 inhibition by CH promotes self-renewal of mouse ES cells with non-permissive genetic backgrounds by regulation of multiple signaling pathways. These findings would be useful to improve the availability of normally non-permissive mouse strains as research tools. PMID:22540008

  5. A rapid chemiluminescent slot blot immunoassay for the detection and quantification of Clostridium botulinum neurotoxin type E, in cultures.

    PubMed

    Cadieux, Brigitte; Blanchfield, Burke; Smith, James P; Austin, John W

    2005-05-01

    A simple, rapid, cost-effective in vitro slot blot immunoassay was developed for the detection and quantification of botulinum neurotoxin type E (BoNT/E) in cultures. Culture supernatants of 36 strains of clostridia, including 12 strains of Clostridium botulinum type E, 12 strains of other C. botulinum neurotoxin serotypes, and 12 strains of other clostridial species were tested. Samples containing BoNT/E were detected using affinity-purified polyclonal rabbit antisera prepared against BoNT/E with subsequent detection of secondary antibodies using chemiluminescence. All strains of C. botulinum type E tested positive, while all non C. botulinum type E strains tested negative. The sensitivity of the slot blot immunoassay for detection of BoNT/E was approximately four mouse lethal doses (MLD). The intensity of chemiluminescence was directly correlated with the concentration of BoNT/E up to 128 MLD, allowing quantification of BoNT/E between 4 and 128 MLD. The slot blot immunoassay was compared to the mouse bioassay for detection of BoNT/E using cultures derived from fish samples inoculated with C. botulinum type E, and cultures derived from naturally contaminated environmental samples. A total of 120 primary enrichment cultures derived from fish samples, of which 103 were inoculated with C. botulinum type E, and 17 were uninoculated controls, were assayed. Of the 103 primary enrichment cultures derived from inoculated fish samples, all were positive by mouse bioassay, while 94 were also positive by slot blot immunoassay, resulting in a 7.5% false-negative rate. All 17 primary enrichment cultures derived from the uninoculated fish samples were negative by both mouse bioassay and slot blot immunoassay. A total of twenty-six primary enrichment cultures derived from environmental samples were tested by mouse bioassay and slot blot immunoassay. Of 13 primary enrichment cultures positive by mouse bioassay, 12 were also positive by slot blot immunoassay, resulting in a 3.8% false-negative rate. All 13 primary enrichment cultures that tested negative by mouse bioassay also tested negative by slot blot immunoassay. The slot blot immunoassay could be used routinely as a positive screen for BoNT/E in primary enrichment cultures, and could be used as a replacement for the mouse bioassay for pure cultures.

  6. Cytotoxic Escherichia coli strains encoding colibactin isolated from immunocompromised mice with urosepsis and meningitis

    PubMed Central

    Feng, Yan; Mannion, Anthony; Ge, Zhongming; Garcia, Alexis; Scott, Kathleen E.; Caron, Tyler J.; Jacobsen, Johanne T.; Victora, Gabriel; Jaenisch, Rudolf; Fox, James G.

    2018-01-01

    Immune-compromised mouse models allow for testing the preclinical efficacy of human cell transplantations and gene therapy strategies before moving forward to clinical trials. However, CRISPR/Cas9 gene editing of the Wsh/Wsh mouse strain to create an immune-compromised model lacking function of Rag2 and Il2rγ led to unexpected morbidity and mortality. This warranted an investigation to ascertain the cause and predisposing factors associated with the outbreak. Postmortem examination was performed on 15 moribund mice. The main lesions observed in these mice consisted of ascending urogenital tract infections, suppurative otitis media, pneumonia, myocarditis, and meningoencephalomyelitis. As Escherichia coli strains harboring polyketide synthase (pks) genomic island were recently isolated from laboratory mice, the tissue sections from the urogenital tract, heart, and middle ear were subjected to E. coli specific PNA-FISH assay that revealed discrete colonies of E. coli associated with the lesions. Microbiological examination and 16S rRNA sequencing confirmed E. coli-induced infection and septicemia in the affected mice. Further characterization by clb gene analysis and colibactin toxicity assays of the pks+ E. coli revealed colibactin-associated cytotoxicity. Rederivation of the transgenic mice using embryo transfer produced mice with an intestinal flora devoid of pks+ E. coli. Importantly, these barrier-maintained rederived mice have produced multiple litters without adverse health effects. This report is the first to describe acute morbidity and mortality associated with pks+ E. coli urosepsis and meningitis in immunocompromised mice, and highlights the importance of monitoring and exclusion of colibactin-producing pks+ E. coli. PMID:29554148

  7. Further characterization of repetitive behavior in C58 mice: developmental trajectory and effects of environmental enrichment.

    PubMed

    Muehlmann, A M; Edington, G; Mihalik, A C; Buchwald, Z; Koppuzha, D; Korah, M; Lewis, M H

    2012-12-01

    Aberrant repetitive behaviors are commonly observed in a variety of neurodevelopmental, neurological, and neuropsychiatric disorders. Little is known about the specific neurobiological mechanisms that underlie such behaviors, however, and effective treatments are lacking. Valid animal models can aid substantially in identifying pathophysiological factors mediating aberrant repetitive behavior and aid in treatment development. The C58 inbred mouse strain is a particularly promising model, and we have further characterized its repetitive behavior phenotype. Compared to C57BL/6 mice, C58 mice exhibit high rates of spontaneous hindlimb jumping and backward somersaulting reaching adult frequencies by 5 weeks post-weaning and adult temporal organization by 2 weeks post-weaning. The development of repetitive behavior in C58 mice was markedly attenuated by rearing these mice in larger, more complex environments. In addition to characterizing repetitive motor behavior, we also assessed related forms of inflexible behavior that reflect restricted and perseverative responding. Contrary to our hypothesis, C58 mice did not exhibit increased marble burying nor did they display reduced exploratory behavior in the holeboard task. The C58 strain appears to be a very useful model for the repetitive motor behavior characteristic of a number of clinical disorders. As an inbred mouse strain, studies using the C58 model can take full advantage of the tool kit of modern genetics and molecular neuroscience. This technical advantage makes the model a compelling choice for use in studies designed to elucidate the etiology and pathophysiology of aberrant repetitive behavior. Such findings should, in turn, translate into effective new treatments. Published by Elsevier B.V.

  8. Potential probiotic characterization of Lactobacillus reuteri from traditional Chinese highland barley wine and application for room-temperature-storage drinkable yogurt.

    PubMed

    Chen, Su; Chen, Lin; Chen, Lie; Ren, Xueliang; Ge, Hongjuan; Li, Baolei; Ma, Guanghui; Ke, Xueqin; Zhu, Jun; Li, Li; Feng, Yuhong; Li, Yanjun

    2018-04-25

    The aim of this study was to select probiotic strains that could be used in drinkable yogurt to yield viable cells following storage at room temperature (RT). The uniquely high altitude conditions in Tibet and the alcoholic environment of certain products, such as the highland barley wine homemade in Tibet, may induce unusual characteristics of microbial strains. A total of 27 lactic acid bacteria were isolated from homemade highland barley wines. One strain, Lactobacillus reuteri WHH1689, demonstrated no ability for lactose utilization, exhibited a high survival rate during storage at RT in drinkable yogurts, and produced very weak post-acidification. This strain showed great resistance to conditions simulating the gastrointestinal tract, including strong adherence to HT-29 cells and inhibitory activity against Escherichia coli, Shigella flexneri, Salmonella paratyphi β, and Staphylococcus aureus. A dextran sulfate sodium (DSS)-induced mouse model was used to evaluate the in vivo influence of Lb. reuteri WHH1689 on the intestinal flora and showed that strain WHH1689 increased viable counts of bifidobacteria in feces of mice. The probiotic strain selected in this study-with its high survival at RT and lack of serious post-acidification problems-may provide significant improvements for dairy industry products by extending the storage time of dairy products with living cells. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Strain-specific spleen remodelling in Plasmodium yoelii infections in Balb/c mice facilitates adherence and spleen macrophage-clearance escape

    PubMed Central

    Martin-Jaular, Lorena; Ferrer, Mireia; Calvo, Maria; Rosanas-Urgell, Anna; Kalko, Susana; Graewe, Stefanie; Soria, Guadalupe; Cortadellas, Núria; Ordi, Jaume; Planas, Anna; Burns, James; Heussler, Volker; del Portillo, Hernando A

    2011-01-01

    Knowledge of the dynamic features of the processes driven by malaria parasites in the spleen is lacking. To gain insight into the function and structure of the spleen in malaria, we have implemented intravital microscopy and magnetic resonance imaging of the mouse spleen in experimental infections with non-lethal (17X) and lethal (17XL) Plasmodium yoelii strains. Noticeably, there was higher parasite accumulation, reduced motility, loss of directionality, increased residence time and altered magnetic resonance only in the spleens of mice infected with 17X. Moreover, these differences were associated with the formation of a strain-specific induced spleen tissue barrier of fibroblastic origin, with red pulp macrophage-clearance evasion and with adherence of infected red blood cells to this barrier. Our data suggest that in this reticulocyte-prone non-lethal rodent malaria model, passage through the spleen is different from what is known in other Plasmodium species and open new avenues for functional/structural studies of this lymphoid organ in malaria. PMID:20923452

  10. Cooperative effect of the attenuation determinants derived from poliovirus sabin 1 strain is essential for attenuation of enterovirus 71 in the NOD/SCID mouse infection model.

    PubMed

    Arita, Minetaro; Ami, Yasushi; Wakita, Takaji; Shimizu, Hiroyuki

    2008-02-01

    Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and is also associated with serious neurological disorders. An attenuated EV71 strain [EV71(S1-3')] has been established in the cynomolgus monkey infection model; this strain contains the attenuation determinants derived from the type 1 poliovirus vaccine strain, Sabin 1 [PV1(Sabin)], in the 5' nontranslated region (NTR), 3D polymerase, and 3' NTR. In this study, we analyzed the effect of the attenuation determinants of PV1(Sabin) on EV71 infection in a NOD/SCID mouse infection model. We isolated a mouse-adapted EV71 strain [EV71(NOD/SCID)] that causes paralysis of the hind limbs in 3- to 4-week-old NOD/SCID mice by adaptation of the virulent EV71(Nagoya) strain in the brains of NOD/SCID mice. A single mutation at nucleotide 2876 that caused an amino acid change in capsid protein VP1 (change of the glycine at position 145 to glutamic acid) was essential for the mouse-adapted phenotype in NOD/SCID mice. Next, we introduced attenuation determinants derived from PV1(Sabin) along with the mouse adaptation mutation into the EV71(Nagoya) genome. In 4-week-old mice, the determinants in the 3D polymerase and 3' NTR, which are the major temperature-sensitive determinants, had a strong effect on attenuation. In contrast, the effect of individual determinants was weak in 3-week-old NOD/SCID mice, and all the determinants were required for substantial attenuation. These results suggest that a cooperative effect of the attenuation determinants of PV1(Sabin) is essential for attenuated neurovirulence of EV71.

  11. Toxoplasma gondii strain-dependent effects on mouse behaviour.

    PubMed

    Kannan, Geetha; Moldovan, Krisztina; Xiao, Jian-Chun; Yolken, Robert H; Jones-Brando, Lorraine; Pletnikov, Mikhail V

    2010-06-01

    Toxoplasma gondii reportedly manipulates rodent behaviour to increase transmission to its definitive feline host. We compared the effects of mouse infection by two Type II strains of T. gondii, Prugniaud (PRU) and ME49, on attraction to cat odour, locomotor activity, anxiety, sensorimotor gating, and spatial working and recognition memory 2 months post-infection (mpi). Attraction to cat odour was reassessed 7 mpi. At 2 mpi, mice infected with either strain exhibited significantly more attraction to cat odour than uninfected animals did, but only PRU-infected mice exhibited this behaviour 7 mpi. PRU-infected mice had significantly greater body weights and hyperactivity, while ME49-infected mice exhibited impaired spatial working memory. No differences in parasite antibody titres were seen between PRU- and ME49-infected mice. The present data suggest the effect of T. gondii infection on mouse behaviour is parasite strain-dependent.

  12. The Chlamydia-Secreted Protease CPAF Promotes Chlamydial Survival in the Mouse Lower Genital Tract

    PubMed Central

    Yang, Zhangsheng; Tang, Lingli; Shao, Lili; Zhang, Yuyang; Zhang, Tianyuan; Schenken, Robert; Valdivia, Raphael

    2016-01-01

    Despite the extensive in vitro characterization of CPAF (chlamydial protease/proteasome-like activity factor), its role in chlamydial infection and pathogenesis remains unclear. We now report that a Chlamydia trachomatis strain deficient in expression of CPAF (L2-17) is no longer able to establish a successful infection in the mouse lower genital tract following an intravaginal inoculation. The L2-17 organisms were cleared from the mouse lower genital tract within a few days, while a CPAF-sufficient C. trachomatis strain (L2-5) survived in the lower genital tract for more than 3 weeks. However, both the L2-17 and L2-5 organisms maintained robust infection courses that lasted up to 4 weeks when they were directly delivered into the mouse upper genital tract. The CPAF-dependent chlamydial survival in the lower genital tract was confirmed in multiple strains of mice. Thus, we have demonstrated a critical role of CPAF in promoting C. trachomatis survival in the mouse lower genital tracts. It will be interesting to further investigate the mechanisms of the CPAF-dependent chlamydial pathogenicity. PMID:27382018

  13. Lack of Inducible NO Synthase Reduces Oxidative Stress and Enhances Cardiac Response to Isoproterenol in Mice With Deoxycorticosterone Acetate–Salt Hypertension

    PubMed Central

    Sun, Ying; Carretero, Oscar A.; Xu, Jiang; Rhaleb, Nour-Eddine; Wang, Fangfei; Lin, Chunxia; Yang, James J.; Pagano, Patrick J.; Yang, Xiao-Ping

    2015-01-01

    Although NO derived from endothelial NO synthase (eNOS) is thought to be cardioprotective, the role of inducible NO synthase (iNOS) remains controversial. Using mice lacking iNOS (iNOS−/−), we studied (1) whether development of hypertension, cardiac hypertrophy, and dysfunction after deoxycorticosterone acetate (DOCA)–salt would be less severe compared with wild-type controls (WT; C57BL/6J), and (2) whether the cardioprotection attributable to lack of iNOS is mediated by reduced oxidative stress. Mice were uninephrectomized and received either DOCA-salt (30 mg/mouse SC and 1% NaCl+0.2% KCl in drinking water) or vehicle (tap water) for 12 weeks. Systolic blood pressure (SBP) was measured weekly. Left ventricular (LV) ejection fraction (EF) by echocardiography and cardiac response to isoproterenol (50 ng/mouse IV) were studied at the end of the experiment. Expression of eNOS and iNOS as well as the oxidative stress markers 4-hydroxy-2-nonenal (4-HNE, a marker of lipid peroxidation) and nitrotyrosine (a marker for peroxynitrite) were determined by Western blot and immunohistochemical staining, respectively. DOCA-salt increased SBP and LV weight similarly in both strains and decreased EF in WT but not in iNOS−/−. Cardiac contractile and relaxation responses to isoproterenol were greater, 4-HNE and nitrotyrosine levels were lower, and eNOS expression tended to be higher in iNOS−/−. We conclude that lack of iNOS leads to better preservation of cardiac function, which may be mediated by reduced oxidative stress and increased eNOS; however, it does not seem to play a significant role in preventing DOCA-salt–induced hypertension and hypertrophy. PMID:16286571

  14. Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA

    PubMed Central

    DiMarzio, Michael; Rusconi, Brigida; Yennawar, Neela H.; Eppinger, Mark; Patterson, Andrew D.

    2017-01-01

    Bile salt hydrolase (BSH) activity against the bile acid tauro-beta-muricholic acid (T-β-MCA) was recently reported to mediate host bile acid, glucose, and lipid homeostasis via the farnesoid X receptor (FXR) signaling pathway. An earlier study correlated decreased Lactobacillus abundance in the cecum with increased concentrations of intestinal T-β-MCA, an FXR antagonist. While several studies have characterized BSHs in lactobacilli, deconjugation of T-β-MCA remains poorly characterized among members of this genus, and therefore it was unclear what strain(s) were responsible for this activity. Here, a strain of L. johnsonii with robust BSH activity against T-β-MCA in vitro was isolated from the cecum of a C57BL/6J mouse. A screening assay performed on a collection of 14 Lactobacillus strains from nine different species identified BSH substrate specificity for T-β-MCA only in two of three L. johnsonii strains. Genomic analysis of the two strains with this BSH activity revealed the presence of three bsh genes that are homologous to bsh genes in the previously sequenced human-associated strain L. johnsonii NCC533. Heterologous expression of several bsh genes in E. coli followed by enzymatic assays revealed broad differences in substrate specificity even among closely related bsh homologs, and suggests that the phylogeny of these enzymes does not closely correlate with substrate specificity. Predictive modeling allowed us to propose a potential mechanism driving differences in BSH activity for T-β-MCA in these homologs. Our data suggests that L. johnsonii regulates T-β-MCA levels in the mouse intestinal environment, and that this species may play a central role in FXR signaling in the mouse. PMID:28910295

  15. Identification of a mouse Lactobacillus johnsonii strain with deconjugase activity against the FXR antagonist T-β-MCA.

    PubMed

    DiMarzio, Michael; Rusconi, Brigida; Yennawar, Neela H; Eppinger, Mark; Patterson, Andrew D; Dudley, Edward G

    2017-01-01

    Bile salt hydrolase (BSH) activity against the bile acid tauro-beta-muricholic acid (T-β-MCA) was recently reported to mediate host bile acid, glucose, and lipid homeostasis via the farnesoid X receptor (FXR) signaling pathway. An earlier study correlated decreased Lactobacillus abundance in the cecum with increased concentrations of intestinal T-β-MCA, an FXR antagonist. While several studies have characterized BSHs in lactobacilli, deconjugation of T-β-MCA remains poorly characterized among members of this genus, and therefore it was unclear what strain(s) were responsible for this activity. Here, a strain of L. johnsonii with robust BSH activity against T-β-MCA in vitro was isolated from the cecum of a C57BL/6J mouse. A screening assay performed on a collection of 14 Lactobacillus strains from nine different species identified BSH substrate specificity for T-β-MCA only in two of three L. johnsonii strains. Genomic analysis of the two strains with this BSH activity revealed the presence of three bsh genes that are homologous to bsh genes in the previously sequenced human-associated strain L. johnsonii NCC533. Heterologous expression of several bsh genes in E. coli followed by enzymatic assays revealed broad differences in substrate specificity even among closely related bsh homologs, and suggests that the phylogeny of these enzymes does not closely correlate with substrate specificity. Predictive modeling allowed us to propose a potential mechanism driving differences in BSH activity for T-β-MCA in these homologs. Our data suggests that L. johnsonii regulates T-β-MCA levels in the mouse intestinal environment, and that this species may play a central role in FXR signaling in the mouse.

  16. Genetically inbred Balb/c mice differ from outbred Swiss Webster mice on discrete measures of sociability: relevance to a genetic mouse model of autism spectrum disorders.

    PubMed

    Jacome, Luis F; Burket, Jessica A; Herndon, Amy L; Deutsch, Stephen I

    2011-12-01

    The Balb/c mouse is proposed as a model of human disorders with prominent deficits of sociability, such as autism spectrum disorders (ASDs) that may involve pathophysiological disruption of NMDA receptor-mediated neurotransmission. A standard procedure was used to measure sociability in 8-week-old male genetically inbred Balb/c and outbred Swiss Webster mice. Moreover, because impaired sociability may influence the social behavior of stimulus mice, we also measured the proportion of total episodes of social approach made by the stimulus mouse while test and stimulus mice were allowed to interact freely. Three raters with good inter-rater agreement evaluated operationally defined measures of sociability chosen because of their descriptive similarity to deficits of social behavior reported in persons with ASDs. The data support previous reports that the Balb/c mouse is a genetic mouse model of impaired sociability. The data also show that the behavior of the social stimulus mouse is influenced by the impaired sociability of the Balb/c strain. Interestingly, operationally defined measures of sociability did not necessarily correlate with each other within mouse strain and the profile of correlated measures differed between strains. Finally, "stereotypic" behaviors (i.e. rearing, grooming and wall climbing) recorded during the session of free interaction between the test and social stimulus mice were more intensely displayed by Swiss Webster than Balb/c mice, suggesting that the domains of sociability and "restricted repetitive and stereotyped patterns of behavior" are independent of each other in the Balb/c strain. Copyright © 2011, International Society for Autism Research, Wiley-Liss, Inc.

  17. Mast cells play no role in the pathogenesis of postoperative ileus induced by intestinal manipulation.

    PubMed

    Gomez-Pinilla, Pedro J; Farro, Giovanna; Di Giovangiulio, Martina; Stakenborg, Nathalie; Némethova, Andrea; de Vries, Annick; Liston, Adrian; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Rodewald, Hans-Reimwer; Boeckxstaens, Guy E; Matteoli, Gianluca

    2014-01-01

    Intestinal manipulation (IM) during abdominal surgery results in intestinal inflammation leading to hypomotility or ileus. Mast cell activation is thought to play a crucial role in the pathophysiology of postoperative ileus (POI). However, this conclusion was mainly drawn using mast cell-deficient mouse models with abnormal Kit signaling. These mice also lack interstitial cells of Cajal (ICC) resulting in aberrant gastrointestinal motility even prior to surgery, compromising their use as model to study POI. To avoid these experimental weaknesses we took advantage of a newly developed knock-in mouse model, Cpa3(Cre/+) , devoid of mast cells but with intact Kit signaling. The role of mast cells in the development of POI and intestinal inflammation was evaluated assessing gastrointestinal transit and muscularis externa inflammation after IM in two strains of mice lacking mast cells, i.e. Kit(W-sh/W-sh) and Cpa3(Cre/+) mice, and by use of the mast cell stabilizer cromolyn. Kit(W-sh/W-sh) mice lack ICC networks and already revealed significantly delayed gastrointestinal transit even before surgery. IM did not further delay intestinal transit, but induced infiltration of myeloperoxidase positive cells, expression of inflammatory cytokines and recruitment of monocytes and neutrophils into the muscularis externa. On the contrary, Cpa3(Cre/+) mice have a normal network of ICC and normal gastrointestinal. Surprisingly, IM in Cpa3(Cre/+) mice caused delay in gut motility and intestinal inflammation as in wild type littermates mice (Cpa3(+/+) ). Furthermore, treatment with the mast cell inhibitor cromolyn resulted in an inhibition of mast cells without preventing POI. Here, we confirm that IM induced mast cell degranulation. However, our data demonstrate that mast cells are not required for the pathogenesis of POI in mice. Although there might be species differences between mouse and human, our results argue against mast cell inhibitors as a therapeutic approach to shorten POI.

  18. Mast Cells Play No Role in the Pathogenesis of Postoperative Ileus Induced by Intestinal Manipulation

    PubMed Central

    Gomez-Pinilla, Pedro J.; Farro, Giovanna; Di Giovangiulio, Martina; Stakenborg, Nathalie; Némethova, Andrea; de Vries, Annick; Liston, Adrian; Feyerabend, Thorsten B.; Rodewald, Hans-Reimwer; Boeckxstaens, Guy E.; Matteoli, Gianluca

    2014-01-01

    Introduction Intestinal manipulation (IM) during abdominal surgery results in intestinal inflammation leading to hypomotility or ileus. Mast cell activation is thought to play a crucial role in the pathophysiology of postoperative ileus (POI). However, this conclusion was mainly drawn using mast cell-deficient mouse models with abnormal Kit signaling. These mice also lack interstitial cells of Cajal (ICC) resulting in aberrant gastrointestinal motility even prior to surgery, compromising their use as model to study POI. To avoid these experimental weaknesses we took advantage of a newly developed knock-in mouse model, Cpa3Cre/+, devoid of mast cells but with intact Kit signaling. Design The role of mast cells in the development of POI and intestinal inflammation was evaluated assessing gastrointestinal transit and muscularis externa inflammation after IM in two strains of mice lacking mast cells, i.e. KitW-sh/W-sh and Cpa3Cre/+ mice, and by use of the mast cell stabilizer cromolyn. Results KitW-sh/W-sh mice lack ICC networks and already revealed significantly delayed gastrointestinal transit even before surgery. IM did not further delay intestinal transit, but induced infiltration of myeloperoxidase positive cells, expression of inflammatory cytokines and recruitment of monocytes and neutrophils into the muscularis externa. On the contrary, Cpa3Cre/+ mice have a normal network of ICC and normal gastrointestinal. Surprisingly, IM in Cpa3Cre/+ mice caused delay in gut motility and intestinal inflammation as in wild type littermates mice (Cpa3+/+). Furthermore, treatment with the mast cell inhibitor cromolyn resulted in an inhibition of mast cells without preventing POI. Conclusions Here, we confirm that IM induced mast cell degranulation. However, our data demonstrate that mast cells are not required for the pathogenesis of POI in mice. Although there might be species differences between mouse and human, our results argue against mast cell inhibitors as a therapeutic approach to shorten POI. PMID:24416383

  19. Fine-scale maps of recombination rates and hotspots in the mouse genome.

    PubMed

    Brunschwig, Hadassa; Levi, Liat; Ben-David, Eyal; Williams, Robert W; Yakir, Benjamin; Shifman, Sagiv

    2012-07-01

    Recombination events are not uniformly distributed and often cluster in narrow regions known as recombination hotspots. Several studies using different approaches have dramatically advanced our understanding of recombination hotspot regulation. Population genetic data have been used to map and quantify hotspots in the human genome. Genetic variation in recombination rates and hotspots usage have been explored in human pedigrees, mouse intercrosses, and by sperm typing. These studies pointed to the central role of the PRDM9 gene in hotspot modulation. In this study, we used single nucleotide polymorphisms (SNPs) from whole-genome resequencing and genotyping studies of mouse inbred strains to estimate recombination rates across the mouse genome and identified 47,068 historical hotspots--an average of over 2477 per chromosome. We show by simulation that inbred mouse strains can be used to identify positions of historical hotspots. Recombination hotspots were found to be enriched for the predicted binding sequences for different alleles of the PRDM9 protein. Recombination rates were on average lower near transcription start sites (TSS). Comparing the inferred historical recombination hotspots with the recent genome-wide mapping of double-strand breaks (DSBs) in mouse sperm revealed a significant overlap, especially toward the telomeres. Our results suggest that inbred strains can be used to characterize and study the dynamics of historical recombination hotspots. They also strengthen previous findings on mouse recombination hotspots, and specifically the impact of sequence variants in Prdm9.

  20. Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach

    PubMed Central

    Tannock, Gerald W; Wilson, Charlotte M; Loach, Diane; Cook, Gregory M; Eason, Jocelyn; O'Toole, Paul W; Holtrop, Grietje; Lawley, Blair

    2012-01-01

    Phylogenetic analysis of gut communities of vertebrates is advanced, but the relationships, especially at the trophic level, between commensals that share gut habitats of monogastric animals have not been investigated to any extent. Lactobacillus reuteri strain 100–23 and Lactobacillus johnsonii strain 100–33 cohabit in the forestomach of mice. According to the niche exclusion principle, this should not be possible because both strains can utilise the two main fermentable carbohydrates present in the stomach digesta: glucose and maltose. We show, based on gene transcription analysis, in vitro physiological assays, and in vivo experiments that the two strains can co-exist in the forestomach habitat because 100–23 grows more rapidly using maltose, whereas 100–33 preferentially utilises glucose. Mutation of the maltose phosphorylase gene (malA) of strain 100–23 prevented its growth on maltose-containing culture medium, and resulted in the numerical dominance of 100–33 in the forestomach. The fundamental niche of L. reuteri 100–23 in the mouse forestomach can be defined in terms of ‘glucose and maltose trophism'. However, its realised niche when L. johnsonii 100–33 is present is ‘maltose trophism'. Hence, nutritional adaptations provide niche differentiation that assists cohabitation by the two strains through resource partitioning in the mouse forestomach. This real life, trophic phenomenon conforms to a mathematical model based on in vitro bacterial doubling times, in vitro transport rates, and concentrations of maltose and glucose in mouse stomach digesta. PMID:22094343

  1. Nonstructural Protein L* Species Specificity Supports a Mouse Origin for Vilyuisk Human Encephalitis Virus.

    PubMed

    Drappier, Melissa; Opperdoes, Fred R; Michiels, Thomas

    2017-07-15

    Vilyuisk human encephalitis virus (VHEV) is a picornavirus related to Theiler's murine encephalomyelitis virus (TMEV). VHEV was isolated from human material passaged in mice. Whether this VHEV is of human or mouse origin is therefore unclear. We took advantage of the species-specific activity of the nonstructural L* protein of theiloviruses to track the origin of TMEV isolates. TMEV L* inhibits RNase L, the effector enzyme of the interferon pathway. By using coimmunoprecipitation and functional RNase L assays, the species specificity of RNase L antagonism was tested for L* from mouse (DA) and rat (RTV-1) TMEV strains as well as for VHEV. Coimmunoprecipitation and functional assay data confirmed the species specificity of L* activity and showed that L* from rat strain RTV-1 inhibited rat but not mouse or human RNase L. Next, we showed that the VHEV L* protein was phylogenetically related to L* of mouse viruses and that it failed to inhibit human RNase L but readily antagonized mouse RNase L, unambiguously showing the mouse origin of VHEV. IMPORTANCE Defining the natural host of a virus can be a thorny issue, especially when the virus was isolated only once or when the isolation story is complex. The species Theilovirus includes Theiler's murine encephalomyelitis virus (TMEV), infecting mice and rats, and Saffold virus (SAFV), infecting humans. One TMEV strain, Vilyuisk human encephalitis virus (VHEV), however, was isolated from mice that were inoculated with cerebrospinal fluid of a patient presenting with chronic encephalitis. It is therefore unclear whether VHEV was derived from the human sample or from the inoculated mouse. The L* protein encoded by TMEV inhibits RNase L, a cellular enzyme involved in innate immunity, in a species-specific manner. Using binding and functional assays, we show that this species specificity even allows discrimination between TMEV strains of mouse and of rat origins. The VHEV L* protein clearly inhibited mouse but not human RNase L, indicating that this virus originates from mice. Copyright © 2017 American Society for Microbiology.

  2. Development of amnesia in different mouse strains.

    PubMed

    Sinovyev, D R; Dubrovina, N I; Kulikov, A V

    2009-05-01

    We studied passive avoidance retrieval after amnestic stimulation (arrest in unsafe section of the experimental setup) in C57Bl/6J, BALB/c, CBA/Lac, AKR/J, DBA/2J, C3H/HeJ, and ASC/Icg mice. We demonstrated resistance to amnestic stimulation in mice with high predisposition to freezing reaction (ASC/Icg) and memory deficit in other mouse strains.

  3. Sex effects in mouse prion disease incubation time.

    PubMed

    Akhtar, Shaheen; Wenborn, Adam; Brandner, Sebastian; Collinge, John; Lloyd, Sarah E

    2011-01-01

    Prion disease incubation time in mice is determined by many factors including PrP expression level, Prnp alleles, genetic background, prion strain and route of inoculation. Sex differences have been described in age of onset for vCJD and in disease duration for both vCJD and sporadic CJD and have also been shown in experimental models. The sex effects reported for mouse incubation times are often contradictory and detail only one strain of mice or prions, resulting in broad generalisations and a confusing picture. To clarify the effect of sex on prion disease incubation time in mice we have compared male and female transmission data from twelve different inbred lines of mice inoculated with at least two prion strains, representing both mouse-adapted scrapie and BSE. Our data show that sex can have a highly significant difference on incubation time. However, this is limited to particular mouse and prion strain combinations. No sex differences were seen in endogenous PrP(C) levels nor in the neuropathological markers of prion disease: PrP(Sc) distribution, spongiosis, neuronal loss and gliosis. These data suggest that when comparing incubation times between experimental groups, such as testing the effects of modifier genes or therapeutics, single sex groups should be used.

  4. GENETIC MAPPING OF VOCALIZATION TO A SERIES OF INCREASING ACUTE FOOTSHOCKS USING B6.A CONSOMIC AND B6.D2 CONGENIC MOUSE STRAINS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, Douglas B; Chesler, Elissa J; Cook, Melloni N.

    2008-01-01

    Footshock response is used to study biological functions in mammals. However, the genetics underlying variability in footshock sensitivity are not well understood. In the current studies, a panel of B6.A consomic mouse strains, two B6.D2 congenic mouse strains and the progenitor strains were screened for footshock sensitivity as measured by audible vocalization. It was found that A/J (A) mice and C57BL/6J (B6) mice with an A Chromosome 1 (Chr 1) were less sensitive to footshock compared to B6 animals. Furthermore, the offspring of Chr 1 consomic mice crossed with B6 mice had vocalization levels that were intermediate to A/J andmore » B6 animals. A F2 mapping panel revealed two significant QTLs for footshock vocalization centered around D1Mit490 and D1Mit206 on Chr 1. The role of these Chr 1 loci in footshock sensitivity was confirmed in B6.D2 congenic mice. These data identify genetic regions involved in footshock sensitivity and establish additional mouse resources for use in investigating complex behaviors.« less

  5. Archiving and Distributing Mouse Lines by Sperm Cryopreservation, IVF, and Embryo Transfer

    PubMed Central

    Takahashi, Hideko; Liu, Chengyu

    2012-01-01

    The number of genetically modified mouse lines has been increasing exponentially in the past few decades. In order to safeguard them from accidental loss and genetic drifting, to reduce animal housing cost, and to efficiently distribute them around the world, it is important to cryopreserve these valuable genetic resources. Preimplantation-stage embryos from thousands of mouse lines have been cryopreserved during the past two to three decades. Although reliable, this method requires several hundreds of embryos, which demands a sizable breeding colony, to safely preserve each line. This requirement imposes significant delay and financial burden for the archiving effort. Sperm cryopreservation is now emerging as the leading method for storing and distributing mouse lines, largely due to the recent finding that addition of a reducing agent, monothioglycerol, into the cryoprotectant can significantly increase the in vitro fertilization (IVF) rate in many mouse strains, including the most widely used C57BL/6 strain. This method is quick, inexpensive, and requires only two breeding age male mice, but it still remains tricky and strain-dependent. A small change in experimental conditions can lead to significant variations in the outcome. In this chapter, we describe in detail our sperm cryopreservation, IVF, and oviduct transfer procedures for storing and reviving genetically modified mouse lines. PMID:20691860

  6. κ-Casein-deficient mice fail to lactate

    PubMed Central

    Shekar, P. Chandra; Goel, Sandeep; Rani, S. Deepa Selvi; Sarathi, D. Partha; Alex, Jomini Liza; Singh, Shashi; Kumar, Satish

    2006-01-01

    Acquisition of milk production capabilities by an ancestor of mammals is at the root of mammalian evolution. Milk casein micelles are a primary source of amino acids and calcium phosphate to neonates. To understand the role of κ-casein in lactation, we have created and characterized a null mouse strain (Csnk−/−) lacking this gene. The mutant κ-casein allele did not affect the expression of other milk proteins in Csnk−/− females. However, these females did not suckle their pups and failed to lactate because of destabilization of the micelles in the lumina of the mammary gland. Thus, κ-casein is essential for lactation and, consequently, for the successful completion of the process of reproduction in mammals. In view of the extreme structural conservation of the casein locus, as well as the phenotype of Csnk−/− females, we propose that the organization of a functional κ-casein gene would have been one of the critical events in the evolution of mammals. Further, κ-casein variants are known to affect the industrial properties of milk in dairy animals. Given the expenses and the time scale of such experiments in livestock species, it is desirable to model the intended genetic modifications in mice first. The mouse strain that we have created would be a useful model to study the effect of κ-casein variants on the properties of milk and/or milk products. PMID:16698927

  7. Genetic mapping of xenotropic murine leukemia virus-inducing loci in five mouse strains

    PubMed Central

    1980-01-01

    A single mendelian gene was identified for induction of the endogenous xenotropic murine leukemia virus in five mouse strains (C57BL/10, C57L, C57BR, AKR, and BALB/c). This locus, designated Bxv-1, mapped to the same site on chromosome 1 in all strains: Id-1-Pep-3-[Bxv-1-Lp]. Thus, inducibility loci for xenotropic virus are more limited in number and chromosomal distribution than ecotropic inducibility loci. Virus expression in mice with Bxv-1 was induced by treatment of fibroblasts with 5-iododeoxyuridine or by exposure of spleen cells to a B cell mitogen, bacterial lipopolysaccharide. An analysis of the hamster X mouse somatic cell hybrids indicated that chromosome 1, alone, was sufficient for virus induction. PMID:6249881

  8. Genetic mapping of xenotropic murine leukemia virus-inducing loci in five mouse strains.

    PubMed

    Kozak, C A; Rowe, W P

    1980-07-01

    A single mendelian gene was identified for induction of the endogenous xenotropic murine leukemia virus in five mouse strains (C57BL/10, C57L, C57BR, AKR, and BALB/c). This locus, designated Bxv-1, mapped to the same site on chromosome 1 in all strains: Id-1-Pep-3-[Bxv-1-Lp]. Thus, inducibility loci for xenotropic virus are more limited in number and chromosomal distribution than ecotropic inducibility loci. Virus expression in mice with Bxv-1 was induced by treatment of fibroblasts with 5-iododeoxyuridine or by exposure of spleen cells to a B cell mitogen, bacterial lipopolysaccharide. An analysis of the hamster X mouse somatic cell hybrids indicated that chromosome 1, alone, was sufficient for virus induction.

  9. The Chlamydia-Secreted Protease CPAF Promotes Chlamydial Survival in the Mouse Lower Genital Tract.

    PubMed

    Yang, Zhangsheng; Tang, Lingli; Shao, Lili; Zhang, Yuyang; Zhang, Tianyuan; Schenken, Robert; Valdivia, Raphael; Zhong, Guangming

    2016-09-01

    Despite the extensive in vitro characterization of CPAF (chlamydial protease/proteasome-like activity factor), its role in chlamydial infection and pathogenesis remains unclear. We now report that a Chlamydia trachomatis strain deficient in expression of CPAF (L2-17) is no longer able to establish a successful infection in the mouse lower genital tract following an intravaginal inoculation. The L2-17 organisms were cleared from the mouse lower genital tract within a few days, while a CPAF-sufficient C. trachomatis strain (L2-5) survived in the lower genital tract for more than 3 weeks. However, both the L2-17 and L2-5 organisms maintained robust infection courses that lasted up to 4 weeks when they were directly delivered into the mouse upper genital tract. The CPAF-dependent chlamydial survival in the lower genital tract was confirmed in multiple strains of mice. Thus, we have demonstrated a critical role of CPAF in promoting C. trachomatis survival in the mouse lower genital tracts. It will be interesting to further investigate the mechanisms of the CPAF-dependent chlamydial pathogenicity. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. A new atypical genotype mouse virulent strain of Toxoplasma gondii isolated from the heart of a wild caught puma (Felis concolor) from Durango, Mexico

    USDA-ARS?s Scientific Manuscript database

    Nothing is known of the genetic diversity of Toxoplasma gondii circulating in wildlife in Mexico. In the present study, a mouse virulent T. gondii strain was isolated from the heart of a wild puma (Felis concolor). The puma was found roaming in outskirt of Durango City, Mexico and tranquailized for ...

  11. Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function

    PubMed Central

    Berry, Daniel C.; Jiang, Yuwei; Graff, Jonathan M.

    2016-01-01

    Cold temperatures induce formation of beige adipocytes, which convert glucose and fatty acids to heat, and may increase energy expenditure, reduce adiposity and lower blood glucose. This therapeutic potential is unrealized, hindered by a dearth of genetic tools to fate map, track and manipulate beige progenitors and ‘beiging'. Here we examined 12 Cre/inducible Cre mouse strains that mark adipocyte, muscle and mural lineages, three proposed beige origins. Among these mouse strains, only those that marked perivascular mural cells tracked the cold-induced beige lineage. Two SMA-based strains, SMA-CreERT2 and SMA-rtTA, fate mapped into the majority of cold-induced beige adipocytes and SMA-marked progenitors appeared essential for beiging. Disruption of the potential of the SMA-tracked progenitors to form beige adipocytes was accompanied by an inability to maintain body temperature and by hyperglycaemia. Thus, SMA-engineered mice may be useful to track and manipulate beige progenitors, beige adipocyte formation and function. PMID:26729601

  12. Development of Biomarkers for Chronic Beryllium Disease in Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Terry

    2013-01-25

    Beryllium is a strategic metal, indispensable for national defense programs in aerospace, telecommunications, electronics, and weaponry. Exposure to beryllium is an extensively documented occupational hazard that causes irreversible, debilitating granulomatous lung disease in as much as 3 - 5% of exposed workers. Mechanistic research on beryllium exposure-disease relationships has been severely limited by a general lack of a sufficient CBD animal model. We have now developed and tested an animal model which can be used for dissecting dose-response relationships and pathogenic mechanisms and for testing new diagnostic and treatment paradigms. We have created 3 strains of transgenic mice in whichmore » the human antigen-presenting moiety, HLA-DP, was inserted into the mouse genome. Each mouse strain contains HLA-DPB1 alleles that confer different magnitude of risk for chronic beryllium disease (CBD): HLA-DPB1*0401 (odds ratio = 0.2), HLA-DPB1*0201 (odds ratio = 15), HLA-DPB1*1701 (odds ratio = 240). Our preliminary work has demonstrated that the *1701 allele, as predicted by human studies, results in the greatest degree of sensitization in a mouse ear swelling test. We have also completed dose-response experiments examining beryllium-induced lung granulomas and identified susceptible and resistant inbred strains of mice (without the human transgenes) as well as quantitative trait loci that may contain gene(s) that modify the immune response to beryllium. In this grant application, we propose to use the transgenic and normal inbred strains of mice to identify biomarkers for the progression of beryllium sensitization and CBD. To achieve this goal, we propose to compare the sensitivity and accuracy of the lymphocyte proliferation test (blood and bronchoalveolar lavage fluid) with the ELISPOT test in the three HLA-DP transgenic mice strains throughout a 6 month treatment with beryllium particles. Because of the availability of high-throughput proteomics, we will also identify changes in potential protein biomarkers in beryllium-treated mice. We will correlate these findings with the ability of the transgenic mice to develop a beryllium-specific adaptive immune response in blood and bronchoalveolar lavage (BAL) fluid. We will also determine whether beryllium-responsive CD4+ T cells in blood and BAL correlate with the onset of granuloma formation. Thus, we will provide the scientific community with biomarkers of sensitization and disease progression for CBD. These biomarkers will serve as critical tools for development of improved industrial hygiene and therapeutic interventions.« less

  13. Respiratory allergy to Blomia tropicalis: Immune response in four syngeneic mouse strains and assessment of a low allergen-dose, short-term experimental model

    PubMed Central

    2010-01-01

    Background The dust mite Blomia tropicalis is an important source of aeroallergens in tropical areas. Although a mouse model for B. tropicalis extract (BtE)-induced asthma has been described, no study comparing different mouse strains in this asthma model has been reported. The relevance and reproducibility of experimental animal models of allergy depends on the genetic background of the animal, the molecular composition of the allergen and the experimental protocol. Objectives This work had two objectives. The first was to study the anti-B. tropicalis allergic responses in different mouse strains using a short-term model of respiratory allergy to BtE. This study included the comparison of the allergic responses elicited by BtE with those elicited by ovalbumin in mice of the strain that responded better to BtE sensitization. The second objective was to investigate whether the best responder mouse strain could be used in an experimental model of allergy employing relatively low BtE doses. Methods Groups of mice of four different syngeneic strains were sensitized subcutaneously with 100 μg of BtE on days 0 and 7 and challenged four times intranasally, at days 8, 10, 12, and 14, with 10 μg of BtE. A/J mice, that were the best responders to BtE sensitization, were used to compare the B. tropicalis-specific asthma experimental model with the conventional experimental model of ovalbumin (OVA)-specific asthma. A/J mice were also sensitized with a lower dose of BtE. Results Mice of all strains had lung inflammatory-cell infiltration and increased levels of anti-BtE IgE antibodies, but these responses were significantly more intense in A/J mice than in CBA/J, BALB/c or C57BL/6J mice. Immunization of A/J mice with BtE induced a more intense airway eosinophil influx, higher levels of total IgE, similar airway hyperreactivity to methacholine but less intense mucous production, and lower levels of specific IgE, IgG1 and IgG2 antibodies than sensitization with OVA. Finally, immunization with a relatively low BtE dose (10 μg per subcutaneous injection per mouse) was able to sensitize A/J mice, which were the best responders to high-dose BtE immunization, for the development of allergy-associated immune and lung inflammatory responses. Conclusions The described short-term model of BtE-induced allergic lung disease is reproducible in different syngeneic mouse strains, and mice of the A/J strain was the most responsive to it. In addition, it was shown that OVA and BtE induce quantitatively different immune responses in A/J mice and that the experimental model can be set up with low amounts of BtE. PMID:20433763

  14. Effect of brain-derived neurotrophic factor on behavior and key members of the brain serotonin system in genetically predisposed to behavioral disorders mouse strains.

    PubMed

    Naumenko, V S; Kondaurova, E M; Bazovkina, D V; Tsybko, A S; Tikhonova, M A; Kulikov, A V; Popova, N K

    2012-07-12

    The effect of brain-derived neurotrophic factor (BDNF) on depressive-like behavior and serotonin (5-HT) system in the brain of antidepressant sensitive cataleptics (ASC)/Icg mouse strain, characterized by depressive-like behavior, in comparison with the parental nondepressive CBA/Lac mouse strain was examined. Significant decrease of catalepsy and tail suspension test (TST) immobility was shown 17days after acute central BDNF administration (300ng i.c.v.) in ASC mice. In CBA mouse strain, BDNF moderately decreased catalepsy without any effect on TST immobility time. Significant difference between ASC and CBA mice in the effect of BDNF on 5-HT system was revealed. It was shown that central administration of BDNF led to increase of 5-HT(1A) receptor gene expression but not 5-HT(1A) functional activity in ASC mice. Increased tryptophan hydroxylase-2 (Tph-2) and 5-HT(2A) receptor genes expression accompanied by 5-HT(2A) receptor sensitization was shown in BDNF-treated ASC but not in CBA mouse strain, suggesting BDNF-induced increase of the brain 5-HT system functional activity and activation of neurogenesis in "depressive" ASC mice. There were no changes found in the 5-HT transporter mRNA level in BDNF-treated ASC and CBA mice. In conclusion, central administration of BDNF produced prolonged ameliorative effect on depressive-like behavior accompanied by increase of the Tph-2, 5-HT(1A) and 5-HT(2A) genes expression and 5-HT(2A) receptor functional activity in animal model of hereditary behavior disorders. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Vaccination with Recombinant Cryptococcus Proteins in Glucan Particles Protects Mice against Cryptococcosis in a Manner Dependent upon Mouse Strain and Cryptococcal Species

    PubMed Central

    Lee, Chrono K.; Huang, Haibin; Hester, Maureen M.; Liu, Jianhua; Luckie, Bridget A.; Torres Santana, Melanie A.; Mirza, Zeynep; Khoshkenar, Payam; Abraham, Ambily; Shen, Zu T.; Lodge, Jennifer K.; Akalin, Ali; Homan, Jane; Ostroff, Gary R.

    2017-01-01

    ABSTRACT Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs) as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus-derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii. The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1) were selected, recombinantly expressed in Escherichia coli, purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4) were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1) afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii. Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific. PMID:29184017

  16. The new strains Brucella inopinata BO1 and Brucella species 83-210 behave biologically like classic infectious Brucella species and cause death in murine models of infection.

    PubMed

    Jiménez de Bagüés, María P; Iturralde, María; Arias, Maykel A; Pardo, Julián; Cloeckaert, Axel; Zygmunt, Michel S

    2014-08-01

    Recently, novel atypical Brucella strains isolated from humans and wild rodents have been reported. They are phenotypically close to Ochrobactrum species but belong to the genus Brucella, based on genetic relatedness, although genetic diversity is higher among the atypical Brucella strains than between the classic species. They were classified within or close to the novel species Brucella inopinata. However, with the exception of Brucella microti, the virulence of these novel strains has not been investigated in experimental models of infection. The type species B. inopinata strain BO1 (isolated from a human) and Brucella species strain 83-210 (isolated from a wild Australian rodent) were investigated. A classic infectious Brucella reference strain, B. suis 1330, was also used. BALB/c, C57BL/6, and CD1 mice models and C57BL/6 mouse bone-marrow-derived macrophages (BMDMs) were used as infection models. Strains BO1 and 83-210 behaved similarly to reference strain 1330 in all mouse infection models: there were similar growth curves in spleens and livers of mice and similar intracellular replication rates in BMDMs. However, unlike strain 1330, strains BO1 and 83-210 showed lethality in the 3 mouse models. The novel atypical Brucella strains of this study behave like classic intracellular Brucella pathogens. In addition, they cause death in murine models of infection, as previously published for B. microti, another recently described environmental and wildlife species. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horiuchi, Rie; Akimoto, Takayuki, E-mail: akimoto@m.u-tokyo.ac.jp; Institute for Biomedical Engineering, Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, 513 Waseda-tsurumaki, Shinjuku, Tokyo 162-0041

    2012-08-15

    Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in responsemore » to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling. -- Highlights: Black-Right-Pointing-Pointer The expression of Nanog, which is an essential regulator of 'stemness' was reduced during embryonic stem (ES) cell differentiation. Black-Right-Pointing-Pointer Cyclic mechanical strain attenuated the reduction of Nanog expression. Black-Right-Pointing-Pointer Cyclic mechanical strain promoted PI3K-Akt signaling and mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor and an inhibitor of actin polymerization.« less

  18. Mouse model for the Rift Valley fever virus MP12 strain infection.

    PubMed

    Lang, Yuekun; Henningson, Jamie; Jasperson, Dane; Li, Yonghai; Lee, Jinhwa; Ma, Jingjiao; Li, Yuhao; Cao, Nan; Liu, Haixia; Wilson, William; Richt, Juergen; Ruder, Mark; McVey, Scott; Ma, Wenjun

    2016-11-15

    Rift Valley fever virus (RVFV), a Category A pathogen and select agent, is the causative agent of Rift Valley fever. To date, no fully licensed vaccine is available in the U.S. for human or animal use and effective antiviral drugs have not been identified. The RVFV MP12 strain is conditionally licensed for use for veterinary purposes in the U.S. which was excluded from the select agent rule of Health and Human Services and the U.S. Department of Agriculture. The MP12 vaccine strain is commonly used in BSL-2 laboratories that is generally not virulent in mice. To establish a small animal model that can be used in a BSL-2 facility for antiviral drug development, we investigated susceptibility of six mouse strains (129S6/SvEv, STAT-1 KO, 129S1/SvlmJ, C57BL/6J, NZW/LacJ, BALB/c) to the MP12 virus infection via an intranasal inoculation route. Severe weight loss, obvious clinical and neurologic signs, and 50% mortality was observed in the STAT-1 KO mice, whereas the other 5 mouse strains did not display obvious and/or severe disease. Virus replication and histopathological lesions were detected in brain and liver of MP12-infected STAT-1 KO mice that developed the acute-onset hepatitis and delayed-onset encephalitis. In conclusion, the STAT-1 KO mouse strain is susceptible to MP12 virus infection, indicating that it can be used to investigate RVFV antivirals in a BSL-2 environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The latest animal models of ovarian cancer for novel drug discovery.

    PubMed

    Magnotti, Elizabeth; Marasco, Wayne A

    2018-03-01

    Epithelial ovarian cancer is a heterogeneous disease classified into five subtypes, each with a different molecular profile. Most cases of ovarian cancer are diagnosed after metastasis of the primary tumor and are resistant to traditional platinum-based chemotherapeutics. Mouse models of ovarian cancer have been utilized to discern ovarian cancer tumorigenesis and the tumor's response to therapeutics. Areas covered: The authors provide a review of mouse models currently employed to understand ovarian cancer. This article focuses on advances in the development of orthotopic and patient-derived tumor xenograft (PDX) mouse models of ovarian cancer and discusses current humanized mouse models of ovarian cancer. Expert opinion: The authors suggest that humanized mouse models of ovarian cancer will provide new insight into the role of the human immune system in combating and augmenting ovarian cancer and aid in the development of novel therapeutics. Development of humanized mouse models will take advantage of the NSG and NSG-SGM3 strains of mice as well as new strains that are actively being derived.

  20. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data

    PubMed Central

    Koscielny, Gautier; Yaikhom, Gagarine; Iyer, Vivek; Meehan, Terrence F.; Morgan, Hugh; Atienza-Herrero, Julian; Blake, Andrew; Chen, Chao-Kung; Easty, Richard; Di Fenza, Armida; Fiegel, Tanja; Grifiths, Mark; Horne, Alan; Karp, Natasha A.; Kurbatova, Natalja; Mason, Jeremy C.; Matthews, Peter; Oakley, Darren J.; Qazi, Asfand; Regnart, Jack; Retha, Ahmad; Santos, Luis A.; Sneddon, Duncan J.; Warren, Jonathan; Westerberg, Henrik; Wilson, Robert J.; Melvin, David G.; Smedley, Damian; Brown, Steve D. M.; Flicek, Paul; Skarnes, William C.; Mallon, Ann-Marie; Parkinson, Helen

    2014-01-01

    The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated ‘data wranglers’ work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases. PMID:24194600

  1. A small animal peripheral challenge model of yellow fever using interferon-receptor deficient mice and the 17D-204 vaccine strain.

    PubMed

    Thibodeaux, Brett A; Garbino, Nina C; Liss, Nathan M; Piper, Joseph; Blair, Carol D; Roehrig, John T

    2012-05-02

    Yellow fever virus (YFV), a member of the genus Flavivirus, is a mosquito-borne pathogen that requires wild-type (wt), virulent strains to be handled at biosafety level (BSL) 3, with HEPA-filtration of room air exhaust (BSL3+). YFV is found in tropical regions of Africa and South America and causes severe hepatic disease and death in humans. Despite the availability of effective vaccines (17D-204 or 17DD), YFV is still responsible for an estimated 200,000 cases of illness and 30,000 deaths annually. Besides vaccination, there are no other prophylactic or therapeutic strategies approved for use in human YF. Current small animal models of YF require either intra-cranial inoculation of YF vaccine to establish infection, or use of wt strains (e.g., Asibi) in order to achieve pathology. We have developed and characterized a BSL2, adult mouse peripheral challenge model for YFV infection in mice lacking receptors for interferons α, β, and γ (strain AG129). Intraperitoneal challenge of AG129 mice with 17D-204 is a uniformly lethal in a dose-dependent manner, and 17D-204-infected AG129 mice exhibit high viral titers in both brain and liver suggesting this infection is both neurotropic and viscerotropic. Furthermore the use of a mouse model permitted the construction of a 59-biomarker multi-analyte profile (MAP) using samples of brain, liver, and serum taken at multiple time points over the course of infection. This MAP serves as a baseline for evaluating novel therapeutics and their effect on disease progression. Changes (4-fold or greater) in serum and tissue levels of pro- and anti-inflammatory mediators as well as other factors associated with tissue damage were noted in AG129 mice infected with 17D-204 as compared to mock-infected control animals. Published by Elsevier Ltd.

  2. Sequence and Characterization of the Ig Heavy Chain Constant and Partial Variable Region of the Mouse Strain 129S11

    PubMed Central

    Retter, Ida; Chevillard, Christophe; Scharfe, Maren; Conrad, Ansgar; Hafner, Martin; Im, Tschong-Hun; Ludewig, Monika; Nordsiek, Gabriele; Severitt, Simone; Thies, Stephanie; Mauhar, America; Blöcker, Helmut; Müller, Werner; Riblet, Roy

    2009-01-01

    Although the entire mouse genome has been sequenced, there remain challenges concerning the elucidation of particular complex and polymorphic genomic loci. In the murine Igh locus, different haplotypes exist in different inbred mouse strains. For example, the Ighb haplotype sequence of the Mouse Genome Project strain C57BL/6 differs considerably from the Igha haplotype of BALB/c, which has been widely used in the analyses of Ab responses. We have sequenced and annotated the 3′ half of the Igha locus of 129S1/SvImJ, covering the CH region and approximately half of the VH region. This sequence comprises 128 VH genes, of which 49 are judged to be functional. The comparison of the Igha sequence with the homologous Ighb region from C57BL/6 revealed two major expansions in the germline repertoire of Igha. In addition, we found smaller haplotype-specific differences like the duplication of five VH genes in the Igha locus. We generated a VH allele table by comparing the individual VH genes of both haplotypes. Surprisingly, the number and position of DH genes in the 129S1 strain differs not only from the sequence of C57BL/6 but also from the map published for BALB/c. Taken together, the contiguous genomic sequence of the 3′ part of the Igha locus allows a detailed view of the recent evolution of this highly dynamic locus in the mouse. PMID:17675503

  3. The Terminator mouse is a diphtheria toxin-receptor knock-in mouse strain for rapid and efficient enrichment of desired cell lineages.

    PubMed

    Guo, Jian-Kan; Shi, Hongmei; Koraishy, Farrukh; Marlier, Arnaud; Ding, Zhaowei; Shan, Alan; Cantley, Lloyd G

    2013-11-01

    Biomedical research often requires primary cultures of specific cell types, which are challenging to obtain at high purity in a reproducible manner. Here we engineered the murine Rosa26 locus by introducing the diphtheria toxin receptor flanked by loxP sites. The resultant strain was nicknamed the Terminator mouse. This approach results in diphtheria toxin-receptor expression in all non-Cre expressing cell types, making these cells susceptible to diphtheria toxin exposure. In primary cultures of kidney cells derived from the Terminator mouse, over 99.99% of cells were dead within 72 h of diphtheria toxin treatment. After crossing the Terminator with the podocin-Cre (podocyte specific) mouse or the Ggt-Cre (proximal tubule specific) mouse, diphtheria toxin treatment killed non-Cre expressing cells but spared podocytes and proximal tubule cells, respectively, enriching the primary cultures to over 99% purity, based on both western blotting and immunostaining of marker proteins. Thus, the Terminator mouse can be a useful tool to selectively and reproducibly obtain even low-abundant cell types at high quantity and purity.

  4. Conserved properties of human and bovine prion strains on transmission to guinea pigs

    PubMed Central

    Safar, Jiri G.; Giles, Kurt; Lessard, Pierre; Letessier, Frederic; Patel, Smita; Serban, Ana; DeArmond, Stephen J.; Prusiner, Stanley B.

    2011-01-01

    The first transmissions of human prion diseases to rodents used guinea pigs (Gps, Cavia porcellus). Later, transgenic (Tg) mice expressing human or chimeric human/mouse PrP replaced Gps, but the small size of the mouse limits some investigations. To investigate the fidelity of strain-specific prion transmission to Gps, we inoculated “type 1” and “type 2” prion strains into Gps: we measured the incubation times and determined the strain-specified size of the unglycosylated, protease-resistant (r) PrPSc fragment. Prions passaged once in Gps from cases of sporadic (s) Creutzfeldt–Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker (GSS) disease caused by the P102L mutation were used as well as human prions from a variant (v) CJD case, bovine prions from bovine spongiform encephalopathy (BSE), and mouse-passaged scrapie prions. Variant CJD and BSE prions transmitted to all the inoculated Gps with incubation times of 367 ± 4 d and 436 ± 28 d, respectively. On second passage in Gps, vCJD and BSE prions caused disease in 287 ± 4 d and 310 ± 4 d, while sCJD and GSS prions transmitted in 237 ± 4 d and 279 ± 19 d, respectively. Although hamster Sc237 prions transmitted to 2 of 3 Gps after 574 and 792 d, mouse-passaged RML and 301V prion strains, the latter derived from BSE prions, failed to transmit disease to Gps. Those Gps inoculated with vCJD or BSE prions exhibited “type 2” unglycosylated, rPrPSc (19 kDa) while those receiving sCJD or GSS prions displayed “type 1” prions (21 kDa), as determined by Western blotting. Such strain-specific properties were maintained in Gps as well as mice expressing a chimeric human/mouse transgene. Gps may prove particularly useful in further studies of novel human prions such as those causing vCJD. PMID:21727894

  5. Comparative mRNA analysis of behavioral and genetic mouse models of aggression.

    PubMed

    Malki, Karim; Tosto, Maria G; Pain, Oliver; Sluyter, Frans; Mineur, Yann S; Crusio, Wim E; de Boer, Sietse; Sandnabba, Kenneth N; Kesserwani, Jad; Robinson, Edward; Schalkwyk, Leonard C; Asherson, Philip

    2016-04-01

    Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors. © 2016 Wiley Periodicals, Inc.

  6. Morphofunctional evaluation of the testis, duration of spermatogenesis and spermatogenic efficiency in the Japanese fancy mouse (Mus musculus molossinus).

    PubMed

    Costa, Guilherme M J; Leal, Marcelo C; França, Luiz R

    2017-08-01

    Japanese fancy mouse, mini mouse or pet mouse are common names used to refer to strains of mice that present with different colour varieties and coat types. Although many genetic studies that involve spotting phenotype based on the coat have been performed in these mice, there are no reports of quantitative data in the literature regarding testis structure and spermatogenic efficiency. Hence, in this study we researched testis function and spermatogenesis in the adult Japanese fancy mouse. The following values of 68 ± 6 mg and 0.94 ± 0.1% were obtained as mean testis weight and gonadosomatic index, respectively. In comparison with other investigated mice strains, the fancy mouse Leydig cell individual size was much smaller, resulting in higher numbers of these cells per gram of testis. As found for laboratory mice strains, as a result of the development of the acrosomic system, 12 stages of the seminiferous epithelium cycle have been described in this study. The combined frequencies of pre-meiotic and post-meiotic stages were respectively 24% and 64% and very similar to the laboratory mice. The more differentiated germ cell types marked at 1 h or 9 days after tritiated thymidine administration were preleptotene/leptotene and pachytene spermatocytes at the same stage (VIII). The mean duration of one spermatogenic cycle was 8.8 ± 0.01 days and the total length of spermatogenesis lasted 37.8 ± 0.01 days (4.5 cycles). A high number of germ cell apoptosis was evident during meiosis, resulting in lower Sertoli cell and spermatogenic efficiencies, when compared with laboratory mice strains.

  7. Attenuated mutant strain of Salmonella Typhimurium lacking the ZnuABC transporter contrasts tumor growth promoting anti-cancer immune response.

    PubMed

    Chirullo, Barbara; Ammendola, Serena; Leonardi, Leonardo; Falcini, Roberto; Petrucci, Paola; Pistoia, Claudia; Vendetti, Silvia; Battistoni, Andrea; Pasquali, Paolo

    2015-07-10

    Salmonella Typhimurium has been shown to be highly effective as antitumor agent. The aim of this study was to investigate the tumor targeting efficacy and the mechanism of action of a specific attenuated mutant strain of Salmonella Typhimurium (STM) devoid of the whole operon coding for the high-affinity zinc transporter ZnuABC, which is required for bacterial growth in environments poor in zinc and for conferring full virulence to different Gram-negative pathogens.We showed that STM is able to penetrate and replicate into tumor cells in in vitro and in vivo models. The subcutaneous administration of STM in mammary adenocarcinoma mouse model led to both reduction of tumor growth and increase in life expectancy of STM treated mice. Moreover, investigating the potential mechanism behind the favorable clinical outcomes, we provide evidence that STM stimulates a potent inflammatory response and a specific immune pattern, recruiting a large number of innate and adaptive immune cells capable to contrast the immunosuppressive environment generated by tumors.

  8. RipA, a Cytoplasmic Membrane Protein Conserved among Francisella Species, Is Required for Intracellular Survival▿

    PubMed Central

    Fuller, James R.; Craven, Robin R.; Hall, Joshua D.; Kijek, Todd M.; Taft-Benz, Sharon; Kawula, Thomas H.

