Science.gov

Sample records for mouse tumor metabolism

  1. 13C Tracer Studies of Metabolism in Mouse Tumor Xenografts

    PubMed Central

    Lane, Andrew N.; Yan, Jun; Fan, Teresa W-M.

    2015-01-01

    Mice are widely used for human tumor xenograft studies of cancer development and drug efficacy and toxicity. Stable isotope tracing coupled with metabolomic analysis is an emerging approach for assaying metabolic network activity. In mouse models there are several routes of tracer introduction, which have particular advantages and disadvantages that depend on the model and the questions addressed. This protocol describes the bolus i.v. route via repeated tail vein injections of solutions of stable isotope enriched tracers including 13C6-glucose and 13C5,15N2-glutamine. Repeated injections give higher enrichments and over longer labeling periods than a single bolus. Multiple injections of glutamine are necessary to achieve adequate enrichment in engrafted tumors. PMID:26693168

  2. Trichloroethylene: Metabolism and Other Biological Determinants of Mouse Liver Tumors

    DTIC Science & Technology

    1994-09-01

    finally) the cysteine conjugate. The cysteine conjugate then may be metabolized via cysteine beta-lyase or N- acetyl transferase to yield DCVC or the...considered. 14. SUBJECT TERMS 15. NUMBER OF PAGES 1,2-dichlorovinyl cysteine Cell Proliferation Trichloroethylene Modeling 77 Chloral Hydrate...J.F. and P.J. Boogaard. 1991. Nephrotoxicity of halogenated alkenyl cysteine -S- conjugates. Life Sci. 49(24):1769-1776. Paget, G.E. 1963

  3. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse, human glioblastomas in the mouse brain in vivo

    PubMed Central

    Marin-Valencia, Isaac; Yang, Chendong; Mashimo, Tomoyuki; Cho, Steve; Baek, Hyeonman; Yang, Xiao-Li; Rajagopalan, Kartik N.; Maddie, Melissa; Vemireddy, Vamsidhara; Zhao, Zhenze; Cai, Ling; Good, Levi; Tu, Benjamin P.; Hatanpaa, Kimmo J.; Mickey, Bruce E.; Matés, José M.; Pascual, Juan M.; Maher, Elizabeth A.; Malloy, Craig R.; DeBerardinis, Ralph J.; Bachoo, Robert M.

    2012-01-01

    SUMMARY Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused 13C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo. PMID:22682223

  4. Optical-resolution photoacoustic microscopy of the metabolic rate of oxygen in a mouse renal tumor model

    NASA Astrophysics Data System (ADS)

    Yeh, Chenghung; Hu, Song; Liang, Jinyang; Li, Lei; Soetikno, Brian; Lu, Zhi Hong; Sohn, Rebecca E.; Maslov, Konstantin; Arbeit, Jeffrey M.; Wang, Lihong V.

    2015-03-01

    We propose using noninvasive longitudinal optical-resolution photoacoustic microscopy (L-ORPAM) to quantify blood flow flux, oxygen saturation (sO2), and thereby the metabolic rate of oxygen (MRO2), for a renal tumor model in the same mouse over weeks to months. Experiments showed that the sO2 difference between the artery and vein decreased greatly due to the arteriovenous shunting effect during tumor growth. Moreover, hypermetabolism was exhibited by an increase in MRO2.

  5. Glucose Metabolism via the Pentose Phosphate Pathway, Glycolysis and Krebs Cycle in an Orthotopic Mouse Model of Human Brain Tumors

    PubMed Central

    Marin-Valencia, Isaac; Cho, Steve K.; Rakheja, Dinesh; Hatanpaa, Kimmo J.; Kapur, Payal; Mashimo, Tomoyuki; Jindal, Ashish; Vemireddy, Vamsidhara; Good, Levi B.; Raisanen, Jack; Sun, Xiankai; Mickey, Bruce; Choi, Changho; Takahashi, Masaya; Togao, Osamu; Pascual, Juan M.; DeBerardinis, Ralph J.; Maher, Elizabeth A.; Malloy, Craig R.; Bachoo, Robert M.

    2013-01-01

    It has been hypothesized that increased flux through the pentose phosphate pathway (PPP) is required to support the metabolic demands of rapid malignant cell growth. Using an orthotopic mouse model of primary human glioblastoma (GBM) and a brain metastatic renal tumor of clear cell renal cell carcinoma (CCRCC) histology, we estimated the activity of the PPP relative to glycolysis by infusing [1,2-13C2]glucose. The [3-13C]lactate/[2,3-13C2]lactate ratio was similar for both the GBM and renal tumor and their respective surrounding brains (GBM: 0.197 ± 0.011 and 0.195 ± 0.033 (p=1); CCRCC: 0.126 and 0.119 ± 0.033, respectively). This suggests that the rate of glycolysis is significantly greater than PPP flux in these tumors, and that PPP flux into the lactate pool was similar in both tissues. Remarkably, 13C-13C coupling was observed in molecules derived from Krebs cycle intermediates in both tumors, denoting glucose oxidation. In the renal tumor, in contrast to GBM and surrounding brain, 13C multiplets of GABA differed from its precursor glutamate, suggesting that GABA did not derive from a common glutamate precursor pool. Additionally, the orthotopic renal tumor, the patient’s primary renal mass and brain metastasis were all strongly immunopositive for the 67-kDa isoform of glutamate decarboxylase, as were 84% of tumors on a CCRCC tissue microarray suggesting that GABA synthesis is cell-autonomous in at least a subset of renal tumors. Taken together, these data demonstrate that 13C-labeled glucose can be used in orthotopic mouse models to study tumor metabolism in vivo and to ascertain new metabolic targets for cancer diagnosis and therapy. PMID:22383401

  6. Glucose metabolism via the pentose phosphate pathway, glycolysis and Krebs cycle in an orthotopic mouse model of human brain tumors.

    PubMed

    Marin-Valencia, Isaac; Cho, Steve K; Rakheja, Dinesh; Hatanpaa, Kimmo J; Kapur, Payal; Mashimo, Tomoyuki; Jindal, Ashish; Vemireddy, Vamsidhara; Good, Levi B; Raisanen, Jack; Sun, Xiankai; Mickey, Bruce; Choi, Changho; Takahashi, Masaya; Togao, Osamu; Pascual, Juan M; Deberardinis, Ralph J; Maher, Elizabeth A; Malloy, Craig R; Bachoo, Robert M

    2012-10-01

    It has been hypothesized that increased flux through the pentose phosphate pathway (PPP) is required to support the metabolic demands of rapid malignant cell growth. Using orthotopic mouse models of human glioblastoma (GBM) and renal cell carcinoma metastatic to brain, we estimated the activity of the PPP relative to glycolysis by infusing [1,2-(13) C(2) ]glucose. The [3-(13) C]lactate/[2,3-(13) C(2) ]lactate ratio was similar for both the GBM and brain metastasis and their respective surrounding brains (GBM, 0.197 ± 0.011 and 0.195 ± 0.033, respectively (p = 1); metastasis: 0.126 and 0.119 ± 0.033, respectively). This suggests that the rate of glycolysis is significantly greater than the PPP flux in these tumors, and that the PPP flux into the lactate pool is similar in both tumors. Remarkably, (13) C-(13) C coupling was observed in molecules derived from Krebs cycle intermediates in both tumor types, denoting glucose oxidation. In the renal cell carcinoma, in contrast with GBM, (13) C multiplets of γ-aminobutyric acid (GABA) differed from its precursor glutamate, suggesting that GABA did not derive from a common glutamate precursor pool. In addition, the orthotopic renal tumor, the patient's primary renal mass and brain metastasis were all strongly immunopositive for the 67-kDa isoform of glutamate decarboxylase, as were 84% of tumors on a renal cell carcinoma tissue microarray of the same histology, suggesting that GABA synthesis is cell autonomous in at least a subset of renal cell carcinomas. Taken together, these data demonstrate that (13) C-labeled glucose can be used in orthotopic mouse models to study tumor metabolism in vivo and to ascertain new metabolic targets for cancer diagnosis and therapy. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Proteomics of Genetically Engineered Mouse Mammary Tumors Identifies Fatty Acid Metabolism Members as Potential Predictive Markers for Cisplatin Resistance*

    PubMed Central

    Warmoes, Marc; Jaspers, Janneke E.; Xu, Guotai; Sampadi, Bharath K.; Pham, Thang V.; Knol, Jaco C.; Piersma, Sander R.; Boven, Epie; Jonkers, Jos; Rottenberg, Sven; Jimenez, Connie R.

    2013-01-01

    In contrast to various signatures that predict the prognosis of breast cancer patients, markers that predict chemotherapy response are still elusive. To detect such predictive biomarkers, we investigated early changes in protein expression using two mouse models for distinct breast cancer subtypes who have a differential knock-out status for the breast cancer 1, early onset (Brca1) gene. The proteome of cisplatin-sensitive BRCA1-deficient mammary tumors was compared with that of cisplatin-resistant mammary tumors resembling pleomorphic invasive lobular carcinoma. The analyses were performed 24 h after administration of the maximum tolerable dose of cisplatin. At this time point, drug-sensitive BRCA1-deficient tumors showed DNA damage, but cells were largely viable. By applying paired statistics and quantitative filtering, we identified highly discriminatory markers for the sensitive and resistant model. Proteins up-regulated in the sensitive model are involved in centrosome organization, chromosome condensation, homology-directed DNA repair, and nucleotide metabolism. Major discriminatory markers that were up-regulated in the resistant model were predominantly involved in fatty acid metabolism, such as fatty-acid synthase. Specific inhibition of fatty-acid synthase sensitized resistant cells to cisplatin. Our data suggest that exploring the functional link between the DNA damage response and cancer metabolism shortly after the initial treatment may be a useful strategy to predict the efficacy of cisplatin. PMID:23397111

  8. Phytoestrogens regulate vitamin D metabolism in the mouse colon: relevance for colon tumor prevention and therapy.

    PubMed

    Kállay, Enikö; Adlercreutz, Herman; Farhan, Hesso; Lechner, Daniel; Bajna, Erika; Gerdenitsch, Waltraud; Campbell, Moray; Cross, Heide S

    2002-11-01

    Soybean products are highly represented in the traditional Asian diet. Major components of soy proteins are phytoestrogens, such as isoflavones. They may be responsible for the extremely low incidence of prostate and mammary tumors and possibly also of colon cancer in countries such as China and Japan. Serum 1,25-dihydroxyvitamin D3 level is inversely related to incidence of some cancers. Levels are determined by skin exposure to ultraviolet light or, to a minor extent, nutritional uptake and by subsequent conversion of the precursor vitamin D to the active hormone by the cytochrome P450 hydroxylases CYP27A1, CYP27B1 (responsible for synthesis) and CYP24 (responsible for catabolism) in liver and kidney. However, vitamin D synthesis is also found in colonocytes and is enhanced during incipient malignancy. This may indicate an autocrine/paracrine role for this differentiation-inducing hormone in defense against progression. We were able to demonstrate that either a single large oral dose of genistein or feeding soy protein for 4 mo elevated CYP27B1 and decreased CYP24 expression in the mouse colon. Our data therefore suggest that an inverse correlation of soy product consumption with colon tumor incidence may be consequent to enhanced colonic synthesis of the antimitotic hormone 1,25-dihydroxyvitamin D3.

  9. In vivo metabolic imaging of mouse tumor models in response to chemotherapy

    NASA Astrophysics Data System (ADS)

    Lukina, Maria M.; Dudenkova, Varvara; Shumilova, Anastasia V.; Snopova, Ludmila B.; Zagaynova, Elena V.; Shirmanova, Marina V.

    2017-02-01

    The aim of the study was to estimate energy metabolism in human cervical cancer cells HeLa Kyoto after chemotherapy in vitro and in vivo using two-photon fluorescence lifetime microscopy (FLIM). Cellular metabolism was examined by monitoring of the fluorescence intensities and lifetimes of metabolic cofactors NAD(P)H and FAD. Cancer metabolism was analyzed in dynamics after treatment with cisplatin. Two-photon fluorescence and second harmonic generation microscopies as well as standard histopathology with hematoxylin and eosin were used to characterize cancer tissue structure. We showed an increase of the optical redox ratio FAD/NAD(P)H in cancer cells in vitro and decrease of the relative contribution of free NAD(P)H (ɑ1) in vitro and in vivo, which presumably indicate a shift to more oxidative metabolism after chemotherapy. These data demonstrate the possibility to detect response of cancer cells to chemotherapy using optical metabolic imaging.

  10. Histopathological characteristics of glutamine synthetase-positive hepatic tumor lesions in a mouse model of spontaneous metabolic syndrome (TSOD mouse).

    PubMed

    Takahashi, Tetsuyuki; Nishida, Takeshi; Baba, Hayato; Hatta, Hideki; Imura, Johji; Sutoh, Mitsuko; Toyohara, Syunji; Hokao, Ryoji; Watanabe, Syunsuke; Ogawa, Hirohisa; Uehara, Hisanori; Tsuneyama, Koichi

    2016-08-01

    We previously reported that Tsumura-Suzuki obese diabetic (TSOD) mice, a polygenic model of spontaneous type 2 diabetes, is a valuable model of hepatic carcinogenesis via non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). One of the characteristics of tumors in these mice is the diffuse expression of glutamine synthetase (GS), which is a diagnostic marker for hepatocellular carcinoma (HCC). In this study, we performed detailed histopathological examinations and found that GS expression was diffusely positive in >70% of the hepatic tumors from 15-month-old male TSOD mice. Translocation of β-catenin into nuclei with enhanced membranous expression also occurred in GS-positive tumors. Small lesions (<1 mm) in GS-positive cases exhibited dysplastic nodules, with severe nuclear atypia, whereas large lesions (>3 mm) bore the characteristics of human HCC, exhibiting nuclear and structural atypia with invasive growth. By contrast, the majority of GS-negative tumors were hepatocellular adenomas with advanced fatty change and low nuclear grade. In GS-negative tumors, loss of liver fatty acid-binding protein expression was observed. These results suggest that the histological characteristics of GS-positive hepatic tumors in TSOD mice resemble human HCC; thus, this model may be a useful tool in translational research targeting the NAFLD/NASH-HCC sequence.

  11. Histopathological characteristics of glutamine synthetase-positive hepatic tumor lesions in a mouse model of spontaneous metabolic syndrome (TSOD mouse)

    PubMed Central

    Takahashi, Tetsuyuki; Nishida, Takeshi; Baba, Hayato; Hatta, Hideki; Imura, Johji; Sutoh, Mitsuko; Toyohara, Syunji; Hokao, Ryoji; Watanabe, Syunsuke; Ogawa, Hirohisa; Uehara, Hisanori; Tsuneyama, Koichi

    2016-01-01

    We previously reported that Tsumura-Suzuki obese diabetic (TSOD) mice, a polygenic model of spontaneous type 2 diabetes, is a valuable model of hepatic carcinogenesis via non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). One of the characteristics of tumors in these mice is the diffuse expression of glutamine synthetase (GS), which is a diagnostic marker for hepatocellular carcinoma (HCC). In this study, we performed detailed histopathological examinations and found that GS expression was diffusely positive in >70% of the hepatic tumors from 15-month-old male TSOD mice. Translocation of β-catenin into nuclei with enhanced membranous expression also occurred in GS-positive tumors. Small lesions (<1 mm) in GS-positive cases exhibited dysplastic nodules, with severe nuclear atypia, whereas large lesions (>3 mm) bore the characteristics of human HCC, exhibiting nuclear and structural atypia with invasive growth. By contrast, the majority of GS-negative tumors were hepatocellular adenomas with advanced fatty change and low nuclear grade. In GS-negative tumors, loss of liver fatty acid-binding protein expression was observed. These results suggest that the histological characteristics of GS-positive hepatic tumors in TSOD mice resemble human HCC; thus, this model may be a useful tool in translational research targeting the NAFLD/NASH-HCC sequence. PMID:27446562

  12. Tumor macroenvironment and metabolism.

    PubMed

    Al-Zoughbi, Wael; Al-Zhoughbi, Wael; Huang, Jianfeng; Paramasivan, Ganapathy S; Till, Holger; Pichler, Martin; Guertl-Lackner, Barbara; Hoefler, Gerald

    2014-04-01

    In this review we introduce the concept of the tumor macroenvironment and explore it in the context of metabolism. Tumor cells interact with the tumor microenvironment including immune cells. Blood and lymph vessels are the critical components that deliver nutrients to the tumor and also connect the tumor to the macroenvironment. Several factors are then released from the tumor itself but potentially also from the tumor microenvironment, influencing the metabolism of distant tissues and organs. Amino acids, and distinct lipid and lipoprotein species can be essential for further tumor growth. The role of glucose in tumor metabolism has been studied extensively. Cancer-associated cachexia is the most important tumor-associated systemic syndrome and not only affects the quality of life of patients with various malignancies but is estimated to be the cause of death in 15%-20% of all cancer patients. On the other hand, systemic metabolic diseases such as obesity and diabetes are known to influence tumor development. Furthermore, the clinical implications of the tumor macroenvironment are explored in the context of the patient's outcome with special consideration for pediatric tumors. Finally, ways to target the tumor macroenvironment that will provide new approaches for therapeutic concepts are described.

  13. Tumor cell metabolism

    PubMed Central

    Romero-Garcia, Susana; Lopez-Gonzalez, Jose Sullivan; B´ez-Viveros, José Luis; Aguilar-Cazares, Dolores

    2011-01-01

    Cancer is a genetic disease that is caused by mutations in oncogenes, tumor suppressor genes and stability genes. The fact that the metabolism of tumor cells is altered has been known for many years. However, the mechanisms and consequences of metabolic reprogramming have just begun to be understood. In this review, an integral view of tumor cell metabolism is presented, showing how metabolic pathways are reprogrammed to satisfy tumor cell proliferation and survival requirements. In tumor cells, glycolysis is strongly enhanced to fulfill the high ATP demands of these cells; glucose carbons are the main building blocks in fatty acid and nucleotide biosynthesis. Glutaminolysis is also increased to satisfy NADPH regeneration, whereas glutamine carbons replenish the Krebs cycle, which produces metabolites that are constantly used for macromolecular biosynthesis. A characteristic feature of the tumor microenvironment is acidosis, which results from the local increase in lactic acid production by tumor cells. This phenomenon is attributed to the carbons from glutamine and glucose, which are also used for lactic acid production. Lactic acidosis also directs the metabolic reprogramming of tumor cells and serves as an additional selective pressure. Finally, we also discuss the role of mitochondria in supporting tumor cell metabolism. PMID:22057267

  14. Tumor and reproductive traits are linked by RNA metabolism genes in the mouse ovary: a transcriptome-phenotype association analysis.

    PubMed

    Urzúa, Ulises; Owens, Garrison A; Zhang, Gen-Mu; Cherry, James M; Sharp, John J; Munroe, David J

    2010-12-22

    The link between reproductive life history and incidence of ovarian tumors is well known. Periods of reduced ovulations may confer protection against ovarian cancer. Using phenotypic data available for mouse, a possible association between the ovarian transcriptome, reproductive records and spontaneous ovarian tumor rates was investigated in four mouse inbred strains. NIA15k-DNA microarrays were employed to obtain expression profiles of BalbC, C57BL6, FVB and SWR adult ovaries. Linear regression analysis with multiple-test control (adjusted p ≤ 0.05) resulted in ovarian tumor frequency (OTF) and number of litters (NL) as the top-correlated among five tested phenotypes. Moreover, nearly one-hundred genes were coincident between these two traits and were decomposed in 76 OTF(-) NL(+) and 20 OTF(+) NL(-) genes, where the plus/minus signs indicate the direction of correlation. Enriched functional categories were RNA-binding/mRNA-processing and protein folding in the OTF(-) NL(+) and the OTF(+) NL(-) subsets, respectively. In contrast, no associations were detected between OTF and litter size (LS), the latter a measure of ovulation events in a single estrous cycle. Literature text-mining pointed to post-transcriptional control of ovarian processes including oocyte maturation, folliculogenesis and angiogenesis as possible causal relationships of observed tumor and reproductive phenotypes. We speculate that repetitive cycling instead of repetitive ovulations represent the actual link between ovarian tumorigenesis and reproductive records.

  15. Tumor and reproductive traits are linked by RNA metabolism genes in the mouse ovary: a transcriptome-phenotype association analysis

    PubMed Central

    2010-01-01

    Background The link between reproductive life history and incidence of ovarian tumors is well known. Periods of reduced ovulations may confer protection against ovarian cancer. Using phenotypic data available for mouse, a possible association between the ovarian transcriptome, reproductive records and spontaneous ovarian tumor rates was investigated in four mouse inbred strains. NIA15k-DNA microarrays were employed to obtain expression profiles of BalbC, C57BL6, FVB and SWR adult ovaries. Results Linear regression analysis with multiple-test control (adjusted p ≤ 0.05) resulted in ovarian tumor frequency (OTF) and number of litters (NL) as the top-correlated among five tested phenotypes. Moreover, nearly one-hundred genes were coincident between these two traits and were decomposed in 76 OTF(–) NL(+) and 20 OTF(+) NL(–) genes, where the plus/minus signs indicate the direction of correlation. Enriched functional categories were RNA-binding/mRNA-processing and protein folding in the OTF(–) NL(+) and the OTF(+) NL(–) subsets, respectively. In contrast, no associations were detected between OTF and litter size (LS), the latter a measure of ovulation events in a single estrous cycle. Conclusion Literature text-mining pointed to post-transcriptional control of ovarian processes including oocyte maturation, folliculogenesis and angiogenesis as possible causal relationships of observed tumor and reproductive phenotypes. We speculate that repetitive cycling instead of repetitive ovulations represent the actual link between ovarian tumorigenesis and reproductive records. PMID:21210965

  16. The Nurture of Tumors Can Drive Their Metabolic Phenotype.

    PubMed

    Schug, Zachary T; Vande Voorde, Johan; Gottlieb, Eyal

    2016-03-08

    Many commonly accepted principles in tumor metabolism rely on in vitro studies performed under conditions which cannot faithfully recapitulate tumor heterogeneity. Davidson et al. (2016), in this issue of Cell Metabolism, and Hensley et al. (2016) find that the in vivo environment dictates the metabolic phenotype of lung tumors in patients and mouse models. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Endostar enhances the antitumor effects of radiation by affecting energy metabolism and alleviating the tumor microenvironment in a Lewis lung carcinoma mouse model

    PubMed Central

    ZHENG, YONG-FA; GE, WEI; XU, HUI-LIN; CAO, DE-DONG; LIU, LIANG; MING, PING-PO; LI, CHANG-HU; XU, XI-MING; TAO, WEI-PING; TAO, ZE-ZHANG

    2015-01-01

    Lung cancer is a leading cause of morbidity and mortality. Previous studies have identified that an improvement in treatment efficacy was achieved using Endostar; however, the role of Endostar in lung cancer remains poorly understood. The present study investigated whether the enhanced antitumor effects of Endostar in combination with radiation involved changes in the metabolism and microenvironment in non-small cell lung cancer. A Lewis lung carcinoma mouse model was used, including the control, Endostar (ES), radiotherapy (RT) and Endostar plus radiotherapy (ES + RT) groups. The tumor inhibition rates and growth were described based on changes in tumor volume. In addition, ultraviolet enzymatic analysis was performed to determine the lactate level and reverse transcription-polymerase chain reaction was used to measure the mRNA expression of lactate dehydrogenase (LDH). A Meph-3 pH meter was used to detect the ranges of tumor interstitial tissue pH, and immunohistochemical analysis was adopted to examine hypoxia within the tumor microenvironment. The tumor inhibition rate of the ES + RT group was significantly higher compared with the other three groups (P<0.05). Following treatment, the lactate levels decreased in all three treatment groups compared with the control, particularly in the ES + RT group (P<0.05). Reduced LDH expression and hypoxic fraction in the tumor microenvironment were also observed in the ES + RT group (P<0.05). Furthermore, changes from acidic to alkaline pH in the tumor microenvironment were detected in the ES + RT group. The present study suggested that Endostar is involved in the regulation of metabolism and tumor microenvironment hypoxia, which may be responsible for the enhanced antitumor effect of Endostar in combination with radiotherapy. PMID:26722291

  18. Dietary manipulation of mouse metabolism.

    PubMed

    Feige, Jérôme N; Lagouge, Marie; Auwerx, Johan

    2008-10-01

    The maintenance of metabolic homeostasis relies on the balanced intake of nutrients from food. Consequently, diet composition strongly impacts whole-body physiology. Dietary formulations with strong nutrient imbalances can lead to metabolic disorders, with lipids and simple sugars playing a prominent role. This unit describes how diet formulation can be modified to generate mouse models of human metabolic pathologies, and it details methodological procedures linked to dietary manipulations, including caloric restriction and introduction of a test compound.

  19. Mouse models of adrenocortical tumors

    PubMed Central

    Basham, Kaitlin J.; Hung, Holly A.; Lerario, Antonio M.; Hammer, Gary D.

    2016-01-01

    The molecular basis of the organogenesis, homeostasis, and tumorigenesis of the adrenal cortex has been the subject of intense study for many decades. Specifically, characterization of tumor predisposition syndromes with adrenocortical manifestations and molecular profiling of sporadic adrenocortical tumors have led to the discovery of key molecular pathways that promote pathological adrenal growth. However, given the observational nature of such studies, several important questions regarding the molecular pathogenesis of adrenocortical tumors have remained. This review will summarize naturally occurring and genetically engineered mouse models that have provided novel tools to explore the molecular and cellular underpinnings of adrenocortical tumors. New paradigms of cancer initiation, maintenance, and progression that have emerged from this work will be discussed. PMID:26678830

  20. Mouse Models of Tumor Immunotherapy.

    PubMed

    Ngiow, Shin Foong; Loi, Sherene; Thomas, David; Smyth, Mark J

    2016-01-01

    Immunotherapy is now evolving into a major therapeutic option for cancer patients. Such clinical advances also promote massive interest in the search for novel immunotherapy targets, and to understand the mechanism of action of current drugs. It is projected that a series of novel immunotherapy agents will be developed and assessed for their therapeutic activity. In light of this, in vivo experimental mouse models that recapitulate human malignancies serve as valuable tools to validate the efficacy and safety profile of immunotherapy agents, before their transition into clinical trials. In this review, we will discuss the major classes of experimental mouse models of cancer commonly used for immunotherapy assessment and provide examples to guide the selection of appropriate models. We present some new data concerning the utility of a carcinogen-induced tumor model for comparing immunotherapies and combining immunotherapy with chemotherapy. We will also highlight some recent advances in experimental modeling of human malignancies in mice that are leading towards personalized therapy in patients.

  1. Mouse models of gastrointestinal tumors.

    PubMed

    Taketo, Makoto Mark

    2006-05-01

    The laboratory mouse (Mus musculus) has become one of the best model animal species in biomedical research today because of its abundant genetic/genomic information, and easy mutagenesis using transgenic and gene knockout technology. Genetically engineered mice have become essential tools in both mechanistic studies and drug development. In this article I will review recent topics in gastrointestinal cancer model mice, with emphasis on the results obtained in our laboratory. They include: (i) mouse models for familial adenomatous polyposis (Apc mutant mice; modifier genes of Apc intestinal polyposis; stabilizing beta-catenin mutant mice); (ii) mouse models for colon cancer (mouse models for hereditary non-polyposis colon cancer; additional mutations in Apc mutant mice; models with mutations in other genes; models for colon cancer associated with inflammatory bowel diseases); and (iii) mouse models for gastric cancer.

  2. Paternal B Vitamin Intake Is a Determinant of Growth, Hepatic Lipid Metabolism and Intestinal Tumor Volume in Female Apc1638N Mouse Offspring

    PubMed Central

    Sabet, Julia A.; Park, Lara K.; Iyer, Lakshmanan K.; Tai, Albert K.; Koh, Gar Yee; Pfalzer, Anna C.; Parnell, Laurence D.; Mason, Joel B.; Liu, Zhenhua; Byun, Alexander J.; Crott, Jimmy W.

    2016-01-01

    Background The importance of maternal nutrition to offspring health and risk of disease is well established. Emerging evidence suggests paternal diet may affect offspring health as well. Objective In the current study we sought to determine whether modulating pre-conception paternal B vitamin intake alters intestinal tumor formation in offspring. Additionally, we sought to identify potential mechanisms for the observed weight differential among offspring by profiling hepatic gene expression and lipid content. Methods Male Apc1638N mice (prone to intestinal tumor formation) were fed diets containing replete (control, CTRL), mildly deficient (DEF), or supplemental (SUPP) quantities of vitamins B2, B6, B12, and folate for 8 weeks before mating with control-fed wild type females. Wild type offspring were euthanized at weaning and hepatic gene expression profiled. Apc1638N offspring were fed a replete diet and euthanized at 28 weeks of age to assess tumor burden. Results No differences in intestinal tumor incidence or burden were found between male Apc1638N offspring of different paternal diet groups. Although in female Apc1638N offspring there were no differences in tumor incidence or multiplicity, a stepwise increase in tumor volume with increasing paternal B vitamin intake was observed. Interestingly, female offspring of SUPP and DEF fathers had a significantly lower body weight than those of CTRL fed fathers. Moreover, hepatic trigylcerides and cholesterol were elevated 3-fold in adult female offspring of SUPP fathers. Weanling offspring of the same fathers displayed altered expression of several key lipid-metabolism genes. Hundreds of differentially methylated regions were identified in the paternal sperm in response to DEF and SUPP diets. Aside from a few genes including Igf2, there was a striking lack of overlap between these genes differentially methylated in sperm and differentially expressed in offspring. Conclusions In this animal model, modulation of

  3. Paternal B Vitamin Intake Is a Determinant of Growth, Hepatic Lipid Metabolism and Intestinal Tumor Volume in Female Apc1638N Mouse Offspring.

    PubMed

    Sabet, Julia A; Park, Lara K; Iyer, Lakshmanan K; Tai, Albert K; Koh, Gar Yee; Pfalzer, Anna C; Parnell, Laurence D; Mason, Joel B; Liu, Zhenhua; Byun, Alexander J; Crott, Jimmy W

    2016-01-01

    The importance of maternal nutrition to offspring health and risk of disease is well established. Emerging evidence suggests paternal diet may affect offspring health as well. In the current study we sought to determine whether modulating pre-conception paternal B vitamin intake alters intestinal tumor formation in offspring. Additionally, we sought to identify potential mechanisms for the observed weight differential among offspring by profiling hepatic gene expression and lipid content. Male Apc1638N mice (prone to intestinal tumor formation) were fed diets containing replete (control, CTRL), mildly deficient (DEF), or supplemental (SUPP) quantities of vitamins B2, B6, B12, and folate for 8 weeks before mating with control-fed wild type females. Wild type offspring were euthanized at weaning and hepatic gene expression profiled. Apc1638N offspring were fed a replete diet and euthanized at 28 weeks of age to assess tumor burden. No differences in intestinal tumor incidence or burden were found between male Apc1638N offspring of different paternal diet groups. Although in female Apc1638N offspring there were no differences in tumor incidence or multiplicity, a stepwise increase in tumor volume with increasing paternal B vitamin intake was observed. Interestingly, female offspring of SUPP and DEF fathers had a significantly lower body weight than those of CTRL fed fathers. Moreover, hepatic trigylcerides and cholesterol were elevated 3-fold in adult female offspring of SUPP fathers. Weanling offspring of the same fathers displayed altered expression of several key lipid-metabolism genes. Hundreds of differentially methylated regions were identified in the paternal sperm in response to DEF and SUPP diets. Aside from a few genes including Igf2, there was a striking lack of overlap between these genes differentially methylated in sperm and differentially expressed in offspring. In this animal model, modulation of paternal B vitamin intake prior to mating alters

  4. mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome.

    PubMed

    Shackelford, David B; Vasquez, Debbie S; Corbeil, Jacqueline; Wu, Shulin; Leblanc, Mathias; Wu, Chin-Lee; Vera, David R; Shaw, Reuben J

    2009-07-07

    Peutz-Jeghers syndrome (PJS) is a familial cancer disorder due to inherited loss of function mutations in the LKB1/ STK11 serine/threonine kinase. PJS patients develop gastrointestinal hamartomas with 100% penetrance often in the second decade of life, and demonstrate an increased predisposition toward the development of a number of additional malignancies. Among mitogenic signaling pathways, the mammalian-target of rapamycin complex 1 (mTORC1) pathway is hyperactivated in tissues and tumors derived from LKB1-deficient mice. Consistent with a central role for mTORC1 in these tumors, rapamycin as a single agent results in a dramatic suppression of preexisting GI polyps in LKB1+/- mice. However, the key targets of mTORC1 in LKB1-deficient tumors remain unknown. We demonstrate here that these polyps, and LKB1- and AMPK-deficient mouse embryonic fibroblasts, show dramatic up-regulation of the HIF-1alpha transcription factor and its downstream transcriptional targets in an rapamycin-suppressible manner. The HIF-1alpha targets hexokinase II and Glut1 are up-regulated in these polyps, and using FDG-PET, we demonstrate that LKB1+/- mice show increased glucose utilization in focal regions of their GI tract corresponding to these gastrointestinal hamartomas. Importantly, we demonstrate that polyps from human Peutz-Jeghers patients similarly exhibit up-regulated mTORC1 signaling, HIF-1alpha, and GLUT1 levels. Furthermore, like HIF-1alpha and its target genes, the FDG-PET signal in the GI tract of these mice is abolished by rapamycin treatment. These findings suggest a number of therapeutic modalities for the treatment and detection of hamartomas in PJS patients, and potential for the screening and treatment of the 30% of sporadic human lung cancers bearing LKB1 mutations.

  5. Metabolic heterogeneity in human lung tumors

    PubMed Central

    Hensley, Christopher T.; Faubert, Brandon; Yuan, Qing; Lev-Cohain, Naama; Jin, Eunsook; Kim, Jiyeon; Jiang, Lei; Ko, Bookyung; Skelton, Rachael; Loudat, Laurin; Wodzak, Michelle; Klimko, Claire; McMillan, Elizabeth; Butt, Yasmeen; Ni, Min; Oliver, Dwight; Torrealba, Jose; Malloy, Craig R.; Kernstine, Kemp; Lenkinski, Robert E.; DeBerardinis, Ralph J.

    2015-01-01

    SUMMARY Non-small cell lung cancer (NSCLC) is heterogeneous in the genetic and environmental parameters that influence cell metabolism in culture. Here, we assessed the impact of these factors on human NSCLC metabolism in vivo using intra-operative 13C-glucose infusions in nine NSCLC patients to compare metabolism between tumors and benign lung. While enhanced glycolysis and glucose oxidation were common among these tumors, we observed evidence for oxidation of multiple nutrients in each of them, including lactate as a potential carbon source. Moreover, metabolically heterogeneous regions were identified within and between tumors, and surprisingly, our data suggested potential contributions of non-glucose nutrients in well-perfused tumor areas. Our findings not only demonstrate the heterogeneity in tumor metabolism in vivo but also highlight the strong influence of the microenvironment on this feature. PMID:26853473

  6. Tumor cell metabolism: an integral view.

    PubMed

    Romero-Garcia, Susana; Lopez-Gonzalez, Jose Sullivan; Báez-Viveros, José Luis; Aguilar-Cazares, Dolores; Prado-Garcia, Heriberto

    2011-12-01

    Cancer is a genetic disease that is caused by mutations in oncogenes, tumor suppressor genes and stability genes. The fact that the metabolism of tumor cells is altered has been known for many years. However, the mechanisms and consequences of metabolic reprogramming have just begun to be understood. In this review, an integral view of tumor cell metabolism is presented, showing how metabolic pathways are reprogrammed to satisfy tumor cell proliferation and survival requirements. In tumor cells, glycolysis is strongly enhanced to fulfill the high ATP demands of these cells; glucose carbons are the main building blocks in fatty acid and nucleotide biosynthesis. Glutaminolysis is also increased to satisfy NADPH regeneration, whereas glutamine carbons replenish the Krebs cycle, which produces metabolites that are constantly used for macromolecular biosynthesis. A characteristic feature of the tumor microenvironment is acidosis, which results from the local increase in lactic acid production by tumor cells. This phenomenon is attributed to the carbons from glutamine and glucose, which are also used for lactic acid production. Lactic acidosis also directs the metabolic reprogramming of tumor cells and serves as an additional selective pressure. Finally, we also discuss the role of mitochondria in supporting tumor cell metabolism.

  7. Longitudinal optical imaging of tumor metabolism and hemodynamics

    NASA Astrophysics Data System (ADS)

    Skala, Melissa C.; Fontanella, Andrew; Lan, Lan; Izatt, Joseph A.; Dewhirst, Mark W.

    2010-01-01

    An important feature of tumor hypoxia is its temporal instability, or ``cycling hypoxia.'' The primary consequence of cycling hypoxia is increased tumor aggressiveness and treatment resistance beyond that of chronic hypoxia. Longitudinal imaging of tumor metabolic demand, hemoglobin oxygen saturation, and blood flow would provide valuable insight into the mechanisms and distribution of cycling hypoxia in tumors. Fluorescence imaging of metabolic demand via the optical redox ratio (fluorescence intensity of FAD/NADH), absorption microscopy of hemoglobin oxygen saturation, and Doppler optical coherence tomography of vessel morphology and blood flow are combined to noninvasively monitor changes in oxygen supply and demand in the mouse dorsal skin fold window chamber tumor model (human squamous cell carcinoma) every 6 h for 36 h. Biomarkers for metabolic demand, blood oxygenation, and blood flow are all found to significantly change with time (p<0.05). These variations in oxygen supply and demand are superimposed on a significant (p<0.05) decline in metabolic demand with distance from the nearest vessel in tumors (this gradient was not observed in normal tissues). Significant (p<0.05), but weak (r<=0.5) correlations are found between the hemoglobin oxygen saturation, blood flow, and redox ratio. These results indicate that cycling hypoxia depends on both oxygen supply and demand, and that noninvasive optical imaging could be a valuable tool to study therapeutic strategies to mitigate cycling hypoxia, thus increasing the effectiveness of radiation and chemotherapy.

  8. Ceramide metabolism in mouse tissue.

    PubMed

    Schiffmann, Susanne; Birod, Kerstin; Männich, Julia; Eberle, Max; Wegner, Marthe-Susanna; Wanger, Ruth; Hartmann, Daniela; Ferreiros, Nerea; Geisslinger, Gerd; Grösch, Sabine

    2013-08-01

    Ceramides with different N-acyl chains can act as second messengers in various signaling pathways. They are involved in cell processes such as apoptosis, differentiation and inflammation. Ceramide synthases (CerS) are key enzymes in the biosynthesis of ceramides and dihydroceramides. Six isoenzymes (CerS1-6) catalyze the N-acylation of the sphingoid bases, albeit with strictly acyl-Coenzyme A (CoA) chain length specificity. We analyzed the mRNA expression, the protein expression, the specific activity of the CerS, and acyl-CoA, dihydroceramide and ceramide levels in different tissues by LC-MS/MS. Our data indicate that each tissue express a distinct composition of CerS, whereby the CerS mRNA expression levels do not correlate with the respective protein expression levels in the tissues. Furthermore, we found a highly significant negative correlation between the protein expression level of CerS6 and the C16:0-acyl-CoA amounts as well as between the protein expression of CerS2 and C24:0-acyl-CoA amounts. These data indicate that in mouse tissues low substrate availability is compensated by higher CerS protein expression level and vice versa. Apart from the expression level and the specific activity of the CerS, other enzymes of the sphingolipid pathway also influence the composition of ceramides with distinct chain lengths in each cell. Acyl-CoA availability seems to be less important for ceramide composition and might be compensated for by CerS expression/activity.

  9. [Role of the p53 tumor suppressor in metabolism].

    PubMed

    Lacroix, Matthieu; Linares, Laetitia Karine; Le Cam, Laurent

    2013-12-01

    The p53 tumor suppressor is an essential downstream effector of various cellular stress response pathways that is functionally inactivated in most, if not all, tumors. Since its discovery more than 30 years ago, its role in the control of cell proliferation, senescence and cell survival has been widely described. However, growing evidences from several laboratories indicate that p53 has important transcriptional and non-transcriptional functions in the control of metabolism, including the regulation of glycolysis, glutaminolysis or mitochondrial respiration. Originally identified using in vitro cellular models, this previously underestimated role of p53 has been confirmed in vivo in various genetically engineered mouse models. These recent data suggest that p53 functions in various metabolic pathways significantly contribute to its role in adult tissue homeostasis, aging as well as tumor suppression. © 2013 médecine/sciences – Inserm.

  10. Systemic elevation of PTEN induces a tumor suppressive metabolic state

    PubMed Central

    Garcia-Cao, Isabel; Song, Min Sup; Hobbs, Robin M.; Laurent, Gaelle; Giorgi, Carlotta; de Boer, Vincent C.J.; Anastasiou, Dimitrios; Ito, Keisuke; Sasaki, Atsuo T.; Rameh, Lucia; Carracedo, Arkaitz; Vander Heiden, Matthew G.; Cantley, Lewis C.; Pinton, Paolo; Haigis, Marcia C.; Pandolfi, Pier Paolo

    2012-01-01

    SUMMARY Decremental loss of PTEN results in cancer susceptibility and tumor progression. In turn this raises the possibility that PTEN elevation might be an attractive option for cancer prevention and therapy. We have generated several transgenic mouse lines with variably elevated PTEN expression levels, taking advantage of BAC (Bacterial Artificial Chromosome)-mediated transgenesis. Super-PTEN mutants are viable and show reduced body size due to decreased cell number, with no effect on cell size. Unexpectedly, PTEN elevation at the organism level results in healthy metabolism characterized by increased energy expenditure and reduced body fat accumulation. Cells derived from these mice show reduced glucose and glutamine uptake, increased mitochondrial oxidative phosphorylation, and are resistant to oncogenic transformation. Mechanistically we find that PTEN elevation orchestrates this metabolic switch by regulating PI3K-dependent and independent pathways, and negatively impacts two of the most pronounced metabolic features of tumor cells: glutaminolysis and the Warburg effect. PMID:22401813

  11. Heme synthesis in normal mouse liver and mouse liver tumors

    SciTech Connect

    Stout, D.L.; Becker, F.F. )

    1990-04-15

    Hepatic cancers from mice and rats demonstrate decreased levels of delta-aminolevulinic acid synthase, the rate-limiting enzyme in the heme synthetic pathway, and increased heme oxygenase, the heme-catabolizing enzyme. These findings suggest that diminution of P-450, b5, and catalase in these lesions may result from a heme supply that is limited by decreased heme synthesis and increased heme catabolism. Heme synthesis was measured in mouse liver tumors (MLT) and adjacent tumor-free lobes (BKG) by administering the radiolabeled heme precursors {sup 55}FeCl3 and (2-{sup 14}C)glycine and subsequently extracting the heme for determination of specific activity. Despite reduced delta-aminolevulinic acid synthase activity in MLT, both tissues incorporated (2-14C)glycine into heme at similar rates. At early time points, heme extracted from MLT contained less 55Fe than that from BKG. This was attributed to the findings that MLT took up 55Fe at a slower rate than BKG and had larger iron stores than BKG. The amount of heme per milligram of protein was also similar in both tissues. These findings militate against the hypothesis that diminished hemoprotein levels in MLT result from limited availability of heme. It is probable, therefore, that decreased hemoprotein levels in hepatic tumors are linked to a general program of dedifferentiation associated with the cancer phenotype. Diminution of hemoprotein in MLT may result in a relatively increased intracellular heme pool. delta-Aminolevulinic acid synthase and heme oxygenase are, respectively, negatively and positively regulated by heme. Thus, their alteration in MLT may be due to the regulatory influences of the heme pool.

  12. Ovarian tumor-initiating cells display a flexible metabolism

    PubMed Central

    Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.; Hulver, Matthew W.; Schmelz, Eva M.

    2014-01-01

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-LFFLv (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. PMID:25172556

  13. Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina*

    PubMed Central

    Du, Jianhai; Rountree, Austin; Cleghorn, Whitney M.; Contreras, Laura; Lindsay, Ken J.; Sadilek, Martin; Gu, Haiwei; Djukovic, Danijel; Raftery, Dan; Satrústegui, Jorgina; Kanow, Mark; Chan, Lawrence; Tsang, Stephen H.; Sweet, Ian R.; Hurley, James B.