    2008-01-01

    Francisella tularensis is a highly virulent bacterial pathogen that invades and replicates within numerous host cell types, including macrophages and epithelial cells. In an effort to better understand this process, we screened a transposon insertion library of the F. tularensis live vaccine strain (LVS) for mutant strains that invaded but failed to replicate within alveolar epithelial cell lines. One such strain isolated from this screen contained an insertion in the gene FTL_1914, which is conserved among all sequenced Francisella species yet lacks significant homology to any gene with known function. A deletion strain lacking FTL_1914 was constructed. This strain did not replicate in either epithelial or macrophage-like cells, and intracellular replication was restored by the wild-type allele in trans. Based on the deletion mutant phenotype, FTL_1914 was termed ripA (required for intracellular proliferation, factor A). Following uptake by J774.A1 cells, F. tularensis LVS ΔripA colocalized with LAMP-1 then escaped the phagosome at the same rate and frequency as wild-type LVS-infected cells. Electron micrographs of the F. tularensis LVS ΔripA mutant demonstrated the reentry of the mutant bacteria into double membrane vacuoles characteristic of autophagosomes in a process that was not dependent on replication. The F. tularensis LVS ΔripA mutant was significantly impaired in its ability to persist in the lung and in its capacity to disseminate and colonize the liver and spleen in a mouse model of pulmonary tularemia. The RipA protein was expressed during growth in laboratory media and localized to the cytoplasmic membrane. Thus, RipA is a cytoplasmic membrane protein conserved among Francisella species that is required for intracellular replication within the host cell cytoplasm as well as disease progression, dissemination, and virulence. PMID:18765722

  9. Host Hydrogen Rather than That Produced by the Pathogen Is Important for Salmonella enterica Serovar Typhimurium Virulence

    PubMed Central

    Lamichhane-Khadka, Reena; Benoit, Stéphane L.; Miller-Parks, Erica F.

    2014-01-01

    Salmonella enterica serovar Typhimurium utilizes molecular hydrogen as a substrate in various respiratory pathways, via H2-uptake enzymes termed Hya, Hyb, and Hyd. A different hydrogenase, the hydrogen-evolving Hyc enzyme, removes excess reductant during fermentative growth. Virulence phenotypes conferred by mutations in hyc genes, either alone or in combination with mutations in the H2-uptake enzyme genes, are addressed. Anaerobically grown ΔhycB or ΔhycC single-deletion strains were more sensitive to acid than the wild-type strain, but the Δhyc strains were like the virulent parent strain with respect to both mouse morbidity and mortality and in organ burden numbers. Even fecal-recovery numbers for both mutant strains at several time points prior to the animals succumbing to salmonellosis were like those seen with the parent. Neither hydrogen uptake nor evolution of the gas was detected in a hydrogenase quadruple-mutant strain containing deletions in the hya, hyb, hyd, and hyc genes. As previously described, a strain lacking all H2-uptake ability was severely attenuated in its virulence characteristics, and the quadruple-mutant strain had the same (greatly attenuated) phenotype. While H2 levels were greatly reduced in ceca of mice treated with antibiotics, both the ΔhycB and ΔhycC strains were still like the parent in their ability to cause typhoid salmonellosis. It seems that the level of H2 produced by the pathogen (through formate hydrogen lyase [FHL] and Hyc) is insignificant in terms of providing respiratory reductant to facilitate either organ colonization or contributions to gut growth leading to pathogenesis. PMID:25368112

  10. Differential expression of isoproterenol-induced salivary polypeptides in two mouse strains that are congenic for the H-2 histocompatibility gene complex.

    PubMed

    López Solís, Remigio O; Weis, Ulrike Kemmerling; Ceballos, Alicia Ramos; Salas, Gustavo Hoecker

    2003-12-01

    Two inbred mouse strains, A/Snell and A.Swiss, which were produced as congenic with regard to the H-2 histocompatibility gene complex, are homozygous for two different groups of isoproterenol-induced salivary polypeptides (IISP). These polypeptides, which have been considered as markers of the hypertrophic growth of the parotid acinar cells, are members of the complex family of salivary proline-rich proteins (PRP) on the basis of both their massive accumulation in the parotid acinar cells in response to chronic isoproterenol, secretory character, high solubility in trichloroacetic acid and metachromatic staining by Coomassie blue. IISP expressed in both mouse strains were identified by unidimensional SDS-polyacrylamide electrophoresis and Coomassie blue staining both in parotid gland homogenates and in whole salivas obtained from mice repeatedly stimulated at 24-h intervals with isoproterenol. Parotid glands from 40 mice (20 A/Snell and 20 A.Swiss) and salivas from 270 mice (200 A/Snell and 70 A.Swiss) were analyzed. One of the congenic strains (A/Snell) expressed five IISP (Mr 65, 61, 51.5, 38, and 37 kDa) and the other strain (A.Swiss) expressed six IISP (Mr 59, 57, 54.5, 46, 36, and 34 kDa). No inter-individual intra-strain variations were observed, thus defining strain-associated patterns of IISP (PRP). Copyright 2003 Wiley-Liss, Inc.

  11. Comparison of hemagglutinating, receptor-destroying, and acetylesterase activities of avirulent and virulent bovine coronavirus strains.

    PubMed

    Storz, J; Zhang, X M; Rott, R

    1992-01-01

    Hemagglutinating and acetylesterase functions as well as the 124 kDa glycoprotein were present in the highly cell-culture adapted, avirulent bovine coronavirus strain BCV-L9, in the Norden vaccine strain derived from it, and in 5 wild-type, virulent strains that multiplied in HRT-18 cells but were restricted in several types of cultured bovine cells. The BCV-L9 and the wild-type strain BCV-LY-138 agglutinated chicken and mouse erythrocytes. The acetylesterase facilitated break-down of the BCV-erythrocyte complex with chicken but only to a minimal extent with mouse erythrocytes in the receptor-destroying enzyme test. Purified preparations of the vaccine and the wild-type strains agglutinated chicken erythrocytes at low titers and mouse erythrocytes at 128 to 256 times higher titers whereas receptor destroying enzyme activity was detectable only with chicken erythrocytes. When wild-type strains were propagated in HRT cells at low passage levels, they produced 5 x 10(5) to 4.5 x 10(6) plaque forming units per 50 microliters which agglutinated erythrocytes from mice but not from chickens. Diisopropylfluoro-phosphate moderately increased the hemagglutination titers, but completely inhibited the receptor destroying enzyme of purified virus of all strains. It had virtually no influence on the plaque-forming infectivity of the different BCV strains. The acetylesterase of strain BCV-L9 reacting in the receptor-destroying enzyme test was stable for 3 h at 37 and 42 degrees C. It was inactivated within 30 min at 56 degrees C while the hemagglutinin function of this strain was stable for 3 h at 37, 42, and 56 degrees C, but it was inactivated at 65 degrees C within 1 h.

  12. Complex Genetics of Behavior: BXDs in the Automated Home-Cage.

    PubMed

    Loos, Maarten; Verhage, Matthijs; Spijker, Sabine; Smit, August B

    2017-01-01

    This chapter describes a use case for the genetic dissection and automated analysis of complex behavioral traits using the genetically diverse panel of BXD mouse recombinant inbred strains. Strains of the BXD resource differ widely in terms of gene and protein expression in the brain, as well as in their behavioral repertoire. A large mouse resource opens the possibility for gene finding studies underlying distinct behavioral phenotypes, however, such a resource poses a challenge in behavioral phenotyping. To address the specifics of large-scale screening we describe how to investigate: (1) how to assess mouse behavior systematically in addressing a large genetic cohort, (2) how to dissect automation-derived longitudinal mouse behavior into quantitative parameters, and (3) how to map these quantitative traits to the genome, deriving loci underlying aspects of behavior.

  13. Physiologically Based Pharmacokinetic (PBPK) Modeling of Interstrain Variability in Trichloroethylene Metabolism in the Mouse

    PubMed Central

    Campbell, Jerry L.; Clewell, Harvey J.; Zhou, Yi-Hui; Wright, Fred A.; Guyton, Kathryn Z.

    2014-01-01

    Background: Quantitative estimation of toxicokinetic variability in the human population is a persistent challenge in risk assessment of environmental chemicals. Traditionally, interindividual differences in the population are accounted for by default assumptions or, in rare cases, are based on human toxicokinetic data. Objectives: We evaluated the utility of genetically diverse mouse strains for estimating toxicokinetic population variability for risk assessment, using trichloroethylene (TCE) metabolism as a case study. Methods: We used data on oxidative and glutathione conjugation metabolism of TCE in 16 inbred and 1 hybrid mouse strains to calibrate and extend existing physiologically based pharmacokinetic (PBPK) models. We added one-compartment models for glutathione metabolites and a two-compartment model for dichloroacetic acid (DCA). We used a Bayesian population analysis of interstrain variability to quantify variability in TCE metabolism. Results: Concentration–time profiles for TCE metabolism to oxidative and glutathione conjugation metabolites varied across strains. Median predictions for the metabolic flux through oxidation were less variable (5-fold range) than that through glutathione conjugation (10-fold range). For oxidative metabolites, median predictions of trichloroacetic acid production were less variable (2-fold range) than DCA production (5-fold range), although the uncertainty bounds for DCA exceeded the predicted variability. Conclusions: Population PBPK modeling of genetically diverse mouse strains can provide useful quantitative estimates of toxicokinetic population variability. When extrapolated to lower doses more relevant to environmental exposures, mouse population-derived variability estimates for TCE metabolism closely matched population variability estimates previously derived from human toxicokinetic studies with TCE, highlighting the utility of mouse interstrain metabolism studies for addressing toxicokinetic variability. Citation: Chiu WA, Campbell JL Jr, Clewell HJ III, Zhou YH, Wright FA, Guyton KZ, Rusyn I. 2014. Physiologically based pharmacokinetic (PBPK) modeling of interstrain variability in trichloroethylene metabolism in the mouse. Environ Health Perspect 122:456–463; http://dx.doi.org/10.1289/ehp.1307623 PMID:24518055

  14. Incremental Contributions of FbaA and Other Impetigo-Associated Surface Proteins to Fitness and Virulence of a Classical Group A Streptococcal Skin Strain.

    PubMed

    Rouchon, Candace N; Ly, Anhphan T; Noto, John P; Luo, Feng; Lizano, Sergio; Bessen, Debra E

    2017-11-01

    Group A streptococci (GAS) are highly prevalent human pathogens whose primary ecological niche is the superficial epithelial layers of the throat and/or skin. Many GAS strains with a strong tendency to cause pharyngitis are distinct from strains that tend to cause impetigo; thus, genetic differences between them may confer host tissue-specific virulence. In this study, the FbaA surface protein gene was found to be present in most skin specialist strains but largely absent from a genetically related subset of pharyngitis isolates. In an Δ fbaA mutant constructed in the impetigo strain Alab49, loss of FbaA resulted in a slight but significant decrease in GAS fitness in a humanized mouse model of impetigo; the Δ fbaA mutant also exhibited decreased survival in whole human blood due to phagocytosis. In assays with highly sensitive outcome measures, Alab49ΔfbaA was compared to other isogenic mutants lacking virulence genes known to be disproportionately associated with classical skin strains. FbaA and PAM (i.e., the M53 protein) had additive effects in promoting GAS survival in whole blood. The pilus adhesin tip protein Cpa promoted Alab49 survival in whole blood and appears to fully account for the antiphagocytic effect attributable to pili. The finding that numerous skin strain-associated virulence factors make slight but significant contributions to virulence underscores the incremental contributions to fitness of individual surface protein genes and the multifactorial nature of GAS-host interactions. Copyright © 2017 American Society for Microbiology.

  15. Mouse strain differences in Gurmarin-sensitivity of sweet taste responses are not associated with polymorphisms of the sweet receptor gene, Tas1r3.

    PubMed

    Sanematsu, Keisuke; Yasumatsu, Keiko; Yoshida, Ryusuke; Shigemura, Noriatsu; Ninomiya, Yuzo

    2005-07-01

    Gurmarin (Gur) is a peptide that selectively inhibits responses of the chorda tympani (CT) nerve to sweet compounds in rodents. In mice, the sweet-suppressing effect of Gur differs among strains. The inhibitory effect of Gur is clearly observed in C57BL/6 mice, but only slightly, if at all, in BALB/c mice. These two mouse strains possess different alleles of the sweet receptor gene, Sac (Tas1r3) (taster genotype for C57BL/6 and non-taster genotype for BALB/c mice), suggesting that polymorphisms in the gene may account for differential sensitivity to Gur. To investigate this possibility, we examined the effect of Gur in another Tas1r3 non-taster strain, 129 X 1/Sv mice. The results indicated that unlike non-taster BALB/c mice but similar to taster C57BL/6 mice, 129 X 1/Sv mice exhibited significant inhibition of CT responses to various sweet compounds by Gur. This suggests that the mouse strain difference in the Gur inhibition of sweet responses of the CT nerve may not be associated with polymorphisms of Tas1r3.

  16. Intracerebral Inoculation of Mouse-Passaged Saffold Virus Type 3 Affects Cerebellar Development in Neonatal Mice

    PubMed Central

    Kotani, Osamu; Suzuki, Tadaki; Yokoyama, Masaru; Iwata-Yoshikawa, Naoko; Nakajima, Noriko; Sato, Hironori; Hasegawa, Hideki; Taguchi, Fumihiro; Shimizu, Hiroyuki

    2016-01-01

    ABSTRACT Saffold virus (SAFV), a human cardiovirus, is occasionally detected in infants with neurological disorders, including meningitis and cerebellitis. We recently reported that SAFV type 3 isolates infect cerebellar glial cells, but not large neurons, in mice. However, the impact of this infection remained unclear. Here, we determined the neuropathogenesis of SAFV type 3 in the cerebella of neonatal ddY mice by using SAFV passaged in the cerebella of neonatal BALB/c mice. The virus titer in the cerebellum increased following the inoculation of each of five passaged strains. The fifth passaged strain harbored amino acid substitutions in the VP2 (H160R and Q239R) and VP3 (K62M) capsid proteins. Molecular modeling of the capsid proteins suggested that the VP2-H160R and VP3-K62M mutations alter the structural dynamics of the receptor binding surface via the formation of a novel hydrophobic interaction between the VP2 puff B and VP3 knob regions. Compared with the original strain, the passaged strain showed altered growth characteristics in human-derived astroglial cell lines and greater replication in the brains of neonatal mice. In addition, the passaged strain was more neurovirulent than the original strain, while both strains infected astroglial and neural progenitor cells in the mouse brain. Intracerebral inoculation of either the original or the passaged strain affected brain Purkinje cell dendrites, and a high titer of the passaged strain induced cerebellar hypoplasia in neonatal mice. Thus, infection by mouse-passaged SAFV affected cerebellar development in neonatal mice. This animal model contributes to the understanding of the neuropathogenicity of SAFV infections in infants. IMPORTANCE Saffold virus (SAFV) is a candidate neuropathogenic agent in infants and children, but the neuropathogenicity of the virus has not been fully elucidated. Recently, we evaluated the pathogenicity of two clinical SAFV isolates in mice. Similar to other neurotropic picornaviruses, these isolates showed mild infectivity of glial and neural progenitor cells, but not of large neurons, in the cerebellum. However, the outcome of this viral infection in the cerebellum has not been clarified. Here, we examined the tropism of SAFV in the cerebellum. We obtained an in vivo-passaged strain from the cerebella of neonatal mice and examined its genome and its neurovirulence in the neonatal mouse brain. The passaged virus showed high infectivity and neurovirulence in the brain, especially the cerebellum, and affected cerebellar development. This unique neonatal mouse model will be helpful for elucidating the neuropathogenesis of SAFV infections occurring early in life. PMID:27581974

  17. Reassessing the Potential Activities of Plant CGI-58 Protein

    PubMed Central

    Khatib, Abdallah; Arhab, Yani; Bentebibel, Assia; Abousalham, Abdelkarim; Noiriel, Alexandre

    2016-01-01

    Comparative Gene Identification-58 (CGI-58) is a widespread protein found in animals and plants. This protein has been shown to participate in lipolysis in mice and humans by activating Adipose triglyceride lipase (ATGL), the initial enzyme responsible for the triacylglycerol (TAG) catabolism cascade. Human mutation of CGI-58 is the cause of Chanarin-Dorfman syndrome, an orphan disease characterized by a systemic accumulation of TAG which engenders tissue disorders. The CGI-58 protein has also been shown to participate in neutral lipid metabolism in plants and, in this case, a mutation again provokes TAG accumulation. Although its roles as an ATGL coactivator and in lipid metabolism are quite clear, the catalytic activity of CGI-58 is still in question. The acyltransferase activities of CGI-58 have been speculated about, reported or even dismissed and experimental evidence that CGI-58 expressed in E. coli possesses an unambiguous catalytic activity is still lacking. To address this problem, we developed a new set of plasmids and site-directed mutants to elucidate the in vivo effects of CGI-58 expression on lipid metabolism in E. coli. By analyzing the lipid composition in selected E. coli strains expressing CGI-58 proteins, and by reinvestigating enzymatic tests with adequate controls, we show here that recombinant plant CGI-58 has none of the proposed activities previously described. Recombinant plant and mouse CGI-58 both lack acyltransferase activity towards either lysophosphatidylglycerol or lysophosphatidic acid to form phosphatidylglycerol or phosphatidic acid and recombinant plant CGI-58 does not catalyze TAG or phospholipid hydrolysis. However, expression of recombinant plant CGI-58, but not mouse CGI-58, led to a decrease in phosphatidylglycerol in all strains of E. coli tested, and a mutation of the putative catalytic residues restored a wild-type phenotype. The potential activities of plant CGI-58 are subsequently discussed. PMID:26745266

  18. Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity

    PubMed Central

    Hu, Joyce K.; Crampton, Jordan C.; Cupo, Albert; Ketas, Thomas; van Gils, Marit J.; Sliepen, Kwinten; de Taeye, Steven W.; Sok, Devin; Ozorowski, Gabriel; Deresa, Isaiah; Stanfield, Robyn; Ward, Andrew B.; Burton, Dennis R.; Klasse, Per Johan; Sanders, Rogier W.; Moore, John P.

    2015-01-01

    ABSTRACT Generating neutralizing antibodies (nAbs) is a major goal of many current HIV-1 vaccine efforts. To be of practical value, these nAbs must be both potent and cross-reactive in order to be capable of preventing the transmission of the highly diverse and generally neutralization resistant (Tier-2) HIV-1 strains that are in circulation. The HIV-1 envelope glycoprotein (Env) spike is the only target for nAbs. To explore whether Tier-2 nAbs can be induced by Env proteins, we immunized conventional mice with soluble BG505 SOSIP.664 trimers that mimic the native Env spike. Here, we report that it is extremely difficult for murine B cells to recognize the Env epitopes necessary for inducing Tier-2 nAbs. Thus, while trimer-immunized mice raised Env-binding IgG Abs and had high-quality T follicular helper (Tfh) cell and germinal center (GC) responses, they did not make BG505.T332N nAbs. Epitope mapping studies showed that Ab responses in mice were specific to areas near the base of the soluble trimer. These areas are not well shielded by glycans and likely are occluded on virions, which is consistent with the lack of BG505.T332N nAbs. These data inform immunogen design and suggest that it is useful to obscure nonneutralizing epitopes presented on the base of soluble Env trimers and that the glycan shield of well-formed HIV Env trimers is virtually impenetrable for murine B cell receptors (BCRs). IMPORTANCE Human HIV vaccine efficacy trials have not generated meaningful neutralizing antibodies to circulating HIV strains. One possible hindrance has been the lack of immunogens that properly mimic the native conformation of the HIV envelope trimer protein. Here, we tested the first generation of soluble, native-like envelope trimer immunogens in a conventional mouse model. We attempted to generate neutralizing antibodies to neutralization-resistant circulating HIV strains. Various vaccine strategies failed to induce neutralizing antibodies to a neutralization-resistant HIV strain. Further analysis revealed that mouse antibodies targeted areas near the bottom of the soluble envelope trimers. These areas are not easily accessible on the HIV virion due to occlusion by the viral membrane and may have resulted from an absence of glycan shielding. Our results suggest that obscuring the bottom of soluble envelope trimers is a useful strategy to reduce antibody responses to epitopes that are not useful for virus neutralization. PMID:26246566

  19. A Congenic Line of the C57BL/6J Mouse Strain that is Proficient in Melatonin Synthesis.

    PubMed

    Zhang, Zhijing; Silveyra, Eduardo; Jin, Nange; Ribelayga, Christophe P

    2018-05-16

    The C57BL/6J (B6) is the most common inbred mouse strain used in biomedical research in the United States. Yet, this strain is notoriously known for being deficient in the biosynthesis of melatonin, an important effector of circadian clocks in the brain and in the retina. Melatonin deficiency in this strain results from non-functional alleles of the genes coding two key enzymes of the melatonin synthesis pathway: arylalkylamine-N-acetyltransferase (Aanat) and N-acetylserotonin-O-methyltransferase (Asmt). By introducing functional alleles of the Aanat and Asmt genes from the melatonin-proficient CBA/CaJ (CBA) mouse strain to B6, we have generated a B6 congenic line that has acquired the capacity of rhythmic melatonin synthesis. In addition, the melatonin-dependent rhythm of dopamine release in the retina is restored in the B6 congenic line. Finally, we have partially characterized the Aanat and Asmt genes of the CBA strain and have identified multiple differences between CBA and B6 alleles, including single nucleotide polymorphism and deletion/insertion of DNA segments of various sizes. As an improved model organism with functional components of the melatonin synthesis pathway and melatonin-dependent circadian regulations, the new line will be useful to researchers studying melatonin physiological functions in a variety of fields including, but not limited to, circadian biology and neuroscience. In particular, the congenic line will be useful to speed up introduction of melatonin production capacity into genetically-modified mouse lines of interest such as knockout lines, many of which are on B6 or mixed B6 backgrounds. The melatonin-proficient B6 congenic line will be widely distributed. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. Neurotoxicity to DRG neurons varies between rodent strains treated with cisplatin and bortezomib.

    PubMed

    Podratz, Jewel L; Kulkarni, Amit; Pleticha, Josef; Kanwar, Rahul; Beutler, Andreas S; Staff, Nathan P; Windebank, Anthony J

    2016-03-15

    Chemotherapy-induced peripheral neuropathy (CIPN) is a major dose limiting side effect that can lead to long-term morbidity. Approximately one-third of patients receiving chemotherapy with taxanes, vinca alkaloids, platinum compounds or proteasome inhibitors develop this toxic side effect. It is not possible to predict who will get CIPN, however, genetic susceptibility may play a role. We explored this hypothesis using an established in vitro dorsal root ganglia neurite outgrowth (DRG-NOG) assay to assess possible genetic influences for cisplatin- and bortezomib-induced neurotoxicity. Almost all previous in vitro studies have used rats or mice. We compared DRG-NOG between four genetically defined, inbred mouse strains (C57BL/6J, DBA/2J, BALB/cJ, and C3H/HeJ) and one rat strain (Sprague Dawley). Our studies found differences in cisplatin and bortezomib-induced neurotoxicity between mouse and rat strains and between the different mouse strains. C57BL/6J and Balb/cJ DRG-NOG was more sensitive to cisplatin than DBA/2J and C3H/HeJ DRG-NOG, and all mouse strains were more sensitive to cisplatin than rat. Bortezomib induced a biphasic dose response in DBA/2J and C3H/H3J mice. C57BL/6J DRG-NOG was most sensitive and Balb/cJ DRG-NOG was least sensitive to bortezomib. Our animal data supports the hypothesis that genetic background may play a role in CIPN and care must be taken when rodent models are used to better understand the contribution of genetics in patient susceptibility to CIPN. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Inbred mouse strains C57BL/6J and DBA/2J vary in sensitivity to a subset of bitter stimuli

    PubMed Central

    Boughter, John D; Raghow, Sandeep; Nelson, Theodore M; Munger, Steven D

    2005-01-01

    Background Common inbred mouse strains are genotypically diverse, but it is still poorly understood how this diversity relates to specific differences in behavior. To identify quantitative trait genes that influence taste behavior differences, it is critical to utilize assays that exclusively measure the contribution of orosensory cues. With a few exceptions, previous characterizations of behavioral taste sensitivity in inbred mouse strains have generally measured consumption, which can be confounded by post-ingestive effects. Here, we used a taste-salient brief-access procedure to measure taste sensitivity to eight stimuli characterized as bitter or aversive in C57BL/6J (B6) and DBA/2J (D2) mice. Results B6 mice were more sensitive than D2 mice to a subset of bitter stimuli, including quinine hydrochloride (QHCl), 6-n-propylthiouracil (PROP), and MgCl2. D2 mice were more sensitive than B6 mice to the bitter stimulus raffinose undecaacetate (RUA). These strains did not differ in sensitivity to cycloheximide (CYX), denatonium benzoate (DB), KCl or HCl. Conclusion B6-D2 taste sensitivity differences indicate that differences in consumption of QHCl, PROP, MgCl2 and RUA are based on immediate orosensory cues, not post-ingestive effects. The absence of a strain difference for CYX suggests that polymorphisms in a T2R-type taste receptor shown to be differentially sensitive to CYX in vitro are unlikely to differentially contribute to the CYX behavioral response in vivo. The results of these studies point to the utility of these common mouse strains and their associated resources for investigation into the genetic mechanisms of taste. PMID:15967025

  2. Antidepressant-like Responses to Lithium in Genetically Diverse Mouse Strains

    PubMed Central

    Can, Adem; Blackwell, Robert A.; Piantadosi, Sean C.; Dao, David T.; O’Donnell, Kelley C.; Gould, Todd D.

    2011-01-01

    A mood stabilizing and antidepressant response to lithium is only found in a subgroup of bipolar disorder and depression patients. Identifying strains of mice that are responsive and non-responsive to lithium may elucidate genomic and other biological factors that play a role in lithium responsiveness. Mouse strains were tested in the forced swim, tail suspension, and open field tests after acute and chronic systemic, and intracerebroventricular and chronic lithium treatments. Serum and brain lithium levels were measured. Three (129S6/SvEvTac, C3H/HeNHsd, C57BL/6J) of the eight inbred strains tested, and one (CD-1) of the three outbred strains, showed an antidepressant-like response in the forced swim test following acute systemic administration of lithium. The three responsive inbred strains, as well as the DBA/2J strain, were also responsive in the forced swim test after chronic administration of lithium. However, in the tail suspension test, acute lithium resulted in an antidepressant-like effect only in C3H/HeNHsd mice. Only C57BL/6J and DBA/2J were responsive in the tail suspension test after chronic administration of lithium. Intracerebroventricular lithium administration resulted in a similar response profile in BALB/cJ (non-responsive) and C57BL/6J (responsive) strains. Serum and brain lithium concentrations demonstrated that behavioral results were not due to differential pharmacokinetics of lithium in individual strains, suggesting that genetic factors likely regulate responsiveness to lithium. Our results indicate that responsiveness to lithium in tests of antidepressant efficacy varies among genetically diverse mouse strains. These results will assist in identifying genomic factors associated with lithium responsiveness and the mechanisms of lithium action. PMID:21306560

  3. Lrrk2 and alpha-synuclein are co-regulated in rodent striatum.

    PubMed

    Westerlund, Marie; Ran, Caroline; Borgkvist, Anders; Sterky, Fredrik H; Lindqvist, Eva; Lundströmer, Karin; Pernold, Karin; Brené, Stefan; Kallunki, Pekka; Fisone, Gilberto; Olson, Lars; Galter, Dagmar

    2008-12-01

    LRRK2, alpha-synuclein, UCH-L1 and DJ-1 are implicated in the etiology of Parkinson's disease. We show for the first time that increase in striatal alpha-synuclein levels induce increased Lrrk2 mRNA levels while Dj-1 and Uch-L1 are unchanged. We also demonstrate that a mouse strain lacking the dopamine signaling molecule DARPP-32 has significantly reduced levels of both Lrrk2 and alpha-synuclein, while mice carrying a disabling mutation of the DARPP-32 phosphorylation site T34A or lack alpha-synuclein do not show any changes. To test if striatal dopamine depletion influences Lrrk2 or alpha-synuclein expression, we used the neurotoxin 6-hydroxydopamine in rats and MitoPark mice in which there is progressive degeneration of dopamine neurons. Because striatal Lrrk2 and alpha-synuclein levels were not changed by dopamine depletion, we conclude that Lrrk2 and alpha-synuclein mRNA levels are possibly co-regulated, but they are not influenced by striatal dopamine levels.

  4. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    PubMed

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. A curly-tail modifier locus, mct1, on mouse chromosome 17

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letts, V.A.; Schork, N.J.; Frankel, W.N.

    1995-10-10

    The major gene for neural tube defects, ct, in the curly-tail (CT) mouse strain was mapped previously to mouse chromosome 4 by combining linkage data from several backcrosses. The penetrance of the neural tube trait, already incomplete in the CT strain, was further reduced in several of these backcrosses, suggesting the existence of recessive modifiers or strain-specific susceptibility alleles. Here we describe the mapping of a curly-tail modifier locus, mct1, to chromosome 17 in moderate and low penetrance crosses of CT with BALB/cByJ and Mus spretus. No effect of mct1 was seen in a higher penetrance cross with the BXD-8/Tymore » strain, confirming that ct is the major gene in the model. Homozygosity at both ct and mct1 loci was sufficient to account for all of the affected individuals in the BALB/cByJ cross and most of the affected individuals in the M. spretus cross and was the preferred model overall. No evidence was found for epistatic interaction between ct and mct1. 30 refs., 2 figs., 3 tabs.« less

  6. Divergence and inheritance of neocortical heterotopia in inbred and genetically-engineered mice.

    PubMed

    Toia, Alyssa R; Cuoco, Joshua A; Esposito, Anthony W; Ahsan, Jawad; Joshi, Alok; Herron, Bruce J; Torres, German; Bolivar, Valerie J; Ramos, Raddy L

    2017-01-18

    Cortical function emerges from the intrinsic properties of neocortical neurons and their synaptic connections within and across lamina. Neurodevelopmental disorders affecting migration and lamination of the neocortex result in cognitive delay/disability and epilepsy. Molecular layer heterotopia (MLH), a dysplasia characterized by over-migration of neurons into layer I, are associated with cognitive deficits and neuronal hyperexcitability in humans and mice. The breadth of different inbred mouse strains that exhibit MLH and inheritance patterns of heterotopia remain unknown. A neuroanatomical survey of numerous different inbred mouse strains, 2 first filial generation (F1) hybrids, and one consomic strain (C57BL/6J-Chr 1 A/J /NaJ) revealed MLH only in C57BL/6 mice and the consomic strain. Heterotopia were observed in numerous genetically-engineered mouse lines on a congenic C57BL/6 background. These data indicate that heterotopia formation is a weakly penetrant trait requiring homozygosity of one or more C57BL/6 alleles outside of chromosome 1. These data are relevant toward understanding neocortical development and disorders affecting neocortical lamination. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Nonpermissiveness for mouse embryonic stem (ES) cell derivation circumvented by a single backcross to 129/Sv strain: establishment of ES cell lines bearing the Omd conditional lethal mutation.

    PubMed

    Kress, C; Vandormael-Pournin, S; Baldacci, P; Cohen-Tannoudji, M; Babinet, C

    1998-12-01

    The inbred mouse strain DDK carries a conditional early embryonic lethal mutation that is manifested when DDK females are crossed to males of other inbred strains but not in the corresponding reciprocal crosses. It has been shown that embryonic lethality could be assigned to a single genetic locus called Ovum mutant (Om), on Chromosome (Chr) 11 near Syca 1. In the course of our study of the molecular mechanisms underlying the embryonic lethality, we were interested in deriving an embryonic stem cell bearing the Om mutation in the homozygous state (Omd/Omd). However, it turned out that DDK is nonpermissive for ES cell establishment, with a standard protocol. Here we show that permissiveness could be obtained using Omd/Omd blastocysts with a 75% 129/Sv and 25% DDK genetic background. Several germline-competent Omd/Omd ES cell lines have been derived from blastocysts of this genotype. Such a scenario could be extended to the generation of ES cell lines bearing any mutation present in an otherwise nonpermissive mouse strain.

  8. Habituation, discrimination and anxiety in transgenic mice overexpressing acetylcholinesterase splice variants.

    PubMed

    Kofman, Ora; Shavit, Yehoshua; Ashkenazi, Sarit; Gabay, Shai

    2007-12-14

    TgS and TgR transgenic mice overexpress different splice variants of acetylcholinesterase and serve as models for genetic disruption of the cholinergic system. Whereas the TgS mouse overexpresses synaptic AChE, the TgR mouse overexpresses the rare readthrough variant whose C-terminal lacks the cysteine residue which permits adherence to the membrane. The two genotypes were compared to the parent strain, FVB/N mice on locomotion, discrimination learning and anxiety behavior following two exposures to the elevated plus maze. Male TgS mice were slower to acquire a simple odor discrimination, failed to habituate to a novel environment but were not impaired on reversal or set shifting compared to the FVB/N or TgR mice. In addition, TgS mice showed less avoidance behavior on the first exposure and but less exploration on the second exposure to the EPM. TgR mice were not impaired on discrimination learning; however, the females showed excessive running in circles in the activity meter. The findings suggest that the effects of overexpression of AChE are unique to different splice variants and may be sex-dependent.

  9. Dengue virus infection: current concepts in immune mechanisms and lessons from murine models

    PubMed Central

    Guabiraba, Rodrigo; Ryffel, Bernhard

    2014-01-01

    Dengue viruses (DENV), a group of four serologically distinct but related flaviviruses, are responsible for one of the most important emerging viral diseases. This mosquito-borne disease has a great impact in tropical and subtropical areas of the world in terms of illness, mortality and economic costs, mainly due to the lack of approved vaccine or antiviral drugs. Infections with one of the four serotypes of DENV (DENV-1–4) result in symptoms ranging from an acute, self-limiting febrile illness, dengue fever, to severe dengue haemorrhagic fever or dengue shock syndrome. We reviewed the existing mouse models of infection, including the DENV-2-adapted strain P23085. The role of CC chemokines, interleukin-17 (IL-17), IL-22 and invariant natural killer T cells in mediating the exacerbation of disease in immune-competent mice is highlighted. Investigations in both immune-deficient and immune-competent mouse models of DENV infection may help to identify key host–pathogen factors and devise novel therapies to restrain the systemic and local inflammatory responses associated with severe DENV infection. PMID:24182427

  10. Inositol- and folate-resistant neural tube defects in mice lacking the epithelial-specific factor Grhl-3.

    PubMed

    Ting, Stephen B; Wilanowski, Tomasz; Auden, Alana; Hall, Mark; Voss, Anne K; Thomas, Tim; Parekh, Vishwas; Cunningham, John M; Jane, Stephen M

    2003-12-01

    The neural tube defects (NTDs) spina bifida and anencephaly are widely prevalent severe birth defects. The mouse mutant curly tail (ct/ct) has served as a model of NTDs for 50 years, even though the responsible genetic defect remained unrecognized. Here we show by gene targeting, mapping and genetic complementation studies that a mouse homolog of the Drosophila grainyhead (grh) gene, grainyhead-like-3 (Grhl3), is a compelling candidate for the gene underlying the curly tail phenotype. The NTDs in Grhl3-null mice are more severe than those in the curly tail strain, as the Grhl3 alleles in ct/ct mice are hypomorphic. Spina bifida in ct/ct mice is folate resistant, but its incidence can be markedly reduced by maternal inositol supplementation periconceptually. The NTDs in Grhl3-/- embryos are also folate resistant, but unlike those in ct/ct mice, they are resistant to inositol. These findings suggest that residual Grhl3 expression in ct/ct mice may be required for inositol rescue of folate-resistant NTDs.

  11. Murine Models for Viral Hemorrhagic Fever.

    PubMed

    Gonzalez-Quintial, Rosana; Baccala, Roberto

    2018-01-01

    Hemorrhagic fever (HF) viruses, such as Lassa, Ebola, and dengue viruses, represent major human health risks due to their highly contagious nature, the severity of the clinical manifestations induced, the lack of vaccines, and the very limited therapeutic options currently available. Appropriate animal models are obviously critical to study disease pathogenesis and develop efficient therapies. We recently reported that the clone 13 (Cl13) variant of the lymphocytic choriomeningitis virus (LCMV-Cl13), a prototype arenavirus closely related to Lassa virus, causes in some mouse strains endothelial damage, vascular leakage, platelet loss, and death, mimicking pathological aspects typically observed in Lassa and other HF syndromes. This model has the advantage that the mice used are fully immunocompetent, allowing studies on the contribution of the immune response to disease progression. Moreover, LCMV is very well characterized and exhibits limited pathogenicity in humans, allowing handling in convenient BSL-2 facilities. In this chapter we outline protocols for the induction and analysis of arenavirus-mediated pathogenesis in the NZB/LCMV model, including mouse infection, virus titer determination, platelet counting, phenotypic analysis of virus-specific T cells, and assessment of vascular permeability.

  12. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions.

    PubMed

    Harper, Jamie; Skerry, Ciaran; Davis, Stephanie L; Tasneen, Rokeya; Weir, Mariah; Kramnik, Igor; Bishai, William R; Pomper, Martin G; Nuermberger, Eric L; Jain, Sanjay K

    2012-02-15

    Preclinical evaluation of tuberculosis drugs is generally limited to mice. However, necrosis and hypoxia, key features of human tuberculosis lesions, are lacking in conventional mouse strains. We used C3HeB/FeJ mice, which develop necrotic lesions in response to Mycobacterium tuberculosis infection. Positron emission tomography in live infected animals, postmortem pimonidazole immunohistochemistry, and bacterial gene expression analyses were used to assess whether tuberculosis lesions in C3HeB/FeJ are hypoxic. Efficacy of combination drug treatment, including PA-824, active against M. tuberculosis under hypoxic conditions, was also evaluated. Tuberculosis lesions in C3HeB/FeJ (but not BALB/c) were found to be hypoxic and associated with up-regulation of known hypoxia-associated bacterial genes (P < .001). Contrary to sustained activity reported elsewhere in BALB/c mice, moxifloxacin and pyrazinamide (MZ) combination was not bactericidal beyond 3 weeks in C3HeB/FeJ. Although PA-824 added significant activity, the novel combination of PA-824 and MZ was less effective than the standard first-line regimen in C3HeB/FeJ. We demonstrate that tuberculosis lesions in C3HeB/FeJ are hypoxic. Activities of some key tuberculosis drug regimens in development are represented differently in C3HeB/FeJ versus BALB/c mice. Because C3HeB/FeJ display key features of human tuberculosis, this strain warrants evaluation as a more pathologically relevant model for preclinical studies.

  13. Gravity receptor function in mice with graded otoconial deficiencies.

    PubMed

    Jones, Sherri M; Erway, Lawrence C; Johnson, Kenneth R; Yu, Heping; Jones, Timothy A

    2004-05-01

    The purpose of the present study was to examine gravity receptor function in mutant mouse strains with variable deficits in otoconia: lethal milk (lm), pallid (pa), tilted (tlt), mocha (mh), and muted (mu). Control animals were either age-matched heterozygotes or C57BL/6J (abbr. B6) mice. Gravity receptor function was measured using linear vestibular evoked potentials (VsEPs). Cage and swimming behaviors were also documented. Temporal bones were cleared to assess the overall otoconial deficit and to correlate structure and function for lm mice. Results confirmed the absence of VsEPs for mice that lacked otoconia completely. VsEP thresholds and amplitudes varied in mouse strains with variable loss of otoconia. Some heterozygotes also showed elevated VsEP thresholds in comparison to B6 mice. In lm mice, which have absent otoconia in the utricle and a variable loss of otoconia in the saccule, VsEPs were present and average P1/N1 amplitudes were highly correlated with the average loss of saccular otoconia (R = 0.77,p < 0.001). Cage and swimming behavior were not adversely affected in those animals with recordable VsEPs. Most, but not all, mice with absent VsEPs were unable to swim. Some animals were able to swim despite having no measurable gravity receptor response. The latter finding underscores the remarkable adaptive potential exhibited by neurobehavioral systems following profound sensory loss. It also shows that behavior alone may be an unreliable indicator of the extent of gravity receptor deficits.

  14. Neutralization of Yersinia pestis-mediated macrophage cytotoxicity by anti-LcrV antibodies and its correlation with protective immunity in a mouse model of bubonic plague.

    PubMed

    Zauberman, Ayelet; Cohen, Sara; Levy, Yinon; Halperin, Gideon; Lazar, Shirley; Velan, Baruch; Shafferman, Avigdor; Flashner, Yehuda; Mamroud, Emanuelle

    2008-03-20

    Plague is a life-threatening disease caused by Yersinia pestis, for which effective-licensed vaccines and reliable predictors of in vivo immunity are lacking. V antigen (LcrV) is a major Y. pestis virulence factor that mediates translocation of the cytotoxic Yersinia protein effectors (Yops). It is a well-established protective antigen and a part of currently tested plague subunit vaccines. We have developed a highly sensitive in vitro macrophage cytotoxicity neutralization assay which is mediated by anti-LcrV antibodies; and studied the potential use of these neutralizing antibodies as an in vitro correlate of plague immunity in mice. The assay is based on a Y. pestis strain with enhanced cytotoxicity to macrophages in which endogenous yopJ was replaced by the more effectively translocated yopP of Y. enterocolitica O:8. Mice passively immunized with rabbit anti-LcrV IgG or actively immunized with recombinant LcrV were protected against lethal doses of a virulent Y. pestis strain, in a mouse model of bubonic plague. This protection significantly correlated with the in vitro neutralizing activity of the antisera but not with their corresponding ELISA titers. In actively immunized mice, a cutoff value for serum neutralizing activity, above which survival was assured with high degree of confidence, could be established for different vaccination regimes. The impact of overall findings on the potential use of serum neutralizing activity as a correlate of protective immunity is discussed.

  15. Genetic variance contributes to ingestive processes: a survey of eleven inbred mouse strains for fat (Intralipid) intake.

    PubMed

    Lewis, Sarah R; Dym, Cheryl; Chai, Christina; Singh, Amreeta; Kest, Benjamin; Bodnar, Richard J

    2007-01-30

    Genetic variation across inbred and outbred mouse strains have been observed for intake of sweet solutions, salts, bitter tastants and a high-fat diet. Our laboratory recently reported marked strain differences in the amounts and/or percentages of kilocalories of sucrose consumed among 11 inbred and one outbred mouse strains exposed to a wide range of nine sucrose concentrations (0.0001-5%) in two-bottle 24-h preference tests. To assess whether differences in fat intake were similarly associated with genetic variation, the present study examined intake of chow, water and an emulsified fat source (Intralipid) across nine different concentrations (0.00001-5%) in the same 11 inbred and 1 outbred mouse strains using two-bottle 24-h preference tests, which controlled for Intralipid concentration presentation effects, Intralipid and water bottle positions, and measurement of kilocalorie intake consumed as Intralipid or chow. Strains displayed differential increases in Intralipid intake relative to corresponding water with significant effects observed at the seven (BALB/cJ: 0.001% threshold sensitivity), four (AKR/J, C57BL/6J, DBA/2J, SWR/J: 0.5% threshold sensitivity), three (CD-1, C57BL/10J, SJL/J: 1% threshold sensitivity) and two (A/J, CBA/J, C3H/HeJ, 129P3/J: 2% threshold sensitivity) highest concentrations. In assessing the percentage of kilocalories consumed as Intralipid, SWR/J mice consumed significantly more at the three highest concentrations to a greater degree than BALB/cJ, C57BL/6J, CD-1, C3H/HeJ, DBA/J and 129P3/J strains which in turn consumed more than A/J, AKR/J, CBA/J, C57BL/10J and SJL/J mice. Relatively strong (h2 = 0.73-0.79) heritability estimates were obtained for weight-adjusted Intralipid intake at those concentrations (0.001-1%) that displayed the largest strain-specific effects in sensitivity to Intralipid. The identification of strains with diverging abilities to regulate kilocalorie intake when presented with high Intralipid concentrations may lead to the successful mapping of genes related to hedonics and obesity.

  16. Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains.

    PubMed

    Wiltshire, T; Ervin, R B; Duan, H; Bogue, M A; Zamboni, W C; Cook, S; Chung, W; Zou, F; Tarantino, L M

    2015-03-01

    Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  17. A genetic and pathologic study of a DENV2 clinical isolate capable of inducing encephalitis and hematological disturbances in immunocompetent mice.

    PubMed

    Amorim, Jaime Henrique; Pereira Bizerra, Raíza Sales; dos Santos Alves, Rúbens Prince; Sbrogio-Almeida, Maria Elisabete; Levi, José Eduardo; Capurro, Margareth Lara; de Souza Ferreira, Luís Carlos

    2012-01-01

    Dengue virus (DENV) is the causative agent of dengue fever (DF), a mosquito-borne illness endemic to tropical and subtropical regions. There is currently no effective drug or vaccine formulation for the prevention of DF and its more severe forms, i.e., dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). There are two generally available experimental models for the study of DENV pathogenicity as well as the evaluation of potential vaccine candidates. The first model consists of non-human primates, which do not develop symptoms but rather a transient viremia. Second, mouse-adapted virus strains or immunocompromised mouse lineages are utilized, which display some of the pathological features of the infection observed in humans but may not be relevant to the results with regard to the wild-type original virus strains or mouse lineages. In this study, we describe a genetic and pathological study of a DENV2 clinical isolate, named JHA1, which is naturally capable of infecting and killing Balb/c mice and reproduces some of the symptoms observed in DENV-infected subjects. Sequence analyses demonstrated that the JHA1 isolate belongs to the American genotype group and carries genetic markers previously associated with neurovirulence in mouse-adapted virus strains. The JHA1 strain was lethal to immunocompetent mice following intracranial (i.c.) inoculation with a LD(50) of approximately 50 PFU. Mice infected with the JHA1 strain lost weight and exhibited general tissue damage and hematological disturbances, with similarity to those symptoms observed in infected humans. In addition, it was demonstrated that the JHA1 strain shares immunological determinants with the DENV2 NGC reference strain, as evaluated by cross-reactivity of anti-envelope glycoprotein (domain III) antibodies. The present results indicate that the JHA1 isolate may be a useful tool in the study of DENV pathogenicity and will help in the evaluation of anti-DENV vaccine formulations as well as potential therapeutic approaches.

  18. A Mesocosm of Lactobacillus johnsonii, Bifidobacterium longum, and Escherichia coli in the mouse gut.

    PubMed

    Denou, Emmanuel; Rezzonico, Enea; Panoff, Jean-Michel; Arigoni, Fabrizio; Brüssow, Harald

    2009-08-01

    The relative contribution of competition and cooperation at the microbe-microbe level is not well understood for the bacteria constituting the gut microbiota. The high number and variability of human gut commensals have hampered the analysis. To get some insight into the question how so many different bacterial species can coexist in the mammalian gut, we studied the interaction between three human gut commensals (Escherichia coli K-12, Lactobacillus johnsonii NCC533, and Bifidobacterium longum NCC2705) in the intestine of gnotobiotic mice. The bacterial titers and their anatomical distribution were studied in the colonized mice. L. johnsonii achieved the highest cell counts in the stomach, while B. longum dominated the colon. The colon was also the intestinal location in which B. longum displayed the highest number of expressed genes, followed by the cecum and the small intestine. Addition of further bacterial strains led to strikingly different results. A Lactobacillus paracasei strain coexisted, while a second B. longum strain was excluded from the system. Notably, this strain lacked an operon involved in the degradation, import, and metabolism of mannosylated glycans. Subsequent introduction of the E. coli Nissle strain resulted in the elimination of L. johnsonii NCC533 and E. coli K-12, while B. longum NCC2705 showed a transient decrease in population size, demonstrating the dynamic nature of microbe-microbe interactions. The study of such simple interacting bacterial systems might help to derive some basic rules governing microbial ecology within the mammalian gut.

  19. Interferon in resistance to bacterial and protozoan infections

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Gould, Cheryl L.; Kierszenbaum, Felipe; Degee, Antonie L. W.; Mansfield, John M.

    1986-01-01

    The effects of genetic differences in mouse strains on the modulation of protozoan infections by interferon (IFN) were investigated. In one set of experiments, three different strains of mice were injected with T. cruzi, and their sera were assayed at five time intervals for IFN titer. A greater quantity of IFN was produced by mouse strains that were susceptible to T. cruzi infection than by the more resistant strain. In another set of experiments, spleen cell cultures from inbred strains of mice were challenged with an antigen made from T.b. rhodesiense. The cells from mice resistant to infection, produced greater amounts of IFN-gamma than did cells from the susceptible mice. In a third set of experiments, it was found that mice injected with T.b. rhodesiense before being infected with a diabetogenic virus (EMC-D) were resistant to the effects of the virus and did not produce virus-specific antibody.

  20. Mouse genetic differences in voluntary wheel running, adult hippocampal neurogenesis and learning on the multi-strain-adapted plus water maze

    PubMed Central

    Merritt, Jennifer; Rhodes, Justin S.

    2014-01-01

    Moderate levels of aerobic exercise broadly enhance cognition throughout the lifespan. One hypothesized contributing mechanism is increased adult hippocampal neurogenesis. Recently, we measured the effects of voluntary wheel running on adult hippocampal neurogenesis in 12 different mouse strains, and found increased neurogenesis in all strains, ranging from 2 to 5 fold depending on the strain. The purpose of this study was to determine the extent to which increased neurogenesis from wheel running is associated with enhanced performance on the water maze for 5 of the 12 strains, chosen based on their levels of neurogenesis observed in the previous study (C57BL/6J, 129S1/SvImJ, B6129SF1/J, DBA/2J, and B6D2F1/J). Mice were housed with or without a running wheels for 30 days then tested for learning and memory on the plus water maze, adapted for multiple strains, and rotarod test of motor performance. The first 10 days, animals were injected with BrdU to label dividing cells. After behavioral testing animals were euthanized to measure adult hippocampal neurogenesis using standard methods. Levels of neurogenesis depended on strain but all mice had a similar increase in neurogenesis in response to exercise. All mice acquired the water maze but performance depended on strain. Exercise improved water maze performance in all strains to a similar degree. Rotarod performance depended on strain. Exercise improved rotarod performance only in DBA/2J and B6D2F1/J mice. Taken together, results demonstrate that despite different levels of neurogenesis, memory performance and motor coordination in these mouse strains, all strains have the capacity to increase neurogenesis and improve learning on the water maze through voluntary wheel running. PMID:25435316

  1. Instability of the insertional mutation in CftrTgH(neoim)Hgu cystic fibrosis mouse model

    PubMed Central

    Charizopoulou, Nikoletta; Jansen, Silke; Dorsch, Martina; Stanke, Frauke; Dorin, Julia R; Hedrich, Hans-Jürgen; Tümmler, Burkhard

    2004-01-01

    Background A major boost to the cystic fibrosis disease research was given by the generation of various mouse models using gene targeting in embryonal stem cells. Moreover, the introduction of the same mutation on different inbred strains generating congenic strains facilitated the search for modifier genes. From the original CftrTgH(neoim)Hgu CF mouse model we have generated using strict brother × sister mating two inbred CftrTgH(neoim)Hgu mouse lines (CF/1 and CF/3). Thereafter, the insertional mutation was introgressed from CF/3 into three inbred backgrounds (C57BL/6, BALB/c, DBA/2J) generating congenic animals. In every backcross cycle germline transmission of the insertional mutation was monitored by direct probing the insertion via Southern RFLP. In order to bypass this time consuming procedure we devised an alternative PCR based protocol whereby mouse strains are differentiated at the Cftr locus by Cftr intragenic microsatellite genotypes that are tightly linked to the disrupted locus. Results Using this method we were able to identify animals carrying the insertional mutation based upon the differential haplotypic backgrounds of the three inbred strains and the mutant CftrTgH(neoim)Hgu at the Cftr locus. Moreover, this method facilitated the identification of the precise vector excision from the disrupted Cftr locus in two out of 57 typed animals. This reversion to wild type status took place without any loss of sequence revealing the instability of insertional mutations during the production of congenic animals. Conclusions We present intragenic microsatellite markers as a tool for fast and efficient identification of the introgressed locus of interest in the recipient strain during congenic animal breeding. Moreover, the same genotyping method allowed the identification of a vector excision event, posing questions on the stability of insertional mutations in mice. PMID:15102331

  2. Activity of LL-37, CRAMP and antimicrobial peptide-derived compounds E2, E6 and CP26 against Mycobacterium tuberculosis.

    PubMed

    Rivas-Santiago, Bruno; Rivas Santiago, Cesar E; Castañeda-Delgado, Julio E; León-Contreras, Juan C; Hancock, Robert E W; Hernandez-Pando, Rogelio

    2013-02-01

    Tuberculosis (TB) is a major worldwide health problem in part due to the lack of development of new treatments and the emergence of new strains such as multidrug-resistant (MDR) and extensively drug-resistant strains that are threatening and impairing the control of this disease. In this study, the efficacy of natural and synthetic cationic antimicrobial (host defence) peptides that have been shown often to possess broad-spectrum antimicrobial activity was tested. The natural antimicrobial peptides human LL-37 and mouse CRAMP as well as synthetic peptides E2, E6 and CP26 were tested for their activity against Mycobacterium tuberculosis both in in vitro and in vivo models. The peptides had moderate antimicrobial activities, with minimum inhibitory concentrations ranging from 2 μg/mL to 10 μg/mL. In a virulent model of M. tuberculosis lung infection, intratracheal therapeutic application of these peptides three times a week at doses of ca. 1mg/kg led to significant 3-10-fold reductions in lung bacilli after 28-30 days of treatment. The treatments worked both against the drug-sensitive H37Rv strain and a MDR strain. These results indicate that antimicrobial peptides might constitute a novel therapy against TB. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  3. Strain difference in amiloride-sensitivity of salt-induced responses in mouse non-dissociated taste cells.

    PubMed

    Miyamoto, T; Fujiyama, R; Okada, Y; Sato, T

    1999-12-17

    The chorda tympani nerve responses to NaCl in a mouse strain, C57BL/6 are known to be much more sensitive than those in BALB/c. We compared the NaCl-induced responses obtained from taste cells of the fungiform papillae in these two strains of mice. Amiloride inhibited, in the same degree, the responses induced by a bath-application of normal extracellular solution (NES) containing 140 mM NaCl in either taste cells of C57BL/6 and BALB/c mice. In contrast, amiloride inhibited 62% of responses induced by an apically applied 0.5 M NaCl in the C57BL/6 strain, but only 33% of responses in the BALB/c strain. These results suggest that the difference in amiloride-sensitivity between taste cells in both strains mainly derives from the difference in density of functional amiloride sensitive Na+ channels at the apical receptive membrane but not at the basolateral membrane.

  4. Targeting Mucosal Dendritic Cells with Microbial Antigens from Probiotic Lactic Acid Bacteria

    DTIC Science & Technology

    2008-03-01

    Lactoba- cillus gasseri, Lactobacillus plantarum , Lactobacillus delbreuckii, Lactobacillus rhamnosus, Lactobacillus salivarius and Lactobacillus ... Lactobacillus plantarum Helicobacter pylori UreB Mouse [105] S. pneumoniae PsaA Mouse [104] Lactococcus lactis C. tetani TTFC Mouse [81...anthracis (the causative agent of anthrax). An antigen-specific immune response can be elicited using specific strains of Lactobacillus acidophilus

  5. Molecular analyses of the agouti allele in the Japanese house mouse identify a novel variant of the agouti gene.

    PubMed

    Iwasa, Masahiro A; Kawamura, Sayaka; Myoshu, Hikari; Suzuki, Taichi A

    2018-03-01

    It has been thought that the Japanese house mouse carries the A w allele at the agouti locus causing light-colored bellies, but they do not always show this coloration. Thus, the presence of the A w allele seems to be doubtful in them. To ascertain whether the A w allele is present, a two-pronged approach was used. First, we compared lengths of DNA fragments obtained from three PCRs conducted on them to the known fragment sizes generated from mouse strains exhibiting homozygosities of either a/a, A/A, or A w /A w . PCR I, PCR II, and PCR III amplify only in the A and A w alleles, the a and A w alleles, and the a allele, respectively, and we detected amplifications in strains with A/A and A w /A w by PCR I, in those with a/a and the Japanese house mouse by PCR II, and in those with a/a by PCR III. Second, we sequenced the exon 1A region of the agouti gene and obtained sequences corresponding to the above strains and the Japanese house mouse, but their sequences were similar to those of the a allele. We concluded that their agouti allele is not identical to the A w allele and seems to be a novel type similar to the a allele.

  6. Therapeutic targeting of tumors with imageable GFP-expressing Salmonella typhimurium auxotrophic mutants

    NASA Astrophysics Data System (ADS)

    Hoffman, Robert M.; Hayashi, Katsuhiro; Zhao, Ming

    2008-02-01

    Tumor targeting Salmonella typhimurium has been developed. These bacteria were mutagenized and a strain auxotrophic for leucine and arguine was selected. This strain was also engineered to express GFP. This train, termed A1, could target prostate tumors in nude mouse models and inhibit their growth. A1 was passaged through a tumor and re-isolated and termed A1-R. A1-R had greater antitumor efficacy and could cure breast, prostate, pancreatic, and lung tumors in nude mouse models.

  7. Heritability of articular cartilage regeneration and its association with ear wound healing in mice.

    PubMed

    Rai, Muhammad Farooq; Hashimoto, Shingo; Johnson, Eric E; Janiszak, Kara L; Fitzgerald, Jamie; Heber-Katz, Ellen; Cheverud, James M; Sandell, Linda J

    2012-07-01

    Emerging evidence suggests that genetic components contribute significantly to cartilage degeneration in osteoarthritis pathophysiology, but little information is available on the genetics of cartilage regeneration. Therefore, this study was undertaken to investigate cartilage regeneration in genetic murine models using common inbred strains and a set of recombinant inbred (RI) lines generated from LG/J (healer of ear wounds) and SM/J (nonhealer) inbred mouse strains. An acute full-thickness cartilage injury was introduced in the trochlear groove of 8-week-old mice (n=265) through microsurgery. Mouse knee joints were sagittally sectioned and stained with toluidine blue to evaluate regeneration. For the ear wound phenotype, a bilateral 2-mm through-and-through puncture was created in 6-week-old mice (n=229), and healing outcomes were measured after 30 days. Broad-sense heritability and genetic correlations were calculated for both phenotypes. Time-course analysis of the RI mouse lines showed no significant regeneration until 16 weeks after surgery; at that time, the strains could be segregated into 3 categories: good, intermediate, and poor healers. Analysis of heritability (H2) showed that both cartilage regeneration (H2=26%; P=0.006) and ear wound closure (H2=53%; P<0.00001) were significantly heritable. The genetic correlations between the two healing phenotypes for common inbred mouse strains (r=0.92) and RI mouse lines (r=0.86) were found to be extremely high. Our findings indicate that articular cartilage regeneration in mice is heritable, the differences between the mouse lines are due to genetic differences, and a strong genetic correlation between the two phenotypes exists, indicating that they plausibly share a common genetic basis. We therefore surmise that LG/J by SM/J intercross mice can be used to dissect the genetic basis of variation in cartilage regeneration. Copyright © 2012 by the American College of Rheumatology.

  8. A new atypical genotype mouse virulent strain of Toxoplasma gondii isolated from the heart of a wild caught puma (Felis concolor) from Durango, Mexico.

    PubMed

    Dubey, J P; Alvarado-Esquivel, C; Herrera-Valenzuela, V H; Ortiz-Diaz, J J; Oliveira, S; Verma, S K; Choudhary, S; Kwok, O C H; Su, C

    2013-11-08

    Nothing is known of the genetic diversity of Toxoplasma gondii circulating in wildlife in Mexico. In the present study, a mouse virulent T. gondii strain was isolated from the heart of a wild puma (Felis concolor). The puma was found roaming in outskirt of Durango City, Mexico and tranquilized for moving to a zoo. The puma died during translocation and a necropsy examination was performed. The puma had an antibody titer for T. gondii of 200 by the modified agglutination test. Its heart and brain tissue were bioassayed into 2 outbred Swiss Webster (SW) and 1 gamma interferon gene knockout (KO) mouse. The KO mouse and the 2 SW mice that became infected after inoculation with homogenate of puma heart died of acute toxoplasmosis 12, 19 and 20 days p.i. respectively and tachyzoites were found in lungs of all 3 mice. None of the 4 SW and 1 KO mouse inoculated with digest of the puma brain became infected with T. gondii. Tachyzoites from the lungs of mice were propagated in cell cultures. Tachyzoites from cell culture were inoculated into 5 SW; the mice died or had to be killed 14 days p.i. and a cat fed tissues of these mice shed T. gondii oocysts. Results of mortality and infectivity of tachyzoites and oocysts in SW mice indicated that the puma T. gondii strain (designated TgPumaMe1) was virulent for outbred mice. DNA isolated from culture-derived tachyzoites was characterized using 11 PCR-RFLP markers (SAG1, 5'- and 3'-SAG2, alt.SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico) revealed a new genotype (ToxoDB PCR-RFLP #222). Isolation of atypical genotype T. gondii from wild puma indicates that mouse virulent strains are circulating in wildlife in Mexico. Published by Elsevier B.V.

  9. Idiopathic paraproteinaemia. I. Studies in an animal model--the ageing C57BL/KaLwRij mouse.

    PubMed Central

    Radl, J; Hollander, C F; van den Berg, P; de Glopper, E

    1978-01-01

    A search for a suitable animal model for studies on idiopathic paraproteinaemia showed that an age-dependent increase in the appearance of homogeneous immunoglobulins in serum was common to all of the seven mouse strains investigated to date. The highest frequency was found in C57Bl/KaLwRij mice. Further investigations in this strain demonstrated that, except for some quantitative differences, most of the features of human and C57BL Mouse idiopathic paraproteinaemia were essentially the same. No clear-cut correlation was found between the idiopathic paraproteinaemia and, in the old C57B1 mice, a rather frequently occurring reticulum cell sarcoma B and amyloidosis. The mouse idiopathic paraproteinaemia can be regarded as an analogue of the human idiopathic paraproteinaemia and therefore as a suitable model for further experimental studies. PMID:367647

  10. Mutations in nsP1 and PE2 are critical determinants of Ross River virus-induced musculoskeletal inflammatory disease in a mouse model

    PubMed Central

    Jupille, Henri J.; Oko, Lauren; Stoermer, Kristina A.; Heise, Mark T.; Mahalingam, Suresh; Gunn, Bronwyn M.; Morrison, Thomas E.

    2010-01-01

    The viral determinants of Alphavirus-induced rheumatic disease have not been elucidated. We identified an RRV strain (DC5692) which, in contrast to the T48 strain, does not induce musculoskeletal inflammation in a mouse model of RRV disease. Substitution of the RRV T48 strain nonstructural protein 1 (nsP1) coding sequence with that from strain DC5692 generated a virus that was attenuated in vivo despite similar viral loads in tissues. In contrast, substitution of the T48 PE2 coding region with the PE2 coding region from DC5692 resulted in attenuation in vivo and reduced viral loads in tissues. In gain of virulence experiments, substitution of the DC5692 strain nsP1 and PE2 coding regions with those from the T48 strain was sufficient to restore full virulence to the DC5692 strain. These findings indicate that determinants in both nsP1 and PE2 have critical and distinct roles in the pathogenesis of RRV-induced musculoskeletal inflammatory disease in mice. PMID:21131014

  11. Glutamatergic and Dopaminergic Neurons in the Mouse Ventral Tegmental Area

    PubMed Central

    Yamaguchi, Tsuyoshi; Qi, Jia; Wang, Hui-Ling; Zhang, Shiliang; Morales, Marisela

    2014-01-01

    The ventral tegmental area (VTA) comprises dopamine (DA), GABA and glutamate (Glu) neurons. Some rat VTA Glu neurons, expressing vesicular glutamate transporter 2 (VGluT2), co-express tyrosine hydroxylase (TH). While transgenic mice are now being used in attempts to determine the role of VGluT2/TH neurons in reward and neuronal signaling, such neurons have not been characterized in mouse tissue. By cellular detection of VGluT2-mRNA and TH-immunoreactivity (TH-IR), we determined the cellular expression of VGluT2-mRNA within VTA TH-IR neurons in the mouse. We found that some mouse VGluT2 neurons co-expressed TH-IR, but their frequency was lower than in the rat. To determine whether low expression of TH mRNA or TH-IR accounts for this low frequency, we evaluated VTA cellular co-expression of TH-transcripts and TH-protein. Within the medial aspects of the VTA, some neurons expressed TH mRNA but lacked TH-IR; among them a subset co-expressed VGluT2 mRNA. To determine if lack of VTA TH-IR was due to TH trafficking, we tagged VTA TH neurons by cre-inducible expression of mCherry in TH::Cre mice. By dual immunofluorescence, we detected axons containing mCherry, but lacking TH-IR, in the lateral habenula, indicating that mouse low frequency of VGluT2 mRNA (+)/TH-IR (+) neurons is due to lack of synthesis of TH protein, rather than TH-protein trafficking. In conclusion, VGluT2 neurons are present in the rat and mouse VTA, but they differ in the populations of VGluT2/TH and TH neurons. We reveal that under normal conditions, the translation of TH protein is suppressed in the mouse mesohabenular TH neurons. PMID:25572002

  12. Gut Microbiome Standardization in Control and Experimental Mice.

    PubMed

    McCoy, Kathy D; Geuking, Markus B; Ronchi, Francesca

    2017-04-03

    Mouse models are used extensively to study human health and to investigate the mechanisms underlying human disease. In the past, most animal studies were performed without taking into consideration the impact of the microbiota. However, the microbiota that colonizes all body surfaces, including the gastrointestinal tract, respiratory tract, genitourinary tract, and skin, heavily impacts nearly every aspect of host physiology. When performing studies utilizing mouse models it is critical to understand that the microbiome is heavily impacted by environmental factors, including (but not limited to) food, bedding, caging, and temperature. In addition, stochastic changes in the microbiota can occur over time that also play a role in shaping microbial composition. These factors lead to massive variability in the composition of the microbiota between animal facilities and research institutions, and even within a single facility. Lack of experimental reproducibility between research groups has highlighted the necessity for rigorously controlled experimental designs in order to standardize the microbiota between control and experimental animals. Well controlled experiments are mandatory in order to reduce variability and allow correct interpretation of experimental results, not just of host-microbiome studies but of all mouse models of human disease. The protocols presented are aimed to design experiments that control the microbiota composition between different genetic strains of experimental mice within an animal unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  13. Letter to the Editor, Response to Commentary "Re-Evaluation of the Big Blue® Mouse Assay of Propiconazole Suggests Lack of Mutagenicity"

    EPA Science Inventory

    In their commentary titled "Re-Evaluation of the Big Blue® Mouse Assay of Propiconazole Suggests Lack of Mutagenicity", Shane et 01. present an overview of portions of our previously reported work examining the potential for some conazole fungicides to induce increases in mutant ...

  14. In Vivo and In Vitro Models of Demyelinating Disease: Endogenous Factors Influencing Demyelinating Disease Caused by Mouse Hepatitis Virus in Rats and Mice

    PubMed Central

    Sorensen, O.; Dugre, R.; Percy, D.; Dales, S.

    1982-01-01

    Intracerebral inoculation of JHM virus (JHMV), the neuropathic strain of mouse hepatitis virus, into Wistar Furth, Wistar Lewis, and Fischer 344 rats at various ages indicated that Wistar Furth rats are more susceptible to the virus than are the other strains. Fischer 344 and Wistar Lewis rats were more resistant to inoculation at 2 and 5 days of age and completely resistant by 10 days of age. In contrast, Wistar Furth rats which were very susceptible at both 2 and 5 days of age remained susceptible until 21 days of age. Intracerebral challenge of an F1 cross between Wistar Furth and Wistar Lewis rats at 10 days of age indicated that resistance to JHMV infection is dominant. Cyclophosphamide treatment 28 days after intracerebral inoculation exacerbated an inapparent infection, leading to paralysis in eight of nine and death in six of nine Wistar Furth test rats. In such immunosuppressed animals, grey- and white-matter lesions were noted throughout the central nervous system, in contrast to the purely demyelinating lesions noted previously. Since rats, unlike mice, were not susceptible to disease after intracerebral injection with the serorelated viscerotropic strain MHV-3, we wished to extend our understanding of the neurological disease process elicited by the two viruses in rodents. For this reason, various mouse strains, including some with recognized immunodeficiencies, were challenged by different routes of inoculation. Intraperitoneal infection of nude and beige mice with JHMV indicated that lack of natural killer cell functions does not markedly enhance the susceptibility to virus, whereas T-cell activity appears to be essential for resisting infection. JHMV and MHV-3 replication in peritoneal macrophages from highly resistant A/J mice was reduced in comparison with that noted in macrophages from susceptible C57BL6/J mice. An initial intraperitoneal inoculation of JHMV was able to protect C57BL6/J mice against fatal intracerebral challenge within 3 days, whereas A/J mice remained susceptible beyond day 3. The protective effect did not appear to result from increased levels of circulating interferon, preceded elevation in serum JHMV-neutralizing antibody titers, and persisted for at least several weeks after intraperitoneal inoculation. Based on the combined studies described here and on previous work by us and others, it appears that the factors influencing the outcome of coronavirus disease in rodents are age at inoculation, route of challenge, genetic constitution of the virus and host, and competence of the immune system, particularly cellular immunity involving T-cells. Images PMID:6290393

  15. Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota.

    PubMed

    Riboulet-Bisson, Eliette; Sturme, Mark H J; Jeffery, Ian B; O'Donnell, Michelle M; Neville, B Anne; Forde, Brian M; Claesson, Marcus J; Harris, Hugh; Gardiner, Gillian E; Casey, Patrick G; Lawlor, Peadar G; O'Toole, Paul W; Ross, R Paul

    2012-01-01

    Lactobacilli are gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT) L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially bacteriocin-dependent.

  16. Effect of Lactobacillus salivarius Bacteriocin Abp118 on the Mouse and Pig Intestinal Microbiota

    PubMed Central

    Riboulet-Bisson, Eliette; Sturme, Mark H. J.; Jeffery, Ian B.; O'Donnell, Michelle M.; Neville, B. Anne; Forde, Brian M.; Claesson, Marcus J.; Harris, Hugh; Gardiner, Gillian E.; Casey, Patrick G.; Lawlor, Peadar G.; O'Toole, Paul W.; Ross, R. Paul

    2012-01-01

    Lactobacilli are Gram-positive bacteria that are a subdominant element in the human gastrointestinal microbiota, and which are commonly used in the food industry. Some lactobacilli are considered probiotic, and have been associated with health benefits. However, there is very little culture-independent information on how consumed probiotic microorganisms might affect the entire intestinal microbiota. We therefore studied the impact of the administration of Lactobacillus salivarius UCC118, a microorganism well characterized for its probiotic properties, on the composition of the intestinal microbiota in two model animals. UCC118 has anti-infective activity due to production of the bacteriocin Abp118, a broad-spectrum class IIb bacteriocin, which we hypothesized could impact the microbiota. Mice and pigs were administered wild-type (WT) L. salivarius UCC118 cells, or a mutant lacking bacteriocin production. The microbiota composition was determined by pyrosequencing of 16S rRNA gene amplicons from faeces. The data show that L. salivarius UCC118 administration had no significant effect on proportions of major phyla comprising the mouse microbiota, whether the strain was producing bacteriocin or not. However, L. salivarius UCC118 WT administration led to a significant decrease in Spirochaetes levels, the third major phylum in the untreated pig microbiota. In both pigs and mice, L. salivarius UCC118 administration had an effect on Firmicutes genus members. This effect was not observed when the mutant strain was administered, and was thus associated with bacteriocin production. Surprisingly, in both models, L. salivarius UCC118 administration and production of Abp118 had an effect on Gram-negative microorganisms, even though Abp118 is normally not active in vitro against this group of microorganisms. Thus L. salivarius UCC118 administration has a significant but subtle impact on mouse and pig microbiota, by a mechanism that seems at least partially bacteriocin-dependent. PMID:22363561

  17. Social behaviors and acoustic vocalizations in different strains of mice.

    PubMed

    Faure, Alexis; Pittaras, Elsa; Nosjean, Anne; Chabout, Jonathan; Cressant, Arnaud; Granon, Sylvie

    2017-03-01

    Proposing a framework for the study of core functions is valuable for understanding how they are altered in multiple mental disorders involving prefrontal dysfunction, for understanding genetic influences and for testing therapeutic compounds. Social and communication disabilities are reported in several major psychiatric disorders, and social communication disorders also can occur independently. Being able to study social communication involving interactions and associated acoustic vocalizations in animal models is thus important. All rodents display extensive social behaviors, including interactions and acoustic vocalizations. It is therefore important to pinpoint potential genetic-related strain differences -and similarities- in social behavior and vocalization. One approach is to compare different mouse strains, and this may be useful in choosing which strains may be best suitable in modeling psychiatric disorders where social and communication deficits are core symptoms. We compared social behavior and ultrasonic acoustic vocalization profiles in males of four mouse strains (129S2/Sv, C57BL/6J, DBA/2, and CD-1) using a social interaction task that we previously showed to rely on prefrontal network activity. Our social interaction task promotes a high level of ultrasonic vocalization with both social and acoustic parameters, and further allows other measures of social behaviors. The duration of social contact, dominance and aggressiveness varied with the mouse strains. Only C57BL/6J mice showed no attacks, with social contact being highly affiliative, whereas others strains emitted aggressive attacks. C57BL/6J mice also exhibited a significantly higher rate of ultrasonic vocalizations (USV), especially during social interaction. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Mitochondrial genome-maintaining activity of mouse mitochondrial transcription factor A and its transcript isoform in Saccharomyces cerevisiae.

    PubMed

    Yoon, Young Geol; Koob, Michael D; Yoo, Young Hyun

    2011-09-15

    Mitochondrial transcription factor A (Tfam) binds to and organizes mitochondrial DNA (mtDNA) genome into a mitochondrial nucleoid (mt-nucleoid) structure, which is necessary for mtDNA transcription and maintenance. Here, we demonstrate the mtDNA-organizing activity of mouse Tfam and its transcript isoform (Tfam(iso)), which has a smaller high-mobility group (HMG)-box1 domain, using a yeast model system that contains a deletion of the yeast homolog of mouse Tfam protein, Abf2p. When the mouse Tfam genes were introduced into the ABF2 locus of yeast genome, the corresponding mouse proteins, Tfam and Tfam(iso), can functionally replace the yeast Abf2p and support mtDNA maintenance and mitochondrial biogenesis in yeast. Growth properties, mtDNA content and mitochondrial protein levels of genes encoded in the mtDNA were comparable in the strains expressing mouse proteins and the wild-type yeast strain, indicating that the proteins have robust mtDNA-maintaining and -expressing function in yeast mitochondria. These results imply that the mtDNA-organizing activities of the mouse mt-nucleoid proteins are structurally and evolutionary conserved, thus they can maintain the mtDNA of distantly related and distinctively different species, such as yeast. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Codominant expression of genes coding for different sets of inducible salivary polypeptides associated with parotid hypertrophy in two inbred mouse strains.

    PubMed

    López-Solís, Remigio O; Kemmerling, Ulrike

    2005-05-01

    Experimental mouse parotid hypertrophy has been associated with the expression of a number of isoproterenol-induced salivary proline-rich polypeptides (IISPs). Mouse salivary proline-rich proteins (PRPs) have been mapped both to chromosomes 6 and 8. Recently, mice of two inbred strains (A/Snell and A. Swiss) have been found to differ drastically in the IISPs. In this study, mice of both strains were used for cross-breeding experiments addressed to define the pattern of inheritance of the IISP phenotype and to establish whether the IISPs are coded on a single or on several chromosomes. The IISP phenotype of individual mice was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of whole saliva collected after three daily stimulations by isoproterenol. Parental A/Snell and A. Swiss mice were homogeneous for distinctive strain-associated IISP-patterns. First filial generation (F1) mice obtained from the cross of A/Snell with A. Swiss mice expressed with no exception both the A/Snell and A. Swiss IISPs (coexpression). In the second filial generation (F2) both parental IISP phenotypes reappeared together with a majority of mice expressing the F1-hybrid phenotype (1:2:1 ratio). Backcrosses of F1 x A/Snell and F1 x A. Swiss produced offsprings displaying the F1 and the corresponding parental phenotypes with a 1:1 ratio. No recombinants were observed among F2 mice or among mice resulting from backcrosses. Thus, genes coding for the IISPs that are expressed differentially in both mouse strains are located on the same chromosome, probably at the same locus (alleles) or at quite closely linked loci (nonalleles). 2005 Wiley-Liss, Inc

  20. Effects of VU0410120, a novel GlyT1 inhibitor, on measures of sociability, cognition and stereotypic behaviors in a mouse model of autism.

    PubMed

    Burket, Jessica A; Benson, Andrew D; Green, Torrian L; Rook, Jerri M; Lindsley, Craig W; Conn, P Jeffrey; Deutsch, Stephen I

    2015-08-03

    The NMDA receptor is a highly regulated glutamate-gated cationic channel receptor that has an important role in the regulation of sociability and cognition. The genetically-inbred Balb/c mouse has altered endogenous tone of NMDA receptor-mediated neurotransmission and is a model of impaired sociability, relevant to Autism Spectrum Disorders (ASDs). Because glycine is an obligatory co-agonist that works cooperatively with glutamate to promote opening of the ion channel, one prominent strategy to promote NMDA receptor-mediated neurotransmission involves inhibition of the glycine type 1 transporter (GlyT1). The current study evaluated the dose-dependent effects of VU0410120, a selective, high-affinity competitive GlyT1 inhibitor, on measures of sociability, cognition and stereotypic behaviors in Balb/c and Swiss Webster mice. The data show that doses of VU0410120 (i.e., 18 and 30mg/kg) that improve measures of sociability and spatial working memory in the Balb/c mouse strain elicit intense stereotypic behaviors in the Swiss Webster comparator strain (i.e., burrowing and jumping). Furthermore, the data suggest that selective GlyT1 inhibition improves sociability and spatial working memory at doses that do not worsen or elicit stereotypic behaviors in a social situation in the Balb/c strain. However, the elicitation of stereotypic behaviors in the Swiss Webster comparator strain at therapeutically relevant doses of VU0410120 suggest that genetic factors (i.e., mouse strain differences) influence sensitivity to GlyT1-elicited stereotypic behaviors, and emergence of intense stereotypic behaviors may be dose-limiting side effects of this interventional strategy. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Establishing Corneal Cross-Linking With Riboflavin and UV-A in the Mouse Cornea In Vivo: Biomechanical Analysis.

    PubMed

    Hammer, Arthur; Kling, Sabine; Boldi, Marc-Olivier; Richoz, Olivier; Tabibian, David; Randleman, J Bradley; Hafezi, Farhad

    2015-10-01

    To establish corneal cross-linking (CXL) with riboflavin and UV-A in in the mouse cornea in vivo and to develop tools to measure the biomechanical changes observed. A total of 55 male C57BL/6 wild-type mice (aged 5 weeks) were divided into 14 groups. Standard CXL parameters were adapted to the anatomy of the mouse cornea, and riboflavin concentration (0.1%-0.5%) and fluence series (0.09-5.4 J/cm²) were performed on the assumption of the endothelial damage thresholds. Untreated and riboflavin only corneas were used as controls. Animals were killed at 30 minutes and at 1 month after CXL. Corneas were harvested. Two-dimensional (2D) biomechanical testing was performed using a customized corneal holder in a commercially available stress-strain extensometer/indenter. Both elastic and viscoelastic analyses were performed. Statistical inference was performed using t-tests and specific mathematical models fitted to the experimental stress-strain and stress-relaxation data. Adjusted P values by the method of Benjamini and Hochberg are reported. For all CXL treatment groups, stress-relaxation showed significant differences (P < 0.0001) after 120 seconds of constant strain application, with cross-linked corneas maintaining a higher stress (441 ± 40 kPa) when compared with controls (337 ± 39 kPa). Stress-strain analysis confirmed these findings but was less sensitive to CXL-induced changes: at 0.5% of strain, cross-linked corneas remained at higher stress (778 ± 111 kPa) when compared with controls (659 ± 121 kPa). Cross-linking was induced in the mouse cornea in vivo, and its biomechanical effect successfully measured. This could create opportunities to study molecular pathways of CXL in transgenic mice.

  2. Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11, and 15 for age-related cardiac fibrosis.

    PubMed

    Li, Qiaoli; Berndt, Annerose; Sundberg, Beth A; Silva, Kathleen A; Kennedy, Victoria E; Cario, Clinton L; Richardson, Matthew A; Chase, Thomas H; Schofield, Paul N; Uitto, Jouni; Sundberg, John P

    2016-06-01

    Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC-resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscalc loci 1 through 4. Here, we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains, we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10(-13)) and Chr 4 at 122 Mb (P < 10(-11)) and 134 Mb (P < 10(-7)). At the Chr 15 locus, Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximately 6 Mb away from the Dyscalc 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single-nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits.

  3. Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11 and 15 for age-related cardiac fibrosis

    PubMed Central

    Li, Qiaoli; Berndt, Annerose; Sundberg, Beth A.; Silva, Kathleen A.; Kennedy, Victoria E.; Cario, Clinton L; Richardson, Matthew A.; Chase, Thomas H.; Schofield, Paul N.; Uitto, Jouni; Sundberg, John P.

    2017-01-01

    Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscal loci 1 through 4. Here we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10−13) and Chr 4 at 122 Mb (P < 10−11) and 134 Mb (P < 10−7). At the Chr 15 locus Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximate 6 Mb away from the Dyscal 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits. PMID:27126641

  4. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Liver Effects

    PubMed Central

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Shymonyak, Svitlana; Uehara, Takeki; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a widely used organic solvent. Although TCE is classified as carcinogenic to humans, substantial gaps remain in our understanding of inter-individual variability in TCE metabolism and toxicity, especially in the liver. We tested a hypothesis that amounts of oxidative metabolites of TCE in mouse liver are associated with liver-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione] in serum and liver, and various liver toxicity phenotypes. In sub-acute study, inter-strain variability in TCE metabolite amounts was observed in serum and liver. No induction of Cyp2e1 protein levels in liver was detected. Serum and liver levels of TCA and DCA were correlated with increased transcription of peroxisome proliferator-marker genes Cyp4a10 and Acox1, but not with degree of induction in hepatocellular proliferation. In sub-chronic study, serum and liver levels of oxidative metabolites gradually decreased over time despite continuous dosing. Liver protein levels of Cyp2e1, Adh and Aldh2 were unaffected by treatment with TCE. While the magnitude of induction of peroxisome proliferator-marker genes also declined, hepatocellular proliferation increased. This study offers a unique opportunity to provide a scientific data-driven rationale for some of the major assumptions in human health assessment of TCE. PMID:25424544

  5. High-Resolution Maps of Mouse Reference Populations

    PubMed Central

    Simecek, Petr; Forejt, Jiri; Williams, Robert W.; Shiroishi, Toshihiko; Takada, Toyoyuki; Lu, Lu; Johnson, Thomas E.; Bennett, Beth; Deschepper, Christian F.; Scott-Boyer, Marie-Pier; Pardo-Manuel de Villena, Fernando; Churchill, Gary A.

    2017-01-01

    Genetic reference panels are widely used to map complex, quantitative traits in model organisms. We have generated new high-resolution genetic maps of 259 mouse inbred strains from recombinant inbred strain panels (C57BL/6J × DBA/2J, ILS/IbgTejJ × ISS/IbgTejJ, and C57BL/6J × A/J) and chromosome substitution strain panels (C57BL/6J-Chr#, C57BL/6J-Chr#, and C57BL/6J-Chr#). We genotyped all samples using the Affymetrix Mouse Diversity Array with an average intermarker spacing of 4.3 kb. The new genetic maps provide increased precision in the localization of recombination breakpoints compared to the previous maps. Although the strains were presumed to be fully inbred, we found residual heterozygosity in 40% of individual mice from five of the six panels. We also identified de novo deletions and duplications, in homozygous or heterozygous state, ranging in size from 21 kb to 8.4 Mb. Almost two-thirds (46 out of 76) of these deletions overlap exons of protein coding genes and may have phenotypic consequences. Twenty-nine putative gene conversions were identified in the chromosome substitution strains. We find that gene conversions are more likely to occur in regions where the homologous chromosomes are more similar. The raw genotyping data and genetic maps of these strain panels are available at http://churchill-lab.jax.org/website/MDA. PMID:28839117

  6. High-Resolution Maps of Mouse Reference Populations.

    PubMed

    Simecek, Petr; Forejt, Jiri; Williams, Robert W; Shiroishi, Toshihiko; Takada, Toyoyuki; Lu, Lu; Johnson, Thomas E; Bennett, Beth; Deschepper, Christian F; Scott-Boyer, Marie-Pier; Pardo-Manuel de Villena, Fernando; Churchill, Gary A

    2017-10-05

    Genetic reference panels are widely used to map complex, quantitative traits in model organisms. We have generated new high-resolution genetic maps of 259 mouse inbred strains from recombinant inbred strain panels (C57BL/6J × DBA/2J, ILS/IbgTejJ × ISS/IbgTejJ, and C57BL/6J × A/J) and chromosome substitution strain panels (C57BL/6J-Chr#, C57BL/6J-Chr#, and C57BL/6J-Chr#). We genotyped all samples using the Affymetrix Mouse Diversity Array with an average intermarker spacing of 4.3 kb. The new genetic maps provide increased precision in the localization of recombination breakpoints compared to the previous maps. Although the strains were presumed to be fully inbred, we found residual heterozygosity in 40% of individual mice from five of the six panels. We also identified de novo deletions and duplications, in homozygous or heterozygous state, ranging in size from 21 kb to 8.4 Mb. Almost two-thirds (46 out of 76) of these deletions overlap exons of protein coding genes and may have phenotypic consequences. Twenty-nine putative gene conversions were identified in the chromosome substitution strains. We find that gene conversions are more likely to occur in regions where the homologous chromosomes are more similar. The raw genotyping data and genetic maps of these strain panels are available at http://churchill-lab.jax.org/website/MDA. Copyright © 2017 Simecek et al.

  7. PrPC Governs Susceptibility to Prion Strains in Bank Vole, While Other Host Factors Modulate Strain Features

    PubMed Central

    Espinosa, J. C.; Nonno, R.; Di Bari, M.; Aguilar-Calvo, P.; Pirisinu, L.; Fernández-Borges, N.; Vanni, I.; Vaccari, G.; Marín-Moreno, A.; Frassanito, P.; Lorenzo, P.; Agrimi, U.

    2016-01-01

    ABSTRACT Bank vole is a rodent species that shows differential susceptibility to the experimental transmission of different prion strains. In this work, the transmission features of a panel of diverse prions with distinct origins were assayed both in bank vole expressing methionine at codon 109 (Bv109M) and in transgenic mice expressing physiological levels of bank vole PrPC (the BvPrP-Tg407 mouse line). This work is the first systematic comparison of the transmission features of a collection of prion isolates, representing a panel of diverse prion strains, in a transgenic-mouse model and in its natural counterpart. The results showed very similar transmission properties in both the natural species and the transgenic-mouse model, demonstrating the key role of the PrP amino acid sequence in prion transmission susceptibility. However, differences in the PrPSc types propagated by Bv109M and BvPrP-Tg407 suggest that host factors other than PrPC modulate prion strain features. IMPORTANCE The differential susceptibility of bank voles to prion strains can be modeled in transgenic mice, suggesting that this selective susceptibility is controlled by the vole PrP sequence alone rather than by other species-specific factors. Differences in the phenotypes observed after prion transmissions in bank voles and in the transgenic mice suggest that host factors other than the PrPC sequence may affect the selection of the substrain replicating in the animal model. PMID:27654300

  8. Genomes of the Mouse Collaborative Cross.

    PubMed

    Srivastava, Anuj; Morgan, Andrew P; Najarian, Maya L; Sarsani, Vishal Kumar; Sigmon, J Sebastian; Shorter, John R; Kashfeen, Anwica; McMullan, Rachel C; Williams, Lucy H; Giusti-Rodríguez, Paola; Ferris, Martin T; Sullivan, Patrick; Hock, Pablo; Miller, Darla R; Bell, Timothy A; McMillan, Leonard; Churchill, Gary A; de Villena, Fernando Pardo-Manuel

    2017-06-01

    The Collaborative Cross (CC) is a multiparent panel of recombinant inbred (RI) mouse strains derived from eight founder laboratory strains. RI panels are popular because of their long-term genetic stability, which enhances reproducibility and integration of data collected across time and conditions. Characterization of their genomes can be a community effort, reducing the burden on individual users. Here we present the genomes of the CC strains using two complementary approaches as a resource to improve power and interpretation of genetic experiments. Our study also provides a cautionary tale regarding the limitations imposed by such basic biological processes as mutation and selection. A distinct advantage of inbred panels is that genotyping only needs to be performed on the panel, not on each individual mouse. The initial CC genome data were haplotype reconstructions based on dense genotyping of the most recent common ancestors (MRCAs) of each strain followed by imputation from the genome sequence of the corresponding founder inbred strain. The MRCA resource captured segregating regions in strains that were not fully inbred, but it had limited resolution in the transition regions between founder haplotypes, and there was uncertainty about founder assignment in regions of limited diversity. Here we report the whole genome sequence of 69 CC strains generated by paired-end short reads at 30× coverage of a single male per strain. Sequencing leads to a substantial improvement in the fine structure and completeness of the genomes of the CC. Both MRCAs and sequenced samples show a significant reduction in the genome-wide haplotype frequencies from two wild-derived strains, CAST/EiJ and PWK/PhJ. In addition, analysis of the evolution of the patterns of heterozygosity indicates that selection against three wild-derived founder strains played a significant role in shaping the genomes of the CC. The sequencing resource provides the first description of tens of thousands of new genetic variants introduced by mutation and drift in the CC genomes. We estimate that new SNP mutations are accumulating in each CC strain at a rate of 2.4 ± 0.4 per gigabase per generation. The fixation of new mutations by genetic drift has introduced thousands of new variants into the CC strains. The majority of these mutations are novel compared to currently sequenced laboratory stocks and wild mice, and some are predicted to alter gene function. Approximately one-third of the CC inbred strains have acquired large deletions (>10 kb) many of which overlap known coding genes and functional elements. The sequence of these mice is a critical resource to CC users, increases threefold the number of mouse inbred strain genomes available publicly, and provides insight into the effect of mutation and drift on common resources. Copyright © 2017 Srivastava et al.

  9. Genomes of the Mouse Collaborative Cross

    PubMed Central

    Srivastava, Anuj; Morgan, Andrew P.; Najarian, Maya L.; Sarsani, Vishal Kumar; Sigmon, J. Sebastian; Shorter, John R.; Kashfeen, Anwica; McMullan, Rachel C.; Williams, Lucy H.; Giusti-Rodríguez, Paola; Ferris, Martin T.; Sullivan, Patrick; Hock, Pablo; Miller, Darla R.; Bell, Timothy A.; McMillan, Leonard; Churchill, Gary A.; de Villena, Fernando Pardo-Manuel

    2017-01-01

    The Collaborative Cross (CC) is a multiparent panel of recombinant inbred (RI) mouse strains derived from eight founder laboratory strains. RI panels are popular because of their long-term genetic stability, which enhances reproducibility and integration of data collected across time and conditions. Characterization of their genomes can be a community effort, reducing the burden on individual users. Here we present the genomes of the CC strains using two complementary approaches as a resource to improve power and interpretation of genetic experiments. Our study also provides a cautionary tale regarding the limitations imposed by such basic biological processes as mutation and selection. A distinct advantage of inbred panels is that genotyping only needs to be performed on the panel, not on each individual mouse. The initial CC genome data were haplotype reconstructions based on dense genotyping of the most recent common ancestors (MRCAs) of each strain followed by imputation from the genome sequence of the corresponding founder inbred strain. The MRCA resource captured segregating regions in strains that were not fully inbred, but it had limited resolution in the transition regions between founder haplotypes, and there was uncertainty about founder assignment in regions of limited diversity. Here we report the whole genome sequence of 69 CC strains generated by paired-end short reads at 30× coverage of a single male per strain. Sequencing leads to a substantial improvement in the fine structure and completeness of the genomes of the CC. Both MRCAs and sequenced samples show a significant reduction in the genome-wide haplotype frequencies from two wild-derived strains, CAST/EiJ and PWK/PhJ. In addition, analysis of the evolution of the patterns of heterozygosity indicates that selection against three wild-derived founder strains played a significant role in shaping the genomes of the CC. The sequencing resource provides the first description of tens of thousands of new genetic variants introduced by mutation and drift in the CC genomes. We estimate that new SNP mutations are accumulating in each CC strain at a rate of 2.4 ± 0.4 per gigabase per generation. The fixation of new mutations by genetic drift has introduced thousands of new variants into the CC strains. The majority of these mutations are novel compared to currently sequenced laboratory stocks and wild mice, and some are predicted to alter gene function. Approximately one-third of the CC inbred strains have acquired large deletions (>10 kb) many of which overlap known coding genes and functional elements. The sequence of these mice is a critical resource to CC users, increases threefold the number of mouse inbred strain genomes available publicly, and provides insight into the effect of mutation and drift on common resources. PMID:28592495

  10. Fusimonas intestini gen. nov., sp. nov., a novel intestinal bacterium of the family Lachnospiraceae associated with diabetes in mice.

    PubMed

    Kusada, Hiroyuki; Kameyama, Keishi; Meng, Xian-Ying; Kamagata, Yoichi; Tamaki, Hideyuki

    2017-12-22

    Our previous study shows that an anaerobic intestinal bacterium strain AJ110941 P contributes to type 2 diabetes development in mice. Here we phylogenetically and physiologically characterized this unique mouse gut bacterium. The 16S rRNA gene analysis revealed that the strain belongs to the family Lachnospiraceae but shows low sequence similarities ( < 92.5%) to valid species, and rather formed a distinct cluster with uncultured mouse gut bacteria clones. In metagenomic database survey, the 16S sequence of AJ110941 P also matched with mouse gut-derived datasets (56% of total datasets) with > 99% similarity, suggesting that AJ110941 P -related bacteria mainly reside in mouse digestive tracts. Strain AJ110941 P shared common physiological traits (e.g., Gram-positive, anaerobic, mesophilic, and fermentative growth with carbohydrates) with relative species of the Lachnospiraceae. Notably, the biofilm-forming capacity was found in both AJ110941 P and relative species. However, AJ110941 P possessed far more strong ability to produce biofilm than relative species and formed unique structure of extracellular polymeric substances. Furthermore, AJ110941 P cells are markedly long fusiform-shaped rods (9.0-62.5 µm) with multiple flagella that have never been observed in any other Lachnospiraceae members. Based on the phenotypic and phylogenetic features, we propose a new genus and species, Fusimonas intestini gen. nov., sp. nov. for strain AJ110941 P (FERM BP-11443).

  11. Obesity-induced diabetes in mouse strains treated with gold thioglucose: a novel animal model for studying β-cell dysfunction.

    PubMed

    Karasawa, Hiroshi; Takaishi, Kiyosumi; Kumagae, Yoshihiro

    2011-03-01

    An obesity-induced diabetes model using genetically normal mouse strains would be invaluable but remains to be established. One reason is that several normal mouse strains are resistant to high-fat diet-induced obesity. In the present study, we show the effectiveness of gold thioglucose (GTG) in inducing hyperphagia and severe obesity in mice, and demonstrate the development of obesity-induced diabetes in genetically normal mouse strains. GTG treated DBA/2, C57BLKs, and BDF1 mice gained weight rapidly and exhibited significant increases in nonfasting plasma glucose levels 8-12 weeks after GTG treatment. These mice showed significantly impaired insulin secretion, particularly in the early phase after glucose load, and reduced insulin content in pancreatic islets. Interestingly, GTG treated C57BL/6 mice did not become diabetic and retained normal early insulin secretion and islet insulin content despite being as severely obese and insulin resistant as the other mice. These results suggest that the pathogenesis of obesity-induced diabetes in GTG-treated mice is attributable to the inability of their pancreatic β-cells to secrete enough insulin to compensate for insulin resistance. Mice developing obesity-induced diabetes after GTG treatment might be a valuable tool for investigating obesity-induced diabetes. Furthermore, comparing the genetic backgrounds of mice with different susceptibilities to diabetes may lead to the identification of novel genetic factors influencing the ability of pancreatic β-cells to secrete insulin.

  12. Brain growth trajectories in mouse strains with central and peripheral serotonin differences: relevance to autism models.

    PubMed

    Flood, Z C; Engel, D L J; Simon, C C; Negherbon, K R; Murphy, L J; Tamavimok, W; Anderson, G M; Janušonis, S

    2012-05-17

    The genetic heterogeneity of autism spectrum disorders (ASDs) suggests that their underlying neurobiology involves dysfunction at the neural network level. Understanding these neural networks will require a major collaborative effort and will depend on validated and widely accepted animal models. Many mouse models have been proposed in autism research, but the assessment of their validity often has been limited to measuring social interactions. However, two other well-replicated findings have been reported in ASDs: transient brain overgrowth in early postnatal life and elevated 5-HT (serotonin) levels in blood platelets (platelet hyperserotonemia). We examined two inbred mouse strains (C57BL/6 and BALB/c) with respect to these phenomena. The BALB/c strain is less social and exhibits some other autistic-like behaviors. In addition, it has a lower 5-HT synthesis rate in the central nervous system due to a single-nucleotide polymorphism in the tryptophan hydroxylase 2 (Tph2) gene. The postnatal growth of brain mass was analyzed with mixed-effects models that included litter effects. The volume of the hippocampal complex and the thickness of the somatosensory cortex were measured in 3D-brain reconstructions from serial sections. The postnatal whole-blood 5-HT levels were assessed with high-performance liquid chromatography. With respect to the BALB/c strain, the C57BL/6 strain showed transient brain overgrowth and persistent blood hyperserotonemia. The hippocampal volume was permanently enlarged in the C57BL/6 strain, with no change in the adult brain mass. These results indicate that, in mice, autistic-like shifts in the brain and periphery may be associated with less autistic-like behaviors. Importantly, they suggest that consistency among behavioral, anatomical, and physiological measures may expedite the validation of new and previously proposed mouse models of autism, and that the construct validity of models should be demonstrated when these measures are inconsistent. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. TRANSGENIC MOUSE MODELS AND PARTICULATE MATTER (PM)

    EPA Science Inventory

    The hypothesis to be tested is that metal catalyzed oxidative stress can contribute to the biological effects of particulate matter. We acquired several transgenic mouse strains to test this hypothesis. Breeding of the mice was accomplished by Duke University. Particles employed ...

  14. LACK OF EXPRESSION OF EGF AND TGF-ALPHA IN THE FETAL MOUSE ALTERS FORMATION OF PROSTATIC EPITHELIAL BUDS AND INFLUENCES THE RESPONSE TO TCDD

    EPA Science Inventory

    Lack of Expression of EGF and TGF in the Fetal Mouse Alters Formation of Prostatic Epithelial Buds and Responsiveness to TCDD-Induced Impairment of Prostatic Bud Formation.

    Barbara D. Abbott, Tien-Min Lin, Nathan T. Rasmussen, Robert W. Moore,
    Ralph M. Albrecht, Judi...

  15. Chromatin organization as a possible factor in the control of susceptibility to radiation-induced AML in mice

    NASA Astrophysics Data System (ADS)

    Maranon, David G.

    The studies described in this dissertation involve the use and comparison of two mouse strains: one sensitive (CBA/CaJ) and another resistant (C57BL/6J) to radiation-induced acute myeloid leukemia (AML). The purpose of these studies was to identify factors that may account for the large difference in the susceptibility of these strains to radiation-induced AML. The present study was initiated to determine whether the distances between breakpoint clusters on chromosome 2 are in closer proximity in the bone marrow cells of the CBA/CaJ mouse strain than in the C57BL/6J strain. Bacterial artificial chromosomes (BACs) were selected as markers of the central portion of the proximal and distal deletion breakpoint clusters as well as mdr on chromosome 2, where the preponderance of breaks occurs. Distance measurements were made by three dimensional fluorescent in situ hybridization (3DFISH) image analysis of hundreds of cells using Metamorph and ImageJ for data collection and Autoquant software for deconvolution and reconstruction of the three dimensional cell nuclei. Comparing bone marrow cells of CBA/CaJ and C57BL/6J mice, no differences were found between the proximity of the two regions represented for the selected markers compared in both murine strains. For the markers chosen the distribution of the distances showed similarities between the same cell types from both mouse strains; namely, fibroblasts, whole bone marrow (WBM), and hematopoietic stem cells (HSC). However, there was not found a change in the distance distributions toward the closer distances expected between the clusters in HSC and WBM compared with fibroblasts in both mouse strains. There was; however, a tissue-dependent distance distribution between the markers Specifically, the average distances of the clusters in fibroblasts (2.55 um for CBA/CaJ and 3.09 um for C57BL/6) were larger than the distance in blood cells (1.74 um in BM and 1.53 um in HSC for CBA/CaJ; and 1.79 um in BM and 1.77 um in HSC for C57BL/6). This tissue-dependency is consistent with the concept of tissue predisposition to certain kind of cancers, in which, for instance blood cells contain specific characteristics or nuclear organization not present in fibroblasts that could lead to AML. Using AML cells from actual radiation-induced tumors, the measurements done within the intact chromosome 2 from these AML samples showed a high proportion of cells with distances between the clusters markers that were similar to the distances seen for the small domain from normal BM cells. Therefore, from our data, deletion of chromosome 2 seemed to occur mainly in a non-random fashion because the PU.1 gene was deleted from the large domain in 8 out of 10 cases in an average proportion of ˜74% of the analyzed cells considering all AML cases. To explore and test the possible effect of the genomic imprinting on the structure and organization of the chromatin in both small and large domain from mouse chromosome 2, a different mouse model was used that allowed us to differentiate the parental origin of each chromosome 2 inherited after fertilization for the hybrid offspring (F1) obtained from crosses between a C3H/HeNCrl and Tirano/EiJ mouse strain. The latter has a Robertsonian translocation that involved chromosome 2 and 8, which allows tracking of a paternal or maternal copy of chromosome 2 in the F1 mice. Although such a CBA strain was not available, the C3H mouse strain is similarly sensitive to AML induction after radiation treatment, and chromosome 2 in this mouse model is hyper-radiosensitive as well. Then, if the small or closed and large or open configuration of the chromatin that was observed in the interphase is due to the genomic imprinting, we should be able to determine its parental origin. The experimental data did not show evidence of any influence in the chromosomal domain conformation in relation to the genomic imprinting occurring in mouse chromosome 2. No difference was seen for the maternal and paternal copies of chromosome 2 within interphase cells. All chromosome 2 domains from C3H/HeNCrl showed breakpoint clusters distances and organization of the domains similar to the small domain in both maternal and paternal copies. (Abstract shortened by UMI.)

  16. EuroPhenome and EMPReSS: online mouse phenotyping resource

    PubMed Central

    Mallon, Ann-Marie; Hancock, John M.

    2008-01-01

    EuroPhenome (http://www.europhenome.org) and EMPReSS (http://empress.har.mrc.ac.uk/) form an integrated resource to provide access to data and procedures for mouse phenotyping. EMPReSS describes 96 Standard Operating Procedures for mouse phenotyping. EuroPhenome contains data resulting from carrying out EMPReSS protocols on four inbred laboratory mouse strains. As well as web interfaces, both resources support web services to enable integration with other mouse phenotyping and functional genetics resources, and are committed to initiatives to improve integration of mouse phenotype databases. EuroPhenome will be the repository for a recently initiated effort to carry out large-scale phenotyping on a large number of knockout mouse lines (EUMODIC). PMID:17905814

  17. EuroPhenome and EMPReSS: online mouse phenotyping resource.

    PubMed

    Mallon, Ann-Marie; Blake, Andrew; Hancock, John M

    2008-01-01

    EuroPhenome (http://www.europhenome.org) and EMPReSS (http://empress.har.mrc.ac.uk/) form an integrated resource to provide access to data and procedures for mouse phenotyping. EMPReSS describes 96 Standard Operating Procedures for mouse phenotyping. EuroPhenome contains data resulting from carrying out EMPReSS protocols on four inbred laboratory mouse strains. As well as web interfaces, both resources support web services to enable integration with other mouse phenotyping and functional genetics resources, and are committed to initiatives to improve integration of mouse phenotype databases. EuroPhenome will be the repository for a recently initiated effort to carry out large-scale phenotyping on a large number of knockout mouse lines (EUMODIC).

  18. Amino Acid Residue at Position 79 of Marburg Virus VP40 Confers Interferon Antagonism in Mouse Cells.

    PubMed

    Feagins, Alicia R; Basler, Christopher F

    2015-10-01

    Marburg viruses (MARVs) cause highly lethal infections in humans and nonhuman primates. Mice are not generally susceptible to MARV infection; however, if the strain is first adapted to mice through serial passaging, it becomes able to cause disease in this animal. A previous study correlated changes accrued during mouse adaptation in the VP40 gene of a MARV strain known as Ravn virus (RAVV) with an increased capacity to inhibit interferon (IFN) signaling in mouse cell lines. The MARV strain Ci67, which belongs to a different phylogenetic clade than RAVV, has also been adapted to mice and in the process the Ci67 VP40 acquired a different collection of genetic changes than did RAVV VP40. Here, we demonstrate that the mouse-adapted Ci67 VP40 more potently antagonizes IFN-α/β-induced STAT1 and STAT2 tyrosine phosphorylation, gene expression, and antiviral activity in both mouse and human cell lines, compared with the parental Ci67 VP40. Ci67 VP40 is also demonstrated to target the activation of kinase Jak1. A single change at VP40 residue 79 was found to be sufficient for the increased VP40 IFN antagonism. These data argue that VP40 IFN-antagonist activity plays a key role in MARV pathogenesis in mice. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Development of a Mouse Model of Helicobacter pylori Infection that Mimics Human Disease

    NASA Astrophysics Data System (ADS)

    Marchetti, Marta; Arico, Beatrice; Burroni, Daniela; Figura, Natale; Rappuoli, Rino; Ghiara, Paolo

    1995-03-01

    The human pathogen Helicobacter pylori is associated with gastritis, peptic ulcer disease, and gastric cancer. The pathogenesis of H. pylori infection in vivo was studied by adapting fresh clinical isolates of bacteria to colonize the stomachs of mice. A gastric pathology resembling human disease was observed in infections with cytotoxin-producing strains but not with noncytotoxic strains. Oral immunization with purified H. pylori antigens protected mice from bacterial infection. This mouse model will allow the development of therapeutic agents and vaccines against H. pylori infection in humans.

  20. Comparisons of Native and Chimeric Shiga Toxins Indicate that the Binding Subunit Dictates Degree of Toxicity

    DTIC Science & Technology

    2014-03-17

    to the original BXD panel as BXD strains 43-103 (218). The genomes of both founder strains, B6 (308) and D2 (47; 307), have been sequenced and 1.8... sequencing of the DBA/2J mouse genome . BMC.Bioinformatics. 11 :07 308. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. 2002. Initial... sequencing and comparative analysis of the mouse genome . Nature 420:520-62 309. Weeratna RD, Doyle MP. 1991. Detection and production of verotoxin 1

  1. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy.

    PubMed

    Guo, Haiying; Xing, Yizhan; Zhang, Yiming; He, Long; Deng, Fang; Ma, Xiaogen; Li, Yuhong

    2018-01-01

    Dermal papilla (DP) plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells.

  2. Establishment of an immortalized mouse dermal papilla cell strain with optimized culture strategy

    PubMed Central

    Zhang, Yiming; He, Long; Deng, Fang; Ma, Xiaogen

    2018-01-01

    Dermal papilla (DP) plays important roles in hair follicle regeneration. Long-term culture of mouse DP cells can provide enough cells for research and application of DP cells. We optimized the culture strategy for DP cells from three dimensions: stepwise dissection, collagen I coating, and optimized culture medium. Based on the optimized culture strategy, we immortalized primary DP cells with SV40 large T antigen, and established several immortalized DP cell strains. By comparing molecular expression and morphologic characteristics with primary DP cells, we found one cell strain named iDP6 was similar with primary DP cells. Further identifications illustrate that iDP6 expresses FGF7 and α-SMA, and has activity of alkaline phosphatase. During the process of characterization of immortalized DP cell strains, we also found that cells in DP were heterogeneous. We successfully optimized culture strategy for DP cells, and established an immortalized DP cell strain suitable for research and application of DP cells. PMID:29383288

  3. Quantitative T2 combined with texture analysis of nuclear magnetic resonance images identify different degrees of muscle involvement in three mouse models of muscle dystrophy: mdx, Largemyd and mdx/Largemyd.

    PubMed

    Martins-Bach, Aurea B; Malheiros, Jackeline; Matot, Béatrice; Martins, Poliana C M; Almeida, Camila F; Caldeira, Waldir; Ribeiro, Alberto F; Loureiro de Sousa, Paulo; Azzabou, Noura; Tannús, Alberto; Carlier, Pierre G; Vainzof, Mariz

    2015-01-01

    Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant-T2-measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research.

  4. Quantitative T2 Combined with Texture Analysis of Nuclear Magnetic Resonance Images Identify Different Degrees of Muscle Involvement in Three Mouse Models of Muscle Dystrophy: mdx, Largemyd and mdx/Largemyd

    PubMed Central

    Martins-Bach, Aurea B.; Malheiros, Jackeline; Matot, Béatrice; Martins, Poliana C. M.; Almeida, Camila F.; Caldeira, Waldir; Ribeiro, Alberto F.; Loureiro de Sousa, Paulo; Azzabou, Noura; Tannús, Alberto; Carlier, Pierre G.; Vainzof, Mariz

    2015-01-01

    Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant—T2—measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research. PMID:25710816

  5. Infectivity of five different types of macrophages by Leishmania infantum.

    PubMed

    Maia, C; Rolão, N; Nunes, M; Gonçalves, L; Campino, L

    2007-08-01

    Leishmania are intracellular parasites that multiply as the amastigote form in the macrophages of their vertebrate hosts. Since vaccines against leishmaniases are still under development, the control of these diseases relies on prompt diagnosis and chemotherapy in infected humans as well as in dogs, which are the main reservoir of Leishmania infantum, in Mediterranean countries. To establish the macrophage type to be used as an in vitro model for antileishmanial chemotherapeutic studies, we analysed the susceptibility of human peripheral blood derived macrophages, macrophages derived from mouse bone marrow, mouse peritoneal macrophages and macrophages differentiated from cell lines U-937 and DH82 to infection by two L. infantum strains, one obtained from a human leishmanial infection and other from a canine infection. Both strains displayed comparable behaviour in their capacity of infecting the different macrophage types. Human peripheral blood macrophages and DH82 cells were less infectable by both strains. U-937, mouse peritoneal macrophages and mouse bone marrow derived macrophages are the most active cells to phagocytose the parasites. However, U-937 cell line appears to be the most useful as Leishmania infection model providing an unlimited source of homogeneous host cells with reproducibility of the results, is less time consuming, less expensive and tolerate high doses of first line drugs for human and canine visceral leishmaniasis treatment.

  6. Virulence Studies of Different Sequence Types and Geographical Origins of Streptococcus suis Serotype 2 in a Mouse Model of Infection

    PubMed Central

    Auger, Jean-Philippe; Fittipaldi, Nahuel; Benoit-Biancamano, Marie-Odile; Segura, Mariela; Gottschalk, Marcelo

    2016-01-01

    Multilocus sequence typing previously identified three predominant sequence types (STs) of Streptococcus suis serotype 2: ST1 strains predominate in Eurasia while North American (NA) strains are generally ST25 and ST28. However, ST25/ST28 and ST1 strains have also been isolated in Asia and NA, respectively. Using a well-standardized mouse model of infection, the virulence of strains belonging to different STs and different geographical origins was evaluated. Results demonstrated that although a certain tendency may be observed, S. suis serotype 2 virulence is difficult to predict based on ST and geographical origin alone; strains belonging to the same ST presented important differences of virulence and did not always correlate with origin. The only exception appears to be NA ST28 strains, which were generally less virulent in both systemic and central nervous system (CNS) infection models. Persistent and high levels of bacteremia accompanied by elevated CNS inflammation are required to cause meningitis. Although widely used, in vitro tests such as phagocytosis and killing assays require further standardization in order to be used as predictive tests for evaluating virulence of strains. The use of strains other than archetypal strains has increased our knowledge and understanding of the S. suis serotype 2 population dynamics. PMID:27409640

  7. Characterization of Sicilian strains of spotted fever group rickettsiae by using monoclonal antibodies.

    PubMed Central

    Vitale, G; Di Stefano, R; Damiani, G; Mansueto, S

    1989-01-01

    Twenty-two hybridomas producing anti-Rickettsia conorii monoclonal antibodies were obtained by nine fusion experiments. The strain chosen for immunization of mice was MAVI, an R. conorii strain isolated from a Sicilian patient with Boutonneuse fever. When tested for immunoglobulin isotype by an indirect immunofluorescence (IIF) assay, 46.6% of supernatants from the 22 hybridomas were immunoglobulin M. The supernatants were tested in the IIF assay for binding to the MAVI strain and four spotted fever group rickettsia strains isolated from Sicilian ticks (two virulent and two nonpathogenic when inoculated intraperitoneally in male guinea pigs). Only five of the supernatants showed a positive IIF result on all tested strains, although they produced different titers to the various strains, possibly an indication that they recognized an antigen common to spotted fever group rickettsiae. Immunodominant epitopes for humans were determined by using patient sera to analyze inhibition of binding to the MAVI strain. Although a limited number of serum samples were screened, a high percentage of Boutonneuse fever patients produced antibodies recognizing the same epitopes as were recognized by the mouse monoclonal antibodies. A striking heterogeneity was found both in the expression of mouse-recognized epitopes on the five rickettsial strains and in the serum antibody responses of Boutonneuse fever patients to these epitopes. PMID:2473092

  8. Association of Body Length with Ocular Parameters in Mice

    PubMed Central

    Chakraborty, Ranjay; Park, Han na; Tan, Christopher C.; Weiss, Paul; Prunt, Megan C.; Pardue, Machelle T.

    2017-01-01

    Purpose To determine the association between changes in body length with ocular refraction, corneal radii, axial length, and lens thickness in two different mouse strains. Methods Body length, ocular refraction, corneal radii, axial length, and lens thickness were measured for two inbred mouse strains: 129S1/SvJ (n=7) and C57BL/6J (n=10) from 4 to 12 weeks of age. Body length, from tip of nose to base of tail was obtained using a digital camera. Biometric parameters, corneal radii and refractions were measured using spectral-domain optical coherence tomography, automated keratometry and infrared photorefraction, respectively. A mixed model ANOVA was performed to examine the changes in ocular parameters as a function of body length and strain in mice controlling for age, gender and weight over time. Results C57BL/6J mice had significantly longer body length (average body length at 10 weeks, 8.60 ± 0.06 cm) compared 129S1/SvJ mice (8.31 ± 0.05 cm) during development (p<0.001). C57BL/6J mice had significantly hyperopic refractions compared to 129S1/SvJ mice across age (mean refraction at 10 weeks, 129S1/SvJ: +0.99 ± 0.44 D versus C57BL/6J: +6.24 ± 0.38 D, p<0.001). Corneal radius of curvature, axial length and lens thickness (except 10 weeks lens thickness) were similar between the two strains throughout the measurement. In the mixed model ANOVA, changes in body length showed an independent and significant association with the changes in refraction (p=0.002) and corneal radii (p=0.016) for each mouse strain. No significant association was found between the changes in axial length (p=0.925) or lens thickness (p=0.973) as a function of body length and strain. Conclusions Changes in body length are significantly associated with the changes in ocular refraction and corneal radii in different mouse strains. Future studies are needed to determine if the association between body length and ocular refraction are related to changes in corneal curvature in mice. PMID:28005683

  9. Measurement of Strain Distributions in Mouse Femora with 3D-Digital Speckle Pattern Interferometry

    PubMed Central

    Yang, Lianxiang; Zhang, Ping; Liu, Sheng; Samala, Praveen R; Su, Min; Yokota, Hiroki

    2007-01-01

    Bone is a mechanosensitive tissue that adapts its mass, architecture and mechanical properties to external loading. Appropriate mechanical loads offer an effective means to stimulate bone remodeling and prevent bone loss. A role of in situ strain in bone is considered essential in enhancement of bone formation, and establishing a quantitative relationship between 3D strain distributions and a rate of local bone formation is important. Digital speckle pattern interferometry (DSPI) can achieve whole-field, non-contacting measurements of microscopic deformation for high-resolution determination of 3D strain distributions. However, the current system does not allow us to derive accurate strain distributions because of complex surface contours inherent to biological samples. Through development of a custom-made piezoelectric loading device as well as a new DSPI-based force calibration system, we built an advanced DSPI system and integrated local contour information to deformation data. Using a mouse femur in response to a knee loading modality as a model system, we determined 3D strain distributions and discussed effectiveness and limitations of the described system. PMID:18670581

  10. The Rhoptry Proteins ROP18 and ROP5 Mediate Toxoplasma gondii Evasion of the Murine, But Not the Human, Interferon-Gamma Response

    PubMed Central

    Niedelman, Wendy; Gold, Daniel A.; Rosowski, Emily E.; Sprokholt, Joris K.; Lim, Daniel; Farid Arenas, Ailan; Melo, Mariane B.; Spooner, Eric; Yaffe, Michael B.; Saeij, Jeroen P. J.

    2012-01-01

    The obligate intracellular parasite Toxoplasma gondii secretes effector proteins into the host cell that manipulate the immune response allowing it to establish a chronic infection. Crosses between the types I, II and III strains, which are prevalent in North America and Europe, have identified several secreted effectors that determine strain differences in mouse virulence. The polymorphic rhoptry protein kinase ROP18 was recently shown to determine the difference in virulence between type I and III strains by phosphorylating and inactivating the interferon-γ (IFNγ)-induced immunity-related GTPases (IRGs) that promote killing by disrupting the parasitophorous vacuole membrane (PVM) in murine cells. The polymorphic pseudokinase ROP5 determines strain differences in virulence through an unknown mechanism. Here we report that ROP18 can only inhibit accumulation of the IRGs on the PVM of strains that also express virulent ROP5 alleles. In contrast, specific ROP5 alleles can reduce IRG coating even in the absence of ROP18 expression and can directly interact with one or more IRGs. We further show that the allelic combination of ROP18 and ROP5 also determines IRG evasion and virulence of strains belonging to other lineages besides types I, II and III. However, neither ROP18 nor ROP5 markedly affect survival in IFNγ-activated human cells, which lack the multitude of IRGs present in murine cells. These findings suggest that ROP18 and ROP5 have specifically evolved to block the IRGs and are unlikely to have effects in species that do not have the IRG system, such as humans. PMID:22761577

  11. Effects of Intercellular Junction Protein Expression on Intracellular Ice Formation in Mouse Insulinoma Cells

    PubMed Central

    Higgins, Adam Z.; Karlsson, Jens O.M.

    2013-01-01

    The development of cryopreservation procedures for tissues has proven to be difficult in part because cells within tissue are more susceptible to intracellular ice formation (IIF) than are isolated cells. In particular, previous studies suggest that cell-cell interactions increase the likelihood of IIF by enabling propagation of ice between neighboring cells, a process thought to be mediated by gap junction channels. In this study, we investigated the effects of cell-cell interactions on IIF using three genetically modified strains of the mouse insulinoma cell line MIN6, each of which expressed key intercellular junction proteins (connexin-36, E-cadherin, and occludin) at different levels. High-speed video cryomicroscopy was used to visualize the freezing process in pairs of adherent cells, revealing that the initial IIF event in a given cell pair was correlated with a hitherto unrecognized precursor phenomenon: penetration of extracellular ice into paracellular spaces at the cell-cell interface. Such paracellular ice penetration occurred in the majority of cell pairs observed, and typically preceded and colocalized with the IIF initiation events. Paracellular ice penetration was generally not observed at temperatures >−5.65°C, which is consistent with a penetration mechanism via defects in tight-junction barriers at the cell-cell interface. Although the maximum temperature of paracellular penetration was similar for all four cell strains, genetically modified cells exhibited a significantly higher frequency of ice penetration and a higher mean IIF temperature than did wild-type cells. A four-state Markov chain model was used to quantify the rate constants of the paracellular ice penetration process, the penetration-associated IIF initiation process, and the intercellular ice propagation process. In the initial stages of freezing (>−15°C), junction protein expression appeared to only have a modest effect on the kinetics of propagative IIF, and even cell strains lacking the gap junction protein connexin-36 exhibited nonnegligible ice propagation rates. PMID:24209845

  12. The relevance and use of mouse embryo bioassays for quality control in an assisted reproductive technology program.

    PubMed

    Scott, L F; Sundaram, S G; Smith, S

    1993-09-01

    To define both the limits of a mouse embryo bioassay for quality control in an assisted reproductive technology (ART) program and the areas where it can be effectively used. Embryos at the pronuclear and two-cell stage from three different strains of mice were used to assess the effectiveness of this assay for media quality control using five different media routinely used in ART. Pronuclear and two-cell embryos from CD-1 mice were used to test the ability of a mouse embryo bioassay to control for water quality, contaminants in the culture system, and fluctuations in the environmental conditions using a medium, culture system, and scoring technique that were optimized for this strain. The mouse embryo bioassay is not effective in differentiating media appropriate for supporting human embryo development since the development of mouse embryos in vitro is strain, stage, and media related. However, CD-1 embryos were shown to be sensitive to variations in water quality, pH, temperature, incubator conditions, and contaminants in the system when grown in a protein-free medium optimized for their development. Both total blastocyst number and the cell count in the blastocysts were affected. Pronuclear embryos were more sensitive to perturbations in the culture system than two-cell embryos. A mouse embryo bioassay can be effectively used as a means of quality control of water, chemicals, and contact materials and for technique standardization and training in an assisted reproduction program. All the conditions of the test should be defined, pronuclear embryos should be used, and the end point should be fully expanded blastocysts and/or cell numbers in these blastocysts where appropriate.

  13. Lactobacillus apodemi sp. nov., a tannase-producing species isolated from wild mouse faeces.

    PubMed

    Osawa, Ro; Fujisawa, Tomohiko; Pukall, Rüdiger

    2006-07-01

    A Gram-positive, rod-shaped, non-endospore-forming bacterium, strain ASB1(T), able to degrade tannin, was isolated from faeces of the Japanese large wood mouse, Apodemus speciosus. Comparative analysis of the 16S rRNA gene sequence revealed that the strain could be assigned as a member of the genus Lactobacillus. The nearest phylogenetic neighbours were determined as Lactobacillus animalis DSM 20602(T) (98.9 % 16S rRNA gene sequence similarity) and Lactobacillus murinus ASF 361 (98.9 %). Subsequent polyphasic analysis, including automated ribotyping and DNA-DNA hybridization experiments, confirmed that the isolate represents a novel species, for which the name Lactobacillus apodemi sp. nov. is proposed. The DNA G+C content of the novel strain is 38.5 mol%. The cell-wall peptidoglycan is of type A4alpha L-lys-D-asp. The type strain is ASB1(T) (=DSM 16634(T)=CIP 108913(T)).

  14. Large-scale Phenotyping of Noise-Induced Hearing Loss in 100 Strains of Mice

    PubMed Central

    Myint, Anthony; White, Cory H.; Ohmen, Jeffrey D.; Li, Xin; Wang, Juemei; Lavinsky, Joel; Salehi, Pezhman; Crow, Amanda L.; Ohyama, Takahiro; Friedman, Rick A.

    2015-01-01

    A cornerstone technique in the study of hearing is the Auditory Brainstem Response (ABR), an electrophysiologic technique that can be used as a quantitative measure of hearing function. Previous studies have published databases of baseline ABR thresholds for mouse strains, providing a valuable resource for the study of baseline hearing function and genetic mapping of hearing traits in mice. In this study, we further expand upon the existing literature by characterizing the baseline ABR characteristics of 100 inbred mouse strains, 47 of which are newly characterized for hearing function. We identify several distinct patterns of baseline hearing deficits and provide potential avenues for further investigation. Additionally, we characterize the sensitivity of the same 100 strains to noise exposure using permanent thresholds shifts, identifying several distinct patterns of noise-sensitivity. The resulting data provides a new resource for studying hearing loss and noise-sensitivity in mice. PMID:26706709

  15. TMPRSS2 Independency for Haemagglutinin Cleavage In Vivo Differentiates Influenza B Virus from Influenza A Virus

    PubMed Central

    Sakai, Kouji; Ami, Yasushi; Nakajima, Noriko; Nakajima, Katsuhiro; Kitazawa, Minori; Anraku, Masaki; Takayama, Ikuyo; Sangsriratanakul, Natthanan; Komura, Miyuki; Sato, Yuko; Asanuma, Hideki; Takashita, Emi; Komase, Katsuhiro; Takehara, Kazuaki; Tashiro, Masato; Hasegawa, Hideki; Odagiri, Takato; Takeda, Makoto

    2016-01-01

    Influenza A and B viruses show clear differences in their host specificity and pandemic potential. Recent studies have revealed that the host protease TMPRSS2 plays an essential role for proteolytic activation of H1, H3, and H7 subtype strains of influenza A virus (IAV) in vivo. IAV possessing a monobasic cleavage site in the haemagglutinin (HA) protein replicates poorly in TMPRSS2 knockout mice owing to insufficient HA cleavage. In the present study, human isolates of influenza B virus (IBV) strains and a mouse-adapted IBV strain were analysed. The data showed that IBV successfully underwent HA cleavage in TMPRSS2 knockout mice, and that the mouse-adapted strain was fully pathogenic to these mice. The present data demonstrate a clear difference between IAV and IBV in their molecular mechanisms for spreading in vivo. PMID:27389476

  16. TMPRSS2 Independency for Haemagglutinin Cleavage In Vivo Differentiates Influenza B Virus from Influenza A Virus.

    PubMed

    Sakai, Kouji; Ami, Yasushi; Nakajima, Noriko; Nakajima, Katsuhiro; Kitazawa, Minori; Anraku, Masaki; Takayama, Ikuyo; Sangsriratanakul, Natthanan; Komura, Miyuki; Sato, Yuko; Asanuma, Hideki; Takashita, Emi; Komase, Katsuhiro; Takehara, Kazuaki; Tashiro, Masato; Hasegawa, Hideki; Odagiri, Takato; Takeda, Makoto

    2016-07-08

    Influenza A and B viruses show clear differences in their host specificity and pandemic potential. Recent studies have revealed that the host protease TMPRSS2 plays an essential role for proteolytic activation of H1, H3, and H7 subtype strains of influenza A virus (IAV) in vivo. IAV possessing a monobasic cleavage site in the haemagglutinin (HA) protein replicates poorly in TMPRSS2 knockout mice owing to insufficient HA cleavage. In the present study, human isolates of influenza B virus (IBV) strains and a mouse-adapted IBV strain were analysed. The data showed that IBV successfully underwent HA cleavage in TMPRSS2 knockout mice, and that the mouse-adapted strain was fully pathogenic to these mice. The present data demonstrate a clear difference between IAV and IBV in their molecular mechanisms for spreading in vivo.

  17. Genomic Locus Modulating IOP in the BXD RI Mouse Strains

    PubMed Central

    King, Rebecca; Li, Ying; Wang, Jiaxing; Struebing, Felix L.; Geisert, Eldon E.