    2016-01-01

    Production of energy in a cell must keep pace with demand. Photoreceptors use ATP to maintain ion gradients in darkness, whereas in light they use it to support phototransduction. Matching production with consumption can be accomplished by coupling production directly to consumption. Alternatively, production can be set by a signal that anticipates demand. In this report we investigate the hypothesis that signaling through phototransduction controls production of energy in mouse retinas. We found that respiration in mouse retinas is not coupled tightly to ATP consumption. By analyzing metabolic flux in mouse retinas, we also found that phototransduction slows metabolic flux through glycolysis and through intermediates of the citric acid cycle. We also evaluated the relative contributions of regulation of the activities of α-ketoglutarate dehydrogenase and the aspartate-glutamate carrier 1. In addition, a comprehensive analysis of the retinal metabolome showed that phototransduction also influences steady-state concentrations of 5′-GMP, ribose-5-phosphate, ketone bodies, and purines. PMID:26677218

  14. Oncogenic regulation of tumor metabolic reprogramming

    PubMed Central

    Tarrado-Castellarnau, Míriam; de Atauri, Pedro; Cascante, Marta

    2016-01-01

    Development of malignancy is accompanied by a complete metabolic reprogramming closely related to the acquisition of most of cancer hallmarks. In fact, key oncogenic pathways converge to adapt the metabolism of carbohydrates, proteins, lipids and nucleic acids to the dynamic tumor microenvironment, conferring a selective advantage to cancer cells. Therefore, metabolic properties of tumor cells are significantly different from those of non-transformed cells. In addition, tumor metabolic reprogramming is linked to drug resistance in cancer treatment. Accordingly, metabolic adaptations are specific vulnerabilities that can be used in different therapeutic approaches for cancer therapy. In this review, we discuss the dysregulation of the main metabolic pathways that enable cell transformation and its association with oncogenic signaling pathways, focusing on the effects of c-MYC, hypoxia inducible factor 1 (HIF1), phosphoinositide-3-kinase (PI3K), and the mechanistic target of rapamycin (mTOR) on cancer cell metabolism. Elucidating these connections is of crucial importance to identify new targets and develop selective cancer treatments that improve response to therapy and overcome the emerging resistance to chemotherapeutics. PMID:28040803

  15. Dynamic metabolic transformation in tumor invasion and metastasis in mice with LM-8 osteosarcoma cell transplantation.

    PubMed

    Hua, Yingqi; Qiu, Yunping; Zhao, Aihua; Wang, Xiaoyan; Chen, Tianlu; Zhang, Zhiyu; Chi, Yi; Li, Quan; Sun, Wei; Li, Guodong; Cai, Zhengdong; Zhou, Zhanxiang; Jia, Wei

    2011-08-05

    While extensive evidence indicates that tumor cells shift their global metabolic programs, the molecular details of the metabolic transformation in tumor invasion, progression, and metastasis remain largely unknown. Characterization of the time-dependent metabolic shift during the tumor invasion, development, and metastasis will describe an important aspect of tumor phenotypes and potentially allow us to design therapies that inhibit tumor cell movement. In this study, a metabonomic study was performed to characterize the global metabolic changes during the process of tumor invasion and metastasis to lung in a mouse model with subcutaneous transplantation of murine osteosarcoma cell line (LM8). The serum metabolic profiling revealed that many key metabolites in glycolysis and tricarboxylic acid (TCA) cycle, as well as most of the amino acids were elevated at rapidly growing stage of tumor, presumably resulting from a high energy demand and turnover of anabolic metabolism during the tumor cell proliferation. Serum levels of succinic acid and proline significantly increased (with fold change FC = 10.75 and 4.43, relative to controls) among all the metabolites in the third week. The serum metabolic profile of lung metastasis at week 4 was different from that at week 3, in that most of previously increased serum metabolites were found decreased, except for cholesterol and several free fatty acids, suggesting lowered carbohydrate and amino acids metabolism, but an elevated lipid metabolism associated with tumor metastasis.

  16. DNA Tumor Viruses and Cell Metabolism.

    PubMed

    Mushtaq, Muhammad; Darekar, Suhas; Kashuba, Elena

    2016-01-01

    Viruses play an important role in cancerogenesis. It is estimated that approximately 20% of all cancers are linked to infectious agents. The viral genes modulate the physiological machinery of infected cells that lead to cell transformation and development of cancer. One of the important adoptive responses by the cancer cells is their metabolic change to cope up with continuous requirement of cell survival and proliferation. In this review we will focus on how DNA viruses alter the glucose metabolism of transformed cells. Tumor DNA viruses enhance "aerobic" glycolysis upon virus-induced cell transformation, supporting rapid cell proliferation and showing the Warburg effect. Moreover, viral proteins enhance glucose uptake and controls tumor microenvironment, promoting metastasizing of the tumor cells.

  17. Ovarian tumor-initiating cells display a flexible metabolism

    SciTech Connect

    Anderson, Angela S.; Roberts, Paul C.; Frisard, Madlyn I.; Hulver, Matthew W.; Schmelz, Eva M.

    2014-10-15

    An altered metabolism during ovarian cancer progression allows for increased macromolecular synthesis and unrestrained growth. However, the metabolic phenotype of cancer stem or tumor-initiating cells, small tumor cell populations that are able to recapitulate the original tumor, has not been well characterized. In the present study, we compared the metabolic phenotype of the stem cell enriched cell variant, MOSE-L{sub FFLv} (TIC), derived from mouse ovarian surface epithelial (MOSE) cells, to their parental (MOSE-L) and benign precursor (MOSE-E) cells. TICs exhibit a decrease in glucose and fatty acid oxidation with a concomitant increase in lactate secretion. In contrast to MOSE-L cells, TICs can increase their rate of glycolysis to overcome the inhibition of ATP synthase by oligomycin and can increase their oxygen consumption rate to maintain proton motive force when uncoupled, similar to the benign MOSE-E cells. TICs have an increased survival rate under limiting conditions as well as an increased survival rate when treated with AICAR, but exhibit a higher sensitivity to metformin than MOSE-E and MOSE-L cells. Together, our data show that TICs have a distinct metabolic profile that may render them flexible to adapt to the specific conditions of their microenvironment. By better understanding their metabolic phenotype and external environmental conditions that support their survival, treatment interventions can be designed to extend current therapy regimens to eradicate TICs. - Highlights: • Ovarian cancer TICs exhibit a decreased glucose and fatty acid oxidation. • TICs are more glycolytic and have highly active mitochondria. • TICs are more resistant to AICAR but not metformin. • A flexible metabolism allows TICs to adapt to their microenvironment. • This flexibility requires development of specific drugs targeting TIC-specific changes to prevent recurrent TIC outgrowth.

  18. Metabolism of steroids by human brain tumors.

    PubMed

    Weidenfeld, J; Schiller, H

    1984-01-01

    Hormonal steroids or their precursors can be metabolized in the CNS to products with altered hormonal activity. The importance of the intracerebral transformation of steroids has been demonstrated, particularly with regard to neuroendocrine regulation and sexual behavior. These studies were carried out on normal brain tissues, but the ability of neoplastic tissues of CNS origin to metabolize steroids is unknown. We investigated the in vitro metabolism of tritiated pregnenolone, testosterone, and estradiol-17 beta by homogenates of four brain tumors defined as astrocytomas. In three tumors of cortical origin, removed from adult patients, the only enzymic activity found was the conversion of estradiol to estrone. In one tumor of cerebellar origin removed from an 11-year-old boy, the following conversions were found: pregnenolone to progesterone, testosterone to either androstenedione or estradiol, and estradiol to estrone. These results demonstrate that human astrocytomas can transform steroids to compounds with modified hormonal activity. These compounds formed by the tumorous tissue can affect brain function, which may be of clinical significance. Furthermore, these results may add important parameters for biochemical characterization of neoplastic brain tissues.

  19. Cancer metabolism, stemness and tumor recurrence

    PubMed Central

    Curry, Joseph M.; Tuluc, Madalina; Whitaker-Menezes, Diana; Ames, Julie A.; Anantharaman, Archana; Butera, Aileen; Leiby, Benjamin; Cognetti, David M.; Sotgia, Federica; Lisanti, Michael P.; Martinez-Outschoorn, Ubaldo E.

    2013-01-01

    Here, we interrogated head and neck cancer (HNSCC) specimens (n = 12) to examine if different metabolic compartments (oxidative vs. glycolytic) co-exist in human tumors. A large panel of well-established biomarkers was employed to determine the metabolic state of proliferative cancer cells. Interestingly, cell proliferation in cancer cells, as marked by Ki-67 immunostaining, was strictly correlated with oxidative mitochondrial metabolism (OXPHOS) and the uptake of mitochondrial fuels, as detected via MCT1 expression (p < 0.001). More specifically, three metabolic tumor compartments were delineated: (1) proliferative and mitochondrial-rich cancer cells (Ki-67+/TOMM20+/COX+/MCT1+); (2) non-proliferative and mitochondrial-poor cancer cells (Ki-67−/TOMM20−/COX−/MCT1−); and (3) non-proliferative and mitochondrial-poor stromal cells (Ki-67−/TOMM20−/COX−/MCT1−). In addition, high oxidative stress (MCT4+) was very specific for cancer tissues. Thus, we next evaluated the prognostic value of MCT4 in a second independent patient cohort (n = 40). Most importantly, oxidative stress (MCT4+) in non-proliferating epithelial cancer cells predicted poor clinical outcome (tumor recurrence; p < 0.0001; log-rank test), and was functionally associated with FDG-PET avidity (p < 0.04). Similarly, oxidative stress (MCT4+) in tumor stromal cells was specifically associated with higher tumor stage (p < 0.03), and was a highly specific marker for cancer-associated fibroblasts (p < 0.001). We propose that oxidative stress is a key hallmark of tumor tissues that drives high-energy metabolism in adjacent proliferating mitochondrial-rich cancer cells, via the paracrine transfer of mitochondrial fuels (such as L-lactate and ketone bodies). New antioxidants and MCT4 inhibitors should be developed to metabolically target “three-compartment tumor metabolism” in head and neck cancers. It is remarkable that two “non-proliferating” populations of cells (Ki-67−/MCT4+) within the

  20. Identification of Tumor Rejection Antigens for Breast Cancer Using a Mouse Tumor Rejection Model

    DTIC Science & Technology

    2007-05-01

    of the mouse antigens. This comprehensive evaluation will only be performed to the antigens that show tumor protection effect in mice ; 3) test the...from the same mouse . The expression profile of these antigens were examined using real time RT-PCR. RNA was extracted from 3 normal...than tumor bearing mice is more likely to yield therapeutically relevant targets. We recognize that tumor implant model is not optimal in testing

  1. Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors

    PubMed Central

    Kiebish, Michael A; Seyfried, Thomas N

    2005-01-01

    Background Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (OL) and the Arg tRNA. Methods In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. Results Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. Conclusion None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors. PMID:16105171

  2. Chemically-induced Mouse Lung Tumors: Applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan

  3. Chemically-induced mouse lung tumors: applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to discuss issues related to the use of mouse lung tumor data in human health assessments. Naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all these three environmental chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that data showing mouse lung tumors with chemical exposures can be relevant for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism

  4. Chemically-induced Mouse Lung Tumors: Applications to ...

    EPA Pesticide Factsheets

    A state-of-the-science workshop on chemically-induced mouse lung tumors was conducted by U.S. Environmental Protection Agency to better understand the mouse lung tumor data’s role in human health assessments. Three environmental chemicals - naphthalene, styrene, and ethylbenzene were chosen for the analysis due to the commonality of mouse lung tumors in all three chemicals. The goals of the workshop were to: identify the evidence, from multiple scientific disciplines, regarding formation of chemically-induced lung tumors in mice; discuss analysis and interpretation of the evidence; discuss how such evidence informs human health assessments; and identify commonalities, linkages, or differences between the evidence from various disciplines and across the chemicals. Evidence informing the association between occupational exposure to styrene, ethylbenzene, or naphthalene and lung cancer; comparative biology of mouse lung tumors, associated pathologic effects, issues related to tissue and species concordance; mode of action analysis and biological mechanisms including pharmacokinetics and pharmacodynamics; and evidence from cellular, genetic and molecular toxicity was discussed. In summary, although consensus was not sought, the panelists agreed that available mouse lung tumor data should be considered for human health risk evaluation on an individual chemical basis. Key data gaps were identified that would assist in further understanding the mechanism and relevan

  5. Targeting the Metabolic Microenvironment of Tumors

    PubMed Central

    Bailey, Kate M.; Wojtkowiak, Jonathan W.; Hashim, Arig Ibrahim; Gillies, Robert J.

    2013-01-01

    The observation of aerobic glycolysis by tumor cells in 1924 by Otto Warburg, and subsequent innovation of imaging glucose uptake by tumors in patients with PET-CT has incited a renewed interest in the altered metabolism of tumors. As tumors grow in situ, a fraction of it is further away from their blood supply, leading to decreased oxygen concentrations (hypoxia), which induces the hypoxia response pathways of HIF1α, mTOR and UPR. In normal tissues, these responses mitigate hypoxic stress and induce neo-angiogenesis. In tumors, these pathways are dysregulated and lead to decreased perfusion and exacerbation of hypoxia as a result of immature and chaotic blood vessels. Hypoxia selects for a glycolytic phenotype and resultant acidification of the tumor microenvironment, facilitated by upregulation of proton transporters. Acidification selects for enhanced metastatic potential and reduced drug efficacy through ion trapping. In this review, we provide a comprehensive summary of pre-clinical and clinical drugs under development for targeting aerobic glycolysis, acidosis, hypoxia and hypoxia-response pathways. Hypoxia and acidosis can be manipulated, providing further therapeutic benefit for cancers that feature these common phenotypes. PMID:22959024

  6. Magnetohydrodynamic thermochemotherapy and MRI of mouse tumors

    NASA Astrophysics Data System (ADS)

    Brusentsov, Nikolay A.; Brusentsova, Tatiana N.; Filinova, Elena Yu.; Jurchenko, Nikolay Y.; Kupriyanov, Dmitry A.; Pirogov, Yuri A.; Dubina, Andry I.; Shumskikh, Maxim N.; Shumakov, Leonid I.; Anashkina, Ekaterina N.; Shevelev, Alexandr A.; Uchevatkin, Andry A.

    2007-04-01

    A dextran-ferrite magnetic fluid was successfully tested as magnetic resonance imaging (MRI) contrast agent. The same magnetic fluid was then combined with Melphalan, a chemotherapeutic drug, and used for magnetohydrodynamic thermochemotherapy of different tumors. The placement of the tumors in an AC magnetic field led to hyperthermia at 46 °C for 30 min. In combination with tumor slime aspiration, a 30% regression of ˜130 mm 3 non-metastatic P388 tumors in BDF 1 mice was reached, together with a life span increase of 290%. The same procedure associated with cyclophosphamide treatment of ˜500 mm 3 metastases tumor increased the animal's life span by 180%.

  7. Arachidonic acid metabolism in cultured mouse keratinocytes

    SciTech Connect

    Kondoh, H.; Sato, Y.; Kanoh, H.

    1985-07-01

    The authors attempted to characterize the general features of arachidonate metabolism in cultured mouse keratinocytes. The cells labeled with (/sup 3/H)arachidonate were stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA), ionophore A23187, and fetal bovine serum (FBS). Common to the three substances, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylcholine almost equally served as sources of arachidonate liberated by the action of phospholipase A2. The stimulation of phospholipase A2 action was observed in the order of A23187 greater than FBS greater than TPA. When stimulated by TPA or A23187, the radioactivity released into the extracellular medium was mostly found in prostaglandin (PG) E2. Formation of other PGs and hydroxyeicosatetraenoate (HETE) was extremely limited. In the case of stimulation by FBS, however, the released radioactivity was mainly associated with non-converted arachidonate. FBS also inhibited the TPA- and A23187-induced conversion of arachidonate to PGE2. Phospholipid degradation induced by the three stimulators was similarly dependent on extracellular Ca/sup 2 +/. The stimulation by FBS and A23187 was suppressed by calmodulin antagonists, though the effect of A23187 was much more sensitive to the antagonists when compared to that of FBS. The authors observed more than additive effects of the three stimulators when tested together.

  8. Metabolic reprogramming and two-compartment tumor metabolism

    PubMed Central

    Chiavarina, Barbara; Martinez-Outschoorn, Ubaldo E.; Whitaker-Menezes, Diana; Howell, Anthony; Tanowitz, Herbert B.; Pestell, Richard G.; Sotgia, Federica; Lisanti, Michael P.

    2012-01-01

    Hypoxia-inducible factor (HIF) 1α and 2α are transcription factors responsible for the cellular response to hypoxia. The functional roles of HIF1α and HIF2α in cancer are distinct and vary among different tumor types. The aim of this study was to evaluate the compartment-specific role(s) of HIF1α and HIF2α in breast cancer. To this end, immortalized human fibroblasts and MDA-MB-231 breast cancer cells carrying constitutively active HIF1α or HIF2α mutants were analyzed with respect to their metabolic function(s) and ability to promote tumor growth in an in vivo setting. We observed that activation of HIF1α, but not HIF2α, in stromal cells promotes a shift toward aerobic glycolysis, with increased L-lactate production and a loss of mitochondrial activity. In a xenograft model, HIF1α-activated fibroblasts promoted the tumor growth of co-injected MDA-MB-231 cells without an increase in angiogenesis. Conversely, HIF2α-activated stromal cells did not favor tumor growth and behaved as the empty vector controls. Similarly, activation of HIF1α, but not HIF2α, in MDA-MB-231 cells promoted a shift toward aerobic glycolysis, with increased glucose uptake and L-lactate production. In contrast, HIF2α activation in cancer cells increased the expression of EGFR, Ras and cyclin D1, which are known markers of tumor growth and cell cycle progression. In a xenograft model, HIF1α activation in MDA-MB-231 cells acted as a tumor suppressor, resulting in an almost 2-fold reduction in tumor mass and volume. Interestingly, HIF2α activation in MDA-MB-231 cells induced a significant ~2-fold-increase in tumor mass and volume. Analysis of mitochondrial activity in these tumor xenografts using COX (cytochrome C oxidase) staining demonstrated elevated mitochondrial oxidative metabolism (OXPHOS) in HIF2α-tumors. We conclude that the role(s) of HIF1α and HIF2α in tumorigenesis are compartment-specific. HIF1α acts as a tumor promoter in stromal cells but as a tumor suppressor in

  9. Mouse Tumor Biology Database (MTB): status update and future directions.

    PubMed

    Begley, Dale A; Krupke, Debra M; Vincent, Matthew J; Sundberg, John P; Bult, Carol J; Eppig, Janan T

    2007-01-01

    The Mouse Tumor Biology (MTB) database provides access to data about endogenously arising tumors (both spontaneous and induced) in genetically defined mice (inbred, hybrid, mutant and genetically engineered mice). Data include information on the frequency and latency of mouse tumors, pathology reports and images, genomic changes occurring in the tumors, genetic (strain) background and literature or contributor citations. Data are curated from the primary literature or submitted directly from researchers. MTB is accessed via the Mouse Genome Informatics web site (http://www.informatics.jax.org). Integrated searches of MTB are enabled through use of multiple controlled vocabularies and by adherence to standardized nomenclature, when available. Recently MTB has been redesigned and its database infrastructure replaced with a robust relational database management system (RDMS). Web interface improvements include a new advanced query form and enhancements to already existing search capabilities. The Tumor Frequency Grid has been revised to enhance interactivity, providing an overview of reported tumor incidence across mouse strains and an entrée into the database. A new pathology data submission tool allows users to submit, edit and release data to the MTB system.

  10. Recent Advances in Targeting Tumor Energy Metabolism with Tumor Acidosis as a Biomarker of Drug Efficacy

    PubMed Central

    Akhenblit, Paul J; Pagel, Mark D

    2016-01-01

    Cancer cells employ a deregulated cellular metabolism to leverage survival and growth advantages. The unique tumor energy metabolism presents itself as a promising target for chemotherapy. A pool of tumor energy metabolism targeting agents has been developed after several decades of efforts. This review will cover glucose and fatty acid metabolism, PI3K/AKT/mTOR, HIF-1 and glutamine pathways in tumor energy metabolism, and how they are being exploited for treatments and therapies by promising pre-clinical or clinical drugs being developed or investigated. Additionally, acidification of the tumor extracellular microenvironment is hypothesized to be the result of active tumor metabolism. This implies that tumor extracellular pH (pHe) can be a biomarker for assessing the efficacy of therapies that target tumor metabolism. Several translational molecular imaging methods (PET, MRI) for interrogating tumor acidification and its suppression are discussed as well. PMID:26962408

  11. Efficacy of cabazitaxel in mouse models of pediatric brain tumors

    PubMed Central

    Girard, Emily; Ditzler, Sally; Lee, Donghoon; Richards, Andrew; Yagle, Kevin; Park, Joshua; Eslamy, Hedieh; Bobilev, Dmitri; Vrignaud, Patricia; Olson, James

    2015-01-01

    Background There is an unmet need in the treatment of pediatric brain tumors for chemotherapy that is efficacious, avoids damage to the developing brain, and crosses the blood-brain barrier. These experiments evaluated the efficacy of cabazitaxel in mouse models of pediatric brain tumors. Methods The antitumor activity of cabazitaxel and docetaxel were compared in flank and orthotopic xenograft models of patient-derived atypical teratoid rhabdoid tumor (ATRT), medulloblastoma, and central nervous system primitive neuroectodermal tumor (CNS-PNET). Efficacy of cabazitaxel and docetaxel were also assessed in the Smo/Smo spontaneous mouse medulloblastoma tumor model. Results This study observed significant tumor growth inhibition in pediatric patient-derived flank xenograft tumor models of ATRT, medulloblastoma, and CNS-PNET after treatment with either cabazitaxel or docetaxel. Cabazitaxel, but not docetaxel, treatment resulted in sustained tumor growth inhibition in the ATRT and medulloblastoma flank xenograft models. Patient-derived orthotopic xenograft models of ATRT, medulloblastoma, and CNS-PNET showed significantly improved survival with treatment of cabazitaxel. Conclusion These data support further testing of cabazitaxel as a therapy for treating human pediatric brain tumors. PMID:25140037

  12. Metabolic characterization of a Sirt5 deficient mouse model.

    PubMed

    Yu, Jiujiu; Sadhukhan, Sushabhan; Noriega, Lilia G; Moullan, Norman; He, Bin; Weiss, Robert S; Lin, Hening; Schoonjans, Kristina; Auwerx, Johan

    2013-09-30

    Sirt5, localized in the mitochondria, is a member of sirtuin family of NAD⁺-dependent deacetylases. Sirt5 was shown to deacetylate and activate carbamoyl phosphate synthase 1. Most recently, Sirt5 was reported to be the predominant protein desuccinylase and demalonylase in the mitochondria because the ablation of Sirt5 enhanced the global succinylation and malonylation of mitochondrial proteins, including many metabolic enzymes. In order to determine the physiological role of Sirt5 in metabolic homeostasis, we generated a germline Sirt5 deficient (Sirt5⁻/⁻) mouse model and performed a thorough metabolic characterization of this mouse line. Although a global protein hypersuccinylation and elevated serum ammonia during fasting were observed in our Sirt5⁻/⁻ mouse model, Sirt5 deficiency did not lead to any overt metabolic abnormalities under either chow or high fat diet conditions. These observations suggest that Sirt5 is likely to be dispensable for the metabolic homeostasis under the basal conditions.

  13. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy

    PubMed Central

    Woolf, Eric C.; Syed, Nelofer; Scheck, Adrienne C.

    2016-01-01

    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma. PMID:27899882

  14. Tumor Metabolism, the Ketogenic Diet and β-Hydroxybutyrate: Novel Approaches to Adjuvant Brain Tumor Therapy.

    PubMed

    Woolf, Eric C; Syed, Nelofer; Scheck, Adrienne C

    2016-01-01

    Malignant brain tumors are devastating despite aggressive treatments such as surgical resection, chemotherapy and radiation therapy. The average life expectancy of patients with newly diagnosed glioblastoma is approximately ~18 months. It is clear that increased survival of brain tumor patients requires the design of new therapeutic modalities, especially those that enhance currently available treatments and/or limit tumor growth. One novel therapeutic arena is the metabolic dysregulation that results in an increased need for glucose in tumor cells. This phenomenon suggests that a reduction in tumor growth could be achieved by decreasing glucose availability, which can be accomplished through pharmacological means or through the use of a high-fat, low-carbohydrate ketogenic diet (KD). The KD, as the name implies, also provides increased blood ketones to support the energy needs of normal tissues. Preclinical work from a number of laboratories has shown that the KD does indeed reduce tumor growth in vivo. In addition, the KD has been shown to reduce angiogenesis, inflammation, peri-tumoral edema, migration and invasion. Furthermore, this diet can enhance the activity of radiation and chemotherapy in a mouse model of glioma, thus increasing survival. Additional studies in vitro have indicated that increasing ketones such as β-hydroxybutyrate (βHB) in the absence of glucose reduction can also inhibit cell growth and potentiate the effects of chemotherapy and radiation. Thus, while we are only beginning to understand the pluripotent mechanisms through which the KD affects tumor growth and response to conventional therapies, the emerging data provide strong support for the use of a KD in the treatment of malignant gliomas. This has led to a limited number of clinical trials investigating the use of a KD in patients with primary and recurrent glioma.

  15. [The cancer tumor: a metabolic parasite?].

    PubMed

    Icard, Philippe; Lincet, Hubert

    2013-05-01

    Cancer cells activate glycolysis, glutaminolysis and β-oxidation to promote their biosynthesis. The low activity of pyruvate kinase, reexpressed in its embryonic isoform PKM2, generates a bottleneck at the end of glycolysis, which reorients glucose catabolism towards formation of molecules implied in numerous synthesis: ribose for nucleic acids, glycerol for lipid synthesis, etc. However, a part of glucose is transformed in pyruvate, which also comes from aminoacids catabolism. Due to the inhibition of pyruvate dehydrogenase, pyruvate is preferentially transformed into lactate, either in the presence of oxygen (Warburg effect). Lactate dehydrogenase reaction furnishes lactic acid, which acidifies the tumoral microenvironment, a process which favors the cellular growth and regenerates NAD(+), a crucial cofactor for the functioning of various metabolic pathways (glycolysis, DNA synthesis and repair…). Cancer cells consume a lot of glutamine, which replenish Krebs cycle (coupled with ATP production), and/or furnishes aspartate for nucleotides synthesis. This particular metabolism is sustained by activation of oncogenes (Myc, AKT, etc.) and suppressors inactivation (P53, PTEN…). Like a parasite, cells draw on reserves of the host to supply their own biosynthesis, while they secrete waste products (NO, polyamines, ammonia, lactate…) that promote cellular growth. A "symbiotic" cooperation could be established between tumor cells themselves, and/or with environmental cells, to maximize ATP production in relation with resources and oxygen concentration.

  16. Famine versus feast: understanding the metabolism of tumors in vivo

    PubMed Central

    Mayers, Jared R.; Vander Heiden, Matthew G.

    2015-01-01

    To fuel unregulated proliferation, cancer cells alter metabolism to support macromolecule biosynthesis. Cell culture studies have revealed how different oncogenic mutations and nutrients impact metabolism. Glucose and glutamine are the primary fuels used in vitro; however, recent studies have suggested that utilization of other amino acids as well as lipids and protein can also be important to cancer cells. Early investigations of tumor metabolism are translating these findings to the biology of whole tumors and suggest that additional complexity exists beyond nutrient availability alone in vivo. Whole body metabolism and tumor heterogeneity also influence the metabolism of tumor cells, and successful targeting of metabolism for cancer therapy will require an understanding of tumor metabolism in vivo. PMID:25639751

  17. Quantitative analysis of tumor burden in mouse lung via MRI.

    PubMed

    Tidwell, Vanessa K; Garbow, Joel R; Krupnick, Alexander S; Engelbach, John A; Nehorai, Arye

    2012-02-01

    Lung cancer is the leading cause of cancer death in the United States. Despite recent advances in screening protocols, the majority of patients still present with advanced or disseminated disease. Preclinical rodent models provide a unique opportunity to test novel therapeutic drugs for targeting lung cancer. Respiratory-gated MRI is a key tool for quantitatively measuring lung-tumor burden and monitoring the time-course progression of individual tumors in mouse models of primary and metastatic lung cancer. However, quantitative analysis of lung-tumor burden in mice by MRI presents significant challenges. Herein, a method for measuring tumor burden based upon average lung-image intensity is described and validated. The method requires accurate lung segmentation; its efficiency and throughput would be greatly aided by the ability to automatically segment the lungs. A technique for automated lung segmentation in the presence of varying tumor burden levels is presented. The method includes development of a new, two-dimensional parametric model of the mouse lungs and a multi-faceted cost function to optimally fit the model parameters to each image. Results demonstrate a strong correlation (0.93), comparable with that of fully manual expert segmentation, between the automated method's tumor-burden metric and the tumor burden measured by lung weight.

  18. Mouse Models Recapitulating Human Adrenocortical Tumors: What Is Lacking?

    PubMed Central

    Leccia, Felicia; Batisse-Lignier, Marie; Sahut-Barnola, Isabelle; Val, Pierre; Lefrançois-Martinez, A-Marie; Martinez, Antoine

    2016-01-01

    Adrenal cortex tumors are divided into benign forms, such as primary hyperplasias and adrenocortical adenomas (ACAs), and malignant forms or adrenocortical carcinomas (ACCs). Primary hyperplasias are rare causes of adrenocorticotropin hormone-independent hypercortisolism. ACAs are the most common type of adrenal gland tumors and they are rarely “functional,” i.e., producing steroids. When functional, adenomas result in endocrine disorders, such as Cushing’s syndrome (hypercortisolism) or Conn’s syndrome (hyperaldosteronism). By contrast, ACCs are extremely rare but highly aggressive tumors that may also lead to hypersecreting syndromes. Genetic analyses of patients with sporadic or familial forms of adrenocortical tumors (ACTs) led to the identification of potentially causative genes, most of them being involved in protein kinase A (PKA), Wnt/β-catenin, and P53 signaling pathways. Development of mouse models is a crucial step to firmly establish the functional significance of candidate genes, to dissect mechanisms leading to tumors and endocrine disorders, and in fine to provide in vivo tools for therapeutic screens. In this article, we will provide an overview on the existing mouse models (xenografted and genetically engineered) of ACTs by focusing on the role of PKA and Wnt/β-catenin pathways in this context. We will discuss the advantages and limitations of models that have been developed heretofore and we will point out necessary improvements in the development of next generation mouse models of adrenal diseases. PMID:27471492

  19. Methylglyoxal suppresses human colon cancer cell lines and tumor growth in a mouse model by impairing glycolytic metabolism of cancer cells associated with down-regulation of c-Myc expression.

    PubMed

    He, Tiantian; Zhou, Huaibin; Li, Chunmei; Chen, Yuan; Chen, Xiaowan; Li, Chenli; Mao, Jiating; Lyu, Jianxin; Meng, Qing H

    2016-09-01

    Methylglyoxal (MG) is a highly reactive dicarbonyl compound exhibiting anti-tumor activity. The anti-tumor effects of MG have been demonstrated in some types of cancer, but its role in colon cancer and the mechanisms underlying this activity remain largely unknown. We investigated its role in human colon cancer and the underlying mechanism using human colon cancer cells and animal model. Viability, proliferation, and apoptosis were quantified in DLD-1 and SW480 colon cancer cells by using the Cell Counting Kit-8, plate colony formation assay, and flow cytometry, respectively. Cell migration and invasion were assessed by wound healing and transwell assays. Glucose consumption, lactate production, and intracellular ATP production also were assayed. The levels of c-Myc protein and mRNA were quantitated by western blot and qRT-PCR. The anti-tumor role of MG in vivo was investigated in a DLD-1 xenograft tumor model in nude mice. We demonstrated that MG inhibited viability, proliferation, migration, and invasion and induced apoptosis of DLD-1 and SW480 colon cancer cells. Treatment with MG reduced glucose consumption, lactate production, and ATP production and decreased c-Myc protein levels in these cells. Moreover, MG significantly suppressed tumor growth and c-Myc expression in vivo. Our findings suggest that MG plays an anti-tumor role in colon cancer. It inhibits cancer cell growth by altering the glycolytic pathway associated with downregulation of c-Myc protein. MG has therapeutic potential in colon cancer by interrupting cancer metabolism.

  20. Jute batching oil: a tumor promoter on mouse skin

    SciTech Connect

    Mehrotra, N.K.; Kumar, S.; Agarwal, R.; Antony, M.

    1987-02-01

    A mineral oil essentially used in the jute industry for the batching of jute fibers, and earlier reported to be nontumorigenic on mouse skin, has been found to be a tumor promoter following a two-stage mouse-skin bioassay protocol. The types of tumors developed after initiation with a single dose of urethane or 3-methylcholanthrene (subcutaneously), followed by repeated skin painting with jute batching oil (JBO) included benign papillomas, keratoacanthomas, and fibrosarcomas. Chemical analysis of this oil indicated the total aromatic content was 11.71% and the amount of fluoranthene, pyrene, chrysene, and triphenylene was in the range of 192.54 to 227.79 mg/kg in the test sample. The underlying biochemical mechanism for the tumor-promoting effect of JBO seemed to operate through a different pathway rather than involving the induction of cytochrome-dependent monoxygenase and N-demethylase activities in the tissue.

  1. NIH Mouse Metabolic Phenotyping Centers: the power of centralized phenotyping

    PubMed Central

    Kent Lloyd, K. C.; Cline, Gary W.; Wasserman, David H.

    2013-01-01

    The Mouse Metabolic Phenotyping Centers (MMPCs) were founded in 2001 by the National Institutes of Health (NIH) to advance biomedical research by providing the scientific community with standardized, high-quality phenotyping services for mouse models of diabetes, obesity, and their complications. The intent is to allow researchers to take optimum advantage of the many new mouse models produced in labs and in high-throughput public efforts. The six MMPCs are located at universities around the country and perform complex metabolic tests in intact mice and hormone and analyte assays in tissues on a fee-for-service basis. Testing is subsidized by the NIH in order to reduce the barriers for mouse researchers. Although data derived from these tests belong to the researcher submitting mice or tissues, these data are archived after publication in a public database run by the MMPC Coordinating and Bioinformatics Unit. It is hoped that data from experiments performed in many mouse models of metabolic diseases, using standard protocols, will be useful in understanding the nature of these complex disorders. The current areas of expertise include energy balance and body composition, insulin action and secretion, whole-body and tissue carbohydrate and lipid metabolism, cardiovascular and renal function, and metabolic pathway kinetics. In addition to providing services, the MMPC staff provides expertise and advice to researchers, and works to develop and refine test protocols to best meet the community’s needs in light of current scientific developments. Test technology is disseminated by publications and through annual courses. PMID:22940748

  2. Effect of intermittent fasting on prostate cancer tumor growth in a mouse model.

    PubMed

    Thomas, J A; Antonelli, J A; Lloyd, J C; Masko, E M; Poulton, S H; Phillips, T E; Pollak, M; Freedland, S J

    2010-12-01

    Caloric restriction (CR) has been shown to have anti-cancer properties. However, CR may be difficult to apply in humans secondary to compliance and potentially deleterious effects. An alternative is intermittent CR, or in the extreme case intermittent fasting (IF). In a previous small pilot study, we found 2 days per week of IF with ad libitum feeding on the other days resulted in trends toward prolonged survival of mice bearing prostate cancer xenografts. We sought to confirm these findings in a larger study. A total of 100 (7- to 8-week-old) male severe combined immunodeficiency mice were injected subcutaneously with 1 × 10(5) LAPC-4 prostate cancer cells. Mice were randomized to either ad libitum Western Diet (44% carbohydrates, 40% fat and 16% protein) or ad libitum Western Diet with twice-weekly 24 h fasts (IF). Tumor volumes and mouse bodyweights were measured twice weekly. Mice were killed when tumor volumes reached 1000 mm(3). Serum and tumor were collected for analysis of the insulin/insulin-like growth factor 1 (IGF-1) hormonal axis. Overall, there was no difference in mouse survival (P=0.37) or tumor volumes (P ≥ 0.10) between groups. Mouse body weights were similar between arms (P=0.84). IF mice had significantly higher serum IGF-1 levels and IGF-1/IGFBP-3 ratios at killing (P<0.001). However, no difference was observed in serum insulin, IGFBP-3 or tumor phospho-Akt levels (P ≥ 0.39). IF did not improve mouse survival nor did it delay prostate tumor growth. This may be secondary to metabolic adaptations to the 24 h fasting periods. Future studies are required to optimize CR for application in humans.

  3. Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment.

    PubMed

    Renner, Kathrin; Singer, Katrin; Koehl, Gudrun E; Geissler, Edward K; Peter, Katrin; Siska, Peter J; Kreutz, Marina

    2017-01-01

    Cytotoxic T lymphocytes and NK cells play an important role in eliminating malignant tumor cells and the number and activity of tumor-infiltrating T cells represent a good marker for tumor prognosis. Based on these findings, immunotherapy, e.g., checkpoint blockade, has received considerable attention during the last couple of years. However, for the majority of patients, immune control of their tumors is gray theory as malignant cells use effective mechanisms to outsmart the immune system. Increasing evidence suggests that changes in tumor metabolism not only ensure an effective energy supply and generation of building blocks for tumor growth but also contribute to inhibition of the antitumor response. Immunosuppression in the tumor microenvironment is often based on the mutual metabolic requirements of immune cells and tumor cells. Cytotoxic T and NK cell activation leads to an increased demand for glucose and amino acids, a well-known feature shown by tumor cells. These close metabolic interdependencies result in metabolic competition, limiting the proliferation, and effector functions of tumor-specific immune cells. Moreover, not only nutrient restriction but also tumor-driven shifts in metabolite abundance and accumulation of metabolic waste products (e.g., lactate) lead to local immunosuppression, thereby facilitating tumor progression and metastasis. In this review, we describe the metabolic interplay between immune cells and tumor cells and discuss tumor cell metabolism as a target structure for cancer therapy. Metabolic (re)education of tumor cells is not only an approach to kill tumor cells directly but could overcome metabolic immunosuppression in the tumor microenvironment and thereby facilitate immunotherapy.

  4. Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment

    PubMed Central

    Renner, Kathrin; Singer, Katrin; Koehl, Gudrun E.; Geissler, Edward K.; Peter, Katrin; Siska, Peter J.; Kreutz, Marina

    2017-01-01

    Cytotoxic T lymphocytes and NK cells play an important role in eliminating malignant tumor cells and the number and activity of tumor-infiltrating T cells represent a good marker for tumor prognosis. Based on these findings, immunotherapy, e.g., checkpoint blockade, has received considerable attention during the last couple of years. However, for the majority of patients, immune control of their tumors is gray theory as malignant cells use effective mechanisms to outsmart the immune system. Increasing evidence suggests that changes in tumor metabolism not only ensure an effective energy supply and generation of building blocks for tumor growth but also contribute to inhibition of the antitumor response. Immunosuppression in the tumor microenvironment is often based on the mutual metabolic requirements of immune cells and tumor cells. Cytotoxic T and NK cell activation leads to an increased demand for glucose and amino acids, a well-known feature shown by tumor cells. These close metabolic interdependencies result in metabolic competition, limiting the proliferation, and effector functions of tumor-specific immune cells. Moreover, not only nutrient restriction but also tumor-driven shifts in metabolite abundance and accumulation of metabolic waste products (e.g., lactate) lead to local immunosuppression, thereby facilitating tumor progression and metastasis. In this review, we describe the metabolic interplay between immune cells and tumor cells and discuss tumor cell metabolism as a target structure for cancer therapy. Metabolic (re)education of tumor cells is not only an approach to kill tumor cells directly but could overcome metabolic immunosuppression in the tumor microenvironment and thereby facilitate immunotherapy. PMID:28337200

  5. Canine parvovirus NS1 protein exhibits anti-tumor activity in a mouse mammary tumor model.

    PubMed

    Gupta, Shishir Kumar; Yadav, Pavan Kumar; Gandham, Ravi Kumar; Sahoo, A P; Harish, D R; Singh, Arvind Kumar; Tiwari, A K

    2016-02-02

    Many viral proteins have the ability to kill tumor cells specifically without harming the normal cells. These proteins, on ectopic expression, cause lysis or induction of apoptosis in the target tumor cells. Parvovirus NS1 is one of such proteins, which is known to kill high proliferating tumor cells. In the present study, we assessed the apoptosis inducing ability of canine parvovirus type 2 NS1 protein (CPV2.NS1) in vitro in 4T1 cells, and found it to cause significant cell death due to induction of apoptosis through intrinsic or mitochondrial pathway. Further, we also evaluated the oncolytic activity of CPV2.NS1 protein in a mouse mammary tumor model. The results suggested that CPV2.NS1 was able to inhibit the growth of 4T1 induced mouse mammary tumor as indicated by significantly reduced tumor volume, mitotic, AgNOR and PCNA indices. Further, inhibition of tumor growth was found to be because of induction of apoptosis in the tumor cells, which was evident by a significant increase in the number of TUNEL positive cells. Further, CPV2.NS1 was also able to stimulate the immune cells against the tumor antigens as indicated by the increased CD4+ and CD8+ counts in the blood of CVP2.NS1 treated mice. Further optimization of the delivery of NS1 protein and use of an adjuvant may further enhance its anti-tumor activity.

  6. Sphingolipid metabolism in organotypic mouse keratinocyte cultures

    SciTech Connect

    Madison, K.C.; Swartzendruber, D.C.; Wertz, P.W.; Downing, D.T. )

    1990-12-01

    Ceramides are the dominant component of the stratum corneum intercellular lipid lamellae, which constitute the epidermal permeability barrier. Only pig and human epidermal ceramides have been extensively characterized and the structures of the ceramides of cultured keratinocytes have not been previously investigated. In the present studies, we have characterized the ceramides synthesized by organotypic lifted mouse keratinocyte cultures for the first time and compared them to the ceramides of intact mouse epidermis. Both mouse epidermis and cultures contained five ceramides, ceramide 1 being the least polar and ceramide 5 the most polar. Ceramide 1 was a group of acylceramides, i.e., very-long-chain omega-hydroxyceramides with an ester-linked nonhydroxy fatty acid. Ceramide 2 contained medium-length saturated nonhydroxy fatty acids. (In culture, the ceramide 2 band was split into two parts with the slightly more polar ceramide 2' containing short-chain saturated nonhydroxy fatty acids.) Ceramide 5 contained short-chain alpha-hydroxy fatty acids. The structures of ceramides 1, 2, and 5 were analagous to those of pig and human epidermis. Mouse epidermal ceramide 3 was quite unusual, containing beta-hydroxy fatty acids, a structure not previously identified among mammalian ceramides. In contrast, culture ceramide 3 was composed of omega-hydroxy fatty acids with a chain-length distribution similar to that of ceramide 1. Mouse ceramide 4 was composed of fatty acids with chromatographic mobility similar to hydroxy fatty acids but with different chemical reactivity; it remains only partially characterized. Culture ceramide 4 was present in quantities too small for analysis. All ceramides in mouse epidermis and cultures contained only sphingosine bases, whereas pig and human ceramides also contain phytosphingosine.

  7. Metabolic brain imaging correlated with clinical features of brain tumors

    SciTech Connect

    Alavi, J.; Alavi, A.; Dann, R.; Kushner, M.; Chawluk, J.; Powlis, W.; Reivich, M.

    1985-05-01

    Nineteen adults with brain tumors have been studied with positron emission tomography utilizing FDG. Fourteen had biopsy proven cerebral malignant glioma, one each had meningioma, hemangiopericytoma, primitive neuroectodermal tumor (PNET), two had unbiopsied lesions, and one patient had an area of biopsy proven radiation necrosis. Three different patterns of glucose metabolism are observed: marked increase in metabolism at the site of the known tumor in (10 high grade gliomas and the PNET), lower than normal metabolism at the tumor (in 1 grade II glioma, 3 grade III gliomas, 2 unbiopsied low density nonenhancing lesions, and the meningioma), no abnormality (1 enhancing glioma, the hemangiopericytoma and the radiation necrosis.) The metabolic rate of the tumor or the surrounding brain did not appear to be correlated with the history of previous irradiation or chemotherapy. Decreased metabolism was frequently observed in the rest of the affected hemisphere and in the contralateral cerebellum. Tumors of high grade or with enhancing CT characteristics were more likely to show increased metabolism. Among the patients with proven gliomas, survival after PETT scan tended to be longer for those with low metabolic activity tumors than for those with highly active tumors. The authors conclude that PETT may help to predict the malignant potential of tumors, and may add useful clinical information to the CT scan.