    2018-01-01

    Intraocular pressure (IOP) is the primary risk factor for developing glaucoma, yet little is known about the contribution of genomic background to IOP regulation. The present study leverages an array of systems genetics tools to study genomic factors modulating normal IOP in the mouse. The BXD recombinant inbred (RI) strain set was used to identify genomic loci modulating IOP. We measured the IOP in a total of 506 eyes from 38 different strains. Strain averages were subjected to conventional quantitative trait analysis by means of composite interval mapping. Candidate genes were defined, and immunohistochemistry and quantitative PCR (qPCR) were used for validation. Of the 38 BXD strains examined the mean IOP ranged from a low of 13.2mmHg to a high of 17.1mmHg. The means for each strain were used to calculate a genome wide interval map. One significant quantitative trait locus (QTL) was found on Chr.8 (96 to 103 Mb). Within this 7 Mb region only 4 annotated genes were found: Gm15679, Cdh8, Cdh11 and Gm8730. Only two genes (Cdh8 and Cdh11) were candidates for modulating IOP based on the presence of non-synonymous SNPs. Further examination using SIFT (Sorting Intolerant From Tolerant) analysis revealed that the SNPs in Cdh8 (Cadherin 8) were predicted to not change protein function; while the SNPs in Cdh11 (Cadherin 11) would not be tolerated, affecting protein function. Furthermore, immunohistochemistry demonstrated that CDH11 is expressed in the trabecular meshwork of the mouse. We have examined the genomic regulation of IOP in the BXD RI strain set and found one significant QTL on Chr. 8. Within this QTL, there is one good candidate gene, Cdh11. PMID:29496776

  18. Genetic dissection of intermale aggressive behavior in BALB/cJ and A/J mice.

    PubMed

    Dow, H C; Kreibich, A S; Kaercher, K A; Sankoorikal, G M V; Pauley, E D; Lohoff, F W; Ferraro, T N; Li, H; Brodkin, E S

    2011-02-01

    Aggressive behaviors are disabling, treatment refractory, and sometimes lethal symptoms of several neuropsychiatric disorders. However, currently available treatments for patients are inadequate, and the underlying genetics and neurobiology of aggression is only beginning to be elucidated. Inbred mouse strains are useful for identifying genomic regions, and ultimately the relevant gene variants (alleles) in these regions, that affect mammalian aggressive behaviors, which, in turn, may help to identify neurobiological pathways that mediate aggression. The BALB/cJ inbred mouse strain exhibits relatively high levels of intermale aggressive behaviors and shows multiple brain and behavioral phenotypes relevant to neuropsychiatric syndromes associated with aggression. The A/J strain shows very low levels of aggression. We hypothesized that a cross between BALB/cJ and A/J inbred strains would reveal genomic loci that influence the tendency to initiate intermale aggressive behavior. To identify such loci, we conducted a genomewide scan in an F2 population of 660 male mice bred from BALB/cJ and A/J inbred mouse strains. Three significant loci on chromosomes 5, 10 and 15 that influence aggression were identified. The chromosome 5 and 15 loci are completely novel, and the chromosome 10 locus overlaps an aggression locus mapped in our previous study that used NZB/B1NJ and A/J as progenitor strains. Haplotype analysis of BALB/cJ, NZB/B1NJ and A/J strains showed three positional candidate genes in the chromosome 10 locus. Future studies involving fine genetic mapping of these loci as well as additional candidate gene analysis may lead to an improved biological understanding of mammalian aggressive behaviors. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  19. Comparative Analysis of the Relationship between Trichloroethylene Metabolism and Tissue-Specific Toxicity among Inbred Mouse Strains: Kidney Effects

    PubMed Central

    Yoo, Hong Sik; Bradford, Blair U.; Kosyk, Oksana; Uehara, Takeki; Shymonyak, Svitlana; Collins, Leonard B.; Bodnar, Wanda M.; Ball, Louise M.; Gold, Avram; Rusyn, Ivan

    2014-01-01

    Trichloroethylene (TCE) is a well-known environmental and occupational toxicant that is classified as carcinogenic to humans based on the epidemiological evidence of an association with higher risk of renal cell carcinoma. A number of scientific issues critical for assessing human health risks from TCE remain unresolved, such as the amount of kidney-toxic glutathione conjugation metabolites formed, inter-species and -individual differences, and the mode of action for kidney carcinogenicity. We hypothesized that TCE metabolite levels in the kidney are associated with kidney-specific toxicity. Oral dosing with TCE was conducted in sub-acute (600 mg/kg/d; 5 days; 7 inbred mouse strains) and sub-chronic (100 or 400 mg/kg/d; 1, 2, or 4 weeks; 2 inbred mouse strains) designs. We evaluated the quantitative relationship between strain-, dose-, and time-dependent formation of TCE metabolites from cytochrome P450-mediated oxidation [trichloroacetic acid (TCA), dichloroacetic acid (DCA), and trichloroethanol] and glutathione conjugation [S-(1,2-dichlorovinyl)-L-cysteine and S-(1,2-dichlorovinyl)glutathione], and various kidney toxicity phenotypes. In sub-acute study, we observed inter-strain differences in TCE metabolite levels in the kidney. In addition, we found that in several strains kidney-specific effects of TCE included induction of peroxisome proliferator-marker genes Cyp4a10 and Acox1, increased cell proliferation, and expression of KIM-1, a marker of tubular damage and regeneration. In sub-chronic study, peroxisome proliferator-marker gene induction and kidney toxicity diminished while cell proliferative response was elevated in a dose-dependent manner in NZW/LacJ, but not C57BL/6J mice. Overall, we show that TCE metabolite levels in the kidney are associated with kidney-specific toxicity and that these effects are strain-dependent. PMID:25424545

  20. MOUSE LIVER TUMOR DATA: ASSESSMENT OF CARCINOGENIC ACTIVITY

    EPA Science Inventory

    A significant number of chemicals have been shown to be carcinogenic in mouse liver while lacking carcinogenic activity in other organs or tissues of mice or rats. The review focus on the reasons for the unique susceptibility of the mouse liver to these carcinogens, and the exten...

  1. Appropriate antibiotic therapy improves Ureaplasma sepsis outcome in the neonatal mouse.

    PubMed

    Weisman, Leonard E; Leeming, Angela H; Kong, Lingkun

    2012-11-01

    Ureaplasma causes sepsis in human neonates. Although erythromycin has been the standard treatment, it is not always effective. No published reports have evaluated Ureaplasma sepsis in a neonatal model. We hypothesized that appropriate antibiotic treatment improves Ureaplasma sepsis in a neonatal mouse model. Two ATCC strains and two clinical strains of Ureaplasma were evaluated in vitro for antibiotic minimum inhibitory concentration (MIC). In addition, FVB albino mice pups infected with Ureaplasma were randomly assigned to saline, erythromycin, or azithromycin therapy and survival, quantitative blood culture, and growth were evaluated. MICs ranged from 0.125 to 62.5 µg/ml and 0.25 to 1.0 µg/ml for erythromycin and azithromycin, respectively. The infecting strain and antibiotic selected for treatment appeared to affect survival and bacteremia, but only the infecting strain affected growth. Azithromycin improved survival and bacteremia against each strain, whereas erythromycin was effective against only one of four strains. We have established a neonatal model of Ureaplasma sepsis and observed that treatment outcome is related to infecting strain and antibiotic treatment. We speculate that appropriate antibiotic selection and dosing are required for effective treatment of Ureaplasma sepsis in neonates, and this model could be used to further evaluate these relationships.

  2. Neuropathogenicity of Two Saffold Virus Type 3 Isolates in Mouse Models

    PubMed Central

    Kotani, Osamu; Naeem, Asif; Suzuki, Tadaki; Iwata-Yoshikawa, Naoko; Sato, Yuko; Nakajima, Noriko; Hosomi, Takushi; Tsukagoshi, Hiroyuki; Kozawa, Kunihisa; Hasegawa, Hideki; Taguchi, Fumihiro; Shimizu, Hiroyuki; Nagata, Noriyo

    2016-01-01

    Objective Saffold virus (SAFV), a picornavirus, is occasionally detected in children with acute flaccid paralysis, meningitis, and cerebellitis; however, the neuropathogenicity of SAFV remains undetermined. Methods The virulence of two clinical isolates of SAFV type 3 (SAFV-3) obtained from a patient with aseptic meningitis (AM strain) and acute upper respiratory inflammation (UR strain) was analyzed in neonatal and young mice utilizing virological, pathological, and immunological methods. Results The polyproteins of the strains differed in eight amino acids. Both clinical isolates were infective, exhibited neurotropism, and were mildly neurovirulent in neonatal ddY mice. Both strains pathologically infected neural progenitor cells and glial cells, but not large neurons, with the UR strain also infecting epithelial cells. UR infection resulted in longer inflammation in the brain and spinal cord because of demyelination, while the AM strain showed more infectivity in the cerebellum in neonatal ddY mice. Additionally, young BALB/c mice seroconverted following mucosal inoculation with the UR, but not the AM, strain. Conclusions Both SAFV-3 isolates had neurotropism and mild neurovirulence but showed different cell tropisms in both neonatal and young mouse models. This animal model has the potential to recapitulate the potential neuropathogenicity of SAFV-3. PMID:26828718

  3. Asymptomatic Carriage of Group A Streptococcus Is Associated with Elimination of Capsule Production

    PubMed Central

    Jewell, Brittany E.; Olsen, Randall J.; Shelburne, Samuel A.; Fittipaldi, Nahuel; Beres, Stephen B.; Musser, James M.

    2014-01-01

    Humans commonly carry pathogenic bacteria asymptomatically, but despite decades of study, the underlying molecular contributors remain poorly understood. Here, we show that a group A streptococcus carriage strain contains a frameshift mutation in the hasA gene resulting in loss of hyaluronic acid capsule biosynthesis. This mutation was repaired by allelic replacement, resulting in restoration of capsule production in the isogenic derivative strain. The “repaired” isogenic strain was significantly more virulent than the carriage strain in a mouse model of necrotizing fasciitis and had enhanced growth ex vivo in human blood. Importantly, the repaired isogenic strain colonized the mouse oropharynx with significantly greater bacterial burden and had significantly reduced ability to internalize into cultured epithelial cells than the acapsular carriage strain. We conducted full-genome sequencing of 81 strains cultured serially from 19 epidemiologically unrelated human subjects and discovered the common theme that mutations negatively affecting capsule biosynthesis arise in vivo in the has operon. The significantly decreased capsule production is a key factor contributing to the molecular détente between pathogen and host. Our discoveries suggest a general model for bacterial pathogens in which mutations that downregulate or ablate virulence factor production contribute to carriage. PMID:25024363

  4. Improving Metabolic Health Through Precision Dietetics in Mice

    PubMed Central

    Barrington, William T.; Wulfridge, Phillip; Wells, Ann E.; Rojas, Carolina Mantilla; Howe, Selene Y. F.; Perry, Amie; Hua, Kunjie; Pellizzon, Michael A.; Hansen, Kasper D.; Voy, Brynn H.; Bennett, Brian J.; Pomp, Daniel; Feinberg, Andrew P.; Threadgill, David W.

    2018-01-01

    The incidence of diet-induced metabolic disease has soared over the last half-century, despite national efforts to improve health through universal dietary recommendations. Studies comparing dietary patterns of populations with health outcomes have historically provided the basis for healthy diet recommendations. However, evidence that population-level diet responses are reliable indicators of responses across individuals is lacking. This study investigated how genetic differences influence health responses to several popular diets in mice, which are similar to humans in genetic composition and the propensity to develop metabolic disease, but enable precise genetic and environmental control. We designed four human-comparable mouse diets that are representative of those eaten by historical human populations. Across four genetically distinct inbred mouse strains, we compared the American diet’s impact on metabolic health to three alternative diets (Mediterranean, Japanese, and Maasai/ketogenic). Furthermore, we investigated metabolomic and epigenetic alterations associated with diet response. Health effects of the diets were highly dependent on genetic background, demonstrating that individualized diet strategies improve health outcomes in mice. If similar genetic-dependent diet responses exist in humans, then a personalized, or “precision dietetics,” approach to dietary recommendations may yield better health outcomes than the traditional one-size-fits-all approach. PMID:29158425

  5. Generation of embryos directly from embryonic stem cells by tetraploid embryo complementation reveals a role for GATA factors in organogenesis.

    PubMed

    Duncan, S A

    2005-12-01

    Gene targeting in ES (embryonic stem) cells has been used extensively to study the role of proteins during embryonic development. In the traditional procedure, this requires the generation of chimaeric mice by introducing ES cells into blastocysts and allowing them to develop to term. Once chimaeric mice are produced, they are bred into a recipient mouse strain to establish germline transmission of the allele of interest. Although this approach has been used very successfully, the breeding cycles involved are time consuming. In addition, genes that are essential for organogenesis often have roles in the formation of extra-embryonic tissues that are essential for early stages of post-implantation development. For example, mice lacking the GATA transcription factors, GATA4 or GATA6, arrest during gastrulation due to an essential role for these factors in differentiation of extra-embryonic endoderm. This lethality has frustrated the study of these factors during the development of organs such as the liver and heart. Extraembryonic defects can, however, be circumvented by generating clonal mouse embryos directly from ES cells by tetraploid complementation. Here, we describe the usefulness and efficacy of this approach using GATA factors as an example.

  6. Rearrangement of Retinogeniculate Projection Patterns after Eye-Specific Segregation in Mice

    PubMed Central

    Hayakawa, Itaru; Kawasaki, Hiroshi

    2010-01-01

    It has been of interest whether and when the rearrangement of neuronal circuits can be induced after projection patterns are formed during development. Earlier studies using cats reported that the rearrangement of retinogeniculate projections could be induced even after eye-specific segregation has occurred, but detailed and quantitative characterization of this rearrangement has been lacking. Here we delineate the structural changes of retinogeniculate projections in the C57BL/6 mouse in response to monocular enucleation (ME) after eye-specific segregation. When ME was performed after eye-specific segregation, rearrangement of retinogeniculate axons in the dorsal lateral geniculate nucleus (dLGN) was observed within 5 days. Although this rearrangement was observed both along the dorsomedial-ventrolateral and outer-inner axes in the dLGN, it occurred more rapidly along the outer-inner axis. We also examined the critical period for this rearrangement and found that the rearrangement became almost absent by the beginning of the critical period for ocular dominance plasticity in the primary visual cortex. Taken together, our findings serve as a framework for the assessment of phenotypes of genetically altered mouse strains as well as provide insights into the mechanisms underlying the rearrangement of retinogeniculate projections. PMID:20544023

  7. CHARACTERIZATION OF AEROMONAS VIRULENCE USING AN IMMUNOCOMPROMISED MOUSE MODEL

    EPA Science Inventory

    An immunocompromised mouse model was used to characterize Aeromonas strains for their ability to cause opportunistic, extraintestinal infections. A total of 34 isolates of Aeromonas (A. hydrophila [n = 12]), A. veronii biotype sobria [n = 7], A. caviae [n = 4], A. enchelia [n = 4...

  8. Genetics of Amino Acid Taste and Appetite.

    PubMed

    Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K

    2016-07-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. © 2016 American Society for Nutrition.

  9. PrPC Governs Susceptibility to Prion Strains in Bank Vole, While Other Host Factors Modulate Strain Features.

    PubMed

    Espinosa, J C; Nonno, R; Di Bari, M; Aguilar-Calvo, P; Pirisinu, L; Fernández-Borges, N; Vanni, I; Vaccari, G; Marín-Moreno, A; Frassanito, P; Lorenzo, P; Agrimi, U; Torres, J M

    2016-12-01

    Bank vole is a rodent species that shows differential susceptibility to the experimental transmission of different prion strains. In this work, the transmission features of a panel of diverse prions with distinct origins were assayed both in bank vole expressing methionine at codon 109 (Bv109M) and in transgenic mice expressing physiological levels of bank vole PrP C (the BvPrP-Tg407 mouse line). This work is the first systematic comparison of the transmission features of a collection of prion isolates, representing a panel of diverse prion strains, in a transgenic-mouse model and in its natural counterpart. The results showed very similar transmission properties in both the natural species and the transgenic-mouse model, demonstrating the key role of the PrP amino acid sequence in prion transmission susceptibility. However, differences in the PrP Sc types propagated by Bv109M and BvPrP-Tg407 suggest that host factors other than PrP C modulate prion strain features. The differential susceptibility of bank voles to prion strains can be modeled in transgenic mice, suggesting that this selective susceptibility is controlled by the vole PrP sequence alone rather than by other species-specific factors. Differences in the phenotypes observed after prion transmissions in bank voles and in the transgenic mice suggest that host factors other than the PrP C sequence may affect the selection of the substrain replicating in the animal model. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Metabolomic analysis of insulin resistance across different mouse strains and diets.

    PubMed

    Stöckli, Jacqueline; Fisher-Wellman, Kelsey H; Chaudhuri, Rima; Zeng, Xiao-Yi; Fazakerley, Daniel J; Meoli, Christopher C; Thomas, Kristen C; Hoffman, Nolan J; Mangiafico, Salvatore P; Xirouchaki, Chrysovalantou E; Yang, Chieh-Hsin; Ilkayeva, Olga; Wong, Kari; Cooney, Gregory J; Andrikopoulos, Sofianos; Muoio, Deborah M; James, David E

    2017-11-24

    Insulin resistance is a major risk factor for many diseases. However, its underlying mechanism remains unclear in part because it is triggered by a complex relationship between multiple factors, including genes and the environment. Here, we used metabolomics combined with computational methods to identify factors that classified insulin resistance across individual mice derived from three different mouse strains fed two different diets. Three inbred ILSXISS strains were fed high-fat or chow diets and subjected to metabolic phenotyping and metabolomics analysis of skeletal muscle. There was significant metabolic heterogeneity between strains, diets, and individual animals. Distinct metabolites were changed with insulin resistance, diet, and between strains. Computational analysis revealed 113 metabolites that were correlated with metabolic phenotypes. Using these 113 metabolites, combined with machine learning to segregate mice based on insulin sensitivity, we identified C22:1-CoA, C2-carnitine, and C16-ceramide as the best classifiers. Strikingly, when these three metabolites were combined into one signature, they classified mice based on insulin sensitivity more accurately than each metabolite on its own or other published metabolic signatures. Furthermore, C22:1-CoA was 2.3-fold higher in insulin-resistant mice and correlated significantly with insulin resistance. We have identified a metabolomic signature composed of three functionally unrelated metabolites that accurately predicts whole-body insulin sensitivity across three mouse strains. These data indicate the power of simultaneous analysis of individual, genetic, and environmental variance in mice for identifying novel factors that accurately predict metabolic phenotypes like whole-body insulin sensitivity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Genetics of Amino Acid Taste and Appetite123

    PubMed Central

    Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Beauchamp, Gary K

    2016-01-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. PMID:27422518

  12. Intragranulomatous necrosis in lungs of mice infected by aerosol with Mycobacterium tuberculosis is related to bacterial load rather than to any one cytokine or T cell type.

    PubMed

    Gil, Olga; Guirado, Evelyn; Gordillo, Sergi; Díaz, Jorge; Tapia, Gustavo; Vilaplana, Cristina; Ariza, Aurelio; Ausina, Vicenç; Cardona, Pere-Joan

    2006-03-01

    Low dose aerosol infection of C57BL/6 mice with a clinical strain of Mycobacterium tuberculosis (UTE 0335 R) induced intragranulomatous necrosis in pulmonary granulomas (INPG) at week 9 postinfection. Infection of different knockout (KO) mouse strains with UTE 0335 R induced INPG in all strains and established two histopathological patterns. The first pattern was seen in SCID mice and in mice with deleted alpha/beta T receptor, TNF R1, IL-12, IFN-gamma, or iNOS genes, and showed a massive INPG with a high granulomatous infiltration of the lung, a large and homogeneous eosinophilic necrosis full of acid-fast bacilli, with marked karyorrhexis, coarse basophilic necrosis, and surrounded by patches delimited by partially conserved alveolar septum full of PMNs. The second pattern was seen in mice with deleted IL-1 R1, IL-6, IL-10, CD4, CD8 or gamma/delta T cell receptor genes, and showed more discrete lesions with predominant homogeneous eosinophilic necrosis with few bacilli and surrounded by a well-defined lymphocyte-based ring. Local expression of IFN-gamma, iNOS, TNF and RANTES showed no significant differences between these mouse strains generating a discrete INPG. Mouse strains showing a massive INPG showed higher, lower or equal expression values compared to the control strain. In conclusion, the severity of the INPG pattern correlated with pulmonary CFU counts, irrespective of the genetic absence or the infection-induced levels of cytokine mediators.

  13. Segregation of a spontaneous Klrd1 (CD94) mutation in DBA/2 mouse substrains.

    PubMed

    Shin, Dai-Lun; Pandey, Ashutosh K; Ziebarth, Jesse Dylan; Mulligan, Megan K; Williams, Robert W; Geffers, Robert; Hatesuer, Bastian; Schughart, Klaus; Wilk, Esther

    2014-12-17

    Current model DBA/2J (D2J) mice lack CD94 expression due to a deletion spanning the last coding exon of the Klrd1 gene that occurred in the mid- to late 1980s. In contrast, DBA/2JRj (D2Rj) mice, crosses derived from DBA/2J before 1984, and C57BL/6J (B6) mice lack the deletion and have normal CD94 expression. For example, BXD lines (BXD1-32) generated in the 1970s by crossing B6 and D2J do not segregate for the exonic deletion and have high expression, whereas BXD lines 33 and greater were generated after 1990 are segregating for the deletion and have highly variable Klrd1 expression. We performed quantitative trait locus analysis of Klrd1 expression by using BXD lines with different generation times and found that the expression difference in Klrd1 in the later BXD set is driven by a strong cis-acting expression quantitative trait locus. Although the Klrd1/CD94 locus is essential for mousepox resistance, the genetic variation among D2 substrains and the later set of BXD strains is not associated with susceptibility to the Influenza A virus PR8 strain. Substrains with nearly identical genetic backgrounds that are segregating functional variants such as the Klrd1 deletion are useful genetic tools to investigate biological function. Copyright © 2015 Shin et al.

  14. Segregation of a Spontaneous Klrd1 (CD94) Mutation in DBA/2 Mouse Substrains

    PubMed Central

    Shin, Dai-Lun; Pandey, Ashutosh K.; Ziebarth, Jesse Dylan; Mulligan, Megan K.; Williams, Robert W.; Geffers, Robert; Hatesuer, Bastian; Schughart, Klaus; Wilk, Esther

    2014-01-01

    Current model DBA/2J (D2J) mice lack CD94 expression due to a deletion spanning the last coding exon of the Klrd1 gene that occurred in the mid- to late 1980s. In contrast, DBA/2JRj (D2Rj) mice, crosses derived from DBA/2J before 1984, and C57BL/6J (B6) mice lack the deletion and have normal CD94 expression. For example, BXD lines (BXD1–32) generated in the 1970s by crossing B6 and D2J do not segregate for the exonic deletion and have high expression, whereas BXD lines 33 and greater were generated after 1990 are segregating for the deletion and have highly variable Klrd1 expression. We performed quantitative trait locus analysis of Klrd1 expression by using BXD lines with different generation times and found that the expression difference in Klrd1 in the later BXD set is driven by a strong cis-acting expression quantitative trait locus. Although the Klrd1/CD94 locus is essential for mousepox resistance, the genetic variation among D2 substrains and the later set of BXD strains is not associated with susceptibility to the Influenza A virus PR8 strain. Substrains with nearly identical genetic backgrounds that are segregating functional variants such as the Klrd1 deletion are useful genetic tools to investigate biological function. PMID:25520036

  15. Quantification of substrate and cellular strains in stretchable 3D cell cultures: an experimental and computational framework.

    PubMed

    González-Avalos, P; Mürnseer, M; Deeg, J; Bachmann, A; Spatz, J; Dooley, S; Eils, R; Gladilin, E

    2017-05-01

    The mechanical cell environment is a key regulator of biological processes . In living tissues, cells are embedded into the 3D extracellular matrix and permanently exposed to mechanical forces. Quantification of the cellular strain state in a 3D matrix is therefore the first step towards understanding how physical cues determine single cell and multicellular behaviour. The majority of cell assays are, however, based on 2D cell cultures that lack many essential features of the in vivo cellular environment. Furthermore, nondestructive measurement of substrate and cellular mechanics requires appropriate computational tools for microscopic image analysis and interpretation. Here, we present an experimental and computational framework for generation and quantification of the cellular strain state in 3D cell cultures using a combination of 3D substrate stretcher, multichannel microscopic imaging and computational image analysis. The 3D substrate stretcher enables deformation of living cells embedded in bead-labelled 3D collagen hydrogels. Local substrate and cell deformations are determined by tracking displacement of fluorescent beads with subsequent finite element interpolation of cell strains over a tetrahedral tessellation. In this feasibility study, we debate diverse aspects of deformable 3D culture construction, quantification and evaluation, and present an example of its application for quantitative analysis of a cellular model system based on primary mouse hepatocytes undergoing transforming growth factor (TGF-β) induced epithelial-to-mesenchymal transition. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  16. A long and abundant non-coding RNA in Lactobacillus salivarius.

    PubMed

    Cousin, Fabien J; Lynch, Denise B; Chuat, Victoria; Bourin, Maxence J B; Casey, Pat G; Dalmasso, Marion; Harris, Hugh M B; McCann, Angela; O'Toole, Paul W

    2017-09-01

    Lactobacillus salivarius , found in the intestinal microbiota of humans and animals, is studied as an example of the sub-dominant intestinal commensals that may impart benefits upon their host. Strains typically harbour at least one megaplasmid that encodes functions contributing to contingency metabolism and environmental adaptation. RNA sequencing (RNA-seq)transcriptomic analysis of L. salivarius strain UCC118 identified the presence of a novel unusually abundant long non-coding RNA (lncRNA) encoded by the megaplasmid, and which represented more than 75 % of the total RNA-seq reads after depletion of rRNA species. The expression level of this 520 nt lncRNA in L. salivarius UCC118 exceeded that of the 16S rRNA, it accumulated during growth, was very stable over time and was also expressed during intestinal transit in a mouse. This lncRNA sequence is specific to the L. salivarius species; however, among 45 L . salivarius genomes analysed, not all (only 34) harboured the sequence for the lncRNA. This lncRNA was produced in 27 tested L. salivarius strains, but at strain-specific expression levels. High-level lncRNA expression correlated with high megaplasmid copy number. Transcriptome analysis of a deletion mutant lacking this lncRNA identified altered expression levels of genes in a number of pathways, but a definitive function of this new lncRNA was not identified. This lncRNA presents distinctive and unique properties, and suggests potential basic and applied scientific developments of this phenomenon.

  17. Yersinia pestis and host macrophages: immunodeficiency of mouse macrophages induced by YscW.

    PubMed

    Bi, Yujing; Du, Zongmin; Han, Yanping; Guo, Zhaobiao; Tan, Yafang; Zhu, Ziwen; Yang, Ruifu

    2009-09-01

    The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system (T3SS) that transfers six Yersinia outer protein (Yop) effector proteins into the cytoplasm of eukaryotic cells, leading to disruption of host defence mechanisms. It is shown in this study that Yersinia pestis YscW, a protein of the T3SS injectisome, contributes to the induction of a deficiency in phagocytosis in host macrophages and a reduction in their antigen-presenting capacity. A Y. pestis strain lacking yscW had no effect on uptake by host macrophages. In mice infected with wild-type Y. pestis, the yscW mutant or a complement strain, immunodeficiency was observed in host macrophages compared with those from uninfected mice. However, the phagocytosis and antigen presenting capacities of macrophages infected by yscW mutant strain both in vivo and in vitro were significantly higher than those by wild type strain. Consistent with this finding, when YscW was expressed in the RAW264.7 macrophage cell line, phagocytosis and antigen-presenting capacities were significantly lower than those of the control groups. These results indicate that Y. pestis YscW may directly induce immunodeficiency in murine macrophages by crippling their phagocytosis and antigen-presenting capacities. These data provide evidences to Y. pestis pathogenesis that some proteins in T3SS injectisome, such as YscW protein, might play independent roles in disrupting host defense apart from their known functions.

  18. The genomic landscape shaped by selection on transposable elements across 18 mouse strains.

    PubMed

    Nellåker, Christoffer; Keane, Thomas M; Yalcin, Binnaz; Wong, Kim; Agam, Avigail; Belgard, T Grant; Flint, Jonathan; Adams, David J; Frankel, Wayne N; Ponting, Chris P

    2012-06-15

    Transposable element (TE)-derived sequence dominates the landscape of mammalian genomes and can modulate gene function by dysregulating transcription and translation. Our current knowledge of TEs in laboratory mouse strains is limited primarily to those present in the C57BL/6J reference genome, with most mouse TEs being drawn from three distinct classes, namely short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs) and the endogenous retrovirus (ERV) superfamily. Despite their high prevalence, the different genomic and gene properties controlling whether TEs are preferentially purged from, or are retained by, genetic drift or positive selection in mammalian genomes remain poorly defined. Using whole genome sequencing data from 13 classical laboratory and 4 wild-derived mouse inbred strains, we developed a comprehensive catalogue of 103,798 polymorphic TE variants. We employ this extensive data set to characterize TE variants across the Mus lineage, and to infer neutral and selective processes that have acted over 2 million years. Our results indicate that the majority of TE variants are introduced though the male germline and that only a minority of TE variants exert detectable changes in gene expression. However, among genes with differential expression across the strains there are twice as many TE variants identified as being putative causal variants as expected. Most TE variants that cause gene expression changes appear to be purged rapidly by purifying selection. Our findings demonstrate that past TE insertions have often been highly deleterious, and help to prioritize TE variants according to their likely contribution to gene expression or phenotype variation.

  19. Strain Background Modifies Phenotypes in the ATP8B1-Deficient Mouse

    PubMed Central

    Vargas, Julie C.; Xu, Hongmei; Groen, Annamiek; Paulusma, Coen C.; Grenert, James P.; Pawlikowska, Ludmila; Sen, Saunak; Elferink, Ronald P. J. Oude; Bull, Laura N.

    2010-01-01

    Background Mutations in ATP8B1 (FIC1) underlie cases of cholestatic disease, ranging from chronic and progressive (progressive familial intrahepatic cholestasis) to intermittent (benign recurrent intrahepatic cholestasis). The ATP8B1-deficient mouse serves as an animal model of human ATP8B1 deficiency. Methodology/Principal Findings We investigated the effect of genetic background on phenotypes of ATP8B1-deficient and wild-type mice, using C57Bl/6 (B6), 129, and (B6-129) F1 strain backgrounds. B6 background resulted in greater abnormalities in ATP8B1-deficient mice than did 129 and/or F1 background. ATP8B1-deficient pups of B6 background gained less weight. In adult ATP8B1-deficient mice at baseline, those of B6 background had lower serum cholesterol levels, higher serum alkaline phosphatase levels, and larger livers. After challenge with cholate-supplemented diet, these mice exhibited higher serum alkaline phosphatase and bilirubin levels, greater weight loss and larger livers. ATP8B1-deficient phenotypes in mice of F1 and 129 backgrounds are usually similar, suggesting that susceptibility to manifestations of ATP8B1 deficiency may be recessive. We also detected differences in hepatobiliary phenotypes between wild-type mice of differing strains. Conclusions/Significance Our results indicate that the ATP8B1-deficient mouse in a B6 background may be a better model of human ATP8B1 deficiency and highlight the importance of informed background strain selection for mouse models of liver disease. PMID:20126555

  20. A Pseudomonas aeruginosa strain isolated from a contact lens-induced acute red eye (CLARE) is protease-deficient.

    PubMed

    Estrellas, P S; Alionte, L G; Hobden, J A

    2000-03-01

    Pseudomonas aeruginosa proteases are thought to be important virulence factors in the pathogenesis of corneal disease. This study examined protease production from two strains of P. aeruginosa responsible for two very distinct clinical diseases: strain Paer1, isolated from a Contact Lens-induced Acute Red Eye (CLARE), and strain KEI 1025, isolated from a corneal ulcer. Strains were compared to a laboratory strain (ATCC 19660) known to produce severe keratitis in experimentally infected mice for protease production and for ocular virulence. Protease production was examined with colorimetric assays, gelatin zymography and western blots. Elastase A activity was quantitated with a staphylolytic assay. Ocular virulence was examined using a mouse scratch model of keratitis. In contrast to strains KEI 1025 or ATCC 19660, Paer1 was unable to produce enzymatically active elastase A, elastase, and protease IV. All three strains produced active alkaline protease. Strains KEI 1025 and ATCC 19660 produced a fulminant keratitis in mice whereas Paer1 produced a mild transient infection. Restoration of elastase activity in Paer1 via genetic complementation did not result in a virulent phenotype. Co-infection of mouse eyes with strains Paer1 and ATCC 19660 resulted in the eventual loss of Paer1 from corneal tissue. These studies suggest that P. aeruginosa elastase A and/or protease IV, but not alkaline protease or elastase, contribute to the ocular virulence of this organism.

  1. Resistance of Bovine Spongiform Encephalopathy (BSE) Prions to Inactivation

    PubMed Central

    Giles, Kurt; Glidden, David V.; Beckwith, Robyn; Seoanes, Rose; Peretz, David; DeArmond, Stephen J.; Prusiner, Stanley B.

    2008-01-01

    Distinct prion strains often exhibit different incubation periods and patterns of neuropathological lesions. Strain characteristics are generally retained upon intraspecies transmission, but may change on transmission to another species. We investigated the inactivation of two related prions strains: BSE prions from cattle and mouse-passaged BSE prions, termed 301V. Inactivation was manipulated by exposure to sodium dodecyl sulfate (SDS), variations in pH, and different temperatures. Infectivity was measured using transgenic mouse lines that are highly susceptible to either BSE or 301V prions. Bioassays demonstrated that BSE prions are up to 1,000-fold more resistant to inactivation than 301V prions while Western immunoblotting showed that short acidic SDS treatments reduced protease-resistant PrPSc from BSE prions and 301V prions at similar rates. Our findings argue that despite being derived from BSE prions, mouse 301V prions are not necessarily a reliable model for cattle BSE prions. Extending these comparisons to human sporadic Creutzfeldt-Jakob disease and hamster Sc237 prions, we found that BSE prions were 10- and 106-fold more resistant to inactivation, respectively. Our studies contend that any prion inactivation procedures must be validated by bioassay against the prion strain for which they are intended to be used. PMID:19008948

  2. Simultaneous suppression of TGF-β and ERK signaling contributes to the highly efficient and reproducible generation of mouse embryonic stem cells from previously considered refractory and non-permissive strains.

    PubMed

    Hassani, Seyedeh-Nafiseh; Totonchi, Mehdi; Farrokhi, Ali; Taei, Adeleh; Larijani, Mehran Rezaei; Gourabi, Hamid; Baharvand, Hossein

    2012-06-01

    Mouse embryonic stem cells (ESCs) are pluripotent stem cell lines derived from pre-implantation embryos. The efficiency of mESC generation is affected by genetic variation in mice; that is, some mouse strains are refractory or non-permissive to ESC establishment. Developing an efficient method to derive mESCs from strains of various genetic backgrounds should be valuable for establishment of ESCs in various mammalian species. In the present study, we identified dual inhibition of TGF-β and ERK1/2, by SB431542 and PD0325901, respectively led to the highly efficient and reproducible generation of mESC lines from NMRI, C57BL/6, BALB/c, DBA/2, and FVB/N strains, which previously considered refractory or non-permissive for ESC establishment. These mESCs expressed pluripotency markers and retained the capacity to differentiate into derivatives of all three germ layers. The evaluated lines exhibited high rates of chimerism when reintroduced into blastocysts. To our knowledge, this is the first report of efficient (100%) mESC lines generation from different genetic backgrounds. The application of these two inhibitors will not only solve the problems of mESC derivation but also clarifies new signaling pathways in pluripotent mESCs.

  3. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    PubMed Central

    Zuberi, Aamir; Lutz, Cathleen

    2016-01-01

    Abstract The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems, are synergistic and serve to make the mouse a better model for biomedical research, enhancing the potential for preclinical drug discovery and personalized medicine. PMID:28053071

  4. Histological and reference system for the analysis of mouse intervertebral disc.

    PubMed

    Tam, Vivian; Chan, Wilson C W; Leung, Victor Y L; Cheah, Kathryn S E; Cheung, Kenneth M C; Sakai, Daisuke; McCann, Matthew R; Bedore, Jake; Séguin, Cheryle A; Chan, Danny

    2018-01-01

    A new scoring system based on histo-morphology of mouse intervertebral disc (IVD) was established to assess changes in different mouse models of IVD degeneration and repair. IVDs from mouse strains of different ages, transgenic mice, or models of artificially induced IVD degeneration were assessed. Morphological features consistently observed in normal, and early/later stages of degeneration were categorized into a scoring system focused on nucleus pulposus (NP) and annulus fibrosus (AF) changes. "Normal NP" exhibited a highly cellularized cell mass that decreased with natural ageing and in disc degeneration. "Normal AF" consisted of distinct concentric lamellar structures, which was disrupted in severe degeneration. NP/AF clefts indicated more severe changes. Consistent scores were obtained between experienced and new users. Altogether, our scoring system effectively differentiated IVD changes in various strains of wild-type and genetically modified mice and in induced models of IVD degeneration, and is applicable from the post-natal stage to the aged mouse. This scoring tool and reference resource addresses a pressing need in the field for studying IVD changes and cross-study comparisons in mice, and facilitates a means to normalize mouse IVD assessment between different laboratories. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:233-243, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. The a“MAZE”ing World of Lung-Specific Transgenic Mice

    PubMed Central

    Rawlins, Emma L.

    2012-01-01

    The purpose of this review is to give a comprehensive overview of transgenic mouse lines suitable for studying gene function and cellular lineage relationships in lung development, homeostasis, injury, and repair. Many of the mouse strains reviewed in this Perspective have been widely shared within the lung research community, and new strains are continuously being developed. There are many transgenic lines that target subsets of lung cells, but it remains a challenge for investigators to select the correct transgenic modules for their experiment. This review covers the tetracycline- and tamoxifen-inducible systems and focuses on conditional lines that target the epithelial cells. We point out the limitations of each strain so investigators can choose the system that will work best for their scientific question. Current mesenchymal and endothelial lines are limited by the fact that they are not lung specific. These lines are summarized in a brief overview. In addition, useful transgenic reporter mice for studying lineage relationships, promoter activity, and signaling pathways will complete our lung-specific conditional transgenic mouse shopping list. PMID:22180870

  6. Brucella pinnipedialis hooded seal (Cystophora cristata) strain in the mouse model with concurrent exposure to PCB 153.

    PubMed

    Nymo, Ingebjørg H; das Neves, Carlos G; Tryland, Morten; Bårdsen, Bård-Jørgen; Santos, Renato Lima; Turchetti, Andreia Pereira; Janczak, Andrew M; Djønne, Berit; Lie, Elisabeth; Berg, Vidar; Godfroid, Jacques

    2014-05-01

    Brucellosis, a worldwide zoonosis, is linked to reproductive problems in primary hosts. A high proportion of Brucella-positive hooded seals (Cystophora cristata) have been detected in the declined Northeast Atlantic stock. High concentrations of polychlorinated biphenyls (PCBs) have also been discovered in top predators in the Arctic, including the hooded seal, PCB 153 being most abundant. The aim of this study was to assess the pathogenicity of Brucella pinnipedialis hooded seal strain in the mouse model and to evaluate the outcome of Brucella spp. infection after exposure of mice to PCB 153. BALB/c mice were infected with B. pinnipedialis hooded seal strain or Brucella suis 1330, and half from each group was exposed to PCB 153 through the diet. B. pinnipedialis showed a reduced pathogenicity in the mouse model as compared to B. suis 1330. Exposure to PCB 153 affected neither the immunological parameters, nor the outcome of the infection. Altogether this indicates that it is unlikely that B. pinnipedialis contribute to the decline of hooded seals in the Northeast Atlantic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Lung tumor induction in strain A mice with benzotrichloride.

    PubMed

    Stoner, G D; You, M; Morgan, M A; Superczynski, M J

    1986-11-01

    Benzotrichloride (BTC) is used in the synthesis of benzoyl chloride and benzoyl peroxide. Epidemiological data suggest that BTC is a human lung carcinogen. In the present study, BTC was evaluated for its ability to induce lung adenomas in strain A/J mice. Four groups of 15 male and 15 female A/J mice were injected i.p. with either tricaprylin or BTC in tricaprylin three times a week for 8 weeks. BTC groups received doses totaling 1440 mg/kg, 719 mg/kg or 287 mg/kg. The mean number of lung tumors per mouse was 127 87 +/- 5.81, 43 +/- 2.44, and 17.73 +/- 1.09 in the groups treated with either 1440 mg/kg, 719 mg/kg, or 287 mg/kg, respectively. Tricaprylin-vehicle controls had a mean number of 0.46 +/- 0.15 lung tumors per mouse. Therefore, BTC produced a significant (P less than 0.001) and dose-related increase in the lung tumor response when compared to tricaprylin controls and is a potent carcinogen in the strain A mouse lung tumor bioassay.

  8. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation

    PubMed Central

    Hawes, Norman L.; Trantow, Colleen M.; Chang, Bo; John, Simon W.M.

    2010-01-01

    Summary Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among sixteen mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease. PMID:18715234

  9. Iris phenotypes and pigment dispersion caused by genes influencing pigmentation.

    PubMed

    Anderson, Michael G; Hawes, Norman L; Trantow, Colleen M; Chang, Bo; John, Simon W M

    2008-10-01

    Spontaneous mutations altering mouse coat colors have been a classic resource for discovery of numerous molecular pathways. Although often overlooked, the mouse iris is also densely pigmented and easily observed, thus representing a similarly powerful opportunity for studying pigment cell biology. Here, we present an analysis of iris phenotypes among 16 mouse strains with mutations influencing melanosomes. Many of these strains exhibit biologically and medically relevant phenotypes, including pigment dispersion, a common feature of several human ocular diseases. Pigment dispersion was identified in several strains with mutant alleles known to influence melanosomes, including beige, light, and vitiligo. Pigment dispersion was also detected in the recently arising spontaneous coat color variant, nm2798. We have identified the nm2798 mutation as a missense mutation in the Dct gene, an identical re-occurrence of the slaty light mutation. These results suggest that dysregulated events of melanosomes can be potent contributors to the pigment dispersion phenotype. Combined, these findings illustrate the utility of studying iris phenotypes as a means of discovering new pathways, and re-linking old ones, to processes of pigmented cells in health and disease.

  10. Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice

    PubMed Central

    2011-01-01

    Background The expanding set of genomics tools available for inbred mouse strains has renewed interest in phenotyping larger sets of strains. The present study aims to explore phenotypic variability among six commonly-used inbred mouse strains to both the rewarding and locomotor stimulating effects of cocaine in a place conditioning task, including several strains or substrains that have not yet been characterized for some or all of these behaviors. Methods C57BL/6J (B6), BALB/cJ (BALB), C3H/HeJ (C3H), DBA/2J (D2), FVB/NJ (FVB) and 129S1/SvImJ (129) mice were tested for conditioned place preference to 20 mg/kg cocaine. Results Place preference was observed in most strains with the exception of D2 and 129. All strains showed a marked increase in locomotor activity in response to cocaine. In BALB mice, however, locomotor activation was context-dependent. Locomotor sensitization to repeated exposure to cocaine was most significant in 129 and D2 mice but was absent in FVB mice. Conclusions Genetic correlations suggest that no significant correlation between conditioned place preference, acute locomotor activation, and locomotor sensitization exists among these strains indicating that separate mechanisms underlie the psychomotor and rewarding effects of cocaine. PMID:21806802

  11. Tracking Bioluminescent ETEC during In vivo BALB/c Mouse Colonization

    PubMed Central

    Rodea, Gerardo E.; Montiel-Infante, Francisco X.; Cruz-Córdova, Ariadnna; Saldaña-Ahuactzi, Zeus; Ochoa, Sara A.; Espinosa-Mazariego, Karina; Hernández-Castro, Rigoberto; Xicohtencatl-Cortes, Juan

    2017-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea worldwide. Adhesion to the human intestinal tract is crucial for colonization. ETEC adhesive structures have been extensively studied; however, colonization dynamics remain uncharacterized. The aim of this study was to track bioluminescent ETEC during in vivo infection. The promoter region of dnaK was fused with the luc gene, resulting in the pRMkluc vector. E. coli K-12 and ETEC FMU073332 strains were electroporated with pRMkluc. E. coli K-12 pRMkluc was bioluminescent; in contrast, the E. coli K-12 control strain did not emit bioluminescence. The highest light emission was measured at 1.9 OD600 (9 h) and quantified over time. The signal was detected starting at time 0 and up to 12 h. Streptomycin-treated BALB/c mice were orogastrically inoculated with either ETEC FMU073332 pRMkluc or E. coli K-12 pRMkluc (control), and bacterial colonization was determined by measuring bacterial shedding in the feces. ETEC FMU073332 pRMkluc shedding started and stopped after inoculation of the control strain, indicating that mouse intestinal colonization by ETEC FMU073332 pRMkluc lasted longer than colonization by the control. The bioluminescence signal of ETEC FMU073332 pRMkluc was captured starting at the time of inoculation until 12 h after inoculation. The bioluminescent signal emitted by ETEC FMU073332 pRMkluc in the proximal mouse ileum was located, and the control signal was identified in the cecum. The detection of maximal light emission and bioluminescence duration allowed us to follow ETEC during in vivo infection. ETEC showed an enhanced colonization and tropism in the mouse intestine compared with those in the control strain. Here, we report the first study of ETEC colonization in the mouse intestine accompanied by in vivo imaging. PMID:28560186

  12. Reward-Related Behavioral Paradigms for Addiction Research in the Mouse: Performance of Common Inbred Strains

    PubMed Central

    Feyder, Michael; Brigman, Jonathan L.; Crombag, Hans S.; Saksida, Lisa M.; Bussey, Timothy J.; Holmes, Andrew

    2011-01-01

    The mouse has emerged as a uniquely valuable species for studying the molecular and genetic basis of complex behaviors and modeling neuropsychiatric disease states. While valid and reliable preclinical assays for reward-related behaviors are critical to understanding addiction-related processes, and various behavioral procedures have been developed and characterized in rats and primates, there have been relatively few studies using operant-based addiction-relevant behavioral paradigms in the mouse. Here we describe the performance of the C57BL/6J inbred mouse strain on three major reward-related paradigms, and replicate the same procedures in two other commonly used inbred strains (DBA/2J, BALB/cJ). We examined Pavlovian-instrumental transfer (PIT) by measuring the ability of an auditory cue associated with food reward to promote an instrumental (lever press) response. In a separate experiment, we assessed the acquisition and extinction of a simple stimulus-reward instrumental behavior on a touchscreen-based task. Reinstatement of this behavior was then examined following either continuous exposure to cues (conditioned reinforcers, CRs) associated with reward, brief reward and CR exposure, or brief reward exposure followed by continuous CR exposure. The third paradigm examined sensitivity of an instrumental (lever press) response to devaluation of food reward (a probe for outcome insensitive, habitual behavior) by repeated pairing with malaise. Results showed that C57BL/6J mice displayed robust PIT, as well as clear extinction and reinstatement, but were insensitive to reinforcer devaluation. DBA/2J mice showed good PIT and (rewarded) reinstatement, but were slow to extinguish and did not show reinforcer devaluation or significant CR-reinstatement. BALB/cJ mice also displayed good PIT, extinction and reinstatement, and retained instrumental responding following devaluation, but, unlike the other strains, demonstrated reduced Pavlovian approach behavior (food magazine head entries). Overall, these assays provide robust paradigms for future studies using the mouse to elucidate the neural, molecular and genetic factors underpinning reward-related behaviors relevant to addiction research. PMID:21249214

  13. Reward-related behavioral paradigms for addiction research in the mouse: performance of common inbred strains.

    PubMed

    Lederle, Lauren; Weber, Susanna; Wright, Tara; Feyder, Michael; Brigman, Jonathan L; Crombag, Hans S; Saksida, Lisa M; Bussey, Timothy J; Holmes, Andrew

    2011-01-10

    The mouse has emerged as a uniquely valuable species for studying the molecular and genetic basis of complex behaviors and modeling neuropsychiatric disease states. While valid and reliable preclinical assays for reward-related behaviors are critical to understanding addiction-related processes, and various behavioral procedures have been developed and characterized in rats and primates, there have been relatively few studies using operant-based addiction-relevant behavioral paradigms in the mouse. Here we describe the performance of the C57BL/6J inbred mouse strain on three major reward-related paradigms, and replicate the same procedures in two other commonly used inbred strains (DBA/2J, BALB/cJ). We examined Pavlovian-instrumental transfer (PIT) by measuring the ability of an auditory cue associated with food reward to promote an instrumental (lever press) response. In a separate experiment, we assessed the acquisition and extinction of a simple stimulus-reward instrumental behavior on a touch screen based task. Reinstatement of this behavior was then examined following either continuous exposure to cues (conditioned reinforcers, CRs) associated with reward, brief reward and CR exposure, or brief reward exposure followed by continuous CR exposure. The third paradigm examined sensitivity of an instrumental (lever press) response to devaluation of food reward (a probe for outcome insensitive, habitual behavior) by repeated pairing with malaise. Results showed that C57BL/6J mice displayed robust PIT, as well as clear extinction and reinstatement, but were insensitive to reinforcer devaluation. DBA/2J mice showed good PIT and (rewarded) reinstatement, but were slow to extinguish and did not show reinforcer devaluation or significant CR-reinstatement. BALB/cJ mice also displayed good PIT, extinction and reinstatement, and retained instrumental responding following devaluation, but, unlike the other strains, demonstrated reduced Pavlovian approach behavior (food magazine head entries). Overall, these assays provide robust paradigms for future studies using the mouse to elucidate the neural, molecular and genetic factors underpinning reward-related behaviors relevant to addiction research.

  14. Alcohol dehydrogenase AdhA plays a role in ethanol tolerance in model cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Vidal, Rebeca

    2017-04-01

    The protein AdhA from the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis) has been previously reported to show alcohol dehydrogenase activity towards ethanol and both NAD and NADP. This protein is currently being used in genetically modified strains of Synechocystis capable of synthesizing ethanol showing the highest ethanol productivities. In the present work, mutant strains of Synechocystis lacking AdhA have been constructed and tested for tolerance to ethanol. The lack of AdhA in the wild-type strain reduces survival to externally added ethanol at lethal concentration of 4% (v/v). On the other hand, the lack of AdhA in an ethanologenic strain diminishes tolerance of cells to internally produced ethanol. It is also shown that light-activated heterotrophic growth (LAHG) of the wild-type strain is impaired in the mutant strain lacking AdhA (∆adhA strain). Photoautotrophic, mixotrophic, and photoheterotrophic growth are not affected in the mutant strain. Based on phenotypic characterization of ∆adhA mutants, the possible physiological function of AdhA in Synechocystis is discussed.

  15. Mouse Model for Human Arginase Deficiency

    PubMed Central

    Iyer, Ramaswamy K.; Yoo, Paul K.; Kern, Rita M.; Rozengurt, Nora; Tsoa, Rosemarie; O'Brien, William E.; Yu, Hong; Grody, Wayne W.; Cederbaum, Stephen D.

    2002-01-01

    Deficiency of liver arginase (AI) causes hyperargininemia (OMIM 207800), a disorder characterized by progressive mental impairment, growth retardation, and spasticity and punctuated by sometimes fatal episodes of hyperammonemia. We constructed a knockout mouse strain carrying a nonfunctional AI gene by homologous recombination. Arginase AI knockout mice completely lacked liver arginase (AI) activity, exhibited severe symptoms of hyperammonemia, and died between postnatal days 10 and 14. During hyperammonemic crisis, plasma ammonia levels of these mice increased >10-fold compared to those for normal animals. Livers of AI-deficient animals showed hepatocyte abnormalities, including cell swelling and inclusions. Plasma amino acid analysis showed the mean arginine level in knockouts to be approximately fourfold greater than that for the wild type and threefold greater than that for heterozygotes; the mean proline level was approximately one-third and the ornithine level was one-half of the proline and ornithine levels, respectively, for wild-type or heterozygote mice—understandable biochemical consequences of arginase deficiency. Glutamic acid, citrulline, and histidine levels were about 1.5-fold higher than those seen in the phenotypically normal animals. Concentrations of the branched-chain amino acids valine, isoleucine, and leucine were 0.4 to 0.5 times the concentrations seen in phenotypically normal animals. In summary, the AI-deficient mouse duplicates several pathobiological aspects of the human condition and should prove to be a useful model for further study of the disease mechanism(s) and to explore treatment options, such as pharmaceutical administration of sodium phenylbutyrate and/or ornithine and development of gene therapy protocols. PMID:12052859

  16. The IL-1R/TLR signaling pathway is essential for efficient CD8+ T-cell responses against hepatitis B virus in the hydrodynamic injection mouse model.

    PubMed

    Ma, Zhiyong; Liu, Jia; Wu, Weimin; Zhang, Ejuan; Zhang, Xiaoyong; Li, Qian; Zelinskyy, Gennadiy; Buer, Jan; Dittmer, Ulf; Kirschning, Carsten J; Lu, Mengji

    2017-12-01

    The outcome of hepatitis B viral (HBV) infection is determined by the complex interactions between replicating HBV and the immune system. While the role of the adaptive immune system in the resolution of HBV infection has been studied extensively, the contribution of innate immune mechanisms remains to be defined. Here we examined the role of the interleukin-1 receptor/Toll-like receptor (IL-1R/TLR) signaling pathway in adaptive immune responses and viral clearance by exploring the HBV mouse model. Hydrodynamic injection with a replication-competent HBV genome was performed in wild-type mice (WT) and a panel of mouse strains lacking specific innate immunity component expression. We found higher levels of HBV protein production and replication in Tlr2 -/- , Tlr23479 -/- , 3d/Tlr24 -/- , Myd88/Trif -/- and Irak4 -/- mice, which was associated with reduced HBV-specific CD8 + T-cell responses in these mice. Importantly, HBV clearance was delayed for more than 2 weeks in 3d/Tlr24 -/- , Myd88/Trif -/- and Irak4 -/- mice compared to WT mice. HBV-specific CD8 + T-cell responses were functionally impaired for producing the cytokines IFN-γ, TNF-α and IL-2 in TLR signaling-deficient mice compared to WT mice. In conclusion, the IL-1R/TLR signaling pathway might contribute to controlling HBV infection by augmenting HBV-specific CD8 + T-cell responses.

  17. Maintenance of airway epithelium in acutely rejected orthotopic vascularized mouse lung transplants.

    PubMed

    Okazaki, Mikio; Gelman, Andrew E; Tietjens, Jeremy R; Ibricevic, Aida; Kornfeld, Christopher G; Huang, Howard J; Richardson, Steven B; Lai, Jiaming; Garbow, Joel R; Patterson, G Alexander; Krupnick, Alexander S; Brody, Steven L; Kreisel, Daniel

    2007-12-01

    Lung transplantation remains the only therapeutic option for many patients suffering from end-stage pulmonary disease. Long-term success after lung transplantation is severely limited by the development of bronchiolitis obliterans. The murine heterotopic tracheal transplantation model has been widely used for studies investigating pathogenesis of obliterative airway disease and immunosuppressive strategies to prevent its development. Despite its utility, this model employs proximal airway that lacks airflow and is not vascularized. We have developed a novel model of orthotopic vascularized lung transplantation in the mouse, which leads to severe vascular rejection in allogeneic strain combinations. Here we characterize differences in the fate of airway epithelial cells in nonimmunosuppressed heterotopic tracheal and vascularized lung allograft models over 28 days. Up-regulation of growth factors that are thought to be critical for the development of airway fibrosis and interstitial collagen deposition were similar in both models. However, while loss of airway epithelial cells occurred in the tracheal model, airway epithelium remained intact and fully differentiated in lung allografts, despite profound vascular rejection. Moreover, we demonstrate expression of the anti-apoptotic protein Bcl-2 in airway epithelial cells of acutely rejected lung allografts. These findings suggest that in addition to alloimmune responses, other stimuli may be required for the destruction of airway epithelial cells. Thus, the model of vascularized mouse lung transplantation may provide a new and more physiologic experimental tool to study the interaction between immune and nonimmune mechanisms affecting airway pathology in lung allografts.

  18. Lack of contribution of covalent benzo[a]pyrene-7,8-quinone-DNA adducts in benzo[a]pyrene-induced mouse lung tumorigenesis.

    PubMed

    Nesnow, Stephen; Nelson, Garret; Padgett, William T; George, Michael H; Moore, Tanya; King, Leon C; Adams, Linda D; Ross, Jeffrey A

    2010-07-30

    Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of anti-trans-7,8-dihydroxy-7,8-dihydroB[a]P-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: (1) the induction of apurinic sites from radical cation processes, and (2) the metabolic formation of B[a]P-7,8-quinone (BPQ) that can form covalent DNA adducts or reactive oxygen species which can damage DNA. The studies presented here sought to examine the role of stable BPQ-DNA adducts in B[a]P-induced mouse lung tumorigenesis. Male strain A/J mice were injected intraperitoneally once with BPQ or trans-7,8-dihydroxy-7,8-dihydroB[a]P (BP-7,8-diol) at 30, 10, 3, or 0mg/kg. Lungs and livers were harvested after 24h, the DNA extracted and subjected to (32)P-postlabeling analysis. Additional groups of mice were dosed once with BPQ or BP-7,8-diol each at 30 mg/kg and tissues harvested 48 and 72 h later, or with B[a]P (50mg/kg, a tumorigenic dose) and tissues harvested 72 h later. No BPQ or any other DNA adducts were observed in lung or liver tissues 24, 48, or 72 h after the treatment with 30 mg/kg BPQ. BP-7,8-diol gave BPDE-DNA adducts at all time points in both tissues and B[a]P treatment gave BPDE-DNA adducts in the lung. In each case, no BPQ-DNA adducts were detected. Mouse body weights significantly decreased over time after BPQ or BP-7,8-diol treatments suggesting that systemic toxicity was induced by both agents. Model studies with BPQ and N-acetylcysteine suggested that BPQ is rapidly inactivated by sulfhydryl-containing compounds and not available for DNA adduction. We conclude that under these treatment conditions BPQ does not form stable covalent DNA adducts in the lungs or livers of strain A/J mice, suggesting that stable BPQ-covalent adducts are not a part of the complex of mechanisms involved in B[a]P-induced mouse lung tumorigenesis. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  19. [Development of the next generation humanized mouse for drug discovery].

    PubMed

    Ito, Ryoji

    A humanized mouse, which is efficiently engrafted human cells and tissues, is an important tool to mimic human physiology for biomedical researches. Since 2000s, severe combined immunodeficient mouse strains such as NOG, BRG, and NSG mice have been generated. They are great recipients to create humanized mouse models compared to previous other immunodeficient strains due to their multiple dysfunctions of innate and acquired immunity. Especially, the transfer of human hematopoietic stem cells into these immunodeficient mice has been enabled to reconstitute human immune systems, because the mice show high engraftment level of human leukocyte in peripheral blood (~50%), spleen and bone marrow (60~90%) and generate well-differentiated multilineage human immune cells including lymphoid and myeloid lineage cells. Using these mice, several human disease models such as cancer, allergy, graft-versus-host disease (GVHD), and etc. have been established to understand the pathogenic mechanisms of the diseases and to evaluate the efficacy and safety of novel drugs. In this review, I provide an overview of recent advances in the humanized mouse technology, including generation of novel platforms of genetically modified NOG (next generation NOG) mice and some applications of them to create human disease models for drug discovery in preclinical researches.

  20. Antimicrobial blue light therapy for Candida albicans burn infection in mice

    NASA Astrophysics Data System (ADS)

    Zhang, Yunsong; Wang, Yucheng; Murray, Clinton K.; Hamblin, Michael R.; Gu, Ying; Dai, Tianhong

    2015-05-01

    In this preclinical study, we investigated the utility of antimicrobial blue light therapy for Candida albicans infection in acutely burned mice. A bioluminescent strain of C. albicans was used. The susceptibilities to blue light inactivation were compared between C. albicans and human keratinocyte. In vitro serial passaging of C. albicans on blue light exposure was performed to evaluate the potential development of resistance to blue light inactivation. A mouse model of acute thermal burn injury infected with the bioluminescent strain of C. albicans was developed. Blue light (415 nm) was delivered to mouse burns for decolonization of C. albicans. Bioluminescence imaging was used to monitor in real time the extent of fungal infection in mouse burns. Experimental results showed that C. albicans was approximately 42-fold more susceptible to blue light inactivation in vitro than human keratinocyte (P=0.0022). Serial passaging of C. albicans on blue light exposure implied a tendency for the fungal susceptibility to blue light inactivation to decrease with the numbers of passages. Blue light reduced fungal burden by over 4-log10 (99.99%) in acute mouse burns infected with C. albicans in comparison to infected mouse burns without blue light therapy (P=0.015).

  1. Host Genetic Background Strongly Affects Pulmonary microRNA Expression before and during Influenza A Virus Infection.

    PubMed

    Preusse, Matthias; Schughart, Klaus; Pessler, Frank

    2017-01-01

    Expression of host microRNAs (miRNAs) changes markedly during influenza A virus (IAV) infection of natural and adaptive hosts, but their role in genetically determined host susceptibility to IAV infection has not been explored. We, therefore, compared pulmonary miRNA expression during IAV infection in two inbred mouse strains with differential susceptibility to IAV infection. miRNA expression profiles were determined in lungs of the more susceptible strain DBA/2J and the less susceptible strain C57BL/6J within 120 h post infection (hpi) with IAV (H1N1) PR8. Even the miRNomes of uninfected lungs differed substantially between the two strains. After a period of relative quiescence, major miRNome reprogramming was detected in both strains by 48 hpi and increased through 120 hpi. Distinct groups of miRNAs regulated by IAV infection could be defined: (1) miRNAs ( n  = 39) whose expression correlated with hemagglutinin (HA) mRNA expression and represented the general response to IAV infection independent of host genetic background; (2) miRNAs ( n  = 20) whose expression correlated with HA mRNA expression but differed between the two strains; and (3) remarkably, miR-147-3p, miR-208b-3p, miR-3096a-5p, miR-3069b-3p, and the miR-467 family, whose abundance even in uninfected lungs differentiated nearly perfectly (area under the ROC curve > 0.99) between the two strains throughout the time course, suggesting a particularly strong association with the differential susceptibility of the two mouse strains. Expression of subsets of miRNAs correlated significantly with peripheral blood granulocyte and monocyte numbers, particularly in DBA/2J mice; miR-223-3p, miR-142-3p, and miR-20b-5p correlated most positively with these cell types in both mouse strains. Higher abundance of antiapoptotic (e.g., miR-467 family) and lower abundance of proapoptotic miRNAs (e.g., miR-34 family) and those regulating the PI3K-Akt pathway (e.g., miR-31-5p) were associated with the more susceptible DBA/2J strain. Substantial differences in pulmonary miRNA expression between the two differentially susceptible mouse strains were evident even before infection, but evolved further throughout infection and could in part be attributed to differences in peripheral blood leukocyte populations. Thus, pulmonary miRNA expression both before and during IAV infection is in part determined genetically and contributes to susceptibility to IAV infection in this murine host, and likely in humans.

  2. Vaccination with Recombinant Cryptococcus Proteins in Glucan Particles Protects Mice against Cryptococcosis in a Manner Dependent upon Mouse Strain and Cryptococcal Species.

    PubMed

    Specht, Charles A; Lee, Chrono K; Huang, Haibin; Hester, Maureen M; Liu, Jianhua; Luckie, Bridget A; Torres Santana, Melanie A; Mirza, Zeynep; Khoshkenar, Payam; Abraham, Ambily; Shen, Zu T; Lodge, Jennifer K; Akalin, Ali; Homan, Jane; Ostroff, Gary R; Levitz, Stuart M

    2017-11-28

    Development of a vaccine to protect against cryptococcosis is a priority given the enormous global burden of disease in at-risk individuals. Using glucan particles (GPs) as a delivery system, we previously demonstrated that mice vaccinated with crude Cryptococcus -derived alkaline extracts were protected against lethal challenge with Cryptococcus neoformans and Cryptococcus gattii The goal of the present study was to identify protective protein antigens that could be used in a subunit vaccine. Using biased and unbiased approaches, six candidate antigens (Cda1, Cda2, Cda3, Fpd1, MP88, and Sod1) were selected, recombinantly expressed in Escherichia coli , purified, and loaded into GPs. Three mouse strains (C57BL/6, BALB/c, and DR4) were then vaccinated with the antigen-laden GPs, following which they received a pulmonary challenge with virulent C. neoformans and C. gattii strains. Four candidate vaccines (GP-Cda1, GP-Cda2, GP-Cda3, and GP-Sod1) afforded a significant survival advantage in at least one mouse model; some vaccine combinations provided added protection over that seen with either antigen alone. Vaccine-mediated protection against C. neoformans did not necessarily predict protection against C. gattii Vaccinated mice developed pulmonary inflammatory responses that effectively contained the infection; many surviving mice developed sterilizing immunity. Predicted T helper cell epitopes differed between mouse strains and in the degree to which they matched epitopes predicted in humans. Thus, we have discovered cryptococcal proteins that make promising candidate vaccine antigens. Protection varied depending on the mouse strain and cryptococcal species, suggesting that a successful human subunit vaccine will need to contain multiple antigens, including ones that are species specific. IMPORTANCE The encapsulated fungi Cryptococcus neoformans and Cryptococcus gattii are responsible for nearly 200,000 deaths annually, mostly in immunocompromised individuals. An effective vaccine could substantially reduce the burden of cryptococcosis. However, a major gap in cryptococcal vaccine development has been the discovery of protective antigens to use in vaccines. Here, six cryptococcal proteins with potential as vaccine antigens were expressed recombinantly and purified. Mice were then vaccinated with glucan particle preparations containing each antigen. Of the six candidate vaccines, four protected mice from a lethal cryptococcal challenge. However, the degree of protection varied as a function of mouse strain and cryptococcal species. These preclinical studies identify cryptococcal proteins that could serve as candidate vaccine antigens and provide a proof of principle regarding the feasibility of protein antigen-based vaccines to protect against cryptococcosis. Copyright © 2017 Specht et al.