  8. THE INFLUENCE OF DIET ON TRANSPLANTED AND SPONTANEOUS MOUSE TUMORS

    PubMed Central

    Rous, Peyton

    1914-01-01

    Previous work has shown that the growth of grafts of transplantable tumors can be in many cases prevented or retarded by underfeeding the new host or by putting it on a special diet. The effect of such treatment on large tumors has been little studied; and the effect on metastases and recurrences has not been studied at all. Apart from certain clinical observations nothing is known as to the influence on spontaneous tumors of alterations in the diet. Experiments with transplanted rat and mouse tumors along the lines thus suggested show that large growths of certain strains are checked in their development by underfeeding the host upon a special diet (Sweet's modification of one of Mendel and Osborne's foods) or in some cases by simple underfeeding. Two metastasizing mouse tumors are instances in point. They stopped growing or grew very slowly in hosts underfed on the special diet. The Flexner-Jobling rat carcinoma, on the other hand, was unaffected by the most rigorous underfeeding on a mixed diet when this was begun after the tumor had been growing for a short period. Experiments to test the influence of underfeeding upon recurrences of this tumor gave results that varied from series to series of animals. The findings strongly indicate that generalizations from work with transplanted tumors as regards the effects of diet on spontaneous growths are unwarranted. By underfeeding on Sweet's food mice with spontaneous tumors, beginning some days prior to operation, it has proved possible in most cases to delay for a relatively long period the development of recurrences and the growth of tumor bits (grafts) disseminated at the time of surgical interference. The treatment entailed great loss of weight. Tumor mice kept on ordinary diet previous to operation, but put thereafter on an abundant ration of Sweet's food, developed recurrences as early as the tumor mice on ordinary diet; whereas the growth of auto-implants was, relatively speaking, much delayed. These results

  9. Mouse Tumor Biology (MTB): a database of mouse models for human cancer.

    PubMed

    Bult, Carol J; Krupke, Debra M; Begley, Dale A; Richardson, Joel E; Neuhauser, Steven B; Sundberg, John P; Eppig, Janan T

    2015-01-01

    The Mouse Tumor Biology (MTB; http://tumor.informatics.jax.org) database is a unique online compendium of mouse models for human cancer. MTB provides online access to expertly curated information on diverse mouse models for human cancer and interfaces for searching and visualizing data associated with these models. The information in MTB is designed to facilitate the selection of strains for cancer research and is a platform for mining data on tumor development and patterns of metastases. MTB curators acquire data through manual curation of peer-reviewed scientific literature and from direct submissions by researchers. Data in MTB are also obtained from other bioinformatics resources including PathBase, the Gene Expression Omnibus and ArrayExpress. Recent enhancements to MTB improve the association between mouse models and human genes commonly mutated in a variety of cancers as identified in large-scale cancer genomics studies, provide new interfaces for exploring regions of the mouse genome associated with cancer phenotypes and incorporate data and information related to Patient-Derived Xenograft models of human cancers.

  10. Developing genetically engineered mouse models to study tumor suppression

    PubMed Central

    Xiong, Shunbin; Parker-Thornburg, Jan; Lozano, Guillermina

    2012-01-01

    Since the late 1980s, the tools to generate mice with deletions of tumor suppressors have made it possible to study such deletions in the context of a whole animal. Deletion of some tumor suppressors results in viable mice while deletion of others yield embryo lethal phenotypes cementing the concept that genes that often go awry in cancer are also of developmental importance. More sophisticated mouse models were subsequently developed to delete a gene in a specific cell type at a specific time point. Additionally, incorporation of point mutations in a specific gene as observed in human tumors has also revealed their contributions to tumorigenesis. On the other hand, some models never develop cancer unless combined with other deletions suggesting a modifying role in tumorigenesis. This review will describe the technical aspects of generating these mice and provide examples of the outcomes obtained from alterations of different tumor suppressors. PMID:22582146

  11. Quantifying levels of p53 mutation in mouse skin tumors.

    PubMed

    Verkler, Tracie L; Couch, Letha H; Howard, Paul C; Parsons, Barbara L

    2005-06-01

    Allele-specific competitive blocker PCR (ACB-PCR) amplification and quantification was developed for mouse p53 codon 270 CGT-->TGT base substitution and codon 244/245 AAC/CGC-->AAT/TGC tandem mutation. PCR products corresponding to p53 mutant and wild-type DNA sequences were generated. These DNAs were mixed in known proportions to construct samples with defined mutant fractions and the allele-specific detection of each mutation was systematically optimized. Each assay was used to analyze eight simulated solar light (SSL)-induced tumors. By analyzing mutant fraction (MF) standards in parallel with PCR products generated from tumor samples, p53 mutants could be quantified as subpopulations within the tumors. All eight tumors contained detectable levels of p53 codon 270 CGT-->TGT mutation. Three tumors had p53 MFs between 10(-4) and 10(-3). Five tumors had p53 MFs between 10(-3) and 10(-2). None of the eight mouse skin tumors had measurable levels of p53 codon 244/245 tandem mutation. Frequent detection of p53 codon 270 CGT-->TGT mutation provides additional evidence that a pyrimidine dinucleotide overlapping a methylated CpG site (Pyr(me)CG) is a susceptible target for SSL-induced mutagenesis. The absence of p53 codon 244/245 mutation in tumors may be explained by its mutant p53 phenotype and/or indicate that this site is not methylated. These initial results indicate that p53 codon 270 CGT-->TGT mutation may be a sensitive biomarker for SSL- or UV-induced mutagenesis. This mutational endpoint may be useful for evaluating the co-carcinogenicity of compounds administered in combination with UV or SSL.

  12. A mouse surgical model for metastatic ovarian granulosa cell tumor.

    PubMed

    Nadeau, Marie-Eve; Kaartinen, M Johanna; Laguë, Marie-Noëlle; Paquet, Marilène; Huneault, Louis M; Boerboom, Derek

    2009-12-01

    We recently described a genetically engineered mouse model that develops ovarian granulosa cell tumors (GCTs) that mimic many aspects of the advanced human disease, including distant dissemination. However, because the primary tumors killed their hosts before metastases were able to form, the use of these mice to study metastatic disease required the development of a simple, reliable, and humane surgical protocol for the excision of large GCTs from debilitated mice. Here we describe a protocol involving multimodal anesthesia, tumor removal through ventral midline celiotomy and perioperative fluid therapy, and analgesia that led to the postoperative survival of more than 90% of mice, despite the removal of tumors representing as much as 10% of the animal's body weight. Intraabdominal recurrence of the GCT did not occur in surviving animals, but most developed pulmonary or adrenal metastases (or both) by 12 wk after surgery. We propose that this mouse model of metastatic GCT will serve as a useful preclinical model for the development of novel treatment modalities and diagnostic techniques. Furthermore, our results delineate anesthetic and surgical principles for the removal of large abdominal tumors from mice that will be applicable to other models of human cancers.

  13. Tumor Microenvironment Metabolism: A New Checkpoint for Anti-Tumor Immunity

    PubMed Central

    Scharping, Nicole E.; Delgoffe, Greg M.

    2016-01-01

    When a T cell infiltrates a tumor, it is subjected to a variety of immunosuppressive and regulatory signals in the microenvironment. However, it is becoming increasingly clear that due to the proliferative and energetically-deregulated nature of tumor cells, T cells also operate at a metabolic disadvantage. The nutrient dearth of the tumor microenvironment (TME) creates “metabolic checkpoints” upon infiltrating T cells, impacting their ability to survive, proliferate and function effectively. In this review, we summarize the basics of tumor cell and T cell metabolism and discuss recent advances elucidating the individual metabolic checkpoints exerted on T cells that drive their dysfunction in the TME. PMID:27929420

  14. How does cancer cell metabolism affect tumor migration and invasion?

    PubMed

    Han, Tianyu; Kang, De; Ji, Daokun; Wang, Xiaoyu; Zhan, Weihua; Fu, Minggui; Xin, Hong-Bo; Wang, Jian-Bin

    2013-01-01

    Cancer metastasis is the major cause of cancer-associated death. Accordingly, identification of the regulatory mechanisms that control whether or not tumor cells become "directed walkers" is a crucial issue of cancer research. The deregulation of cell migration during cancer progression determines the capacity of tumor cells to escape from the primary tumors and invade adjacent tissues to finally form metastases. The ability to switch from a predominantly oxidative metabolism to glycolysis and the production of lactate even when oxygen is plentiful is a key characteristic of cancer cells. This metabolic switch, known as the Warburg effect, was first described in 1920s, and affected not only tumor cell growth but also tumor cell migration. In this review, we will focus on the recent studies on how cancer cell metabolism affects tumor cell migration and invasion. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell migration is critical for development of therapeutic strategies for cancer patients.

  15. Endpoints for Mouse Abdominal Tumor Models: Refinement of Current Criteria

    PubMed Central

    Paster, Eden V; Villines, Kimberly A; Hickman, Debra L

    2009-01-01

    Accurate, rapid, and noninvasive health assessments are required to establish more appropriate endpoints in mouse cancer models where tumor size is not easily measured. We evaluated potential endpoints in mice with experimentally induced peritoneal lymphoma, an abdominal tumor model, by comparing body weight, body condition, and behavior with those of a control group of mice not developing lymphoma. Our hypothesis was that body weight would increase or plateau, whereas body condition and behavioral scores would decrease, as disease progressed. Results indicated that body weight did not differ significantly between the control and experimental groups, but the experimental group experienced significant decreases in both body condition and behavioral scores. Our results support the use of body condition and behavioral scoring as adjunctive assessment methods for mice involved in abdominal lymphoma tumor studies in which health may decline despite an increase or plateau in body weight. PMID:19619413

  16. Lessons Learned from Mouse Mammary Tumor Virus in Animal Models

    PubMed Central

    Dudley, Jaquelin P.; Golovkina, Tatyana V.; Ross, Susan R.

    2016-01-01

    Mouse mammary tumor virus (MMTV), which was discovered as a milk-transmitted, infectious, cancer-inducing agent in the 1930s, has been used as an animal model for the study of retroviral infection and transmission, antiviral immune responses, and breast cancer and lymphoma biology. The main target cells for MMTV infection in vivo are cells of the immune system and mammary epithelial cells. Although the host mounts an immune response to the virus, MMTV has evolved multiple means of evading this response. MMTV causes mammary tumors when the provirus integrates into the mammary epithelial and lymphoid cell genome during viral replication and thereby activates cellular oncogene expression. Thus, tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer. PMID:27034391

  17. Metabolic Characterization of a Sirt5 deficient mouse model

    PubMed Central

    Yu, Jiujiu; Sadhukhan, Sushabhan; Noriega, Lilia G.; Moullan, Norman; He, Bin; Weiss, Robert S.; Lin, Hening; Schoonjans, Kristina; Auwerx, Johan

    2013-01-01

    Sirt5, localized in the mitochondria, is a member of sirtuin family of NAD+-dependent deacetylases. Sirt5 was shown to deacetylate and activate carbamoyl phosphate synthase 1. Most recently, Sirt5 was reported to be the predominant protein desuccinylase and demalonylase in the mitochondria because the ablation of Sirt5 enhanced the global succinylation and malonylation of mitochondrial proteins, including many metabolic enzymes. In order to determine the physiological role of Sirt5 in metabolic homeostasis, we generated a germline Sirt5 deficient (Sirt5−/−) mouse model and performed a thorough metabolic characterization of this mouse line. Although a global protein hypersuccinylation and elevated serum ammonia during fasting were observed in our Sirt5−/− mouse model, Sirt5 deficiency did not lead to any overt metabolic abnormalities under either chow or high fat diet conditions. These observations suggest that Sirt5 is likely to be dispensable for the metabolic homeostasis under the basal conditions. PMID:24076663

  18. Mechanistic Investigation of Toxaphene Induced Mouse Liver Tumors.

    PubMed

    Wang, Zemin; Neal, Barbara H; Lamb, James C; Klaunig, James E

    2015-10-01

    Chronic exposure to toxaphene resulted in an increase in liver tumors in B6C3F1 mice. This study was performed to investigate the mode of action of toxaphene induced mouse liver tumors. Following an initial 14 day dietary dose range-finding study in male mice, a mechanistic study (0, 3, 32, and 320 ppm toxaphene in diet for 7, 14, and 28 days of treatment) was performed to examine the potential mechanisms of toxaphene induced mouse liver tumors. Toxaphene induced a significant increase in expression of constitutive androstane receptor (CAR) target genes (Cyp2b10, Cyp3a11) at 32 and 320 ppm toxaphene. aryl hydrocarbon receptor (AhR) target genes (Cyp1a1 and Cyp1a2) were slightly increased in expression at the highest toxaphene dose (320 ppm). No increase in peroxisome proliferator-activated receptor alpha activity or related genes was seen following toxaphene treatment. Lipid peroxidation was seen following treatment with 320 ppm toxaphene. These changes correlated with increases in hepatic DNA synthesis. To confirm the role of CAR in this mode of action, CAR knockout mice (CAR(-/-)) treated with toxaphene confirmed that the induction of CAR responsive genes seen in wild-type mice was abolished following treatment with toxaphene for 14 days. These findings, taken together with previously reported studies, support the mode of action of toxaphene induced mouse liver tumors is through a nongenotoxic mechanism involving primarily a CAR-mediated processes that results in an increase in cell proliferation in the liver, promotes the clonal expansion of preneoplastic lesions leading to adenoma formation.

  19. Mouse Genetics Suggests Cell-Context Dependency for Myc-Regulated Metabolic Enzymes during Tumorigenesis

    PubMed Central

    Nilsson, Lisa M.; Kreutzer, Christiane; Pretsch, Walter; Bornkamm, Georg W.; Nilsson, Jonas A.

    2012-01-01

    c-Myc (hereafter called Myc) belongs to a family of transcription factors that regulates cell growth, cell proliferation, and differentiation. Myc initiates the transcription of a large cast of genes involved in cell growth by stimulating metabolism and protein synthesis. Some of these, like those involved in glycolysis, may be part of the Warburg effect, which is defined as increased glucose uptake and lactate production in the presence of adequate oxygen supply. In this study, we have taken a mouse-genetics approach to challenge the role of select Myc-regulated metabolic enzymes in tumorigenesis in vivo. By breeding λ-Myc transgenic mice, Apc Min mice, and p53 knockout mice with mouse models carrying inactivating alleles of Lactate dehydrogenase A (Ldha), 3-Phosphoglycerate dehydrogenase (Phgdh) and Serine hydroxymethyltransferase 1 (Shmt1), we obtained offspring that were monitored for tumor development. Very surprisingly, we found that these genes are dispensable for tumorigenesis in these genetic settings. However, experiments in fibroblasts and colon carcinoma cells expressing oncogenic Ras show that these cells are sensitive to Ldha knockdown. Our genetic models reveal cell context dependency and a remarkable ability of tumor cells to adapt to alterations in critical metabolic pathways. Thus, to achieve clinical success, it will be of importance to correctly stratify patients and to find synthetic lethal combinations of inhibitors targeting metabolic enzymes. PMID:22438825

  20. A novel non-mouse mammary tumor virus activation of the Int-3 gene in a spontaneous mouse mammary tumor.

    PubMed Central

    Kordon, E C; Smith, G H; Callahan, R; Gallahan, D

    1995-01-01

    In a mouse mammary tumor model system in which carcinogenic progression can be investigated, we have found a unique mutation of Int-3 associated with progression from premalignant lobular hyperplasia to tumor. Sequence analysis of the rearranged fragment revealed an insertion of an intracisternal type A particle (IAP) within the Int-3 gene. Int-3 is mutated frequently in mouse mammary tumor virus (MMTV)-induced mammary tumors by insertion of MMTV proviral DNA into this intragenic region. In these mutations, the insertion produces a chimeric Int-3 transcript encoding the cytoplasmic portion of the Int-3 protein driven by the MMTV long terminal repeat promoter. In this case, the IAP DNA was inserted in the opposite transcriptional orientation relative to Int-3; nevertheless, a similar chimeric RNA transcript driven by a cryptic promoter in the oppositely oriented 5' IAP long terminal repeat was generated. This is the first demonstration that an insertional mutation unrelated to MMTV activates an Int gene commonly associated with mammary tumorigenesis. PMID:7494323

  1. Nature and Nurture: What Determines Tumor Metabolic Phenotypes?

    PubMed

    Mayers, Jared R; Vander Heiden, Matthew G

    2017-06-15

    Understanding the genetic basis of cancer has led to therapies that target driver mutations and has helped match patients with more personalized drugs. Oncogenic mutations influence tumor metabolism, but other tumor characteristics can also contribute to their metabolic phenotypes. Comparison of isogenic lung and pancreas tumor models suggests that use of some metabolic pathways is defined by lineage rather than by driver mutation. Lung tumors catabolize circulating branched chain amino acids (BCAA) to extract nitrogen for nonessential amino acid and nucleotide synthesis, whereas pancreatic cancer obtains amino acids from catabolism of extracellular protein. These differences in amino acid metabolism translate into distinct pathway dependencies, as genetic disruption of the enzymes responsible for utilization of BCAA nitrogen limits the growth of lung tumors, but not pancreatic tumors. These data argue that some cancer metabolic phenotypes are defined by cancer tissue-of-origin and environment and that these features constrain the influence of genetic mutations on metabolism. A better understanding of the factors defining tumor nutrient utilization could be exploited to help improve cancer therapy. Cancer Res; 77(12); 3131-4. ©2017 AACR. ©2017 American Association for Cancer Research.

  2. The Tumor Microenvironment Modulates Choline and Lipid Metabolism

    PubMed Central

    Mori, Noriko; Wildes, Flonné; Takagi, Tomoyo; Glunde, Kristine; Bhujwalla, Zaver M.

    2016-01-01

    An increase of cellular phosphocholine (PC) and total choline (tCho)-containing compounds as well as alterations in lipids have been consistently observed in cancer cells and tissue. These metabolic changes are closely related to malignant transformation, invasion, and metastasis. The study of cancer cells in culture plays an important role in understanding mechanisms leading to altered choline (Cho) and lipid metabolism in cancer, as it provides a carefully controlled environment. However, a solid tumor is a complex system with a unique tumor microenvironment frequently containing hypoxic and acidic regions and areas of nutrient deprivation and necrosis. Cancer cell–stromal cell interactions and the extracellular matrix may also alter Cho and lipid metabolism. Human tumor xenograft models in mice are useful to mimic the growth of human cancers and provide insights into the influence of in vivo conditions on metabolism. Here, we have compared metabolites, obtained with high resolution 1H MRS of extracts from human breast and prostate cancer cells in a 2-dimensional (2D) monolayer culture and from solid tumor xenografts derived from these cells, as well as the protein expression of enzymes that regulate Cho and lipid metabolism. Our data demonstrate significant differences in Cho and lipid metabolism and protein expression patterns between human breast and prostate cancer cells in culture and in tumors derived from these cells. These data highlight the influence of the tumor microenvironment on Cho and lipid metabolism. PMID:28066718

  3. Modeling of the metabolic energy dissipation for restricted tumor growth.

    PubMed

    Pajic-Lijakovic, Ivana; Milivojevic, Milan

    2017-08-29

    Energy dissipation mostly represents unwanted outcome but in the biochemical processes it may alter the biochemical pathways. However, it is rarely considered in the literature although energy dissipation and its alteration due to the changes in cell microenvironment may improve methods for guiding chemical and biochemical processes in the desired directions. Deeper insight into the changes of metabolic activity of tumor cells exposed to osmotic stress or irradiation may offer the possibility of tumor growth reduction. In this work effects of the osmotic stress and irradiation on the thermodynamical affinity of tumor cells and their damping effects on metabolic energy dissipation were investigated and modeled. Although many various models were applied to consider the tumor restrictive growth they have not considered the metabolic energy dissipation. In this work a pseudo rheological model in the form of "the metabolic spring-pot element" is formulated to describe theoretically the metabolic susceptibility of tumor spheroid. This analog model relates the thermodynamical affinity of cell growth with the volume expansion of tumor spheroid under isotropic loading conditions. Spheroid relaxation induces anomalous nature of the metabolic energy dissipation which causes the damping effects on cell growth. The proposed model can be used for determining the metabolic energy "structure" in the context of restrictive cell growth as well as for predicting optimal doses for cancer curing in order to tailor the clinical treatment for each person and each type of cancer.

  4. Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model

    PubMed Central

    Xu, Shan; Tian, Yuan; Hu, Yili; Zhang, Nijia; Hu, Sheng; Song, Dandan; Wu, Zhengshun; Wang, Yulan; Cui, Yanfang; Tang, Huiru

    2016-01-01

    The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs. PMID:27329570

  5. Mouse models for inherited endocrine and metabolic disorders.

    PubMed

    Piret, Siân E; Thakker, Rajesh V

    2011-12-01

    In vivo models represent important resources for investigating the physiological mechanisms underlying endocrine and metabolic disorders, and for pre-clinical translational studies that may include the assessments of new treatments. In the study of endocrine diseases, which affect multiple organs, in vivo models provide specific advantages over in vitro models, which are limited to investigation of isolated systems. In recent years, the mouse has become the popular choice for developing such in vivo mammalian models, as it has a genome that shares ∼85% identity to that of man, and has many physiological systems that are similar to those in man. Moreover, methods have been developed to alter the expression of genes in the mouse, thereby generating models for human diseases, which may be due to loss- or gain-of-function mutations. The methods used to generate mutations in the mouse genome include: chemical mutagenesis; conventional, conditional and inducible knockout models; knockin models and transgenic models, and these strategies are often complementary. This review describes some of the different strategies that are utilised for generating mouse models. In addition, some mouse models that have been successfully generated by these methods for some human hereditary endocrine and metabolic disorders are reviewed. In particular, the mouse models generated for parathyroid disorders, which include: the multiple endocrine neoplasias; hyperparathyroidism-jaw tumour syndrome; disorders of the calcium-sensing receptor and forms of inherited hypoparathyroidism are discussed. The advances that have been made in our understanding of the mechanisms of these human diseases by investigations of these mouse models are described.

  6. Molecular Connections between Cancer Cell Metabolism and the Tumor Microenvironment

    PubMed Central

    Justus, Calvin R.; Sanderlin, Edward J.; Yang, Li V.

    2015-01-01

    Cancer cells preferentially utilize glycolysis, instead of oxidative phosphorylation, for metabolism even in the presence of oxygen. This phenomenon of aerobic glycolysis, referred to as the “Warburg effect”, commonly exists in a variety of tumors. Recent studies further demonstrate that both genetic factors such as oncogenes and tumor suppressors and microenvironmental factors such as spatial hypoxia and acidosis can regulate the glycolytic metabolism of cancer cells. Reciprocally, altered cancer cell metabolism can modulate the tumor microenvironment which plays important roles in cancer cell somatic evolution, metastasis, and therapeutic response. In this article, we review the progression of current understandings on the molecular interaction between cancer cell metabolism and the tumor microenvironment. In addition, we discuss the implications of these interactions in cancer therapy and chemoprevention. PMID:25988385

  7. Kidney cancer progression linked to shifts in tumor metabolism

    Cancer.gov

    Investigators in The Cancer Genome Atlas Research Network have uncovered a connection between how tumor cells use energy from metabolic processes and the aggressiveness of the most common form of kidney cancer, clear cell renal cell carcinoma.

  8. Mouse mammary tumor virus-like nucleotide sequences in canine and feline mammary tumors.

    PubMed

    Hsu, Wei-Li; Lin, Hsing-Yi; Chiou, Shyan-Song; Chang, Chao-Chin; Wang, Szu-Pong; Lin, Kuan-Hsun; Chulakasian, Songkhla; Wong, Min-Liang; Chang, Shih-Chieh

    2010-12-01

    Mouse mammary tumor virus (MMTV) has been speculated to be involved in human breast cancer. Companion animals, dogs, and cats with intimate human contacts may contribute to the transmission of MMTV between mouse and human. The aim of this study was to detect MMTV-like nucleotide sequences in canine and feline mammary tumors by nested PCR. Results showed that the presence of MMTV-like env and LTR sequences in canine malignant mammary tumors was 3.49% (3/86) and 18.60% (16/86), respectively. For feline malignant mammary tumors, the presence of both env and LTR sequences was found to be 22.22% (2/9). Nevertheless, the MMTV-like LTR and env sequences also were detected in normal mammary glands of dogs and cats. In comparisons of the MMTV-like DNA sequences of our findings to those of NIH 3T3 (MMTV-positive murine cell line) and human breast cancer cells, the sequence similarities ranged from 94 to 98%. Phylogenetic analysis revealed that intermixing among sequences identified from tissues of different hosts, i.e., mouse, dog, cat, and human, indicated the MMTV-like DNA existing in these hosts. Moreover, the env transcript was detected in 1 of the 19 MMTV-positive samples by reverse transcription-PCR. Taken together, our study provides evidence for the existence and expression of MMTV-like sequences in neoplastic and normal mammary glands of dogs and cats.

  9. Fatty acid synthase is a metabolic oncogene targetable in malignant peripheral nerve sheath tumors

    PubMed Central

    Patel, Ami V.; Johansson, Gunnar; Colbert, Melissa C.; Dasgupta, Biplab; Ratner, Nancy

    2015-01-01

    Background Malignant peripheral nerve sheath tumors (MPNSTs) are soft tissue sarcomas with minimal therapeutic opportunities. We observed that lipid droplets (LDs) accumulate in human MPNST cell lines and in primary human tumor samples. The goal of this study was to investigate the relevance of lipid metabolism to MPNST survival and as a possible therapeutic target. Methods Based on preliminary findings that MPNSTs accumulate LDs, we hypothesized that a deregulated lipid metabolism supports MPNST cell survival/proliferation rate. To test this, we examined respiration, role of fatty acid oxidation (FAO), and the enzyme fatty acid synthase involved in de novo fatty acid synthesis in MPNSTs using both genetic and pharmacological tools. Results We demonstrate that LDs accumulate in MPNST cell lines, primary human and mouse MPNST tumors, and neural crest cells. LDs from MPNST cells disappear on lipid deprivation, indicating that LDs can be oxidized as a source of energy. Inhibition of FAO decreased oxygen consumption and reduced MPNST survival, indicating that MPNST cells likely metabolize LDs through active FAO. FAO inhibition reduced oxygen consumption and survival even in the absence of exogenous lipids, indicating that lipids synthesized de novo can also be oxidized. Consequently, inhibition of de novo fatty acid synthesis, which is overexpressed in human MPNST cell lines, effectively reduced MPNST survival and delayed induction of tumor growth in vivo. Conclusion Our results show that MPNSTs depend on lipid metabolic pathways and suggest that disrupting lipid metabolism could be a potential new strategy for the development of MPNST therapeutics. PMID:26116612

  10. Finding Mouse Models of Human Lymphomas and Leukemia’s using The Jackson Laboratory Mouse Tumor Biology Database

    PubMed Central

    Begley, Dale A.; Sundberg, John P.; Krupke, Debra M.; Neuhauser, Steven B.; Bult, Carol J.; Eppig, Janan T.; Morse, Herbert C.; Ward, Jerrold M.

    2015-01-01

    Many mouse models have been created to study hematopoietic cancer types. There are over thirty hematopoietic tumor types and subtypes, both human and mouse, with various origins, characteristics and clinical prognoses. Determining the specific type of hematopoietic lesion produced in a mouse model and identifying mouse models that correspond to the human subtypes of these lesions has been a continuing challenge for the scientific community. The Mouse Tumor Biology Database (MTB; http://tumor.informatics.jax.org) is designed to facilitate use of mouse models of human cancer by providing detailed histopathologic and molecular information on lymphoma subtypes, including expertly annotated, on line, whole slide scans, and providing a repository for storing information on and querying these data for specific lymphoma models. PMID:26302176

  11. A Cross-Species Analysis in Pancreatic Neuroendocrine Tumors Reveals Molecular Subtypes with Distinctive Clinical, Metastatic, Developmental, and Metabolic Characteristics

    PubMed Central

    Sadanandam, Anguraj; Wullschleger, Stephan; Lyssiotis, Costas A.; Grötzinger, Carsten; Barbi, Stefano; Bersani, Samantha; Körner, Jan; Wafy, Ismael; Mafficini, Andrea; Lawlor, Rita T.; Simbolo, Michele; Asara, John M.; Bläker, Hendrik; Cantley, Lewis C.; Wiedenmann, Bertram; Scarpa, Aldo; Hanahan, Douglas

    2016-01-01

    Seeking to assess the representative and instructive value of an engineered mouse model of pancreatic neuroendocrine tumors (PanNET) for its cognate human cancer, we profiled and compared mRNA and miRNA transcriptomes of tumors from both. Mouse PanNET tumors could be classified into two distinctive subtypes, well-differentiated islet/insulinoma tumors (IT) and poorly differentiated tumors associated with liver metastases, dubbed metastasis-like primary (MLP). Human PanNETs were independently classified into these same two subtypes, along with a third, specific gene mutation–enriched subtype. The MLP subtypes in human and mouse were similar to liver metastases in terms of miRNA and mRNA transcriptome profiles and signature genes. The human/mouse MLP subtypes also similarly expressed genes known to regulate early pancreas development, whereas the IT subtypes expressed genes characteristic of mature islet cells, suggesting different tumorigenesis pathways. In addition, these subtypes exhibit distinct metabolic profiles marked by differential pyruvate metabolism, substantiating the significance of their separate identities. SIGNIFICANCE This study involves a comprehensive cross-species integrated analysis of multi-omics profiles and histology to stratify PanNETs into subtypes with distinctive characteristics. We provide support for the RIP1-TAG2 mouse model as representative of its cognate human cancer with prospects to better understand PanNET heterogeneity and consider future applications of personalized cancer therapy. PMID:26446169

  12. Molecular dynamics in mouse atrial tumor sarcoplasmic reticulum.

    PubMed Central

    Voss, J C; Mahaney, J E; Jones, L R; Thomas, D D

    1995-01-01

    We have determined directly the effects of the inhibitory peptide phospholamban (PLB) on the rotational dynamics of the calcium pump (Ca-ATPase) of cardiac sarcoplasmic reticulum (SR). This was accomplished by comparing mouse ventricular SR, which has PLB levels similar to those found in other mammals, with mouse atrial SR, which is effectively devoid of PLB and thus has much higher (unregulated) calcium pump activity. To obtain sufficient quantities of atrial SR, we isolated the membranes from atrial tumor cells. We used time-resolved phosphorescence anisotropy of an erythrosin isothiocyanate label attached selectively and rigidly to the Ca-ATPase, to detect the microsecond rotational motion of the Ca-ATPase in the two preparations. The time-resolved phosphorescence anisotropy decays of both preparations at 25 degrees C were multi-exponential, because of the presence of different oligomeric species. The rotational correlation times for the different oligomers were similar for the two preparations, but the total decay amplitude was substantially greater for atrial tumor SR, indicating that a smaller fraction of the Ca-ATPase molecules exists as large aggregates. Phosphorylation of PLB in ventricular SR decreased the population of large-scale Ca-ATPase aggregates to a level similar to that of atrial tumor SR. Lipid chain mobility (fluidity), detected by electron paramagnetic resonance of stearic acid spin labels, was very similar in the two preparations, indicating that the higher protein mobility in atrial tumor SR is not due to higher lipid fluidity. We conclude that PLB inhibits by inducing Ca-ATPase lateral aggregation, which can be relieved either by phosphorylating or removing PLB. Images FIGURE 1 FIGURE 2 PMID:7612820

  13. Enhanced radiation lethality in partially synchronized solid mouse tumors

    SciTech Connect

    Todoroki, T.; Koike, S.; Tsunemoto, H.; Watanabe, I.

    1982-12-01

    We studied the combined effects of local irradiation on in vivo partially synchronized solid mouse tumors. Syngeneic fibrosarcoma cells were transplanted s.c. into the thighs of C3H/He mice. When the tumors grew to 179 cu mm in volume, 1-beta-D-arabinofuranosylcytosine (ara-C) was repeatedly injected i.p. followed by a single injection of vinblastine sulfate at 5 hr after the end of the ara-C treatment. The mitotic indexes increased from 4% in control to 22 to 23% at 5 hr after the ara-C treatment, and the level continued for another 5 hr. Further treatment with vinblastine sulfate after the ara-C injections resulted in more effective accumulation of mitotic cells, i.e., 30% at the sixth hr. The tumor was locally irradiated with a single dose of 3000 rads of gamma-rays at the maximum level of mitotic index. The results indicated a synergistic inhibition of tumor growth and an 84% prolongation of the 50% survival day beyond that of the nontreated control mice.

  14. Aberrant PGE₂ metabolism in bladder tumor microenvironment promotes immunosuppressive phenotype of tumor-infiltrating myeloid cells.

    PubMed

    Eruslanov, Evgeniy; Daurkin, Irina; Vieweg, Johannes; Daaka, Yehia; Kusmartsev, Sergei

    2011-07-01

    Bladder cancer is associated with enhanced inflammation and characterized by deregulated prostanoid metabolism. Here we examined prostaglandin E₂ (PGE₂) metabolism and myeloid cell subsets that infiltrate tumor tissue using two xenograft models of human bladder cancer. Human bladder tumor xenografts implanted into athymic nude mice become highly infiltrated with host CD11b myeloid cells of bone marrow origin. Fast growing SW780 bladder tumor xenografts were infiltrated with heterogeneous CD11b myeloid cell subsets including tumor-associated macrophages and myeloid-derived suppressor cells. In contrast, majority of myeloid cells in tumor tissue from slow growing bladder cancer Urothel 11 displayed more immature, homogenous phenotype and comprised mostly MHC II class-negative myeloid-derived suppressor cells. We demonstrate that human bladder tumors secrete substantial amounts of PGE₂. Normal bone marrow myeloid cell progenitors cultured in the presence of a bladder tumor-conditioned medium, which is enriched for PGE₂, failed to differentiate into mature APCs and acquired phenotype of the myeloid-derived suppressor cells or inflammatory macrophages with up-regulated chemokine receptor CXCR4. Collectively our data demonstrate that enhanced cancer-related inflammation and deregulated PGE₂ metabolism in tumor microenvironment promote immunosuppressive pro-tumoral phenotype of myeloid cells in bladder cancer. These data also suggest that not only local tumor microenvironment but other factors such as stage of cancer disease and pace of tumor growth could markedly influence the phenotype, differentiation and immune function of myeloid cells in tumor tissue.

  15. Two-compartment tumor metabolism: autophagy in the tumor microenvironment and oxidative mitochondrial metabolism (OXPHOS) in cancer cells.

    PubMed

    Salem, Ahmed F; Whitaker-Menezes, Diana; Lin, Zhao; Martinez-Outschoorn, Ubaldo E; Tanowitz, Herbert B; Al-Zoubi, Mazhar Salim; Howell, Anthony; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2012-07-01

    Previously, we proposed a new paradigm to explain the compartment-specific role of autophagy in tumor metabolism. In this model, autophagy and mitochondrial dysfunction in the tumor stroma promotes cellular catabolism, which results in the production of recycled nutrients. These chemical building blocks and high-energy "fuels" would then drive the anabolic growth of tumors, via autophagy resistance and oxidative mitochondrial metabolism in cancer cells. We have termed this new form of stromal-epithelial metabolic coupling: "two-compartment tumor metabolism." Here, we stringently tested this energy-transfer hypothesis, by genetically creating (1) constitutively autophagic fibroblasts, with mitochondrial dysfunction or (2) autophagy-resistant cancer cells, with increased mitochondrial function. Autophagic fibroblasts were generated by stably overexpressing key target genes that lead to AMP-kinase activation, such as DRAM and LKB1. Autophagy-resistant cancer cells were derived by overexpressing GOLPH3, which functionally promotes mitochondrial biogenesis. As predicted, DRAM and LKB1 overexpressing fibroblasts were constitutively autophagic and effectively promoted tumor growth. We validated that autophagic fibroblasts showed mitochondrial dysfunction, with increased production of mitochondrial fuels (L-lactate and ketone body accumulation). Conversely, GOLPH3 overexpressing breast cancer cells were autophagy-resistant, and showed signs of increased mitochondrial biogenesis and function, which resulted in increased tumor growth. Thus, autophagy in the tumor stroma and oxidative mitochondrial metabolism (OXPHOS) in cancer cells can both dramatically promote tumor growth, independently of tumor angiogenesis. For the first time, our current studies also link the DNA damage response in the tumor microenvironment with "Warburg-like" cancer metabolism, as DRAM is a DNA damage/repair target gene.

  16. Single Unpurified Breast Tumor-Initiating Cells from Multiple Mouse Models Efficiently Elicit Tumors in Immune-Competent Hosts

    PubMed Central

    Kurpios, Natasza A.; Girgis-Gabardo, Adele; Hallett, Robin M.; Rogers, Stephen; Gludish, David W.; Kockeritz, Lisa; Woodgett, James; Cardiff, Robert; Hassell, John A.

    2013-01-01

    The tumor-initiating cell (TIC) frequency of bulk tumor cell populations is one of the criteria used to distinguish malignancies that follow the cancer stem cell model from those that do not. However, tumor-initiating cell frequencies may be influenced by experimental conditions and the extent to which tumors have progressed, parameters that are not always addressed in studies of these cells. We employed limiting dilution cell transplantation of minimally manipulated tumor cells from mammary tumors of several transgenic mouse models to determine their tumor-initiating cell frequency. We determined whether the tumors that formed following tumor cell transplantation phenocopied the primary tumors from which they were isolated and whether they could be serially transplanted. Finally we investigated whether propagating primary tumor cells in different tissue culture conditions affected their resident tumor-initiating cell frequency. We found that tumor-initiating cells comprised between 15% and 50% of the bulk tumor cell population in multiple independent mammary tumors from three different transgenic mouse models of breast cancer. Culture of primary mammary tumor cells in chemically-defined, serum-free medium as non-adherent tumorspheres preserved TIC frequency to levels similar to that of the primary tumors from which they were established. By contrast, propagating the primary tumor cells in serum-containing medium as adherent populations resulted in a several thousand-fold reduction in their tumor-initiating cell fraction. Our findings suggest that experimental conditions, including the sensitivity of the transplantation assay, can dramatically affect estimates of tumor initiating cell frequency. Moreover, conditional on cell culture conditions, the tumor-initiating cell fraction of bulk mouse mammary tumor cell preparations can either be maintained at high or low frequency in vitro thus permitting comparative studies of tumorigenic and non-tumorigenic cancer cells

  17. Single unpurified breast tumor-initiating cells from multiple mouse models efficiently elicit tumors in immune-competent hosts.

    PubMed

    Kurpios, Natasza A; Girgis-Gabardo, Adele; Hallett, Robin M; Rogers, Stephen; Gludish, David W; Kockeritz, Lisa; Woodgett, James; Cardiff, Robert; Hassell, John A

    2013-01-01

    The tumor-initiating cell (TIC) frequency of bulk tumor cell populations is one of the criteria used to distinguish malignancies that follow the cancer stem cell model from those that do not. However, tumor-initiating cell frequencies may be influenced by experimental conditions and the extent to which tumors have progressed, parameters that are not always addressed in studies of these cells. We employed limiting dilution cell transplantation of minimally manipulated tumor cells from mammary tumors of several transgenic mouse models to determine their tumor-initiating cell frequency. We determined whether the tumors that formed following tumor cell transplantation phenocopied the primary tumors from which they were isolated and whether they could be serially transplanted. Finally we investigated whether propagating primary tumor cells in different tissue culture conditions affected their resident tumor-initiating cell frequency. We found that tumor-initiating cells comprised between 15% and 50% of the bulk tumor cell population in multiple independent mammary tumors from three different transgenic mouse models of breast cancer. Culture of primary mammary tumor cells in chemically-defined, serum-free medium as non-adherent tumorspheres preserved TIC frequency to levels similar to that of the primary tumors from which they were established. By contrast, propagating the primary tumor cells in serum-containing medium as adherent populations resulted in a several thousand-fold reduction in their tumor-initiating cell fraction. Our findings suggest that experimental conditions, including the sensitivity of the transplantation assay, can dramatically affect estimates of tumor initiating cell frequency. Moreover, conditional on cell culture conditions, the tumor-initiating cell fraction of bulk mouse mammary tumor cell preparations can either be maintained at high or low frequency in vitro thus permitting comparative studies of tumorigenic and non-tumorigenic cancer cells.

  18. Effects of exercise on tumor physiology and metabolism.

    PubMed

    Pedersen, Line; Christensen, Jesper Frank; Hojman, Pernille

    2015-01-01

    Exercise is a potent regulator of a range of physiological processes in most tissues. Solid epidemiological data show that exercise training can reduce disease risk and mortality for several cancer diagnoses, suggesting that exercise training may directly regulate tumor physiology and metabolism. Here, we review the body of literature describing exercise intervention studies performed in rodent tumor models and elaborate on potential mechanistic effects of exercise on tumor physiology. Exercise has been shown to reduce tumor incidence, tumor multiplicity, and tumor growth across numerous different transplantable, chemically induced or genetic tumor models. We propose 4 emerging mechanistic effects of exercise, including (1) vascularization and blood perfusion, (2) immune function, (3) tumor metabolism, and (4) muscle-to-cancer cross-talk, and discuss these in details. In conclusion, exercise training has the potential to be a beneficial and integrated component of cancer management, but has yet to fully elucidate its potential. Understanding the mechanistic effects of exercise on tumor physiology is warranted. Insight into these mechanistic effects is emerging, but experimental intervention studies are still needed to verify the cause-effect relationship between these mechanisms and the control of tumor growth.

  19. Genes affected by mouse mammary tumor virus (MMTV) proviral insertions in mouse mammary tumors are deregulated or mutated in primary human mammary tumors

    PubMed Central

    Callahan, Robert; Mudunuri, Uma; Bargo, Sharon; Raafat, Ahmed; McCurdy, David; Boulanger, Corinne; Lowther, William; Stephens, Robert; Luke, Brian T.; Stewart, Claudia; Wu, Xiaolin; Munroe, David; Smith, Gilbert H.

    2012-01-01

    The accumulation of mutations is a contributing factor in the initiation of premalignant mammary lesions and their progression to malignancy and metastasis. We have used a mouse model in which the carcinogen is the mouse mammary tumor virus (MMTV) which induces clonal premalignant mammary lesions and malignant mammary tumors by insertional mutagenesis. Identification of the genes and signaling pathways affected in MMTV-induced mouse mammary lesions provides a rationale for determining whether genetic alteration of the human orthologues of these genes/pathways may contribute to human breast carcinogenesis. A high-throughput platform for inverse PCR to identify MMTV-host junction fragments and their nucleotide sequences in a large panel of MMTV-induced lesions was developed. Validation of the genes affected by MMTV-insertion was carried out by microarray analysis. Common integration site (CIS) means that the gene was altered by an MMTV proviral insertion in at least two independent lesions arising in different hosts. Three of the new genes identified as CIS for MMTV were assayed for their capability to confer on HC11 mouse mammary epithelial cells the ability for invasion, anchorage independent growth and tumor development in nude mice. Analysis of MMTV induced mammary premalignant hyperplastic outgrowth (HOG) lines and mammary tumors led to the identification of CIS restricted to 35 loci. Within these loci members of the Wnt, Fgf and Rspo gene families plus two linked genes (Npm3 and Ddn) were frequently activated in tumors induced by MMTV. A second group of 15 CIS occur at a low frequency (2-5 observations) in mammary HOGs or tumors. In this latter group the expression of either Phf19 or Sdc2 was shown to increase HC11 cells invasion capability. Foxl1 expression conferred on HC11 cells the capability for anchorage-independent colony formation in soft agar and tumor development in nude mice. The published transcriptome and nucleotide sequence analysis of gene

  20. Circadian Clock in a Mouse Colon Tumor Regulates Intracellular Iron Levels to Promote Tumor Progression*

    PubMed Central

    Okazaki, Fumiyasu; Matsunaga, Naoya; Okazaki, Hiroyuki; Azuma, Hiroki; Hamamura, Kengo; Tsuruta, Akito; Tsurudome, Yuya; Ogino, Takashi; Hara, Yukinori; Suzuki, Takuya; Hyodo, Kenji; Ishihara, Hiroshi; Kikuchi, Hiroshi; To, Hideto; Aramaki, Hironori; Koyanagi, Satoru; Ohdo, Shigehiro

    2016-01-01

    Iron is an important biological catalyst and is critical for DNA synthesis during cell proliferation. Cellular iron uptake is enhanced in tumor cells to support increased DNA synthesis. Circadian variations in DNA synthesis and proliferation have been identified in tumor cells, but their relationship with intracellular iron levels is unclear. In this study, we identified a 24-h rhythm in iron regulatory protein 2 (IRP2) levels in colon-26 tumors implanted in mice. Our findings suggest that IRP2 regulates the 24-h rhythm of transferrin receptor 1 (Tfr1) mRNA expression post-transcriptionally, by binding to RNA stem-loop structures known as iron-response elements. We also found that Irp2 mRNA transcription is promoted by circadian clock genes, including brain and muscle Arnt-like 1 (BMAL1) and the circadian locomotor output cycles kaput (CLOCK) heterodimer. Moreover, growth in colon-26(Δ19) tumors expressing the clock-mutant protein (CLOCKΔ19) was low compared with that in wild-type colon-26 tumor. The time-dependent variation of cellular iron levels, and the proliferation rate in wild-type colon-26 tumor was decreased by CLOCKΔ19 expression. Our findings suggest that circadian organization contributes to tumor cell proliferation by regulating iron metabolism in the tumor. PMID:26797126

  1. Notch1 functions as a tumor suppressor in mouse skin.

    PubMed

    Nicolas, Michael; Wolfer, Anita; Raj, Kenneth; Kummer, J Alain; Mill, Pleasantine; van Noort, Mascha; Hui, Chi-chung; Clevers, Hans; Dotto, G Paolo; Radtke, Freddy

    2003-03-01

    Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.

  2. Control of Glutamine Metabolism By the Tumor Suppressor Rb

    PubMed Central

    Reynolds, Miriam R.; Lane, Andrew N.; Robertson, Brian; Kemp, Sharen; Liu, Yongqing; Hill, Bradford G.; Dean, Douglas C.; Clem, Brian F.

    2014-01-01

    Retinoblastoma (Rb) protein is a tumor suppressor that is dysregulated in a majority of human cancers. Rb functions to inhibit cell cycle progression in part by directly disabling the E2F family of cell cycle-promoting transcription factors. Because the de novo synthesis of multiple glutamine-derived anabolic precursors is required for cell cycle progression, we hypothesized that Rb also may directly regulate proteins involved in glutamine metabolism. We examined glutamine metabolism in mouse embryonic fibroblasts (MEFs) isolated from mice that have triple knock-outs (TKO) of all three Rb family members (Rb-1, Rbl1, and Rbl2) and found that loss of global Rb function caused a marked increase in 13C-glutamine uptake and incorporation into glutamate and TCA cycle intermediates in part via upregulated expression of the glutamine transporter ASCT2 and the activity of glutaminase 1 (GLS1). The Rb-controlled transcription factor E2F-3 altered glutamine uptake by direct regulation of ASCT2 mRNA and protein expression, and E2F-3 was observed to associate with the ASCT2 promoter. We next examined the functional consequences of the observed increase in glutamine uptake and utilization and found that glutamine exposure potently increased oxygen consumption whereas glutamine deprivation selectively decreased ATP concentration in the Rb TKO MEFs but not the WT MEFs. In addition, TKO MEFs exhibited elevated production of glutathione from exogenous glutamine, and had increased expression of gamma-glutamylcysteine ligase relative to WT MEFs. Importantly, this metabolic shift towards glutamine utilization was required for the proliferation of Rb TKO MEFs but not for the proliferation of the WT MEFs. Last, addition of the TCA cycle intermediate α-ketoglutarate to the Rb TKO MEFs reversed the inhibitory effects of glutamine deprivation on ATP, GSH levels, and viability. Taken together, these studies demonstrate that the Rb/E2F cascade directly regulates a major energetic and

  3. Control of glutamine metabolism by the tumor suppressor Rb.

    PubMed

    Reynolds, M R; Lane, A N; Robertson, B; Kemp, S; Liu, Y; Hill, B G; Dean, D C; Clem, B F

    2014-01-30

    Retinoblastoma (Rb) protein is a tumor suppressor that is dysregulated in a majority of human cancers. Rb functions to inhibit cell cycle progression in part by directly disabling the E2F family of cell cycle-promoting transcription factors. Because the de novo synthesis of multiple glutamine-derived anabolic precursors is required for cell cycle progression, we hypothesized that Rb also may directly regulate proteins involved in glutamine metabolism. We examined glutamine metabolism in mouse embryonic fibroblasts (MEFs) isolated from mice that have triple knock-outs (TKO) of all three Rb family members (Rb-1, Rbl1 and Rbl2) and found that loss of global Rb function caused a marked increase in (13)C-glutamine uptake and incorporation into glutamate and tricarboxylic acid cycle (TCA) intermediates in part via upregulated expression of the glutamine transporter ASCT2 and the activity of glutaminase 1 (GLS1). The Rb-controlled transcription factor E2F-3 altered glutamine uptake by direct regulation of ASCT2 mRNA and protein expression, and E2F-3 was observed to associate with the ASCT2 promoter. We next examined the functional consequences of the observed increase in glutamine uptake and utilization and found that glutamine exposure potently increased oxygen consumption, whereas glutamine deprivation selectively decreased ATP concentration in the Rb TKO MEFs but not the wild-type (WT) MEFs. In addition, TKO MEFs exhibited elevated production of glutathione from exogenous glutamine and had increased expression of gamma-glutamylcysteine ligase relative to WT MEFs. Importantly, this metabolic shift towards glutamine utilization was required for the proliferation of Rb TKO MEFs but not for the proliferation of the WT MEFs. Last, addition of the TCA cycle intermediate α-ketoglutarate to the Rb TKO MEFs reversed the inhibitory effects of glutamine deprivation on ATP, GSH levels and viability. Taken together, these studies demonstrate that the Rb/E2F cascade directly

  4. Molecular or Metabolic Reprograming: What Triggers Tumor Subtypes?

    PubMed

    Eason, Katherine; Sadanandam, Anguraj

    2016-09-15

    Tumor heterogeneity is reflected and influenced by genetic, epigenetic, and metabolic differences in cancer cells and their interactions with a complex microenvironment. This heterogeneity has resulted in the stratification of tumors into subtypes, mainly based on cancer-specific genomic or transcriptomic profiles. Subtyping can lead to biomarker identification for personalized diagnosis and therapy, but stratification alone does not explain the origins of tumor heterogeneity. Heterogeneity has traditionally been thought to arise from distinct mutations/aberrations in "driver" oncogenes. However, certain subtypes appear to be the result of adaptation to the disrupted microenvironment caused by abnormal tumor vasculature triggering metabolic switches. Moreover, heterogeneity persists despite the predominance of single oncogenic driver mutations, perhaps due to second metabolic or genetic "hits." In certain cancer types, existing subtypes have metabolic and transcriptomic phenotypes that are reminiscent of normal differentiated cells, whereas others reflect the phenotypes of stem or mesenchymal cells. The cell-of-origin may, therefore, play a role in tumor heterogeneity. In this review, we focus on how cancer cell-specific heterogeneity is driven by different genetic or metabolic factors alone or in combination using specific cancers to illustrate these concepts. Cancer Res; 76(18); 5195-200. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. Altered oxidative stress and carbohydrate metabolism in canine mammary tumors

    PubMed Central

    Jayasri, K.; Padmaja, K.; Saibaba, M.

    2016-01-01

    Aim: Mammary tumors are the most prevalent type of neoplasms in canines. Even though cancer induced metabolic alterations are well established, the clinical data describing the metabolic profiles of animal tumors is not available. Hence, our present investigation was carried out with the aim of studying changes in carbohydrate metabolism along with the level of oxidative stress in canine mammary tumors. Materials and Methods: Fresh mammary tumor tissues along with the adjacent healthy tissues were collected from the college surgical ward. The levels of thiobarbituric acid reactive substances (TBARS), glutathione, protein, hexose, hexokinase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, and glucose-6-phosphate dehydrogenase (G6PD) were analyzed in all the tissues. The results were analyzed statistically. Results: More than two-fold increase in TBARS and three-fold increase in glutathione levels were observed in neoplastic tissues. Hexokinase activity and hexose concentration (175%) was found to be increased, whereas glucose-6-phosphatase (33%), fructose-1, 6-bisphosphatase (42%), and G6PD (5 fold) activities were reduced in tumor mass compared to control. Conclusion: Finally, it was revealed that lipid peroxidation was increased with differentially altered carbohydrate metabolism in canine mammary tumors. PMID:28096627

  6. Adipose tissue dysfunction and its effects on tumor metabolism

    PubMed Central

    Diedrich, Jonathan; Gusky, Halina Chkourko; Podgorski, Izabela

    2016-01-01

    Growing by an alarming rate in the Western world, obesity has become a condition associated with a multitude of diseases such as diabetes, metabolic syndrome and various cancers. Generally viewed as an abnormal accumulation of hypertrophied adipocytes, obesity is also a poor prognostic factor for recurrence and chemoresistance in cancer patients. With more than two-thirds of the adult population in the United States considered clinically overweight or obese, it is critical that the relationship between obesity and cancer is further emphasized and elucidated. Adipocytes are highly metabolically active cells, which, through release of adipokines and cytokines and activation of endocrine and paracrine pathways, affect processes in neighboring and distant cells, altering their normal homeostasis. This work will examine specifically how adipocyte-derived factors regulate the cellular metabolism of malignant cells within the tumor niche. Briefly, tumor cells undergo metabolic pressure towards a more glycolytic and hypoxic state through a variety of metabolic regulators and signaling pathways, i.e., phosphoinositol-3 kinase (PI3K), hypoxia-inducible factor-1 alpha (HIF-1α), and c-MYC signaling. Enhanced glycolysis and high lactate production are hallmarks of tumor progression largely because of a process known as the Warburg effect. Herein, we review the latest literature pertaining to the body of work on the interactions between adipose and tumor cells, and underlining the changes in cancer cell metabolism that have been targeted by the currently available treatments. PMID:25781550

  7. Novel Approaches to Imaging Tumor Metabolism

    PubMed Central

    Tee, Sui-Seng; Keshari, Kayvan R.

    2015-01-01

    The field of metabolism research has made a dramatic resurgence in recent years, fueled by a newfound appreciation of the interactions between metabolites and phenotype. Metabolic substrates and their products can be biomarkers of a wide range of pathologies, including cancer, but our understanding of their in vivo interactions and pathways has been hindered by the robustness of non-invasive imaging approaches. The last 3 decades have been flushed with the development of new techniques for the study of metabolism in vivo. These methods include nuclear based, predominantly positron emission tomography (PET) and magnetic resonance imaging (MRI), many of which have been translated to the clinic. The purpose of this review is to introduce both long standing imaging strategies as well as novel approaches to the study of perturbed metabolic pathways in the setting of carcinogenesis. This will involve descriptions of nuclear probes labeled with 11C and 18F as well 13C for study using hyperpolarized MRI. Highlighting both advantages and disadvantages of each approach, the aim of this summary is to provide the reader with a framework for interrogation of metabolic aberrations in their system of interest. PMID:26049695

  8. Novel Approaches to Imaging Tumor Metabolism.

    PubMed

    Tee, Sui-Seng; Keshari, Kayvan R

    2015-01-01

    The field of metabolism research has made a dramatic resurgence in recent years, fueled by a newfound appreciation of the interactions between metabolites and phenotype. Metabolic substrates and their products can be biomarkers of a wide range of pathologies, including cancer, but our understanding of their in vivo interactions and pathways has been hindered by the robustness of noninvasive imaging approaches. The past 3 decades have been flushed with the development of new techniques for the study of metabolism in vivo. These methods include nuclear-based, predominantly positron emission tomography and magnetic resonance imaging, many of which have been translated to the clinic. The purpose of this review was to introduce both long-standing imaging strategies as well as novel approaches to the study of perturbed metabolic pathways in the setting of carcinogenesis. This will involve descriptions of nuclear probes labeled with C and F as well C for study using hyperpolarized magnetic resonance imaging. Highlighting both advantages and disadvantages of each approach, the aim of this summary was to provide the reader with a framework for interrogation of metabolic aberrations in their system of interest.

  9. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.

    PubMed

    Amoedo, N D; Obre, E; Rossignol, R

    2017-02-16

    The search for new drugs capable of blocking the metabolic vulnerabilities of human tumors has now entered the clinical evaluation stage, but several projects already failed in phase I or phase II. In particular, very promising in vitro studies could not be translated in vivo at preclinical stage and beyond. This was the case for most glycolysis inhibitors that demonstrated systemic toxicity. A more recent example is the inhibition of glutamine catabolism in lung adenocarcinoma that failed in vivo despite a strong addiction of several cancer cell lines to glutamine in vitro. Such contradictory findings raised several questions concerning the optimization of drug discovery strategies in the field of cancer metabolism. For instance, the cell culture models in 2D or 3D might already show strong limitations to mimic the tumor micro- and macro-environment. The microenvironment of tumors is composed of cancer cells of variegated metabolic profiles, supporting local metabolic exchanges and symbiosis, but also of immune cells and stroma that further interact with and reshape cancer cell metabolism. The macroenvironment includes the different tissues of the organism, capable of exchanging signals and fueling the tumor 'a distance'. Moreover, most metabolic targets were identified from their increased expression in tumor transcriptomic studies, or from targeted analyses looking at the metabolic impact of particular oncogenes or tumor suppressors on selected metabolic pathways. Still, very few targets were identified from in vivo analyses of tumor metabolism in patients because such studies are difficult and adequate imaging methods are only currently being developed for that purpose. For instance, perfusion of patients with [(13)C]-glucose allows deciphering the metabolomics of tumors and opens a new area in the search for effective targets. Metabolic imaging with positron emission tomography and other techniques that do not involve [(13)C] can also be used to evaluate tumor

  10. Insights into granulosa cell tumors using spontaneous or genetically engineered mouse models

    PubMed Central

    2016-01-01

    Granulosa cell tumors (GCTs) are rare sex cord-stromal tumors that have been studied for decades. However, their infrequency has delayed efforts to research their etiology. Recently, mutations in human GCTs have been discovered, which has led to further research aimed at determining the molecular mechanisms underlying the disease. Mouse models have been important tools for studying GCTs, and have provided means to develop and improve diagnostics and therapeutics. Thus far, several genetically modified mouse models, along with one spontaneous mouse model, have been reported. This review summarizes the phenotypes of these mouse models and their applicability in elucidating the mechanisms of granulosa cell tumor development. PMID:27104151

  11. Insights into granulosa cell tumors using spontaneous or genetically engineered mouse models.

    PubMed

    Kim, So-Youn

    2016-03-01

    Granulosa cell tumors (GCTs) are rare sex cord-stromal tumors that have been studied for decades. However, their infrequency has delayed efforts to research their etiology. Recently, mutations in human GCTs have been discovered, which has led to further research aimed at determining the molecular mechanisms underlying the disease. Mouse models have been important tools for studying GCTs, and have provided means to develop and improve diagnostics and therapeutics. Thus far, several genetically modified mouse models, along with one spontaneous mouse model, have been reported. This review summarizes the phenotypes of these mouse models and their applicability in elucidating the mechanisms of granulosa cell tumor development.

  12. On metabolic reprogramming and tumor biology: A comprehensive survey of metabolism in breast cancer

    PubMed Central

    Penkert, Judith; Ripperger, Tim; Schieck, Maximilian; Schlegelberger, Brigitte; Steinemann, Doris; Illig, Thomas

    2016-01-01

    Altered metabolism in tumor cells has been a focus of cancer research for as long as a century but has remained controversial and vague due to an inhomogeneous overall picture. Accumulating genomic, metabolomic, and lastly panomic data as well as bioenergetics studies of the past few years enable a more comprehensive, systems-biologic approach promoting deeper insight into tumor biology and challenging hitherto existing models of cancer bioenergetics. Presenting a compendium on breast cancer-specific metabolome analyses performed thus far, we review and compile currently known aspects of breast cancer biology into a comprehensive network, elucidating previously dissonant issues of cancer metabolism. As such, some of the aspects critically discussed in this review include the dynamic interplay or metabolic coupling between cancer (stem) cells and cancer-associated fibroblasts, the intratumoral and intertumoral heterogeneity and plasticity of cancer cell metabolism, the existence of distinct metabolic tumor compartments in need of separate yet simultaneous therapeutic targeting, the reliance of cancer cells on oxidative metabolism and mitochondrial power, and the role of pro-inflammatory, pro-tumorigenic stromal conditioning. Comprising complex breast cancer signaling networks as well as combined metabolomic and genomic data, we address metabolic consequences of mutations in tumor suppressor genes and evaluate their contribution to breast cancer predisposition in a germline setting, reasoning for distinct personalized preventive and therapeutic measures. The review closes with a discussion on central root mechanisms of tumor cell metabolism and rate-limiting steps thereof, introducing essential strategies for therapeutic targeting. PMID:27590516

  13. Liver tumors in children with metabolic disorders

    PubMed Central

    Schady, Deborah A.; Roy, Angshumoy

    2015-01-01

    Hepatic neoplasia is a rare but serious complication of metabolic diseases in children. The risk of developing neoplasia, the age at onset, and the measures to prevent it differ in the various diseases. We review the most common metabolic disorders that are associated with a heightened risk of developing hepatocellular neoplasms, with a special emphasis on reviewing recent advances in the molecular pathogenesis of the disorders and pre-clinical therapeutic options. The cellular and genetic pathways driving carcinogenesis are poorly understood, but best understood in tyrosinemia. PMID:26835391

  14. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Xia, Jun; Maslov, Konstantin; Avanaki, Mohammadreza R. N.; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2013-03-01

    To control the overall action of the body, brain consumes a large amount of energy in proportion to its volume. In humans and many other species, the brain gets most of its energy from oxygen-dependent metabolism of glucose. An abnormal metabolic rate of glucose and/or oxygen usually reflects a diseased status of brain, such as cancer or Alzheimer's disease. We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively unmixed by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. The glucose response amplitude was about half that of the hemodynamic response. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area showed a clear vascular pattern and spread about twice as wide as that of the glucose response. The PACT of mouse brain metabolism was validated by high-resolution open-scalp OR-PAM and fluorescence imaging. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism.

  15. Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 2: species differences in response.

    PubMed

    Green, Trevor; Toghill, Alison; Lee, Robert; Waechter, Felix; Weber, Edgar; Peffer, Richard; Noakes, James; Robinson, Mervyn

    2005-07-01

    Thiamethoxam is a neonicotinoid insecticide that is not a mutagen, but it did cause a significant increase in liver cancer in mice, but not rats, in chronic dietary feeding studies. Previous studies in mice have characterized a carcinogenicity mode of action that involved depletion of plasma cholesterol, cell death, both as single cell necrosis and as apoptosis, and sustained increases in cell replication rates. In a study reported in this article, female rats have been exposed to thiamethoxam in their diet at concentrations of 0, 1000, and 3000 ppm for 50 weeks, a study design directly comparable to the mouse study in which the mode of action changes were characterized. In rats, thiamethoxam had no adverse effects on either the biochemistry or histopathology of the liver at any time point during the study. Cell replication rates were not increased, in fact they were significantly decreased at several time points. The lack of effect on the rat liver is entirely consistent with the lack of liver tumor formation in the two-year cancer bioassay. Comparisons of the metabolism of thiamethoxam in rats and mice have shown that concentrations of the parent chemical were either similar or higher in rat blood than in mouse blood in both single dose and the dietary studies strongly indicating that thiamethoxam itself is unlikely to play a role in the development of liver tumors. In contrast, the concentrations of the two metabolites, CGA265307 and CGA330050, shown to play a role in the development of liver damage in the mouse, were 140- (CGA265307) and 15- (CGA330050) fold lower in rats than in mice following either a single oral dose, or dietary administration of thiamethoxam for up to 50 weeks. Comparisons of the major metabolic pathways of thiamethoxam in vitro using mouse, rat, and human liver fractions have shown that metabolic rates in humans are lower than those in the rat suggesting that thiamethoxam is unlikely to pose a hazard to humans exposed to this chemical at

  16. Glucose-functionalized gold nanoparticles as a metabolically targeted CT contrast agent for distinguishing tumors from non-malignant metabolically active processes

    NASA Astrophysics Data System (ADS)

    Dreifuss, Tamar; Motiei, Menachem; Betzer, Oshra; Popovtzer, Aron; Abourbeh, Galith; Mishani, Eyal; Popovtzer, Rachela

    2017-02-01

    The highly used cancer imaging technique, [18F]FDG-PET, is based on the increased glucose metabolic activity in tumors. However, since there are other biological processes that exhibit increased metabolic activity, in particular inflammation, this methodology is prone to non-specificity for cancer. Herein we describe the development of a novel nanoparticle-based approach, utilizes Glucose-Functionalized Gold Nanoparticles (GF-GNPs) as a metabolically targeted CT contrast agent. Our method has demonstrated specific tumor targeting and has successfully differentiated between cancer and inflammation in a combined tumor-inflammation mouse model, due to dissimilarities in vasculatures in different pathologic conditions. This novel approach provides new capabilities in cancer imaging, and can be applicable to a wide range of cancers.

  17. An investigation of the shedding of macromolecules from the Ehrlich mouse ascites tumor cell

    SciTech Connect

    Edwards, E.H.

    1984-01-01

    The spontaneous release, or shedding, of cell surface components into the extracellular medium may be important in the determination of several features of the cancer cell phenotype. The release of macromolecules from the Erhlich mouse ascites tumor cell was studied under a variety of experimental conditions to elucidate the origin and the underlying mechanisms of release. The extrinsic macromolecules are a diverse group with apparent molecular weights ranging from 13,500 to 400,000 daltons. External labeling of the cell surface with tritiated 4,4{prime}-diisothiocyano-1,2-diphenylethane-2,2-disulfonic acid (({sup 3}H)H{sub 2}DIDS) reveals a slow loss of labeled components at 4{degrees}C, while at 21{degrees}C and 37{degrees}C an initial rapid loss is followed by a slower release. In vitro metabolic labeling with (1-{sup 14}C)-D-glucosamine hydrochloride, D-(2-{sup 3}H)-mannose and various ({sup 3}H)-L-amino acids results in the appearance of labeled macromolecules in the medium suggesting tumor, not mouse, origin. These data suggest that the extrinsic macromolecules originate from the cell surface. Macromolecules are shed by a temperature and pH sensitive process. These results suggest that a limited proteolytic digestion, or sublethal autolysis, of the cell surface may occur in this system. The macromolecules shed by the Ehrlich cell originate from the surface and are probably released by sublethal autolysis, direct secretion and a passive process.

  18. Responsiveness of human prostate carcinoma bone tumors to interleukin-2 therapy in a mouse xenograft tumor model.

    PubMed

    Kocheril, S V; Grignon, D J; Wang, C Y; Maughan, R L; Montecillo, E J; Talati, B; Tekyi-Mensah, S; Pontes, J e; Hillman, G G

    1999-01-01

    We have tested an immunotherapy approach for the treatment of metastatic prostate carcinoma using a bone tumor model. Human PC-3 prostate carcinoma tumor cells were heterotransplanted into the femur cavity of athymic Balb/c nude mice. Tumor cells replaced marrow cells in the bone cavity, invaded adjacent bone and muscle tissues, and formed a palpable tumor at the hip joint. PC-3/IF cell lines, generated from bone tumors by serial in vivo passages, grew with faster kinetics in the femur and metastasized to inguinal lymph nodes. Established tumors were treated with systemic interleukin-2 (IL-2) injections. IL-2 significantly inhibited the formation of palpable tumors and prolonged mouse survival at nontoxic low doses. Histologically IL-2 caused vascular damage and infiltration of polymorphonuclear cells and lymphocytes in the tumor as well as necrotic areas with apoptotic cells. These findings suggest destruction of tumor cells by systemic IL-2 therapy and IL-2 responsiveness of prostate carcinoma bone tumors.

  19. Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth

    PubMed Central

    Shukla, Surendra K.; Dasgupta, Aneesha; Mehla, Kamiya; Gunda, Venugopal; Vernucci, Enza; Souchek, Joshua; Goode, Gennifer; King, Ryan; Mishra, Anusha; Rai, Ibha; Nagarajan, Sangeetha; Chaika, Nina V.; Yu, Fang; Singh, Pankaj K.

    2015-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the US. Cancer-associated cachexia is present in up to 80% of PDAC patients and is associated with aggressive disease and poor prognosis. In the present studies we evaluated an anti-cancer natural product silibinin for its effectiveness in targeting pancreatic cancer aggressiveness and the cachectic properties of pancreatic cancer cells and tumors. Our results demonstrate that silibinin inhibits pancreatic cancer cell growth in a dose-dependent manner and reduces glycolytic activity of cancer cells. Our LC-MS/MS based metabolomics data demonstrates that silibinin treatment induces global metabolic reprogramming in pancreatic cancer cells. Silibinin treatment diminishes c-MYC expression, a key regulator of cancer metabolism. Furthermore, we observed reduced STAT3 signaling in silibinin-treated cancer cells. Overexpression of constitutively active STAT3 was sufficient to substantially revert the silibinin-induced downregulation of c-MYC and the metabolic phenotype. Our in vivo investigations demonstrate that silibinin reduces tumor growth and proliferation in an orthotopic mouse model of pancreatic cancer and prevents the loss of body weight and muscle. It also improves physical activity including grip strength and latency to fall in tumor-bearing mice. In conclusion, silibinin-induced metabolic reprogramming diminishes cell growth and cachectic properties of pancreatic cancer cells and animal models. PMID:26510913

  20. Silibinin-mediated metabolic reprogramming attenuates pancreatic cancer-induced cachexia and tumor growth.

    PubMed

    Shukla, Surendra K; Dasgupta, Aneesha; Mehla, Kamiya; Gunda, Venugopal; Vernucci, Enza; Souchek, Joshua; Goode, Gennifer; King, Ryan; Mishra, Anusha; Rai, Ibha; Nagarajan, Sangeetha; Chaika, Nina V; Yu, Fang; Singh, Pankaj K

    2015-12-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths in the US. Cancer-associated cachexia is present in up to 80% of PDAC patients and is associated with aggressive disease and poor prognosis. In the present studies we evaluated an anti-cancer natural product silibinin for its effectiveness in targeting pancreatic cancer aggressiveness and the cachectic properties of pancreatic cancer cells and tumors. Our results demonstrate that silibinin inhibits pancreatic cancer cell growth in a dose-dependent manner and reduces glycolytic activity of cancer cells. Our LC-MS/MS based metabolomics data demonstrates that silibinin treatment induces global metabolic reprogramming in pancreatic cancer cells. Silibinin treatment diminishes c-MYC expression, a key regulator of cancer metabolism. Furthermore, we observed reduced STAT3 signaling in silibinin-treated cancer cells. Overexpression of constitutively active STAT3 was sufficient to substantially revert the silibinin-induced downregulation of c-MYC and the metabolic phenotype. Our in vivo investigations demonstrate that silibinin reduces tumor growth and proliferation in an orthotopic mouse model of pancreatic cancer and prevents the loss of body weight and muscle. It also improves physical activity including grip strength and latency to fall in tumor-bearing mice. In conclusion, silibinin-induced metabolic reprogramming diminishes cell growth and cachectic properties of pancreatic cancer cells and animal models.

  1. Orthotopic mouse models of tumor metastasis expressing fluorescent reporters produce imageable circulating tumor cells.

    PubMed

    Hoffman, Robert M

    2014-12-01

    Circulating tumor cells (CTC) are of high importance, since they are potential metastatic precursors and are readily available for prognostic analysis and treatment testing. In this review, we demonstrate the great power that green fluorescent protein (GFP) labeling and orthotopic mouse models of cancer confer to the study of CTCs for isolation and characterization, including metastatic testing in mice and the chick embryo as well as drug response testing in vitro. We also describe a facile method to label patient CTCs ex vivo using a telomerase-expressing GFP-containing adenovirus that will allow the CTC studies described in this review to be translated clinically.

  2. Noninvasive photoacoustic computed tomography of mouse brain metabolism in vivo

    PubMed Central

    Yao, Junjie; Xia, Jun; Maslov, Konstantin I.; Nasiriavanaki, Mohammadreza; Tsytsarev, Vassiliy; Demchenko, Alexei V.; Wang, Lihong V.

    2012-01-01

    We have demonstrated the feasibility of imaging mouse brain metabolism using photoacoustic computed tomography (PACT), a fast, noninvasive and functional imaging modality with optical contrast and acoustic resolution. Brain responses to forepaw stimulations were imaged transdermally and transcranially. 2-NBDG, which diffuses well across the blood-brain-barrier, provided exogenous contrast for photoacoustic imaging of glucose response. Concurrently, hemoglobin provided endogenous contrast for photoacoustic imaging of hemodynamic response. Glucose and hemodynamic responses were quantitatively decoupled by using two-wavelength measurements. We found that glucose uptake and blood perfusion around the somatosensory region of the contralateral hemisphere were both increased by stimulations, indicating elevated neuron activity. While the glucose response area was more homogenous and confined within the somatosensory region, the hemodynamic response area had a clear vascular pattern and spread wider than the somatosensory region. Our results demonstrate that 2-NBDG-enhanced PACT is a promising tool for noninvasive studies of brain metabolism. PMID:22940116

  3. Targeting tissue factor on tumor vascular endothelial cells and tumor cells for immunotherapy in mouse models of prostatic cancer.

    PubMed

    Hu, Z; Garen, A

    2001-10-09

    The efficacy and safety of an immunoconjugate (icon) molecule, composed of a mutated mouse factor VII (mfVII) targeting domain and the Fc effector domain of an IgG1 Ig (mfVII/Fc icon), was tested with a severe combined immunodeficient (SCID) mouse model of human prostatic cancer and an immunocompetent mouse model of mouse prostatic cancer. The SCID mice were first injected s.c. with a human prostatic tumor line, forming a skin tumor that produces a high blood titer of prostate-specific antigen and metastasizes to bone. The icon was encoded in a replication-incompetent adenoviral vector that was injected directly into the skin tumor. The tumor cells infected by the vector synthesize and secrete the icon into the blood, and the blood-borne icon binds with high affinity and specificity to mouse tissue factor expressed on endothelial cells lining the lumen of the tumor vasculature and to human tissue factor expressed on the tumor cells. The Fc domain of the icon activates a cytolytic immune attack against cells that bind the icon. The immunotherapy tests in SCID mice demonstrated that intratumoral injections of the adenoviral vector encoding the mfVII/human Fc icon resulted in long-term regression of the injected human prostatic tumor and also of a distant uninjected tumor, without associated toxicity to the mice. Comparable results were obtained with a SCID mouse model of human melanoma. At the end of the experiments the mice appeared to be free of viable tumor cells. This protocol also could be efficacious for treating cancer patients who have vascularized tumors.

  4. Chronic alcohol intake promotes tumor growth in a diethylnitrosamine-induced hepatocarcinogenesis mouse model through increased Wnt/Beta-catenin signaling

    USDA-ARS?s Scientific Manuscript database

    Ethanol (EtOH) metabolism is involved in both initiating and promoting mechanisms in hepatocellular carcinoma progression in chronic alcoholics. In this study, we developed a mouse model to test the hypothesis that chronic EtOH consumption promotes tumor growth irrespective of EtOH-related initiati...

  5. Bone metabolism: a note on the significance of mouse models.

    PubMed

    Raska, O; Bernásková, K; Raska, I

    2009-01-01

    This minireview briefly surveys the complexity of regulations governing the bone metabolism. The impact of clinical studies devoted to osteoporosis is briefly summarized and the emphasis is put on the significance of experimental mouse models based on an extensive use of genetically modified animals. Despite possible arising drawbacks, the studies in mice are of prime importance for expanding our knowledge on bone metabolism. With respect to human physiology and medicine, one should be always aware of possible limitations as the experimental results may not be, or may be only to some extent, transposed to humans. If applicable to humans, results obtained in mice provide new clues for assessing unforeseen treatment strategies for patients. A recent publication representing in our opinion the important breakthrough in the field of bone metabolism in mice is commented in detail. It provides an evidence that skeleton is endocrine organ that affects energy metabolism and osteocalcin, a protein specifically synthesized and secreted by osteoblasts, is a hormone involved. If confirmed by other groups and applicable to humans, this study provides the awaited connection of long duration between bone disorders on one hand and obesity and diabetes on the other.

  6. Mitochondrial metabolism and energy sensing in tumor progression.

    PubMed

    Iommarini, Luisa; Ghelli, Anna; Gasparre, Giuseppe; Porcelli, Anna Maria

    2017-02-14

    Energy homeostasis is pivotal for cell fate since metabolic regulation, cell proliferation and death are strongly dependent on the balance between catabolic and anabolic pathways. In particular, metabolic and energetic changes have been observed in cancer cells even before the discovery of oncogenes and tumor suppressors, but have been neglected for a long time. Instead, during the past 20years a renaissance of the study of tumor metabolism has led to a revised and more accurate sight of the metabolic landscape of cancer cells. In this scenario, genetic, biochemical and clinical evidences place mitochondria as key actors in cancer metabolic restructuring, not only because there are energy and biosynthetic intermediates manufacturers, but also because occurrence of mutations in metabolic enzymes encoded by both nuclear and mitochondrial DNA has been associated to different types of cancer. Here we provide an overview of the possible mechanisms modulating mitochondrial energy production and homeostasis in the intriguing scenario of neoplastic cells, focusing on the double-edged role of 5'-AMP activated protein kinase in cancer metabolism. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.

  7. Metabolic reprogramming of carcinoma-associated fibroblasts and its impact on metabolic heterogeneity of tumors.

    PubMed

    Wu, Duojiao; Zhuo, Leying; Wang, Xiangdong

    2017-04-01

    Tumor metabolism is characterized with up-regulated glucose uptake and glycolytic rate of tumor cells as the source of ATP and tumors growth, and regulated by a poorly defined combination of cell-intrinsic and extrinsic factors. Metabolic heterogeneity of human tumors is dependent upon the mutational status of specific oncogenes and influenced by tumor microenvironment. Carcinoma-associated fibroblasts (CAFs) adapt in a dynamic manner to the metabolic needs of cancer cells, associated with tumorigenesis and resistance to treatments. Importantly, CAFs could directly "feed" cancer cells essential nutrients and energy-rich metabolites, including lactate, ketone bodies, fatty acids, glutamine, and other amino acids through the induction of autophagy in a host-parasite pattern, to contribute to tumor growth and metastasis. To define the reciprocal metabolic interplay between CAFs and cancer cells will provide a better understanding of molecular mechanisms by which the treatment resistance occurs,and aid in the rational design of metabolism-based approaches to enhance the efficacy of immunotherapy.

  8. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    USDA-ARS?s Scientific Manuscript database

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate tha...

  9. Signal transduction and metabolic changes during tumor cell apoptosis following phthalocyanine-sensitized photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Agarwal, Munna L.; Berger, Nathan A.; Cheng, Ming-Feng; Chatterjee, Satadel; He, Jin; Kenney, Malcolm E.; Larkin, Hedy E.; Mukhter, Hasan; Rihter, Boris D.; Zaidi, Syed I. A.

    1993-06-01

    Mechanisms of cell death have been explored in cells and tumors treated with photodynamic therapy (PDT). Photosensitizers used for these studies were Photofrin, tetrasulfonated and nonsulfonated aluminum phthalocyanine, and a new silicon phthalocyanine [SiPc(OH)OSi(CH3)2(CH2)3N(CH3)2], referred to as PcIV. In mouse lymphoma L5178Y cells, a dose of PDT sensitized by PcIV which causes a 90% loss of cell survival induces apoptosis (programmed cell death) over a several-hour time course, beginning within 10 minutes of irradiation. Apoptosis is a metabolic process initiated by PDT-induced damage to membranes and triggered by the activation of phospholipases A2 and C and the release of Ca++ from intracellular stores. An endogenous endonuclease is activated and cleaves nuclear DNA in the internucleosomal region of chromatin. Subsequent metabolic events now appear to cause the loss of cellular NAD and ATP, the former a result of the activation of a second nuclear enzyme, poly(ADP-ribose) polymerase, by the endonucleolytically generated DNA strand breaks. Loss of ATP follows upon the loss of NAD needed for energy metabolism. Although the induction of apoptosis is efficiently produced by direct PDT damage to L5178Y cells, we now find that apoptosis is also produced by treatment of certain other lymphoid-derived cells and cells of epithelial origin. Under the limited set of conditions tested, there was no evidence for PDT-induced apoptosis in a fibroblast cell line, in mouse fibrosarcoma RIF-1 and L929 cells, in human adenocarcinoma A549 cells, or in human squamous cell carcinoma cells in culture. The evidence suggests that apoptosis, a form of metabolic cell death, is an important mechanism of tumor ablation in PDT-treated tumors, and that the induction of apoptosis may involve the interaction of direct PDT damage to malignant cells with factors produced by PDT action on vascular and other host cells.

  10. Targeting lactate dehydrogenase-A inhibits tumorigenesis and tumor progression in mouse models of lung cancer and impacts tumor initiating cells

    PubMed Central

    Xie, Han; Hanai, Jun-ichi; Ren, Jian-Guo; Kats, Lev; Burgess, Kerri; Bhargava, Parul; Signoretti, Sabina; Billiard, Julia; Duffy, Kevin J.; Grant, Aaron; Wang, Xiaoen; Lorkiewicz, Pawel K.; Schatzman, Sabrina; Bousamra, Michael; Lane, Andrew N.; Higashi, Richard M.; Fan, Teresa W.M.; Pandolfi, Pier Paolo; Sukhatme, Vikas P.; Seth, Pankaj

    2014-01-01

    Summary The lactate dehydrogenase-A (LDH-A) enzyme catalyzes the inter-conversion of pyruvate and lactate, is upregulated in human cancers and is associated with aggressive tumor outcomes. Here we use a novel inducible murine model and demonstrate that inactivation of LDH-A in mouse models of NSCLC driven by oncogenic K-RAS or EGFR leads to decreased tumorigenesis and disease regression in established tumors. We also show that abrogation of LDH-A results in reprogramming of pyruvate metabolism, with decreased lactic fermentation in vitro, in vivo, and ex vivo. This was accompanied by re-activation of mitochondrial function in vitro but not in vivo or ex vivo. Finally, using a specific small molecule LDH-A inhibitor, we demonstrated that LDH-A is essential for cancer initiating cell survival and proliferation. Thus, LDH-A can be a viable therapeutic target for NSCLC including cancer stem cell-dependent drug resistant tumors. PMID:24726384

  11. Pericentriolar Targeting of the Mouse Mammary Tumor Virus GAG Protein

    PubMed Central

    Zhang, Guangzhi; Sharon, David; Jovel, Juan; Liu, Lei; Wine, Eytan; Tahbaz, Nasser; Indik, Stanislav; Mason, Andrew

    2015-01-01

    The Gag protein of the mouse mammary tumor virus (MMTV) is the chief determinant of subcellular targeting. Electron microscopy studies show that MMTV Gag forms capsids within the cytoplasm and assembles as immature particles with MMTV RNA and the Y box binding protein-1, required for centrosome maturation. Other betaretroviruses, such as Mason-Pfizer monkey retrovirus (M-PMV), assemble adjacent to the pericentriolar region because of a cytoplasmic targeting and retention signal in the Matrix protein. Previous studies suggest that the MMTV Matrix protein may also harbor a similar cytoplasmic targeting and retention signal. Herein, we show that a substantial fraction of MMTV Gag localizes to the pericentriolar region. This was observed in HEK293T, HeLa human cell lines and the mouse derived NMuMG mammary gland cells. Moreover, MMTV capsids were observed adjacent to centrioles when expressed from plasmids encoding either MMTV Gag alone, Gag-Pro-Pol or full-length virus. We found that the cytoplasmic targeting and retention signal in the MMTV Matrix protein was sufficient for pericentriolar targeting, whereas mutation of the glutamine to alanine at position 56 (D56/A) resulted in plasma membrane localization, similar to previous observations from mutational studies of M-PMV Gag. Furthermore, transmission electron microscopy studies showed that MMTV capsids accumulate around centrioles suggesting that, similar to M-PMV, the pericentriolar region may be a site for MMTV assembly. Together, the data imply that MMTV Gag targets the pericentriolar region as a result of the MMTV cytoplasmic targeting and retention signal, possibly aided by the Y box protein-1 required for the assembly of centrosomal microtubules. PMID:26121257

  12. Quantitative protein profiling of tumor angiogenesis and metastasis biomarkers in mouse and human models

    USDA-ARS?s Scientific Manuscript database

    Tumor and stromal cells secrete a variety of proteins acting as extracellular signals and creating a supportive microenvironment for tumor development, angiogenesis, and metastasis. We used the Luminex immunoassay platform (including MILLIPLEX® MAP cytokine/chemokine, bone metabolism, adipocyte, M...

  13. Tumor stroma interaction is mediated by monocarboxylate metabolism.

    PubMed

    Patel, Brijesh B; Ackerstaff, Ellen; Serganova, Inna S; Kerrigan, John E; Blasberg, Ronald G; Koutcher, Jason A; Banerjee, Debabrata

    2017-03-01

    Human breast tumors contain significant amounts of stromal cells. There exists strong evidence that these stromal cells support cancer development and progression by altering various pathways (e.g. downregulation of tumor suppressor genes or autocrine signaling loops). Here, we suggest that stromal carcinoma-associated fibroblasts (CAFs), shown to be generated from bone marrow-derived mesenchymal stem cells, may (i) recycle tumor-derived lactate for their own energetic requirements, thereby sparing glucose for neighboring glycolytic tumor cells, and (ii) subsequently secrete surplus energetically and biosynthetically valuable metabolites of lactate oxidation, such as pyruvate, to support tumor growth. Lactate, taken up by stromal CAFs, is converted to pyruvate, which is then utilized by CAFs for energy needs as well as excreted and shared with tumor cells. We have interrogated lactate oxidation in CAFs to determine what metabolites may be secreted, and how they may affect the metabolism and growth of MDA-MB-231 breast cancer cells. We found that CAFs secrete pyruvate as a metabolite of lactate oxidation. Further, we show that pyruvate is converted to lactate to promote glycolysis in MDA-MB-231 cells and helps to control elevated ROS levels in these tumor cells. Finally, we found that inhibiting or interfering with ROS management, using the naturally occurring flavonoid phloretin (found in apple tree leaves), adds to the cytotoxicity of the conventional chemotherapeutic agent doxorubicin. Our work demonstrates that a lactate-pyruvate, reciprocally-supportive metabolic relationship may be operative within the tumor microenvironment (TME) to support tumor growth, and may be a useful drug target.

  14. Nonselective expression of simian virus 40 large tumor antigen fragments in mouse cells.

    PubMed Central

    Reddy, V B; Tevethia, S S; Tevethia, M J; Weissman, S M

    1982-01-01

    To understand the role of various functional domains of simian virus 40 early tumor antigens, we have cloned and introduced into mouse cells portions of early simian virus 40 DNA. Two types of truncated large tumor antigen (33 and 12.3 kilodaltons), as well as small tumor antigen, were identified by immunoprecipitation. Both truncated large tumor antigens have been found to be overproduced with respect to the small tumor antigen, although the 12.3-kilodalton truncated large tumor antigen was more stable than the 33-kilodalton one. Nonviral 53-kilodalton protein was not found associated with either truncated large tumor antigen in immunoprecipitations. Images PMID:6281793

  15. [Observation on the growth and metastasis of cross-strain transplanted tumors in different mouse strains].

    PubMed

    Gu, Bei; Feng, Hai-Liang; Liu, Yu-qin

    2013-07-01

    Mouse tumors were subcutaneously transplanted into different mouse strains and their growth and metastatic properties were checked, to explore the possibility of establishing animal tumor models in different mouse strains other than their normal host strains. Seven mouse tumor cell lines: H22, S180, U14, FC, Ca761, SMG-A and DCS were transplanted into C57BL/6J, ICR or KM mice, and their tumorigenicity, growth and metastasis were recorded and analyzed. The tumor formation rate of H22 cells in both the C57BL/6J and ICR mice was 100%, but the growth of H22 tumors was significantly faster in the C57BL/6J (2.8 ± 0.4)g than in the ICR mice (1.5 ± 0.5)g at the 17th day after transplantation (P<0.001). The S180 tumors grew stably in C57BL/6J mice and the tumor formation rate was 100%. The U14 inoculated into C57BL/6J and KM mice showed both lymphatic and lung metastasis and formed significantly larger tumors in KM mice [(12.6 ± 3.4)g] than that in the C57BL/6J mice [(10.2 ± 2.2)g] on the 32rd day after transplantation (P = 0.002). Transplantation of FC, Ca761, and SMG-A did not form tumors or the tumors were completely regressed later in C57BL/6J mice. DCS cells formed tumors in C57BL/6J mice, but some of the tumors regressed. The retained tumors were passaged in C57BL/6J mice, and the substrain DCS-C57 cells was established which showed stable growth and had a 100% tumor formation rate and 100% lung metastasis rate in C57BL/6J mice. Cross-strain transplanted tumors can be successfully established by inoculation of poorly differentiated and highly malignant tumor cells into different mouse strains. Some highly immunogenic tumor cells may form tumor, however, the tumors are regressed later, and can not establish cross-strain transplanted tumors in other mouse strains. Stable transplanted tumor models can be obtained from the partially regressed tumors after continuous passages in vivo.