  3. MicroRNA genes are frequently located near mouse cancer susceptibility loci

    PubMed Central

    Sevignani, Cinzia; Calin, George A.; Nnadi, Stephanie C.; Shimizu, Masayoshi; Davuluri, Ramana V.; Hyslop, Terry; Demant, Peter; Croce, Carlo M.; Siracusa, Linda D.

    2007-01-01

    MicroRNAs (miRNAs) are short 19- to 24-nt RNA molecules that have been shown to regulate the expression of other genes in a variety of eukaryotic systems. Abnormal expression of miRNAs has been observed in several human cancers, and furthermore, germ-line and somatic mutations in human miRNAs were recently identified in patients with chronic lymphocytic leukemia. Thus, human miRNAs can act as tumor suppressor genes or oncogenes, where mutations, deletions, or amplifications can underlie the development of certain types of leukemia. In addition, previous studies have shown that miRNA expression profiles can distinguish among human solid tumors from different organs. Because a single miRNA can simultaneously influence the expression of two or more protein-coding genes, we hypothesized that miRNAs could be candidate genes for cancer risk. Research in complex trait genetics has demonstrated that genetic background determines cancer susceptibility or resistance in various tissues, such as colon and lung, of different inbred mouse strains. We compared the genome positions of mouse tumor susceptibility loci with those of mouse miRNAs. Here, we report a statistically significant association between the chromosomal location of miRNAs and those of mouse cancer susceptibility loci that influence the development of solid tumors. Furthermore, we identified distinct patterns of flanking DNA sequences for several miRNAs located at or near susceptibility loci in inbred strains with different tumor susceptibilities. These data provide a catalog of miRNA genes in inbred strains that could represent genes involved in the development and penetrance of solid tumors. PMID:17470785

  4. Sexual dimorphism and the effects of the X-linked Tfm locus on hexobarbitone metabolism and action in mice.

    PubMed

    King, D K; Shapiro, B H

    1981-09-01

    1 Normal males of the testicular feminized strain of mice (Tfm) had longer hexobarbitone-induced sleeping times than females, and hepatic hexobarbitone hydroxylase activity different in that the Km was higher and the Vmax lower in the male. 2 Castration and androgen replacement studies indicated that testicular androgens were responsible for the sexual differences in drug metabolism found in this mouse strain. 3 Hepatic hexobarbitone metabolism and action were feminized in the intact, androgen-insensitive, genetically male Tfm mouse. Furthermore, hexobarbitone hydroxylase activities were less responsive to large doses of testosterone in Tfm mice than in normal males. 4 The Tfm mouse with a deficiency in androgen receptors responded to the enzyme-inductive effects of phenobarbitone and softwood bedding, indicating that these inducers do not act through the androgen receptors.

  5. Temporospatial distribution of microglial activation in a murine model of scrapie

    USDA-ARS?s Scientific Manuscript database

    Mouse models of prion disease offer the advantages of genetic homogeneity and short incubation times while retaining the disease phenotype of natural mammalian hosts. Intracranial (IC) inoculation of C57BL/6 mice with a mouse-adapted scrapie strain (RML) yields uniform incubation periods with a rapi...

  6. Long-term exposure to intranasal oxytocin in a mouse autism model

    PubMed Central

    Bales, K L; Solomon, M; Jacob, S; Crawley, J N; Silverman, J L; Larke, R H; Sahagun, E; Puhger, K R; Pride, M C; Mendoza, S P

    2014-01-01

    Oxytocin (OT) is a neuropeptide involved in mammalian social behavior. It is currently in clinical trials for the treatment of autism spectrum disorder (ASD). Previous studies in healthy rodents (prairie voles and C57BL/6J mice) have shown that there may be detrimental effects of long-term intranasal administration, raising the questions about safety and efficacy. To investigate the effects of OT on the aspects of ASD phenotype, we conducted the first study of chronic intranasal OT in a well-validated mouse model of autism, the BTBR T+ Itpr3tf/J inbred strain (BTBR), which displays low sociability and high repetitive behaviors. BTBR and C57BL/6J (B6) mice (N=94) were administered 0.8  IU/kg of OT intranasally, daily for 30 days, starting on day 21. We ran a well-characterized set of behavioral tasks relevant to diagnostic and associated symptoms of autism, including juvenile reciprocal social interactions, three-chambered social approach, open-field exploratory activity, repetitive self-grooming and fear-conditioned learning and memory, some during and some post treatment. Intranasal OT did not improve autism-relevant behaviors in BTBR, except for female sniffing in the three-chambered social interaction test. Male saline-treated BTBR mice showed increased interest in a novel mouse, both in chamber time and sniffing time, whereas OT-treated male BTBR mice showed a preference for the novel mouse in sniffing time only. No deleterious effects of OT were detected in either B6 or BTBR mice, except possibly for the lack of a preference for the novel mouse's chamber in OT-treated male BTBR mice. These results highlight the complexity inherent in understanding the effects of OT on behavior. Future investigations of chronic intranasal OT should include a wider dose range and early developmental time points in both healthy rodents and ASD models to affirm the efficacy and safety of OT. PMID:25386957

  7. Genome-Wide Gene Expression Analysis of Bordetella pertussis Isolates Associated with a Resurgence in Pertussis: Elucidation of Factors Involved in the Increased Fitness of Epidemic Strains

    PubMed Central

    King, Audrey J.; van der Lee, Saskia; Mohangoo, Archena; van Gent, Marjolein; van der Ark, Arno; van de Waterbeemd, Bas

    2013-01-01

    Bordetella pertussis (B. pertussis) is the causative agent of whooping cough, which is a highly contagious disease in the human respiratory tract. Despite vaccination since the 1950s, pertussis remains the most prevalent vaccine-preventable disease in developed countries. A recent resurgence pertussis is associated with the expansion of B. pertussis strains with a novel allele for the pertussis toxin (ptx) promoter ptxP3 in place of resident ptxP1 strains. The recent expansion of ptxP3 strains suggests that these strains carry mutations that have increased their fitness. Compared to the ptxP1 strains, ptxP3 strains produce more Ptx, which results in increased virulence and immune suppression. In this study, we investigated the contribution of gene expression changes of various genes on the increased fitness of the ptxP3 strains. Using genome-wide gene expression profiling, we show that several virulence genes had higher expression levels in the ptxP3 strains compared to the ptxP1 strains. We provide the first evidence that wildtype ptxP3 strains are better colonizers in an intranasal mouse infection model. This study shows that the ptxP3 mutation and the genetic background of ptxP3 strains affect fitness by contributing to the ability to colonize in a mouse infection model. These results show that the genetic background of ptxP3 strains with a higher expression of virulence genes contribute to increased fitness. PMID:23776625

  8. Disruption of type 3 adenylyl cyclase expression in the hypothalamus leads to obesity

    PubMed Central

    Cao, Hong; Chen, Xuanmao; Yang, Yimei; Storm, Daniel R

    2016-01-01

    Evidence from human studies and transgenic mice lacking the type 3 adenylyl cyclase (AC3) indicates that AC3 plays a role in the regulation of body weight. It is unknown in which brain region AC3 exerts such an effect. We examined the role of AC3 in the hypothalamus for body weight control using a floxed AC3 mouse strain. Here, we report that AC3 flox/flox mice became obese after the administration of AAV-CRE-GFP into the hypothalamus. Both male and female AC3 floxed mice showed heavier body weight than AAV-GFP injected control mice. Furthermore, mice with selective ablation of AC3 expression in the ventromedial hypothalamus also showed increased body weight and food consumption. Our results indicated that AC3 in the hypothalamus regulates energy balance. PMID:27942392

  9. Nicotinic acetylcholine receptor alpha5 subunits modulate oxotremorine-induced salivation and tremor.

    PubMed

    Wang, Ningshan; Orr-Urtreger, Avi; Chapman, Joab; Rabinowitz, Ruth; Korczyn, Amos D

    2004-07-15

    Neuronal nicotinic acetylcholine receptors (nAChRs) are composed of 12 subunits (alpha2-alpha10 and beta2-beta4). alpha5 Subunits, expressed throughout the central nervous system (CNS) and the autonomic nervous system (ANS), possess unique pharmacological properties. The effects of oxotremorine (OXO) on autonomic functions and tremor were examined in mice lacking alpha5 nAChR subunits (alpha5-/-) and compared with those in wild-type (WT) control mice. The alpha5-/- mice showed significantly increased salivation and tremor responses to OXO. The hypothermia, bradycardia and defecation induced by OXO were of similar magnitudes in the two mouse strains. The enhanced OXO effects in alpha5-/- mice indicate inhibitory effects of alpha5 subunits in autonomic ganglia, and support the participation of these subunits in cholinergic transmission in autonomic ganglia.

  10. Effect of crossing C57BL/6 and FVB mouse strains on basal cytokine expression.

    PubMed

    Szade, Agata; Nowak, Witold N; Szade, Krzysztof; Gese, Anna; Czypicki, Ryszard; Waś, Halina; Dulak, Józef; Józkowicz, Alicja

    2015-01-01

    C57BL/6 is the most often used laboratory mouse strain. However, sometimes it is beneficial to cross the transgenic mice on the C57BL/6 background to the other strain, such as FVB. Although this is a common strategy, the influence of crossing these different strains on homeostatic expression of cytokines is not known. Here we have investigated the differences in the expression of selected cytokines between C57BL/6J and C57BL/6JxFVB mice in serum and skeletal muscle. We have found that only few cytokines were altered by crossing of the strains. Concentrations of IL5, IL7, LIF, MIP-2, and IP-10 were higher in serum of C57BL/6J mice than in C57BL/6JxFVB mice, whereas concentration of G-CSF was lower in C57BL/6J. In the skeletal muscle only the concentration of VEGF was higher in C57BL/6J mice than in C57BL/6JxFVB mice. Concluding, the differences in cytokine expression upon crossing C57BL/6 and FVB strain in basal conditions are not profound.

  11. Whole Genome Sequence of Two Wild-Derived Mus musculus domesticus Inbred Strains, LEWES/EiJ and ZALENDE/EiJ, with Different Diploid Numbers

    PubMed Central

    Morgan, Andrew P.; Didion, John P.; Doran, Anthony G.; Holt, James M.; McMillan, Leonard; Keane, Thomas M.; de Villena, Fernando Pardo-Manuel

    2016-01-01

    Wild-derived mouse inbred strains are becoming increasingly popular for complex traits analysis, evolutionary studies, and systems genetics. Here, we report the whole-genome sequencing of two wild-derived mouse inbred strains, LEWES/EiJ and ZALENDE/EiJ, of Mus musculus domesticus origin. These two inbred strains were selected based on their geographic origin, karyotype, and use in ongoing research. We generated 14× and 18× coverage sequence, respectively, and discovered over 1.1 million novel variants, most of which are private to one of these strains. This report expands the number of wild-derived inbred genomes in the Mus genus from six to eight. The sequence variation can be accessed via an online query tool; variant calls (VCF format) and alignments (BAM format) are available for download from a dedicated ftp site. Finally, the sequencing data have also been stored in a lossless, compressed, and indexed format using the multi-string Burrows-Wheeler transform. All data can be used without restriction. PMID:27765810

  12. Passenger mutations and aberrant gene expression in congenic tissue plasminogen activator-deficient mouse strains.

    PubMed

    Szabo, R; Samson, A L; Lawrence, D A; Medcalf, R L; Bugge, T H

    2016-08-01

    Essentials C57BL/6J-tissue plasminogen activator (tPA)-deficient mice are widely used to study tPA function. Congenic C57BL/6J-tPA-deficient mice harbor large 129-derived chromosomal segments. The 129-derived chromosomal segments contain gene mutations that may confound data interpretation. Passenger mutation-free isogenic tPA-deficient mice were generated for study of tPA function. Background The ability to generate defined null mutations in mice revolutionized the analysis of gene function in mammals. However, gene-deficient mice generated by using 129-derived embryonic stem cells may carry large segments of 129 DNA, even when extensively backcrossed to reference strains, such as C57BL/6J, and this may confound interpretation of experiments performed in these mice. Tissue plasminogen activator (tPA), encoded by the PLAT gene, is a fibrinolytic serine protease that is widely expressed in the brain. A number of neurological abnormalities have been reported in tPA-deficient mice. Objectives To study genetic contamination of tPA-deficient mice. Materials and methods Whole genome expression array analysis, RNAseq expression profiling, low- and high-density single nucleotide polymorphism (SNP) analysis, bioinformatics and genome editing were used to analyze gene expression in tPA-deficient mouse brains. Results and conclusions Genes differentially expressed in the brain of Plat(-/-) mice from two independent colonies highly backcrossed onto the C57BL/6J strain clustered near Plat on chromosome 8. SNP analysis attributed this anomaly to about 20 Mbp of DNA flanking Plat being of 129 origin in both strains. Bioinformatic analysis of these 129-derived chromosomal segments identified a significant number of mutations in genes co-segregating with the targeted Plat allele, including several potential null mutations. Using zinc finger nuclease technology, we generated novel 'passenger mutation'-free isogenic C57BL/6J-Plat(-/-) and FVB/NJ-Plat(-/-) mouse strains by introducing an 11 bp deletion into the exon encoding the signal peptide. These novel mouse strains will be a useful community resource for further exploration of tPA function in physiological and pathological processes. © 2016 International Society on Thrombosis and Haemostasis.

  13. Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse

    PubMed Central

    Hillier, LaDeana W.; Zody, Michael C.; Goldstein, Steve; She, Xinwe; Bult, Carol J.; Agarwala, Richa; Cherry, Joshua L.; DiCuccio, Michael; Hlavina, Wratko; Kapustin, Yuri; Meric, Peter; Maglott, Donna; Birtle, Zoë; Marques, Ana C.; Graves, Tina; Zhou, Shiguo; Teague, Brian; Potamousis, Konstantinos; Churas, Christopher; Place, Michael; Herschleb, Jill; Runnheim, Ron; Forrest, Daniel; Amos-Landgraf, James; Schwartz, David C.; Cheng, Ze; Lindblad-Toh, Kerstin; Eichler, Evan E.; Ponting, Chris P.

    2009-01-01

    The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non–protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not. PMID:19468303

  14. Massively Parallel Sequencing Reveals the Complex Structure of an Irradiated Human Chromosome on a Mouse Background in the Tc1 Model of Down Syndrome

    PubMed Central

    Clayton, Stephen; Prigmore, Elena; Langley, Elizabeth; Yang, Fengtang; Maguire, Sean; Fu, Beiyuan; Rajan, Diana; Sheppard, Olivia; Scott, Carol; Hauser, Heidi; Stephens, Philip J.; Stebbings, Lucy A.; Ng, Bee Ling; Fitzgerald, Tomas; Quail, Michael A.; Banerjee, Ruby; Rothkamm, Kai; Tybulewicz, Victor L. J.; Fisher, Elizabeth M. C.; Carter, Nigel P.

    2013-01-01

    Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and presents a complex phenotype that arises from abnormal dosage of genes on this chromosome. However, the individual dosage-sensitive genes underlying each phenotype remain largely unknown. To help dissect genotype – phenotype correlations in this complex syndrome, the first fully transchromosomic mouse model, the Tc1 mouse, which carries a copy of human chromosome 21 was produced in 2005. The Tc1 strain is trisomic for the majority of genes that cause phenotypes associated with DS, and this freely available mouse strain has become used widely to study DS, the effects of gene dosage abnormalities, and the effect on the basic biology of cells when a mouse carries a freely segregating human chromosome. Tc1 mice were created by a process that included irradiation microcell-mediated chromosome transfer of Hsa21 into recipient mouse embryonic stem cells. Here, the combination of next generation sequencing, array-CGH and fluorescence in situ hybridization technologies has enabled us to identify unsuspected rearrangements of Hsa21 in this mouse model; revealing one deletion, six duplications and more than 25 de novo structural rearrangements. Our study is not only essential for informing functional studies of the Tc1 mouse but also (1) presents for the first time a detailed sequence analysis of the effects of gamma radiation on an entire human chromosome, which gives some mechanistic insight into the effects of radiation damage on DNA, and (2) overcomes specific technical difficulties of assaying a human chromosome on a mouse background where highly conserved sequences may confound the analysis. Sequence data generated in this study is deposited in the ENA database, Study Accession number: ERP000439. PMID:23596509

  15. Production of the Escherichia coli Common Pilus by Uropathogenic E. coli Is Associated with Adherence to HeLa and HTB-4 Cells and Invasion of Mouse Bladder Urothelium

    PubMed Central

    Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L.; Daaka, Yehia; Girón, Jorge A.

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract. PMID:25036370

  16. Production of the Escherichia coli common pilus by uropathogenic E. coli is associated with adherence to HeLa and HTB-4 cells and invasion of mouse bladder urothelium.

    PubMed

    Saldaña, Zeus; De la Cruz, Miguel A; Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L; Daaka, Yehia; Girón, Jorge A

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract.

  17. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity.

    PubMed

    Gebhart, Dana; Lok, Stephen; Clare, Simon; Tomas, Myreen; Stares, Mark; Scholl, Dean; Donskey, Curtis J; Lawley, Trevor D; Govoni, Gregory R

    2015-03-24

    Clostridium difficile is a leading cause of nosocomial infections worldwide and has become an urgent public health threat requiring immediate attention. Epidemic lineages of the BI/NAP1/027 strain type have emerged and spread through health care systems across the globe over the past decade. Limiting person-to-person transmission and eradicating C. difficile, especially the BI/NAP1/027 strain type, from health care facilities are difficult due to the abundant shedding of spores that are impervious to most interventions. Effective prophylaxis for C. difficile infection (CDI) is lacking. We have genetically modified a contractile R-type bacteriocin ("diffocin") from C. difficile strain CD4 to kill BI/NAP1/027-type strains for this purpose. The natural receptor binding protein (RBP) responsible for diffocin targeting was replaced with a newly discovered RBP identified within a prophage of a BI/NAP1/027-type target strain by genome mining. The resulting modified diffocins (a.k.a. Avidocin-CDs), Av-CD291.1 and Av-CD291.2, were stable and killed all 16 tested BI/NAP1/027-type strains. Av-CD291.2 administered in drinking water survived passage through the mouse gastrointestinal (GI) tract, did not detectably alter the mouse gut microbiota or disrupt natural colonization resistance to C. difficile or the vancomycin-resistant Enterococcus faecium (VREF), and prevented antibiotic-induced colonization of mice inoculated with BI/NAP1/027-type spores. Given the high incidence and virulence of the pathogen, preventing colonization by BI/NAP1/027-type strains and limiting their transmission could significantly reduce the occurrence of the most severe CDIs. This modified diffocin represents a prototype of an Avidocin-CD platform capable of producing targetable, precision anti-C. difficile agents that can prevent and potentially treat CDIs without disrupting protective indigenous microbiota. Treatment and prevention strategies for bacterial diseases rely heavily on traditional antibiotics, which impose strong selection for resistance and disrupt protective microbiota. One consequence has been an upsurge of opportunistic pathogens, such as Clostridium difficile, that exploit antibiotic-induced disruptions in gut microbiota to proliferate and cause life-threatening diseases. We have developed alternative agents that utilize contractile bactericidal protein complexes (R-type bacteriocins) to kill specific C. difficile pathogens. Efficacy in a preclinical animal study indicates these molecules warrant further development as potential prophylactic agents to prevent C. difficile infections in humans. Since these agents do not detectably alter the indigenous gut microbiota or colonization resistance in mice, we believe they will be safe to administer as a prophylactic to block transmission in high-risk environments without rendering patients susceptible to enteric infection after cessation of treatment. Copyright © 2015 Gebhart et al.

  18. Regional Retinal Ganglion Cell Axon Loss in a Murine Glaucoma Model

    PubMed Central

    Schaub, Julie A.; Kimball, Elizabeth C.; Steinhart, Matthew R.; Nguyen, Cathy; Pease, Mary E.; Oglesby, Ericka N.; Jefferys, Joan L.; Quigley, Harry A.

    2017-01-01

    Purpose To determine if retinal ganglion cell (RGC) axon loss in experimental mouse glaucoma is uniform in the optic nerve. Methods Experimental glaucoma was induced for 6 weeks with a microbead injection model in CD1 (n = 78) and C57BL/6 (B6, n = 68) mice. From epoxy-embedded sections of optic nerve 1 to 2 mm posterior to the globe, total nerve area and regional axon density (axons/1600 μm2) were measured in superior, inferior, nasal, and temporal zones. Results Control eyes of CD1 mice have higher axon density and more total RGCs than control B6 mice eyes. There were no significant differences in control regional axon density in all mice or by strain (all P > 0.2, mixed model). Exposure to elevated IOP caused loss of RGC in both strains. In CD1 mice, axon density declined without significant loss of nerve area, while B6 mice had less density loss, but greater decrease in nerve area. Axon density loss in glaucoma eyes was not significantly greater in any region in either mouse strain (both P > 0.2, mixed model). In moderately damaged CD1 glaucoma eyes, and CD1 eyes with the greatest IOP elevation exposure, density loss differed by region (P = 0.05, P = 0.03, mixed model) with the greatest loss in the temporal and superior regions, while in severely injured B6 nerves superior loss was greater than inferior loss (P = 0.01, mixed model, Bonferroni corrected). Conclusions There was selectively greater loss of superior and temporal optic nerve axons of RGCs in mouse glaucoma at certain stages of damage. Differences in nerve area change suggest non-RGC responses differ between mouse strains. PMID:28549091

  19. Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders.

    PubMed

    Naumenko, Vladimir S; Bazovkina, Daria V; Semenova, Alina A; Tsybko, Anton S; Il'chibaeva, Tatyana V; Kondaurova, Elena M; Popova, Nina K

    2013-12-01

    The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF. Copyright © 2013 Wiley Periodicals, Inc.

  20. THE INFECTION OF MICE WITH SWINE INFLUENZA VIRUS.

    PubMed

    Shope, R E

    1935-09-30

    The experiments confirm the earlier observation of Andrewes, Laidlaw and Smith that the swine influenza virus is pathogenic for white mice when administered intranasally. Two field strains of the swine influenza virus were found to differ in their initial pathogenicity for mice. One strain was apparently fully pathogenic even in its 1st mouse passage while the other required 2 or 3 mouse passages to acquire full virulence for this species. Both strains, however, were initially infectious for mice, without the necessity of intervening ferret passages. There is no evidence that bacteria play any significant rôle in the mouse disease though essential in that of swine, and fatal pneumonias can be produced in mice by pure virus infections. Mice surviving the virus disease are immune to reinfection for at least a month. In mice the disease is not contagious though it is notably so in swine. The virus, while regularly producing fatal pneumonias when administered intranasally to mice, appears to be completely innocuous when given subcutaneously or intraperitoneally. Prolonged serial passage of the virus in mice does not influence its infectivity or virulence for swine or ferrets. It is a stable virus so far as its infectivity is concerned, and can be transferred at will from any one of its three known susceptible hosts to any other. In discussing these facts the stability of the swine influenza virus has been contrasted with the apparent instability of freshly isolated strains of the human influenza virus. Though the mouse is an un-natural host for the virus it is, nevertheless, useful for the study of those aspects of swine influenza which have to do with the virus only.

  1. Prdm9 incompatibility controls oligospermia and delayed fertility but no selfish transmission in mouse intersubspecific hybrids.

    PubMed

    Flachs, Petr; Bhattacharyya, Tanmoy; Mihola, Ondřej; Piálek, Jaroslav; Forejt, Jiří; Trachtulec, Zdenek

    2014-01-01

    PR-domain 9 (Prdm9) is the first hybrid sterility gene identified in mammals. The incompatibility between Prdm9 from Mus musculus domesticus (Mmd; the B6 strain) and the Hstx2 region of chromosome (Chr) X from M. m. musculus (Mmm; the PWD strain) participates in the complete meiotic arrest of mouse intersubspecific (PWD×B6)F1 hybrid males. Other studies suggest that also semisterile intersubspecific hybrids are relevant for mouse speciation, but the genes responsible remain unknown. To investigate the causes of this semisterility, we analyzed the role of Prdm9 and Chr X in hybrids resulting from the crosses of PWK, another Mmm-derived inbred strain. We demonstrate that Prdm9 and Chr X control the partial meiotic arrest and reduced sperm count in (PWK×B6)F1 males. Asynapsis of heterosubspecific chromosomes and semisterility were partially suppressed by removal of the B6 allele of Prdm9. Polymorphisms between PWK and PWD on Chr X but not in the Prdm9 region were responsible for the modification of the outcome of Prdm9-Chr X F1 hybrid incompatibility. Furthermore, (PWK×B6)F1 hybrid males displayed delayed fertility dependent on the Prdm9 incompatibility. While the Drosophila hybrid sterility gene Overdrive causes both delayed fertility and increased transmission of its own chromosome to the offspring, the segregation of Chr X and the Prdm9 region from the mouse (PWK×B6)F1 males was normal. Our results indicate extended functional consequences of Prdm9-Chr X intersubspecific incompatibility on the fertility of hybrids and should influence the design of fertility analyses in hybrid zones and of laboratory crosses between Mmm and Mmd strains.

  2. Repetitive Self-Grooming Behavior in the BTBR Mouse Model of Autism is Blocked by the mGluR5 Antagonist MPEP

    PubMed Central

    Silverman, Jill L; Tolu, Seda S; Barkan, Charlotte L; Crawley, Jacqueline N

    2010-01-01

    Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. BTBR T+tf/J (BTBR) is an inbred mouse strain that shows robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of autism, including well-replicated deficits in reciprocal social interactions and social approach, unusual patterns of ultrasonic vocalization, and high levels of repetitive self-grooming. These phenotypes offer straightforward behavioral assays for translational investigations of pharmacological compounds. Two suggested treatments for autism were evaluated in the BTBR mouse model. Methyl-6-phenylethynyl-pyridine (MPEP), an antagonist of the mGluR5 metabotropic glutamate receptor, blocks aberrant phenotypes in the Fmr1 mouse model of Fragile X, a comorbid neurodevelopmental disorder with autistic features. Risperidone has been approved by the United States Food and Drug Administration for the treatment of irritability, tantrums, and self-injurious behavior in autistic individuals. We evaluated the actions of MPEP and risperidone on two BTBR phenotypes, low sociability and high repetitive self-grooming. Open field activity served as an independent control for non-social exploratory activity and motor functions. C57BL/6J (B6), an inbred strain with high sociability and low self-grooming, served as the strain control. MPEP significantly reduced repetitive self-grooming in BTBR, at doses that had no sedating effects on open field activity. Risperidone reduced repetitive self-grooming in BTBR, but only at doses that induced sedation in both strains. No overall improvements in sociability were detected in BTBR after treatment with either MPEP or risperidone. Our findings suggest that antagonists of mGluR5 receptors may have selective therapeutic efficacy in treating repetitive behaviors in autism. PMID:20032969

  3. Laboratory Mice Are Frequently Colonized with Staphylococcus aureus and Mount a Systemic Immune Response-Note of Caution for In vivo Infection Experiments.

    PubMed

    Schulz, Daniel; Grumann, Dorothee; Trübe, Patricia; Pritchett-Corning, Kathleen; Johnson, Sarah; Reppschläger, Kevin; Gumz, Janine; Sundaramoorthy, Nandakumar; Michalik, Stephan; Berg, Sabine; van den Brandt, Jens; Fister, Richard; Monecke, Stefan; Uy, Benedict; Schmidt, Frank; Bröker, Barbara M; Wiles, Siouxsie; Holtfreter, Silva

    2017-01-01

    Whether mice are an appropriate model for S. aureus infection and vaccination studies is a matter of debate, because they are not considered as natural hosts of S. aureus . We previously identified a mouse-adapted S. aureus strain, which caused infections in laboratory mice. This raised the question whether laboratory mice are commonly colonized with S. aureus and whether this might impact on infection experiments. Publicly available health reports from commercial vendors revealed that S. aureus colonization is rather frequent, with rates as high as 21% among specific-pathogen-free mice. In animal facilities, S. aureus was readily transmitted from parents to offspring, which became persistently colonized. Among 99 murine S. aureus isolates from Charles River Laboratories half belonged to the lineage CC88 (54.5%), followed by CC15, CC5, CC188, and CC8. A comparison of human and murine S. aureus isolates revealed features of host adaptation. In detail, murine strains lacked hlb -converting phages and superantigen-encoding mobile genetic elements, and were frequently ampicillin-sensitive. Moreover, murine CC88 isolates coagulated mouse plasma faster than human CC88 isolates. Importantly, S. aureus colonization clearly primed the murine immune system, inducing a systemic IgG response specific for numerous S. aureus proteins, including several vaccine candidates. Phospholipase C emerged as a promising test antigen for monitoring S. aureus colonization in laboratory mice. In conclusion, laboratory mice are natural hosts of S. aureus and therefore, could provide better infection models than previously assumed. Pre-exposure to the bacteria is a possible confounder in S. aureus infection and vaccination studies and should be monitored.

  4. Lack of the Transcription Factor Hypoxia-Inducible Factor 1α (HIF-1α) in Macrophages Accelerates the Necrosis of Mycobacterium avium-Induced Granulomas.

    PubMed

    Cardoso, Marcos S; Silva, Tânia M; Resende, Mariana; Appelberg, Rui; Borges, Margarida

    2015-09-01

    The establishment of mycobacterial infection is characterized by the formation of granulomas, which are well-organized aggregates of immune cells, namely, infected macrophages. The granuloma's main function is to constrain and prevent dissemination of the mycobacteria while focusing the immune response to a limited area. In some cases these lesions can grow progressively into large granulomas which can undergo central necrosis, thereby leading to their caseation. Macrophages are the most abundant cells present in the granuloma and are known to adapt under hypoxic conditions in order to avoid cell death. Our laboratory has developed a granuloma necrosis model that mimics the human pathology of Mycobacterium tuberculosis, using C57BL/6 mice infected intravenously with a low dose of a highly virulent strain of Mycobacterium avium. In this work, a mouse strain deleted of the hypoxia inducible factor 1α (HIF-1α) under the Cre-lox system regulated by the lysozyme M gene promoter was used to determine the relevance of HIF-1α in the caseation of granulomas. The genetic ablation of HIF-1α in the myeloid lineage causes the earlier emergence of granuloma necrosis and clearly induces an impairment of the resistance against M. avium infection coincident with the emergence of necrosis. The data provide evidence that granulomas become hypoxic before undergoing necrosis through the analysis of vascularization and quantification of HIF-1α in a necrotizing mouse model. Our results show that interfering with macrophage adaptation to hypoxia, such as through HIF-1α inactivation, accelerates granuloma necrosis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Reduced infectivity of waterborne viable but nonculturable Helicobacter pylori strain SS1 in mice.

    PubMed

    Boehnke, Kevin F; Eaton, Kathryn A; Fontaine, Clinton; Brewster, Rebecca; Wu, Jianfeng; Eisenberg, Joseph N S; Valdivieso, Manuel; Baker, Laurence H; Xi, Chuanwu

    2017-08-01

    Helicobacter pylori infection has been consistently associated with lack of access to clean water and proper sanitation, but no studies have demonstrated that the transmission of viable but nonculturable (VBNC) H. pylori can occur from drinking contaminated water. In this study, we used a laboratory mouse model to test whether waterborne VBNCH. pylori could cause gastric infection. We performed five mouse experiments to assess the infectivity of VBNCH. pylori in various exposure scenarios. VBNC viability was examined using Live/Dead staining and Biolog phenotype metabolism arrays. High doses of VBNCH. pylori in water were chosen to test the "worst-case" scenario for different periods of time. One experiment also investigated the infectious capabilities of VBNC SS1 using gavage. Further, immunocompromised mice were exposed to examine infectivity among potentially vulnerable groups. After exposure, mice were euthanized and their stomachs were examined for H. pylori infection using culture and PCR methodology. VBNC cells were membrane intact and retained metabolic activity. Mice exposed to VBNCH. pylori via drinking water and gavage were not infected, despite the various exposure scenarios (immunocompromised, high doses) that might have permitted infection with VBNCH. pylori. The positive controls exposed to viable, culturable H. pylori did become infected. While other studies that have used viable, culturable SS1 via gavage or drinking water exposures to successfully infect mice, in our study, waterborne VBNC SS1 failed to colonize mice under all test conditions. Future studies could examine different H. pylori strains in similar exposure scenarios to compare the relative infectivity of the VBNC vs the viable, culturable state, which would help inform future risk assessments of H. pylori in water. © 2017 The Authors. Helicobacter Published by John Wiley & Sons Ltd.

  6. Laboratory Mice Are Frequently Colonized with Staphylococcus aureus and Mount a Systemic Immune Response—Note of Caution for In vivo Infection Experiments

    PubMed Central

    Schulz, Daniel; Grumann, Dorothee; Trübe, Patricia; Pritchett-Corning, Kathleen; Johnson, Sarah; Reppschläger, Kevin; Gumz, Janine; Sundaramoorthy, Nandakumar; Michalik, Stephan; Berg, Sabine; van den Brandt, Jens; Fister, Richard; Monecke, Stefan; Uy, Benedict; Schmidt, Frank; Bröker, Barbara M.; Wiles, Siouxsie; Holtfreter, Silva

    2017-01-01

    Whether mice are an appropriate model for S. aureus infection and vaccination studies is a matter of debate, because they are not considered as natural hosts of S. aureus. We previously identified a mouse-adapted S. aureus strain, which caused infections in laboratory mice. This raised the question whether laboratory mice are commonly colonized with S. aureus and whether this might impact on infection experiments. Publicly available health reports from commercial vendors revealed that S. aureus colonization is rather frequent, with rates as high as 21% among specific-pathogen-free mice. In animal facilities, S. aureus was readily transmitted from parents to offspring, which became persistently colonized. Among 99 murine S. aureus isolates from Charles River Laboratories half belonged to the lineage CC88 (54.5%), followed by CC15, CC5, CC188, and CC8. A comparison of human and murine S. aureus isolates revealed features of host adaptation. In detail, murine strains lacked hlb-converting phages and superantigen-encoding mobile genetic elements, and were frequently ampicillin-sensitive. Moreover, murine CC88 isolates coagulated mouse plasma faster than human CC88 isolates. Importantly, S. aureus colonization clearly primed the murine immune system, inducing a systemic IgG response specific for numerous S. aureus proteins, including several vaccine candidates. Phospholipase C emerged as a promising test antigen for monitoring S. aureus colonization in laboratory mice. In conclusion, laboratory mice are natural hosts of S. aureus and therefore, could provide better infection models than previously assumed. Pre-exposure to the bacteria is a possible confounder in S. aureus infection and vaccination studies and should be monitored. PMID:28512627

  7. COMPARISON OF SYSTEMIC AND MUCOSAL ROUTES OF SENSITIZATION TO OVALBUMIN ANTIGEN IN THREE MOUSE STRAINS

    EPA Science Inventory

    Several studies have shown strain differences in allergic lung responses following ovalbumin (OVA) antigen sensitization and challenge. The purpose of this study was to determine whether these differences were maintained between systemic and mucosal sensitization routes, and to ...

  8. Laboratory and wild-derived mice with multiple loci for production of xenotropic murine leukemia virus.

    PubMed

    Kozak, C A; Hartley, J W; Morse, H C

    1984-07-01

    Mendelian segregation analysis was used to define genetic loci for the induction of infectious xenotropic murine leukemia virus in several laboratory and wild-derived mice. MA/My mice contain two loci for xenotropic virus inducibility, one of which, Bxv -1, is the only induction locus carried by five other inbred strains. The second, novel MA/My locus, designated Mxv -1, is unlinked to Bxv -1 and shows a lower efficiency of virus induction. The NZB mouse carries two induction loci; both are distinct from Bxv -1 since neither is linked to the Pep-3 locus on chromosome 1. Finally, one partially inbred strain derived from the wild Japanese mouse, Mus musculus molossinus, carries multiple (at least three) unlinked loci for induction of xenotropic virus. Although it is probable that inbred strains inherited xenotropic virus inducibility from Japanese mice, our data suggest that none of the induction loci carried by this particular M. m. molossinus strain are allelic with Bxv -1.

  9. Laboratory and wild-derived mice with multiple loci for production of xenotropic murine leukemia virus.

    PubMed Central

    Kozak, C A; Hartley, J W; Morse, H C

    1984-01-01

    Mendelian segregation analysis was used to define genetic loci for the induction of infectious xenotropic murine leukemia virus in several laboratory and wild-derived mice. MA/My mice contain two loci for xenotropic virus inducibility, one of which, Bxv -1, is the only induction locus carried by five other inbred strains. The second, novel MA/My locus, designated Mxv -1, is unlinked to Bxv -1 and shows a lower efficiency of virus induction. The NZB mouse carries two induction loci; both are distinct from Bxv -1 since neither is linked to the Pep-3 locus on chromosome 1. Finally, one partially inbred strain derived from the wild Japanese mouse, Mus musculus molossinus, carries multiple (at least three) unlinked loci for induction of xenotropic virus. Although it is probable that inbred strains inherited xenotropic virus inducibility from Japanese mice, our data suggest that none of the induction loci carried by this particular M. m. molossinus strain are allelic with Bxv -1. PMID:6328046

  10. Transmission of two Australian strains of murine cytomegalovirus (MCMV) in enclosure populations of house mice (Mus domesticus).

    PubMed

    Farroway, L N; Gorman, S; Lawson, M A; Harvey, N L; Jones, D A; Shellam, G R; Singleton, G R

    2005-08-01

    To control plagues of free-living mice (Mus domesticus) in Australia, a recombinant murine cytomegalovirus (MCMV) expressing fertility proteins is being developed as an immunocontraceptive agent. Real-time quantitative PCR was used to monitor the transmission of two genetically variable field strains of MCMV through mouse populations after 25% of founding mice were infected with the N1 strain, followed by the G4 strain 6 weeks later. Pathogen-free wild-derived mice were released into outdoor enclosures located in northwestern Victoria (Australia). Of those mice not originally inoculated with virus, N1 DNA was detected in more than 80% of founder mice and a third of their offspring and similarly, G4 DNA was detected in 13% of founder mice and in 3% of their offspring. Thus, prior immunity to N1 did not prevent transmission of G4. This result is promising for successful transmission of an immunocontraceptive vaccine through Australian mouse populations where MCMV infection is endemic.

  11. From grazing resistance to pathogenesis: the coincidental evolution of virulence factors.

    PubMed

    Adiba, Sandrine; Nizak, Clément; van Baalen, Minus; Denamur, Erick; Depaulis, Frantz

    2010-08-11

    To many pathogenic bacteria, human hosts are an evolutionary dead end. This begs the question what evolutionary forces have shaped their virulence traits. Why are these bacteria so virulent? The coincidental evolution hypothesis suggests that such virulence factors result from adaptation to other ecological niches. In particular, virulence traits in bacteria might result from selective pressure exerted by protozoan predator. Thus, grazing resistance may be an evolutionarily exaptation for bacterial pathogenicity. This hypothesis was tested by subjecting a well characterized collection of 31 Escherichia coli strains (human commensal or extra-intestinal pathogenic) to grazing by the social haploid amoeba Dictyostelium discoideum. We then assessed how resistance to grazing correlates with some bacterial traits, such as the presence of virulence genes. Whatever the relative population size (bacteria/amoeba) for a non-pathogenic bacteria strain, D. discoideum was able to phagocytise, digest and grow. In contrast, a pathogenic bacterium strain killed D. discoideum above a certain bacteria/amoeba population size. A plating assay was then carried out using the E. coli collection faced to the grazing of D. discoideum. E. coli strains carrying virulence genes such as iroN, irp2, fyuA involved in iron uptake, belonging to the B2 phylogenetic group and being virulent in a mouse model of septicaemia were resistant to the grazing from D. discoideum. Experimental proof of the key role of the irp gene in the grazing resistance was evidenced with a mutant strain lacking this gene. Such determinant of virulence may well be originally selected and (or) further maintained for their role in natural habitat: resistance to digestion by free-living protozoa, rather than for virulence per se.

  12. Novel plasmids and resistance phenotypes in Yersinia pestis: unique plasmid inventory of strain Java 9 mediates high levels of arsenic resistance.

    PubMed

    Eppinger, Mark; Radnedge, Lyndsay; Andersen, Gary; Vietri, Nicholas; Severson, Grant; Mou, Sherry; Ravel, Jacques; Worsham, Patricia L

    2012-01-01

    Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium.

  13. Novel Plasmids and Resistance Phenotypes in Yersinia pestis: Unique Plasmid Inventory of Strain Java 9 Mediates High Levels of Arsenic Resistance

    PubMed Central

    Eppinger, Mark; Radnedge, Lyndsay; Andersen, Gary; Vietri, Nicholas; Severson, Grant; Mou, Sherry; Ravel, Jacques; Worsham, Patricia L.

    2012-01-01

    Growing evidence suggests that the plasmid repertoire of Yersinia pestis is not restricted to the three classical virulence plasmids. The Java 9 strain of Y. pestis is a biovar Orientalis isolate obtained from a rat in Indonesia. Although it lacks the Y. pestis-specific plasmid pMT, which encodes the F1 capsule, it retains virulence in mouse and non-human primate animal models. While comparing diverse Y. pestis strains using subtractive hybridization, we identified sequences in Java 9 that were homologous to a Y. enterocolitica strain carrying the transposon Tn2502, which is known to encode arsenic resistance. Here we demonstrate that Java 9 exhibits high levels of arsenic and arsenite resistance mediated by a novel promiscuous class II transposon, named Tn2503. Arsenic resistance was self-transmissible from Java 9 to other Y. pestis strains via conjugation. Genomic analysis of the atypical plasmid inventory of Java 9 identified pCD and pPCP plasmids of atypical size and two previously uncharacterized cryptic plasmids. Unlike the Tn2502-mediated arsenic resistance encoded on the Y. enterocolitica virulence plasmid; the resistance loci in Java 9 are found on all four indigenous plasmids, including the two novel cryptic plasmids. This unique mobilome introduces more than 105 genes into the species gene pool. The majority of these are encoded by the two entirely novel self-transmissible plasmids, which show partial homology and synteny to other enterics. In contrast to the reductive evolution in Y. pestis, this study underlines the major impact of a dynamic mobilome and lateral acquisition in the genome evolution of the plague bacterium. PMID:22479347

  14. Molecular Determinants of Influenza Virus Pathogenesis in Mice

    PubMed Central

    Katz, Jaqueline M.; York, Ian A.

    2015-01-01

    Mice are widely used for studying influenza virus pathogenesis and immunology because of their low cost, the wide availability of mouse-specific reagents, and the large number of mouse strains available, including knockout and transgenic strains. However, mice do not fully recapitulate the signs of influenza infection of humans: transmission of influenza between mice is much less efficient than in humans, and influenza viruses often require adaptation before they are able to efficiently replicate in mice. In the process of mouse adaptation, influenza viruses acquire mutations that enhance their ability to attach to mouse cells, replicate within the cells, and suppress immunity, among other functions. Many such mouse-adaptive mutations have been identified, covering all 8 genomic segments of the virus. Identification and analysis of these mutations have provided insight into the molecular determinants of influenza virulence and pathogenesis, not only in mice but also in humans and other species. In particular, several mouse-adaptive mutations of avian influenza viruses have proved to be general mammalian-adaptive changes that are potential markers of pre-pandemic viruses. As well as evaluating influenza pathogenesis, mice have also been used as models for evaluation of novel vaccines and anti-viral therapies. Mice can be a useful animal model for studying influenza biology as long as differences between human and mice infections are taken into account. PMID:25038937

  15. Clinical Chemistry Reference Intervals for C57BL/6J, C57BL/6N, and C3HeB/FeJ Mice (Mus musculus)

    PubMed Central

    Otto, Gordon P; Rathkolb, Birgit; Oestereicher, Manuela A; Lengger, Christoph J; Moerth, Corinna; Micklich, Kateryna; Fuchs, Helmut; Gailus-Durner, Valérie; Wolf, Eckhard; de Angelis, Martin Hrabě

    2016-01-01

    Although various mouse inbred strains are widely used to investigate disease mechanisms and to establish new therapeutic strategies, sex-specific reference intervals for laboratory diagnostic analytes that are generated from large numbers of animals have been unavailable. In this retrospective study, we screened data from more than 12,000 mice phenotyped in the German Mouse Clinic from January 2006 through June 2014 and selected animals with the genetic background of C57BL/6J, C57BL/6N, or C3HeB/FeJ. In addition, we distinguished between the C57BL/6NTac substrain and C57BL/6N mice received from other vendors. The corresponding data sets of electrolytes (sodium, potassium, calcium, chloride, inorganic phosphate), lipids (cholesterol, triglyceride), and enzyme activities (ALT, AST, ALP, α-amylase) and urea, albumin, and total protein levels were analyzed. Significant effects of age and sex on these analytes were identified, and strain- or substrain- and sex-specific reference intervals for 90- to 135-d-old mice were calculated. In addition, we include an overview of the literature that reports clinical chemistry values for wild-type mice of different strains. Our results support researchers interpreting clinical chemistry values from various mouse mutants and corresponding wild-type controls based on the examined strains and substrains. PMID:27423143

  16. Clinical Chemistry Reference Intervals for C57BL/6J, C57BL/6N, and C3HeB/FeJ Mice (Mus musculus).

    PubMed

    Otto, Gordon P; Rathkolb, Birgit; Oestereicher, Manuela A; Lengger, Christoph J; Moerth, Corinna; Micklich, Kateryna; Fuchs, Helmut; Gailus-Durner, Valérie; Wolf, Eckhard; Hrabě de Angelis, Martin

    2016-01-01

    Although various mouse inbred strains are widely used to investigate disease mechanisms and to establish new therapeutic strategies, sex-specific reference intervals for laboratory diagnostic analytes that are generated from large numbers of animals have been unavailable. In this retrospective study, we screened data from more than 12,000 mice phenotyped in the German Mouse Clinic from January 2006 through June 2014 and selected animals with the genetic background of C57BL/6J, C57BL/6N, or C3HeB/FeJ. In addition, we distinguished between the C57BL/6NTac substrain and C57BL/6N mice received from other vendors. The corresponding data sets of electrolytes (sodium, potassium, calcium, chloride, inorganic phosphate), lipids (cholesterol, triglyceride), and enzyme activities (ALT, AST, ALP, α-amylase) and urea, albumin, and total protein levels were analyzed. Significant effects of age and sex on these analytes were identified, and strain- or substrain- and sex-specific reference intervals for 90- to 135-d-old mice were calculated. In addition, we include an overview of the literature that reports clinical chemistry values for wild-type mice of different strains. Our results support researchers interpreting clinical chemistry values from various mouse mutants and corresponding wild-type controls based on the examined strains and substrains.

  17. New treatment option for second-stage African sleeping sickness: in vitro and in vivo efficacy of aza analogs of DB289.

    PubMed

    Wenzler, Tanja; Boykin, David W; Ismail, Mohamed A; Hall, James Edwin; Tidwell, Richard R; Brun, Reto

    2009-10-01

    African sleeping sickness is a fatal parasitic disease, and all drugs currently in use for treatment have strong liabilities. It is essential to find new, effective, and less toxic drugs, ideally with oral application, to control the disease. In this study, the aromatic diamidine DB75 (furamidine) and two aza analogs, DB820 and DB829 (CPD-0801), as well as their methoxyamidine prodrugs and amidoxime metabolites, were evaluated against African trypanosomes. The active parent diamidines showed similar in vitro profiles against different Trypanosoma brucei strains, melarsoprol- and pentamidine-resistant lines, and a P2 transporter knockout strain (AT1KO), with DB75 as the most trypanocidal molecule. In the T. b. rhodesiense strain STIB900 acute mouse model, the aza analogs DB820 and DB829 demonstrated activities superior to that of DB75. The aza prodrugs DB844 and DB868, as well as two metabolites of DB844, were orally more potent in the T. b. brucei strain GVR35 mouse central nervous system (CNS) model than DB289 (pafuramidine maleate). Unexpectedly, the parent diamidine DB829 showed high activity in the mouse CNS model by the intraperitoneal route. In conclusion, DB868 with oral and DB829 with parenteral application are potential candidates for further development of a second-stage African sleeping sickness drug.

  18. Experimental mouse lethality of Escherichia coli strains isolated from free ranging Tibetan yaks.

    PubMed

    Rehman, Mujeeb Ur; Zhang, Hui; Wang, Yajing; Mehmood, Khalid; Huang, Shucheng; Iqbal, Muhammad Kashif; Li, Jiakui

    2017-08-01

    The present study has examined the virulence potential of Escherichia coli isolates harboring at least one virulence gene (associated with ExPEC or InPEC pathotype and belonging to different phylogenetic groups: A, B1, B2 or D), isolated from free ranging Tibetan yak feces. The E. coli isolates (n = 87) were characterized for different serogroups and a mouse model of subcutaneous-infection was used to envisage the virulence within these E. coli strains. Of the 87 E. coli isolates examined, 23% of the E. coli isolates caused lethal infections in a mouse model of subcutaneous infection and were classified as killer. Moreover, the majority of the killer strains belonged to phylogroup A (65%) and serogroup O 60 or O 101 (35%). Phylogroup B1, serogroups O 60 and O 101 were statistically associated with the killer status (P < 0.05). However, positive associations (OR >1) were observed between the killer status isolates and all other bacterial virulence traits. This study comprises the first report on the virulence potential of E. coli strains isolated from free-ranging Tibetan yaks feces. Our findings suggest that pathogenic E. coli of free ranging yaks is highly worrisome, as these feces are used as manures by farmers and therewith pose a health risk to humans upon exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A deficiency in DNA repair and DNA-PKcs expression in the radiosensitive BALB/c mouse

    NASA Technical Reports Server (NTRS)

    Okayasu, R.; Suetomi, K.; Yu, Y.; Silver, A.; Bedford, J. S.; Cox, R.; Ullrich, R. L.

    2000-01-01

    We have studied the efficiency of DNA double strand break (DSB) rejoining in primary cells from mouse strains that show large differences in in vivo radiosensitivity and tumor susceptibility. Cells from radiosensitive, cancer-prone BALB/c mice showed inefficient end joining of gamma ray-induced DSBs as compared with cells from all of the other commonly used strains and F1 hybrids of C57BL/6 and BALB/c mice. The BALB/c repair phenotype was accompanied by a significantly reduced expression level of DNA-PKcs protein as well as a lowered DNA-PK activity level as compared with the other strains. In conjunction with published reports, these data suggest that natural genetic variation in nonhomologous end joining processes may have a significant impact on the in vivo radiation response of mice.

  20. Esrrb-Cre Excises loxP-Flanked Alleles in Early Four-Cell Embryos

    PubMed Central

    Kim, Suyeon; Shaffer, Benjamin; Simerly, Calvin R.; Richard Chaillet, J.; Barak, Yaacov

    2015-01-01

    Among transgenic mice with ubiquitous Cre recombinase activity, all strains to date excise loxP-flanked (floxed) alleles, either at or before the zygote stage or at nondescript stages of development. This manuscript describes a new mouse strain, in which Cre recombinase, integrated into the Esrrb locus, efficiently excises floxed alleles in pre-implantation embryos at the onset of the four-cell stage. By enabling inactivation of genes only after the embryo has undergone two cleavages, this strain should facilitate in vivo studies of genes with essential gametic or zygotic functions. In addition, this study describes a new, highly pluripotent hybrid C57BL/6J × 129S1/SvImJ mouse embryonic stem cell line, HYB12, in which this knock-in and additional targeted alleles have been generated. PMID:26663459

  1. Mouse Sperm Cryopreservation and Recovery of Genetically Modified Mice.

    PubMed

    Low, Benjamin E; Taft, Rob A; Wiles, Michael V

    2016-01-01

    Highly definable genetically, the humble mouse is the "reagent" mammal of choice with which to probe and begin to understand the human condition in all its complexities. With the recent advance in direct genome editing via targeted nucleases, e.g., TALEN and CRISPR/Cas9, the possibilities in using these sophisticated tools have increased substantially leading to a massive increase in the variety of strain numbers of genetically modified lines. With this increase comes a greater need to economically and creatively manage their numbers. Further, once characterized, lines may be of limited use but still need to be archived in a format allowing their rapid resurrection. Further, maintaining colonies on "the shelf" is financially draining and carries potential risks including natural disaster loss, disease, and strain contamination. Here we outline a simple and economic protocol to cryopreserve mouse sperm from many different genetic backgrounds, and outline its recovery via in vitro fertilization (IVF). The combined use of sperm cryopreservation and IVF now allows a freedom and versatility in mouse management facilitating rapid line close down with the option to later recover and rapidly expand as needed.

  2. Epigenetic transgenerational inheritance of vinclozolin induced mouse adult onset disease and associated sperm epigenome biomarkers.

    PubMed

    Guerrero-Bosagna, Carlos; Covert, Trevor R; Haque, Md M; Settles, Matthew; Nilsson, Eric E; Anway, Matthew D; Skinner, Michael K

    2012-12-01

    The endocrine disruptor vinclozolin has previously been shown to promote epigenetic transgenerational inheritance of adult onset disease in the rat. The current study was designed to investigate the transgenerational actions of vinclozolin on the mouse. Transient exposure of the F0 generation gestating female during gonadal sex determination promoted transgenerational adult onset disease in F3 generation male and female mice, including spermatogenic cell defects, testicular abnormalities, prostate abnormalities, kidney abnormalities and polycystic ovarian disease. Pathology analysis demonstrated 75% of the vinclozolin lineage animals developed disease with 34% having two or more different disease states. Interestingly, the vinclozolin induced transgenerational disease was observed in the outbred CD-1 strain, but not the inbred 129 mouse strain. Analysis of the F3 generation sperm epigenome identified differential DNA methylation regions that can potentially be utilized as epigenetic biomarkers for transgenerational exposure and disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Epigenetic Transgenerational Inheritance of Vinclozolin Induced Mouse Adult Onset Disease and Associated Sperm Epigenome Biomarkers

    PubMed Central

    Guerrero-Bosagna, Carlos; Covert, Trevor R.; Haque, Md. M.; Settles, Matthew; Nilsson, Eric E.; Anway, Matthew D.; Skinner, Michael K.

    2012-01-01

    The endocrine disruptor vinclozolin has previously been shown to promote epigenetic transgenerational inheritance of adult onset disease in the rat. The current study was designed to investigate the transgenerational actions of vinclozolin on the mouse. Transient exposure of the F0 generation gestating female during gonadal sex determination promoted transgenerational adult onset disease in F3 generation male and female mice, including spermatogenic cell defects, testicular abnormalities, prostate abnormalities, kidney abnormalities and polycystic ovarian disease. Pathology analysis demonstrated 75% of the vinclozolin lineage animals developed disease with 34% having two or more different disease states. Interestingly, the vinclozolin induced transgenerational disease was observed in the outbred CD-1 strain, but not the inbred 129 mouse strain. Analysis of the F3 generation sperm epigenome identified differential DNA methylation regions that can potentially be utilized as epigenetic biomarkers for transgenerational exposure and disease. PMID:23041264

  4. Overexpression of the Transcriptional Regulator WOR1 Increases Susceptibility to Bile Salts and Adhesion to the Mouse Gut Mucosa in Candida albicans

    PubMed Central

    Prieto, Daniel; Román, Elvira; Alonso-Monge, Rebeca; Pla, Jesús

    2017-01-01

    The transcriptional regulator Wor1 has been shown to induce the GUT transition, an environmentally triggered process that increases the fitness of Candida albicans in the mouse gastrointestinal tract. We have developed strains where the expression of this gene is driven from the strong and tightly regulated tetracycline promoter. These cells retain the main characteristics reported for GUT cells albeit they show defects in the initial stages of colonization. They also show a differential colonization along the gastrointestinal tract compared to isogenic strains, which is probably caused by their susceptibility to bile salts. We also show that WOR1 overexpressing cells have an altered metabolic activity, as revealed by a different susceptibility to inhibitors of respiration, and an enhanced adhesion to the mouse mucosa. We propose that this may contribute to their long-term favored ability to colonize the gastrointestinal tract. PMID:28955659

  5. Overexpression of the Transcriptional Regulator WOR1 Increases Susceptibility to Bile Salts and Adhesion to the Mouse Gut Mucosa in Candida albicans.

    PubMed

    Prieto, Daniel; Román, Elvira; Alonso-Monge, Rebeca; Pla, Jesús

    2017-01-01

    The transcriptional regulator Wor1 has been shown to induce the GUT transition, an environmentally triggered process that increases the fitness of Candida albicans in the mouse gastrointestinal tract. We have developed strains where the expression of this gene is driven from the strong and tightly regulated tetracycline promoter. These cells retain the main characteristics reported for GUT cells albeit they show defects in the initial stages of colonization. They also show a differential colonization along the gastrointestinal tract compared to isogenic strains, which is probably caused by their susceptibility to bile salts. We also show that WOR1 overexpressing cells have an altered metabolic activity, as revealed by a different susceptibility to inhibitors of respiration, and an enhanced adhesion to the mouse mucosa. We propose that this may contribute to their long-term favored ability to colonize the gastrointestinal tract.

  6. Characterization of [3H] oxymorphone binding sites in mouse brain: Quantitative autoradiography in opioid receptor knockout mice.

    PubMed

    Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza; Benyhe, Sándor; Gaspar, Robert; Matifas, Audrey; Kieffer, Brigitte L; Metaxas, Athanasios; Kitchen, Ian; Bailey, Alexis

    2017-03-16

    Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear. This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [ 3 H]oxymorphone revealed high affinity binding sites in mouse brain displaying Kd of 1.7nM and Bmax of 147fmol/mg. Furthermore, we performed quantitative autoradiography binding studies using [ 3 H]oxymorphone in mouse brain. The distribution of [ 3 H]oxymorphone binding sites was found to be similar to the selective MOP agonist [ 3 H]DAMGO in the mouse brain. [ 3 H]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [ 3 H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP, and not the DOP or the KOP is the main high affinity binding target for oxymorphone. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The VP40 protein of Marburg virus exhibits impaired budding and increased sensitivity to human tetherin following mouse adaptation.

    PubMed

    Feagins, Alicia R; Basler, Christopher F

    2014-12-01

    The Marburg virus VP40 protein is a viral matrix protein that spontaneously buds from cells. It also functions as an interferon (IFN) signaling antagonist by targeting Janus kinase 1 (JAK1). A previous study demonstrated that the VP40 protein of the Ravn strain of Marburg virus (Ravn virus [RAVV]) failed to block IFN signaling in mouse cells, whereas the mouse-adapted RAVV (maRAVV) VP40 acquired the ability to inhibit IFN responses in mouse cells. The increased IFN antagonist function of maRAVV VP40 mapped to residues 57 and 165, which were mutated during the mouse adaptation process. In the present study, we demonstrate that maRAVV VP40 lost the capacity to efficiently bud from human cell lines, despite the fact that both parental and maRAVV VP40s bud efficiently from mouse cell lines. The impaired budding in human cells corresponds with the appearance of protrusions on the surface of maRAVV VP40-expressing Huh7 cells and with an increased sensitivity of maRAVV VP40 to restriction by human tetherin but not mouse tetherin. However, transfer of the human tetherin cytoplasmic tail to mouse tetherin restored restriction of maRAVV VP40. Residues 57 and 165 were demonstrated to contribute to the failure of maRAVV VP40 to bud from human cells, and residue 57 was demonstrated to alter VP40 oligomerization, as assessed by coprecipitation assay, and to determine sensitivity to human tetherin. This suggests that RAVV VP40 acquired, during adaptation to mice, changes in its oligomerization potential that enhanced IFN antagonist function. However, this new capacity impaired RAVV VP40 budding from human cells. Filoviruses, which include Marburg viruses and Ebola viruses, are zoonotic pathogens that cause severe disease in humans and nonhuman primates but do not cause similar disease in wild-type laboratory strains of mice unless first adapted to these animals. Although mouse adaptation has been used as a method to develop small animal models of pathogenesis, the molecular determinants associated with filovirus mouse adaptation are poorly understood. Our study demonstrates how genetic changes that accrued during mouse adaptation of the Ravn strain of Marburg virus have impacted the budding function of the viral VP40 matrix protein. Strikingly, we find impairment of mouse-adapted VP40 budding function in human but not mouse cell lines, and we correlate the impairment with an increased sensitivity of VP40 to restriction by human but not mouse tetherin and with changes in VP40 oligomerization. These data suggest that there are functional costs associated with filovirus adaptation to new hosts and implicate tetherin as a filovirus host restriction factor. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    PubMed Central

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that span the genome. Most of these markers are single nucleotide polymorphisms and sequences for these variants are provided in an accessible format. The average density of the new markers is one per 225 kb on the autosomes and one per megabase on the X chromosome. We include in this survey a set of P-element strains that provide additional use for high-resolution mapping. We show one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community. PMID:11381036

  9. Single nucleotide polymorphism markers for genetic mapping in Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed

    2001-04-16

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that have recently revolutionized human, mouse and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila using an STS-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that the genome. The majority of these markers are single nucleotide polymorphisms (SNPs) and sequences for these variants are provided in an accessible format. The average density of the new markersmore » is 1 marker per 225 kb on the autosomes and 1 marker per 1 Mb on the X chromosome. We include in this survey a set of P-element strains that provide additional utility for high-resolution mapping. We demonstrate one application of the new markers in a simple set of crosses to map a mutation in the hedgehog gene to an interval of <1 Mb. This new map resource significantly increases the efficiency and resolution of recombination mapping and will be of immediate value to the Drosophila research community.« less

  10. Nasal Bone Shape Is under Complex Epistatic Genetic Control in Mouse Interspecific Recombinant Congenic Strains

    PubMed Central

    Burgio, Gaétan; Baylac, Michel; Heyer, Evelyne; Montagutelli, Xavier

    2012-01-01

    Background Genetic determinism of cranial morphology in the mouse is still largely unknown, despite the localization of putative QTLs and the identification of genes associated with Mendelian skull malformations. To approach the dissection of this multigenic control, we have used a set of interspecific recombinant congenic strains (IRCS) produced between C57BL/6 and mice of the distant species Mus spretus (SEG/Pas). Each strain has inherited 1.3% of its genome from SEG/Pas under the form of few, small-sized, chromosomal segments. Results The shape of the nasal bone was studied using outline analysis combined with Fourier descriptors, and differential features were identified between IRCS BcG-66H and C57BL/6. An F2 cross between BcG-66H and C57BL/6 revealed that, out of the three SEG/Pas-derived chromosomal regions present in BcG-66H, two were involved. Segments on chromosomes 1 (∼32 Mb) and 18 (∼13 Mb) showed additive effect on nasal bone shape. The three chromosomal regions present in BcG-66H were isolated in congenic strains to study their individual effect. Epistatic interactions were assessed in bicongenic strains. Conclusions Our results show that, besides a strong individual effect, the QTL on chromosome 1 interacts with genes on chromosomes 13 and 18. This study demonstrates that nasal bone shape is under complex genetic control but can be efficiently dissected in the mouse using appropriate genetic tools and shape descriptors. PMID:22662199

  11. Genetically diverse CC-founder mouse strains replicate the human influenza gene expression signature.

    PubMed

    Elbahesh, Husni; Schughart, Klaus

    2016-05-19

    Influenza A viruses (IAV) are zoonotic pathogens that pose a major threat to human and animal health. Influenza virus disease severity is influenced by viral virulence factors as well as individual differences in host response. We analyzed gene expression changes in the blood of infected mice using a previously defined set of signature genes that was derived from changes in the blood transcriptome of IAV-infected human volunteers. We found that the human signature was reproduced well in the founder strains of the Collaborative Cross (CC) mice, thus demonstrating the relevance and importance of mouse experimental model systems for studying human influenza disease.