  16. A model of Ustilago maydis leaf tumor metabolism

    PubMed Central

    Horst, Robin J; Doehlemann, Gunther; Wahl, Ramon; Hofmann, Jörg; Schmiedl, Alfred; Kahmann, Regine; Kämper, Jörg

    2010-01-01

    Extensive progress has been made in the last years in unraveling molecular mechanisms of plant-pathogen interactions. Although the main research focus lies on defense and counter-defense mechanisms, some plant-pathogen interactions have been characterized on the physiological level. Only a few studies have focused on the nutrient acquisition strategies of phytopathogens. In a previous study, we analyzed how local infection of maize leaves by the tumor-inducing fungus Ustilago maydis affects whole plant physiology and were able to show that carbon and nitrogen assimilates are rerouted to the tumor. While the sink strength of infected emerging young leaves increases with tumor development, systemic source leaves exhibit elevated export of assimilates and delayed senescence to compensate for the altered sink-source balance. Here we provide new experimental data on the metabolization of these assimilates in the tumor and propose a model on their utilization in the infected tissue. PMID:21051942

  17. Transcriptional Profiling Reveals a Common Metabolic Program in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells.

    PubMed

    Liu, Mengling; Xia, Yingfeng; Ding, Jane; Ye, Bingwei; Zhao, Erhu; Choi, Jeong-Hyeon; Alptekin, Ahmet; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Yang, Liqun; Cui, Hongjuan; Zha, Yunhong; Ding, Han-Fei

    2016-10-04

    High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here, we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of the TH-MYCN mouse, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. mTOR links oncogenic signaling to tumor cell metabolism.

    PubMed

    Yecies, Jessica L; Manning, Brendan D

    2011-03-01

    As a key regulator of cell growth and proliferation, the mammalian target of rapamycin (mTOR) complex 1 (mTORC1) has been the subject of intense investigation for its role in tumor development and progression. This research has revealed a signaling network of oncogenes and tumor suppressors lying upstream of mTORC1, and oncogenic perturbations to this network result in the aberrant activation of this kinase complex in the majority of human cancers. However, the molecular events downstream of mTORC1 contributing to tumor cell growth and proliferation are just coming to light. In addition to its better-known functions in promoting protein synthesis and suppressing autophagy, mTORC1 has emerged as a key regulator of cellular metabolism. Recent studies have found that mTORC1 activation is sufficient to stimulate an increase in glucose uptake, glycolysis, and de novo lipid biosynthesis, which are considered metabolic hallmarks of cancer, as well as the pentose phosphate pathway. Here, we focus on the molecular mechanisms of metabolic regulation by mTORC1 and the potential consequences for anabolic tumor growth and therapeutic strategies.

  19. Metabolic origins of spatial organization in the tumor microenvironment

    PubMed Central

    Carmona-Fontaine, Carlos; Akkari, Leila; Thompson, Craig B.; Joyce, Johanna A.; Xavier, Joao B.

    2017-01-01

    The genetic and phenotypic diversity of cells within tumors is a major obstacle for cancer treatment. Because of the stochastic nature of genetic alterations, this intratumoral heterogeneity is often viewed as chaotic. Here we show that the altered metabolism of cancer cells creates predictable gradients of extracellular metabolites that orchestrate the phenotypic diversity of cells in the tumor microenvironment. Combining experiments and mathematical modeling, we show that metabolites consumed and secreted within the tumor microenvironment induce tumor-associated macrophages (TAMs) to differentiate into distinct subpopulations according to local levels of ischemia and their position relative to the vasculature. TAMs integrate levels of hypoxia and lactate into progressive activation of MAPK signaling that induce predictable spatial patterns of gene expression, such as stripes of macrophages expressing arginase 1 (ARG1) and mannose receptor, C type 1 (MRC1). These phenotypic changes are functionally relevant as ischemic macrophages triggered tube-like morphogenesis in neighboring endothelial cells that could restore blood perfusion in nutrient-deprived regions where angiogenic resources are most needed. We propose that gradients of extracellular metabolites act as tumor morphogens that impose order within the microenvironment, much like signaling molecules convey positional information to organize embryonic tissues. Unearthing embryology-like processes in tumors may allow us to control organ-like tumor features such as tissue repair and revascularization and treat intratumoral heterogeneity. PMID:28246332

  20. Ultrasound-guided direct delivery of 3-bromopyruvate blocks tumor progression in an orthotopic mouse model of human pancreatic cancer.

    PubMed

    Ota, Shinichi; Geschwind, Jean-Francois H; Buijs, Manon; Wijlemans, Joost W; Kwak, Byung Kook; Ganapathy-Kanniappan, Shanmugasundaram

    2013-06-01

    Studies in animal models of cancer have demonstrated that targeting tumor metabolism can be an effective anticancer strategy. Previously, we showed that inhibition of glucose metabolism by the pyruvate analog, 3-bromopyruvate (3-BrPA), induces anticancer effects both in vitro and in vivo. We have also documented that intratumoral delivery of 3-BrPA affects tumor growth in a subcutaneous tumor model of human liver cancer. However, the efficacy of such an approach in a clinically relevant orthotopic tumor model has not been reported. Here, we investigated the feasibility of ultrasound (US) image-guided delivery of 3-BrPA in an orthotopic mouse model of human pancreatic cancer and evaluated its therapeutic efficacy. In vitro, treatment of Panc-1 cells with 3-BrPA resulted in a dose-dependent decrease in cell viability. The loss of viability correlated with a dose-dependent decrease in the intracellular ATP level and lactate production confirming that disruption of energy metabolism underlies these 3-BrPA-mediated effects. In vivo, US-guided delivery of 3-BrPA was feasible and effective as demonstrated by a marked decrease in tumor size on imaging. Further, the antitumor effect was confirmed by (1) a decrease in the proliferative potential by Ki-67 immunohistochemical staining and (2) the induction of apoptosis by terminal deoxynucleotidyl transferase-mediated deoxyuridine 5-triphospate nick end labeling staining. We therefore demonstrate the technical feasibility of US-guided intratumoral injection of 3-BrPA in a mouse model of human pancreatic cancer as well as its therapeutic efficacy. Our data suggest that this new therapeutic approach consisting of a direct intratumoral injection of antiglycolytic agents may represent an exciting opportunity to treat patients with pancreas cancer.

  1. Targeting Unique Metabolic Properties of Breast Tumor Initiating Cells

    PubMed Central

    Feng, Weiguo; Gentles, Andrew; Nair, Ramesh V.; Huang, Min; Lin, Yuan; Lee, Cleo Y.; Cai, Shang; Scheeren, Ferenc A.; Kuo, Angera H.; Diehn, Maximilian

    2014-01-01

    Normal stem cells from a variety of tissues display unique metabolic properties compared to their more differentiated progeny. However, relatively little is known about heterogeneity of metabolic properties cancer stem cells, also called tumor initiating cells (TICs). In this study we show that, analogous to some normal stem cells, breast TICs have distinct metabolic properties compared to non-tumorigenic cancer cells (NTCs). Transcriptome profiling using RNA-Seq revealed TICs under-express genes involved in mitochondrial biology and mitochondrial oxidative phosphorylation and metabolic analyses revealed TICs preferentially perform glycolysis over oxidative phosphorylation compared to NTCs. Mechanistic analyses demonstrated that decreased expression and activity of pyruvate dehydrogenase (Pdh), a key regulator of oxidative phosphorylation, play a critical role in promoting the pro-glycolytic phenotype of TICs. Metabolic reprogramming via forced activation of Pdh preferentially eliminates TICs both in vitro and in vivo. Our findings reveal unique metabolic properties of TICs and demonstrate that metabolic reprogramming represents a promising strategy for targeting these cells. PMID:24497069

  2. Tumor bioenergetics: An emerging avenue for cancer metabolism targeted therapy

    PubMed Central

    Kee, Hyun Jung; Cheong, Jae-Ho

    2014-01-01

    Cell proliferation is a delicately regulated process that couples growth signals and metabolic demands to produce daughter cells. Interestingly, the proliferation of tumor cells immensely depends on glycolysis, the Warburg effect, to ensure a sufficient amount of metabolic flux and bioenergetics for macromolecule synthesis and cell division. This unique metabolic derangement ould provide an opportunity for developing cancer therapeutic strategy, particularly when other diverse anti-cancer treatments have been proved ineffective in achieving durable response, largely due to the emergence of resistance. Recent advances in deeper understanding of cancer metabolism usher in new horizons of the next generation strategy for cancer therapy. Here, we discuss the focused review of cancer energy metabolism, and the therapeutic exploitation of glycolysis and OXPHOS as a novel anti-cancer strategy, with particular emphasis on the promise of this approach, among other cancer metabolism targeted therapies that reveal unexpected complexity and context-dependent metabolic adaptability, complicating the development of effective strategies. [BMB Reports 2014; 47(3): 158-166] PMID:24499670

  3. Inositol hexaphosphate inhibits tumor growth, vascularity, and metabolism in TRAMP mice: a multiparametric magnetic resonance study.

    PubMed

    Raina, Komal; Ravichandran, Kameswaran; Rajamanickam, Subapriya; Huber, Kendra M; Serkova, Natalie J; Agarwal, Rajesh

    2013-01-01

    Herein, employing anatomical and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), we evaluated noninvasively, the in vivo, chemopreventive efficacy of inositol hexaphosphate (IP6), a major constituent of high-fiber diets, against prostate tumor growth and progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Male TRAMP mice, beginning at 4 weeks of age, were fed with 1%, 2%, or 4% (w/v) IP6 in drinking water or only drinking water till 28 weeks of age and monitored using MRI over the course of study. Longitudinal assessment of prostate volumes by conventional MRI and tumor vascularity by gadolinium-based DCE-MRI showed a profound reduction in tumor size, partly due to antiangiogenic effects by IP6 treatment. As potential mechanisms of IP6 efficacy, decrease in the expression of glucose transporter GLUT-4 protein together with an increase in levels of phospho-AMP-activated kinase (AMPK(Th172)) were observed in prostate tissues of mice from IP6 fed-groups, suggesting that IP6 is interfering with the metabolic events occurring in TRAMP prostate. Investigative metabolomics study using quantitative high-resolution (1)H-NMR on prostate tissue extracts showed that IP6 significantly decreased glucose metabolism and membrane phospholipid synthesis, in addition to causing an increase in myoinositol levels in the prostate. Together, these findings show that oral IP6 supplement blocks growth and angiogenesis of prostate cancer in the TRAMP model in conjunction with metabolic events involved in tumor sustenance. This results in energy deprivation within the tumor, suggesting a practical and translational potential of IP6 treatment in suppressing growth and progression of prostate cancer in humans. ©2012 AACR.

  4. Inositol Hexaphosphate Inhibits Tumor Growth, Vascularity, and Metabolism in TRAMP Mice: A Multiparametric Magnetic Resonance Study

    PubMed Central

    Raina, Komal; Ravichandran, Kameswaran; Rajamanickam, Subapriya; Huber, Kendra M.; Serkova, Natalie. J.; Agarwal, Rajesh

    2012-01-01

    Herein, employing anatomical and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), we evaluated non-invasively, the in vivo, chemopreventive efficacy of inositol hexaphosphate (IP6), a major constituent of high fiber diets, against prostate tumor growth and progression in transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Male TRAMP mice, beginning 4 weeks of age, were fed with 1, 2 or 4% (w/v) IP6 in drinking water or only drinking water till 28 weeks of age and monitored using MRI over the course of study. Longitudinal assessment of prostate volumes by conventional MRI and tumor vascularity by gadolinium-based DCE-MRI showed a profound reduction in tumor size partly due to anti-angiogenic effects by IP6 treatment. As potential mechanisms of IP6 efficacy, decrease in the expression of glucose transporter GLUT-4 protein together with an increase in levels of phospho-AMP-activated kinase (AMPKTh172) were observed in prostate tissues of mice from IP6 fed-groups, suggesting that IP6 is interfering with the metabolic events occurring in TRAMP prostate. Investigative metabolomics study utilizing quantitative high-resolution 1H-NMR on prostate tissue extracts showed that IP6 significantly decreased glucose metabolism and membrane phospholipid synthesis, in addition to causing an increase in myo-inositol levels in the prostate. Together, these findings show that oral IP6 supplement blocks PCa growth and angiogenesis in TRAMP model in conjunction with metabolic events involved in tumor sustenance. This results in energy deprivation within the tumor, suggesting a practical and translational potential of IP6 treatment in suppressing growth and progression of prostate cancer in humans. PMID:23213071

  5. Butyrate-rich Colonic Microenvironment Is a Relevant Selection Factor for Metabolically Adapted Tumor Cells*

    PubMed Central

    Serpa, Jacinta; Caiado, Francisco; Carvalho, Tânia; Torre, Cheila; Gonçalves, Luís G.; Casalou, Cristina; Lamosa, Pedro; Rodrigues, Margarida; Zhu, Zhenping; Lam, Eric W. F.; Dias, Sérgio

    2010-01-01

    The short chain fatty acid (SCFA) buyrate is a product of colonic fermentation of dietary fibers. It is the main source of energy for normal colonocytes, but cannot be metabolized by most tumor cells. Butyrate also functions as a histone deacetylase (HDAC) inhibitor to control cell proliferation and apoptosis. In consequence, butyrate and its derived drugs are used in cancer therapy. Here we show that aggressive tumor cells that retain the capacity of metabolizing butyrate are positively selected in their microenvironment. In the mouse xenograft model, butyrate-preselected human colon cancer cells gave rise to subcutaneous tumors that grew faster and were more angiogenic than those derived from untreated cells. Similarly, butyrate-preselected cells demonstrated a significant increase in rates of homing to the lung after intravenous injection. Our data showed that butyrate regulates the expression of VEGF and its receptor KDR at the transcriptional level potentially through FoxM1, resulting in the generation of a functional VEGF:KDR autocrine growth loop. Cells selected by chronic exposure to butyrate express higher levels of MMP2, MMP9, α2 and α3 integrins, and lower levels of E-cadherin, a marker for epithelial to mesenchymal transition. The orthotopic model of colon cancer showed that cells preselected by butyrate are able to colonize the animals locally and at distant organs, whereas control cells can only generate a local tumor in the cecum. Together our data shows that a butyrate-rich microenvironment may select for tumor cells that are able to metabolize butyrate, which are also phenotypically more aggressive. PMID:20926374

  6. Effect of Pantethine on Ovarian Tumor Progression and Choline Metabolism

    PubMed Central

    Penet, Marie-France; Krishnamachary, Balaji; Wildes, Flonne; Mironchik, Yelena; Mezzanzanica, Delia; Podo, Franca; de Reggi, Max; Gharib, Bouchra; Bhujwalla, Zaver M.

    2016-01-01

    Epithelial ovarian cancer remains the leading cause of death from gynecologic malignancy among women in developed countries. New therapeutic strategies evaluated with relevant preclinical models are urgently needed to improve survival rates. Here, we have assessed the effect of pantethine on tumor growth and metabolism using magnetic resonance imaging and high-resolution proton magnetic resonance spectroscopy (MRS) in a model of ovarian cancer. To evaluate treatment strategies, it is important to use models that closely mimic tumor growth in humans. Therefore, we used an orthotopic model of ovarian cancer where a piece of tumor tissue, derived from an ovarian tumor xenograft, is engrafted directly onto the ovary of female mice, to maintain the tumor physiological environment. Treatment with pantethine, the precursor of vitamin B5 and active moiety of coenzyme A, was started when tumors were ~100 mm3 and consisted of a daily i.p. injection of 750 mg/kg in saline. Under these conditions, no side effects were observed. High-resolution 1H MRS was performed on treated and control tumor extracts. A dual-phase extraction method based on methanol/chloroform/water was used to obtain lipid and water-soluble fractions from the tumors. We also investigated effects on metastases and ascites formation. Pantethine treatment resulted in slower tumor progression, decreased levels of phosphocholine and phosphatidylcholine, and reduced metastases and ascites occurrence. In conclusion, pantethine represents a novel potential, well-tolerated, therapeutic tool in patients with ovarian cancer. Further in vivo preclinical studies are needed to confirm the beneficial role of pantethine and to better understand its mechanism of action. PMID:27900284

  7. [Metabolism inhibition stimulates, metabolism activation inhibits cancerogenic activity of ortho-aminoazotoluene in mouse liver].

    PubMed

    Kaledin, V I; Il'nitskaia, S I

    2011-01-01

    Pentachlorophenol, an inhibitor of metabolic activation of aminoazo dyes was administered to suckling mice prior to o-aminoazotoluene (OAT). It was followed by formation of numerous preneoplastic nodules and tumors in the lungs and liver. At the same time, 2,3,7,8-tetrachlorodibenzo-p-dioxine treatment decreased their number in the liver while slightly increasing them in the lung. A possible mechanism of aminoazo dye carcinogenicity is suggested.

  8. Quantifying Metabolic Heterogeneity in Head and Neck Tumors in Real Time: 2-DG Uptake Is Highest in Hypoxic Tumor Regions

    PubMed Central

    Nakajima, Erica C.; Laymon, Charles; Oborski, Matthew; Hou, Weizhou; Wang, Lin; Grandis, Jennifer R.; Ferris, Robert L.; Mountz, James M.; Van Houten, Bennett

    2014-01-01

    Purpose Intratumoral metabolic heterogeneity may increase the likelihood of treatment failure due to the presence of a subset of resistant tumor cells. Using a head and neck squamous cell carcinoma (HNSCC) xenograft model and a real-time fluorescence imaging approach, we tested the hypothesis that tumors are metabolically heterogeneous, and that tumor hypoxia alters patterns of glucose uptake within the tumor. Experimental Design Cal33 cells were grown as xenograft tumors (n = 16) in nude mice after identification of this cell line's metabolic response to hypoxia. Tumor uptake of fluorescent markers identifying hypoxia, glucose import, or vascularity was imaged simultaneously using fluorescent molecular tomography. The variability of intratumoral 2-deoxyglucose (IR800-2-DG) concentration was used to assess tumor metabolic heterogeneity, which was further investigated using immunohistochemistry for expression of key metabolic enzymes. HNSCC tumors in patients were assessed for intratumoral variability of 18F-fluorodeoxyglucose (18F-FDG) uptake in clinical PET scans. Results IR800-2-DG uptake in hypoxic regions of Cal33 tumors was 2.04 times higher compared to the whole tumor (p = 0.0001). IR800-2-DG uptake in tumors containing hypoxic regions was more heterogeneous as compared to tumors lacking a hypoxic signal. Immunohistochemistry staining for HIF-1α, carbonic anhydrase 9, and ATP synthase subunit 5β confirmed xenograft metabolic heterogeneity. We detected heterogeneous 18F-FDG uptake within patient HNSCC tumors, and the degree of heterogeneity varied amongst tumors. Conclusion Hypoxia is associated with increased intratumoral metabolic heterogeneity. 18F-FDG PET scans may be used to stratify patients according to the metabolic heterogeneity within their tumors, which could be an indicator of prognosis. PMID:25127378

  9. The altered glucose metabolism in tumor and a tumor acidic microenvironment associated with extracellular matrix metalloproteinase inducer and monocarboxylate transporters

    PubMed Central

    Li, Xiaofeng; Yu, Xiaozhou; Dai, Dong; Song, Xiuyu; Xu, Wengui

    2016-01-01

    Extracellular matrix metalloproteinase inducer, also knowns as cluster of differentiation 147 (CD147) or basigin, is a widely distributed cell surface glycoprotein that is involved in numerous physiological and pathological functions, especially in tumor invasion and metastasis. Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate across the plasma membrane to preserve the intracellular pH and maintain cell homeostasis. As a chaperone to some MCT isoforms, CD147 overexpression significantly contributes to the metabolic transformation of tumor. This overexpression is characterized by accelerated aerobic glycolysis and lactate efflux, and it eventually provides the tumor cells with a metabolic advantage and an invasive phenotype in the acidic tumor microenvironment. This review highlights the roles of CD147 and MCTs in tumor cell metabolism and the associated molecular mechanisms. The regulation of CD147 and MCTs may prove to be with a therapeutic potential for tumors through the metabolic modification of the tumor microenvironment. PMID:27009812

  10. Metabolic conversion of 12-O-tetradecanoylphorbol-13-acetate in adult and newborn mouse skin and mouse liver microsomes.

    PubMed

    Berry, D L; Bracken, W M; Fischer, S M; Viaje, A; Slaga, T J

    1978-08-01

    Tritiated 12-O-tetradecanoylphorbol-13-acetate (TPA) was applied to adult mouse skin; at specified time intervals the mice were killed, and the labeled phorbol was extracted and subjected to separation and quantitation by high-pressure liquid chromatography. After 24 hr, TPA comprised greater than 96% of the recovered label from the skin, and its apparent half-life was 17.8 hr. Pretreatment of adult skin with TPA for 4 weeks before treatment with labeled TPA resulted in an increase in the clearance rate of TPA from the skin. Skin from newborn mice was capable of converting TPA into monoesters and phorbol, but the clearance rate in the adult was about 12 times more rapid than it was in the newborn. Epidermal homogenates converted TPA into 12-O-tetradecanoylphorbol, phorbol-13-acetate, and phorbol. Hepatic homogenates were able to convert TPA to monoesters and phorbol at rates 14 to 15 times faster than were epidermal homogenates. Attempts to isolate any previously undescribed metabolites of TPA by use of liver homogenates were unsuccessful, and mixed-function oxidation did not contribute to the metabolism of TPA. From inhibitor studies it was judged that esterases were implicated in the conversion of TPA to monoesters and phorbol. The results support the hypothesis that the tumor-promoting activity of TPA is directly related to its concentration in a specific tissue and that conversion of TPA to an active metabolite probably does not occur.

  11. The WWOX tumor suppressor is essential for postnatal survival and normal bone metabolism.

    PubMed

    Aqeilan, Rami I; Hassan, Mohammad Q; de Bruin, Alain; Hagan, John P; Volinia, Stefano; Palumbo, Titziana; Hussain, Sadiq; Lee, Suk-Hee; Gaur, Tripti; Stein, Gary S; Lian, Jane B; Croce, Carlo M

    2008-08-01

    The WW domain-containing oxidoreductase (WWOX) gene encodes a tumor suppressor. We have previously shown that targeted ablation of the Wwox gene in mouse increases the incidence of spontaneous and chemically induced tumors. To investigate WWOX function in vivo, we examined Wwox-deficient (Wwox(-/-)) mice for phenotypical abnormalities. Wwox(-/-) mice are significantly reduced in size, die at the age of 2-3 weeks, and suffer a metabolic disorder that affects the skeleton. Wwox(-/-) mice exhibit a delay in bone formation from a cell autonomous defect in differentiation beginning at the mineralization stage shown in calvarial osteoblasts ex vivo and supported by significantly decreased bone formation parameters in Wwox(-/-) mice by microcomputed tomography analyses. Wwox(-/-) mice develop metabolic bone disease, as a consequence of reduced serum calcium, hypoproteinuria, and hypoglycemia leading to increased osteoclast activity and bone resorption. Interestingly, we find WWOX physically associates with RUNX2, the principal transcriptional regulator of osteoblast differentiation, and on osteocalcin chromatin. We show WWOX functionally suppresses RUNX2 transactivation ability in osteoblasts. In breast cancer MDA-MB-242 cells that lack endogenous WWOX protein, restoration of WWOX expression inhibited Runx2 and RUNX2 target genes related to metastasis. Affymetrix mRNA profiling revealed common gene targets in multiple tissues. In Wwox(-/-) mice, genes related to nucleosome assembly and cell growth genes were down-regulated, and negative regulators of skeletal metabolism exhibited increased expression. Our results demonstrate an essential requirement for the WWOX tumor suppressor in postnatal survival, growth, and metabolism and suggest a central role for WWOX in regulation of bone tissue formation.

  12. Indoleamine 2,3-dioxygenase regulates anti-tumor immunity in lung cancer by metabolic reprogramming of immune cells in the tumor microenvironment

    PubMed Central

    Schafer, Cara C.; Wang, Yong; Hough, Kenneth P.; Sawant, Anandi; Grant, Stefan C.; Thannickal, Victor J.; Zmijewski, Jaroslaw; Ponnazhagan, Selvarangan; Deshane, Jessy S.

    2016-01-01

    Indoleamine 2,3-dioxygenase (IDO) has been implicated in immune evasion by tumors. Upregulation of this tryptophan (Trp)-catabolizing enzyme, in tumor cells and myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment (TME), leads to Trp depletion that impairs cytotoxic T cell responses and survival; however, exact mechanisms remain incompletely understood. We previously reported that a combination therapy of gemcitabine and a superoxide dismutase mimetic promotes anti-tumor immunity in a mouse model of lung cancer by inhibiting MDSCs, enhancing polyfunctional response of CD8+ memory T cells, and extending survival. Here, we show that combination therapy targets IDO signaling, specifically in MDSCs, tumor cells, and CD8+ T cells infiltrating the TME. Deficiency of IDO caused significant reduction in tumor burden, tumor-infiltrating MDSCs, GM-CSF, MDSC survival and infiltration of programmed death receptor-1 (PD-1)-expressing CD8+ T cells compared to controls. IDO−/− MDSCs downregulated nutrient-sensing AMP-activated protein kinase (AMPK) activity, but IDO−/− CD8+ T cells showed AMPK activation associated with enhanced effector function. Our studies provide proof-of-concept for the efficacy of this combination therapy in inhibiting IDO and T cell exhaustion in a syngeneic model of lung cancer and provide mechanistic insights for IDO-dependent metabolic reprogramming of MDSCs that reduces T cell exhaustion and regulates anti-tumor immunity. PMID:27705910

  13. Indoleamine 2,3-dioxygenase regulates anti-tumor immunity in lung cancer by metabolic reprogramming of immune cells in the tumor microenvironment.

    PubMed

    Schafer, Cara C; Wang, Yong; Hough, Kenneth P; Sawant, Anandi; Grant, Stefan C; Thannickal, Victor J; Zmijewski, Jaroslaw; Ponnazhagan, Selvarangan; Deshane, Jessy S

    2016-11-15

    Indoleamine 2,3-dioxygenase (IDO) has been implicated in immune evasion by tumors. Upregulation of this tryptophan (Trp)-catabolizing enzyme, in tumor cells and myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment (TME), leads to Trp depletion that impairs cytotoxic T cell responses and survival; however, exact mechanisms remain incompletely understood. We previously reported that a combination therapy of gemcitabine and a superoxide dismutase mimetic promotes anti-tumor immunity in a mouse model of lung cancer by inhibiting MDSCs, enhancing polyfunctional response of CD8+ memory T cells, and extending survival. Here, we show that combination therapy targets IDO signaling, specifically in MDSCs, tumor cells, and CD8+ T cells infiltrating the TME. Deficiency of IDO caused significant reduction in tumor burden, tumor-infiltrating MDSCs, GM-CSF, MDSC survival and infiltration of programmed death receptor-1 (PD-1)-expressing CD8+ T cells compared to controls. IDO-/- MDSCs downregulated nutrient-sensing AMP-activated protein kinase (AMPK) activity, but IDO-/- CD8+ T cells showed AMPK activation associated with enhanced effector function. Our studies provide proof-of-concept for the efficacy of this combination therapy in inhibiting IDO and T cell exhaustion in a syngeneic model of lung cancer and provide mechanistic insights for IDO-dependent metabolic reprogramming of MDSCs that reduces T cell exhaustion and regulates anti-tumor immunity.

  14. Detection of coding microsatellite frameshift mutations in DNA mismatch repair-deficient mouse intestinal tumors.

    PubMed

    Woerner, Stefan M; Tosti, Elena; Yuan, Yan P; Kloor, Matthias; Bork, Peer; Edelmann, Winfried; Gebert, Johannes

    2015-11-01

    Different DNA mismatch repair (MMR)-deficient mouse strains have been developed as models for the inherited cancer predisposing Lynch syndrome. It is completely unresolved, whether coding mononucleotide repeat (cMNR) gene mutations in these mice can contribute to intestinal tumorigenesis and whether MMR-deficient mice are a suitable molecular model of human microsatellite instability (MSI)-associated intestinal tumorigenesis. A proof-of-principle study was performed to identify mouse cMNR-harboring genes affected by insertion/deletion mutations in MSI murine intestinal tumors. Bioinformatic algorithms were developed to establish a database of mouse cMNR-harboring genes. A panel of five mouse noncoding mononucleotide markers was used for MSI classification of intestinal matched normal/tumor tissues from MMR-deficient (Mlh1(-/-) , Msh2(-/-) , Msh2(LoxP/LoxP) ) mice. cMNR frameshift mutations of candidate genes were determined by DNA fragment analysis. Murine MSI intestinal tumors but not normal tissues from MMR-deficient mice showed cMNR frameshift mutations in six candidate genes (Elavl3, Tmem107, Glis2, Sdccag1, Senp6, Rfc3). cMNRs of mouse Rfc3 and Elavl3 are conserved in type and length in their human orthologs that are known to be mutated in human MSI colorectal, endometrial and gastric cancer. We provide evidence for the utility of a mononucleotide marker panel for detection of MSI in murine tumors, the existence of cMNR instability in MSI murine tumors, the utility of mouse subspecies DNA for identification of polymorphic repeats, and repeat conservation among some orthologous human/mouse genes, two of them showing instability in human and mouse MSI intestinal tumors. MMR-deficient mice hence are a useful molecular model system for analyzing MSI intestinal carcinogenesis.

  15. Antitumor effect of kigamicin D on mouse tumor models.

    PubMed

    Masuda, Toru; Ohba, Shunichi; Kawada, Manabu; Osono, Michiyo; Ikeda, Daishiro; Esumi, Hiroyasu; Kunimoto, Setsuko

    2006-04-01

    Kigamicin D is a novel anticancer agent that was identified using a new screening strategy that targets the tolerance of cancer cells to nutrient starvation [1, 2]. Oral administration of kigamicin D was previously described to show a strong antitumor effect in human tumor xenograft models of pancreatic tumors [2]. In this paper we describe that kigamicin D shows the same selective cytotoxicity against normal human cells such as lung fibroblast and prostate stromal cells under nutrient starved condition as against cancer cells. Kigamicin D inhibited tumor cell-induced angiogenesis in a dorsal air sac assay. On the basis of these results we tested other human tumor xenograft models and transplantable syngeneic tumor models in order to determine the spectrum of activity of kigamicin D against various cancers. Kigamicin D showed a weak antitumor effect against LX-1 and DMS-273 lung cancers, but had no effect on DLD-1 colon cancers. When tested against syngeneic tumors, kigamicin D showed a weak antitumor effect against colon26, but showed augmentation of tumor growth on IMC carcinoma at a broad dosage level. Kigamicin D does not show good antitumor activity against human xenograft tumors except pancreatic tumors and murine syngeneic tumors. We found that kigamicin D has excellent antitumor effect specific to pancreatic cancers. Surprisingly, high dosage of kigamicin D increased tumor growth of IMC carcinoma by than 200%. The phenomenon suggests that kigamicin D may cause some immunological response to the tumor.

  16. Assessing Metabolic Stress and Autophagy Status in Epithelial Tumors

    PubMed Central

    Mathew, Robin; Karantza-Wadsworth, Vassiliki; White, Eileen

    2010-01-01

    Autophagy is a survival mechanism activated in response to metabolic stress. In normal tissues autophagy plays a major role in energy homeostasis through catabolic self-digestion of damaged proteins and organelles. Contrary to its survival function, autophagy defects are implicated in tumorigenesis suggesting that autophagy is a tumor suppression mechanism. Although the exact mechanism of this tumor suppressor function is not known, it likely involves mitigation of cellular damage leading to chromosomal instability. The complex role of functional autophagy in tumors calls for model systems that allow the assessment of autophagy status, stress management and the impact on oncogenesis both in vitro as well as in vivo. We developed model systems that involve generation of genetically defined, isogenic and immortal epithelial cells from different tissue types that are applicable to both wild-type and mutant mice. This permits the study of tissue- as well as gene-specific tumor promoting functions. We successfully employed this strategy to generate isogenic, immortal epithelial cell lines from wild-type and mutant mice deficient in essential autophagy genes such as beclin 1 (beclin 1+/-) and atg5 (atg 5-/-). As these cell lines are amenable to further genetic manipulation, they allowed us to generate cell lines with apoptosis defects and stable expression of the autophagy marker EGFP-LC3 that facilitate in vitro and in vivo assessment of stress-mediated autophagy induction. We applied this model system to directly monitor autophagy in cells and 3D-morphogenesis in vitro as well as in tumor allografts in vivo. Using this model system we demonstrated that autophagy is a survival response in solid tumors that co-localizes with hypoxic regions, allowing tolerance to metabolic stress. Furthermore, our studies have established that autophagy also protects tumor cells from genome damage and limits cell death and inflammation as possible means to tumor suppression. Additionally

  17. Three-dimensional imaging of the metabolic state of c-MYC-induced mammary tumor with the cryo-imager

    NASA Astrophysics Data System (ADS)

    Zhang, Zhihong; Liu, Qian; Luo, Qingming; Zhang, Min Z.; Blessington, Dana M.; Zhou, Lanlan; Chodosh, Lewis A.; Zheng, Gang; Chance, Britton

    2003-07-01

    This study imaged the metabolic state of a growing tumor and the relationship between energy metabolism and the ability of glucose uptake in whole tumor tissue with cryo-imaging at 77° K. A MTB/TOM mouse model, bearing c-MYC-induced mammary tumor, was very rapidly freeze-trapped 2 hrs post Pyro-2DG injection. The fluorescence signals of oxidized flavoprotein (Fp), reduced pyridine nucleotide (PN), pyro-2DG, and the reflection signal of deoxy-hemoglobin were imaged every 100 μm from the top surface to the bottom of the tumor sequentially, 9 sections in total. Each of the four signals was constructed into 3D images with Amira software. Both Fp and PN signals could be detected in the growing tumor regions, and a higher reduction state where was shown in the ratio images. The necrotic tumor regions displayed a very strong Fp signal and weak PN signal. In the bloody extravasation regions, Fp and PN signals were observably diminished. Therefore, the regions of high growth and necrosis in the tumor could be determined according to the Fp and PN signals. The content of deoxy-hemoglobin (Hb) in the tumor was positively correlated with the reduced PN signal. Pyro-2DG signal was only evident in the growing condition region in the tumor. Normalized 3D cross-correlation showed that Pyro-2DG signal was similar to the redox ratio. The results indicated that glucose uptake in the tumor was consistent with the redox state of the tumor. And both Pyro-2DG and mitochondrial NADH fluorescence showed bimodal histograms suggesting that the two population of c-MYC induced mammary tumor, one of which could be controlled by c-MYC transgene.

  18. The influence of tumor oxygenation on 18F-FDG (Fluorine-18 Deoxyglucose) uptake: A mouse study using positron emission tomography (PET)

    PubMed Central

    Chan, Linda W; Hapdey, Sebastien; English, Sean; Seidel, Jurgen; Carson, Joann; Sowers, Anastasia L; Krishna, Murali C; Green, Michael V; Mitchell, James B; Bacharach, Stephen L

    2006-01-01

    Background This study investigated whether changing a tumor's oxygenation would alter tumor metabolism, and thus uptake of 18F-FDG (fluorine-18 deoxyglucose), a marker for glucose metabolism using positron emission tomography (PET). Results Tumor-bearing mice (squamous cell carcinoma) maintained at 37°C were studied while breathing either normal air or carbogen (95% O2, 5% CO2), known to significantly oxygenate tumors. Tumor activity was measured within an automatically determined volume of interest (VOI). Activity was corrected for the arterial input function as estimated from image and blood-derived data. Tumor FDG uptake was initially evaluated for tumor-bearing animals breathing only air (2 animals) or only carbogen (2 animals). Subsequently, 5 animals were studied using two sequential 18F-FDG injections administered to the same tumor-bearing mouse, 60 min apart; the first injection on one gas (air or carbogen) and the second on the other gas. When examining the entire tumor VOI, there was no significant difference of 18F-FDG uptake between mice breathing either air or carbogen (i.e. air/carbogen ratio near unity). However, when only the highest 18F-FDG uptake regions of the tumor were considered (small VOIs), there was a modest (21%), but significant increase in the air/carbogen ratio suggesting that in these potentially most hypoxic regions of the tumor, 18F-FDG uptake and hence glucose metabolism, may be reduced by increasing tumor oxygenation. Conclusion Tumor 18F-FDG uptake may be reduced by increases in tumor oxygenation and thus may provide a means to further enhance 18F-FDG functional imaging. PMID:16722588

  19. [Hemocirculation and metabolism in intraventricular tumors: kinetic analysis of glucose metabolism].

    PubMed

    Shioya, H; Mineura, K; Kowada, M; Iida, H; Murakami, M; Ogawa, T; Hatazawa, J; Uemura, K

    1996-03-01

    To estimate hemocirculation and proliferating activity of intraventricular tumor, we measured kinetic rate constants (k1, k2, k3) and glucose metabolic rate (kinetic-rCMRGl) using dynamic positron emission tomography (PET), as well as regional cerebral blood flow (rCBF), blood volume (rCBV), oxygen extraction fraction (rOEF), oxygen metabolic rate (rCMRO2) and autoradiographic rCMRGl (arg-rCMRGl), in patients with intraventricular tumor. The subjects included ten patients, five males and five females, aged from 13 to 53 years with a mean age of 32 years old. Eight tumors were located in the lateral ventricle and two extended into the third ventricle through the foramen of Monro. Another two tumors were located in the fourth ventricle. Histological diagnosis was as follows: five cases of central neurocytoma, one subependymal giant cell astrocytoma, one ependymoma, one choroid plexus carcinoma, one subependymoma, and one meningioma. Tumor lesion on the PET images was determined using CT or MRI, which was performed at levels equivalent to those for the PET scans. For quantitative analysis, regions of interest (ROI) on PET images were delineated on the tumor and the contralateral gray matter. Hemocirculation (rCBF, rCBV) of the tumor was similar to or higher than that of the contralateral gray matter, which corresponded to neuroradiological findings of abundant tumor vessels. Oxygen metabolic parameters (rOEF, rCMRO2) were significantly lower than those of the contralateral gray matter. Especially, low rOEF resulted in an excessive blood flow beyond oxygen demand of the tumor. The raised metabolic rate (rCMRO2/rCMRGl), as compared with that of meningiomas or malignant gliomas, suggested aerobic glycolysis. The kinetic rate constants of tracer transport from blood to brain (k1), reverse transport from brain to blood (k2), and phosphorylation (k3) were analyzed according to the three-compartment model of 18F-fluorodeoxyglucose (18FDG). Tumor k1 and k2 values were similar

  20. Haloacetonitriles: metabolism, genotoxicity, and tumor-initiating activity

    SciTech Connect

    Lin, E.L.C.; Daniel, F.B.; Herren-Freund, S.L.; Pereira, M.A.

    1986-11-01

    Haloacetonitriles (HAN) are drinking water contaminants produced during chlorine disinfection. This paper evaluates metabolism, genotoxicity, and tumor-initiating activity of these chemicals. The alkylating potential of the HAN to react with the electrophile-trapping agent, 4-(p-nitrobenzyl)pyridine, followed the order dibromoacetonitrile (DBAN) > bromochloroacetonitrile (BCAN) > chloroacetonitrile (CAN) > dichloroacetonitrile (DCAN) > trichloroacetonitrile (TCAN). When administered orally to rats, the HAN were metabolized to cyanide and excreted in the urine as thiocyanate. The extent of thiocyanate excretion was CAN > BCAN > DCAN > DDAN >> TCAN. Haloacetonitriles inhibited in vitro microsomal dimethylnitrosamine demethylase (DMN-DM) activity. The most potent inhibitors were DBAN and BCAN. The HAN produced DNA strand breaks in cultured human lymphoblastic (CCRF-CEM) cells. TCAN was the most potent DNA strand breaker. DCAN reacted with polyadenylic acid and DNA to form adducts in a cell-free system. None of the HAN initiated ..gamma..-glutamyltranspeptidase (GGT) foci when assayed for tumor-initiating activity in rat liver foci bioassay. In summary, the HAN were demonstrated to possess alkylating activity and genotoxicity in vitro and appeared after oral administration to possess biological activity as indicated by the inhibition of DMN-DM by TCAN but appeared to lack genotoxic and tumor-initiating activity in rat liver. It is proposed that if the HAN found in drinking water pose a carcinogenic hazard it would be limited to the gastrointestinal tract.

  1. Activation of proto-oncogenes in human and mouse lung tumors

    SciTech Connect

    Reynolds, S.H.; Anderson, M.W. )

    1991-06-01

    Lung cancer is a leading cause of cancer-related deaths in several nations. Epidemiological studies have indicated that 85% of all lung cancer deaths and 30% of all cancer deaths in the US are associated with tobacco smoking. Various chemicals in tobacco smoke are thought to react with DNA and to ultimately yield heritable mutations. In an effort to understand the molecular mechanisms involved in lung tumorigenesis, the authors have analyzed proto-oncogene activation in a series of human lung tumors from smokers and spontaneously occurring and chemically induced lung tumors in mice. Approximately 86% of the human lung tumors and > 90% of the mouse lung tumors were found to contain activated oncogenes. ras Oncogenes activated by point mutations were detected in many of the human lung adenocarcinomas and virtually all of the mouse lung adenomas and adenocarcinomas. The mutation profiles of the activated K-ras genes detected in the chemically induced mouse lung tumors suggest that the observed mutations result from genotoxic effects of the chemicals. Comparison of the K-ras mutations observed in the human lung adenocarcinomas with mutation profiles observed in the mouse lung tumors suggest that bulky hydrophobic DNA adducts may be responsible for the majority of the mutations observed in the activated human K-ras genes. Other data indicate that approximately 20% of human lung tumors contain potentially novel transforming genes that may also be targets for mutagens in cigarette smoke.

  2. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    PubMed Central

    Zhao, Hongyun; Yang, Lifeng; Baddour, Joelle; Achreja, Abhinav; Bernard, Vincent; Moss, Tyler; Marini, Juan C; Tudawe, Thavisha; Seviour, Elena G; San Lucas, F Anthony; Alvarez, Hector; Gupta, Sonal; Maiti, Sourindra N; Cooper, Laurence; Peehl, Donna; Ram, Prahlad T; Maitra, Anirban; Nagrath, Deepak

    2016-01-01

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate that exosomes secreted by patient-derived CAFs can strikingly reprogram the metabolic machinery following their uptake by cancer cells. We find that CAF-derived exosomes (CDEs) inhibit mitochondrial oxidative phosphorylation, thereby increasing glycolysis and glutamine-dependent reductive carboxylation in cancer cells. Through 13C-labeled isotope labeling experiments we elucidate that exosomes supply amino acids to nutrient-deprived cancer cells in a mechanism similar to macropinocytosis, albeit without the previously described dependence on oncogenic-Kras signaling. Using intra-exosomal metabolomics, we provide compelling evidence that CDEs contain intact metabolites, including amino acids, lipids, and TCA-cycle intermediates that are avidly utilized by cancer cells for central carbon metabolism and promoting tumor growth under nutrient deprivation or nutrient stressed conditions. DOI: http://dx.doi.org/10.7554/eLife.10250.001 PMID:26920219

  3. Semaphorin 3A is an endogenous angiogenesis inhibitor that blocks tumor growth and normalizes tumor vasculature in transgenic mouse models

    PubMed Central

    Maione, Federica; Molla, Fabiola; Meda, Claudia; Latini, Roberto; Zentilin, Lorena; Giacca, Mauro; Seano, Giorgio; Serini, Guido; Bussolino, Federico; Giraudo, Enrico

    2009-01-01

    Tumor growth and progression rely upon angiogenesis, which is regulated by pro- and antiangiogenic factors, including members of the semaphorin family. By analyzing 3 different mouse models of multistep carcinogenesis, we show here that during angiogenesis, semaphorin 3A (Sema3A) is expressed in ECs, where it serves as an endogenous inhibitor of angiogenesis that is present in premalignant lesions and lost during tumor progression. Pharmacologic inhibition of endogenous Sema3A during the angiogenic switch, the point when pretumoral lesions initiate an angiogenic phase that persists throughout tumor growth, enhanced angiogenesis and accelerated tumor progression. By contrast, when, during the later stages of carcinogenesis following endogenous Sema3A downmodulation, Sema3A was ectopically reintroduced into islet cell tumors by somatic gene transfer, successive waves of apoptosis ensued, first in ECs and then in tumor cells, resulting in reduced vascular density and branching and inhibition of tumor growth and substantially extended survival. Further, long-term reexpression of Sema3A markedly improved pericyte coverage of tumor blood vessels, something that is thought to be a key property of tumor vessel normalization, and restored tissue normoxia. We conclude, therefore, that Sema3A is an endogenous and effective antiangiogenic agent that stably normalizes the tumor vasculature. PMID:19809158

  4. Comparative efficacy of DMP 840 against mouse and human solid tumor models.

    PubMed

    LoRusso, P; Demchik, L; Dan, M; Polin, L; Gross, J L; Corbett, T H

    1995-01-01

    DMP 840 is a compound from a class of bis-naphthalimide antitumor agents that recently completed Phase I clinical trials at three North American centers and is currently undergoing Phase II testing. Preclinically, it was shown to have curative activity against a variety of human tumor xenograft models. To test DMP 840 both in vitro and in vivo for antiproliferative activity against predominantly mouse tumor models. A disk diffusion soft agar colony formation assay was used to determine the in vitro growth inhibitory activity against a selection of mouse and human tumor cell lines, and the comparable selective mouse solid tumors were used for in vivo testing. In vitro DMP 840 exhibited equal cytotoxicity for human tumors (including MX-1 directly cultured from nude mice), mouse tumors and normal cells. In vivo DMP 840 was only modestly active or inactive against the following mouse tumors: Mam 16/C, T/C = 30% (T/C = Percent Tumor Growth Inhibition); Mam 16/C/ADR, T/C = 33%; Colon 38, T/C = 9%; Panc 03, T/C = 53%; Colon 51/A, T/C = 28%; Panc 02, T/C = 52%; P388/0, 36% ILS (Percent Increased Life Span) and P388/ADR, 14% ILS. Furthermore, the antitumor activity was only observed at the highest non-toxic dose and was associated with a large body weight loss. In contrast, the agent was highly active against the human breast tumor MX-1 implanted subcutaneously in either athymic nude or SCID mice (Nudes: T/C = 0%; 1/5 cures; SCIDS: T/C = 0%; 5/5 cures). Although there was no selective cytotoxicity in our clonogenic assay for human versus mouse tumor cell lines, selective activity in vivo for human xenograft tumors was noted. Overall, this compound is rather unique in its differential degree of in vivo activity for human versus mouse tumors. Phase II trials, which are ongoing, will help determine if the preclinical in vivo selective activity of DMP 840 translates to clinical activity in man.

  5. Luminol-based bioluminescence imaging of mouse mammary tumors.

    PubMed

    Alshetaiwi, Hamad S; Balivada, Sivasai; Shrestha, Tej B; Pyle, Marla; Basel, Matthew T; Bossmann, Stefan H; Troyer, Deryl L

    2013-10-05

    Polymorphonuclear neutrophils (PMNs) are the most abundant circulating blood leukocytes. They are part of the innate immune system and provide a first line of defense by migrating toward areas of inflammation in response to chemical signals released from the site. Some solid tumors, such as breast cancer, also cause recruitment and activation of PMNs and release of myeloperoxidase. In this study, we demonstrate that administration of luminol to mice that have been transplanted with 4T1 mammary tumor cells permits the detection of myeloperoxidase activity, and consequently, the location of the tumor. Luminol allowed detection of activated PMNs only two days after cancer cell transplantation, even though tumors were not yet palpable. In conclusion, luminol-bioluminescence imaging (BLI) can provide a pathway towards detection of solid tumors at an early stage in preclinical tumor models. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Enalapril and ASS inhibit tumor growth in a transgenic mouse model of islet cell tumors.

    PubMed

    Fendrich, V; Lopez, C L; Manoharan, J; Maschuw, K; Wichmann, S; Baier, A; Holler, J P; Ramaswamy, A; Bartsch, D K; Waldmann, J

    2014-10-01

    Accumulating evidence suggests a role for angiotensin-converting enzymes involving the angiotensin II-receptor 1 (AT1-R) and the cyclooxygenase pathway in carcinogenesis. The effects of ASS and enalapril were assessed in vitro and in a transgenic mouse model of pancreatic neuroendocrine neoplasms (pNENs). The effects of enalapril and ASS on proliferation and expression of the AGTR1A and its target gene vascular endothelial growth factor (Vegfa) were assessed in the neuroendocrine cell line BON1. Rip1-Tag2 mice were treated daily with either 0.6 mg/kg bodyweight of enalapril i.p., 20 mg/kg bodyweight of ASS i.p., or a vehicle in a prevention (weeks 5-12) and a survival group (week 5 till death). Tumor surface, weight of pancreatic glands, immunostaining for AT1-R and nuclear factor kappa beta (NFKB), and mice survival were analyzed. In addition, sections from human specimens of 20 insulinomas, ten gastrinomas, and 12 non-functional pNENs were evaluated for AT1-R and NFKB (NFKB1) expression and grouped according to the current WHO classification. Proliferation was significantly inhibited by enalapril and ASS in BON1 cells, with the combination being the most effective. Treatment with enalapril and ASS led to significant downregulation of known target genes Vegf and Rela at RNA level. Tumor growth was significantly inhibited by enalapril and ASS in the prevention group displayed by a reduction of tumor size (84%/67%) and number (30%/45%). Furthermore, daily treatment with enalapril and ASS prolonged the overall median survival compared with vehicle-treated Rip1-Tag2 (107 days) mice by 9 and 17 days (P=0.016 and P=0.013). The AT1-R and the inflammatory transcription factor NFKB were abolished completely upon enalapril and ASS treatment. AT1-R and NFKB expressions were observed in 80% of human pNENs. Enalapril and ASS may provide an approach for chemoprevention and treatment of pNENs.

  7. Carbon monoxide expedites metabolic exhaustion to inhibit tumor growth.

    PubMed

    Wegiel, Barbara; Gallo, David; Csizmadia, Eva; Harris, Clair; Belcher, John; Vercellotti, Gregory M; Penacho, Nuno; Seth, Pankaj; Sukhatme, Vikas; Ahmed, Asif; Pandolfi, Pier Paolo; Helczynski, Leszek; Bjartell, Anders; Persson, Jenny Liao; Otterbein, Leo E

    2013-12-01

    One classical feature of cancer cells is their metabolic acquisition of a highly glycolytic phenotype. Carbon monoxide (CO), one of the products of the cytoprotective molecule heme oxygenase-1 (HO-1) in cancer cells, has been implicated in carcinogenesis and therapeutic resistance. However, the functional contributions of CO and HO-1 to these processes are poorly defined. In human prostate cancers, we found that HO-1 was nuclear localized in malignant cells, with low enzymatic activity in moderately differentiated tumors correlating with relatively worse clinical outcomes. Exposure to CO sensitized prostate cancer cells but not normal cells to chemotherapy, with growth arrest and apoptosis induced in vivo in part through mitotic catastrophe. CO targeted mitochondria activity in cancer cells as evidenced by higher oxygen consumption, free radical generation, and mitochondrial collapse. Collectively, our findings indicated that CO transiently induces an anti-Warburg effect by rapidly fueling cancer cell bioenergetics, ultimately resulting in metabolic exhaustion.

  8. Metabolic remodeling of the tumor microenvironment: migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth.

    PubMed

    Carito, Valentina; Bonuccelli, Gloria; Martinez-Outschoorn, Ubaldo E; Whitaker-Menezes, Diana; Caroleo, Maria Cristina; Cione, Erika; Howell, Anthony; Pestell, Richard G; Lisanti, Michael P; Sotgia, Federica

    2012-09-15

    Migration stimulating factor (MSF) is a genetically truncated N-terminal isoform of fibronectin that is highly expressed during mammalian development in fetal fibroblasts, and during tumor formation in human cancer-associated myofibroblasts. However, its potential functional role in regulating tumor metabolism remains unexplored. Here, we generated an immortalized fibroblast cell line that recombinantly overexpresses MSF and studied their properties relative to vector-alone control fibroblasts. Our results indicate that overexpression of MSF is sufficient to confer myofibroblastic differentiation, likely via increased TGF-b signaling. In addition, MSF activates the inflammation-associated transcription factor NFκB, resulting in the onset of autophagy/mitophagy, thereby driving glycolytic metabolism (L-lactate production) in the tumor microenvironment. Consistent with the idea that glycolytic fibroblasts fuel tumor growth (via L-lactate, a high-energy mitochondrial fuel), MSF fibroblasts significantly increased tumor growth, by up to 4-fold. Mechanistic dissection of the MSF signaling pathway indicated that Cdc42 lies downstream of MSF and fibroblast activation. In accordance with this notion, Cdc42 overexpression in immortalized fibroblasts was sufficient to drive myofibroblast differentiation, to provoke a shift towards glycolytic metabolism and to promote tumor growth by up to 2-fold. In conclusion, the MSF/Cdc42/NFκB signaling cascade may be a critical druggable target in preventing "Warburg-like" cancer metabolism in tumor-associated fibroblasts. Thus, MSF functions in the metabolic remodeling of the tumor microenvironment by metabolically reprogramming cancer-associated fibroblasts toward glycolytic metabolism.

  9. Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes

    PubMed Central

    Petrosino, Jennifer M.; Heiss, Valerie J.; Maurya, Santosh K.; Kalyanasundaram, Anuradha; Periasamy, Muthu; LaFountain, Richard A.; Wilson, Jacob M.; Simonetti, Orlando P.; Ziouzenkova, Ouliana

    2016-01-01

    Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of

  10. Graded Maximal Exercise Testing to Assess Mouse Cardio-Metabolic Phenotypes.

    PubMed

    Petrosino, Jennifer M; Heiss, Valerie J; Maurya, Santosh K; Kalyanasundaram, Anuradha; Periasamy, Muthu; LaFountain, Richard A; Wilson, Jacob M; Simonetti, Orlando P; Ziouzenkova, Ouliana

    2016-01-01

    Functional assessments of cardiovascular fitness (CVF) are needed to establish animal models of dysfunction, test the effects of novel therapeutics, and establish the cardio-metabolic phenotype of mice. In humans, the graded maximal exercise test (GXT) is a standardized diagnostic for assessing CVF and mortality risk. These tests, which consist of concurrent staged increases in running speed and inclination, provide diagnostic cardio-metabolic parameters, such as, VO2max, anaerobic threshold, and metabolic crossover. Unlike the human-GXT, published mouse treadmill tests have set, not staged, increases in inclination as speed progress until exhaustion (PXT). Additionally, they often lack multiple cardio-metabolic parameters. Here, we developed a mouse-GXT with the intent of improving mouse-exercise testing sensitivity and developing translatable parameters to assess CVF in healthy and dysfunctional mice. The mouse-GXT, like the human-GXT, incorporated staged increases in inclination, speed, and intensity; and, was designed by considering imitations of the PXT and differences between human and mouse physiology. The mouse-GXT and PXTs were both tested in healthy mice (C57BL/6J, FVBN/J) to determine their ability to identify cardio-metabolic parameters (anaerobic threshold, VO2max, metabolic crossover) observed in human-GXTs. Next, theses assays were tested on established diet-induced (obese-C57BL/6J) and genetic (cardiac isoform Casq2-/-) models of cardiovascular dysfunction. Results showed that both tests reported VO2max and provided reproducible data about performance. Only the mouse-GXT reproducibly identified anaerobic threshold, metabolic crossover, and detected impaired CVF in dysfunctional models. Our findings demonstrated that the mouse-GXT is a sensitive, non-invasive, and cost-effective method for assessing CVF in mice. This new test can be used as a functional assessment to determine the cardio-metabolic phenotype of various animal models or the effects of

  11. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells.

    PubMed

    Ziegler, C G; Ullrich, M; Schally, A V; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, S R

    2013-05-22

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPCs) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Anti-tumor effects of peptide analogs targeting neuropeptide hormone receptors on mouse pheochromocytoma cells

    PubMed Central

    Ziegler, CG; Ullrich, M; Schally, AV; Bergmann, R; Pietzsch, J; Gebauer, L; Gondek, K; Qin, N; Pacak, K; Ehrhart-Bornstein, M; Eisenhofer, G; Bornstein, SR

    2013-01-01

    Pheochromocytoma is a rare but potentially lethal chromaffin cell tumor with currently no effective treatment. Peptide hormone receptors are frequently overexpressed on endocrine tumor cells and can be specifically targeted by various anti-tumor peptide analogs. The present study carried out on mouse pheochromocytoma cells (MPC) and a more aggressive mouse tumor tissue-derived (MTT) cell line revealed that these cells are characterized by pronounced expression of the somatostatin receptor 2 (sst2), growth hormone-releasing hormone (GHRH) receptor and the luteinizing hormone-releasing hormone (LHRH) receptor. We further demonstrated significant anti-tumor effects mediated by cytotoxic somatostatin analogs, AN-162 and AN-238, by LHRH antagonist, Cetrorelix, by the cytotoxic LHRH analog, AN-152, and by recently developed GHRH antagonist, MIA-602, on MPC and for AN-152 and MIA-602 on MTT cells. Studies of novel anti-tumor compounds on these mouse cell lines serve as an important basis for mouse models of metastatic pheochromocytoma, which we are currently establishing. PMID:23267837

  13. Examination of Blood-Brain Barrier (BBB) Integrity In A Mouse Brain Tumor Model

    PubMed Central

    On, Ngoc; Mitchell, Ryan; Savant, Sanjot D.; Bachmeier, Corbin. J.; Hatch, Grant M.; Miller, Donald W.

    2013-01-01

    The present study evaluates, both functionally and biochemically, brain tumor-induced alterations in brain capillary endothelial cells. Brain tumors were induced in Balb/c mice via intracranial injection of Lewis Lung carcinoma (3LL) cells into the right hemisphere of the mouse brain using stereotaxic apparatus. Blood-brain barrier (BBB) permeability was assessed at various stages of tumor development, using both radiolabeled tracer permeability and magnetic resonance imaging (MRI) with gadolinium diethylene-triamine-pentaacetate contrast enhancement (Gad-DTPA). The expression of the drug efflux transporter, P-glycoprotein (P-gp), in the BBB at various stages of tumor development was also evaluated by Western blot and immunohistochemistry. Median mouse survival following tumor cell injection was 17 days. The permeability of the BBB to 3H-mannitol was similar in both brain hemispheres at 7 and 10 days post-injection. By day 15, there was a 2-fold increase in 3H-mannitol permeability in the tumor bearing hemispheres compared to the non-tumor hemispheres. Examination of BBB permeability with Gad-DTPA contrast enhanced MRI indicated cerebral vascular permeability changes were confined to the tumor area. The permeability increase observed at the later stages of tumor development correlated with an increase in cerebral vascular volume suggesting angiogenesis within the tumor bearing hemisphere. Furthermore, the Gad-DPTA enhancement observed within the tumor area was significantly less than Gad-DPTA enhancement within the circumventricular organs not protected by the BBB. Expression of P-gp in both the tumor bearing and non-tumor bearing portions of the brain appeared similar at all time points examined. These studies suggest that although BBB integrity is altered within the tumor site at later stages of development, the BBB is still functional and limiting in terms of solute and drug permeability in and around the tumor. PMID:23184143

  14. Mouse lung-tumor assay: a final report

    SciTech Connect

    Smith, L.H.; Witschi, H.P.

    1983-05-01

    The objective was to validate a lung tumor assay. Agents evaluated included 5 complex mixtures from modern synfuel processes, 8 nitrated toluenes and 30 compounds which had been tested previously in a standard 2-year NCI-type carcinogenesis bioassay. Male A/Jax mice were injected 3 times a week, for eight consecutive weeks, with different test substances. After the last injection, the animals were left undisturbed for another 4 months, and then they were killed. The carcinogenic potential of the substances was evaluated by counting the number of visible tumors on the lung surface. The average number of tumors per lung was calculated for each group (tumor multiplicity). Tumor incidence and tumor multiplicity for each treatment group was compared to appropriate vehicle control groups. Statistical tests used were Chi-square for tumor incidence and Student's t-test for tumor multiplicity; a p value of 0.05 or less was considered to be significant. Very few of the substances tested were found to give an unequivocally positive response. Shale oil and two of its derivatives and two tar mixtures from a coal gasifier were clearly positive. No positives were found in a series of nitrated toluenes. Out of 18 compounds known with certainty to be animal or human carcinogens, the lung tumor assay correctly identified only 5 as having carcinogenic potential. In view of these data we concluded that the lung tumor assay, as developed and advocated (Advances in Cancer Research 21, 1 to 58, 1975), was not sensitive or accurate enough to serve as a short-term in vivo screening procedure for carcinogens.

  15. Is the Mouse a Good Model of Human PPARγ-Related Metabolic Diseases?

    PubMed Central

    Pap, Attila; Cuaranta-Monroy, Ixchelt; Peloquin, Matthew; Nagy, Laszlo

    2016-01-01

    With the increasing number of patients affected with metabolic diseases such as type 2 diabetes, obesity, atherosclerosis and insulin resistance, academic researchers and pharmaceutical companies are eager to better understand metabolic syndrome and develop new drugs for its treatment. Many studies have focused on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ), which plays a crucial role in adipogenesis and lipid metabolism. These studies have been able to connect this transcription factor to several human metabolic diseases. Due to obvious limitations concerning experimentation in humans, animal models—mainly mouse models—have been generated to investigate the role of PPARγ in different tissues. This review focuses on the metabolic features of human and mouse PPARγ-related diseases and the utility of the mouse as a model. PMID:27483259

  16. Metabolic reprogramming: a new relevant pathway in adult adrenocortical tumors

    PubMed Central

    Longatto-Filho, Adhemar; Faria, André M.; Fragoso, Maria C. B. V.; Lovisolo, Silvana M.; Lerário, Antonio M.; Almeida, Madson Q.

    2015-01-01

    Adrenocortical carcinomas (ACCs) are complex neoplasias that may present unexpected clinical behavior, being imperative to identify new biological markers that can predict patient prognosis and provide new therapeutic options. The main aim of the present study was to evaluate the prognostic value of metabolism-related key proteins in adrenocortical carcinoma. The immunohistochemical expression of MCT1, MCT2, MCT4, CD147, CD44, GLUT1 and CAIX was evaluated in a series of 154 adult patients with adrenocortical neoplasia and associated with patients' clinicopathological parameters. A significant increase in was found for membranous expression of MCT4, GLUT1 and CAIX in carcinomas, when compared to adenomas. Importantly MCT1, GLUT1 and CAIX expressions were significantly associated with poor prognostic variables, including high nuclear grade, high mitotic index, advanced tumor staging, presence of metastasis, as well as shorter overall and disease free survival. In opposition, MCT2 membranous expression was associated with favorable prognostic parameters. Importantly, cytoplasmic expression of CD147 was identified as an independent predictor of longer overall survival and cytoplasmic expression of CAIX as an independent predictor of longer disease-free survival. We provide evidence for a metabolic reprogramming in adrenocortical malignant tumors towards the hyperglycolytic and acid-resistant phenotype, which was associated with poor prognosis. PMID:26587828

  17. Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts

    PubMed Central

    Coutinho de Souza, Patricia; Mallory, Samantha; Smith, Nataliya; Saunders, Debra; Li, Xiao-Nan; McNall-Knapp, Rene Y.; Fung, Kar-Ming; Towner, Rheal A.

    2015-01-01

    Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals [(Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05)], as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients. PMID:26248280

  18. Metabolic profiling of alternative NAD biosynthetic routes in mouse tissues.

    PubMed

    Mori, Valerio; Amici, Adolfo; Mazzola, Francesca; Di Stefano, Michele; Conforti, Laura; Magni, Giulio; Ruggieri, Silverio; Raffaelli, Nadia; Orsomando, Giuseppe

    2014-01-01

    NAD plays essential redox and non-redox roles in cell biology. In mammals, its de novo and recycling biosynthetic pathways encompass two independent branches, the "amidated" and "deamidated" routes. Here we focused on the indispensable enzymes gating these two routes, i.e. nicotinamide mononucleotide adenylyltransferase (NMNAT), which in mammals comprises three distinct isozymes, and NAD synthetase (NADS). First, we measured the in vitro activity of the enzymes, and the levels of all their substrates and products in a number of tissues from the C57BL/6 mouse. Second, from these data, we derived in vivo estimates of enzymes'rates and quantitative contributions to NAD homeostasis. The NMNAT activity, mainly represented by nuclear NMNAT1, appears to be high and nonrate-limiting in all examined tissues, except in blood. The NADS activity, however, appears rate-limiting in lung and skeletal muscle, where its undetectable levels parallel a relative accumulation of the enzyme's substrate NaAD (nicotinic acid adenine dinucleotide). In all tissues, the amidated NAD route was predominant, displaying highest rates in liver and kidney, and lowest in blood. In contrast, the minor deamidated route showed higher relative proportions in blood and small intestine, and higher absolute values in liver and small intestine. Such results provide the first comprehensive picture of the balance of the two alternative NAD biosynthetic routes in different mammalian tissues under physiological conditions. This fills a gap in the current knowledge of NAD biosynthesis, and provides a crucial information for the study of NAD metabolism and its role in disease.

  19. Serotonin transporter antagonists target tumor-initiating cells in a transgenic mouse model of breast cancer

    PubMed Central

    Hallett, Robin M.; Girgis-Gabardo, Adele; Gwynne, William D.; Giacomelli, Andrew O.; Bisson, Jennifer N.P.; Jensen, Jeremy E.; Dvorkin-Gheva, Anna; Hassell, John A.

    2016-01-01

    Accumulating data suggests that the initiation and progression of human breast tumors is fueled by a rare subpopulation of tumor cells, termed breast tumor-initiating cells (BTIC), which resist radiotherapy and chemotherapy. Consequently, therapies that abrogate BTIC activity are needed to achieve durable cures for breast cancer patients. To identify such therapies we used a sensitive assay to complete a high-throughput screen of small molecules, including approved drugs, with BTIC-rich mouse mammary tumor cell populations. We found that inhibitors of the serotonin reuptake transporter (SERT) and serotonin receptors, which include approved drugs used to treat mood disorders, were potent inhibitors of mouse BTIC activity as determined by functional sphere-forming assays and the initiation of tumor formation by transplant of drug-exposed tumor cells into syngeneic mice. Moreover, sertraline (Zoloft), a selective serotonin reuptake inhibitor (SSRI), synergized with docetaxel (Taxotere) to shrink mouse breast tumors in vivo. Hence drugs targeting the serotonergic system might be repurposed to treat breast cancer patients to afford more durable breast cancer remissions. PMID:27447971

  20. THE EFFECT OF TESTICLE EXTRACT ON THE GROWTH OF TRANSPLANTABLE MOUSE TUMORS

    PubMed Central

    Tanzer, Radford C.

    1932-01-01

    Grafts of a transplantable mouse sarcoma designated as No. 180, and those of an attenuated strain of a more malignant Sarcoma S/37, treated with testicle extract, either fail to grow on inoculation or result in tumors of a lower growth rate than the controls. Autografts of spontaneous mouse tumors so treated show little if any effect, while the Bashford adenocarcinoma and the unattenuated S/37 are unaffected. The factor in testicle extract responsible for the retarding activity passes readily through a Berkefeld filter and is thermostable. PMID:19870004

  1. Aberrant PGE2 metabolism in bladder tumor microenvironment promotes immunosuppressive phenotype of tumor-infiltrating myeloid cells

    PubMed Central

    Eruslanov, Evgeniy; Daurkin, Irina; Vieweg, Johannes; Daaka, Yehia; Kusmartsev, Sergei

    2011-01-01

    Bladder cancer is associated with enhanced inflammation and characterized by deregulated prostanoid metabolism. Here we examined prostaglandin E2 (PGE2) metabolism and myeloid cell subsets that infiltrate tumor tissue using two xenograft models of human bladder cancer. Human bladder tumor xenografts implanted into athymic nude mice become highly infiltrated with host CD11b myeloid cells of bone marrow origin. Fast growing SW780 bladder tumor xenografts were infiltrated with heterogeneous CD11b myeloid cell subsets including tumor-associated macrophages and myeloid-derived suppressor cells. In contrast, majority of myeloid cells in tumor tissue from slow growing bladder cancer Urothel 11 displayed more immature, homogenous phenotype and comprised mostly MHC II class-negative myeloid-derived suppressor cells. We demonstrate that human bladder tumors secrete substantial amounts of PGE2. Normal bone marrow myeloid cell progenitors cultured in the presence of a bladder tumor-conditioned medium, which is enriched for PGE2, failed to differentiate into mature APCs and acquired phenotype of the myeloid-derived suppressor cells or inflammatory macrophages with up-regulated chemokine receptor CXCR4. Collectively our data demonstrate that enhanced cancer-related inflammation and deregulated PGE2 metabolism in tumor microenvironment promote immunosuppressive pro-tumoral phenotype of myeloid cells in bladder cancer. These data also suggest that not only local tumor microenvironment but other factors such as stage of cancer disease and pace of tumor growth could markedly influence the phenotype, differentiation and immune function of myeloid cells in tumor tissue. PMID:21315786

  2. Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging

    PubMed Central

    Johansson, Fredrik K.; Brodd, Josefin; Eklöf, Charlotta; Ferletta, Maria; Hesselager, Göran; Tiger, Carl-Fredrik; Uhrbom, Lene; Westermark, Bengt

    2004-01-01

    Murine retroviruses may cause malignant tumors in mice by insertional mutagenesis of host genes. The use of retroviral tagging as a means of identifying cancer-causing genes has, however, almost entirely been restricted to hematopoietic tumors. The aim of this study was to develop a system allowing for the retroviral tagging of candidate genes in malignant brain tumors. Mouse gliomas were induced by a recombinant Moloney murine leukemia virus encoding platelet-derived growth factor (PDGF) B-chain. The underlying idea was that tumors evolve through a combination of PDGF-mediated autocrine growth stimulation and insertional mutagenesis of genes that cooperate with PDGF in gliomagenesis. Common insertion sites (loci that were tagged in more than one tumor) were identified by cloning and sequencing retroviral flanking segments, followed by blast searches of mouse genome databases. A number of candidate brain tumor loci (Btls) were identified. Several of these Btls correspond to known tumor-causing genes; these findings strongly support the underlying idea of our experimental approach. Other Btls harbor genes with a hitherto unproven role in transformation or oncogenesis. Our findings indicate that retroviral tagging with a growth factor-encoding virus may be a powerful means of identifying candidate tumor-causing genes in nonhematopoietic tumors. PMID:15273287

  3. A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1

    PubMed Central

    2010-01-01

    Background Well-curated and validated network reconstructions are extremely valuable tools in systems biology. Detailed metabolic reconstructions of mammals have recently emerged, including human reconstructions. They raise the question if the various successful applications of microbial reconstructions can be replicated in complex organisms. Results We mapped the published, detailed reconstruction of human metabolism (Recon 1) to other mammals. By searching for genes homologous to Recon 1 genes within mammalian genomes, we were able to create draft metabolic reconstructions of five mammals, including the mouse. Each draft reconstruction was created in compartmentalized and non-compartmentalized version via two different approaches. Using gap-filling algorithms, we were able to produce all cellular components with three out of four versions of the mouse metabolic reconstruction. We finalized a functional model by iterative testing until it passed a predefined set of 260 validation tests. The reconstruction is the largest, most comprehensive mouse reconstruction to-date, accounting for 1,415 genes coding for 2,212 gene-associated reactions and 1,514 non-gene-associated reactions. We tested the mouse model for phenotype prediction capabilities. The majority of predicted essential genes were also essential in vivo. However, our non-tissue specific model was unable to predict gene essentiality for many of the metabolic genes shown to be essential in vivo. Our knockout simulation of the lipoprotein lipase gene correlated well with experimental results, suggesting that softer phenotypes can also be simulated. Conclusions We have created a high-quality mouse genome-scale metabolic reconstruction, iMM1415 (Mus Musculus, 1415 genes). We demonstrate that the mouse model can be used to perform phenotype simulations, similar to models of microbe metabolism. Since the mouse is an important experimental organism, this model should become an essential tool for studying metabolic

  4. Dietary catechin delays tumor onset in a transgenic mouse model.

    PubMed

    Ebeler, Susan E; Brenneman, Charles A; Kim, Gap-Soon; Jewell, William T; Webb, Michael R; Chacon-Rodriguez, Leticia; MacDonald, Emily A; Cramer, Amanda C; Levi, Andrew; Ebeler, John D; Islas-Trejo, Alma; Kraus, Amber; Hinrichs, Steven H; Clifford, Andrew J

    2002-10-01

    Evidence exists that red wine, which contains a large array of polyphenols, is protective against cardiovascular disease and possibly cancer. We tested the hypothesis that catechin, the major monomeric polyphenol in red wine, can delay tumor onset in transgenic mice that spontaneously develop tumors. Mice were fed a nutritionally complete amino acid-based diet supplemented with (+)-catechin (0-8 mmol/kg diet) or alcohol-free solids from red wine. Mice were examined daily; the age at which a first tumor appeared was recorded as the age at tumor onset. Plasma catechin and metabolite concentrations were quantified at the end of the study. Dietary catechin significantly delayed tumor onset; a positive, linear relation was observed between the age at tumor onset and either the amount of dietary catechin (r(2) = 0.761, P < 0.001) or plasma catechin and metabolite concentrations (r(2) = 0.408, P = 0.003). No significant effects on tumor onset were observed when mice consumed a diet supplemented with wine solids containing <0.22 mmol catechin/kg diet, whereas a previous study showed that wine solids with a similar total polyphenol concentration but containing approximately 4 times more catechin significantly delayed tumor onset by approximately 30 d compared with a control diet. The catechin composition of the wines is directly related to processing conditions during vinification. Physiologic intakes of specific dietary polyphenols, such as catechin, may play an important role in cancer chemoprevention. Wines have different polyphenol concentrations and compositions; therefore, the overall health benefits of individual wines differ.

  5. Electrochemical treatment of mouse Ehrlich tumor with direct electric current.

    PubMed

    Cabrales, L B; Ciria, H C; Bruzón, R P; Quevedo, M S; Aldana, R H; De Oca, L M; Salas, M F; Peña, O G

    2001-07-01

    Electrochemical treatment of cancer utilizes direct electric current (DEC) to produce direct alterations and chemical changes in tumors. However, the DEC treatment is not established and mechanisms are not well understood. In vivo studies were conducted to evaluate the effectiveness of DEC on animal tumor models. Ehrlich tumors were implanted subcutaneously in sixty male BALB/c mice. When the tumor volumes reached 850 mm(3), four platinum electrodes were inserted into the tumors. DEC of 4 mA was applied for 21 min to the treated group; the total charge was 5 C. The healthy and sick control groups were subjected to the same conditions but without DEC. Hematological and chemical parameters as well as histopathological and peritumoral findings were studied. After the electrochemical therapy it was observed that both tumor volume decrease and necrosis percentage increase were significant in the treated group. Moreover, 24 h after treatment an acute inflammatory response, as well as sodium ion decrease, and potassium ion and spleen weight increase were observed in this group. It was concluded that both electrochemical reactions (fundamentally those in which reactive oxygen species are involved), and immune system stimulation induced by cytotoxic action of the DEC could constitute the most important antitumor mechanisms. Copyright 2001 Wiley-Liss, Inc.

  6. Common Fragile Site Tumor Suppressor Genes and Corresponding Mouse Models of Cancer

    PubMed Central

    Drusco, Alessandra; Pekarsky, Yuri; Costinean, Stefan; Antenucci, Anna; Conti, Laura; Volinia, Stefano; Aqeilan, Rami I.; Huebner, Kay; Zanesi, Nicola

    2011-01-01

    Chromosomal common fragile sites (CFSs) are specific mammalian genomic regions that show an increased frequency of gaps and breaks when cells are exposed to replication stress in vitro. CFSs are also consistently involved in chromosomal abnormalities in vivo related to cancer. Interestingly, several CFSs contain one or more tumor suppressor genes whose structure and function are often affected by chromosomal fragility. The two most active fragile sites in the human genome are FRA3B and FRA16D where the tumor suppressor genes FHIT and WWOX are located, respectively. The best approach to study tumorigenic effects of altered tumor suppressors located at CFSs in vivo is to generate mouse models in which these genes are inactivated. This paper summarizes our present knowledge on mouse models of cancer generated by knocking out tumor suppressors of CFS. PMID:21318118

  7. Common fragile site tumor suppressor genes and corresponding mouse models of cancer.

    PubMed

    Drusco, Alessandra; Pekarsky, Yuri; Costinean, Stefan; Antenucci, Anna; Conti, Laura; Volinia, Stefano; Aqeilan, Rami I; Huebner, Kay; Zanesi, Nicola

    2011-01-01

    Chromosomal common fragile sites (CFSs) are specific mammalian genomic regions that show an increased frequency of gaps and breaks when cells are exposed to replication stress in vitro. CFSs are also consistently involved in chromosomal abnormalities in vivo related to cancer. Interestingly, several CFSs contain one or more tumor suppressor genes whose structure and function are often affected by chromosomal fragility. The two most active fragile sites in the human genome are FRA3B and FRA16D where the tumor suppressor genes FHIT and WWOX are located, respectively. The best approach to study tumorigenic effects of altered tumor suppressors located at CFSs in vivo is to generate mouse models in which these genes are inactivated. This paper summarizes our present knowledge on mouse models of cancer generated by knocking out tumor suppressors of CFS.

  8. Establishment and Genomic Characterization of Mouse Xenografts of Human Primary Prostate Tumors

    PubMed Central

    Priolo, Carmen; Agostini, Michelle; Vena, Natalie; Ligon, Azra H.; Fiorentino, Michelangelo; Shin, Eyoung; Farsetti, Antonella; Pontecorvi, Alfredo; Sicinska, Ewa; Loda, Massimo

    2010-01-01

    Serum prostate-specific antigen screening has led to earlier detection and surgical treatment of prostate cancer, favoring an increasing incidence-to-mortality ratio. However, about one third of tumors that are diagnosed when still confined to the prostate can relapse within 10 years from the first treatment. The challenge is therefore to identify prognostic markers of aggressive versus indolent tumors. Although several preclinical models of advanced prostate tumors are available, a model that recapitulates the genetic and growth behavior of primary tumors is still lacking. Here, we report a complete histopathological and genomic characterization of xenografts derived from primary localized low- and high-grade human prostate tumors that were implanted under the renal capsule of immunodeficient mice. We obtained a tumor take of 56% and show that these xenografts maintained the histological as well as most genomic features of the parental tumors. Serum prostate-specific antigen levels were measurable only in tumor xenograft-bearing mice, but not in those implanted with either normal prostate tissue or in tumors that likely regressed. Finally, we show that a high proliferation rate, but not the pathological stage or the Gleason grade of the original tumor, was a fundamental prerequisite for tumor take in mice. This mouse xenograft model represents a useful preclinical model of primary prostate tumors for their biological characterization, biomarker discovery, and drug testing. PMID:20167861

  9. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha.

    PubMed

    Doki, Tomoyoshi; Takano, Tomomi; Hohdatsu, Tsutomu

    2016-10-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2-4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2-4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2-4) by fusing the variable region of mouse mAb 2-4 to the constant region of feline antibody. The chimeric mAb 2-4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2-4 and chimeric mAb 2-4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2-4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2-4 was reduced. In contrast, in cats treated with chimeric mAb 2-4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2-4-treated cats.

  10. Development of a mouse-feline chimeric antibody against feline tumor necrosis factor-alpha

    PubMed Central

    DOKI, Tomoyoshi; TAKANO, Tomomi; HOHDATSU, Tsutomu

    2016-01-01

    Feline infectious peritonitis (FIP) is a fatal inflammatory disease caused by FIP virus infection. Feline tumor necrosis factor (fTNF)-alpha is closely involved in the aggravation of FIP pathology. We previously described the preparation of neutralizing mouse anti-fTNF-alpha monoclonal antibody (mAb 2–4) and clarified its role in the clinical condition of cats with FIP using in vitro systems. However, administration of mouse mAb 2–4 to cat may lead to a production of feline anti-mouse antibodies. In the present study, we prepared a mouse-feline chimeric mAb (chimeric mAb 2–4) by fusing the variable region of mouse mAb 2–4 to the constant region of feline antibody. The chimeric mAb 2–4 was confirmed to have fTNF-alpha neutralization activity. Purified mouse mAb 2–4 and chimeric mAb 2–4 were repeatedly administered to cats, and the changes in the ability to induce feline anti-mouse antibody response were investigated. In the serum of cats treated with mouse mAb 2–4, feline anti-mouse antibody production was induced, and the fTNF-alpha neutralization effect of mouse mAb 2–4 was reduced. In contrast, in cats treated with chimeric mAb 2–4, the feline anti-mouse antibody response was decreased compared to that of mouse mAb 2–4-treated cats. PMID:27264736

  11. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model

    PubMed Central

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D.; Shetake, Neena; Balla, Murali M. S.; Kumar, Amit; Ray, Pritha; Ghosh, Anu

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  12. Molecular Understanding of Growth Inhibitory Effect from Irradiated to Bystander Tumor Cells in Mouse Fibrosarcoma Tumor Model.

    PubMed

    Desai, Sejal; Srambikkal, Nishad; Yadav, Hansa D; Shetake, Neena; Balla, Murali M S; Kumar, Amit; Ray, Pritha; Ghosh, Anu; Pandey, B N

    2016-01-01

    Even though bystander effects pertaining to radiation risk assessment has been extensively studied, the molecular players of radiation induced bystander effect (RIBE) in the context of cancer radiotherapy are poorly known. In this regard, the present study is aimed to investigate the effect of irradiated tumor cells on the bystander counterparts in mouse fibrosarcoma (WEHI 164 cells) tumor model. Mice co-implanted with WEHI 164 cells γ-irradiated with a lethal dose of 15 Gy and unirradiated (bystander) WEHI 164 cells showed inhibited tumor growth, which was measured in terms of tumor volume and Luc+WEHI 164 cells based bioluminescence in vivo imaging. Histopathological analysis and other assays revealed decreased mitotic index, increased apoptosis and senescence in these tumor tissues. In addition, poor angiogenesis was observed in these tumor tissues, which was further confirmed by fluorescence imaging of tumor vascularisation and CD31 expression by immuno-histochemistry. Interestingly, the growth inhibitory bystander effect was exerted more prominently by soluble factors obtained from the irradiated tumor cells than the cellular fraction. Cytokine profiling of the supernatants obtained from the irradiated tumor cells showed increased levels of VEGF, Rantes, PDGF, GMCSF and IL-2 and decreased levels of IL-6 and SCF. Comparative proteomic analysis of the supernatants from the irradiated tumor cells showed differential expression of total 24 protein spots (21 up- and 3 down-regulated) when compared with the supernatant from the unirradiated control cells. The proteins which showed substantially higher level in the supernatant from the irradiated cells included diphosphate kinase B, heat shock cognate, annexin A1, angiopoietin-2, actin (cytoplasmic 1/2) and stress induced phosphoprotein 1. However, the levels of proteins like annexin A2, protein S100 A4 and cofilin was found to be lower in this supernatant. In conclusion, our results provided deeper insight about

  13. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model.

    PubMed

    Zeidler-Erdely, Patti C; Meighan, Terence G; Erdely, Aaron; Battelli, Lori A; Kashon, Michael L; Keane, Michael; Antonini, James M

    2013-09-05

    Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk.

  14. Lung tumor promotion by chromium-containing welding particulate matter in a mouse model

    PubMed Central

    2013-01-01

    Background Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore, the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice. Methods Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP) or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung tumors were enumerated at 30 weeks post-initiation. Results MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ± 1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7 tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding PM-exposed groups. Conclusions GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to support the epidemiological data that show welders have an increased lung cancer risk. PMID:24107379

  15. Metabolic and Blood Pressure Effects of Walnut Supplementation in a Mouse Model of the Metabolic Syndrome

    PubMed Central

    Scott, Nicola J. A.; Ellmers, Leigh J.; Pilbrow, Anna P.; Thomsen, Lotte; Richards, Arthur Mark; Frampton, Chris M.; Cameron, Vicky A.

    2017-01-01

    There is extensive evidence that walnut consumption is protective against cardiovascular disease and diabetes in the healthy population, but the beneficial effects of walnut consumption in individuals with the metabolic syndrome (MetS) remain uncertain. We compared a range of cardio-metabolic traits and related tissue gene expression associated with 21 weeks of dietary walnut supplementation in a mouse model of MetS (MetS-Tg) and wild-type (WT) mice (n = 10 per genotype per diet, equal males and females). Compared to standard diet, walnuts did not significantly alter food consumption or body weight trajectory of either MetS-Tg or WT mice. In MetS-Tg mice, walnuts were associated with reductions in oral glucose area under the curve (gAUC, standard diet 1455 ± 54, walnut 1146 ± 91, p = 0.006) and mean arterial blood pressure (MAP, standard diet 100.6 ± 1.9, walnut 73.2 ± 1.8 mmHg, p < 0.001), with neutral effects on gAUC and MAP in WT mice. However, in MetS-Tg mice, walnuts were also associated with trends for higher plasma cholesterol (standard diet 4.73 ± 0.18, walnut 7.03 ± 1.99 mmol/L, p = 0.140) and triglyceride levels (standard diet 2.4 ± 0.5, walnut 5.4 ± 1.6 mmol/L, p = 0.061), despite lowering cholesterol and having no effect on triglycerides in WT mice. Moreover, in both MetS-Tg and WT mice, walnuts were associated with significantly increased liver expression of genes associated with metabolism (Fabp1, Insr), cell stress (Atf6, Ddit3, Eif2ak3), fibrosis (Hgf, Sp1, Timp1) and inflammation (Tnf, Ptpn22, Pparg). In conclusion, dietary walnuts were associated with modest favourable effects in WT mice, but a combination of beneficial and adverse effects in MetS-Tg mice, and up-regulation of hepatic pro-fibrotic and pro-inflammatory genes in both mouse strains. PMID:28686204

  16. Metabolic and Blood Pressure Effects of Walnut Supplementation in a Mouse Model of the Metabolic Syndrome.

    PubMed

    Scott, Nicola J A; Ellmers, Leigh J; Pilbrow, Anna P; Thomsen, Lotte; Richards, Arthur Mark; Frampton, Chris M; Cameron, Vicky A

    2017-07-07

    There is extensive evidence that walnut consumption is protective against cardiovascular disease and diabetes in the healthy population, but the beneficial effects of walnut consumption in individuals with the metabolic syndrome (MetS) remain uncertain. We compared a range of cardio-metabolic traits and related tissue gene expression associated with 21 weeks of dietary walnut supplementation in a mouse model of MetS (MetS-Tg) and wild-type (WT) mice (n = 10 per genotype per diet, equal males and females). Compared to standard diet, walnuts did not significantly alter food consumption or body weight trajectory of either MetS-Tg or WT mice. In MetS-Tg mice, walnuts were associated with reductions in oral glucose area under the curve (gAUC, standard diet 1455 ± 54, walnut 1146 ± 91, p = 0.006) and mean arterial blood pressure (MAP, standard diet 100.6 ± 1.9, walnut 73.2 ± 1.8 mmHg, p < 0.001), with neutral effects on gAUC and MAP in WT mice. However, in MetS-Tg mice, walnuts were also associated with trends for higher plasma cholesterol (standard diet 4.73 ± 0.18, walnut 7.03 ± 1.99 mmol/L, p = 0.140) and triglyceride levels (standard diet 2.4 ± 0.5, walnut 5.4 ± 1.6 mmol/L, p = 0.061), despite lowering cholesterol and having no effect on triglycerides in WT mice. Moreover, in both MetS-Tg and WT mice, walnuts were associated with significantly increased liver expression of genes associated with metabolism (Fabp1, Insr), cell stress (Atf6, Ddit3, Eif2ak3), fibrosis (Hgf, Sp1, Timp1) and inflammation (Tnf, Ptpn22, Pparg). In conclusion, dietary walnuts were associated with modest favourable effects in WT mice, but a combination of beneficial and adverse effects in MetS-Tg mice, and up-regulation of hepatic pro-fibrotic and pro-inflammatory genes in both mouse strains.

  17. High Resolution X-Ray Microangiography of 4T1 Tumor in Mouse Using Synchrotron Radiation

    SciTech Connect

    Sun Jianqi; Liu Ping; Gu Xiang; Liu Xiaoxia; Zhao Jun; Xiao Tiqiao; Xu, Lisa X.

    2010-07-23

    Angiogenesis is very important in tumor growth and metastasis. But in clinic, only vessels lager than 200 {mu}m in diameter, can be observed using conventional medical imaging. Synchrotron radiation (SR) phase contrast imaging, whose spatial resolution can reach as high as 1 {mu}m, has great advantages in imaging soft tissue structures, such as blood vessels and tumor tissues. In this paper, the morphology of newly formed micro-vessels in the mouse 4T1 tumor samples was firstly studied with contrast agent. Then, the angiogenesis in nude mice tumor window model was observed without contrast agent using the SR phase contrast imaging at the beamline for X-ray imaging and biomedical applications, Shanghai Synchrotron Radiation Facility (SSRF). The images of tumors showed dense, irregular and tortuous tumor micro-vessels with the smallest size of 20-30 {mu}m in diameter.