  12. Experimenter effects on behavioral test scores of eight inbred mouse strains under the influence of ethanol

    PubMed Central

    Bohlen, Martin; Hayes, Erika R.; Bohlen, Benjamin; Bailoo, Jeremy; Crabbe, John C.; Wahlsten, Douglas

    2016-01-01

    Eight standard inbred mouse strains were evaluated for ethanol effects on a refined battery of behavioral tests in a study that was originally designed to assess the influence of rat odors in the colony on mouse behaviors. As part of the design of the study, two experimenters conducted the tests, and the study was carefully balanced so that equal numbers of mice in all groups and times of day were tested by each experimenter. A defect in airflow in the facility compromised the odor manipulation, and in fact the different odor exposure groups did not differ in their behaviors. The two experimenters, however, obtained markedly different results for three of the tests. Certain of the experimenter effects arose from the way they judged behaviors that were not automated and had to be rated by the experimenter, such as slips on the balance beam. Others were not evident prior to ethanol injection but had a major influence after the injection. For several measures, the experimenter effects were notably different for different inbred strains. Methods to evaluate and reduce the impact of experimenter effects in future research are discussed. PMID:24933191

  13. The Role of Heterotypic DENV-specific CD8+T Lymphocytes in an Immunocompetent Mouse Model of Secondary Dengue Virus Infection.

    PubMed

    Talarico, Laura B; Batalle, Juan P; Byrne, Alana B; Brahamian, Jorge M; Ferretti, Adrián; García, Ayelén G; Mauri, Aldana; Simonetto, Carla; Hijano, Diego R; Lawrence, Andrea; Acosta, Patricio L; Caballero, Mauricio T; Paredes Rojas, Yésica; Ibañez, Lorena I; Melendi, Guillermina A; Rey, Félix A; Damonte, Elsa B; Harris, Eva; Polack, Fernando P

    2017-06-01

    Dengue is the most prevalent arthropod-borne viral disease worldwide and is caused by the four dengue virus serotypes (DENV-1-4). Sequential heterologous DENV infections can be associated with severe disease manifestations. Here, we present an immunocompetent mouse model of secondary DENV infection using non mouse-adapted DENV strains to investigate the pathogenesis of severe dengue disease. C57BL/6 mice infected sequentially with DENV-1 (strain Puerto Rico/94) and DENV-2 (strain Tonga/74) developed low platelet counts, internal hemorrhages, and increase of liver enzymes. Cross-reactive CD8 + T lymphocytes were found to be necessary and sufficient for signs of severe disease by adoptively transferring of DENV-1-immune CD8 + T lymphocytes before DENV-2 challenge. Disease signs were associated with production of tumor necrosis factor (TNF)-α and elevated cytotoxicity displayed by heterotypic anti-DENV-1 CD8 + T lymphocytes. These findings highlight the critical role of heterotypic anti-DENV CD8 + T lymphocytes in manifestations of severe dengue disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Experimenter effects on behavioral test scores of eight inbred mouse strains under the influence of ethanol.

    PubMed

    Bohlen, Martin; Hayes, Erika R; Bohlen, Benjamin; Bailoo, Jeremy D; Crabbe, John C; Wahlsten, Douglas

    2014-10-01

    Eight standard inbred mouse strains were evaluated for ethanol effects on a refined battery of behavioral tests in a study that was originally designed to assess the influence of rat odors in the colony on mouse behaviors. As part of the design of the study, two experimenters conducted the tests, and the study was carefully balanced so that equal numbers of mice in all groups and times of day were tested by each experimenter. A defect in airflow in the facility compromised the odor manipulation, and in fact the different odor exposure groups did not differ in their behaviors. The two experimenters, however, obtained markedly different results for three of the tests. Certain of the experimenter effects arose from the way they judged behaviors that were not automated and had to be rated by the experimenter, such as slips on the balance beam. Others were not evident prior to ethanol injection but had a major influence after the injection. For several measures, the experimenter effects were notably different for different inbred strains. Methods to evaluate and reduce the impact of experimenter effects in future research are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Peroxisome proliferator activated receptor alpha regulates a male-specific cytochrome P450 in mouse liver.

    PubMed

    Jeffery, Brett; Choudhury, Agharul I; Horley, Neill; Bruce, Mary; Tomlinson, Simon R; Roberts, Ruth A; Gray, Tim J B; Barrett, David A; Shaw, P Nicholas; Kendall, David; Bell, David R

    2004-09-15

    We set out to find if the strain-specific, male-specific hepatic expression of Cyp4a protein in mouse was due to expression of Cyp4a12 and to understand the genetic basis for reported differences in expression. 12-Lauric acid hydroxylase (LAH) activity was found to show higher levels in male ddY, but not C57Bl/6, mouse liver microsomes. The expression of Cyp4a12 mRNA was studied using RNAase protection assays in male and female liver and kidney of nine mouse strains. Cyp4a12 was found to be highly expressed in male liver and kidney, but at much lower levels in female liver and kidney, in all strains studied. Western blotting with an antibody specific for Cyp4a12 confirmed that Cyp4a12 was expressed in a male specific fashion in C57Bl/6 mouse liver. RNAase protection analysis for Cyp4a10 and 14 in ddY mice revealed that neither of these genes showed male-specific expression. To further investigate genetic factors that control male-specific Cyp4a12 expression, PPARalpha+/+ and -/- mice were studied, showing that total P450 and 12-LAH activity was male-specific in +/+, but not -/- mice. RNAase protection assays were used to confirm that Cyp4a12 was lower in -/- mice. However, the male-specific Slp and MUP-1 genes retained hepatic male-specific levels of expression in +/+ and -/- mice, showing that the decrease in Cyp4a12 was not a general effect on male-specific expression. Thus, PPARalpha has a specific effect on constitutive expression of Cyp4a12.

  16. A mouse diversity panel approach reveals the potential for clinical kidney injury due to DB289 not predicted by classical rodent models.

    PubMed

    Harrill, Alison H; Desmet, Kristina D; Wolf, Kristina K; Bridges, Arlene S; Eaddy, J Scott; Kurtz, C Lisa; Hall, J Ed; Paine, Mary F; Tidwell, Richard R; Watkins, Paul B

    2012-12-01

    DB289 is the first oral drug shown in clinical trials to have efficacy in treating African trypanosomiasis (African sleeping sickness). Mild liver toxicity was noted but was not treatment limiting. However, development of DB289 was terminated when several treated subjects developed severe kidney injury, a liability not predicted from preclinical testing. We tested the hypothesis that the kidney safety liability of DB289 would be detected in a mouse diversity panel (MDP) comprised of 34 genetically diverse inbred mouse strains. MDP mice received 10 days of oral treatment with DB289 or vehicle and classical renal biomarkers blood urea nitrogen (BUN) and serum creatinine (sCr), as well as urine biomarkers of kidney injury were measured. While BUN and sCr remained within reference ranges, marked elevations were observed for kidney injury molecule-1 (KIM-1) in the urine of sensitive mouse strains. KIM-1 elevations were not always coincident with elevations in alanine aminotransferase (ALT), suggesting that renal injury was not linked to hepatic injury. Genome-wide association analyses of KIM-1 elevations indicated that genes participating in cholesterol and lipid biosynthesis and transport, oxidative stress, and cytokine release may play a role in DB289 renal injury. Taken together, the data resulting from this study highlight the utility of using an MDP to predict clinically relevant toxicities, to identify relevant toxicity biomarkers that may translate into the clinic, and to identify potential mechanisms underlying toxicities. In addition, the sensitive mouse strains identified in this study may be useful in screening next-in-class compounds for renal injury.

  17. Strong conservation of inbred mouse strain microRNA loci but broad variation in brain microRNAs due to RNA editing and isomiR expression.

    PubMed

    Trontti, Kalevi; Väänänen, Juho; Sipilä, Tessa; Greco, Dario; Hovatta, Iiris

    2018-05-01

    Diversity in the structure and expression of microRNAs, important regulators of gene expression, arises from SNPs, duplications followed by divergence, production of isomiRs, and RNA editing. Inbred mouse strains and crosses using them are important reference populations for genetic mapping, and as models of human disease. We determined the nature and extent of interstrain miRNA variation by (i) identifying miRNA SNPs in whole-genome sequence data from 36 strains, and (ii) examining miRNA editing and expression in hippocampus (Hpc) and frontal cortex (FCx) of six strains, to facilitate the study of miRNAs in neurobehavioral phenotypes. miRNA loci were strongly conserved among the 36 strains, but even the highly conserved seed region contained 16 SNPs. In contrast, we identified RNA editing in 58.9% of miRNAs, including 11 consistent editing events in the seed region. We confirmed the functional significance of three conserved edits in the miR-379/410 cluster, demonstrating that edited miRNAs gained novel target mRNAs not recognized by the unedited miRNAs. We found significant interstrain differences in miRNA and isomiR expression: Of 779 miRNAs expressed in Hpc and 719 in FCx, 262 were differentially expressed (190 in Hpc, 126 in FCx, 54 in both). We also identified 32 novel miRNA candidates using miRNA prediction tools. Our studies provide the first comprehensive analysis of SNP, isomiR, and RNA editing variation in miRNA loci across inbred mouse strains, and a detailed catalog of expressed miRNAs in Hpc and FCx in six commonly used strains. These findings will facilitate the molecular analysis of neurological and behavioral phenotypes in this model organism. © 2018 Trontti et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  18. Vocal development and auditory perception in CBA/CaJ mice

    NASA Astrophysics Data System (ADS)

    Radziwon, Kelly E.

    Mice are useful laboratory subjects because of their small size, their modest cost, and the fact that researchers have created many different strains to study a variety of disorders. In particular, researchers have found nearly 100 naturally occurring mouse mutations with hearing impairments. For these reasons, mice have become an important model for studies of human deafness. Although much is known about the genetic makeup and physiology of the laboratory mouse, far less is known about mouse auditory behavior. To fully understand the effects of genetic mutations on hearing, it is necessary to determine the hearing abilities of these mice. Two experiments here examined various aspects of mouse auditory perception using CBA/CaJ mice, a commonly used mouse strain. The frequency difference limens experiment tested the mouse's ability to discriminate one tone from another based solely on the frequency of the tone. The mice had similar thresholds as wild mice and gerbils but needed a larger change in frequency than humans and cats. The second psychoacoustic experiment sought to determine which cue, frequency or duration, was more salient when the mice had to identify various tones. In this identification task, the mice overwhelmingly classified the tones based on frequency instead of duration, suggesting that mice are using frequency when differentiating one mouse vocalization from another. The other two experiments were more naturalistic and involved both auditory perception and mouse vocal production. Interest in mouse vocalizations is growing because of the potential for mice to become a model of human speech disorders. These experiments traced mouse vocal development from infant to adult, and they tested the mouse's preference for various vocalizations. This was the first known study to analyze the vocalizations of individual mice across development. Results showed large variation in calling rates among the three cages of adult mice but results were highly consistent across all infant vocalizations. Although the preference experiment did not reveal significant differences between various mouse vocalizations, suggestions are given for future attempts to identify mouse preferences for auditory stimuli.

  19. Virulent variants emerging in mice infected with the apathogenic prototype strain of the parvovirus minute virus of mice exhibit a capsid with low avidity for a primary receptor.

    PubMed

    Rubio, Mari-Paz; López-Bueno, Alberto; Almendral, José M

    2005-09-01

    The mechanisms involved in the emergence of virulent mammalian viruses were investigated in the adult immunodeficient SCID mouse infected by the attenuated prototype strain of the parvovirus Minute Virus of Mice (MVMp). Cloned MVMp intravenously inoculated in mice consistently evolved during weeks of subclinical infection to variants showing altered plaque phenotypes. All the isolated large-plaque variants spread systemically from the oronasal cavity and replicated in major organs (brain, kidney, liver), in sharp contrast to the absolute inability of the MVMp and small-plaque variants to productively invade SCID organs by this natural route of infection. The virulent variants retained the MVMp capacity to infect mouse fibroblasts, consistent with the lack of genetic changes across the 220-to-335 amino acid sequence of VP2, a capsid domain containing main determinants of MVM tropism. However, the capsid of the virulent variants shared a lower affinity than the wild type for a primary receptor used in the cytotoxic infection. The capsid gene of a virulent variant engineered in the MVMp background endowed the recombinant virus with a large-plaque phenotype, lower affinity for the receptor, and productive invasiveness by the oronasal route in SCID mice, eventually leading to 100% mortality. In the analysis of virulence in mice, both MVMp and the recombinant virus similarly gained the bloodstream 1 to 2 days postoronasal inoculation and remained infectious when adsorbed to blood cells in vitro. However, the wild-type MVMp was cleared from circulation a few days afterwards, in contrast to the viremia of the recombinant virus, which was sustained for life. Significantly, attachment to an abundant receptor of primary mouse kidney epithelial cells by both viruses could be quantitatively competed by wild-type MVMp capsids, indicating that virulence is not due to an extended receptor usage in target tissues. We conclude that the selection of capsid-receptor interactions of low affinity, which favors systemic infection, is a major evolutionary process in the adaptation of parvoviruses to new hosts and in the cause of disease.

  20. Virulent Variants Emerging in Mice Infected with the Apathogenic Prototype Strain of the Parvovirus Minute Virus of Mice Exhibit a Capsid with Low Avidity for a Primary Receptor

    PubMed Central

    Rubio, Mari-Paz; López-Bueno, Alberto; Almendral, José M.

    2005-01-01

    The mechanisms involved in the emergence of virulent mammalian viruses were investigated in the adult immunodeficient SCID mouse infected by the attenuated prototype strain of the parvovirus Minute Virus of Mice (MVMp). Cloned MVMp intravenously inoculated in mice consistently evolved during weeks of subclinical infection to variants showing altered plaque phenotypes. All the isolated large-plaque variants spread systemically from the oronasal cavity and replicated in major organs (brain, kidney, liver), in sharp contrast to the absolute inability of the MVMp and small-plaque variants to productively invade SCID organs by this natural route of infection. The virulent variants retained the MVMp capacity to infect mouse fibroblasts, consistent with the lack of genetic changes across the 220-to-335 amino acid sequence of VP2, a capsid domain containing main determinants of MVM tropism. However, the capsid of the virulent variants shared a lower affinity than the wild type for a primary receptor used in the cytotoxic infection. The capsid gene of a virulent variant engineered in the MVMp background endowed the recombinant virus with a large-plaque phenotype, lower affinity for the receptor, and productive invasiveness by the oronasal route in SCID mice, eventually leading to 100% mortality. In the analysis of virulence in mice, both MVMp and the recombinant virus similarly gained the bloodstream 1 to 2 days postoronasal inoculation and remained infectious when adsorbed to blood cells in vitro. However, the wild-type MVMp was cleared from circulation a few days afterwards, in contrast to the viremia of the recombinant virus, which was sustained for life. Significantly, attachment to an abundant receptor of primary mouse kidney epithelial cells by both viruses could be quantitatively competed by wild-type MVMp capsids, indicating that virulence is not due to an extended receptor usage in target tissues. We conclude that the selection of capsid-receptor interactions of low affinity, which favors systemic infection, is a major evolutionary process in the adaptation of parvoviruses to new hosts and in the cause of disease. PMID:16103180

  1. Automated segmentation of the actively stained mouse brain using multi-spectral MR microscopy.

    PubMed

    Sharief, Anjum A; Badea, Alexandra; Dale, Anders M; Johnson, G Allan

    2008-01-01

    Magnetic resonance microscopy (MRM) has created new approaches for high-throughput morphological phenotyping of mouse models of diseases. Transgenic and knockout mice serve as a test bed for validating hypotheses that link genotype to the phenotype of diseases, as well as developing and tracking treatments. We describe here a Markov random fields based segmentation of the actively stained mouse brain, as a prerequisite for morphological phenotyping. Active staining achieves higher signal to noise ratio (SNR) thereby enabling higher resolution imaging per unit time than obtained in previous formalin-fixed mouse brain studies. The segmentation algorithm was trained on isotropic 43-mum T1- and T2-weighted MRM images. The mouse brain was segmented into 33 structures, including the hippocampus, amygdala, hypothalamus, thalamus, as well as fiber tracts and ventricles. Probabilistic information used in the segmentation consisted of (a) intensity distributions in the T1- and T2-weighted data, (b) location, and (c) contextual priors for incorporating spatial information. Validation using standard morphometric indices showed excellent consistency between automatically and manually segmented data. The algorithm has been tested on the widely used C57BL/6J strain, as well as on a selection of six recombinant inbred BXD strains, chosen especially for their largely variant hippocampus.

  2. Standardization of deep partial-thickness scald burns in C57BL/6 mice

    PubMed Central

    Medina, Jorge L; Fourcaudot, Andrea B; Sebastian, Eliza A; Shankar, Ravi; Brown, Ammon W; Leung, Kai P

    2018-01-01

    Mouse burn models are used to understand the wound healing process and having a reproducible model is important. The different protocols used by researchers can lead to differences in depth of partial-thickness burn wounds. Additionally, standardizing a protocol for mouse burns in the laboratory for one strain may result in substantially different results in other strains. In our current study we describe the model development of a deep partial-thickness burn in C57BL/6 mice using hot water scalding as the source of thermal injury. As part of our model development we designed a template with specifications to allow for even contact of bare mouse skin (2×3 cm) with hot water while protecting the rest of the mouse. Burn depth was evaluated with H&E, Masson’s trichrome, and TUNEL staining. Final results were validated with pathology analysis. A water temperature of 54°C with a scalding time of 20 seconds produced consistent deep partial-thickness burns with available equipment described. Other than temperature and time, factors such as template materials and cooling steps after the burn could affect the uniformity of the burns. These findings are useful to burn research by providing some key parameters essential for researchers to simplify the development of their own mouse burn models. PMID:29755839

  3. Development of the Nonobese Diabetic Mouse and Contribution of Animal Models for Understanding Type 1 Diabetes.

    PubMed

    Mullen, Yoko

    2017-04-01

    In 1974, the discovery of a mouse and a rat that spontaneously developed hyperglycemia led to the development of 2 autoimmune diabetes models: nonobese diabetic (NOD) mouse and Bio-Breeding rat. These models have contributed to our understanding of autoimmune diabetes, provided tools to dissect autoimmune islet damage, and facilitated development of early detection, prevention, and treatment of type 1 diabetes. The genetic characterization, monoclonal antibodies, and congenic strains have made NOD mice especially useful.Although the establishment of the inbred NOD mouse strain was documented by Makino et al (Jikken Dobutsu. 1980;29:1-13), this review will focus on the not-as-well-known history leading to the discovery of a glycosuric female mouse by Yoshihiro Tochino. This discovery was spearheaded by years of effort by Japanese scientists from different disciplines and dedicated animal care personnel and by the support of the Shionogi Pharmaceutical Company, Osaka, Japan. The history is based on the early literature, mostly written in Japanese, and personal communications especially with Dr Tochino, who was involved in diabetes animal model development and who contributed to the release of NOD mice to the international scientific community. This article also reviews the scientific contributions made by the Bio-Breeding rat to autoimmune diabetes.

  4. Studies with pyrethroids (kadethrin and deltamethrin) and lindane in ethanol sensitive (LS) and insensitive (SS) mouse strains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doherty, J.; Baker, R.C.; Deitrich, R.

    1990-02-26

    Ethanol (E) sensitive (LS) and insensitive (SS) mouse strains are distinguished by their sleeping time to a given dose of E and the locus for this difference is at the level of the neuron. In attempts to understand the neuropharmacological basis of insecticide action and to further define the differences in these mouse lines, LS and SS mice were dosed with type I (kadethrine, K) and II (deltamethrin, D) pyrethroids and lindane (L). These compounds were selected because their proposed modes of action are on the Na+ channel (K and D) and/or the GABA receptor ionophore (D and L). Nomore » consistent differences in the effects of K, D or L in the SS and LS mouse lines were evident. In preliminary studies both SS and LS mice dosed with 50 or 100 {mu}g/brain of L (intracerebroventricularly) but not D slept much longer (2-3X) than when dosed with E alone, an effect opposite of that predicted from L's known excitatory action. These data indicate that as far as can be distinguished by pyrethroids and L, the Na+ channel and GABA receptor/ionophore complex are similar in both the LS and SS mouse lines.« less

  5. Surface Antigens Common to Mouse Cleavage Embryos and Primitive Teratocarcinoma Cells in Culture

    PubMed Central

    Artzt, Karen; Dubois, Philippe; Bennett, Dorothea; Condamine, Hubert; Babinet, Charles; Jacob, François

    1973-01-01

    Syngeneic antisera have been produced in mouse strain 129/Sv-CP males against the primitive cells of teratocarcinoma. These sera react specifically with the primitive cells and are negative on various types of differentiated teratoma cells derived from the same original tumor. They are negative on all other mouse cells tested, with the exception of male germ cells and cleavage-stage embryos. Thus, teratoma cells possess cell-surface antigens in common with normal cleavage-stage embryos. Images PMID:4355379

  6. Mouse Models for Drug Discovery. Can New Tools and Technology Improve Translational Power?

    PubMed

    Zuberi, Aamir; Lutz, Cathleen

    2016-12-01

    The use of mouse models in biomedical research and preclinical drug evaluation is on the rise. The advent of new molecular genome-altering technologies such as CRISPR/Cas9 allows for genetic mutations to be introduced into the germ line of a mouse faster and less expensively than previous methods. In addition, the rapid progress in the development and use of somatic transgenesis using viral vectors, as well as manipulations of gene expression with siRNAs and antisense oligonucleotides, allow for even greater exploration into genomics and systems biology. These technological advances come at a time when cost reductions in genome sequencing have led to the identification of pathogenic mutations in patient populations, providing unprecedented opportunities in the use of mice to model human disease. The ease of genetic engineering in mice also offers a potential paradigm shift in resource sharing and the speed by which models are made available in the public domain. Predictively, the knowledge alone that a model can be quickly remade will provide relief to resources encumbered by licensing and Material Transfer Agreements. For decades, mouse strains have provided an exquisite experimental tool to study the pathophysiology of the disease and assess therapeutic options in a genetically defined system. However, a major limitation of the mouse has been the limited genetic diversity associated with common laboratory mice. This has been overcome with the recent development of the Collaborative Cross and Diversity Outbred mice. These strains provide new tools capable of replicating genetic diversity to that approaching the diversity found in human populations. The Collaborative Cross and Diversity Outbred strains thus provide a means to observe and characterize toxicity or efficacy of new therapeutic drugs for a given population. The combination of traditional and contemporary mouse genome editing tools, along with the addition of genetic diversity in new modeling systems, are synergistic and serve to make the mouse a better model for biomedical research, enhancing the potential for preclinical drug discovery and personalized medicine. © The Author 2016. Published by Oxford University Press.

  7. Effects of environmental enrichment on the amyotrophic lateral sclerosis mouse model.

    PubMed

    Sorrells, A D; Corcoran-Gomez, K; Eckert, K A; Fahey, A G; Hoots, B L; Charleston, L B; Charleston, J S; Roberts, C R; Markowitz, H

    2009-04-01

    The manner in which an animal's environment is furnished may have significant implications for animal welfare as well as research outcomes. We evaluated four different housing conditions to determine the effects of what has been considered standard rodent enrichment and the exercise opportunities those environments allow on disease progression in the amyotrophic lateral sclerosis mouse model. Forty-eight copper/zinc superoxide dismutase mice (strain: B6SJL-TgN [SOD1-G931]1Gur) (SOD1) and 48 control (C) (strain: B6SJL-TgN[SOD1]2Gur) male mice were randomly assigned to four different conditions where 12 SOD1 and 12 C animals were allotted to each condition (n = 96). Conditions tested the effects of standard housing, a forced exercise regime, access to a mouse house and opportunity for ad libitum exercise on a running wheel. In addition to the daily all-occurrence behavioural sampling, mice were weighed and tested twice per week on gait and Rotor-Rod performance until the mice reached the age of 150 days (C) or met the criteria for our humane endpoint (SOD1). The SOD1 mice exposed to the forced exercise regime and wheel access did better in average lifespan and Rotor-Rod performance, than SOD1 mice exposed to the standard cage and mouse house conditions. In SOD1 mice, stride length remained longest throughout the progression of the disease in mice exposed to the forced exercise regime compared with other SOD1 conditions. Within the control group, mice in the standard cage and forced exercise regime conditions performed significantly less than the mice with the mouse house and wheels on the Rotor-Rod. Alpha motor neuron counts were highest in mice with wheels and in mice exposed to forced exercise regime in both mouse strains. All SOD1 mice had significantly lower alpha neuron counts than controls (P < 0.05). These data show that different enrichment strategies affect behaviour and disease progression in a transgenic mouse model, and may have implications for the effects of these strategies on experimental outcomes.

  8. Catheter-Associated Urinary Tract Infection by Pseudomonas aeruginosa Is Mediated by Exopolysaccharide-Independent Biofilms

    PubMed Central

    Cole, Stephanie J.; Records, Angela R.; Orr, Mona W.; Linden, Sara B.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that is especially adept at forming surface-associated biofilms. P. aeruginosa causes catheter-associated urinary tract infections (CAUTIs) through biofilm formation on the surface of indwelling catheters. P. aeruginosa encodes three extracellular polysaccharides, PEL, PSL, and alginate, and utilizes the PEL and PSL polysaccharides to form biofilms in vitro; however, the requirement of these polysaccharides during in vivo infections is not well understood. Here we show in a murine model of CAUTI that PAO1, a strain harboring pel, psl, and alg genes, and PA14, a strain harboring pel and alg genes, form biofilms on the implanted catheters. To determine the requirement of exopolysaccharide during in vivo biofilm infections, we tested isogenic mutants lacking the pel, psl, and alg operons and showed that PA14 mutants lacking these operons can successfully form biofilms on catheters in the CAUTI model. To determine the host factor(s) that induces the ΔpelD mutant to form biofilm, we tested mouse, human, and artificial urine and show that urine can induce biofilm formation by the PA14 ΔpelD mutant. By testing the major constituents of urine, we show that urea can induce a pel-, psl-, and alg-independent biofilm. These pel-, psl-, and alg-independent biofilms are mediated by the release of extracellular DNA. Treatment of biofilms formed in urea with DNase I reduced the biofilm, indicating that extracellular DNA supports biofilm formation. Our results indicate that the opportunistic pathogen P. aeruginosa utilizes a distinct program to form biofilms that are independent of exopolysaccharides during CAUTI. PMID:24595142

  9. Serological relatedness of herpes simplex viruses. Type-specificity of antibody response.

    PubMed Central

    Skinner, G R; Thouless, M E; Trueman, S; Edwards, J; Gibbs, A J

    1976-01-01

    The serological relatedness of forty-seven strains of type 1 and type 2 herpes simplex virus was investigated by reciprocal and non-reciprocal neutralization kinetics. Early rabbit antisera divided the virus strains into two distinct groups where confident indentification of virus type was possible. Hyperimmune mouse and rabbit antisera did not divide the two virus types into two distinct non-over-lapping groups. The extent of overlap varied with the particular attribute of the virus being studied. The virus types were best discriminated by their neutralizability by type 1 antisera and least well by their neutralizability by type 2 antisera. The results of reciprocal kinetic neutralization test with hyperimmune mouse antisera were analysed by multi-dimensional cluster analysis. Hyperimmune mouse or rabbit antisera could not be discriminated with respect to their immunogenic type by their absolute neutralization rate constants against either type 1 or type 2 virus, but could be distinguished on a group basis by their relative neutralizability against both virus types (antiserum specificity attribute); however, using this latter criterion, the type of immunogen could only be predicted in seven of the forty antisera under test. 'Early' mouse antisera could also be distinguished as groups by their absolute k-values against type 1 herpes virus. Thus, immunogenic identification, on other than a group basis, was unreliable. The specificity of a given serum was inversely related to its titre. There was a positive correlation between the specificity of a given virus strain and of its corresponding antiserum. PMID:194831

  10. Effect of social odor context on the emission of isolation-induced ultrasonic vocalizations in the BTBR T+tf/J mouse model for autism

    PubMed Central

    Wöhr, Markus

    2015-01-01

    An important diagnostic criterion for social communication deficits in autism spectrum disorders (ASD) are difficulties in adjusting behavior to suit different social contexts. While the BTBR T+tf/J (BTBR) inbred strain of mice is one of the most commonly used mouse models for ASD, little is known about whether BTBR mice display deficits in detecting changes in social context and their ability to adjust to them. Here, it was tested therefore whether the emission of isolation-induced ultrasonic vocalizations (USV) in BTBR mouse pups is affected by the social odor context, in comparison to the standard control strain with high sociability, C57BL/6J (B6). It is known that the presence of odors from mothers and littermates leads to a calming of the isolated mouse pup, and hence to a reduction in isolation-induced USV emission. In accordance with their behavioral phenotypes with relevance to all diagnostic core symptoms of ASD, it was predicted that BTBR mouse pups would not display a calming response when tested under soiled bedding conditions with home cage bedding material containing maternal odors, and that similar isolation-induced USV emission rates would be seen in BTBR mice tested under clean and soiled bedding conditions. Unexpectedly, however, the present findings show that BTBR mouse pups display such a calming response and emit fewer isolation-induced USV when tested under soiled as compared to clean bedding conditions, similar to B6 mouse pups. Yet, in contrast to B6 mouse pups, which emitted isolation-induced USV with shorter call durations and lower levels of frequency modulation under soiled bedding conditions, social odor context had no effect on acoustic call features in BTBR mouse pups. This indicates that the BTBR mouse model for ASD does not display deficits in detecting changes in social context, but has a limited ability and/or reduced motivation to adjust to them. PMID:25852455

  11. CRISPR-Mediated Knockout of Cybb in NSG Mice Establishes a Model of Chronic Granulomatous Disease for Human Stem-Cell Gene Therapy Transplants.

    PubMed

    Sweeney, Colin L; Choi, Uimook; Liu, Chengyu; Koontz, Sherry; Ha, Seung-Kwon; Malech, Harry L

    2017-07-01

    Chronic granulomatous disease (CGD) is characterized by defects in the production of microbicidal reactive oxygen species (ROS) by phagocytes. Testing of gene and cell therapies for the treatment of CGD in human hematopoietic cells requires preclinical transplant models. The use of the lymphocyte-deficient NOD.Cg-Prkdc scid Il2rg tm1Wjl/ SzJ (NSG) mouse strain for human hematopoietic cell xenografts to test CGD therapies is complicated by the presence of functional mouse granulocytes capable of producing ROS for subsequent bacterial and fungal killing. To establish a phagocyte-defective mouse model of X-linked CGD (X-CGD) in NSG mice, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 was utilized for targeted knockout of mouse Cybb on the X-chromosome by microinjection of NSG mouse zygotes with Cas9 mRNA and CRISPR single-guide RNA targeting Cybb exon 1 or exon 3. This resulted in a high incidence of indel formation at the CRISPR target site, with all mice exhibiting deletions in at least one Cybb allele based on sequence analysis of tail snip DNA. A female mouse heterozygous for a 235-bp deletion in Cybb exon 1 was bred to an NSG male to establish the X-CGD NSG mouse strain, NSG.Cybb[KO]. Resulting male offspring with the 235 bp deletion were found to be defective for production of ROS by neutrophils and other phagocytes, and demonstrated increased susceptibility to spontaneous bacterial and fungal infections with granulomatous inflammation. The establishment of the phagocyte-defective NSG.Cybb[KO] mouse model enables the in vivo assessment of gene and cell therapy strategies for treating CGD in human hematopoietic cell transplants without obfuscation by functional mouse phagocytes, and may also be useful for modeling other phagocyte disorders in humanized NSG mouse xenografts.

  12. Response, use and habituation to a mouse house in C57BL/6J and BALB/c mice.

    PubMed

    Wirz, Annarita; Mandillo, Silvia; D'Amato, Francesca R; Giuliani, Alessandro; Riviello, M Cristina

    2015-01-01

    Animal welfare depends on the possibility to express species-specific behaviours and can be strongly compromised in socially and environmentally deprived conditions. Nesting materials and refuges are very important resources to express these behaviours and should be considered as housing supplementation items. We evaluated the effects of one item of housing supplementation in standard settings in laboratory mice. C57BL/6JOlaHsd (B6) and BALB/cOlaHsd (BALB) young male and female mice, upon arrival, were housed in groups of four in standard laboratory cages and after 10 days of acclimatization, a red transparent plastic triangular-shaped Mouse House™ was introduced into half of the home cages. Animals with or without a mouse house were observed in various contexts for more than one month. Body weight gain and food intake, home cage behaviours, emotionality and response to standard cage changing procedures were evaluated. The presence of a mouse house in the home cage did not interfere with main developmental and behavioural parameters or emotionality of BALB and B6 male and female mice compared with controls. Both strains habituated to the mouse house in about a week, but made use of it differently, with BALB mice using the house more than the B6 strain. Our results suggest that mice habituated to the mouse house rather quickly without disrupting their home cage activities. Scientists can thus be encouraged to use mouse houses, also in view of the implementation of the EU Directive (2010/63/EU).

  13. Genetic mapping of secretion and functional determinants of the Vibrio cholerae TcpF colonization factor.

    PubMed

    Krebs, Shelly J; Kirn, Thomas J; Taylor, Ronald K

    2009-06-01

    Colonization of the human small intestine by Vibrio cholerae requires the type IV toxin-coregulated pilus (TCP). TcpF, which is encoded within the tcp operon, is secreted from the bacterial cell by the TCP apparatus and is also essential for colonization. Bacteria lacking tcpF are deficient in colonization, and anti-TcpF antibodies are protective in the infant mouse cholera model. In order to elucidate the regions of the protein that are required for secretion through the TCP apparatus and for its function in colonization, random mutagenesis of tcpF was performed. Analysis of these mutants suggests that multiple regions throughout the protein influence extracellular secretion and that determinants near the C terminus are important for the function of TcpF in colonization. The TcpF proteins of certain environmental V. cholerae isolates with 31% to 66% identity to pathogenic V. cholerae TcpF showed higher similarity in regions identified as secretion determinants but diverged in regions found to be important for colonization. These environmental TcpF proteins are secreted from the pathogenic strain; however, they do not mediate colonization in the infant mouse model. Here we provide genetic evidence pointing toward regions of TcpF that influence secretion, as well as regions that play an important role in in vivo colonization.

  14. A novel pre-clinical in vivo mouse model for malignant brain tumor growth and invasion.

    PubMed

    Shelton, Laura M; Mukherjee, Purna; Huysentruyt, Leanne C; Urits, Ivan; Rosenberg, Joshua A; Seyfried, Thomas N

    2010-09-01

    Glioblastoma multiforme (GBM) is a rapidly progressive disease of morbidity and mortality and is the most common form of primary brain cancer in adults. Lack of appropriate in vivo models has been a major roadblock to developing effective therapies for GBM. A new highly invasive in vivo GBM model is described that was derived from a spontaneous brain tumor (VM-M3) in the VM mouse strain. Highly invasive tumor cells could be identified histologically on the hemisphere contralateral to the hemisphere implanted with tumor cells or tissue. Tumor cells were highly expressive for the chemokine receptor CXCR4 and the proliferation marker Ki-67 and could be identified invading through the pia mater, the vascular system, the ventricular system, around neurons, and over white matter tracts including the corpus callosum. In addition, the brain tumor cells were labeled with the firefly luciferase gene, allowing for non-invasive detection and quantitation through bioluminescent imaging. The VM-M3 tumor has a short incubation time with mortality occurring in 100% of the animals within approximately 15 days. The VM-M3 brain tumor model therefore can be used in a pre-clinical setting for the rapid evaluation of novel anti-invasive therapies.

  15. Thermoneutral housing exacerbates non-alcoholic fatty liver disease in mice and allows for sex-independent disease modeling

    PubMed Central

    Giles, Daniel A; Moreno-Fernandez, Maria E; Stankiewicz, Traci E; Graspeuntner, Simon; Cappelletti, Monica; Wu, David; Mukherjee, Rajib; Chan, Calvin C; Lawson, Matthew J; Klarquist, Jared; Sünderhauf, Annika; Softic, Samir; Kahn, C Ronald; Stemmer, Kerstin; Iwakura, Yoichiro; Aronow, Bruce J; Karns, Rebekah; Steinbrecher, Kris A; Karp, Christopher L; Sheridan, Rachel; Shanmukhappa, Shiva K; Reynaud, Damien; Haslam, David B; Sina, Christian; Rupp, Jan; Hogan, Simon P; Divanovic, Senad

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD), a common prelude to cirrhosis and hepatocellular carcinoma, is the most common chronic liver disease worldwide. Defining the molecular mechanisms underlying the pathogenesis of NAFLD has been hampered by a lack of animal models that closely recapitulate the severe end of the human disease spectrum, including bridging hepatic fibrosis. Here, we demonstrate that a novel experimental model employing thermoneutral housing, as opposed to standard housing, resulted in lower stress-driven production of corticosterone, augmented mouse proinflammatory immune responses and markedly exacerbated high fat diet (HFD)-induced NAFLD pathogenesis. Disease exacerbation at thermoneutrality was conserved across multiple mouse strains and was associated with augmented intestinal permeability, an altered microbiome and activation of inflammatory pathways associated with human disease. Depletion of Gram-negative microbiota, hematopoietic cell deletion of Toll-like receptor 4 (TLR4) and inactivation of the interleukin-17 (IL-17) axis resulted in altered immune responsiveness and protection from thermoneutral housing-driven NAFLD amplification. Finally, female mice, typically resistant to HFD-induced obesity and NAFLD, develop full-blown disease at thermoneutrality. Thus, thermoneutral housing provides a sex-independent model of exacerbated NAFLD in mice and represents a novel approach for interrogation of the cellular and molecular mechanisms underlying disease pathogenesis. PMID:28604704

  16. Bacillus subtilis Spores as Vaccine Adjuvants: Further Insights into the Mechanisms of Action

    PubMed Central

    de Souza, Renata Damásio; Batista, Milene Tavares; Luiz, Wilson Barros; Cavalcante, Rafael Ciro Marques; Amorim, Jaime Henrique; Bizerra, Raíza Sales Pereira; Martins, Eduardo Gimenes; de Souza Ferreira, Luís Carlos

    2014-01-01

    Bacillus subtilis spores have received growing attention regarding potential biotechnological applications, including the use as probiotics and in vaccine formulations. B. subtilis spores have also been shown to behave as particulate vaccine adjuvants, promoting the increase of antibody responses after co-administration with antigens either admixed or adsorbed on the spore surface. In this study, we further evaluated the immune modulatory properties of B. subtilis spores using a recombinant HIV gag p24 protein as a model antigen. The adjuvant effects of B. subtilis spores were not affected by the genetic background of the mouse lineage and did not induce significant inflammatory or deleterious effects after parenteral administration. Our results demonstrated that co-administration, but not adsorption to the spore surface, enhanced the immunogenicity of that target antigen after subcutaneous administration to BALB/c and C57BL/6 mice. Spores promoted activation of antigen presenting cells as demonstrated by the upregulation of MHC and CD40 molecules and enhanced secretion of pro-inflammatory cytokines by murine dendritic cells. In addition, in vivo studies indicated a direct role of the innate immunity on the immunomodulatory properties of B. subtilis spores, as demonstrated by the lack of adjuvant effects on MyD88 and TLR2 knockout mouse strains. PMID:24475289

  17. Mouse Genome Database: From sequence to phenotypes and disease models

    PubMed Central

    Richardson, Joel E.; Kadin, James A.; Smith, Cynthia L.; Blake, Judith A.; Bult, Carol J.

    2015-01-01

    Summary The Mouse Genome Database (MGD, www.informatics.jax.org) is the international scientific database for genetic, genomic, and biological data on the laboratory mouse to support the research requirements of the biomedical community. To accomplish this goal, MGD provides broad data coverage, serves as the authoritative standard for mouse nomenclature for genes, mutants, and strains, and curates and integrates many types of data from literature and electronic sources. Among the key data sets MGD supports are: the complete catalog of mouse genes and genome features, comparative homology data for mouse and vertebrate genes, the authoritative set of Gene Ontology (GO) annotations for mouse gene functions, a comprehensive catalog of mouse mutations and their phenotypes, and a curated compendium of mouse models of human diseases. Here, we describe the data acquisition process, specifics about MGD's key data areas, methods to access and query MGD data, and outreach and user help facilities. genesis 53:458–473, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc. PMID:26150326

  18. A strain-cue hypothesis for biological network formation

    PubMed Central

    Cox, Brian N.

    2011-01-01

    The direction of migration of a cell invading a host population is assumed to be controlled by the magnitude of the strains in the host medium (cells plus extracellular matrix) that arise as the host medium deforms to accommodate the invader. The single assumption that invaders are cued by strains external to themselves is sufficient to generate network structures. The strain induced by a line of invaders is greatest at the extremity of the line and thus the strain field breaks symmetry, stabilizing branch formation. The strain cue also triggers sprouting from existing branches, with no further model assumption. Network characteristics depend primarily on the ratio of the rate of advance of the invaders to the rate of relaxation of the host cells after their initial deformation. Intra-cell mechanisms that govern these two rates control network morphology. The strain field that cues an individual invader is a collective response of the combined cell populations, involving the nearest 100 cells, to order of magnitude, to any invader. The mechanism does not rely on the pre-existence of the entire host medium prior to invasion; the host cells need only maintain a layer several cells thick around each invader. Consistent with recent experiments, networks result only from a strain cue that is based on strain magnitudes. Spatial strain gradients do not break symmetry and therefore cannot stabilize branch formation. The theory recreates most of the geometrical features of the nervous network in the mouse gut when the most influential adjustable parameter takes a value consistent with one inferred from human and mouse amelogenesis. Because of similarity in the guiding local strain fields, strain cues could also be a participating factor in the formation of vascular networks. PMID:20671068

  19. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci

    USDA-ARS?s Scientific Manuscript database

    Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structura...

  20. Skin-Based DNA Repair Phenotype for Cancer Risk from GCR in Genetically Diverse Populations

    NASA Technical Reports Server (NTRS)

    Guiet, Elodie; Viger, Louise; Snijders, Antoine; Costes, Sylvian V.

    2017-01-01

    Predicting cancer risk associated with cosmic radiation remains a mission-critical challenge for NASA radiation health scientists and mission planners. Epidemiological data are lacking and risk methods do not take individual radiation sensitivity into account. In our approach we hypothesize that genetic factors strongly influence risk of cancer from space radiation and that biomarkers reflecting DNA damage and cell death are ideal tools to predict risk and monitor potential health effects post-flight. At this workshop, we will be reporting the work we have done over the first 9 months of this proposal. Skin cells from 15 different strains of mice already characterized for radiation-induced cancer sensitivity (B6C3F; BALB/cByJ, C57BL/6J, CBA/CaJ, C3H/HeMsNrsf), and 10 strains from the DOE collaborative cross-mouse model were expanded from ear biopsy and cultivated until Passage 3. On average, 3 males and 3 females for each strain were expanded and frozen for further characterization at the NSRL beam line during the NSRL16C run for three LET (350 MeV/n Si, 350 MeV/n Ar and 600 MeV/n Fe) and two ion fluences (1 and 3 particles per cell). The mice work has established new metrics for the usage of Radiation Induced Foci as a marker for various aspect of DNA repair deficiencies. In year 2, we propose to continue characterization of the mouse lines with low LET to identify loci specific to high- versus low- LET and establish genetic linkage for the various DNA repair biomarkers. Correlation with cancer risk from each animals strain and gender will also be investigated. On the human side, we will start characterizing the DNA damage response induced ex-vivo in 200 human's blood donors for radiation sensitivity with a tentative 500 donors by the end of this project. All ex-vivo phenotypic data will be correlated to genetic characterization of each individual human donors using SNP arrays characterization as done for mice. Similarly, ex-vivo phenotypic features from mice will be associated to cancer risk, to identify which biomarkers correlate the most with cancer risk. Genetic traits across humans will also be associated to radiation phenotypic features as a function of age and gender.

  1. Bioluminescent Imaging Reveals Divergent Viral Pathogenesis in Two Strains of Stat1-Deficient Mice, and in αßγ Interferon Receptor-Deficient Mice

    PubMed Central

    Pasieka, Tracy Jo; Collins, Lynne; O'Connor, Megan A.; Chen, Yufei; Parker, Zachary M.; Berwin, Brent L.; Piwnica-Worms, David R.; Leib, David A.

    2011-01-01

    Pivotal components of the IFN response to virus infection include the IFN receptors (IFNR), and the downstream factor signal transducer and activator of transcription 1 (Stat1). Mice deficient for Stat1 and IFNR (Stat1−/− and IFNαßγR−/− mice) lack responsiveness to IFN and exhibit high sensitivity to various pathogens. Here we examined herpes simplex virus type 1 (HSV-1) pathogenesis in Stat1−/− mice and in IFNαßγR−/− mice following corneal infection and bioluminescent imaging. Two divergent and paradoxical patterns of infection were observed. Mice with an N-terminal deletion in Stat1 (129Stat1−/− (N-term)) had transient infection of the liver and spleen, but succumbed to encephalitis by day 10 post-infection. In stark contrast, infection of IFNαßγR−/− mice was rapidly fatal, with associated viremia and fulminant infection of the liver and spleen, with infected infiltrating cells being primarily of the monocyte/macrophage lineage. To resolve the surprising difference between Stat1−/− and IFNαßγR−/− mice, we infected an additional Stat1−/− strain deleted in the DNA-binding domain (129Stat1−/− (DBD)). These 129Stat1−/− (DBD) mice recapitulated the lethal pattern of liver and spleen infection seen following infection of IFNαßγR−/− mice. This lethal pattern was also observed when 129Stat1−/− (N-term) mice were infected and treated with a Type I IFN-blocking antibody, and immune cells derived from 129Stat1−/− (N-term) mice were shown to be responsive to Type I IFN. These data therefore show significant differences in viral pathogenesis between two commonly-used Stat1−/− mouse strains. The data are consistent with the hypothesis that Stat1−/− (N-term) mice have residual Type I IFN receptor-dependent IFN responses. Complete loss of IFN signaling pathways allows viremia and rapid viral spread with a fatal infection of the liver. This study underscores the importance of careful comparisons between knockout mouse strains in viral pathogenesis, and may also be relevant to the causation of HSV hepatitis in humans, a rare but frequently fatal infection. PMID:21915277

  2. Spatiotemporal differences in the c-fos pathway between C57BL/6J and DBA/2J mice following flurothyl-induced seizures: a dissociation of hippocampal Fos from seizure activity

    PubMed Central

    Kadiyala, Sridhar B.; Papandrea, Dominick; Tuz, Karina; Anderson, Tara M.; Jayakumar, Sachidhanand; Herron, Bruce J.; Ferland, Russell J.

    2014-01-01

    Significant differences in seizure characteristics between inbred mouse strains highlight the importance of genetic predisposition to epilepsy. Here, we examined the genetic differences between the seizure-resistant C57BL/6J (B6) mouse strain and the seizure-susceptible DBA/2J (D2) strain in the phospho-Erk and Fos pathways to examine seizure-induced neuronal activity to uncover potential mechanistic correlates to these disparate seizure responsivities. Expression of neural activity markers was examined following 1, 5, or 8 seizures, or after 8 seizures, a 28 day rest period, and a final flurothyl rechallenge. Two brain regions, the hippocampus and ventromedial nucleus of the hypothalamus (VMH), had significantly different Fos expression profiles following seizures. Fos expression was highly robust in B6 hippocampus following one seizure and remained elevated following multiple seizures. Conversely, there was an absence of Fos (and phospho-Erk) expression in D2 hippocampus following one generalized seizure that increased with multiple seizures. This lack of Fos expression occurred despite intracranial electroencephalographic recordings indicating that the D2 hippocampus propagated ictal discharge during the first flurothyl seizure suggesting a dissociation of seizure discharge from Fos and phospho-Erk expression. Global transcriptional analysis confirmed a dysregulation of the c-fos pathway in D2 mice following 1 seizure. Moreover, global analysis of RNA expression differences between B6 and D2 hippocampus revealed a unique pattern of transcripts that were co-regulated with Fos in D2 hippocampus following 1 seizure. These expression differences could, in part, account for D2’s seizure susceptibility phenotype. Following 8 seizures, a 28 day rest period, and a final flurothyl rechallenge, ~85% of B6 mice develop a more complex seizure phenotype consisting of a clonic-forebrain seizure that uninterruptedly progresses into a brainstem seizure. This seizure phenotype in B6 mice is highly correlated with bilateral Fos expression in the VMH and was not observed in D2 mice, which always express clonic-forebrain seizures upon flurothyl retest. Overall, these results illustrate specific differences in protein and RNA expression in different inbred strains following seizures that precede the reorganizational events that affect seizure susceptibility and changes in seizure semiology over time. PMID:25524858

  3. Spatiotemporal differences in the c-fos pathway between C57BL/6J and DBA/2J mice following flurothyl-induced seizures: A dissociation of hippocampal Fos from seizure activity.

    PubMed

    Kadiyala, Sridhar B; Papandrea, Dominick; Tuz, Karina; Anderson, Tara M; Jayakumar, Sachidhanand; Herron, Bruce J; Ferland, Russell J

    2015-01-01

    Significant differences in seizure characteristics between inbred mouse strains highlight the importance of genetic predisposition to epilepsy. Here, we examined the genetic differences between the seizure-resistant C57BL/6J (B6) mouse strain and the seizure-susceptible DBA/2J (D2) strain in the phospho-Erk and Fos pathways to examine seizure-induced neuronal activity to uncover potential mechanistic correlates to these disparate seizure responsivities. Expression of neural activity markers was examined following 1, 5, or 8 seizures, or after 8 seizures, a 28 day rest period, and a final flurothyl rechallenge. Two brain regions, the hippocampus and ventromedial nucleus of the hypothalamus (VMH), had significantly different Fos expression profiles following seizures. Fos expression was highly robust in B6 hippocampus following one seizure and remained elevated following multiple seizures. Conversely, there was an absence of Fos (and phospho-Erk) expression in D2 hippocampus following one generalized seizure that increased with multiple seizures. This lack of Fos expression occurred despite intracranial electroencephalographic recordings indicating that the D2 hippocampus propagated ictal discharge during the first flurothyl seizure suggesting a dissociation of seizure discharge from Fos and phospho-Erk expression. Global transcriptional analysis confirmed a dysregulation of the c-fos pathway in D2 mice following 1 seizure. Moreover, global analysis of RNA expression differences between B6 and D2 hippocampus revealed a unique pattern of transcripts that were co-regulated with Fos in D2 hippocampus following 1 seizure. These expression differences could, in part, account for D2's seizure susceptibility phenotype. Following 8 seizures, a 28 day rest period, and a final flurothyl rechallenge, ∼85% of B6 mice develop a more complex seizure phenotype consisting of a clonic-forebrain seizure that uninterruptedly progresses into a brainstem seizure. This seizure phenotype in B6 mice is highly correlated with bilateral Fos expression in the VMH and was not observed in D2 mice, which always express clonic-forebrain seizures upon flurothyl retest. Overall, these results illustrate specific differences in protein and RNA expression in different inbred strains following seizures that precede the reorganizational events that affect seizure susceptibility and changes in seizure semiology over time. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Comparative safety, immunogenicity, and efficacy of several anti‐H5N1 influenza experimental vaccines in a mouse and chicken models (Testing of killed and live H5 vaccine)

    PubMed Central

    Gambaryan, Alexandra S.; Lomakina, Natalia F.; Boravleva, Elizaveta Y.; Kropotkina, Ekaterina A.; Mashin, Vadim V.; Krasilnikov, Igor V.; Klimov, Alexander I.; Rudenko, Larisa G.

    2011-01-01

    Please cite this paper as: Gambaryan et al. (2011) Comparative safety, immunogenicity, and efficacy of several anti‐H5N1 influenza experimental vaccines in a mouse and chicken models. Parallel testing of killed and live H5 vaccine. Influenza and Other Respiratory Viruses 6(3), 188–195. Objective  Parallel testing of inactivated (split and whole virion) and live vaccine was conducted to compare the immunogenicity and protective efficacy against homologous and heterosubtypic challenge by H5N1 highly pathogenic avian influenza virus. Method  Four experimental live vaccines based on two H5N1 influenza virus strains were tested; two of them had hemagglutinin (HA) of A/Vietnam/1203/04 strain lacking the polybasic HA cleavage site, and two others had hemagglutinins from attenuated H5N1 virus A/Chicken/Kurgan/3/05, with amino acid substitutions of Asp54/Asn and Lys222/Thr in HA1 and Val48/Ile and Lys131/Thr in HA2 while maintaining the polybasic HA cleavage site. The neuraminidase and non‐glycoprotein genes of the experimental live vaccines were from H2N2 cold‐adapted master strain A/Leningrad/134/17/57 (VN‐Len and Ku‐Len) or from the apathogenic H6N2 virus A/Gull/Moscow/3100/2006 (VN‐Gull and Ku‐Gull). Inactivated H5N1 and H1N1 and live H1N1 vaccine were used for comparison. All vaccines were applied in a single dose. Safety, immunogenicity, and protectivity against the challenge with HPAI H5N1 virus A/Chicken/Kurgan/3/05 were estimated. Results  All experimental live H5 vaccines tested were apathogenic as determined by weight loss and conferred more than 90% protection against lethal challenge with A/Chicken/Kurgan/3/05 infection. Inactivated H1N1 vaccine in mice offered no protection against challenge with H5N1 virus, while live cold‐adapted H1N1 vaccine reduced the mortality near to zero level. Conclusions  The high yield, safety, and protectivity of VN‐Len and Ku‐Len made them promising strains for the production of inactivated and live vaccines against H5N1 viruses. PMID:21951678

  5. Persistence of Gamma-H2AX Foci in Irradiated Bronchial Cells Correlates with Susceptibility to Radiation Associated Lung Cancer in Mice

    NASA Technical Reports Server (NTRS)

    Ochola, Donasian O.; Sharif, Rabab; Bedford, Joel S.; Keefe, Thomas J.; Kato, Takamitsu A.; Fallgren, Christina M.; Demant, Peter; Costes, Sylvain V.; Weil, Michael M.

    2018-01-01

    The risk of developing radiation-induced lung cancer differs between different strains of mice, but the underlying cause of the strain differences is unknown. Strains of mice also differ in their ability to efficiently repair DNA double strand breaks resulting from radiation exposure. We phenotyped mouse strains from the CcS/Dem recombinant congenic strain set for their efficacy in repairing DNA double strand breaks during protracted radiation exposures. We monitored persistent gamma-H2AX radiation induced foci (RIF) 24 hours after exposure to chronic gamma-rays as a surrogate marker for repair deficiency in bronchial epithelial cells for 17 of the CcS/Dem strains and the BALB/cHeN founder strain. We observed a very strong correlation R2 = 79.18%, P < 0.001) between the level of persistent RIF and radiogenic lung cancer percent incidence measured in the same strains. Interestingly, spontaneous levels of foci in non-irradiated strains also showed good correlation with lung cancer incidence (R2=32.74%, P =0.013). These results suggest that genetic differences in DNA repair capacity largely account for differing susceptibilities to radiation-induced lung cancer among CcS/Dem mouse strains and that high levels of spontaneous DNA damage is also a relatively good marker of cancer predisposition. In a smaller pilot study, we found that the repair capacity measured in peripheral blood leucocytes also correlated well with radiogenic lung cancer susceptibility, raising the possibility that such phenotyping assay could be used to detect radiogenic lung cancer susceptibility in humans.

  6. Propagation of prion strains through specific conformers of the prion protein.

    PubMed Central

    Scott, M R; Groth, D; Tatzelt, J; Torchia, M; Tremblay, P; DeArmond, S J; Prusiner, S B

    1997-01-01

    Two prion strains with identical incubation periods in mice exhibited distinct incubation periods and different neuropathological profiles upon serial transmission to transgenic mice expressing chimeric Syrian hamster/mouse (MH2M) prion protein (PrP) genes [Tg(MH2M) mice] and subsequent transmission to Syrian hamsters. After transmission to Syrian hamsters, the Me7 strain was indistinguishable from the previously established Syrian hamster strain Sc237, despite having been derived from an independent ancestral source. This apparent convergence suggests that prion diversity may be limited. The Me7 mouse strain could also be transmitted directly to Syrian hamsters, but when derived in this way, its properties were distinct from those of Me7 passaged through Tg(MH2M) mice. The Me7 strain did not appear permanently altered in either case, since the original incubation period could be restored by effectively reversing the series of passages. Prion diversity enciphered in the conformation of the scrapie isoform of PrP (PrP(Sc)) (G. C. Telling et al., Science 274:2079-2082, 1996) seems to be limited by the sequence of the PrP substrates serially converted into PrP(Sc), while prions are propagated through interactions between the cellular and scrapie isoforms of PrP. PMID:9371560

  7. An epigenetic intervention interacts with genetic strain differences to modulate the stress-induced reduction of flurazepam's antiseizure efficacy in the mouse.

    PubMed

    Deutsch, Stephen I; Mastropaolo, John; Burket, Jessica A; Rosse, Richard B

    2009-06-01

    Stress induces changes in the endogenous tone of both GABA and NMDA receptor-mediated neurotransmission in the intact mouse. Because changes are observed 24 h after stress, epigenetically-regulated alterations in gene expression may mediate these effects. In earlier work, sodium butyrate, a centrally-active histone deacetylase inhibitor that promotes gene expression, was shown to modulate the stress-induced reduction of the ability of MK-801 (dizocilpine), a noncompetitive NMDA receptor antagonist, to antagonize electrically-precipitated seizures. In the current study, we extended this work to look at sodium butyrate's modulatory effect on stress-induced changes in the antiseizure efficacy of flurazepam, a benzodiazepine receptor agonist, in two strains of mice. Epigenetic mechanisms, genetic strain differences and a standard stress interacted to alter flurazepam's antiseizure efficacy. These data support examination and development of epigenetic treatment strategies.

  8. Reproducibility of toxicity test data as a function of mouse strain, animal lot, and operator. [for bisphenol A polycarbonate

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Furst, A.

    1978-01-01

    The toxicity screening test method developed at the University of San Francisco was evaluated for reproducibility. The variables addressed were strain of mouse, lot of animals, and operator. There was a significant difference in response between Swiss Webster mice and ICR mice, with the latter exhibiting greater resistance. These two strains of mice are not interchangeable in this procedure. Variation between individual animals was significant and unavoidable. In view of this variation, between-lot and between-operator variations appear to have no practical significance. The significant variation between individual animals stresses the need for average values based on at least four animals, and preferably values based on at least two experiments and eight animals. Efforts to compare materials should be based on the evaluation of relatively simple responses using substantial numbers of animals, rather than on elaborate evaluation of single animals

  9. Evaluation of recombinant protein superoxide dismutase of Haemophilus parasuis strain SH0165 as vaccine candidate in a mouse model.

    PubMed

    Guo, Ling; Xu, Lei; Wu, Tao; Fu, Shulin; Qiu, Yinsheng; Hu, Chien-An Andy; Ren, Xinglong; Liu, Rongrong; Ye, Mengdie

    2017-04-01

    Haemophilus parasuis can cause a severe membrane inflammation disorder. It has been documented that superoxide dismutase (SOD) is a potential target to treat systemic inflammatory diseases. Therefore, we constructed an experimental H. parasuis subunit vaccine SOD and determined the protective efficacy of SOD using a lethal dose challenge against H. parasuis serovar 4 strain MD0322 and serovar 5 strain SH0165 in a mouse model. The results demonstrated that SOD could induce a strong humoral immune response in mice and provide significant immunoprotection efficacy against a lethal dose of H. parasuis serovar 4 strain MD0322 or serovar 5 strain SH0165 challenge. IgG subtype analysis indicated SOD protein could trigger a bias toward a Th1-type immune response and induce the proliferation of splenocytes and secretion of IL-2 and IFN-γ of splenocytes. In addition, serum in mice from the SOD-immunized group could inhibit the growth of strain MD0322 and strain SH0165 in the whole-blood killing bacteria assay. This is the first report that immunization of mice with SOD protein could provide protective effect against a lethal dose of H. parasuis serovar 4 and serovar 5 challenge in mice, which may provide a novel approach against heterogeneous serovar infection of H. parasuis in future.

  10. Effect of Synthetic Matrix Metalloproteinase Inhibitors on Lipopolysaccharide-Induced Blood-Brain Barrier Opening in Rodents: Differences in Response Based on Strains and Solvents

    PubMed Central

    Rosenberg, Gary A.; Estrada, Eduardo Y.; Mobashery, Shahriar

    2007-01-01

    Matrix metalloproteinase inhibitors (MMPIs) reduce blood-brain barrier (BBB) disruption and prevent cell death. Animal models of multiple sclerosis, cerebral ischemia and hemorrhage, and bacterial meningitis respond to treatment with MMPIs. We have used the intracerebral injection of lipopolysaccharide (LPS) in rat, which induces MMP production and results in a delayed opening of the BBB, to screen MMPIs to identify therapeutic agents. We hypothesized that the mouse would respond similarly to LPS and that the mouse/LPS model of BBB damage would be more useful for screening of MMPIs. Therefore, we adapted the rat LPS model to the mouse and compared the response to LPS and treatment with MMPIs. Wistar-Kyoto rats (WKY) and three strains of mice had stereotactic injections of LPS into the caudate. 14C-sucrose was used to measure permeability of the BBB 24 hours after injection. Initially, we tested three broad-spectrum MMPIs in the rat, BB-1101, BB-94, and BB-2293, and a MMP-2 selective inhibitor, IW449; both BB-1101 and BB-94 significantly suppressed LPS-induced BBB damage (p<0.05). In the 3 mouse strains, C57/BL6, C57/BL10, and C57/BL10HIIIR2, LPS significantly opened the BBB in C57/BL6, and it was the only strain that showed a reduction in BBB permeability with BB-94. Treatment with methylprednisolone and several broad spectrum MMPIs, including BB-1101, were ineffective in the C57/BL6. There was a significant reduction in BBB permeability seen with 10% dimethyl sulfoxide (DMSO) alone, which was used to dissolve the selective MMP-2 and -9 inhibitor, SB-3CT. The tetracycline derivative, minocycline, reduced the BBB injury in mouse by blocking the production of MMP-9. Our results show variability in rats and mice to LPS and MMPIs, which most likely is based on genetic make-up. Understanding these differences may provide important clues that could guide selection of MMPIs in treatment of neurological diseases. PMID:17184743

  11. Lentiviral-mediated gene therapy results in sustained expression of β-glucuronidase for up to 12 months in the gus(mps/mps) and up to 18 months in the gus(tm(L175F)Sly) mouse models of mucopolysaccharidosis type VII.

    PubMed

    Derrick-Roberts, Ainslie L K; Pyragius, Carmen E; Kaidonis, Xenia M; Jackson, Matilda R; Anson, Donald S; Byers, Sharon

    2014-09-01

    A number of mucopolysaccharidosis type VII (MPS VII) mouse models with different levels of residual enzyme activity have been created replicating the range of clinical phenotypes observed in human MPS VII patients. In this study, a lentivirus encoding murine β-glucuronidase was administered intravenously at birth to both the severe (Gus(mps/mps) strain) and attenuated (Gus(tm(L175F)Sly) strain) mouse models of MPS VII. Circulating enzyme levels were normalized in the Gus(mps/mps) mice and were 3.5-fold higher than normal in the Gus(tm(L175F)Sly) mouse 12 and 18 months after administration. Tissue β-glucuronidase activity increased over untreated levels in all tissues evaluated in both strains at 12 months, and the elevated level was maintained in Gus(tm(L175F)Sly) tissues at 18 months. These elevated enzyme levels reduced glycosaminoglycan storage in the liver, spleen, kidney, and heart in both models. Bone mineral volume decreased toward normal in both models after 12 months of therapy and after 18 months in the Gus(tm(L175F)Sly) mouse. Open-field exploration was improved in 18-month-old treated Gus(tm(L175F)Sly) mice, while spatial learning improved in both 12- and 18-month-old treated Gus(tm(L175F)Sly) mice. Overall, neonatal administration of lentiviral gene therapy resulted in sustained enzyme expression for up to 18 months in murine models of MPS VII. Significant improvements in biochemistry and enzymology as well as functional improvement of bone and behavior deficits in the Gus(tm(L175F)Sly) model were observed. Therapy significantly increased the lifespan of Gus(mps/mps) mice, with 12 months being the longest reported lentiviral treatment for this strain. It is important to assess the long-term outcome on enzyme levels and effect on pathology for lentiviral gene therapy to be a potential therapy for MPS patients.