  18. SIRT3 is a Mitochondrial Localized Tumor Suppressor Required for Maintenance of Mitochondrial Integrity and Metabolism During Stress

    PubMed Central

    Kim, Hyun-Seok; Patel, Krish; Muldoon-Jacobs, Kristi; Bisht, Kheem S.; Aykin-Burns, Nukhet; Pennington, J. Daniel; van der Meer, Riet; Nguyen, Phuongmai; Savage, Jason; Owens, Kjerstin M.; Vassilopoulos, Athanassios; Ozden, Ozkan; Park, Seong-Hoon; Singh, Keshav K.; Abdulkadir, Sarki A.; Spitz, Douglas R.; Deng, Chu-Xia; Gius, David

    2013-01-01

    SUMMARY The sirtuin gene family (SIRT) is hypothesized to regulate the aging process and play a role in cellular repair. This work demonstrates that SIRT3−/− mouse embryonic fibroblasts (MEFs) exhibit abnormal mitochondrial physiology as well as increases in stress-induced superoxide levels and genomic instability. Expression of a single oncogene (Myc or Ras) in SIRT3−/− MEFs results in in vitro transformation and altered intracellular metabolism. Superoxide dismutase prevents transformation by a single oncogene in SIRT3−/− MEFs and reverses the tumor permissive phenotype as well as stress-induced genomic instability. In addition, SIRT3−/− mice develop ER/PR-positive mammary tumors. Finally, human breast and other human cancer specimens exhibit reduced SIRT3 levels. These results identify SIRT3 as a genomically expressed, mitochondrial localized tumor suppressor. PMID:20129246

  19. Mouse mammary tumors display Stat3 activation dependent on leukemia inhibitory factor signaling

    PubMed Central

    Quaglino, Ana; Schere-Levy, Carolina; Romorini, Leonardo; Meiss, Roberto P; Kordon, Edith C

    2007-01-01

    Introduction It has been demonstrated that leukemia inhibitory factor (LIF) induces epithelium apoptosis through Stat3 activation during mouse mammary gland involution. In contrast, it has been shown that this transcription factor is commonly activated in breast cancer cells, although what causes this effect remains unknown. Here we have tested the hypothesis that locally produced LIF can be responsible for Stat3 activation in mouse mammary tumors. Methods The studies were performed in different tumorigenic and non-tumorigenic mammary cells. The expression of LIF and LIF receptor was tested by RT-PCR analysis. In tumors, LIF and Stat3 proteins were analyzed by immunohistochemistry, whereas Stat3 and extracellular signal-regulated kinase (ERK)1/2 expression and phosphorylation were studied by Western blot analysis. A LIF-specific blocking antibody was used to determine whether this cytokine was responsible for Stat3 phosphorylation induced by conditioned medium. Specific pharmacological inhibitors (PD98059 and Stat3ip) that affect ERK1/2 and Stat3 activation were used to study their involvement in LIF-induced effects. To analyze cell survival, assays with crystal violet were performed. Results High levels of LIF expression and activated Stat3 were found in mammary tumors growing in vivo and in their primary cultures. We found a single mouse mammary tumor cell line, LM3, that showed low levels of activated Stat3. Incidentally, these cells also showed very little expression of LIF receptor. This suggested that autocrine/paracrine LIF would be responsible for Stat3 activation in mouse mammary tumors. This hypothesis was confirmed by the ability of conditioned medium of mammary tumor primary cultures to induce Stat3 phosphorylation, activity that was prevented by pretreatment with LIF-blocking antibody. Besides, we found that LIF increased tumor cell viability. Interestingly, blocking Stat3 activation enhanced this effect in mammary tumor cells. Conclusion LIF is

  20. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2015-10-01

    Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING...SUBTITLE Developiing Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER Carcinoma Using Genetically Engineered Mouse Models and 5b...biomarkers. 15. SUBJECT TERMS Small cell lung cancer (SCLC), Genetically engineered mouse model (GEMM), BH3 mimetic, TORC inhibitor, Apoptosis

  1. In-depth metabolic phenotyping of genetically engineered mouse models in obesity and diabetes.

    PubMed

    Lee, Hui-Young; Jeong, Kyeong-Hoon; Choi, Cheol Soo

    2014-10-01

    The world-wide prevalence of obesity and diabetes has increased sharply during the last two decades. Accordingly, the metabolic phenotyping of genetically engineered mouse models is critical for evaluating the functional roles of target genes in obesity and diabetes, and for developing new therapeutic targets. In this review, we discuss the practical meaning of metabolic phenotyping, the strategy of choosing appropriate tests, and considerations when designing and performing metabolic phenotyping in mice.

  2. Comparison of the metabolic activation of environmental carcinogens in mouse embryonic stem cells and mouse embryonic fibroblasts

    PubMed Central

    Krais, Annette M.; Mühlbauer, Karl-Rudolf; Kucab, Jill E.; Chinbuah, Helena; Cornelius, Michael G.; Wei, Quan-Xiang; Hollstein, Monica; Phillips, David H.; Arlt, Volker M.; Schmeiser, Heinz H.

    2015-01-01

    We compared mouse embryonic stem (ES) cells and fibroblasts (MEFs) for their ability to metabolically activate the environmental carcinogens benzo[a]pyrene (BaP), 3-nitrobenzanthrone (3-NBA) and aristolochic acid I (AAI), measuring DNA adduct formation by 32P-postlabelling and expression of xenobiotic-metabolism genes by quantitative real-time PCR. At 2 μM, BaP induced Cyp1a1 expression in MEFs to a much greater extent than in ES cells and formed 45 times more adducts. Nqo1 mRNA expression was increased by 3-NBA in both cell types but induction was higher in MEFs, as was adduct formation. For AAI, DNA binding was over 450 times higher in MEFs than in ES cells, although Nqo1 and Cyp1a1 transcriptional levels did not explain this difference. We found higher global methylation of DNA in ES cells than in MEFs, which suggests higher chromatin density and lower accessibility of the DNA to DNA damaging agents in ES cells. However, AAI treatment did not alter DNA methylation. Thus mouse ES cells and MEFs have the metabolic competence to activate a number of environmental carcinogens, but MEFs have lower global DNA methylation and higher metabolic capacity than mouse ES cells. PMID:25230394

  3. Physiologically Based Pharmacokinetic (PBPK) Modeling of Interstrain Variability in Trichloroethylene Metabolism in the Mouse

    PubMed Central

    Campbell, Jerry L.; Clewell, Harvey J.; Zhou, Yi-Hui; Wright, Fred A.; Guyton, Kathryn Z.

    2014-01-01

    Background: Quantitative estimation of toxicokinetic variability in the human population is a persistent challenge in risk assessment of environmental chemicals. Traditionally, interindividual differences in the population are accounted for by default assumptions or, in rare cases, are based on human toxicokinetic data. Objectives: We evaluated the utility of genetically diverse mouse strains for estimating toxicokinetic population variability for risk assessment, using trichloroethylene (TCE) metabolism as a case study. Methods: We used data on oxidative and glutathione conjugation metabolism of TCE in 16 inbred and 1 hybrid mouse strains to calibrate and extend existing physiologically based pharmacokinetic (PBPK) models. We added one-compartment models for glutathione metabolites and a two-compartment model for dichloroacetic acid (DCA). We used a Bayesian population analysis of interstrain variability to quantify variability in TCE metabolism. Results: Concentration–time profiles for TCE metabolism to oxidative and glutathione conjugation metabolites varied across strains. Median predictions for the metabolic flux through oxidation were less variable (5-fold range) than that through glutathione conjugation (10-fold range). For oxidative metabolites, median predictions of trichloroacetic acid production were less variable (2-fold range) than DCA production (5-fold range), although the uncertainty bounds for DCA exceeded the predicted variability. Conclusions: Population PBPK modeling of genetically diverse mouse strains can provide useful quantitative estimates of toxicokinetic population variability. When extrapolated to lower doses more relevant to environmental exposures, mouse population-derived variability estimates for TCE metabolism closely matched population variability estimates previously derived from human toxicokinetic studies with TCE, highlighting the utility of mouse interstrain metabolism studies for addressing toxicokinetic variability

  4. Combination of PDT and a DNA demethylating agent produces anti-tumor immune response in a mouse tumor model

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Hamblin, Michael R.

    2009-06-01

    Epigenetic mechanisms, which involve DNA methylation and histone modifications, result in the heritable silencing of genes without a change in their coding sequence. However, these changes must be actively maintained after each cell division rendering them a promising target for pharmacologic inhibition. DNA methyltransferase inhibitors like 5-aza-deoxycytidine (5-aza-dC) induce and/or up-regulate the expression of MAGE-type antigens in human and mice cancer cells. Photodynamic therapy (PDT) has been shown to be an effective locally ablative anti-cancer treatment that has the additional advantage of stimulating tumor-directed immune response. We studied the effects of a new therapy that combined the demethylating agent 5-aza-dC with PDT in the breast cancer model 4T1 syngenic to immunocompetent BALB/c mice. PDT was used as a locally ablating tumor treatment that is capable of eliciting strong and tumor directed immune response while 5-aza-dC pretreatment was used promote de novo induction of the expression of P1A.protein. This is the mouse homolog of human MAGE family antigens and is reported to function as a tumor rejection antigen in certain mouse tumors. This strategy led to an increase in PDT-mediated immune response and better treatment outcome. These results strongly suggest that the MAGE family antigens are important target for PDT mediated immune response but that their expression can be silenced by epigenetic mechanisms. Therefore the possibility that PDT can be combined with epigenetic strategies to elicit anti-tumor immunity in MAGE-positive tumor models is highly clinically significant and should be studied in detail.

  5. A Compendium of the Mouse Mammary Tumor Biologist: From the Initial Observations in the House Mouse to the Development of Genetically Engineered Mice

    PubMed Central

    Cardiff, Robert D.; Kenney, Nicholas

    2011-01-01

    For over a century, mouse mammary tumor biology and the associated mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration in 1984. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skill sets to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this compendium is to extend an “olive branch” while simultaneously deepen the knowledge of the novice mouse mammary tumor biologist as they journey into a field rich in pathology and genetics spanning several centuries. PMID:20961975

  6. A compendium of the mouse mammary tumor biologist: from the initial observations in the house mouse to the development of genetically engineered mice.

    PubMed

    Cardiff, Robert D; Kenney, Nicholas

    2011-06-01

    For over a century, mouse mammary tumor biology and the associated mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration in 1984. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skill sets to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this compendium is to extend an "olive branch" while simultaneously deepen the knowledge of the novice mouse mammary tumor biologist as they journey into a field rich in pathology and genetics spanning several centuries.

  7. Gene therapy with IL-12 induced enhanced anti-tumor activity in fibrosarcoma mouse model.

    PubMed

    Razi Soofiyani, Saiedeh; Kazemi, Tohid; Lotfipour, Farzaneh; Mohammad Hosseini, Akbar; Shanehbandi, Dariush; Hallaj-Nezhadi, Somayeh; Baradaran, Behzad

    2016-12-01

    Context Immunotherapy is among the most promising modalities for treatment of cancer. Recently, interleukin 12 (IL-12) has been used as an immunotherapeutic agent in cancer gene therapy. IL-12 can activate dendritic cells (DCs) and boost anti-tumor immune responses. Objective In the current study, we have investigated if IL-12 gene therapy can lead to the regression of tumor mass in a mouse model of fibrosarcoma. Material and methods To investigate the therapeutic efficacy of IL-12, WEHI-164 tumor cells were transfected with murine-IL12 plasmids using Lipofectamine. Enzyme linked immunosorbent assay (ELISA) was used to confirm IL-12 expression in transfected cells. The fibrosarcoma mouse model was established by subcutaneous injection of transfected cells to Balb/C mice. Mice were sacrificed and the tumors were extracted. Tumor sizes were measured by caliper. The expression of IL-12 and IFN-γ was studied with real-time PCR and western blotting. The expression of Ki-67(a tumor proliferation marker) in tumor mass was studied by immunohistochemistry staining. Results and discussion The group treated with IL-12 showed a significant decrease in tumor mass volume (P: 0.000). The results of real-time PCR and western blotting showed that IL-12 and IFN-γ expression increased in the group treated with IL-12 (relative expression of IL-12: 1.9 and relative expression of IFN-γ: 1.766). Immunohistochemistry staining showed that Ki-67 expression was reduced in the group treated with IL-12. Conclusion IL-12 gene therapy successfully led to regress of tumor mass in the fibrosarcoma mouse model. This may serve as a candidate therapeutic approach for treatment of cancer.

  8. PPARα inhibition modulates multiple reprogrammed metabolic pathways in kidney cancer and attenuates tumor growth.

    PubMed

    Abu Aboud, Omran; Donohoe, Dallas; Bultman, Scott; Fitch, Mark; Riiff, Tim; Hellerstein, Marc; Weiss, Robert H

    2015-06-01

    Kidney cancer [renal cell carcinoma (RCC)] is the sixth-most-common cancer in the United States, and its incidence is increasing. The current progression-free survival for patients with advanced RCC rarely extends beyond 1-2 yr due to the development of therapeutic resistance. We previously identified peroxisome proliferator-activating receptor-α (PPARα) as a potential therapeutic target for this disease and showed that a specific PPARα antagonist, GW6471, induced apoptosis and cell cycle arrest at G0/G1 in RCC cell lines associated with attenuation of cell cycle regulatory proteins. We now extend that work and show that PPARα inhibition attenuates components of RCC metabolic reprogramming, capitalizing on the Warburg effect. The specific PPARα inhibitor GW6471, as well as a siRNA specific to PPARα, attenuates the enhanced fatty acid oxidation and oxidative phosphorylation associated with glycolysis inhibition, and PPARα antagonism also blocks the enhanced glycolysis that has been observed in RCC cells; this effect did not occur in normal human kidney epithelial cells. Such cell type-specific inhibition of glycolysis corresponds with changes in protein levels of the oncogene c-Myc and has promising clinical implications. Furthermore, we show that treatment with GW6471 results in RCC tumor growth attenuation in a xenograft mouse model, with minimal obvious toxicity, a finding associated with the expected on-target effects on c-Myc. These studies demonstrate that several pivotal cancer-relevant metabolic pathways are inhibited by PPARα antagonism. Our data support the concept that targeting PPARα, with or without concurrent inhibition of glycolysis, is a potential novel and effective therapeutic approach for RCC that targets metabolic reprogramming in this tumor.

  9. The expression of metabolism-related proteins in phyllodes tumors.

    PubMed

    Kwon, Ji Eun; Jung, Woo-Hee; Koo, Ja Seung

    2013-02-01

    The purpose of this study was to investigate the association between the expression of hypoxia-inducible factor (HIF)-1α, insulin-like growth factor (IGF)-1, glucose transporter 1 (Glut-1), carbonic anhydrase IX (CAIX), and monocarboxylate transporter (MCT)4, which are metabolism-related proteins in phyllodes tumors (PTs), and clinicopathologic factors and its implication. We used tissue microarrays to analyze 207 PTs and performed immunohistochemical staining against the glycolysis-related molecules HIF-1α, IGF-1, Glut-1, CAIX, and MCT4. We then compared the immunohistochemical results and clinicopathologic parameters. The expressions of HIF-1α, Glut-1, CAIX, and MCT4 in the stromal component of PTs increased (P = 0.019, P < 0.001, P = 0.045, and P < 0.001, respectively) with increasing tumor grade. According to univariate analysis, factors associated with shorter disease-free survival were Glut-1 expression (P = 0.001) and MCT4 expression (P < 0.001) in the stromal component, and the factors associated with shorter overall survival were IGF-1 expression (P = 0.012), Glut-1 expression (P < 0.001), CAIX expression (P = 0.039), and MCT4 expression (P < 0.001) in the stromal component. Our investigation of stromal expression of the metabolism-related proteins HIF-1α, IGF-1, Glut-1, CAIX, and MCT4 revealed that, as the PT grade increased, the stromal expression of HIF-1α, Glut-1, CAIX, and MCT4 significantly increased. This result suggested that increasing PT grade is associated with increased glycolysis in the stromal component.

  10. Pancreatic tumor cell metabolism: focus on glycolysis and its connected metabolic pathways.

    PubMed

    Guillaumond, Fabienne; Iovanna, Juan Lucio; Vasseur, Sophie

    2014-03-01

    Because of lack of effective treatment, pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of death by cancer in Western countries, with a very weak improvement of survival rate over the last 40years. Defeat of numerous conventional therapies to cure this cancer makes urgent to develop new tools usable by clinicians for a better management of the disease. Aggressiveness of pancreatic cancer relies on its own hallmarks: a low vascular network as well as a prominent stromal compartment (desmoplasia), which creates a severe hypoxic environment impeding correct oxygen and nutrients diffusion to the tumoral cells. To survive and proliferate in those conditions, pancreatic cancer cells set up specific metabolic pathways to meet their tremendous energetic and biomass demands. However, as PDAC is a heterogenous tumor, a complex reprogramming of metabolic processes is engaged by cancer cells according to their level of oxygenation and nutrients supply. In this review, we focus on the glycolytic activity of PDAC and the glucose-connected metabolic pathways which contribute to the progression and dissemination of this disease. We also discuss possible therapeutic strategies targeting these pathways in order to cure this disease which still until now is resistant to numerous conventional treatments.

  11. Genetically engineered mouse models of craniopharyngioma: an opportunity for therapy development and understanding of tumor biology.

    PubMed

    Apps, John Richard; Martinez-Barbera, Juan Pedro

    2017-05-01

    Adamantinomatous craniopharyngioma (ACP) is the commonest tumor of the sellar region in childhood. Two genetically engineered mouse models have been developed and are giving valuable insights into ACP biology. These models have identified novel pathways activated in tumors, revealed an important function of paracrine signalling and extended conventional theories about the role of organ-specific stem cells in tumorigenesis. In this review, we summarize these mouse models, what has been learnt, their limitations and open questions for future research. We then discussed how these mouse models may be used to test novel therapeutics against potentially targetable pathways recently identified in human ACP. © 2017 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  12. Scintillation Studies of the Mouse Mammary Tumor Virus with ^125I

    NASA Astrophysics Data System (ADS)

    Yazdi, Amir; Blue, Eric; Bradley, Eric; Majewski, Stan; Mohammed, Shira; Qian, Jianguo; Saha, Margaret; Schworer, Stephen; Sutton, Jonathan; Weisenberger, Andrew; Welsh, Robert

    2007-10-01

    We have applied the techniques of scintillation imaging to studies of the mouse mammary tumor virus (MMTV). In these studies, Sodium Iodide Symporter (NIS) transfers the radioactive ^125I to the mammary glands of lactating mice and in particular to those mammaries with visible tumors. These studies have principally been carried out using pixellated scintillators coupled to position sensitive photomultiplier tubes (PSPMTs). More recently, we have initiated such studies with a monolithic slab of LaBr3 scintillator coupled to an array of PSPMTs. Several techniques of mapping and measuring the development of such tumors have been employed. These will be discussed in detail and preliminary results will be reported.

  13. Evaluation of the factors influencing the radiosensitivity of mouse ascites tumors

    SciTech Connect

    Okamoto, M.; Tsuboi, A.; Tsuchiya, T.

    1983-02-01

    Factors influencing the radiosensitivity of the newly established mouse ascites tumor TMT-3 line were studied. In vivo radiosensitivity of the tumor cells decreased with the progression of the growth phase in mice. Oxygen depletion was the major cause of the decreased radiosensitivity. Polarographic measurement of the oxygen dissolved in suspension of various cell densities suggested that high cell density such as in the ascites might well cause severe hypoxia. Humoral factors in the ascites and cell-to-cell contact had no effect on tumor cell radiosensitivity when the influence of the repair of potentially lethal damage was excluded.

  14. Bioluminescence-Based Tumor Quantification Method for Monitoring Tumor Progression and Treatment Effects in Mouse Lymphoma Models

    PubMed Central

    Cosette, Jeremie; Ben Abdelwahed, Rym; Donnou-Triffault, Sabrina; Sautès-Fridman, Catherine

    2016-01-01

    Although bioluminescence imaging (BLI) shows promise for monitoring tumor burden in animal models of cancer, these analyses remain mostly qualitative. Here we describe a method for bioluminescence imaging to obtain a semi-quantitative analysis of tumor burden and treatment response. This method is based on the calculation of a luminoscore, a value that allows comparisons of two animals from the same or different experiments. Current BLI instruments enable the calculation of this luminoscore, which relies mainly on the acquisition conditions (back and front acquisitions) and the drawing of the region of interest (manual markup around the mouse). Using two previously described mouse lymphoma models based on cell engraftment, we show that the luminoscore method can serve as a noninvasive way to verify successful tumor cell inoculation, monitor tumor burden, and evaluate the effects of in situ cancer treatment (CpG-DNA). Finally, we show that this method suits different experimental designs. We suggest that this method be used for early estimates of treatment response in preclinical small-animal studies. PMID:27501019

  15. Disulfiram modulates stemness and metabolism of brain tumor initiating cells in atypical teratoid/rhabdoid tumors.

    PubMed

    Choi, Seung Ah; Choi, Jung Won; Wang, Kyu-Chang; Phi, Ji Hoon; Lee, Ji Yeoun; Park, Kyung Duk; Eum, Dayoung; Park, Sung-Hye; Kim, Il Han; Kim, Seung-Ki

    2015-06-01

    Atypical teratoid/rhabdoid tumors (AT/RT) are among the most malignant pediatric brain tumors. Cells from brain tumors with high aldehyde dehydrogenase (ALDH) activity have a number of characteristics that are similar to brain tumor initiating cells (BTICs). This study aimed to evaluate the therapeutic potential of ALDH inhibition using disulfiram (DSF) against BTICs from AT/RT. Primary cultured BTICs from AT/RT were stained with Aldefluor and isolated by fluorescence activated cell sorting. The therapeutic effect of DSF against BTICs from AT/RT was confirmed in vitro and in vivo. AT/RT cells displayed a high expression of ALDH. DSF demonstrated a more potent cytotoxic effect on ALDH(+) AT/RT cells compared with standard anticancer agents. Notably, treatment with DSF did not have a considerable effect on normal neural stem cells or fibroblasts. DSF significantly inhibited the ALDH enzyme activity of AT/RT cells. DSF decreased self-renewal ability, cell viability, and proliferation potential and induced apoptosis and cell cycle arrest in ALDH(+) AT/RT cells. Importantly, DSF reduced the metabolism of ALDH(+) AT/RT cells by increasing the nicotinamide adenine dinucleotide ratio of NAD(+)/NADH and regulating Silent mating type Information Regulator 2 homolog 1 (SIRT1), nuclear factor-kappaB, Lin28A/B, and miRNA let-7g. Animals in the DSF-treated group demonstrated a reduction of tumor volume (P < .05) and a significant survival benefit (P = .02). Our study demonstrated the therapeutic potential of DSF against BTICs from AT/RT and suggested the possibility of ALDH inhibition for clinical application. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Disulfiram modulates stemness and metabolism of brain tumor initiating cells in atypical teratoid/rhabdoid tumors

    PubMed Central

    Choi, Seung Ah; Choi, Jung Won; Wang, Kyu-Chang; Phi, Ji Hoon; Lee, Ji Yeoun; Park, Kyung Duk; Eum, Dayoung; Park, Sung-Hye; Kim, Il Han; Kim, Seung-Ki

    2015-01-01

    Background Atypical teratoid/rhabdoid tumors (AT/RT) are among the most malignant pediatric brain tumors. Cells from brain tumors with high aldehyde dehydrogenase (ALDH) activity have a number of characteristics that are similar to brain tumor initiating cells (BTICs). This study aimed to evaluate the therapeutic potential of ALDH inhibition using disulfiram (DSF) against BTICs from AT/RT. Methods Primary cultured BTICs from AT/RT were stained with Aldefluor and isolated by fluorescence activated cell sorting. The therapeutic effect of DSF against BTICs from AT/RT was confirmed in vitro and in vivo. Results AT/RT cells displayed a high expression of ALDH. DSF demonstrated a more potent cytotoxic effect on ALDH+ AT/RT cells compared with standard anticancer agents. Notably, treatment with DSF did not have a considerable effect on normal neural stem cells or fibroblasts. DSF significantly inhibited the ALDH enzyme activity of AT/RT cells. DSF decreased self-renewal ability, cell viability, and proliferation potential and induced apoptosis and cell cycle arrest in ALDH+ AT/RT cells. Importantly, DSF reduced the metabolism of ALDH+ AT/RT cells by increasing the nicotinamide adenine dinucleotide ratio of NAD+/NADH and regulating Silent mating type Information Regulator 2 homolog 1 (SIRT1), nuclear factor-kappaB, Lin28A/B, and miRNA let-7g. Animals in the DSF-treated group demonstrated a reduction of tumor volume (P < .05) and a significant survival benefit (P = .02). Conclusion Our study demonstrated the therapeutic potential of DSF against BTICs from AT/RT and suggested the possibility of ALDH inhibition for clinical application. PMID:25378634

  17. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model.

    PubMed

    Jennis, Matthew; Kung, Che-Pei; Basu, Subhasree; Budina-Kolomets, Anna; Leu, Julia I-Ju; Khaku, Sakina; Scott, Jeremy P; Cai, Kathy Q; Campbell, Michelle R; Porter, Devin K; Wang, Xuting; Bell, Douglas A; Li, Xiaoxian; Garlick, David S; Liu, Qin; Hollstein, Monica; George, Donna L; Murphy, Maureen E

    2016-04-15

    A nonsynonymous single-nucleotide polymorphism at codon 47 in TP53 exists in African-descent populations (P47S, rs1800371; referred to here as S47). Here we report that, in human cell lines and a mouse model, the S47 variant exhibits a modest decrease in apoptosis in response to most genotoxic stresses compared with wild-type p53 but exhibits a significant defect in cell death induced by cisplatin. We show that, compared with wild-type p53, S47 has nearly indistinguishable transcriptional function but shows impaired ability to transactivate a subset of p53 target genes, including two involved in metabolism:Gls2(glutaminase 2) and Sco2 We also show that human and mouse cells expressing the S47 variant are markedly resistant to cell death by agents that induce ferroptosis (iron-mediated nonapoptotic cell death). We show that mice expressing S47 in homozygous or heterozygous form are susceptible to spontaneous cancers of diverse histological types. Our data suggest that the S47 variant may contribute to increased cancer risk in individuals of African descent, and our findings highlight the need to assess the contribution of this variant to cancer risk in these populations. These data also confirm the potential relevance of metabolism and ferroptosis to tumor suppression by p53.

  18. Salmonella Bacterial Monotherapy Reduces Autochthonous Prostate Tumor Burden in the TRAMP Mouse Model

    PubMed Central

    Kazmierczak, Robert A.; Gentry, Bettina; Mumm, Tyler; Schatten, Heide; Eisenstark, Abraham

    2016-01-01

    Attenuated Salmonella typhimurium injected in the circulatory system of mammals selectively targets tumors. Using weekly intraperitoneal injections of attenuated Salmonella strain CRC2631, we tested for regression and/or inhibition of tumor development in the TRAMP prostate tumor mouse model, which utilizes SV40 early region expression for autochthonous formation of prostate tumors that progress into metastatic, poorly differentiated prostatic carcinomas in an immunocompetent murine model. Thirteen weekly intraperitoneal administrations of 105–107 CFU CRC2631 into 10 week old mice were well tolerated by the TRAMP model. Sacrifice and histological analysis of TRAMP prostates at 22 weeks indicated that Salmonella monotherapy at administrated levels decrease visible tumor size (>29%) but did not significantly inhibit previously described SV40 expression-driven TRAMP tumor progression to undifferentiated carcinomas when histologically examined. In conclusion, this work demonstrates baseline results for CRC2631 Salmonella monotherapy using the immunocompetent TRAMP prostate tumor model in preparation for study of combination therapies that resolve autochthonously generated TRAMP prostate tumors, further reduce tumor size, or inhibit prostate tumor progression. PMID:27504973

  19. Epithelialization of mouse ovarian tumor cells originating in the fallopian tube stroma

    PubMed Central

    Hua, Yuanyuan; Choi, Pui-Wah; Trachtenberg, Alexander J.; Ng, Allen C.; Kuo, Winston P.; Ng, Shu-Kay; Dinulescu, Daniela M.; Matzuk, Martin M.; Berkowitz, Ross S.; Ng, Shu-Wing

    2016-01-01

    Epithelial ovarian carcinoma accounts for 90% of all ovarian cancer and is the most deadly gynecologic malignancy. Recent studies have suggested that fallopian tube fimbriae can be the origin of cells for high-grade serous subtype of epithelial ovarian carcinoma (HGSOC). A mouse HGSOC model with conditional Dicer-Pten double knockout (Dicer-Pten DKO) developed primary tumors, intriguingly, from the fallopian tube stroma. We examined the growth and epithelial phenotypes of the Dicer-Pten DKO mouse tumor cells contributable by each gene knockout. Unlike human ovarian epithelial cancer cells that expressed full-length E-cadherin, the Dicer-Pten DKO stromal tumor cells expressed cleaved E-cadherin fragments and metalloproteinase 2, a mixture of epithelial and mesenchymal markers. Although the Dicer-Pten DKO tumor cells lost the expression of mature microRNAs as expected, they showed high levels of tRNA fragment expression and enhanced AKT activation due to the loss of PTEN function. Introduction of a Dicer1-expressing construct into the DKO mouse tumor cells significantly reduced DNA synthesis and the cell growth rate, with concurrent diminished adhesion and ZO1 epithelial staining. Hence, it is likely that the loss of Dicer promoted mesenchymal-epithelial transition in fallopian tube stromal cells, and in conjunction with Pten loss, further promoted cell proliferation and epithelial-like tumorigenesis. PMID:27602775

  20. Targeting Tumor Vasculature Endothelial Cells and Tumor Cells for Immunotherapy of Human Melanoma in a Mouse Xenograft Model

    NASA Astrophysics Data System (ADS)

    Hu, Zhiwei; Sun, Ying; Garen, Alan

    1999-07-01

    An immunotherapy treatment for cancer that targets both the tumor vasculature and tumor cells has shown promising results in a severe combined immunodeficient mouse xenograft model of human melanoma. The treatment involves systemic delivery of an immunoconjugate molecule composed of a tumor-targeting domain conjugated to the Fc effector domain of human IgG1. The effector domain induces a cytolytic immune response against the targeted cells by natural killer cells and complement. Two types of targeting domains were used. One targeting domain is a human single-chain Fv molecule that binds to a chondroitin sulfate proteoglycan expressed on the surface of most human melanoma cells. Another targeting domain is factor VII (fVII), a zymogen that binds with high specificity and affinity to the transmembrane receptor tissue factor (TF) to initiate the blood coagulation cascade. TF is expressed by endothelial cells lining the tumor vasculature but not the normal vasculature, and also by many types of tumor cells including melanoma. Because the binding of a fVII immunoconjugate to TF might cause disseminated intravascular coagulation, the active site of fVII was mutated to inhibit coagulation without affecting the affinity for TF. The immunoconjugates were encoded as secreted molecules in a replication-defective adenovirus vector, which was injected into the tail vein of severe combined immunodeficient mice. The results demonstrate that a mutated fVII immunoconjugate, administered separately or together with a single-chain Fv immunoconjugate that binds to the tumor cells, can inhibit the growth or cause regression of an established human tumor xenograft. This procedure could be effective in treating a broad spectrum of human solid tumors that express TF on vascular endothelial cells and tumor cells.

  1. Evaluation of endogenous acidic metabolic products associated with carbohydrate metabolism in tumor cells.

    PubMed

    Mazzio, Elizabeth A; Smith, Bruce; Soliman, Karam F A

    2010-06-01

    Tumor cells have a high tolerance for acidic and hypoxic microenvironments, also producing abundant lactic acid through accelerated glycolysis in the presence or absence of O(2). While the accumulation of lactate is thought to be a major contributor to the reduction of pH-circumscribing aggressive tumors, it is not known if other endogenous metabolic products contribute this acidity. Furthermore, anaerobic metabolism in cancer cells bears similarity to homo-fermentative lactic acid bacteria, however very little is known about an alternative pathway that may drive adenosine triphosphate (ATP) production independent of glycolysis. In this study, we quantify over 40 end-products (amines, acids, alcohols, aldehydes, or ketones) produced by malignant neuroblastoma under accelerated glycolysis (+glucose (GLU) supply 1-10 mM) +/- mitochondrial toxin; 1-methyl-4-phenylpyridinium (MPP(+)) to abate aerobic respiration to delineate differences between anaerobic vs. aerobic cell required metabolic pathways. The data show that an acceleration of anaerobic glycolysis prompts an expected reduction in extracellular pH (pH(ex)) from neutral to 6.7 +/- 0.006. Diverse metabolic acids associated with this drop in acidity were quantified by ionic exchange liquid chromatography (LC), showing concomitant rise in lactate (Ctrls 7.5 +/- 0.5 mM; +GLU 12.35 +/- 1.3 mM; +GLU + MPP 18.1 +/- 1.8 mM), acetate (Ctrl 0.84 +/- 0.13 mM: +GLU 1.3 +/- 0.15 mM; +GLU + MPP 2.7 +/- 0.4 mM), fumarate, and a-ketoglutarate (<10 microM) while a range of other metabolic organic acids remained undetected. Amino acids quantified by o-phthalaldehyde precolumn derivatization/electrochemical detection-LC show accumulation of L: -alanine (1.6 +/- .052 mM), L: -glutamate (285 +/- 9.7 microM), L: -asparagine (202 +/- 2.1 microM), and L: -aspartate (84.2 +/- 4.9 microM) produced during routine metabolism, while other amino acids remain undetected. In contrast, the data show no evidence for accumulation of acetaldehyde

  2. Evaluation of endogenous acidic metabolic products associated with carbohydrate metabolism in tumor cells

    PubMed Central

    Mazzio, Elizabeth A.; Smith, Bruce

    2010-01-01

    Tumor cells have a high tolerance for acidic and hypoxic microenvironments, also producing abundant lactic acid through accelerated glycolysis in the presence or absence of O2. While the accumulation of lactate is thought to be a major contributor to the reduction of pH-circumscribing aggressive tumors, it is not known if other endogenous metabolic products contribute this acidity. Furthermore, anaerobic metabolism in cancer cells bears similarity to homo-fermentative lactic acid bacteria, however very little is known about an alternative pathway that may drive adenosine triphosphate (ATP) production independent of glycolysis. In this study, we quantify over 40 end-products (amines, acids, alcohols, aldehydes, or ketones) produced by malignant neuroblastoma under accelerated glycolysis (+glucose (GLU) supply 1–10 mM) ± mitochondrial toxin; 1-methyl-4-phenyl-pyridinium (MPP+) to abate aerobic respiration to delineate differences between anaerobic vs. aerobic cell required metabolic pathways. The data show that an acceleration of anaerobic glycolysis prompts an expected reduction in extracellular pH (pHex) from neutral to 6.7±0.006. Diverse metabolic acids associated with this drop in acidity were quantified by ionic exchange liquid chromatography (LC), showing concomitant rise in lactate (Ctrls 7.5±0.5 mM; +GLU 12.35±1.3 mM; +GLU + MPP 18.1±1.8 mM), acetate (Ctrl 0.84±0.13 mM: +GLU 1.3±0.15 mM; +GLU + MPP 2.7±0.4 mM), fumarate, and a-ketoglutarate (<10μM) while a range of other metabolic organic acids remained undetected. Amino acids quantified by o-phthalaldehyde precolumn derivatization/electrochemical detection–LC show accumulation of L-alanine (1.6±.052 mM), L-glutamate (285±9.7μM), L-asparagine (202±2.1μM), and L-aspartate (84.2±4.9μM) produced during routine metabolism, while other amino acids remain undetected. In contrast, the data show no evidence for accumulation of acetaldehyde, aldehydes, or ketones (Purpald/2

  3. Chemo-immunotherapy induces tumor regression in a mouse model of spontaneous mammary carcinogenesis

    PubMed Central

    Carpinelli, Giulia; Canese, Rossella; Cecchetti, Serena; Schiavoni, Giovanna; D'Urso, Maria Teresa; Belardelli, Filippo; Proietti, Enrico

    2016-01-01

    Tumor-specific immune tolerance represents an obstacle for the development of effective anti-tumor immune responses through cancer vaccines. We here evaluated the efficacy of chemo-immunotherapy in breaking tumor-specific immune tolerance in an almost incurable mouse model of spontaneous carcinogenesis. Transgenic HER-2/neu mice bearing large mammary tumors received the adoptive transfer of splenocytes and serum isolated from immune donors, with or without pre-conditioning with cyclophosphamide. Treatment efficacy was assessed by monitoring tumor growth by manual inspection and by magnetic resonance imaging. The same chemo-immunotherapy protocol was tested on tumor-free HER-2/neu mice, to evaluate the effects on tumor emergence. Our data show that chemo-immunotherapy hampered carcinogenesis and caused the regression of large mammary tumor lesions in tumor-bearing HER-2/neu mice. The complete eradication of a significant number of tumor lesions occurred only in mice receiving cyclophosphamide shortly before immunotherapy, and was associated with increased serum anti HER-2/p185 antibodies and tumor leukocyte infiltration. The same protocol significantly delayed the appearance of mammary tumors when administered to tumor-free HER-2/neu mice, indicating that this chemo-immunotherapy approach acted through the elicitation of an effective anti-tumor immune response. Overall, our data support the immune-modulatory role of chemotherapy in overcoming cancer immune tolerance when administered at lymphodepleting non-myeloablative doses shortly before transfer of antigen-specific immune cells and immunoglobulins. These findings open new perspectives on combining immune-modulatory chemotherapy and immunotherapy to overcome immune tolerance in cancer patients. PMID:27486759

  4. New mouse tumor model system (RIF-1) for comparison of end-point studies

    SciTech Connect

    Twentyman, P.R.; Brown, J.M.; Gray, J.W.; Franko, A.J.; Scoles, M.A.; Kallman, R.F.

    1980-03-01

    A new tumor model system (RIF-1) was developed that is very suitable for studies in which clonogenic survival is compared with growth delay and control probability following various forms of treatment. The tumor was a radiation-induced sarcoma in the inbred female C3H/Km mouse. It had a low median tumor dose, had a satisfactory plating efficiency direct from in vivo to in vitro, was nonimmunogenic or minimally immunogenic, and metastasized only at a relatively advanced stage of growth. The cell line grew either as a monolayer on plastic dishes, as tumor spheroids in spinner culture, as lung nodules following injection of a single-cell suspension into the tall veins of syngeneic mice, or as a solid tumor. Both diploid and tetraploid clonogenic cells were found in monolayer cultures of the RIF-1 line.

  5. Obesity, but not ethanol, promotes tumor incidence and progression in a mouse model of hepatocellular carcinoma in vivo.

    PubMed

    Thompson, Kyle J; Swan, Ryan Z; Walling, Tracy L; Iannitti, David A; McKillop, Iain H; Sindram, David

    2013-08-01

    Hepatocellular carcinoma (HCC) is a major global health burden. Although chronic, heavy alcohol abuse is an established risk factor for HCC, obesity is emerging as an increasingly important factor in HCC development. Given that other risk factors for HCC act synergistically to promote tumorigenesis, we investigated the effects of diet-induced obesity and chronic ethanol consumption on tumor progression. A diethylnitrosamine (DEN) mouse model of HCC was established and mice randomized to control (CD; 10 % kcal% fat) or high fat (HFD; 60 % kcal% fat diet) at 5 weeks of age. At 35 weeks, mice were randomized to 10/20 % ethanol (EtOH) in drinking water (alternate days), or drinking water (H2O) alone. Tumor incidence/size were measured and confirmed. Liver tissue was analyzed for oxidative stress and EtOH-metabolizing enzymes and serum analyzed for liver function and nutritional status. DEN treatment induced HCC formation in 60 % CD-H2O mice (6 of 10), an effect exacerbated by HFD (89 %). Tumors in HFD animals occupied significantly more of the liver than mice on CD. EtOH-feeding did not impact HCC incidence or tumor size. HFD resulted in increased liver injury and liver:body weight ratio regardless of EtOH consumption. Increased tumor incidence was associated with elevated hepatic oxidative stress in the absence of changes in intrinsic antioxidant (glutathione) levels. Obesity independently promoted HCC formation in the absence or presence of a known hepatocarcinogen (DEN), and enhanced both number and size of hepatic tumors independent of chronic EtOH consumption in mice.

  6. Bisected, complex N-glycans and galectins in mouse mammary tumor progression and human breast cancer

    PubMed Central

    Miwa, Hazuki E; Koba, Wade R; Fine, Eugene J; Giricz, Orsi; Kenny, Paraic A; Stanley, Pamela

    2013-01-01

    Bisected, complex N-glycans on glycoproteins are generated by the glycosyltransferase MGAT3 and cause reduced cell surface binding of galectins. Previously, we showed that MGAT3 reduces growth factor signaling and retards mammary tumor progression driven by the Polyoma middle T antigen (PyMT) expressed in mammary epithelium under the mouse mammary tumor virus (MMTV) promoter. However, the penetrance of the tumor phenotype became variable in mixed FVB/N and C57BL/6 female mice and we therefore investigated a congenic C57BL/6 Mgat3−/−/MMTV-PyMT model. In the absence of MGAT3, C57BL/6 Mgat3−/−/MMTV-PyMT females exhibited accelerated tumor appearance and increased tumor burden, glucose uptake in tumors and lung metastasis. Nevertheless, activation of extracellular signal-regulated kinase (ERK)1/2 or protein kinase B (AKT) was reduced in ∼20-week C57BL/6 MMTV-PyMT tumors lacking MGAT3. Activation of focal adhesion kinase (FAK), protein tyrosine kinase Src, and p38 mitogen-activated protein kinase were similar to that of controls. All the eight mouse galectin genes were expressed in mammary tumors and tumor epithelial cells (TECs), but galectin-2 and -12 were not detected by western analysis in tumors, and galectin-7 was not detected in 60% of the TEC lines. From microarray data reported for human breast cancers, at least 10 galectin and 7 N-glycan N-acetylglucosaminyl (GlcNAc)-transferase (MGAT) genes are expressed in tumor tissue, and expression often varies significantly between different breast cancer subtypes. Thus, in summary, while MGAT3 and bisected complex N-glycans retard mouse mammary tumor progression, genetic background may modify this effect; identification of key galectins that promote mammary tumor progression in mice is not straightforward because all the eight galectin genes are expressed; and high levels of MGAT3, galectin-4, -8, -10, -13 and -14 transcripts correlate with better relapse-free survival in human breast cancer. PMID:24037315

  7. Bisected, complex N-glycans and galectins in mouse mammary tumor progression and human breast cancer.

    PubMed

    Miwa, Hazuki E; Koba, Wade R; Fine, Eugene J; Giricz, Orsi; Kenny, Paraic A; Stanley, Pamela

    2013-12-01

    Bisected, complex N-glycans on glycoproteins are generated by the glycosyltransferase MGAT3 and cause reduced cell surface binding of galectins. Previously, we showed that MGAT3 reduces growth factor signaling and retards mammary tumor progression driven by the Polyoma middle T antigen (PyMT) expressed in mammary epithelium under the mouse mammary tumor virus (MMTV) promoter. However, the penetrance of the tumor phenotype became variable in mixed FVB/N and C57BL/6 female mice and we therefore investigated a congenic C57BL/6 Mgat3(-/-)/MMTV-PyMT model. In the absence of MGAT3, C57BL/6 Mgat3(-/-)/MMTV-PyMT females exhibited accelerated tumor appearance and increased tumor burden, glucose uptake in tumors and lung metastasis. Nevertheless, activation of extracellular signal-regulated kinase (ERK)1/2 or protein kinase B (AKT) was reduced in ∼20-week C57BL/6 MMTV-PyMT tumors lacking MGAT3. Activation of focal adhesion kinase (FAK), protein tyrosine kinase Src, and p38 mitogen-activated protein kinase were similar to that of controls. All the eight mouse galectin genes were expressed in mammary tumors and tumor epithelial cells (TECs), but galectin-2 and -12 were not detected by western analysis in tumors, and galectin-7 was not detected in 60% of the TEC lines. From microarray data reported for human breast cancers, at least 10 galectin and 7 N-glycan N-acetylglucosaminyl (GlcNAc)-transferase (MGAT) genes are expressed in tumor tissue, and expression often varies significantly between different breast cancer subtypes. Thus, in summary, while MGAT3 and bisected complex N-glycans retard mouse mammary tumor progression, genetic background may modify this effect; identification of key galectins that promote mammary tumor progression in mice is not straightforward because all the eight galectin genes are expressed; and high levels of MGAT3, galectin-4, -8, -10, -13 and -14 transcripts correlate with better relapse-free survival in human breast cancer.