  12. Mouse Phenome Database

    PubMed Central

    Grubb, Stephen C.; Maddatu, Terry P.; Bult, Carol J.; Bogue, Molly A.

    2009-01-01

    The Mouse Phenome Database (MPD; http://www.jax.org/phenome) is an open source, web-based repository of phenotypic and genotypic data on commonly used and genetically diverse inbred strains of mice and their derivatives. MPD is also a facility for query, analysis and in silico hypothesis testing. Currently MPD contains about 1400 phenotypic measurements contributed by research teams worldwide, including phenotypes relevant to human health such as cancer susceptibility, aging, obesity, susceptibility to infectious diseases, atherosclerosis, blood disorders and neurosensory disorders. Electronic access to centralized strain data enables investigators to select optimal strains for many systems-based research applications, including physiological studies, drug and toxicology testing, modeling disease processes and complex trait analysis. The ability to select strains for specific research applications by accessing existing phenotype data can bypass the need to (re)characterize strains, precluding major investments of time and resources. This functionality, in turn, accelerates research and leverages existing community resources. Since our last NAR reporting in 2007, MPD has added more community-contributed data covering more phenotypic domains and implemented several new tools and features, including a new interactive Tool Demo available through the MPD homepage (quick link: http://phenome.jax.org/phenome/trytools). PMID:18987003

  13. In the absence of its cytosolic domain, the CD28 molecule still contributes to T cell activation

    PubMed Central

    Morin, Stéphanie; Giroux, Valentin; Favre, Cédric; Bechah, Yassina; Auphan-Anezin, Nathalie; Roncagalli, Romain; Mège, Jean-Louis; Olive, Daniel; Malissen, Marie; Nunes, Jacques

    2015-01-01

    The CD28 costimulatory receptor has a pivotal role in T cell biology as this molecule amplifies T cell receptor (TCR) signals to provide an efficient immune T cell response. There is a large debate about how CD28 mediates these signals. Here, we designed a CD28 gene targeted knock-in mouse strain lacking the cytoplasmic tail of CD28. As is the case in CD28-deficient (CD28 knock-out) mice, regulatory T cell homeostasis and T cell activation are altered in these CD28 knock-in mice. Unexpectedly, the presence of a CD28 molecule deprived of its cytoplasmic tail could partially induce some early activation events in T cells such as signaling events or expression of early activation markers. These results unravel a new mechanism of T cell costimulation by CD28, independent of its cytoplasmic tail. PMID:25725801

  14. Probing transcription-specific outputs of β-catenin in vivo

    PubMed Central

    Valenta, Tomas; Gay, Max; Steiner, Sarah; Draganova, Kalina; Zemke, Martina; Hoffmans, Raymond; Cinelli, Paolo; Aguet, Michel; Sommer, Lukas; Basler, Konrad

    2011-01-01

    β-Catenin, apart from playing a cell-adhesive role, is a key nuclear effector of Wnt signaling. Based on activity assays in Drosophila, we generated mouse strains where the endogenous β-catenin protein is replaced by mutant forms, which retain the cell adhesion function but lack either or both of the N- and the C-terminal transcriptional outputs. The C-terminal activity is essential for mesoderm formation and proper gastrulation, whereas N-terminal outputs are required later during embryonic development. By combining the double-mutant β-catenin with a conditional null allele and a Wnt1-Cre driver, we probed the role of Wnt/β-catenin signaling in dorsal neural tube development. While loss of β-catenin protein in the neural tube results in severe cell adhesion defects, the morphology of cells and tissues expressing the double-mutant form is normal. Surprisingly, Wnt/β-catenin signaling activity only moderately regulates cell proliferation, but is crucial for maintaining neural progenitor identity and for neuronal differentiation in the dorsal spinal cord. Our model animals thus allow dissecting signaling and structural functions of β-catenin in vivo and provide the first genetic tool to generate cells and tissues that entirely and exclusively lack canonical Wnt pathway activity. PMID:22190459

  15. Generation of improved humanized mouse models for human infectious diseases

    PubMed Central

    Brehm, Michael A.; Wiles, Michael V.; Greiner, Dale L.; Shultz, Leonard D.

    2014-01-01

    The study of human-specific infectious agents has been hindered by the lack of optimal small animal models. More recently development of novel strains of immunodeficient mice has begun to provide the opportunity to utilize small animal models for the study of many human-specific infectious agents. The introduction of a targeted mutation in the IL2 receptor common gamma chain gene (IL2rgnull) in mice already deficient in T and B cells led to a breakthrough in the ability to engraft hematopoietic stem cells, as well as functional human lymphoid cells and tissues, effectively creating human immune systems in immunodeficient mice. These humanized mice are becoming increasingly important as pre-clinical models for the study of human immunodeficiency virus-1 (HIV-1) and other human-specific infectious agents. However, there remain a number of opportunities to further improve humanized mouse models for the study of human-specific infectious agents. This is being done by the implementation of innovative technologies, which collectively will accelerate the development of new models of genetically modified mice, including; i) modifications of the host to reduce innate immunity, which impedes human cell engraftment; ii) genetic modification to provide human-specific growth factors and cytokines required for optimal human cell growth and function; iii) and new cell and tissue engraftment protocols. The development of “next generation” humanized mouse models continues to provide exciting opportunities for the establishment of robust small animal models to study the pathogenesis of human-specific infectious agents, as well as for testing the efficacy of therapeutic agents and experimental vaccines. PMID:24607601

  16. CD1 Mouse Retina Is Shielded From Iron Overload Caused by a High Iron Diet

    PubMed Central

    Bhoiwala, Devang L.; Song, Ying; Cwanger, Alyssa; Clark, Esther; Zhao, Liang-liang; Wang, Chenguang; Li, Yafeng; Song, Delu; Dunaief, Joshua L.

    2015-01-01

    Purpose High RPE iron levels have been associated with age-related macular degeneration. Mutation of the ferroxidase ceruloplasmin leads to RPE iron accumulation and degeneration in patients with aceruloplasminemia; mice lacking ceruloplasmin and its homolog hephaestin have a similar RPE degeneration. To determine whether a high iron diet (HID) could cause RPE iron accumulation, possibly contributing to RPE oxidative stress in AMD, we tested the effect of dietary iron on mouse RPE iron. Methods Male CD1 strain mice were fed either a standard iron diet (SID) or the same diet with extra iron added (HID) for either 3 months or 10 months. Mice were analyzed with immunofluorescence and Perls' histochemical iron stain to assess iron levels. Levels of ferritin, transferrin receptor, and oxidative stress gene mRNAs were measured by quantitative PCR (qPCR) in neural retina (NR) and isolated RPE. Morphology was assessed in plastic sections. Results Ferritin immunoreactivity demonstrated a modest increase in the RPE in 10-month HID mice. Analysis by qPCR showed changes in mRNA levels of iron-responsive genes, indicating moderately increased iron in the RPE of 10-month HID mice. However, even by age 18 months, there was no Perls' signal in the retina or RPE and no retinal degeneration. Conclusions These findings indicate that iron absorbed from the diet can modestly increase the level of iron deposition in the wild-type mouse RPE without causing RPE or retinal degeneration. This suggests regulation of retinal iron uptake at the blood-retinal barriers. PMID:26275132

  17. Lgn1, a gene that determines susceptibility to Legionella pneumophila, maps to mouse chromosome 13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, W.F.; Damron, D.M.; Lander, E.S.

    1995-04-10

    The intracellular pathogen Legionella pneumophila is unable to replicate in macrophages derived from most inbred mouse strains. Here, we report the mapping of a gene, called Lgn1, that determines whether mouse macrophages are permissive for the intracellular replication of L. pneumophila. Although Lgn1 has been previously reported to map to mouse chromosome 15, we show here that it actually maps to chromosome 13, between D13Mit128 and D13Mit70. In the absence of any regional candidates for Lgn1, this map position will facilitate positional cloning attempts directed at this gene. 22 refs., 2 figs., 2 tabs.

  18. Preventive and therapeutic administration of an indigenous Lactobacillus sp. strain against Proteus mirabilis ascending urinary tract infection in a mouse model.

    PubMed

    Fraga, Martín; Scavone, Paola; Zunino, Pablo

    2005-07-01

    Probiotics are increasingly being considered as non-pharmaceutical and safe potential alternatives for the treatment and prevention of a variety of pathologies including urinary tract infections. These are the most common infections in medical practice and are frequently treated with antibiotics, which have generated an intense selective pressure over bacterial populations. Proteus mirabilis is a common cause of urinary tract infections in catheterised patients and people with abnormalities of the urinary tract. In this work we isolated, identified and characterised an indigenous Lactobacillus murinus strain (LbO2) from the vaginal tract of a female mouse. In vitro characterisation of LbO2 included acid and bile salts tolerance, growth in urine, adherence to uroepithelial cells and in vitro antimicrobial activity. The selected strain showed interesting properties, suitable for its use as a probiotic. The ability of LbO2 to prevent and even treat ascending P. mirabilis urinary tract infection was assessed using an experimental model in the mouse. Kidney and bladder P. mirabilis counts were significantly lower in mice preventively treated with the probiotic than in non-treated mice. When LbO2 was used for therapeutic treatment, bladder counts of treated mice were significantly lower although no significant differences were detected in P. mirabilis kidney colonisation of treated and non-treated animals. These results are encouraging and prompt further research related to probiotic strains and the basis of their effects for their use in human and animal health.

  19. Effects of Varied Housing Density on a Hybrid Mouse Strain Followed for 20 Months

    PubMed Central

    Currer, Joanne M.

    2016-01-01

    To evaluate the effect of increased housing density in a hybrid mouse strain, we evaluated a panel of physiological and behavioral traits in animals that were housed in groups of 3, 5, 8, or 12, using cages that provide 78.1 in2 of floor space. Such groupings resulted in cage densities that ranged from half to almost twice the density recommended by the Guide for the Care and Use of Laboratory Animals. While previous studies have investigated physiological effects of increased housing density using inbred mouse strains, including C57BL/6J and 129S1/SvImJ, this study tested an F1 hybrid population of C57BL/6J x 129S1/SvImJ for changes resulting from either decreased or increased housing density. Mice were followed until they were 20 months old, a substantially longer duration than has been used in previous density studies. We evaluated mortality, growth, home cage behavior, blood pressure, body composition, clinical plasma chemistries, immune function, and organ weights (heart, kidney, adrenal glands, and testes) as endpoints of chronic stress that may arise from sub-optimal housing conditions. Few statistically different parameters were observed in this study, none of which describe chronic stress and all within normal physiological ranges for research mice, suggesting that this hybrid strain was not adversely affected by housing at twice the density currently recommended. PMID:26900840

  20. Chemokines expression during Leptospira interrogans serovar Copenhageni infection in resistant BALB/c and susceptible C3H/HeJ mice.

    PubMed

    da Silva, Josefa B; Ramos, Tatiane M V; de Franco, Marcelo; Paiva, Delhi; Ho, Paulo Lee; Martins, Elizabeth A L; Pereira, Martha M

    2009-08-01

    The role of innate immune responses in protection against leptospirosis remains unclear. We examined the expression of the chemokines CCL2/JE (MCP-1), CCL3/MIP-1 alpha (MIP-1 alpha) and CXCL1/KC (IL-8) regarding resistance and susceptibility to leptospirosis in experimental mice models BALB/c and C3H/HeJ, respectively. A virulent strain of Leptospira interrogans serovar Copenhageni was used in this study. Twenty-five animals of each mouse strain of C3H/HeJ and BALB/c, were infected intraperitoneally with 10(6) cells. Five un-infected animals of each strain were kept as control. Mortality of C3H/HeJ mouse was observed while BALB/c mice were asymptomatic. The presence of leptospire DNA in tissues of infected animals was demonstrated by PCR. Chemokines were measured in serum, spleen, liver, kidney and lung of both strains of animals using immunoenzymatic assay (ELISA). Elevations in the levels of chemokines MCP-1 and IL-8 occurred in all organs and sera of C3H/HeJ and BALB/c infected mice. The levels of MIP-1 alpha were lower when compared to MCP-1 and IL-8 in all analyzed organs, with a slight increase in liver and kidney. Our results indicate that the expression of inflammatory mediators can vary greatly, depending on the tissue and mouse strains. It is possible that the resistance to Leptospira can be partially correlated to the increase of MIP-1 alpha observed in BALB/c mice, while an increasing and a sustained expression of MCP-1 and IL-8 in the lungs of C3H/HeJ mice can be correlated to the severity and progression of leptospirosis.

  1. Highly Heterogeneous Probiotic Lactobacillus Species in Healthy Iranians with Low Functional Activities

    PubMed Central

    Rohani, Mahdi; Noohi, Nasrin; Talebi, Malihe; Katouli, Mohammad; Pourshafie, Mohammad R.

    2015-01-01

    Background Lactic acid bacteria (LAB) have been considered as potentially probiotic organisms due to their potential human health properties. This study aimed to evaluate both in vitro and in vivo, the potential probiotic properties of Lactobacillus species isolated from fecal samples of healthy humans in Iran. Methods and Results A total of 470 LAB were initially isolated from 53 healthy individual and characterized to species level. Of these, 88 (86%) were Lactobacillus species. Biochemical and genetic fingerprinting with Phene-Plate system (PhP-LB) and RAPD-PCR showed that the isolates were highly diverse consisted of 67(76.1%) and 75 (85.2%) single types (STs) and a diversity indices of 0.994 and 0.997, respectively. These strains were tested for production of adhesion to Caco-2 cells, antibacterial activity, production of B12, anti-proliferative effect and interleukin-8 induction on gut epithelial cell lines and antibiotic resistance against 9 commonly used antibiotics. Strains showing the characteristics consistent with probiotic strains, were further tested for their anti-inflammatory effect in mouse colitis model. Only one L. brevis; one L. rhamnosus and two L. plantarum were shown to have significant probiotic properties. These strains showed shortening the length of colon compared to dextran sulfate sodium and disease activity index (DAI) was also significantly reduced in mouse. Conclusion Low number of LAB with potential probiotic activity as well as high diversity of lactobacilli species was evident in Iranian population. It also suggest that specific strains of L. plantarum, L. brevis and L. rhamnosus with anti-inflammatory effect in mouse model of colitis could be used as a potential probiotic candidate in inflammatory bowel disease to decrease the disease activity index. PMID:26645292

  2. Evaluation of reference genes in mouse preimplantation embryos for gene expression studies using real-time quantitative RT-PCR (RT-qPCR).

    PubMed

    Jeong, Jae-Kyo; Kang, Min-Hee; Gurunathan, Sangiliyandi; Cho, Ssang-Goo; Park, Chankyu; Seo, Han Geuk; Kim, Jin-Hoi

    2014-09-25

    Real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) is the most sensitive, and valuable technique for rare mRNA detection. However, the expression profiles of reference genes under different experimental conditions, such as different mouse strains, developmental stage, and culture conditions have been poorly studied. mRNA stability of the actb, gapdh, sdha, ablim, ywhaz, sptbn, h2afz, tgfb1, 18 s and wrnip genes was analyzed. Using the NormFinder program, the most stable genes are as follows: h2afz for the B6D2F-1 and C57BL/6 strains; sptbn for ICR; h2afz for KOSOM and CZB cultures of B6D2F-1 and C57BL/6 strain-derived embryos; wrnip for M16 culture of B6D2F-1 and C57BL/6 strain-derived embryos; ywhaz, tgfb1, 18 s, 18 s, ywhaz, and h2afz for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst embryonic stages cultured in KSOM medium, respectively; h2afz, wrnip, wrnip, h2afz, ywhaz, and ablim for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in CZB medium, respectively; 18 s, h2afz, h2afz, actb, h2afz, and wrnip for zygote, 2-cell, 4-cell, 8-cell, molular, and blastocyst stage embryos cultured in M16 medium, respectively. These results demonstrated that candidate reference genes for normalization of target gene expression using RT-qPCR should be selected according to mouse strains, developmental stage, and culture conditions.

  3. Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes.

    PubMed

    Grim, Christopher J; Kozlova, Elena V; Sha, Jian; Fitts, Eric C; van Lier, Christina J; Kirtley, Michelle L; Joseph, Sandeep J; Read, Timothy D; Burd, Eileen M; Tall, Ben D; Joseph, Sam W; Horneman, Amy J; Chopra, Ashok K; Shak, Joshua R

    2013-04-23

    Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966(T), and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966(T). The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966(T) and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. Aeromonas hydrophila is a common aquatic bacterium that has increasingly been implicated in serious human infections. While many determinants of virulence have been identified in Aeromonas, rapid identification of pathogenic versus nonpathogenic strains remains a challenge for this genus, as it is for other opportunistic pathogens. This paper demonstrates, by using whole-genome sequencing of clinical Aeromonas strains, followed by corresponding virulence assays, that comparative genomics can be used to identify a virulent subtype of A. hydrophila that is aggressive during human infection and more lethal in a mouse model of infection. This aggressive pathotype contained genes for toxin production, toxin secretion, and bacterial motility that likely enabled its pathogenicity. Our results highlight the potential of whole-genome sequencing to transform microbial diagnostics; with further advances in rapid sequencing and annotation, genomic analysis will be able to provide timely information on the identities and virulence potential of clinically isolated microorganisms.

  4. Exposure to Metronidazole In Vivo Readily Induces Resistance in Helicobacter pylori and Reduces the Efficacy of Eradication Therapy in Mice

    PubMed Central

    Jenks, Peter J.; Labigne, Agnes; Ferrero, Richard L.

    1999-01-01

    The Helicobacter pylori SS1 mouse model was used to characterize the development of resistance in H. pylori after treatment with metronidazole monotherapy and to examine the effect of prior exposure to metronidazole on the efficacy of a metronidazole-containing eradication regimen. Mice colonized with the metronidazole-sensitive H. pylori SS1 strain were treated for 7 days with either peptone trypsin broth or the mouse equivalent of 400 mg of metronidazole once a day or three times per day (TID). In a separate experiment, H. pylori-infected mice were administered either peptone trypsin broth or the mouse equivalent of 400 mg of metronidazole TID for 7 days, followed 1 month later by either peptone trypsin broth or the mouse equivalent of 20 mg of omeprazole, 250 mg of clarithromycin, and 400 mg of metronidazole twice a day for 7 days. At least 1 month after the completion of treatment, the mice were sacrificed and their stomachs were cultured for H. pylori. The susceptibilities of isolates to metronidazole were assessed by agar dilution determination of the MICs. Mixed populations of metronidazole-resistant and -sensitive strains were isolated from 70% of mice treated with 400 mg of metronidazole TID. The ratio of resistant to sensitive strains was 1:100, and the MICs for the resistant strains varied from 8 to 64 μg/ml. In the second experiment, H. pylori was eradicated from 70% of mice treated with eradication therapy alone, compared to 25% of mice pretreated with metronidazole (P < 0.01). Mice still infected after treatment with metronidazole and eradication therapy contained mixed populations of metronidazole-resistant and -sensitive isolates in a ratio of 1:25. These results demonstrate that H. pylori readily acquires resistance to metronidazole in vivo and that prior exposure of the organism to metronidazole is associated with failure of eradication therapy. H. pylori-infected mice provide a suitable model for the study of resistance mechanisms in H. pylori and will be useful in determining optimal regimens for the eradication of resistant strains. PMID:10103180

  5. Tum1 is involved in the metabolism of sterol esters in Saccharomyces cerevisiae.

    PubMed

    Uršič, Katja; Ogrizović, Mojca; Kordiš, Dušan; Natter, Klaus; Petrovič, Uroš

    2017-08-22

    The only hitherto known biological role of yeast Saccharomyces cerevisiae Tum1 protein is in the tRNA thiolation pathway. The mammalian homologue of the yeast TUM1 gene, the thiosulfate sulfurtransferase (a.k.a. rhodanese) Tst, has been proposed as an obesity-resistance and antidiabetic gene. To assess the role of Tum1 in cell metabolism and the putative functional connection between lipid metabolism and tRNA modification, we analysed evolutionary conservation of the rhodanese protein superfamily, investigated the role of Tum1 in lipid metabolism, and examined the phenotype of yeast strains expressing the mouse homologue of Tum1, TST. We analysed evolutionary relationships in the rhodanese superfamily and established that its members are widespread in bacteria, archaea and in all major eukaryotic groups. We found that the amount of sterol esters was significantly higher in the deletion strain tum1Δ than in the wild-type strain. Expression of the mouse TST protein in the deletion strain did not rescue this phenotype. Moreover, although Tum1 deficiency in the thiolation pathway was complemented by re-introducing TUM1, it was not complemented by the introduction of the mouse homologue Tst. We further showed that the tRNA thiolation pathway is not involved in the regulation of sterol ester content in S. cerevisiae, as overexpression of the tE UUC , tK UUU and tQ UUG tRNAs did not rescue the lipid phenotype in the tum1Δ deletion strain, and, additionally, deletion of the key gene for the tRNA thiolation pathway, UBA4, did not affect sterol ester content. The rhodanese superfamily of proteins is widespread in all organisms, and yeast TUM1 is a bona fide orthologue of mammalian Tst thiosulfate sulfurtransferase gene. However, the mouse TST protein cannot functionally replace yeast Tum1 protein, neither in its lipid metabolism-related function, nor in the tRNA thiolation pathway. We show here that Tum1 protein is involved in lipid metabolism by decreasing the sterol ester content in yeast cells, and that this function of Tum1 is not exerted through the tRNA thiolation pathway, but through another, currently unknown pathway.

  6. Neurochemical Measurement of Adenosine in Discrete Brain Regions of Five Strains of Inbred Mice

    PubMed Central

    Pani, Amar K.; Jiao, Yun; Sample, Kenneth J.; Smeyne, Richard J.

    2014-01-01

    Adenosine (ADO), a non-classical neurotransmitter and neuromodulator, and its metabolites adenosine triphosphate (ATP), adenosine diphosphate (ADP) and adenosine monophosphate (AMP), have been shown to play an important role in a number of biochemical processes. Although their signaling is well described, it has been difficult to directly, accurately and simultaneously quantitate these purines in tissue or fluids. Here, we describe a novel method for measuring adenosine (ADO) and its metabolites using high performance liquid chromatography with electrochemical detection (HPLC-ECD). Using this chromatographic technique, we examined baseline levels of ADO and ATP, ADP and AMP in 6 different brain regions of the C57BL/6J mouse: stratum, cortex, hippocampus, olfactory bulb, substantia nigra and cerebellum and compared ADO levels in 5 different strains of mice (C57BL/6J, Swiss-Webster, FVB/NJ, 129P/J, and BALB/c). These studies demonstrate that baseline levels of purines vary significantly among the brain regions as well as between different mouse strains. These dissimilarities in purine concentrations may explain the variable phenotypes among background strains described in neurological disease models. PMID:24642754

  7. The mammary gland is a sensitive pubertal target in CD-1 and C57Bl/6 mice following perinatal perfluorooctanoic acid (PFOA) exposure

    PubMed Central

    Tucker, Deirdre K.; Macon, Madisa B.; Strynar, Mark J.; Dagnino, Sonia; Andersen, Erik; Fenton, Suzanne E.

    2015-01-01

    Perfluorooctanoic acid (PFOA) is a known developmental toxicant in mice, with varied strain outcomes depending on dose and period of exposure. The impact of PFOA on female mouse pubertal development at low doses (≤1 mg/kg), however, has yet to be determined. Therefore, female offspring from CD-1 and C57Bl/6 dams exposed to PFOA, creating serum concentrations similar to humans, were examined for pubertal onset, including mammary gland development. Mouse pups demonstrated a shorter PFOA elimination half-life than that reported for adult mice. Prenatal exposure to PFOA caused significant mammary developmental delays in exposed female offspring in both strains. Delays started during puberty and persisted into young adulthood; severity was dose-dependent. In contrast, an evaluation of serum hormone levels and pubertal timing onset in the same offspring revealed no effects of PFOA compared to controls in either strain. Therefore, our data suggest that the mammary gland is more sensitive to the effects of early low level PFOA exposures compared to other pubertal endpoints, regardless of strain. PMID:25499722

  8. Divergent and nonuniform gene expression patterns in mouse brain

    PubMed Central

    Morris, John A.; Royall, Joshua J.; Bertagnolli, Darren; Boe, Andrew F.; Burnell, Josh J.; Byrnes, Emi J.; Copeland, Cathy; Desta, Tsega; Fischer, Shanna R.; Goldy, Jeff; Glattfelder, Katie J.; Kidney, Jolene M.; Lemon, Tracy; Orta, Geralyn J.; Parry, Sheana E.; Pathak, Sayan D.; Pearson, Owen C.; Reding, Melissa; Shapouri, Sheila; Smith, Kimberly A.; Soden, Chad; Solan, Beth M.; Weller, John; Takahashi, Joseph S.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hohmann, John G.; Jones, Allan R.

    2010-01-01

    Considerable progress has been made in understanding variations in gene sequence and expression level associated with phenotype, yet how genetic diversity translates into complex phenotypic differences remains poorly understood. Here, we examine the relationship between genetic background and spatial patterns of gene expression across seven strains of mice, providing the most extensive cellular-resolution comparative analysis of gene expression in the mammalian brain to date. Using comprehensive brainwide anatomic coverage (more than 200 brain regions), we applied in situ hybridization to analyze the spatial expression patterns of 49 genes encoding well-known pharmaceutical drug targets. Remarkably, over 50% of the genes examined showed interstrain expression variation. In addition, the variability was nonuniformly distributed across strain and neuroanatomic region, suggesting certain organizing principles. First, the degree of expression variance among strains mirrors genealogic relationships. Second, expression pattern differences were concentrated in higher-order brain regions such as the cortex and hippocampus. Divergence in gene expression patterns across the brain could contribute significantly to variations in behavior and responses to neuroactive drugs in laboratory mouse strains and may help to explain individual differences in human responsiveness to neuroactive drugs. PMID:20956311

  9. Genetic Regulation of Hypothalamic Cocaine and Amphetamine-Regulated Transcript (CART) in BxD Inbred Mice

    PubMed Central

    Hawks, Brian W.; Li, Wei; Garlow, Steven J.

    2009-01-01

    Cocaine-Amphetamine Regulated Transcript (CART) peptides are implicated in a wide range of behaviors including in the reinforcing properties of psychostimulants, feeding and energy balance and stress and anxiety responses. We conducted a complex trait analysis to examine natural variation in the regulation of CART transcript abundance (CARTta) in the hypothalamus. CART transcript abundance was measured in total hypothalamic RNA from 26 BxD recombinant inbred (RI) mouse strains and in the C57BL/6 (B6) and DBA/2J (D2) progenitor strains. The strain distribution pattern for CARTta was continuous across the RI panel, which is consistent with this being a quantitative trait. Marker regression and interval mapping revealed significant quantitative trait loci (QTL) on mouse chromosome 4 (around 58.2cM) and chromosome 11 (between 20–36cM) that influence CARTta and account for 31% of the between strain variance in this phenotype. There are numerous candidate genes and QTL in these chromosomal regions that may indicate shared genetic regulation between CART expression and other neurobiological processes referable to known actions of this neuropeptide. PMID:18199428

  10. Construction of a series of congenic mice with recombinant chromosome 1 regions surrounding the genetic loci for resistance to intracellular parasites (Ity, Lsh, and Bcg), DNA repair responses (Rep-1), and the cytoskeletal protein villin (Vil).

    PubMed

    Mock, B A; Holiday, D L; Cerretti, D P; Darnell, S C; O'Brien, A D; Potter, M

    1994-01-01

    The interval of mouse chromosome 1 extending from Idh-1 to Pep-3 harbors the natural resistance gene Ity/Lsh/Bcg; it controls the outcome of infection with Salmonella typhimurium, Leishmania donovani, and several Mycobacterium species. This region also contains a DNA repair gene, Rep-1, which determines the rapidity with which double-strand breaks in chromatin are repaired. BALB/cAnPt and DBA/2N mice differ in their phenotypic expression of these genes. To generate appropriate strains of mice for the study of these genes, a series of 10 C.D2 congenic strains recombinant across a 28-centimorgan interval of mouse chromosome 1 extending from Idh-1 to Pep-3 were derived from crosses of the C.D2-Idh-1 Pep-3 congenic strain back to BALB/cAn. Analyses of these recombinant strains will allow the correlation of biological-immunological phenotypes with defined genetic regions.

  11. Construction of a series of congenic mice with recombinant chromosome 1 regions surrounding the genetic loci for resistance to intracellular parasites (Ity, Lsh, and Bcg), DNA repair responses (Rep-1), and the cytoskeletal protein villin (Vil).

    PubMed Central

    Mock, B A; Holiday, D L; Cerretti, D P; Darnell, S C; O'Brien, A D; Potter, M

    1994-01-01

    The interval of mouse chromosome 1 extending from Idh-1 to Pep-3 harbors the natural resistance gene Ity/Lsh/Bcg; it controls the outcome of infection with Salmonella typhimurium, Leishmania donovani, and several Mycobacterium species. This region also contains a DNA repair gene, Rep-1, which determines the rapidity with which double-strand breaks in chromatin are repaired. BALB/cAnPt and DBA/2N mice differ in their phenotypic expression of these genes. To generate appropriate strains of mice for the study of these genes, a series of 10 C.D2 congenic strains recombinant across a 28-centimorgan interval of mouse chromosome 1 extending from Idh-1 to Pep-3 were derived from crosses of the C.D2-Idh-1 Pep-3 congenic strain back to BALB/cAn. Analyses of these recombinant strains will allow the correlation of biological-immunological phenotypes with defined genetic regions. PMID:8262646

  12. Association of H2A{sup b} with resistance to collagen-induced arthritis in H2-recombinant mouse strains: An allele associated with reduction of several apparently unrelated responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchison, N.A.; Brunner, M.C.

    1995-02-01

    HLA class II alleles can protect against immunological diseases. Seeking an animal model for a naturally occurring protective allele, we screened a panel of H2-congenic and recombinant mouse strains for ability to protect against collagen-induced arthritis. The strains were crossed with the susceptible strain DBA/1, and the F{sub 1} hybrids immunized with cattle and chicken type II collagen. Hybrids having the H2A{sup b} allele displayed a reduced incidence and duration of the disease. They also had a reduced level of pre-disease inflammation, but not of anti-collagen antibodies. The allele is already known to be associated with reduction of other apparentlymore » unrelated immune responses, suggesting that some form of functional differentiation may operate that is not exclusively related to epitope-binding. It is suggested that this may reflect allelic variation in the class II major histocompatibility complex promoter region. 42 refs., 7 figs., 1 tab.« less

  13. Sweet and bitter taste of ethanol in C57BL/6J and DBA2/J mouse strains.

    PubMed

    Blizard, David A

    2007-01-01

    Studies of inbred strains of rats and mice have suggested a positive association between strain variations in sweet taste and ethanol intake. However, strain associations by themselves are insufficient to support a functional link between taste and ethanol intake. We used conditioned taste aversion (CTA) to explore the sweet and bitter taste of ethanol and ability to detect sucrose, quinine and ethanol in C57BL/6J (B6) and DBA/2J (D2) mouse strains that are frequently used in alcohol research. The present study showed that C57BL/6J mice generalized taste aversions from sucrose and quinine solutions to 10% ethanol and, reciprocally, aversions to 10% ethanol generalized to each of these solutions presented separately. Only conditioned aversions to quinine generalized to ethanol in the DBA/2J strain but an aversion conditioned to ethanol did not generalize reciprocally to quinine. Thus, considering these two gustatory qualities, 10% ethanol tastes both sweet and bitter to B6 mice but only bitter to D2. Both strains were able to generalize taste aversions across different concentrations of the same compound. B6 were able to detect lower concentrations of quinine than D2 but both strains were able to detect sucrose and (in contrast to previous findings) ethanol at similar concentrations. The strain-dependent gustatory profiles for ethanol may make an important contribution to the understanding of the undoubtedly complex mechanisms influencing high ethanol preference of B6 and pronounced ethanol avoidance of D2 mice.

  14. Adamts18 deletion results in distinct developmental defects and provides a model for congenital disorders of lens, lung, and female reproductive tract development

    PubMed Central

    Ataca, Dalya; Caikovski, Marian; Piersigilli, Alessandra; Moulin, Alexandre; Benarafa, Charaf; Earp, Sarah E.; Guri, Yakir; Kostic, Corinne; Arsenivic, Yvan; Soininen, Raija; Apte, Suneel S.

    2016-01-01

    ABSTRACT The ADAMTS family comprises 19 secreted metalloproteinases that cleave extracellular matrix components and have diverse functions in numerous disease and physiological contexts. A number of them remain ‘orphan’ proteases and among them is ADAMTS18, which has been implicated in developmental eye disorders, platelet function and various malignancies. To assess in vivo function of ADAMTS18, we generated a mouse strain with inactivated Adamts18 alleles. In the C57Bl6/Ola background, Adamts18-deficient mice are born in a normal Mendelian ratio, and are viable but show a transient growth delay. Histological examination revealed a 100% penetrant eye defect resulting from leakage of lens material through the lens capsule occurring at embryonic day (E)13.5, when the lens grows rapidly. Adamts18-deficient lungs showed altered bronchiolar branching. Fifty percent of mutant females are infertile because of vaginal obstruction due to either a dorsoventral vaginal septum or imperforate vagina. The incidence of ovarian rete is increased in the mutant mouse strain. Thus, Adamts18 is essential in the development of distinct tissues and the new mouse strain is likely to be useful for investigating ADAMTS18 function in human disease, particularly in the contexts of infertility and carcinogenesis. PMID:27638769

  15. Low sociability is associated with reduced size of the corpus callosum in the BALB/cJ inbred mouse strain.

    PubMed

    Fairless, Andrew H; Dow, Holly C; Toledo, Monica M; Malkus, Kristen A; Edelmann, Michele; Li, Hongzhe; Talbot, Konrad; Arnold, Steven E; Abel, Ted; Brodkin, Edward S

    2008-09-16

    The behavioral manifestations of autism, including reduced sociability (reduced tendency to seek social interaction), may be related to underdevelopment of the corpus callosum (CC). The BALB/cJ inbred mouse strain is a useful model system for testing the relationship between reduced sociability and CC underdevelopment. BALB/cJ mice show low levels of sociability, on average, but substantial intrastrain variability in sociability, as well as striking variability in CC development. This study tested the hypothesis that sociability is positively correlated with CC size within the BALB/cJ inbred strain. 30-day-old BALB/cJ and C57BL/6J mice were tested for sociability towards gonadectomized A/J stimulus mice in a social choice task. The size of the corpus callosum was measured histologically at the midsagittal plane. BALB/cJ mice showed a significant positive correlation between the tendency to sniff the stimulus mouse and size of the CC relative to brain weight. C57BL/6J mice showed consistently high levels of sociability and normal corpus callosum development. These results suggest that abnormal white matter structure is associated with deficits in sociability in BALB/cJ mice. Additional studies are warranted to elucidate the relationship between brain connectivity and sociability in this model system.

  16. Acquisition of nonspecific Bartonella strains by the northern grasshopper mouse (Onychomys leucogaster)

    USGS Publications Warehouse

    Bai, Y.; Kosoy, M.Y.; Cully, J.F.; Bala, T.; Ray, C.; Collinge, S.K.

    2007-01-01

    Rodent-associated Bartonella species are generally host-specific parasites in North America. Here evidence that Bartonella species can 'jump' between host species is presented. Northern grasshopper mice and other rodents were trapped in the western USA. A study of Bartonella infection in grasshopper mice demonstrated a high prevalence that varied from 25% to 90% by location. Bartonella infection was detected in other rodent species with a high prevalence as well. Sequence analyses of gltA identified 29 Bartonella variants in rodents, 10 of which were obtained from grasshopper mice. Among these 10, only six variants were specific to grasshopper mice, whereas four were identical to variants specific to deer mice or 13-lined ground squirrels. Fourteen of 90 sequenced isolates obtained from grasshopper mice were strains found more commonly in other rodent species and were apparently acquired from these animals. The ecological behavior of grasshopper mice may explain the occurrence of Bartonella strains in occasional hosts. The observed rate at which Bartonella jumps from a donor host species to the grasshopper mouse was directly proportional to a metric of donor host density and to the prevalence of Bartonella in the donor host, and inversely proportional to the same parameters for the grasshopper mouse. ?? 2007 Federation of European Microbiological Societies.

  17. Mouse androgenetic embryonic stem cells differentiated to multiple cell lineages in three embryonic germ layers in vitro.

    PubMed

    Teramura, Takeshi; Onodera, Yuta; Murakami, Hideki; Ito, Syunsuke; Mihara, Toshihiro; Takehara, Toshiyuki; Kato, Hiromi; Mitani, Tasuku; Anzai, Masayuki; Matsumoto, Kazuya; Saeki, Kazuhiro; Fukuda, Kanji; Sagawa, Norimasa; Osoi, Yoshihiko

    2009-06-01

    The embryos of some rodents and primates can precede early development without the process of fertilization; however, they cease to develop after implantation because of restricted expressions of imprinting genes. Asexually developed embryos are classified into parthenote/gynogenote and androgenote by their genomic origins. Embryonic stem cells (ESCs) derived from asexual origins have also been reported. To date, ESCs derived from parthenogenetic embryos (PgESCs) have been established in some species, including humans, and the possibility to be alternative sources for autologous cell transplantation in regenerative medicine has been proposed. However, some developmental characteristics, which might be important for therapeutic applications, such as multiple differentiation capacity and transplantability of the ESCs of androgenetic origin (AgESCs) are uncertain. Here, we induced differentiation of mouse AgESCs and observed derivation of neural cells, cardiomyocytes and hepatocytes in vitro. Following differentiated embryoid body (EB) transplantation in various mouse strains including the strain of origin, we found that the EBs could engraft in theoretically MHC-matched strains. Our results indicate that AgESCs possess at least two important characteristics, multiple differentiation properties in vitro and transplantability after differentiation, and suggest that they can also serve as a source of histocompatible tissues for transplantation.

  18. Defining a Novel Role for the Coxsackievirus and Adenovirus Receptor in Human Adenovirus Serotype 5 Transduction In Vitro in the Presence of Mouse Serum

    PubMed Central

    Lopez-Gordo, Estrella; Doszpoly, Andor; Duffy, Margaret R.; Coughlan, Lynda; Bradshaw, Angela C.; White, Katie M.; Denby, Laura; Nicklin, Stuart A.

    2017-01-01

    ABSTRACT Human adenoviral serotype 5 (HAdV-5) vectors have predominantly hepatic tropism when delivered intravascularly, resulting in immune activation and toxicity. Coagulation factor X (FX) binding to HAdV-5 mediates liver transduction and provides protection from virion neutralization in mice. FX is dispensable for liver transduction in mice lacking IgM antibodies or complement, suggesting that alternative transduction pathways exist. To identify novel factor(s) mediating HAdV-5 FX-independent entry, we investigated HAdV-5 transduction in vitro in the presence of serum from immunocompetent C57BL/6 or immunocompromised mice lacking IgM antibodies (Rag 2−/− and NOD-scid-gamma [NSG]). Sera from all three mouse strains enhanced HAdV-5 transduction of A549 cells. While inhibition of HAdV-5–FX interaction with FX-binding protein (X-bp) inhibited transduction in the presence of C57BL/6 serum, it had negligible effect on the enhanced transduction observed in the presence of Rag 2−/− or NSG serum. Rag 2−/− serum also enhanced transduction of the FX binding-deficient HAdV-5HVR5*HVR7*E451Q (AdT*). Interestingly, Rag 2−/− serum enhanced HAdV-5 transduction in a FX-independent manner in CHO-CAR and SKOV3-CAR cells (CHO or SKOV3 cells transfected to stably express human coxsackievirus and adenovirus receptor [CAR]). Additionally, blockade of CAR with soluble HAdV-5 fiber knob inhibited mouse serum-enhanced transduction in A549 cells, suggesting a potential role for CAR. Transduction of HAdV-5 KO1 and HAdV-5/F35 (CAR binding deficient) in the presence of Rag 2−/− serum was equivalent to that of HAdV-5, indicating that direct interaction between HAdV-5 and CAR is not required. These data suggest that FX may protect HAdV-5 from neutralization but has minimal contribution to HAdV-5 transduction in the presence of immunocompromised mouse serum. Alternatively, transduction occurs via an unidentified mouse serum protein capable of bridging HAdV-5 to CAR. IMPORTANCE The intravascular administration of HAdV-5 vectors can result in acute liver toxicity, transaminitis, thrombocytopenia, and injury to the vascular endothelium, illustrating challenges yet to overcome for HAdV-5-mediated systemic gene therapy. The finding that CAR and potentially an unidentified factor present in mouse serum might be important mediators of HAdV-5 transduction highlights that a better understanding of the complex biology defining the interplay between adenovirus immune recognition and cellular uptake mechanisms is still required. These findings are important to inform future optimization and development of HAdV-5-based adenoviral vectors for gene therapy. PMID:28381574

  19. Comparison of BALB/c and CBA/J mice for the local lymph node assay using bromodeoxyuridine with flow cytometry (LLNA: BrdU-FCM).

    PubMed

    Lee, Yong Sun; Yi, Jung-Sun; Seo, Souk Jin; Kim, Joo Hwan; Jung, Mi-Sook; Seo, Im-Kwon; Ahn, Ilyoung; Ko, Kyungyuk; Kim, Tae Sung; Lim, Kyung Min; Sohn, Soojung

    2017-02-01

    The local lymph node assay using 5-bromo-2-deoxyuridine (BrdU) with flow cytometry (LLNA: BrdU-FCM) is a modified LLNA that is used to identify skin sensitizers by counting BrdU-incorporated lymph node cells (LNCs) with flow cytometry. Unlike other LLNA methods (OECD TG 429, 442A and 442B) in which the CBA/J mouse strain is used, LLNA: BrdU-FCM was originally designed to be compatible with BALB/c, a mouse strain that is more widely used in many countries. To justify the substitution of CBA/J for BALB/c, the equivalence of the test results between two strains shall be established prior to the official implementation of LLNA: BrdU-FCM. This study aims to compare the test results of LLNA: BrdU-FCM produced in BALB/c mice with those in CBA/J mice for 18 reference substances, including 13 sensitizers and 5 non-sensitizers, listed in OECD Test Guideline 429. Based on the LLNA: BrdU-FCM test procedure, we selected an appropriate solvent and then performed preliminary tests to determine the non-irritating dose ranges for the main study, which revealed the difference in the irritation responses to 8 of the 18 chemicals between the two strains. In the main study, we measured the changes in the number of total LNCs, which indicated differences in the responses to test chemicals between the two strains. However, the stimulation index obtained with the counts of BrdU-incorporated LNCs with 7-AAD using flow cytometry yielded comparable results and 100% concordance between the BALB/c and CBA/J mouse strains was achieved, suggesting that the performance of LLNA: BrdU-FCM using BALB/c mice was equivalent to that with CBA/J mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. In vivo Proton NMR spectroscopy of genetic mouse models BALB/cJ and C57BL/6By: variation in hippocampal glutamate level and the metabotropic glutamate receptor, subtype 7 (Grm7) gene.

    PubMed

    Guilfoyle, David N; Gerum, Scott; Vadasz, Csaba

    2014-05-01

    Glutamatergic neurotransmission in the brain is modulated by metabotropic glutamate receptors (mGluR). In recent studies, we identified a cis-regulated variant of a gene (Grm7) which codes for mGluR subtype 7 (mGluR7), a presynaptic inhibitory receptor. The genetic variant derived from the BALB/cJ mouse strain (Grm7 (BALB/cJ)) codes for higher abundance of mGluR7 mRNA in the hippocampus than the C57BL/6By strain-derived variant (Grm7 (C57BL/6By)). Here, we used localized in vivo (1)H NMR spectroscopy to test the hypothesis that Grm7 (BALB/cJ) is also associated with lower glutamate concentration in the same brain region. All data were obtained on a 7.0 T Agilent (Santa Clara, CA, USA) 40-cm bore system using experimentally naive adult male inbred C57BL/6By, BALB/cJ, and congenic mice (B6By.C.6.132.54) constructed in our laboratory carrying Grm7 (BALB/cJ) on C57BL/6By genetic background. The voxel of interest size was 6 μL (1 × 2 × 3 mm(3)) placed in the hippocampal CA1 region. The results showed that the hippocampal level of glutamate in the congenic mouse strain was significantly lower than that in the background C57BL/6By strain which carried the Grm7 (C57BL/6By) allele. Because the two inbred strains are genetically highly similar except at the region of the Grm7 gene, the results raise the possibility that allelic variation at the Grm7 locus contributes to the strain differences in both hippocampal mRNA abundance and glutamate level which may modulate complex behavioral traits, such as learning and memory, addiction, epilepsy, and mood disorders.

  1. Borders and Comparative Cytoarchitecture of the Perirhinal and Postrhinal Cortices in an F1 Hybrid Mouse

    PubMed Central

    Beaudin, Stephane A.; Singh, Teghpal; Agster, Kara L.

    2013-01-01

    We examined the cytoarchitectonic and chemoarchitectonic organization of the cortical regions associated with the posterior rhinal fissure in the mouse brain, within the framework of what is known about these regions in the rat. Primary observations were in a first-generation hybrid mouse line, B6129PF/J1. The F1 hybrid was chosen because of the many advantages afforded in the study of the molecular and cellular bases of learning and memory. Comparisons with the parent strains, the C57BL6/J and 129P3/J are also reported. Mouse brain tissue was processed for visualization of Nissl material, myelin, acetyl cholinesterase, parvalbumin, and heavy metals. Tissue stained for heavy metals by the Timm’s method was particularly useful in the assignment of borders and in the comparative analyses because the patterns of staining were similar across species and strains. As in the rat, the areas examined were parcellated into 2 regions, the perirhinal and the postrhinal cortices. The perirhinal cortex was divided into areas 35 and 36, and the postrhinal cortex was divided into dorsal (PORd) and ventral (PORv) subregions. In addition to identifying the borders of the perirhinal cortex, we were able to identify a region in the mouse brain that shares signature features with the rat postrhinal cortex. PMID:22368084

  2. Chitotriosidase activity in the blood serum and organs of mice of various strains under the influence of chitin.

    PubMed

    Monoszon, A A; Cherkanova, M S; Duzhak, A B; Korolenko, T A

    2012-11-01

    Mouse chitotriosidase cleaving chitin belongs to the family of mammalian chitinases, whose biological functions are poorly understood. Chitotriosidase activity in mouse serum was shown to be much higher than in humans. The following interstrain differences were revealed in mouse chitotriosidase activity: GR>C57Bl/6>BALB/c>A/Sn>CBA. Chitotriosidase activity in CBA mice was lowest and practically did not differ from that in C3H/He and ICR mice. No sex-related differences were found in enzyme activity. Hybrids of opposite strains CBA and C57Bl/6 were characterized by dominant inheritance of this sign (elevated activity of chitotriosidase in the serum). Intragastric administration of chitin in a single dose of 100 mg/kg was followed by a decrease in chitotriosidase activity in the lungs, but not in the blood serum and homogenate of gastric cells from CBA mice. These data indicate that intragastric administration of chitin does not induce chitotriosidase in mice.

  3. CGDSNPdb: a database resource for error-checked and imputed mouse SNPs.

    PubMed

    Hutchins, Lucie N; Ding, Yueming; Szatkiewicz, Jin P; Von Smith, Randy; Yang, Hyuna; de Villena, Fernando Pardo-Manuel; Churchill, Gary A; Graber, Joel H

    2010-07-06

    The Center for Genome Dynamics Single Nucleotide Polymorphism Database (CGDSNPdb) is an open-source value-added database with more than nine million mouse single nucleotide polymorphisms (SNPs), drawn from multiple sources, with genotypes assigned to multiple inbred strains of laboratory mice. All SNPs are checked for accuracy and annotated for properties specific to the SNP as well as those implied by changes to overlapping protein-coding genes. CGDSNPdb serves as the primary interface to two unique data sets, the 'imputed genotype resource' in which a Hidden Markov Model was used to assess local haplotypes and the most probable base assignment at several million genomic loci in tens of strains of mice, and the Affymetrix Mouse Diversity Genotyping Array, a high density microarray with over 600,000 SNPs and over 900,000 invariant genomic probes. CGDSNPdb is accessible online through either a web-based query tool or a MySQL public login. Database URL: http://cgd.jax.org/cgdsnpdb/

  4. Three loci on mouse chromosome 5 and 10 modulate sex determination in XX Ods/+ mice.

    PubMed

    Poirier, Christophe; Moran, Jennifer L; Kovanci, Ertug; Petit, Deborah C; Beier, David R; Bishop, Colin E

    2007-07-01

    In mouse, XY embryos are committed to the male sex determination pathway after the transient expression of the Y-linked Sry gene in the Sertoli cell lineage between 10.5 and 12.5 dpc. In the C57BL/6J strain, male sex determination program can be modulated by some autosomal genes. The C57BL/6J alleles at these autosomal loci can antagonize male sex determination in combination with specific Sry alleles. In this report, the authors have identified an effect of these C57BL/6J specific alleles in combination with a mutated Sox9 allele, Sox9(Ods). Authors report the mapping of three of these genetic loci on mouse chromosome 5 and 10 in a backcross of the Ods mutation to the C57BL/6J background. Our study confirms the importance of the strain C57BL/6J for the investigation of the genetic mechanisms that control sex determination.

  5. Evaluation of the behavioral characteristics of the mdx mouse model of duchenne muscular dystrophy through operant conditioning procedures.

    PubMed

    Lewon, Matthew; Peters, Christina M; Van Ry, Pam M; Burkin, Dean J; Hunter, Kenneth W; Hayes, Linda J

    2017-09-01

    The mdx mouse is an important nonhuman model for Duchenne muscular dystrophy (DMD) research. Characterizing the behavioral traits of the strain relative to congenic wild-type (WT) mice may enhance our understanding of the cognitive deficits observed in some humans with DMD and contribute to treatment development and evaluation. In this paper we report the results of a number of experiments comparing the behavior of mdx to WT mice in operant conditioning procedures designed to assess learning and memory. We found that mdx outperformed WT in all learning and memory tasks involving food reinforcement, and this appeared to be related to the differential effects of the food deprivation motivating operation on mdx mice. Conversely, WT outperformed mdx in an escape/avoidance learning task. These results suggest motivational differences between the strains and demonstrate the potential utility of operant conditioning procedures in the assessment of the behavioral characteristics of the mdx mouse. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Transcription termination and RNA processing in the 3'-end spacer of mouse ribosomal RNA genes.

    PubMed Central

    Miwa, T; Kominami, R; Yoshikura, H; Sudo, K; Muramatsu, M

    1987-01-01

    The 3' termini of ribosomal RNA precursors from mouse FM3A cultured cells are mapped to eight sites within 625 bp downstream from the 3' terminus of 28 S rRNA. Three additional sites are mapped in liver RNA from C3H/He strain mice. Two of them, the sites at 570 bp and 625 bp are assumed to be termination sites in vivo, because they correspond to in vitro termination sites of RNA polymerase I, and 45 S RNAs having these 3' termini decay with kinetics distinct from others. The amount of 45 S RNA having the 3' terminus at other sites is variable among several mouse strains, despite their having the same DNA sequence in these regions. The ability to produce 3' termini in these sites seems to follow Mendel's law of inheritance. Therefore, we postulate that these nine sites are RNA processing sites which are controlled genetically. Images PMID:3031586

  7. Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening.

    PubMed

    Adams, David; Baldock, Richard; Bhattacharya, Shoumo; Copp, Andrew J; Dickinson, Mary; Greene, Nicholas D E; Henkelman, Mark; Justice, Monica; Mohun, Timothy; Murray, Stephen A; Pauws, Erwin; Raess, Michael; Rossant, Janet; Weaver, Tom; West, David

    2013-05-01

    Identifying genes that are important for embryo development is a crucial first step towards understanding their many functions in driving the ordered growth, differentiation and organogenesis of embryos. It can also shed light on the origins of developmental disease and congenital abnormalities. Current international efforts to examine gene function in the mouse provide a unique opportunity to pinpoint genes that are involved in embryogenesis, owing to the emergence of embryonic lethal knockout mutants. Through internationally coordinated efforts, the International Knockout Mouse Consortium (IKMC) has generated a public resource of mouse knockout strains and, in April 2012, the International Mouse Phenotyping Consortium (IMPC), supported by the EU InfraCoMP programme, convened a workshop to discuss developing a phenotyping pipeline for the investigation of embryonic lethal knockout lines. This workshop brought together over 100 scientists, from 13 countries, who are working in the academic and commercial research sectors, including experts and opinion leaders in the fields of embryology, animal imaging, data capture, quality control and annotation, high-throughput mouse production, phenotyping, and reporter gene analysis. This article summarises the outcome of the workshop, including (1) the vital scientific importance of phenotyping embryonic lethal mouse strains for basic and translational research; (2) a common framework to harmonise international efforts within this context; (3) the types of phenotyping that are likely to be most appropriate for systematic use, with a focus on 3D embryo imaging; (4) the importance of centralising data in a standardised form to facilitate data mining; and (5) the development of online tools to allow open access to and dissemination of the phenotyping data.

  8. Anatomical Variation of the Tarsus in Common Inbred Mouse Strains.

    PubMed

    Richbourg, Heather A; Martin, Matthew J; Schachner, Emma R; McNulty, Margaret A

    2017-03-01

    Rodent models are used for a variety of orthopedic research applications; however, anatomy references include mostly artistic representations. Advanced imaging techniques, including micro-computed tomography (microCT), can provide more accurate representations of subtle anatomical characteristics. A recent microCT atlas of laboratory mouse (Mus musculus) anatomy depicts the central and tarsal bone III (T3) as a single bone, differing from previous references. Fusion of tarsal bones is generally characterized as pathological secondary to mutations associated with growth factors, and normal variation has not been documented in the mouse tarsus. Therefore, it is unclear if this fusion is a normal or a pathological characteristic. The aim of this study is to characterize the tarsus of the laboratory mouse and compare it to the rat and selected outgroup species (i.e., white-footed mouse) via microCT and histology to determine if the central and T3 are separate or fused into a single bone. Laboratory mice (C57/Bl6 [n = 17] and BalbC [n = 2]) and rats (n = 5) were scanned with microCT. A representative laboratory mouse from each strain was evaluated histologically via serial sagittal sections through the mid-tarsus. General pedal anatomy was similar between all species; however, the central and T3 bones were fused in all laboratory mice but not the rat or white-footed mouse. A band of hyaline cartilage was identified within the fused bone of the laboratory mice. We conclude that the fusion found is a normal characteristic in laboratory mice, but timing of the fusion remains ambiguous. Anat Rec, 300:450-459, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Studies of teratomas in mice: possibilities for the future production of animal models.

    PubMed Central

    Lehman, J. M.

    1980-01-01

    The murine teratoma-teratocarcinoma has become an interesting model for the study of neoplastic transformation, developmental biology, and possibly a useful system for genetic studies. These tumors arise spontaneously in 129 strain mice and can be induced in other strains by transplanting early embryos or portions of embryos into extrauterine sites. The majority of these tumors are benign, but some are capable of transplantation due to the presence of the stem cell, embryonal carcinoma, which is a multipotential cell able to proliferate and also differentiate into tissues and cell types representative of all the embryonic germ layers. It has been elegantly shown by transplantation of embryonal carcinoma cells into blastocysts which are then placed into a pseudopregnant mouse that a normal mouse is obtained composed of cells from the host blastocyst and also cells from the malignant embryonal carcinoma. Therefore, under this set of circumstances, embryonal carcinoma cells are induced to functionally differentiate into multiple cell and tissue types which are benign and able to contribute to the development of a mouse. The adaptation of the embryonal carcinoma cell to tissue culture has allowed the manipulation of these cells with subsequent selection of mutant cells which can be further transplanted into blastocysts to obtain a mouse which contains these mutant cells. If the mutant cells have populated the germ line, it may be possible to obtain a stock of mice with the lesion present in all cells. This system may be exploitable for studies in neoplasia, developmental biology, and with proper selection procedures, allow the development of new genetic strains of mice. PMID:7457573

  10. Genetically Determined Susceptibility to Tuberculosis in Mice Causally Involves Accelerated and Enhanced Recruitment of Granulocytes

    PubMed Central

    Keller, Christine; Hoffmann, Reinhard; Lang, Roland; Brandau, Sven; Hermann, Corinna; Ehlers, Stefan

    2006-01-01

    Classical twin studies and recent linkage analyses of African populations have revealed a potential involvement of host genetic factors in susceptibility or resistance to Mycobacterium tuberculosis infection. In order to identify the candidate genes involved and test their causal implication, we capitalized on the mouse model of tuberculosis, since inbred mouse strains also differ substantially in their susceptibility to infection. Two susceptible and two resistant mouse strains were aerogenically infected with 1,000 CFU of M. tuberculosis, and the regulation of gene expression was examined by Affymetrix GeneChip U74A array with total lung RNA 2 and 4 weeks postinfection. Four weeks after infection, 96 genes, many of which are involved in inflammatory cell recruitment and activation, were regulated in common. One hundred seven genes were differentially regulated in susceptible mouse strains, whereas 43 genes were differentially expressed only in resistant mice. Data mining revealed a bias towards the expression of genes involved in granulocyte pathophysiology in susceptible mice, such as an upregulation of those for the neutrophil chemoattractant LIX (CXCL5), interleukin 17 receptor, phosphoinositide kinase 3 delta, or gamma interferon-inducible protein 10. Following M. tuberculosis challenge in both airways or peritoneum, granulocytes were recruited significantly faster and at higher numbers in susceptible than in resistant mice. When granulocytes were efficiently depleted by either of two regimens at the onset of infection, only susceptible mice survived aerosol challenge with M. tuberculosis significantly longer than control mice. We conclude that initially enhanced recruitment of granulocytes contributes to susceptibility to tuberculosis. PMID:16790804

  11. High-precision genetic mapping of behavioral traits in the diversity outbred mouse population

    PubMed Central

    Logan, R W; Robledo, R F; Recla, J M; Philip, V M; Bubier, J A; Jay, J J; Harwood, C; Wilcox, T; Gatti, D M; Bult, C J; Churchill, G A; Chesler, E J

    2013-01-01

    Historically our ability to identify genetic variants underlying complex behavioral traits in mice has been limited by low mapping resolution of conventional mouse crosses. The newly developed Diversity Outbred (DO) population promises to deliver improved resolution that will circumvent costly fine-mapping studies. The DO is derived from the same founder strains as the Collaborative Cross (CC), including three wild-derived strains. Thus the DO provides more allelic diversity and greater potential for discovery compared to crosses involving standard mouse strains. We have characterized 283 male and female DO mice using open-field, light–dark box, tail-suspension and visual-cliff avoidance tests to generate 38 behavioral measures. We identified several quantitative trait loci (QTL) for these traits with support intervals ranging from 1 to 3 Mb in size. These intervals contain relatively few genes (ranging from 5 to 96). For a majority of QTL, using the founder allelic effects together with whole genome sequence data, we could further narrow the positional candidates. Several QTL replicate previously published loci. Novel loci were also identified for anxiety- and activity-related traits. Half of the QTLs are associated with wild-derived alleles, confirming the value to behavioral genetics of added genetic diversity in the DO. In the presence of wild-alleles we sometimes observe behaviors that are qualitatively different from the expected response. Our results demonstrate that high-precision mapping of behavioral traits can be achieved with moderate numbers of DO animals, representing a significant advance in our ability to leverage the mouse as a tool for behavioral genetics PMID:23433259

  12. Analysis of multiple positive feedback paradigms demonstrates a complete absence of LH surges and GnRH activation in mice lacking kisspeptin signaling.

    PubMed

    Dror, Tal; Franks, Jennifer; Kauffman, Alexander S

    2013-06-01

    Kisspeptin stimulates gonadotropin-releasing hormone (GnRH) neurons via the kisspeptin receptor, Kiss1r. In rodents, estrogen-responsive kisspeptin neurons in the rostral hypothalamus have been postulated to mediate estrogen-induced positive feedback induction of the preovulatory luteinizing hormone (LH) surge. However, conflicting evidence exists regarding the ability of mice lacking Kiss1r to display LH surges in response to exogenous hormones. Whether the discrepancy reflects different mouse strains used and/or utilization of different surge-induction paradigms is unknown. Here, we tested multiple hormonal paradigms in one Kiss1r knockout (KO) model to see which paradigms, if any, could generate circadian-timed LH surges. Kiss1r KO and wild-type (WT) females were ovariectomized, given sex steroids in various modes, and assessed several days later for LH levels in the morning or evening (when surges occur). Serum LH levels were very low in all morning animals, regardless of genotype or hormonal paradigm. In each paradigm, virtually all WT females displayed clear LH surges in the evening, whereas none of the KO females demonstrated LH surges. The lack of LH surges in KO mice reflects a lack of GnRH secretion rather than diminished pituitary responsiveness from a lifetime lack of GnRH exposure because KO mice responded to GnRH priming with robust LH secretion. Moreover, high cfos-GnRH coexpression was detected in WT females in the evening, whereas low cfos-GnRH coexpression was present in KO females at all time points. Our findings conclusively demonstrate that WT females consistently display LH surges under multiple hormonal paradigms, whereas Kiss1r KO mice do not, indicating that kisspeptin-Kiss1r signaling is mandatory for GnRH/LH surge induction.

  13. Characterization of Aeromonas hydrophila Wound Pathotypes by Comparative Genomic and Functional Analyses of Virulence Genes

    PubMed Central

    Grim, Christopher J.; Kozlova, Elena V.; Sha, Jian; Fitts, Eric C.; van Lier, Christina J.; Kirtley, Michelle L.; Joseph, Sandeep J.; Read, Timothy D.; Burd, Eileen M.; Tall, Ben D.; Joseph, Sam W.; Horneman, Amy J.; Chopra, Ashok K.; Shak, Joshua R.

    2013-01-01

    ABSTRACT Aeromonas hydrophila has increasingly been implicated as a virulent and antibiotic-resistant etiologic agent in various human diseases. In a previously published case report, we described a subject with a polymicrobial wound infection that included a persistent and aggressive strain of A. hydrophila (E1), as well as a more antibiotic-resistant strain of A. hydrophila (E2). To better understand the differences between pathogenic and environmental strains of A. hydrophila, we conducted comparative genomic and functional analyses of virulence-associated genes of these two wound isolates (E1 and E2), the environmental type strain A. hydrophila ATCC 7966T, and four other isolates belonging to A. aquariorum, A. veronii, A. salmonicida, and A. caviae. Full-genome sequencing of strains E1 and E2 revealed extensive differences between the two and strain ATCC 7966T. The more persistent wound infection strain, E1, harbored coding sequences for a cytotoxic enterotoxin (Act), a type 3 secretion system (T3SS), flagella, hemolysins, and a homolog of exotoxin A found in Pseudomonas aeruginosa. Corresponding phenotypic analyses with A. hydrophila ATCC 7966T and SSU as reference strains demonstrated the functionality of these virulence genes, with strain E1 displaying enhanced swimming and swarming motility, lateral flagella on electron microscopy, the presence of T3SS effector AexU, and enhanced lethality in a mouse model of Aeromonas infection. By combining sequence-based analysis and functional assays, we characterized an A. hydrophila pathotype, exemplified by strain E1, that exhibited increased virulence in a mouse model of infection, likely because of encapsulation, enhanced motility, toxin secretion, and cellular toxicity. PMID:23611906

  14. Proto-oncogene activation in liver tumors of hepatocarcinogenesis-resistant strains of mice.

    PubMed

    Stanley, L A; Devereux, T R; Foley, J; Lord, P G; Maronpot, R R; Orton, T C; Anderson, M W

    1992-12-01

    Activation of the ras family of oncogenes occurs frequently in liver tumors of the B6C3F1 mouse, a strain which is highly sensitive to hepatocarcinogenesis. Many other mouse strains are much more resistant to hepatocarcinogenesis; the aim of this study was to determine the frequency and pattern of oncogene activation in spontaneous and chemically induced liver tumors of three such strains, the C57BL/6J, the C57BL/6 x DBA/2 F1 hybrid (B6D2F1) and the C57BL/6 x Balb/c F1 hybrid (B6BCF1). The C57BL/6, DBA/2 and Balb/c strains are all relatively resistant to spontaneous hepatocarcinogenesis (1.5-3.6% of animals develop liver tumors in 2 years); with regard to chemically induced hepatocarcinogenesis the Balb/c is highly resistant, the C57BL/6 has low susceptibility and the DBA/2 has low to moderate susceptibility. The nude mouse tumorigenicity assay was used to search for activated oncogenes in 15 C57BL/6J liver tumors induced by a single neonatal dose of vinyl carbamate (VC, 0.15 mumol/g body weight). Three tumors contained H-ras genes activated by point mutations at codon 61 and one contained a non-ras oncogene. The polymerase chain reaction and allele-specific oligonucleotide hybridization were used to study H-ras mutations in spontaneous and VC-induced tumors from all three strains of mice. The frequency of H-ras codon 61 mutations in tumors induced by 0.15 mumol/g body weight VC in the C57BL/6J mouse (5/37) was similar to that in spontaneous tumors (2/9); surprisingly, tumors induced by a lower dose of VC (0.03 mumol/g body weight) had a higher frequency of H-ras mutations (12/28). The frequencies of H-ras activation detected in VC (0.03 mumol/g body weight)-induced tumors from the two F1 hybrids studied differed markedly. Only one VC-induced B6BCF1 tumor contained a mutated H-ras gene (1/10), whereas the majority of B6D2F1 tumors contained such mutations (23/33). Several spontaneous B6D2F1 liver tumors contained H-ras codon 61 mutations (6/15). Thus, H-ras activation frequency does not determine susceptibility to hepatocarcinogenesis in inbred mice and their F1 hybrids, since a relatively high frequency of H-ras mutations was observed in two resistant strains and a low frequency was found in the other strain.

  15. A Mouse Strain Less Responsive to Dioxin-Induced Prostaglandin E2 Synthesis Is Resistant to the Onset of Neonatal Hydronephrosis

    PubMed Central

    Kawaguchi, Tatsuya; Ohsako, Seiichiroh; Tohyama, Chiharu

    2014-01-01

    Dioxin is a ubiquitous environmental pollutant that induces toxicity when bound to the aryl hydrocarbon receptor (AhR). Significant differences in susceptibility of mouse strains to dioxin toxicity are largely accounted for by the dissociation constant of binding to dioxins of AhR subtypes encoded by different alleles. We showed that cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1), components of a prostanoid synthesis pathway, play essential roles in the onset of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced hydronephrosis of neonatal mice. Although C57BL/6J and BALB/cA mice harbor AhR receptors highly responsive to TCDD, they were found by chance to differ significantly in the incidence of TCDD-induced hydronephrosis. Therefore, the goal of the present study was to determine the molecular basis of this difference in susceptibility to TCDD toxicity. For this purpose, we administered C57BL/6J and BALB/cA dams’ TCDD at an oral dose of 15 or 80 μg/kg on postnatal day (PND) 1 to expose pups to TCDD via lactation, and the pups’ kidneys were collected on PND 7. The incidence of hydronephrosis in C57BL/6J pups (64%) was greater than in BALB/cA pups (0%, p < 0.05), despite similarly increased levels of COX-2 mRNA. The incidence of hydronephrosis in these mouse strains paralleled the levels of renal mPGES-1 mRNA and early growth response 1 (Egr-1) that modulates mPGES-1 gene expression, as well as PGE2 concentrations in urine. Although these mouse strains possess AhR alleles tightly bound to TCDD, their difference in incidence and severity of hydronephrosis can be explained, in part, by differences in the expression of mPGES-1 and Egr-1. PMID:25015655

  16. An Escherichia coli Nissle 1917 Missense Mutant Colonizes the Streptomycin-Treated Mouse Intestine Better than the Wild Type but Is Not a Better Probiotic

    PubMed Central

    Adediran, Jimmy; Leatham-Jensen, Mary P.; Mokszycki, Matthew E.; Frimodt-Møller, Jakob; Krogfelt, Karen A.; Kazmierczak, Krystyna; Kenney, Linda J.; Conway, Tyrrell

    2014-01-01

    Previously we reported that the streptomycin-treated mouse intestine selected for two different Escherichia coli MG1655 mutants with improved colonizing ability: nonmotile E. coli MG1655 flhDC deletion mutants that grew 15% faster in vitro in mouse cecal mucus and motile E. coli MG1655 envZ missense mutants that grew slower in vitro in mouse cecal mucus yet were able to cocolonize with the faster-growing flhDC mutants. The E. coli MG1655 envZ gene encodes a histidine kinase that is a member of the envZ-ompR two-component signal transduction system, which regulates outer membrane protein profiles. In the present investigation, the envZP41L gene was transferred from the intestinally selected E. coli MG1655 mutant to E. coli Nissle 1917, a human probiotic strain used to treat gastrointestinal infections. Both the E. coli MG1655 and E. coli Nissle 1917 strains containing envZP41L produced more phosphorylated OmpR than their parents. The E. coli Nissle 1917 strain containing envZP41L also became more resistant to bile salts and colicin V and grew 50% slower in vitro in mucus and 15% to 30% slower on several sugars present in mucus, yet it was a 10-fold better colonizer than E. coli Nissle 1917. However, E. coli Nissle 1917 envZP41L was not better at preventing colonization by enterohemorrhagic E. coli EDL933. The data can be explained according to our “restaurant” hypothesis for commensal E. coli strains, i.e., that they colonize the intestine as sessile members of mixed biofilms, obtaining the sugars they need for growth locally, but compete for sugars with invading E. coli pathogens planktonically. PMID:24478082

  17. Genomic locus modulating corneal thickness in the mouse identifies POU6F2 as a potential risk of developing glaucoma

    PubMed Central

    Li, Ying; Wang, Jiaxing; Allingham, R. Rand; Hauser, Michael A.; Wiggs, Janey L.; Geisert, Eldon E.

    2018-01-01

    Central corneal thickness (CCT) is one of the most heritable ocular traits and it is also a phenotypic risk factor for primary open angle glaucoma (POAG). The present study uses the BXD Recombinant Inbred (RI) strains to identify novel quantitative trait loci (QTLs) modulating CCT in the mouse with the potential of identifying a molecular link between CCT and risk of developing POAG. The BXD RI strain set was used to define mammalian genomic loci modulating CCT, with a total of 818 corneas measured from 61 BXD RI strains (between 60–100 days of age). The mice were anesthetized and the eyes were positioned in front of the lens of the Phoenix Micron IV Image-Guided OCT system or the Bioptigen OCT system. CCT data for each strain was averaged and used to QTLs modulating this phenotype using the bioinformatics tools on GeneNetwork (www.genenetwork.org). The candidate genes and genomic loci identified in the mouse were then directly compared with the summary data from a human POAG genome wide association study (NEIGHBORHOOD) to determine if any genomic elements modulating mouse CCT are also risk factors for POAG.This analysis revealed one significant QTL on Chr 13 and a suggestive QTL on Chr 7. The significant locus on Chr 13 (13 to 19 Mb) was examined further to define candidate genes modulating this eye phenotype. For the Chr 13 QTL in the mouse, only one gene in the region (Pou6f2) contained nonsynonymous SNPs. Of these five nonsynonymous SNPs in Pou6f2, two resulted in changes in the amino acid proline which could result in altered secondary structure affecting protein function. The 7 Mb region under the mouse Chr 13 peak distributes over 2 chromosomes in the human: Chr 1 and Chr 7. These genomic loci were examined in the NEIGHBORHOOD database to determine if they are potential risk factors for human glaucoma identified using meta-data from human GWAS. The top 50 hits all resided within one gene (POU6F2), with the highest significance level of p = 10−6 for SNP rs76319873. POU6F2 is found in retinal ganglion cells and in corneal limbal stem cells. To test the effect of POU6F2 on CCT we examined the corneas of a Pou6f2-null mice and the corneas were thinner than those of wild-type littermates. In addition, these POU6F2 RGCs die early in the DBA/2J model of glaucoma than most RGCs. Using a mouse genetic reference panel, we identified a transcription factor, Pou6f2, that modulates CCT in the mouse. POU6F2 is also found in a subset of retinal ganglion cells and these RGCs are sensitive to injury. PMID:29370175

  18. Consomic mouse strain selection based on effect size measurement, statistical significance testing and integrated behavioral z-scoring: focus on anxiety-related behavior and locomotion.

    PubMed

    Labots, M; Laarakker, M C; Ohl, F; van Lith, H A

    2016-06-29

    Selecting chromosome substitution strains (CSSs, also called consomic strains/lines) used in the search for quantitative trait loci (QTLs) consistently requires the identification of the respective phenotypic trait of interest and is simply based on a significant difference between a consomic and host strain. However, statistical significance as represented by P values does not necessarily predicate practical importance. We therefore propose a method that pays attention to both the statistical significance and the actual size of the observed effect. The present paper extends on this approach and describes in more detail the use of effect size measures (Cohen's d, partial eta squared - η p (2) ) together with the P value as statistical selection parameters for the chromosomal assignment of QTLs influencing anxiety-related behavior and locomotion in laboratory mice. The effect size measures were based on integrated behavioral z-scoring and were calculated in three experiments: (A) a complete consomic male mouse panel with A/J as the donor strain and C57BL/6J as the host strain. This panel, including host and donor strains, was analyzed in the modified Hole Board (mHB). The consomic line with chromosome 19 from A/J (CSS-19A) was selected since it showed increased anxiety-related behavior, but similar locomotion compared to its host. (B) Following experiment A, female CSS-19A mice were compared with their C57BL/6J counterparts; however no significant differences and effect sizes close to zero were found. (C) A different consomic mouse strain (CSS-19PWD), with chromosome 19 from PWD/PhJ transferred on the genetic background of C57BL/6J, was compared with its host strain. Here, in contrast with CSS-19A, there was a decreased overall anxiety in CSS-19PWD compared to C57BL/6J males, but not locomotion. This new method shows an improved way to identify CSSs for QTL analysis for anxiety-related behavior using a combination of statistical significance testing and effect sizes. In addition, an intercross between CSS-19A and CSS-19PWD may be of interest for future studies on the genetic background of anxiety-related behavior.

  19. The Virtual Mouse Brain: A Computational Neuroinformatics Platform to Study Whole Mouse Brain Dynamics.

    PubMed

    Melozzi, Francesca; Woodman, Marmaduke M; Jirsa, Viktor K; Bernard, Christophe

    2017-01-01

    Connectome-based modeling of large-scale brain network dynamics enables causal in silico interrogation of the brain's structure-function relationship, necessitating the close integration of diverse neuroinformatics fields. Here we extend the open-source simulation software The Virtual Brain (TVB) to whole mouse brain network modeling based on individual diffusion magnetic resonance imaging (dMRI)-based or tracer-based detailed mouse connectomes. We provide practical examples on how to use The Virtual Mouse Brain (TVMB) to simulate brain activity, such as seizure propagation and the switching behavior of the resting state dynamics in health and disease. TVMB enables theoretically driven experimental planning and ways to test predictions in the numerous strains of mice available to study brain function in normal and pathological conditions.

  20. Photosynthetic Electron Transport Chain of Chlamydomonas reinhardi VI. Electron Transport in Mutant Strains Lacking Either Cytochrome 553 or Plastocyanin 1

    PubMed Central

    Gorman, Donald S.; Levine, R. P.

    1966-01-01

    A mutant strain of Chlamydomonas reinhardi, ac-206, lacks cytochrome 553, at least in an active and detectable form. Chloroplast fragments of this mutant strain are inactive in the photoreduction of NADP when the source of electrons is water, but they are active when the electron source is 2,6-dichlorophenolindophenol and ascorbate. The addition of either cytochrome 553 or plastocyanin, obtained from the wild-type strain, has no effect upon the photosynthetic activities of the mutant strain. Cells of the mutant strain lack both the soluble and insoluble forms of cytochrome 553, but they possess the mitochondrial type cytochrome c. Thus, the loss of cytochrome 553 appears to be specific. Another mutant strain, ac-208, lacks plastocyanin, or possesses it in an inactive and undetectable form. Chloroplast fragments of ac-208 are inactive in the photoreduction of NADP with either water or 2,6-dichlorophenolindophenol and ascorbate as electron donors. However, these reactions are restored upon the addition of plastocyanin. The addition of cytochrome 553 has no effect. The measurement of light-induced absorbance changes with ac-208 reveal that, in the absence of plastocyanin, light fails to sensitize the oxidation of cytochrome 553, but it will sensitize its reduction. However, the addition of plastocyanin restores the light-induced cytochrome oxidation. A third mutant strain, ac-208 (sup.) carries a suppressor mutation that partially restores the wild phenotype. This mutant strain appears to possess a plastocyanin that is less stable than that of the wild-type strain. The observations with the mutant strains are discussed in terms of the sequence of electron transport System II → cytochrome 553 → plastocyanin → System I. PMID:16656453

  1. Structure and polymorphism of the mouse myelin/oligodendrocyte glycoprotein gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daubas, P.; Pham-Dinh, D.; Dautigny, A.

    1994-09-01

    The authors have isolated and characterized genomic clones containing the mouse myelin/oligodendrocyte glycoprotein (MOG) gene. It spans a region of 12.5 kb and consists of eight exons. Its exon-intron structure differs from that of classical MHC-class I genes, with which it is linked in the mouse genome. Nucleotide sequencing of the 5{prime} flanking region revelas that it contains several putative protein-binding sites, some of them in common with other myelin gene promoters. One intragenic polymorphism has been identified: it consists of a GA repeat, defining at least three alleles in mouse inbred strains, and is easily detectable using the polymerasemore » chain reaction method.« less

  2. [Antimycotic activity in vitro and in vivo of 5-fluorocytosine on pathogenic strains of Candida albicans and Cryptococcus neoformans].

    PubMed

    Costa, A L; Valenti, A; Costa, G; Calogero, F

    1976-01-01

    The authors have analyzed the 5 Fluoro Cytosine (5FC) activity on strains of Candida albicans and Criptococcus neoformans, both in vitro and in vivo. In vitro the minimal inhibitory concentration (MIC) was determined; in vivo tests of pathogenicity on rabbit and mouse have been executed. The various findings obtained have shown a strong activity of the 5FC on strains of Candida and Criptococcus.

  3. Susceptibility to anthrax lethal toxin-induced rat death is controlled by a single chromosome 10 locus that includes rNlrp1.

    PubMed

    Newman, Zachary L; Printz, Morton P; Liu, Shihui; Crown, Devorah; Breen, Laura; Miller-Randolph, Sharmina; Flodman, Pamela; Leppla, Stephen H; Moayeri, Mahtab

    2010-05-20

    Anthrax lethal toxin (LT) is a bipartite protease-containing toxin and a key virulence determinant of Bacillus anthracis. In mice, LT causes the rapid lysis of macrophages isolated from certain inbred strains, but the correlation between murine macrophage sensitivity and mouse strain susceptibility to toxin challenge is poor. In rats, LT induces a rapid death in as little as 37 minutes through unknown mechanisms. We used a recombinant inbred (RI) rat panel of 19 strains generated from LT-sensitive and LT-resistant progenitors to map LT sensitivity in rats to a locus on chromosome 10 that includes the inflammasome NOD-like receptor (NLR) sensor, Nlrp1. This gene is the closest rat homolog of mouse Nlrp1b, which was previously shown to control murine macrophage sensitivity to LT. An absolute correlation between in vitro macrophage sensitivity to LT-induced lysis and animal susceptibility to the toxin was found for the 19 RI strains and 12 additional rat strains. Sequencing Nlrp1 from these strains identified five polymorphic alleles. Polymorphisms within the N-terminal 100 amino acids of the Nlrp1 protein were perfectly correlated with LT sensitivity. These data suggest that toxin-mediated lethality in rats as well as macrophage sensitivity in this animal model are controlled by a single locus on chromosome 10 that is likely to be the inflammasome NLR sensor, Nlrp1.

  4. Natural Variant of Collagen-Like Protein A in Serotype M3 Group A Streptococcus Increases Adherence and Decreases Invasive Potential

    PubMed Central

    Jewell, Brittany E.; Versalovic, Erika M.; Olsen, Randall J.; Bachert, Beth A.; Lukomski, Slawomir; Musser, James M.

    2015-01-01

    Group A Streptococcus (GAS) predominantly exists as a colonizer of the human oropharynx that occasionally breaches epithelial barriers to cause invasive diseases. Despite the frequency of GAS carriage, few investigations into the contributory molecular mechanisms exist. To this end, we identified a naturally occurring polymorphism in the gene encoding the streptococcal collagen-like protein A (SclA) in GAS carrier strains. All previously sequenced invasive serotype M3 GAS possess a premature stop codon in the sclA gene truncating the protein. The carrier polymorphism is predicted to restore SclA function and was infrequently identified by targeted DNA sequencing in invasive strains of the same serotype. We demonstrate that a strain with the carrier sclA allele expressed a full-length SclA protein, while the strain with the invasive sclA allele expressed a truncated variant. An isoallelic mutant invasive strain with the carrier sclA allele exhibited decreased virulence in a mouse model of invasive disease and decreased multiplication in human blood. Further, the isoallelic invasive strain with the carrier sclA allele persisted in the mouse nasopharynx and had increased adherence to cultured epithelial cells. Repair of the premature stop codon in the invasive sclA allele restored the ability to bind the extracellular matrix proteins laminin and cellular fibronectin. These data demonstrate that a mutation in GAS carrier strains increases adherence and decreases virulence and suggest selection against increased adherence in GAS invasive isolates. PMID:25561712

  5. Functional Integrity of the Chimeric (Humanized) Mouse Liver: Enzyme Zonation, Physiologic Spaces, and Hepatic Enzymes and Transporters.

    PubMed

    Chow, Edwin C Y; Wang, Jason Z Ya; Quach, Holly P; Tang, Hui; Evans, David C; Li, Albert P; Silva, Jose; Pang, K Sandy

    2016-09-01

    Chimeric mouse liver models are useful in vivo tools for human drug metabolism studies; however, liver integrity and the microcirculation remain largely uninvestigated. Hence, we conducted liver perfusion studies to examine these attributes in FRGN [Fah(-/-), Rag2(-/-), and Il2rg(-/-), NOD strain] livers (control) and chimeric livers repopulated with mouse (mFRGN) or human (hFRGN) hepatocytes. In single-pass perfusion studies (2.5 ml/min), outflow dilution profiles of noneliminated reference indicators ((51)Cr-RBC, (125)I-albumin, (14)C-sucrose, and (3)H-water) revealed preservation of flow-limited distribution and reduced water and albumin spaces in hFRGN livers compared with FRGN livers, a view supported microscopically by tightly packed sinusoids. With prograde and retrograde perfusion of harmol (50 µM) in FRGN livers, an anterior sulfation (Sult1a1) over the posterior distribution of glucuronidation (Ugt1a1) activity was preserved, evidenced by the 42% lower sulfation-to-glucuronidation ratio (HS/HG) and 14% higher harmol extraction ratio (E) upon switching from prograde to retrograde flow. By contrast, zonation was lost in mFRGN and hFRGN livers, with HS/HG and E for both flows remaining unchanged. Remnant mouse genes persisted in hFRGN livers (10%-300% those of FRGN). When hFRGN livers were compared with human liver tissue, higher UGT1A1 and MRP2, lower MRP3, and unchanged SULT1A1 and MRP4 mRNA expression were observed. Total Sult1a1/SULT1A1 protein expression in hFRGN livers was higher than that of FRGN livers, consistent with higher harmol sulfate formation. The composite data on humanized livers suggest a loss of zonation, lack of complete liver humanization, and persistence of murine hepatocyte activities leading to higher sulfation. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  6. FACTORS INFLUENCING IN VITRO KILLING OF BACTERIA BY HEMOCYTES OF THE EASTERN OYSTER (CRASSOSTREA VIRGINICA)

    EPA Science Inventory

    Vibrio parahaemolyticus strains altered in motility or colonial morphology (opaque versus translucent), Listeria monocytogenes mutants lacking catalase, superoxide dismutase, hemolysin, or phospholipase activities, and Vibrio vulnificus strains, possessing and lacking capsules we...

  7. Antimalarial activity of novel 4-aminoquinolines active against drug resistant strains.

    PubMed

    Kondaparla, Srinivasarao; Soni, Awakash; Manhas, Ashan; Srivastava, Kumkum; Puri, Sunil K; Katti, S B

    2017-02-01

    In the present study we have synthesized a new class of 4-aminoquinolines and evaluated against Plasmodium falciparum in vitro (3D7-sensitive strain & K1-resistant strain) and Plasmodium yoelii in vivo (N-67 strain). Among the series, eleven compounds (5, 6, 7, 8, 9, 11, 12, 13, 14, 15 and 21) showed superior antimalarial activity against K1 strain as compared to CQ. In addition, all these analogues showed 100% suppression of parasitemia on day 4 in the in vivo mouse model against N-67 strain when administered orally. Further, biophysical studies suggest that this series of compounds act on heme polymerization target. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Bright fluorescent Streptococcus pneumoniae for live-cell imaging of host-pathogen interactions.

    PubMed

    Kjos, Morten; Aprianto, Rieza; Fernandes, Vitor E; Andrew, Peter W; van Strijp, Jos A G; Nijland, Reindert; Veening, Jan-Willem

    2015-03-01

    Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the major limitations for research on pneumococcal-host interactions is the lack of suitable tools for live-cell imaging. To address this issue, we developed a generally applicable strategy to create genetically stable, highly fluorescent bacteria. Our strategy relies on fusing superfolder green fluorescent protein (GFP) or a far-red fluorescent protein (RFP) to the abundant histone-like protein HlpA. Due to efficient translation and limited cellular diffusion of these fusions, the cells are 25-fold brighter than those of the currently best available imaging S. pneumoniae strain. These novel bright pneumococcal strains are fully virulent, and the GFP reporter can be used for in situ imaging in mouse tissue. We used our reporter strains to study the effect of the polysaccharide capsule, a major pneumococcal virulence factor, on different stages of infection. By dual-color live-cell imaging experiments, we show that unencapsulated pneumococci adhere significantly better to human lung epithelial cells than encapsulated strains, in line with previous data obtained by classical approaches. We also confirm with live-cell imaging that the capsule protects pneumococci from neutrophil phagocytosis, demonstrating the versatility and usability of our reporters. The described imaging tools will pave the way for live-cell imaging of pneumococcal infection and help further understanding of the mechanisms of pneumococcal pathogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. A Redox Sensitive Pathway in the Mouse ES Cell Assay Modeled From ToxCast HTS Data

    EPA Science Inventory

    The broad chemical landscape coupled with the lack of developmental toxicity information across most environmental chemicals has motivated the need for high- throughput screening methods and predictive models of developmental toxicity. Towards this end, we used the mouse embryoni...

  10. Mouse model for the Rift Valley fever virus MP12 strain infection

    USDA-ARS?s Scientific Manuscript database

    Rift Valley fever virus (RVFV), a Category A pathogen and select agent, is the causative agent of Rift Valley fever. To date, no fully licensed vaccine is available in the U.S. for human or animal use and effective antiviral drugs have not been identified. The RVFV MP12 strain is conditionally licen...

  11. IDENTIFICATION OF STEROCHEMICAL CONFIGERATION OF CYCLOPENTA[CD]PYRENE-DNA ADDUCTS IN STRAIN A/J MOUSE LUNG AND C3H10T1/2CL8

    EPA Science Inventory

    The definitive identification of stereochemical configurations of DNA adducts detected by 32P-postlabeling requires co-chromatography of adducts with synthetic chromatographic standards. Four major and several minor DNA adducts are formed by cyclopenta[cd]pyrene (CPP) in strain A...

  12. Complete Genome Sequence of Escherichia coli Strain M8, Isolated from ob/ob Mice

    PubMed Central

    Siddharth, Jay; Membrez, Mathieu; Chakrabarti, Anirikh; Betrisey, Bertrand; Chou, Chieh Jason

    2017-01-01

    ABSTRACT Escherichia coli is one of the common inhabitants of the mammalian gastrointestinal track. We isolated a strain from an ob/ob mouse and performed whole-genome sequencing, which yielded a chromosome of ~5.1 Mb and three plasmids of ~160 kb, ~6 kb, and ~4 kb. PMID:28572322

  13. The ROP18 and ROP5 allele types are highly predictive of mouse-virulence across globally distributed strains of Toxoplasma gondii

    USDA-ARS?s Scientific Manuscript database

    The protozoan parasite Toxoplasma gondii is one of the known most successful eukaryotic pathogens on Earth. Virulence of T. gondii strains varies greatly in mice, and mounting evidence suggests that such variations may be relevant to the manifestation of human toxoplasmosis. Polymorphic rhoptry-secr...

  14. Harvard U.'s Request for Commercial Rights to New Strain of Mouse Forces Debate in Europe over Whether Animals Can Be Patented.

    ERIC Educational Resources Information Center

    Chronicle of Higher Education, 1989

    1989-01-01

    The European Patent Convention has informed Harvard University that its application for a patent on a genetically engineered mouse may be refused. The application was the first to obtain patent protection across most of Europe for a transgenic animal, one which has been implanted with genes from another animal. (MSE)

  15. Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias

    PubMed Central

    2012-01-01

    Background High-density genotyping arrays that measure hybridization of genomic DNA fragments to allele-specific oligonucleotide probes are widely used to genotype single nucleotide polymorphisms (SNPs) in genetic studies, including human genome-wide association studies. Hybridization intensities are converted to genotype calls by clustering algorithms that assign each sample to a genotype class at each SNP. Data for SNP probes that do not conform to the expected pattern of clustering are often discarded, contributing to ascertainment bias and resulting in lost information - as much as 50% in a recent genome-wide association study in dogs. Results We identified atypical patterns of hybridization intensities that were highly reproducible and demonstrated that these patterns represent genetic variants that were not accounted for in the design of the array platform. We characterized variable intensity oligonucleotide (VINO) probes that display such patterns and are found in all hybridization-based genotyping platforms, including those developed for human, dog, cattle, and mouse. When recognized and properly interpreted, VINOs recovered a substantial fraction of discarded probes and counteracted SNP ascertainment bias. We developed software (MouseDivGeno) that identifies VINOs and improves the accuracy of genotype calling. MouseDivGeno produced highly concordant genotype calls when compared with other methods but it uniquely identified more than 786000 VINOs in 351 mouse samples. We used whole-genome sequence from 14 mouse strains to confirm the presence of novel variants explaining 28000 VINOs in those strains. We also identified VINOs in human HapMap 3 samples, many of which were specific to an African population. Incorporating VINOs in phylogenetic analyses substantially improved the accuracy of a Mus species tree and local haplotype assignment in laboratory mouse strains. Conclusion The problems of ascertainment bias and missing information due to genotyping errors are widely recognized as limiting factors in genetic studies. We have conducted the first formal analysis of the effect of novel variants on genotyping arrays, and we have shown that these variants account for a large portion of miscalled and uncalled genotypes. Genetic studies will benefit from substantial improvements in the accuracy of their results by incorporating VINOs in their analyses. PMID:22260749

  16. Predominant effect of host genetics on levels of Lactobacillus johnsonii bacteria in the mouse gut.

    PubMed

    Buhnik-Rosenblau, Keren; Danin-Poleg, Yael; Kashi, Yechezkel

    2011-09-01

    The gut microbiota is strongly associated with the well-being of the host. Its composition is affected by environmental factors, such as food and maternal inoculation, while the relative impact of the host's genetics have been recently uncovered. Here, we studied the effect of the host genetic background on the composition of intestinal bacteria in a murine model, focusing on lactic acid bacteria (LAB) as an important group that includes many probiotic strains. Based on 16S rRNA gene genotyping, variation was observed in fecal LAB populations of BALB/c and C57BL/6J mouse lines. Lactobacillus johnsonii, a potentially probiotic bacterium, appeared at significantly higher levels in C57BL/6J versus BALB/c mouse feces. In the BALB/c gut, the L. johnsonii level decreased rapidly after oral administration, suggesting that some selective force does not allow its persistence at higher levels. The genetic inheritance of L. johnsonii levels was further tested in reciprocal crosses between the two mouse lines. The resultant F1 offspring presented similar L. johnsonii levels, confirming that mouse genetics plays a major role in determining these levels compared to the smaller maternal effect. Our findings suggest that mouse genetics has a major effect on the composition of the LAB population in general and on the persistence of L. johnsonii in the gut in particular. Concentrating on a narrow spectrum of culturable LAB enables the isolation and characterization of such potentially probiotic bacterial strains, which might be specifically oriented to the genetic background of the host as part of a personalized-medicine approach.

  17. Genotoxicity assessment of ethylenediamine dinitrate (EDDN) and diethylenetriamine trinitrate (DETN).

    PubMed

    Reddy, Gunda; Song, Jian; Kirby, Paul; Johnson, Mark S

    2011-12-24

    Ethylenediamine dinitrate (EDDN) and diethylenetriamine trinitrate (DETN) are relatively insensitive explosive compounds that are being explored as safe alternatives to other more sensitive compounds. When used in combination with other high explosives they are an improvement and may provide additional safety during storage and use. The genetic toxicity of these compounds was evaluated to predict the potential adverse human health effects from exposure by using a standard genetic toxicity test battery which included: a gene mutation test in bacteria (Ames), an in vitro Chinese Hamster Ovary (CHO) cell chromosome aberration test and an in vivo mouse micronucleus test. The results of the Ames test showed that EDDN increased the mean number of revertants per plate with strain TA100, without activation, at 5000μg/plate compared to the solvent control, which indicated a positive result. No positive results were observed with the other tester strains with or without activation in Salmonella typhimurium strains TA98, TA1535, TA1537, and Escherichia coli strain WP2 uvrA. DETN was negative for all Salmonella tester strains and E. coli up to 5000μg/plate both with and without metabolic activation. The CHO cell chromosome aberration assay was performed using EDDN and DETN at concentrations up to 5000μg/mL. The results indicate that these compounds did not induce structural chromosomal aberrations at all tested concentrations in CHO cells, with or without metabolic activation. EDDN and DETN, when tested in vivo in the CD-1 mouse at doses up to 2000mg/kg, did not induce any significant increase in the number of micronuclei in bone marrow erythrocytes. These studies demonstrate that EDDN is mutagenic in one strain of Salmonella (TA100) but was negative in other strains, for in vitro induction of chromosomal aberrations in CHO cells, and for micronuclei in the in vivo mouse micronucleus assay. DETN was not genotoxic in all in vitro and in vivo tests. These results show the in vitro and in vivo genotoxicity potential of these chemicals. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Diverse pathogenicity of equine herpesvirus 1 (EHV-1) isolates in CBA mouse model.

    PubMed

    Yu, Mi Htay Htay; Kasem, Samy Gomaa Ahmed; Tsujimura, Koji; Matsumura, Tomio; Yanai, Tokuma; Yamaguchi, Tsuyoshi; Ohya, Kenji; Fukushi, Hideto

    2010-03-01

    The pathogenicity of equine herpesvirus 1 (EHV-1) isolates of Japan were evaluated by using the CBA mouse model. CBA mice were inoculated with eight Japanese EHV-1 strains (89c1, 90c16, 90c18, 97c11, 98c12, 00c19, 01c1 and HH-1) and one British strain (Ab4p). 89c1 caused slight body weight loss and nervous signs in mice at 8 days post infection (dpi). Severe weight loss and nervous signs were observed in mice inoculated with Ab4p at 6 dpi. The other strains did not cause apparent clinical signs. Infectious viruses were recovered from the lungs of all groups at 2 dpi. Histopathological analysis revealed interstitial pneumonia in the lungs of all mice inoculated with EHV-1. Encephalitis or meningoencephalitis was observed in the brains of mice inoculated with 89c1, 90c18, 97c11, 98c12, 01c1 and Ab4p. Japanese EHV-1 strains showed low pathogenicity in CBA mice, whereas the sequential affects of infection are similar to those of the highly pathogenic strain Ab4p. These results suggest that field isolates of EHV-1 have varying degrees of pathogenicity in CBA mice.

  19. Variable Behavior and Repeated Learning in Two Mouse Strains: Developmental and Genetic Contributions.

    PubMed

    Arnold, Megan A; Newland, M Christopher

    2018-06-16

    Behavioral inflexibility is often assessed using reversal learning tasks, which require a relatively low degree of response variability. No studies have assessed sensitivity to reinforcement contingencies that specifically select highly variable response patterns in mice, let alone in models of neurodevelopmental disorders involving limited response variation. Operant variability and incremental repeated acquisition (IRA) were used to assess unique aspects of behavioral variability of two mouse strains: BALB/c, a model of some deficits in ASD, and C57Bl/6. On the operant variability task, BALB/c mice responded more repetitively during adolescence than C57Bl/6 mice when reinforcement did not require variability but responded more variably when reinforcement required variability. During IRA testing in adulthood, both strains acquired an unchanging, performance sequence equally well. Strain differences emerged, however, after novel learning sequences began alternating with the performance sequence: BALB/c mice substantially outperformed C57Bl/6 mice. Using litter-mate controls, it was found that adolescent experience with variability did not affect either learning or performance on the IRA task in adulthood. These findings constrain the use of BALB/c mice as a model of ASD, but once again reveal this strain is highly sensitive to reinforcement contingencies and they are fast and robust learners. Copyright © 2018. Published by Elsevier B.V.

  20. Extensive Mobilome-Driven Genome Diversification in Mouse Gut-Associated Bacteroides vulgatus mpk

    PubMed Central

    Lange, Anna; Beier, Sina; Steimle, Alex; Autenrieth, Ingo B.; Huson, Daniel H.; Frick, Julia-Stefanie

    2016-01-01

    Like many other Bacteroides species, Bacteroides vulgatus strain mpk, a mouse fecal isolate which was shown to promote intestinal homeostasis, utilizes a variety of mobile elements for genome evolution. Based on sequences collected by Pacific Biosciences SMRT sequencing technology, we discuss the challenges of assembling and studying a bacterial genome of high plasticity. Additionally, we conducted comparative genomics comparing this commensal strain with the B. vulgatus type strain ATCC 8482 as well as multiple other Bacteroides and Parabacteroides strains to reveal the most important differences and identify the unique features of B. vulgatus mpk. The genome of B. vulgatus mpk harbors a large and diverse set of mobile element proteins compared with other sequenced Bacteroides strains. We found evidence of a number of different horizontal gene transfer events and a genome landscape that has been extensively altered by different mobilization events. A CRISPR/Cas system could be identified that provides a possible mechanism for preventing the integration of invading external DNA. We propose that the high genome plasticity and the introduced genome instabilities of B. vulgatus mpk arising from the various mobilization events might play an important role not only in its adaptation to the challenging intestinal environment in general, but also in its ability to interact with the gut microbiota. PMID:27071651

  1. Mastitis Pathogens with High Virulence in a Mouse Model Produce a Distinct Cytokine Profile In Vivo

    PubMed Central

    Johnzon, Carl-Fredrik; Artursson, Karin; Söderlund, Robert; Guss, Bengt; Rönnberg, Elin; Pejler, Gunnar

    2016-01-01

    Mastitis is a serious medical condition of dairy cattle. Here, we evaluated whether the degree of virulence of mastitis pathogens in a mouse model can be linked to the inflammatory response that they provoke. Clinical isolates of Staphylococcus aureus (S. aureus) (strain 556 and 392) and Escherichia coli (E. coli) (676 and 127), and laboratory control strains [8325-4 (S. aureus) and MG1655 (E. coli)], were injected i.p. into mice, followed by the assessment of clinical scores and inflammatory parameters. As judged by clinical scoring, E. coli 127 exhibited the largest degree of virulence among the strains. All bacterial strains induced neutrophil recruitment. However, whereas E. coli 127 induced high peritoneal levels of CXCL1, G-CSF, and CCL2, strikingly lower levels of these were induced by the less virulent bacterial strains. High concentrations of these compounds were also seen in blood samples taken from animals infected with E. coli 127, suggesting systemic inflammation. Moreover, the levels of CXCL1 and G-CSF, both in the peritoneal fluid and in plasma, correlated with clinical score. Together, these findings suggest that highly virulent clinical mastitis isolates produce a distinct cytokine profile that shows a close correlation with the severity of the bacterial infection. PMID:27713743

  2. Quantitative mouse brain phenotyping based on single and multispectral MR protocols

    PubMed Central

    Badea, Alexandra; Gewalt, Sally; Avants, Brian B.; Cook, James J.; Johnson, G. Allan

    2013-01-01

    Sophisticated image analysis methods have been developed for the human brain, but such tools still need to be adapted and optimized for quantitative small animal imaging. We propose a framework for quantitative anatomical phenotyping in mouse models of neurological and psychiatric conditions. The framework encompasses an atlas space, image acquisition protocols, and software tools to register images into this space. We show that a suite of segmentation tools (Avants, Epstein et al., 2008) designed for human neuroimaging can be incorporated into a pipeline for segmenting mouse brain images acquired with multispectral magnetic resonance imaging (MR) protocols. We present a flexible approach for segmenting such hyperimages, optimizing registration, and identifying optimal combinations of image channels for particular structures. Brain imaging with T1, T2* and T2 contrasts yielded accuracy in the range of 83% for hippocampus and caudate putamen (Hc and CPu), but only 54% in white matter tracts, and 44% for the ventricles. The addition of diffusion tensor parameter images improved accuracy for large gray matter structures (by >5%), white matter (10%), and ventricles (15%). The use of Markov random field segmentation further improved overall accuracy in the C57BL/6 strain by 6%; so Dice coefficients for Hc and CPu reached 93%, for white matter 79%, for ventricles 68%, and for substantia nigra 80%. We demonstrate the segmentation pipeline for the widely used C57BL/6 strain, and two test strains (BXD29, APP/TTA). This approach appears promising for characterizing temporal changes in mouse models of human neurological and psychiatric conditions, and may provide anatomical constraints for other preclinical imaging, e.g. fMRI and molecular imaging. This is the first demonstration that multiple MR imaging modalities combined with multivariate segmentation methods lead to significant improvements in anatomical segmentation in the mouse brain. PMID:22836174

  3. Corneal Expression of SLURP-1 by Age, Sex, Genetic Strain, and Ocular Surface Health

    PubMed Central

    Swamynathan, Sudha; Delp, Emili E.; Harvey, Stephen A. K.; Loughner, Chelsea L.; Raju, Leela; Swamynathan, Shivalingappa K.

    2015-01-01

    Purpose Although secreted Ly6/urokinase-type plasminogen activator receptor–related protein-1 (Slurp1) transcript is highly abundant in the mouse cornea, corresponding protein expression remains uncharacterized. Also, SLURP1 was undetected in previous tear proteomics studies, resulting in ambiguity about its baseline levels. Here, we examine mouse corneal Slurp1 expression in different sexes, age groups, strains, and health conditions, and quantify SLURP1 in human tears from healthy or inflamed ocular surfaces. Methods Expression of Slurp1 in embryonic day-13 (E13), E16, postnatal day-1 (PN1), PN10, PN20, and PN70 Balb/C, FVBN, C57Bl/6, and DBA/2J mouse corneas, Klf4Δ/ΔCE corneas with corneal epithelial–specific ablation of Klf4, migrating cells in wild-type corneal epithelial wound edge, and in corneas exposed to pathogen-associated molecular patterns (PAMPs) poly(I:C), zymosan-A, or Pam3Csk4 was examined by QPCR, immunoblots, and immunofluorescent staining. Human SLURP1 levels were quantified by ELISA in tears from 34 men and women aged 18 to 80 years. Results Expression of Slurp1, comparable in different strains and sexes, was low in E13, E16, PN1, and PN10 mouse corneas, and increased rapidly after eyelid opening in a Klf4-dependent manner. We found Slurp1 was downregulated in corneas exposed to PAMPs, and in migrating cells at the wound edge. Human SLURP1 expression, comparable in different sexes and age groups, was significantly decreased in tears from inflamed ocular surfaces (0.34%) than those from healthy individuals (0.77%). Conclusions These data describe the influence of age, sex, genetic background, and ocular surface health on mouse corneal expression of Slurp1, establish the baseline for human tear SLURP1 expression, and identify SLURP1 as a useful diagnostic and/or therapeutic target for inflammatory ocular surface disorders. PMID:26670825

  4. The TallyHo polygenic mouse model of diabetes: implications in wound healing.

    PubMed

    Buck, Donald W; Jin, Da P; Geringer, Matthew; Hong, Seok Jong; Galiano, Robert D; Mustoe, Thomas A

    2011-11-01

    Impairments in wound healing represent a significant source of morbidity and mortality in patients with diabetes. To help uncover the derangements associated with diabetic wound healing, murine animal models have been extensively used. In this article, the authors present results, and the accompanying wound healing implications, from experiments across three validated wound healing models using a newer polygenic strain of diabetes. The authors investigated the wound healing impairments of the TallyHo/JnJ diabetic mouse strain, using three validated wound healing models: an incisional model, a splinted excisional model, and a cutaneous ischemia-reperfusion injury model. Appropriate control strain mice were used for comparison. Wounds were analyzed using gross, histologic, and molecular techniques. TallyHo mice displayed deficits across all three wound healing models. There was a reduced resistance/response to oxidative stress and a global decrease in the initial inflammatory response to healing. In addition, there was a global decrease in the stimulus for angiogenesis and collagen formation, ultimately leading to reduced reepithelialization, granulation tissue formation, wound contraction, and wound tensile strength. Gross and histologic findings were corroborated with molecular data, which revealed a significant down-regulation of important cytokines, including vascular endothelial growth factor, neutrophilic attractant protein-2, monocyte chemoattractant protien-1, heme oxygenase-1, interleukin-1β, and interleukin-6, when normalized to the control strain (p<0.05). The TallyHo polygenic mouse model of diabetes demonstrates predictable and clinically relevant wound healing impairments that offer important implications into the derangements of diabetic wound healing observed clinically. Therapeutics targeting these specific derangements could provide improvements in the care of diabetic wounds.

  5. Characterization of the bout durations of sleep and wakefulness.

    PubMed

    McShane, Blakeley B; Galante, Raymond J; Jensen, Shane T; Naidoo, Nirinjini; Pack, Allan I; Wyner, Abraham

    2010-11-30

    (a) Develop a new statistical approach to describe the microarchitecture of wakefulness and sleep in mice; (b) evaluate differences among inbred strains in this microarchitecture; (c) compare results when data are scored in 4-s versus 10-s epochs. Studies in male mice of four inbred strains: AJ, C57BL/6, DBA and PWD. EEG/EMG were recorded for 24h and scored independently in 4-s and 10-s epochs. Distribution of bout durations of wakefulness, NREM and REM sleep in mice has two distinct components, i.e., short and longer bouts. This is described as a spike (short bouts) and slab (longer bouts) distribution, a particular type of mixture model. The distribution in any state depends on the state the mouse is transitioning from and can be characterized by three parameters: the number of such bouts conditional on the previous state, the size of the spike, and the average length of the slab. While conventional statistics such as time spent in state, average bout duration, and number of bouts show some differences between inbred strains, this new statistical approach reveals more major differences. The major difference between strains is their ability to sustain long bouts of NREM sleep or wakefulness. Scoring mouse sleep/wake in 4-s epochs offered little new information when using conventional metrics but did when evaluating the microarchitecture based on this new approach. Standard statistical approaches do not adequately characterize the microarchitecture of mouse behavioral state. Approaches based on a spike-and-slab provide a quantitative description. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    PubMed

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  8. Detailed methodology for high resolution scanning electron microscopy (SEM) of murine malaria parasitized-erythrocytes.

    PubMed

    Hayakawa, Eri H; Matsuoka, Hiroyuki

    2016-10-01

    Scanning electron microscopy (SEM) is a powerful tool used to investigate object surfaces and has been widely applied in both material science and biology. With respect to the study of malaria, SEM revealed that erythrocytes infected with Plasmodium falciparum, a human parasite, display 'knob-like' structures on their surface comprising parasitized proteins. However, detailed methodology for SEM studies of malaria parasites is lacking in the literature making such studies challenging. Here, we provide a step-by-step guide to preparing Plasmodium-infected erythrocytes from two mouse strains for SEM analysis with minimal structural deterioration. We tested three species of murine malaria parasites, P. berghei, P. yoelii, and P. chabaudi, as well as non-parasitized human erythrocytes and P. falciparum-infected erythrocytes for comparisons. Our data demonstrated that the surface structures of parasitized erythrocytes between the three species of murine parasites in the two different strains of mice were indistinguishable and no surface alterations were observed in P. falciparum-erythrocytes. Our SEM observations contribute towards an understanding of the molecular mechanisms of parasite maturation in the erythrocyte cytoplasm and, along with future studies using our detailed methodology, may help to gain insight into the clinical phenomena of human malaria. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. aroA-Deficient Salmonella enterica Serovar Typhimurium Is More Than a Metabolically Attenuated Mutant

    PubMed Central

    Frahm, Michael; Kocijancic, Dino; Rohde, Manfred; Eckweiler, Denitsa; Bielecka, Agata; Bueno, Emilio; Cava, Felipe; Abraham, Wolf-Rainer; Curtiss, Roy; Häussler, Susanne; Erhardt, Marc; Weiss, Siegfried

    2016-01-01

    ABSTRACT Recombinant attenuated Salmonella enterica serovar Typhimurium strains are believed to act as powerful live vaccine carriers that are able to elicit protection against various pathogens. Auxotrophic mutations, such as a deletion of aroA, are commonly introduced into such bacteria for attenuation without incapacitating immunostimulation. In this study, we describe the surprising finding that deletion of aroA dramatically increased the virulence of attenuated Salmonella in mouse models. Mutant bacteria lacking aroA elicited increased levels of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) after systemic application. A detailed genetic and phenotypic characterization in combination with transcriptomic and metabolic profiling demonstrated that ΔaroA mutants display pleiotropic alterations in cellular physiology and lipid and amino acid metabolism, as well as increased sensitivity to penicillin, complement, and phagocytic uptake. In concert with other immunomodulating mutations, deletion of aroA affected flagellin phase variation and gene expression of the virulence-associated genes arnT and ansB. Finally, ΔaroA strains displayed significantly improved tumor therapeutic activity. These results highlight the importance of a functional shikimate pathway to control homeostatic bacterial physiology. They further highlight the great potential of ΔaroA-attenuated Salmonella for the development of vaccines and cancer therapies with important implications for host-pathogen interactions and translational medicine. PMID:27601574

  10. Experimental West Nile Virus Infection in Rabbits: An Alternative Model for Studying Induction of Disease and Virus Control

    PubMed Central

    Suen, Willy W.; Uddin, Muhammad J.; Wang, Wenqi; Brown, Vienna; Adney, Danielle R.; Broad, Nicole; Prow, Natalie A.; Bowen, Richard A.; Hall, Roy A.; Bielefeldt-Ohmann, Helle

    2015-01-01

    The economic impact of non-lethal human and equine West Nile virus (WNV) disease is substantial, since it is the most common presentation of the infection. Experimental infection with virulent WNV strains in the mouse and hamster models frequently results in severe neural infection and moderate to high mortality, both of which are not representative features of most human and equine infections. We have established a rabbit model for investigating pathogenesis and immune response of non-lethal WNV infection. Two species of rabbits, New Zealand White (Oryctolagus cuniculus) and North American cottontail (Sylvilagus sp.), were experimentally infected with virulent WNV and Murray Valley encephalitis virus strains. Infected rabbits exhibited a consistently resistant phenotype, with evidence of low viremia, minimal-absent neural infection, mild-moderate neuropathology, and the lack of mortality, even though productive virus replication occurred in the draining lymph node. The kinetics of anti-WNV neutralizing antibody response was comparable to that commonly seen in infected horses and humans. This may be explained by the early IFNα/β and/or γ response evident in the draining popliteal lymph node. Given this similarity to the human and equine disease, immunocompetent rabbits are, therefore, a valuable animal model for investigating various aspects of non-lethal WNV infections. PMID:26184326

  11. Relevance of the clustered regularly interspaced short palindromic repeats of Enterococcus faecalis strains isolated from retreatment root canals on periapical lesions, resistance to irrigants and biofilms

    PubMed Central

    Tong, Zhongchun; Du, Yu; Ling, Junqi; Huang, Lijia; Ma, Jinglei

    2017-01-01

    A high prevalence of Enterococcus faecalis (E. faecalis) is observed in teeth with root canal treatment failures. Clustered regularly interspaced short palindromic repeats (CRISPR) are widely distributed in prokaryotes that have adaptive immune systems against mobile elements, including pathogenic genes. The present study investigated the relevance of the CRISPR in E. faecalis strains isolated from retreated root canals on biofilms, periapical lesions and drug resistance. A total of 20 E. faecalis strains were extracted from the root canals of teeth referred for root canal retreatment. CRISPR-Cas loci were identified by two pairs of relevant primers and polymerase chain reaction. The susceptibility of the 20 isolated strains to intracanal irrigants was evaluated by 1- and 5-minute challenges with a mixture of a tetracycline isomer, an acid and a detergent (MTAD), 2% chlorhexidine (CHX) and 5.25% sodium hypochlorite (NaOCl). The microtiter plate assay and crystal violet staining were used to compare the biofilm formation of the E. faecalis isolate strains. Out of the 20 E. faecalis isolate strains, 5 strains that lacked CRISPR-cas determinants exhibited significant periapical lesions. Among the 15 strains containing CRISPR-cas determinants, 8 were isolated from root canals with inadequate fillings and 7 were isolated from root canals without any fillings. The five strains lacking CRISPR-cas loci were observed to be more resistant to MTAD and 2% CHX than the 15 strains that had CRISPR-cas loci. All of the strains exhibited the same susceptibility to 5.25% NaOCl. Furthermore, the 5 strains lacking CRISPR-cas determinants generated more biofilm than the other 15 strains. Thus, the results of the present study suggested that E. faecalis root canal isolates lacking CRISPR-cas exhibit higher resistance to intracanal irrigants, stronger biofilm formation and generate significant periapical lesions. PMID:29285081

  12. Relevance of the clustered regularly interspaced short palindromic repeats of Enterococcus faecalis strains isolated from retreatment root canals on periapical lesions, resistance to irrigants and biofilms.

    PubMed

    Tong, Zhongchun; Du, Yu; Ling, Junqi; Huang, Lijia; Ma, Jinglei

    2017-12-01

    A high prevalence of Enterococcus faecalis ( E. faecalis ) is observed in teeth with root canal treatment failures. Clustered regularly interspaced short palindromic repeats (CRISPR) are widely distributed in prokaryotes that have adaptive immune systems against mobile elements, including pathogenic genes. The present study investigated the relevance of the CRISPR in E. faecalis strains isolated from retreated root canals on biofilms, periapical lesions and drug resistance. A total of 20 E. faecalis strains were extracted from the root canals of teeth referred for root canal retreatment. CRISPR-Cas loci were identified by two pairs of relevant primers and polymerase chain reaction. The susceptibility of the 20 isolated strains to intracanal irrigants was evaluated by 1- and 5-minute challenges with a mixture of a tetracycline isomer, an acid and a detergent (MTAD), 2% chlorhexidine (CHX) and 5.25% sodium hypochlorite (NaOCl). The microtiter plate assay and crystal violet staining were used to compare the biofilm formation of the E. faecalis isolate strains. Out of the 20 E. faecalis isolate strains, 5 strains that lacked CRISPR-cas determinants exhibited significant periapical lesions. Among the 15 strains containing CRISPR-cas determinants, 8 were isolated from root canals with inadequate fillings and 7 were isolated from root canals without any fillings. The five strains lacking CRISPR-cas loci were observed to be more resistant to MTAD and 2% CHX than the 15 strains that had CRISPR-cas loci. All of the strains exhibited the same susceptibility to 5.25% NaOCl. Furthermore, the 5 strains lacking CRISPR-cas determinants generated more biofilm than the other 15 strains. Thus, the results of the present study suggested that E. faecalis root canal isolates lacking CRISPR-cas exhibit higher resistance to intracanal irrigants, stronger biofilm formation and generate significant periapical lesions.

  13. Comparison of atypical Brachyspira spp. clinical isolates and classic strains in a mouse model of swine dysentery.

    PubMed

    Burrough, Eric; Strait, Erin; Kinyon, Joann; Bower, Leslie; Madson, Darin; Schwartz, Kent; Frana, Timothy; Songer, J Glenn

    2012-12-07

    Multiple Brachyspira spp. can colonize the porcine colon, and the presence of the strongly beta-hemolytic Brachyspira hyodysenteriae is typically associated with clinical swine dysentery. Recently, several Brachyspira spp. have been isolated from the feces of pigs with clinical disease suggestive of swine dysentery, yet these isolates were not identified as B. hyodysenteriae by genotypic or phenotypic methods. This study used a mouse model of swine dysentery to compare the pathogenic potential of seventeen different Brachyspira isolates including eight atypical clinical isolates, six typical clinical isolates, the standard strain of B. hyodysenteriae (B204), and reference strains of Brachyspira intermedia and Brachyspira innocens. Results revealed that strongly beta-hemolytic isolates induced significantly greater cecal inflammation than weakly beta-hemolytic isolates regardless of the genetic identification of the isolate, and that strongly beta-hemolytic isolates identified as 'Brachyspira sp. SASK30446' and B. intermedia by PCR produced lesions indistinguishable from those caused by B. hyodysenteriae in this model. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Peptidase-3 (Pep-3), dipeptidase variant in the rat homologous to mouse pep-3 (Dip-1) and human PEP-c.

    PubMed

    Womack, J E; Cramer, D V

    1980-10-01

    Starch gel electrophoresis and histochemical staining with L-leucyl-L-tyrosine have revealed genetic variation for dipeptidase in Rattus norvegicus. The tissue distribution, substrate specificity, and heterozygous expression as a monmeric protein suggest homology of the variant peptidase to human PEP-C and mouse Pep-3 (Dip-1). We propose Peptidase-3 (Pep-3) as a name for this autosomal locus in the rat. The allele responsible for slower (less anodal) electrophoretic migration is designated Pep-3a and is characteristic of strain ACI/Pit. A faster (more anodal) electrophoretic mobility is the product of the Pep-3b allele in strain F344/Pit. Twenty-five additional inbred strains carry Pep-3a and 16 others carry Pep-3b. Wild rats trapped in Pittsburgh were polymorphic for this locus. Alleles at Pep-3 segregated independently of c (linkage group I), a (linkage group IV), RT2 and Es-1 (linkage group V), h (linkage group VI), and RTI (linkage group VIII).

  15. Uniaxial strain of cultured mouse and rat cardiomyocyte strands slows conduction more when its axis is parallel to impulse propagation than when it is perpendicular.

    PubMed

    Buccarello, A; Azzarito, M; Michoud, F; Lacour, S P; Kucera, J P

    2018-05-01

    Cardiac tissue deformation can modify tissue resistance, membrane capacitance and ion currents and hence cause arrhythmogenic slow conduction. Our aim was to investigate whether uniaxial strain causes different changes in conduction velocity (θ) when the principal strain axis is parallel vs perpendicular to impulse propagation. Cardiomyocyte strands were cultured on stretchable custom microelectrode arrays, and θ was determined during steady-state pacing. Uniaxial strain (5%) with principal axis parallel (orthodromic) or perpendicular (paradromic) to propagation was applied for 1 minute and controlled by imaging a grid of markers. The results were analysed in terms of cable theory. Both types of strain induced immediate changes of θ upon application and release. In material coordinates, orthodromic strain decreased θ significantly more (P < .001) than paradromic strain (2.2 ± 0.5% vs 1.0 ± 0.2% in n = 8 mouse cardiomyocyte cultures, 2.3 ± 0.4% vs 0.9 ± 0.5% in n = 4 rat cardiomyocyte cultures, respectively). The larger effect of orthodromic strain can be explained by the increase in axial myoplasmic resistance, which is not altered by paradromic strain. Thus, changes in tissue resistance substantially contributed to the changes of θ during strain, in addition to other influences (eg stretch-activated channels). Besides these immediate effects, the application of strain also consistently initiated a slow progressive decrease in θ and a slow recovery of θ upon release. Changes in cardiac conduction velocity caused by acute stretch do not only depend on the magnitude of strain but also on its orientation relative to impulse propagation. This dependence is due to different effects on tissue resistance. © 2017 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  16. Levofloxacin/imipenem prevents the emergence of high-level resistance among Pseudomonas aeruginosa strains already lacking susceptibility to one or both drugs.

    PubMed

    Lister, Philip D; Wolter, Daniel J; Wickman, Paul A; Reisbig, Mark D

    2006-05-01

    Previous studies have demonstrated that a combination of levofloxacin with imipenem could prevent the emergence of resistance during the treatment of susceptible Pseudomonas aeruginosa isolates in a two-compartment pharmacodynamic model of infection. In this study, the efficacy of levofloxacin/imipenem was further evaluated against a panel of characterized P. aeruginosa strains that lacked susceptibility to one or both drugs in the combination. Five P. aeruginosa strains with characterized resistance mechanisms were evaluated. Log-phase cultures were inoculated into the peripheral compartment of the in vitro pharmacokinetic model and treated using simulated doses of 750 mg levofloxacin (dosed every 24 h) and 250 mg or 1 g doses of imipenem (dosed every 12 h). Peak levels were adjusted for protein binding. Pharmacodynamic interactions were evaluated by measuring the changes in viable counts over 30 h. To evaluate the emergence of resistance, samples removed at 30 h were plated onto agar containing the drug at 4x MIC, and potential mutants were evaluated for changes in susceptibility. Against strains overexpressing MexAB-OprM, MexCD-OprJ and MexEF-OprN efflux pumps, levofloxacin/imipenem prevented the emergence of resistance and achieved a 5 log total kill of one strain and eradication of two strains. Levofloxacin/imipenem also eradicated an imipenem-resistant strain lacking OprD. Although the combination initially killed 6-7 logs of a dual-resistant strain lacking OprD and overexpressing MexXY, it could not prevent the emergence of resistance when the 250 mg dose of imipenem was simulated in the combination. However, when the 1 g dose of imipenem was simulated with the combination, resistance was suppressed. These data suggest that levofloxacin/imipenem may be an effective combination for preventing the emergence of resistance among P. aeruginosa, even with strains already lacking susceptibility to one or both drugs in the combination. Clinical evaluation of this combination is warranted.

  17. Identification of a new allele of Es-I segregating in an inbred strain of mice.

    PubMed

    Soares, E R

    1979-08-01

    A new allele of Es-1, designated Es-1e, has been identified in the mouse. This allele was discovered segregating among the progeny of a strain DBA/2J male and is apparently the result of a spontaneous mutation within this strain. Genetic analyses have shown that this mutation is heritable and, further, that both heterozygous and homozygous progeny are viable and fertile. To date, no discernible deleterious effects have been identified as associated with this mutation.

  18. A Tetrodotoxin-Producing Vibrio Strain, LM-1, from the Puffer Fish Fugu vermicularis radiatus

    PubMed Central

    Lee, Myoung-Ja; Jeong, Dong-Youn; Kim, Woo-Seong; Kim, Hyun-Dae; Kim, Cheorl-Ho; Park, Won-Whan; Park, Yong-Ha; Kim, Kyung-Sam; Kim, Hyung-Min; Kim, Dong-Soo

    2000-01-01

    Identification of tetrodotoxin (TTX) and its derivatives produced from a Vibrio strain in the intestine of the puffer fish Fugu vermicularis radiatus was performed by thin-layer chromatography, electrophoresis, high-performance liquid chromatography, and gas chromatography-mass spectrometry, together with a mouse bioassay for toxicity. It was demonstrated that the isolated bacterium produced TTX, 4-epi-TTX, and anhTTX during cultivation, suggesting that Vibrio strains are responsible for the toxification of the puffer fish. PMID:10742263

  19. Meta-analysis of variables affecting mouse protection efficacy of whole organism Brucella vaccines and vaccine candidates

    PubMed Central

    2013-01-01

    Background Vaccine protection investigation includes three processes: vaccination, pathogen challenge, and vaccine protection efficacy assessment. Many variables can affect the results of vaccine protection. Brucella, a genus of facultative intracellular bacteria, is the etiologic agent of brucellosis in humans and multiple animal species. Extensive research has been conducted in developing effective live attenuated Brucella vaccines. We hypothesized that some variables play a more important role than others in determining vaccine protective efficacy. Using Brucella vaccines and vaccine candidates as study models, this hypothesis was tested by meta-analysis of Brucella vaccine studies reported in the literature. Results Nineteen variables related to vaccine-induced protection of mice against infection with virulent brucellae were selected based on modeling investigation of the vaccine protection processes. The variable "vaccine protection efficacy" was set as a dependent variable while the other eighteen were set as independent variables. Discrete or continuous values were collected from papers for each variable of each data set. In total, 401 experimental groups were manually annotated from 74 peer-reviewed publications containing mouse protection data for live attenuated Brucella vaccines or vaccine candidates. Our ANOVA analysis indicated that nine variables contributed significantly (P-value < 0.05) to Brucella vaccine protection efficacy: vaccine strain, vaccination host (mouse) strain, vaccination dose, vaccination route, challenge pathogen strain, challenge route, challenge-killing interval, colony forming units (CFUs) in mouse spleen, and CFU reduction compared to control group. The other 10 variables (e.g., mouse age, vaccination-challenge interval, and challenge dose) were not found to be statistically significant (P-value > 0.05). The protection level of RB51 was sacrificed when the values of several variables (e.g., vaccination route, vaccine viability, and challenge pathogen strain) change. It is suggestive that it is difficult to protect against aerosol challenge. Somewhat counter-intuitively, our results indicate that intraperitoneal and subcutaneous vaccinations are much more effective to protect against aerosol Brucella challenge than intranasal vaccination. Conclusions Literature meta-analysis identified variables that significantly contribute to Brucella vaccine protection efficacy. The results obtained provide critical information for rational vaccine study design. Literature meta-analysis is generic and can be applied to analyze variables critical for vaccine protection against other infectious diseases. PMID:23735014

  20. In vitro and in vivo evidence for orphan nuclear receptor RORα function in bone metabolism

    PubMed Central

    Meyer, Thomas; Kneissel, Michaela; Mariani, Jean; Fournier, Brigitte

    2000-01-01

    Bone is a major target site for steroid hormone action. Steroid hormones like cortisol, vitamin D, and estradiol are responsible for principal events associated with bone formation and resorption. Over the past decade, new members of the nuclear hormone gene family have been identified that lack known ligands. These orphan receptors can be used to uncover signaling molecules that regulate yet unidentified physiological networks. In the present study the function of retinoic acid receptor-related orphan receptor (ROR) α in bone metabolism has been examined. We showed that RORα and RORγ, but not RORβ, are expressed in mesenchymal stem cells derived from bone marrow. Interestingly, for RORα we observed an increased messenger signal expression between control cells and cells undergoing osteogenic differentiation. Furthermore, the direct activation of mouse bone sialoprotein by RORα, typically 7-fold, has been shown. In contrast, transient overexpression of RORα overrides the activation of the osteocalcin promoter by 1α,25-dihydroxyvitamin D3. In addition, we have investigated bone mass parameters and bone geometry in the mouse mutant staggerer (sg/sg), a mouse strain that carries a deletion within the RORα gene. Homozygote mutants have thin long bones compared with the heterozygote animals and wild-type littermates. More interestingly, the bones of the sg/sg animals are osteopenic as indicated by the comparison of bone mineral contents of sg/sg animals to the heterozygote and wild-type animals. We conclude that these in vitro and in vivo results suggest a function for RORα in bone biology. RORα most likely acts by direct modulation of a bone matrix component. PMID:10900268

Top