  8. Metabolic studies and neurotoxicity in tumors and brain of mice after hypoxic cell sensitizers

    SciTech Connect

    Streffer, C.; Tamulevicius, P. )

    1994-06-15

    The effects of the radiosensitizers RK-28 and RP-170, both 2-nitroimidazole nucleoside analogues, and KU-2285, a fluorinated 2-nitroimidazole, as well as etanidazole (ETA) on glucose metabolism in mouse tumors and brain were studied to assess their degree of neurotoxicity. Adult male C57B1 mice received differing doses of the above sensitizers IP. Blood, brain, and tumor samples were removed at various times and the levels of glycolytic metabolites determined. Glucose uptake and phosphorylation in brain were measured by the 2-deoxyglucose method of Sokoloff et al. RP-170 showed neither signs of toxicity nor significant alterations in glucose metabolism in brain or tumor at doses up to 4 g/kg b.w. up to 4 h. By contrast, RK-28 was extremely neurotoxic at a dose of 1 g/kg b.w. with a high degree of lethality, resulting in a highly significant increase in the brain glucose level from 0.38 [mu]mol/g to 2.20 [mu]mol/g 2 h after administration, whereas that in the tumor was decreased. KU-2285 and ETA were significantly less toxic than RK-28 at this dose, as reflected in a lower increase in the brain glucose level (0.60 [mu]mol/g), although KU-2285 approaches that of RK-28 (1.43 [mu]mol/g) after 2 h following a dose of 2 g/kg b.w. However, in contrast to the other sensitizers, KU-2285 concomitantly also resulted in a highly significant continuous increase in tumor glucose levels. Labeled [sup 3]H-2deoxyglucose studies showed that RP-170 neither markedly affected the uptake of total radioactivity into the brain nor its degree of phosphorylation whereas, KU-2285 (2 g/kg) and RK-28 (1 g/kg) decreased uptake by [approximately]50% and phosphorylation approximately 3 and 4-fold, respectively. At doses of 1 g/kg, ETA and KU-2285 showed no significant changes in these parameters. This indicates a decreased level of neurotoxicity. 9 refs., 1 fig., 5 tabs.

  9. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer

    PubMed Central

    Li, Jianneng; Alyamani, Mohammad; Zhang, Ao; Chang, Kai-Hsiung; Berk, Michael; Li, Zhenfei; Zhu, Ziqi; Petro, Marianne; Magi-Galluzzi, Cristina; Taplin, Mary-Ellen; Garcia, Jorge A; Courtney, Kevin; Klein, Eric A; Sharifi, Nima

    2017-01-01

    Prostate cancer is driven by androgen stimulation of the androgen receptor (AR). The next-generation AR antagonist, enzalutamide, prolongs survival, but resistance and lethal disease eventually prevail. Emerging data suggest that the glucocorticoid receptor (GR) is upregulated in this context, stimulating expression of AR-target genes that permit continued growth despite AR blockade. However, countering this mechanism by administration of GR antagonists is problematic because GR is essential for life. We show that enzalutamide treatment in human models of prostate cancer and patient tissues is accompanied by a ubiquitin E3-ligase, AMFR, mediating loss of 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2), which otherwise inactivates cortisol, sustaining tumor cortisol concentrations to stimulate GR and enzalutamide resistance. Remarkably, reinstatement of 11β-HSD2 expression, or AMFR loss, reverses enzalutamide resistance in mouse xenograft tumors. Together, these findings reveal a surprising metabolic mechanism of enzalutamide resistance that may be targeted with a strategy that circumvents a requirement for systemic GR ablation. DOI: http://dx.doi.org/10.7554/eLife.20183.001 PMID:28191869

  10. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer.

    PubMed

    Li, Jianneng; Alyamani, Mohammad; Zhang, Ao; Chang, Kai-Hsiung; Berk, Michael; Li, Zhenfei; Zhu, Ziqi; Petro, Marianne; Magi-Galluzzi, Cristina; Taplin, Mary-Ellen; Garcia, Jorge A; Courtney, Kevin; Klein, Eric A; Sharifi, Nima

    2017-02-13

    Prostate cancer is driven by androgen stimulation of the androgen receptor (AR). The next-generation AR antagonist, enzalutamide, prolongs survival, but resistance and lethal disease eventually prevail. Emerging data suggest that the glucocorticoid receptor (GR) is upregulated in this context, stimulating expression of AR-target genes that permit continued growth despite AR blockade. However, countering this mechanism by administration of GR antagonists is problematic because GR is essential for life. We show that enzalutamide treatment in human models of prostate cancer and patient tissues is accompanied by a ubiquitin E3-ligase, AMFR, mediating loss of 11β-hydroxysteroid dehydrogenase-2 (11β-HSD2), which otherwise inactivates cortisol, sustaining tumor cortisol concentrations to stimulate GR and enzalutamide resistance. Remarkably, reinstatement of 11β-HSD2 expression, or AMFR loss, reverses enzalutamide resistance in mouse xenograft tumors. Together, these findings reveal a surprising metabolic mechanism of enzalutamide resistance that may be targeted with a strategy that circumvents a requirement for systemic GR ablation.

  11. Autophagy and modular restructuring of metabolism control germline tumor differentiation and proliferation in C. elegans

    PubMed Central

    Gomes, Ligia C.; Odedra, Devang; Dikic, Ivan; Pohl, Christian

    2016-01-01

    ABSTRACT Autophagy can act either as a tumor suppressor or as a survival mechanism for established tumors. To understand how autophagy plays this dual role in cancer, in vivo models are required. By using a highly heterogeneous C. elegans germline tumor, we show that autophagy-related proteins are expressed in a specific subset of tumor cells, neurons. Inhibition of autophagy impairs neuronal differentiation and increases tumor cell number, resulting in a shorter life span of animals with tumors, while induction of autophagy extends their life span by impairing tumor proliferation. Fasting of animals with fully developed tumors leads to a doubling of their life span, which depends on modular changes in transcription including switches in transcription factor networks and mitochondrial metabolism. Hence, our results suggest that metabolic restructuring, cell-type specific regulation of autophagy and neuronal differentiation constitute central pathways preventing growth of heterogeneous tumors. PMID:26759963

  12. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression.

    PubMed

    Neufert, Clemens; Becker, Christoph; Neurath, Markus F

    2007-01-01

    Colorectal cancer is a life-threatening disease that can develop spontaneously or as a complication of inflammatory bowel diseases. Mouse models are essential tools for the preclinical testing of novel therapeutic options in vivo. Here, we provide a highly reliable protocol for an experimental mouse model to study the development of colon cancers. It is based on the mutagenic agent azoxymethane (AOM), which exerts colonotropic carcinogenicity. Repeated intraperitoneal administration of AOM results in the development of spontaneous tumors within 30 weeks. As an alternative option, inflammation-dependent tumor growth can be investigated by combining the administration of AOM with the inflammatory agent dextran sodium sulfate in drinking water, which causes rapid growth of multiple colon tumors per mouse within 10 weeks. Different scoring systems including number of tumors and tumor size identify factors promoting or inhibiting tumor initiation and/or tumor progression, respectively.

  13. Structural and metabolic characterization of RNAs from rats with experimental Guerin tumor - II. metabolic peculiarities of RNAs from the liver and tumor tissues of rats.

    PubMed

    Ratkiewicz, A; Galasinski, W

    1976-01-01

    Metabolic peculiarities of RNAs in the liver of the tumor bearing and in the tumor tissue were found. The synthesis of nuclear RNA in liver of tumor bearing rats is distinctly disordered in comparison to that of control rats. The level of 14C-orotic acid incorporation into RNA of cancer tissue is manifold lower than that into the liver RNA. The studies on turnover rate showed the metabolic heterogeneity of the nuclear RNAs. The part of them showed a short turnover, the other RNAs were degraded much slower.

  14. Fluorescence laparoscopy imaging of pancreatic tumor progression in an orthotopic mouse model

    PubMed Central

    Tran Cao, Hop S.; Kaushal, Sharmeela; Lee, Claudia; Snyder, Cynthia S.; Thompson, Kari J.; Horgan, Santiago; Talamini, Mark A.; Hoffman, Robert M.

    2010-01-01

    Background The use of fluorescent proteins to label tumors is revolutionizing cancer research, enabling imaging of both primary and metastatic lesions, which is important for diagnosis, staging, and therapy. This report describes the use of fluorescence laparoscopy to image green fluorescent protein (GFP)-expressing tumors in an orthotopic mouse model of human pancreatic cancer. Methods The orthotopic mouse model of human pancreatic cancer was established by injecting GFP-expressing MiaPaCa-2 human pancreatic cancer cells into the pancreas of 6-week-old female athymic mice. On postoperative day 14, diagnostic laparoscopy using both white and fluorescent light was performed. A standard laparoscopic system was modified by placing a 480-nm short-pass excitation filter between the light cable and the laparoscope in addition to using a 2-mm-thick emission filter. A camera was used that allowed variable exposure time and gain setting. For mouse laparoscopy, a 3-mm 0° laparoscope was used. The mouse’s abdomen was gently insufflated to 2 mm Hg via a 22-gauge angiocatheter. After laparoscopy, the animals were sacrificed, and the tumors were collected and processed for histologic review. The experiments were performed in triplicate. Results Fluorescence laparoscopy enabled rapid imaging of the brightly fluorescent tumor in the pancreatic body. Use of the proper filters enabled simultaneous visualization of the tumor and the surrounding structures with minimal autofluorescence. Fluorescence laparoscopy thus allowed exact localization of the tumor, eliminating the need to switch back and forth between white and fluorescence lighting, under which the background usually is so darkened that it is difficult to maintain spatial orientation. Conclusion The use of fluorescence laparoscopy permits the facile, real-time imaging and localization of tumors labeled with fluorescent proteins. The results described in this report should have important clinical potential. PMID:20533064

  15. Exposure-dependent incorporation of trifluridine into DNA of tumors and white blood cells in tumor-bearing mouse.

    PubMed

    Yamashita, Fumiaki; Komoto, Ikumi; Oka, Hiroaki; Kuwata, Keizo; Takeuchi, Mayuko; Nakagawa, Fumio; Yoshisue, Kunihiro; Chiba, Masato

    2015-08-01

    Trifluridine (TFT) is an antitumor component of a novel nucleoside antitumor agent, TAS-102, which consists of TFT and tipiracil hydrochloride (thymidine phosphorylase inhibitor). Incorporation of TFT into DNA is a probable mechanism of antitumor activity and hematological toxicity. The objective of this study was to examine the TFT incorporation into tumor- and white blood cell-DNA, and to elucidate the mechanism of TFT-related effect and toxicity. TFT effect on the colony formation of mouse bone marrow cells was also investigated. Pharmacokinetics of TFT was determined in nude mice after single oral administration of TAS-102, while the antitumor activity and body weight change were evaluated in the tumor-bearing nude mice after multiple oral administrations for 2 weeks. TFT concentrations in the blood- and tumor-DNA were determined by LC/MS/MS. The colony formation was evaluated by CFU-GM assay. TFT systemic exposure in plasma increased dose-dependently. The tumor growth rate and body weight gain decreased dose-dependently, but TFT concentrations in the DNA of tumor tissues and white blood cells increased dose-dependently. TFT inhibited colony formation of bone marrow cells in a concentration-dependent manner. A significant relationship between systemic exposure of TFT and pharmacological effects including the antitumor activity and body weight change was well explained by the TFT incorporation into DNA. TFT inhibited proliferations of mouse bone marrow cells and human colorectal carcinoma cells implanted to nude mice dose-dependently. The highest tolerable TFT exposure provides the highest antitumor activity, and the hematological toxicity may serve as a potential surrogate indicator of TAS-102 efficacy.

  16. Mouse Mammary Tumor Virus-Like Nucleotide Sequences in Canine and Feline Mammary Tumors▿

    PubMed Central

    Hsu, Wei-Li; Lin, Hsing-Yi; Chiou, Shyan-Song; Chang, Chao-Chin; Wang, Szu-Pong; Lin, Kuan-Hsun; Chulakasian, Songkhla; Wong, Min-Liang; Chang, Shih-Chieh

    2010-01-01

    Mouse mammary tumor virus (MMTV) has been speculated to be involved in human breast cancer. Companion animals, dogs, and cats with intimate human contacts may contribute to the transmission of MMTV between mouse and human. The aim of this study was to detect MMTV-like nucleotide sequences in canine and feline mammary tumors by nested PCR. Results showed that the presence of MMTV-like env and LTR sequences in canine malignant mammary tumors was 3.49% (3/86) and 18.60% (16/86), respectively. For feline malignant mammary tumors, the presence of both env and LTR sequences was found to be 22.22% (2/9). Nevertheless, the MMTV-like LTR and env sequences also were detected in normal mammary glands of dogs and cats. In comparisons of the MMTV-like DNA sequences of our findings to those of NIH 3T3 (MMTV-positive murine cell line) and human breast cancer cells, the sequence similarities ranged from 94 to 98%. Phylogenetic analysis revealed that intermixing among sequences identified from tissues of different hosts, i.e., mouse, dog, cat, and human, indicated the MMTV-like DNA existing in these hosts. Moreover, the env transcript was detected in 1 of the 19 MMTV-positive samples by reverse transcription-PCR. Taken together, our study provides evidence for the existence and expression of MMTV-like sequences in neoplastic and normal mammary glands of dogs and cats. PMID:20881168

  17. [Utilization of Werner syndrome mouse model in studying premature aging and tumor].

    PubMed

    Jia, Shu-Ting; Yang, Shi-Hua; Luo, Ying

    2009-08-01

    Werner syndrome (WS) is a rare autosomal recessive genetic disease in human. It is considered as a good model disease in studying human premature syndrome. Werner protein (WRN) is a nuclear protein mutated in WS. Recent biochemical and genetic studies indicated that WRN plays important roles in DNA replication, DNA repair, and telomere maintenance. Here, we reviewed the molecular genetics of WS and the importance of telomere and WRN in the development of WS. Knocking out both telomerase and Wrn genes in mouse faithfully manifests human WS. The mouse model provides a unique genetic platform to explore the crosstalk of premature aging and tumor.

  18. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress

    PubMed Central

    Zaugg, Kathrin; Yao, Yi; Reilly, Patrick T.; Kannan, Karuppiah; Kiarash, Reza; Mason, Jacqueline; Huang, Ping; Sawyer, Suzanne K.; Fuerth, Benjamin; Faubert, Brandon; Kalliomäki, Tuula; Elia, Andrew; Luo, Xunyi; Nadeem, Vincent; Bungard, David; Yalavarthi, Sireesha; Growney, Joseph D.; Wakeham, Andrew; Moolani, Yasmin; Silvester, Jennifer; Ten, Annick You; Bakker, Walbert; Tsuchihara, Katsuya; Berger, Shelley L.; Hill, Richard P.; Jones, Russell G.; Tsao, Ming; Robinson, Murray O.; Thompson, Craig B.; Pan, Guohua; Mak, Tak W.

    2011-01-01

    Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined. Here we report that carnitine palmitoyltransferase 1C (CPT1C), a brain-specific metabolic enzyme, may participate in metabolic transformation. CPT1C expression correlates inversely with mammalian target of rapamycin (mTOR) pathway activation, contributes to rapamycin resistance in murine primary tumors, and is frequently up-regulated in human lung tumors. Tumor cells constitutively expressing CPT1C show increased fatty acid (FA) oxidation, ATP production, and resistance to glucose deprivation or hypoxia. Conversely, cancer cells lacking CPT1C produce less ATP and are more sensitive to metabolic stress. CPT1C depletion via siRNA suppresses xenograft tumor growth and metformin responsiveness in vivo. CPT1C can be induced by hypoxia or glucose deprivation and is regulated by AMPKα. Cpt1c-deficient murine embryonic stem (ES) cells show sensitivity to hypoxia and glucose deprivation and altered FA homeostasis. Our results indicate that cells can use a novel mechanism involving CPT1C and FA metabolism to protect against metabolic stress. CPT1C may thus be a new therapeutic target for the treatment of hypoxic tumors. PMID:21576264

  19. Genetic variants of Tgfb1 act as context-dependent modifiers of mouse skin tumor susceptibility.

    PubMed

    Mao, Jian-Hua; Saunier, Elise F; de Koning, John P; McKinnon, Margaret M; Higgins, Mamie Nakijama; Nicklas, Kathy; Yang, Hai-Tao; Balmain, Allan; Akhurst, Rosemary J

    2006-05-23

    The human TGFB1 gene is polymorphic, and genetic variants are associated with altered cancer risk. However, human genetic association studies have had variable outcomes because TGFbeta1 action is context-dependent. We used the murine skin model of chemical carcinogenesis in genetic linkage analysis of three independent Mus musculus NIH/Ola x (Mus spretus x M. musculus NIH/Ola)F1 backcrosses, to identify a skin tumor susceptibility locus, Skts14, on proximal chromosome 7. Tgfb1 maps at the peak of linkage. The mouse Tgfb1 gene is polymorphic, resulting in cis-regulated differential allelic mRNA expression between M. spretus and M. musculus in F1 mouse skin. This phenomenon is reflected in differential phospho-SMAD2 levels, downstream of TGFbeta signaling, between these two mouse species. In normal F1 mouse skin, the Tgfb1SPR allele is expressed at higher levels than the Tgfb1NIH allele, and this differential is accentuated by phorbol 12-myristate 13-acetate treatment. In benign F1 papillomas, this imbalance is reversed, possibly by selection against expression of a hyperactive Tgfb1SPR allele in TGFbeta growth-responsive tumors. We demonstrate that skin tumor susceptibility is altered by Tgfb1 gene dosage, but that manifestation of Tgfb1-linked skin tumor susceptibility in M. musculus NIH/Ola x (M. spretus x M. musculus NIH/Ola)F1 backcross mice depends on interactions with another unlinked tumor modifying locus, Skts15, that overlaps Tgfbm3 on chromosome 12. These findings illustrate the power of complex genetic interactions in determining disease outcome and have major implications to the assessment of disease risk in individuals harboring variant TGFB1 alleles.

  20. Connexin expression in epidermal cell lines from SENCAR mouse skin tumors.

    PubMed

    Budunova, I V; Carbajal, S; Viaje, A; Slaga, T J

    1996-03-01

    Alteration of gap-junctional intercellular communication (GJIC) has long been proposed to be involved in carcinogenesis. Previously, we reported that the level of gap junctional intercellular communication in mouse skin carcinoma cell lines is significantly lower than in papilloma cell lines and normal mouse keratinocytes Klann et al., Cancer Res 49:699-705, 1989). Here, we present data on expression of the gap-junctional protein connexins (Cx) 26, Cx31.1, and Cx43 in a comprehensive panel of keratinocyte cell lines representing different stages of mouse skin carcinogenesis and the effect of different conditions of propagation on Cx phenotype. Northern and western blot analyses and immunostaining showed that all cell lines studied in vitro expressed Cx43 but most did not express Cx31.1 or Cx26. The abundance of Cx43 expression on plasma membranes correlated well with the level of GJIC. In vivo expression of Cx43 and Cx26 was strongly increased. Whereas none of tumorigenic cell lines expressed Cx26 gap junctions in culture, those growing as tumors in nude mice began to express Cx26 protein. The comparison of Cx expression on the keratinocyte membranes in three different groups of tumors (papillomas and squamous cell and spindle cell carcinomas) clearly revealed that the abundance of Cx43 and Cx26 expression directly correlated with the level of tumor differentiation. All studied tumors were Cx31.1 negative. These results suggest that both Cx expression and gap-junction permeability are gradually reduced during the tumor progression stage of mouse skin carcinogenesis.

  1. Childhood brain tumors, residential insecticide exposure, and pesticide metabolism genes.

    PubMed

    Searles Nielsen, Susan; McKean-Cowdin, Roberta; Farin, Federico M; Holly, Elizabeth A; Preston-Martin, Susan; Mueller, Beth A

    2010-01-01

    Insecticides that target the nervous system may play a role in the development of childhood brain tumors (CBTs). Constitutive genetic variation affects metabolism of these chemicals. We analyzed population-based case-control data to examine whether CBT is associated with the functional genetic polymorphisms PON1C-108T, PON1Q192R, PON1L55M, BCHEA539T, FMO1C-9536A, FMO3E158K, ALDH3A1S134A, and GSTT1 (null). DNA was obtained from newborn screening archives for 201 cases and 285 controls, metabolic polymorphisms with CBT risk. However, we observed strong interactions between genotype and insecticide exposure during childhood. Among exposed children, CBT risk increased per PON1-108T allele [odds ratio (OR) = 1.8; 95% confidence interval (CI), 1.1-3.0] and FMO1-9536A (*6) allele (OR = 2.7; 95% CI, 1.2-5.9), whereas among children never exposed, CBT risk was not increased (PON1: OR = 0.7; 95% CI, 0.5-1.0, interaction p = 0.005; FMO1: OR = 1.0; 95% CI, 0.6-1.6, interaction p = 0.009). We observed a similar but statistically nonsignificant interaction between childhood exposure and BCHEA539T (interaction p = 0.08). These interactions were present among both Hispanic and non-Hispanic white children. Based on known effects of these variants, these results suggest that exposure in childhood to organophosphorus and perhaps to carbamate insecticides in combination with a reduced ability to detoxify them may be associated with CBT. Confirmation in other studies is required.

  2. Drug-Metabolizing Enzyme, Transporter and Nuclear Receptor Genetically Modified Mouse Models

    PubMed Central

    Jiang, Xi-Ling; Gonzalez, Frank J.; Yu, Ai-Ming

    2011-01-01

    Determining the in vivo significance of a specific enzyme, transporter or xenobiotic receptor in drug metabolism and pharmacokinetics may be hampered by gene multiplicity and complexity, levels of expression and interaction between various components involved. The development of knockout (loss-of-function) and transgenic (gain-of-function) mouse models opens the door to the improved understanding of gene function in a whole body system. There is also growing interest in the development of humanized mice to overcome species difference in drug metabolism and disposition. This review, therefore, aims to summarize and discuss some successful examples of drug-metabolizing enzyme, transporter, and nuclear receptor genetically modified mouse models. These genetically modified mouse models have proven as invaluable models for understanding in vivo function of drug-metabolizing enzymes, transporters and xenobiotic receptors in drug metabolism and transport, as well as predicting potential drug-drug interaction and toxicity in humans. Nevertheless, concerns remain about interpretation of data obtained from such genetically modified mouse models in which the expression of related genes is altered significantly. PMID:20854191

  3. Tumor Blood Flow Differs between Mouse Strains: Consequences for Vasoresponse to Photodynamic Therapy

    PubMed Central

    Mesquita, Rickson C.; Han, Sung Wan; Miller, Joann; Schenkel, Steven S.; Pole, Andrew; Esipova, Tatiana V.; Vinogradov, Sergei A.; Putt, Mary E.; Yodh, Arjun G.; Busch, Theresa M.

    2012-01-01

    Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies. PMID:22624014

  4. Tumor blood flow differs between mouse strains: consequences for vasoresponse to photodynamic therapy.

    PubMed

    Mesquita, Rickson C; Han, Sung Wan; Miller, Joann; Schenkel, Steven S; Pole, Andrew; Esipova, Tatiana V; Vinogradov, Sergei A; Putt, Mary E; Yodh, Arjun G; Busch, Theresa M

    2012-01-01

    Fluctuations in tumor blood flow are common and attributed to factors such as vasomotion or local vascular structure, yet, because vessel structure and physiology are host-derived, animal strain of tumor propagation may further determine blood flow characteristics. In the present report, baseline and stress-altered tumor hemodynamics as a function of murine strain were studied using radiation-induced fibrosacomas (RIF) grown in C3H or nude mice. Fluctuations in tumor blood flow during one hour of baseline monitoring or during vascular stress induced by photodynamic therapy (PDT) were measured by diffuse correlation spectroscopy. Baseline monitoring revealed fluctuating tumor blood flow highly correlated with heart rate and with similar median periods (i.e., ∼9 and 14 min in C3H and nudes, respectively). However, tumor blood flow in C3H animals was more sensitive to physiologic or stress-induced perturbations. Specifically, PDT-induced vascular insults produced greater decreases in blood flow in the tumors of C3H versus nude mice; similarly, during baseline monitoring, fluctuations in blood flow were more regular and more prevalent within the tumors of C3H mice versus nude mice; finally, the vasoconstrictor L-NNA reduced tumor blood flow in C3H mice but did not affect tumor blood flow in nudes. Underlying differences in vascular structure, such as smaller tumor blood vessels in C3H versus nude animals, may contribute to strain-dependent variation in vascular function. These data thus identify clear effects of mouse strain on tumor hemodynamics with consequences to PDT and potentially other vascular-mediated therapies.

  5. SIRT1 metabolic actions: Integrating recent advances from mouse models★

    PubMed Central

    Boutant, Marie; Cantó, Carles

    2013-01-01

    SIRT1 has attracted a lot of interest since it was discovered as a mammalian homolog of Sir2, a protein that influences longevity in yeast. Intensive early research suggested a key role of SIRT1 in mammalian development, metabolic flexibility and oxidative metabolism. However, it is the growing body of transgenic models that are allowing us to clearly define the true range of SIRT1 actions. In this review we aim to summarize the most recent lessons that transgenic animal models have taught us about the role of SIRT1 in mammalian metabolic homeostasis and lifespan. PMID:24567900

  6. SIRT1 metabolic actions: Integrating recent advances from mouse models.

    PubMed

    Boutant, Marie; Cantó, Carles

    2014-02-01

    SIRT1 has attracted a lot of interest since it was discovered as a mammalian homolog of Sir2, a protein that influences longevity in yeast. Intensive early research suggested a key role of SIRT1 in mammalian development, metabolic flexibility and oxidative metabolism. However, it is the growing body of transgenic models that are allowing us to clearly define the true range of SIRT1 actions. In this review we aim to summarize the most recent lessons that transgenic animal models have taught us about the role of SIRT1 in mammalian metabolic homeostasis and lifespan.

  7. The tumor suppressor WW domain-containing oxidoreductase modulates cell metabolism.

    PubMed

    Abu-Remaileh, Muhannad; Aqeilan, Rami I

    2015-03-01

    The WW domain-containing oxidoreductase (WWOX) encodes a tumor suppressor that is frequently altered in cancer. WWOX binds several proteins and thus is postulated to be involved in a variety of cellular processes. Interestingly, Wwox-knockout mice develop normally in utero but succumb to hypoglycemia and other metabolic defects early in life resulting in their death by 3-4 weeks of age. Cumulative evidence has linked WWOX with cellular metabolism including steroid metabolism, high-density lipoprotein cholesterol (HDL-C) metabolism, bone metabolism and, more recently, glucose metabolism. In this review, we discuss these evolving functions for WWOX and how its deletion affects cellular metabolism and neoplastic progression.

  8. Good and bad consequences of altered fatty acid metabolism in heart failure: evidence from mouse models.

    PubMed

    Abdurrachim, Desiree; Luiken, Joost J F P; Nicolay, Klaas; Glatz, Jan F C; Prompers, Jeanine J; Nabben, Miranda

    2015-05-01

    The shift in substrate preference away from fatty acid oxidation (FAO) towards increased glucose utilization in heart failure has long been interpreted as an oxygen-sparing mechanism. Inhibition of FAO has therefore evolved as an accepted approach to treat heart failure. However, recent data indicate that increased reliance on glucose might be detrimental rather than beneficial for the failing heart. This review discusses new insights into metabolic adaptations in heart failure. A particular focus lies on data obtained from mouse models with modulations of cardiac FA metabolism at different levels of the FA metabolic pathway and how these differently affect cardiac function. Based on studies in which these mouse models were exposed to ischaemic and non-ischaemic heart failure, we discuss whether and when modulations in FA metabolism are protective against heart failure.

  9. Ablating all three retinoblastoma family members in mouse lung leads to neuroendocrine tumor formation

    PubMed Central

    Lázaro, Sara; Pérez-Crespo, Miriam; Enguita, Ana Belén; Hernández, Pilar; Martínez-Palacio, Jesús; Oteo, Marta; Sage, Julien; Paramio, Jesús M.; Santos, Mirentxu

    2017-01-01

    Lung cancer is a deadly disease with increasing cases diagnosed worldwide and still a very poor prognosis. While mutations in the retinoblastoma (RB1) tumor suppressor have been reported in lung cancer, mainly in small cell lung carcinoma, the tumor suppressive role of its relatives p107 and p130 is still a matter of debate. To begin to investigate the role of these two Rb family proteins in lung tumorigenesis, we have generated a conditional triple knockout mouse model (TKO) in which the three Rb family members can be inactivated in adult mice. We found that ablation of all three family members in the lung of mice induces tumorlets, benign neuroendocrine tumors that are remarkably similar to their human counterparts. Upon chemical carcinogenesis, DHPN and urethane accelerate tumor development; the TKO model displays increased sensitivity to DHPN, and urethane increases malignancy of tumors. All the tumors developing in TKO mice (spontaneous and chemically induced) have neuroendocrine features but do not progress to fully malignant tumors. Thus, loss of Rb and its family members confers partial tumor susceptibility in neuroendocrine lineages in the lungs of mice. Our data also imply the requirement of other oncogenic signaling pathways to achieve full transformation in neuroendocrine lung lesions mutant for the Rb family. PMID:27966456

  10. Obesity accelerates mouse mammary tumor growth in the absence of ovarian hormones.

    PubMed

    Nunez, Nomeli P; Perkins, Susan N; Smith, Nicole C P; Berrigan, David; Berendes, David M; Varticovski, Lyuba; Barrett, J Carl; Hursting, Stephen D

    2008-01-01

    Obesity increases incidence and mortality of breast cancer in postmenopausal women. Mechanisms underlying this association are poorly understood. Suitable animal models are needed to elucidate potential mechanisms for this association. To determine the effects of obesity on mammary tumor growth, nonovariectomized and ovariectomized C57BL/6 mice of various body weights (lean, overweight, and obese) were implanted subcutaneously with mammary tumor cells from syngeneic Wnt-1 transgenic mice. In mice, the lean phenotype was associated with reduced Wnt-1 tumor growth regardless of ovarian hormone status. Ovariectomy delayed Wnt-1 tumor growth consistent with the known hormone responsiveness of these tumors. However, obesity accelerated tumor growth in ovariectomized but not in nonovariectomized animals. Diet-induced obesity in a syngeneic mouse model of breast cancer enhanced tumor growth, specifically in the absence of ovarian hormones. These results support epidemiological evidence that obesity is associated with increased breast cancer incidence and mortality in postmenopausal but not premenopausal women. In contrast, maintaining a lean body weight phenotype was associated with reduced Wnt-1 tumor growth regardless of ovarian hormone status.

  11. Effects of celecoxib and ibuprofen on metabolic disorders induced by Walker-256 tumor in rats.

    PubMed

    de Souza, Camila Oliveira; Kurauti, Mirian Ayumi; de Fatima Silva, Flaviane; de Morais, Hely; Borba-Murad, Glaucia Regina; de Andrade, Fábio Goulart; de Souza, Helenir Medri

    2015-01-01

    The contribution of anti-inflammatory property of celecoxib in the improvement of metabolic disorders in cancer is unknown. The purpose of this study was to compare the effects of celecoxib and ibuprofen, non-steroidal anti-inflammatory drugs (NSAIDs), on several metabolic changes observed in Walker-256 tumor-bearing rats. The effects of these NSAIDs on the tumor growth were also assessed. Celecoxib or ibuprofen (both at 25 mg/Kg) was administered orally for 12 days, beginning on the day the rats were inoculated with Walker-256 tumor cells. Celecoxib treatment prevented the losses in body mass and mass of retroperitoneal adipose tissue, gastrocnemius, and extensor digitorum longus muscles in tumor-bearing rats. Celecoxib also prevented the rise in blood levels of triacylglycerol, urea, and lactate, the inhibition of peripheral response to insulin and hepatic glycolysis, and tended to attenuate the decrease in the food intake, but had no effect on the reduction of glycemia induced by the tumor. In addition, celecoxib treatment increased the number of Walker-256 cells with signs of apoptosis and the tumor necrosis area and prevented the tumor growth. In contrast, ibuprofen treatment had no effect on metabolic parameters affected by the Walker-256 tumor or tumor growth. It can be concluded that celecoxib, unlike ibuprofen, ameliorated several metabolic changes in rats with Walker-256 tumor due to its anti-tumor effect and not its anti-inflammatory property.

  12. In Vivo Imaging of Mouse Tumors by a Lipidated Cathepsin S Substrate**

    PubMed Central

    Hu, Hai-Yu; Vats, Divya; Vizovisek, Matej; Kramer, Lovro; Germanier, Catherine; Wendt, K Ulrich; Rudin, Markus; Turk, Boris; Plettenburg, Oliver; Schultz, Carsten

    2014-01-01

    The synthesis and evaluation of two cathepsin S-specific probes is described. For long-term retention of the probe at the target site and a high signal-to-noise ratio, we introduced a lipidation approach via the simple attachment of palmitoic acid to the reporter. After cathepsin S-specific cleavage in cultured cells and in a grafted tumor mouse model, fluorescence increased owing to dequenching and we observed an intracellular accumulation of the fluorescence in the target tissue. The lipidated probe provided a prolonged and strongly fluorescent signal in tumors when compared to the very similar non-lipidated probe, demonstrating that non-invasive tumor identification is feasable. The homing principle by probe lipidation might also work for selective administration of cytotoxic compounds to specifically reduce tumor mass. PMID:24888522

  13. Metabolic changes associated with tumor metastasis, part 1: tumor pH, glycolysis and the pentose phosphate pathway.

    PubMed

    Payen, Valéry L; Porporato, Paolo E; Baselet, Bjorn; Sonveaux, Pierre

    2016-04-01

    Metabolic adaptations are intimately associated with changes in cell behavior. Cancers are characterized by a high metabolic plasticity resulting from mutations and the selection of metabolic phenotypes conferring growth and invasive advantages. While metabolic plasticity allows cancer cells to cope with various microenvironmental situations that can be encountered in a primary tumor, there is increasing evidence that metabolism is also a major driver of cancer metastasis. Rather than a general switch promoting metastasis as a whole, a succession of metabolic adaptations is more likely needed to promote different steps of the metastatic process. This review addresses the contribution of pH, glycolysis and the pentose phosphate pathway, and a companion paper summarizes current knowledge regarding the contribution of mitochondria, lipids and amino acid metabolism. Extracellular acidification, intracellular alkalinization, the glycolytic enzyme phosphoglucose isomerase acting as an autocrine cytokine, lactate and the pentose phosphate pathway are emerging as important factors controlling cancer metastasis.

  14. Development of a circulating miRNA assay to monitor tumor burden: From mouse to man.

    PubMed

    Greystoke, Alastair; Ayub, Mahmood; Rothwell, Dominic G; Morris, Dan; Burt, Deborah; Hodgkinson, Cassandra L; Morrow, Christopher J; Smith, Nigel; Aung, Kyaw; Valle, Juan; Carter, Louise; Blackhall, Fiona; Dive, Caroline; Brady, Ged

    2016-02-01

    Circulating miRNA stability suggests potential utility of miRNA based biomarkers to monitor tumor burden and/or progression, particularly in cancer types where serial biopsy is impractical. Assessment of miRNA specificity and sensitivity is challenging within the clinical setting. To address this, circulating miRNAs were examined in mice bearing human SCLC tumor xenografts and SCLC patient derived circulating tumor cell explant models (CDX). We identified 49 miRNAs using human TaqMan Low Density Arrays readily detectable in 10 μl tail vein plasma from mice carrying H526 SCLC xenografts that were low or undetectable in non-tumor bearing controls. Circulating miR-95 measured serially in mice bearing CDX was detected with tumor volumes as low as 10 mm(3) and faithfully reported subsequent tumor growth. Having established assay sensitivity in mouse models, we identified 26 miRNAs that were elevated in a stage dependent manner in a pilot study of plasma from SCLC patients (n = 16) compared to healthy controls (n = 11) that were also elevated in the mouse models. We selected a smaller panel of 10 previously reported miRNAs (miRs 95, 141, 200a, 200b, 200c, 210, 335#, 375, 429) that were consistently elevated in SCLC, some of which are reported to be elevated in other cancer types. Using a multiplex qPCR assay, elevated levels of miRNAs across the panel were also observed in a further 66 patients with non-small cell lung, colorectal or pancreatic cancers. The utility of this circulating miRNA panel as an early warning of tumor progression across several tumor types merits further evaluation in larger studies.

  15. Multi-modality imaging to assess metabolic response to dichloroacetate treatment in tumor models

    PubMed Central

    Neveu, Marie-Aline; Preter, Géraldine De; Joudiou, Nicolas; Bol, Anne; Brender, Jeffery R.; Saito, Keita; Kishimoto, Shun; Grégoire, Vincent; Jordan, Bénédicte F.; Krishna, Murali C.; Feron, Olivier; Gallez, Bernard

    2016-01-01

    Reverting glycolytic metabolism is an attractive strategy for cancer therapy as upregulated glycolysis is a hallmark in various cancers. Dichloroacetate (DCA), long used to treat lactic acidosis in various pathologies, has emerged as a promising anti-cancer drug. By inhibiting the pyruvate dehydrogenase kinase, DCA reactivates the mitochondrial function and decreases the glycolytic flux in tumor cells resulting in cell cycle arrest and apoptosis. We recently documented that DCA was able to induce a metabolic switch preferentially in glycolytic cancer cells, leading to a more oxidative phenotype and decreasing proliferation, while oxidative cells remained less sensitive to DCA treatment. To evaluate the relevance of this observation in vivo, the aim of the present study was to characterize the effect of DCA in glycolytic MDA-MB-231 tumors and in oxidative SiHa tumors using advanced pharmacodynamic metabolic biomarkers. Oxygen consumption, studied by 17O magnetic resonance spectroscopy, glucose uptake, evaluated by 18F-FDG PET and pyruvate transformation into lactate, measured using hyperpolarized 13C-magnetic resonance spectroscopy, were monitored before and 24 hours after DCA treatment in tumor bearing mice. In both tumor models, no clear metabolic shift was observed. Surprisingly, all these imaging parameters concur to the conclusion that both glycolytic tumors and oxidative tumors presented a similar response to DCA. These results highlight a major discordance in metabolic cancer cell bioenergetics between in vitro and in vivo setups, indicating critical role of the local microenvironment in tumor metabolic behaviors. PMID:28082726

  16. Thrombospondin-1 Modulates Actin Filament Remodeling and Cell Motility in Mouse Mammary Tumor cells in Vitro.

    PubMed

    Ndishabandi, Dorothy; Duquette, Cameron; Billah, Ghita El-Moatassim; Reyes, Millys; Duquette, Mark; Lawler, Jack; Kazerounian, Shideh

    2014-01-01

    It is well established that the secretion of thrombospondin-1 (TSP-1) by activated stromal cells and its accumulation in the tumor microenvironment during dysplasia inhibits primary tumor growth through inhibition of angiogenesis. This inhibitory function of TSP-1 is actuated either by inhibiting MMP9 activation and the release of VEGF from extracellular matrix or by an interaction with CD36 on the surface of endothelial cells resulting in an increase in apoptosis. In contrast, several published articles have also shown that as tumor cells become more invasive and enter the early stage of carcinoma, they up-regulate TSP-1 expression, which may promote invasion and migration. In our in vivo studies using the polyoma middle T antigen (PyT) transgenic mouse model of breast cancer, we observed that the absence of TSP-1 significantly increased the growth of primary tumors, but delayed metastasis to the lungs. In this study, we propose a mechanism for the promigratory function of TSP-1 in mouse mammary tumor cells in vitro. We demonstrate the correlations between expression of TSP-1 and its receptor integrin α3β1, which is considered a promigratory protein in cancer cells. In addition we propose that binding of TSP-1 to integrin α3β1 is important for mediating actin filament polymerization and therefore, cell motility. These findings can help explain the dual functionality of TSP-1 in cancer progression.

  17. Thrombospondin-1 Modulates Actin Filament Remodeling and Cell Motility in Mouse Mammary Tumor cells in Vitro

    PubMed Central

    Ndishabandi, Dorothy; Duquette, Cameron; Billah, Ghita El-Moatassim; Reyes, Millys; Duquette, Mark; Lawler, Jack; Kazerounian, Shideh

    2015-01-01

    It is well established that the secretion of thrombospondin-1 (TSP-1) by activated stromal cells and its accumulation in the tumor microenvironment during dysplasia inhibits primary tumor growth through inhibition of angiogenesis. This inhibitory function of TSP-1 is actuated either by inhibiting MMP9 activation and the release of VEGF from extracellular matrix or by an interaction with CD36 on the surface of endothelial cells resulting in an increase in apoptosis. In contrast, several published articles have also shown that as tumor cells become more invasive and enter the early stage of carcinoma, they up-regulate TSP-1 expression, which may promote invasion and migration. In our in vivo studies using the polyoma middle T antigen (PyT) transgenic mouse model of breast cancer, we observed that the absence of TSP-1 significantly increased the growth of primary tumors, but delayed metastasis to the lungs. In this study, we propose a mechanism for the promigratory function of TSP-1 in mouse mammary tumor cells in vitro. We demonstrate the correlations between expression of TSP-1 and its receptor integrin α3β1, which is considered a promigratory protein in cancer cells. In addition we propose that binding of TSP-1 to integrin α3β1 is important for mediating actin filament polymerization and therefore, cell motility. These findings can help explain the dual functionality of TSP-1 in cancer progression. PMID:26273699

  18. Dissociation of tumor promoter-stimulated ornithine decarboxylase activity and DNA synthesis in mouse epidermis in vivo and in vitro by fluocinolone acetonide, a tumor-promotion inhibitor.

    PubMed Central

    Lichti, U; Slaga, T J; Ben, T; Patterson, E; Hennings, H; Yuspa, S H

    1977-01-01

    12-O-Tetradecanoyl phorbol-13-acetate (TPA), a tumor promoter, stimulates DNA synthesis in mouse epidermal cells in vivo and in vitro. This response appears to be mediated through polyamine metabolism because ornithine decarboxylase (L-ornithine carboxy-lyase, EC 4.1.1.17)activity is markedly increased shortly after promoter exposure and this induction varies in magnitude according to dose and promoter potency of a series of phorbol esters. In vitro, exogenous putrescine (0.01-10 mM) results in a dose-related increase and prolongation of promoter-stimulated DNA DNA synthesis, a phenomenon noted in other systems of polyamine-mediated growth stimulation. The anti-inflammatory steroid fluocinolone acetonide (FA), an inhibitor of tumor promotion, prevents TPA stimulation of epidermal proliferation in vivo and in vitro. In vitro, FA most effectively prevents stimulation of DNA synthesis when applied is not required. Paradoxially, FA potentiates the increase in ornithine decarboxylase activity after TPA administeration both in vivo and in vitro. Furthermore, the inhibition of TPA-stimulated DNA synthesis by FA in vitro can be reversed by exogenous putrescine. These results suggestthat FA exerts its antipromotion effect by reducing the sensitivity of the cell to polyamines or by reducing intracellular polyamine levels. PMID:269443

  19. Metabolic and Hormonal Derangements in Pulmonary Hypertension: From Mouse to Man

    PubMed Central

    Pugh, Meredith E.; Hemnes, Anna R.

    2010-01-01

    Summary Pulmonary arterial hypertension (PAH) is a complex disease with significant morbidity and mortality. Recent animal and human studies have highlighted abnormalities in regulation and metabolism of insulin, sex hormones, adipokines, and lipids that may play a role in disease development. Mouse studies suggest features of the metabolic syndrome including insulin resistance, deficiencies in PPARγ and apolipoprotein E, and low adiponectin are linked to development of PAH. In humans, insulin resistance, the metabolic syndrome, and low levels of high-density lipoprotein have been associated with PAH. In addition, abnormal metabolism of estrogens has been demonstrated in human and animal models of PAH, suggesting an important relationship of sex hormones and pulmonary vascular disease. Improved understanding of how metabolic and hormonal derangements relate to development and progression of pulmonary hypertension may lead to better disease therapies and understanding of potential risk factors. This review will focus on the animal and human data regarding metabolic and sex hormone derangements in PAH. PMID:20939841

  20. Lung Cancer Signatures in Plasma Based on Proteome Profiling of Mouse Tumor Models

    PubMed Central

    Taguchi, Ayumu; Politi, Katerina; Pitteri, Sharon J.; Lockwood, William W.; Faça, Vitor M.; Kelly-Spratt, Karen; Wong, Chee-Hong; Zhang, Qing; Chin, Alice; Park, Kwon-Sik; Goodman, Gary; Gazdar, Adi F.; Sage, Julien; Dinulescu, Daniela M.; Kucherlapati, Raju; DePinho, Ronald A.; Kemp, Christopher J.; Varmus, Harold E.; Hanash, Samir M.

    2012-01-01

    SUMMARY We investigated the potential of in-depth quantitative proteomics to reveal plasma protein signatures that reflect lung tumor biology. We compared plasma protein profiles of four mouse models of lung cancer with profiles of models of pancreatic, ovarian, colon, prostate, and breast cancer and two models of inflammation. A protein signature for Titf1/Nkx2-1, a known lineage-survival oncogene in lung cancer, was found in plasmas of mouse models of lung adenocarcinoma. An EGFR signature was found in plasma of an EGFR mutant model, and a distinct plasma signature related to neuroendocrine development was uncovered in the small-cell lung cancer model. We demonstrate relevance to human lung cancer of the protein signatures identified on the basis of mouse models. PMID:21907921

  1. Tumor-derived mesenchymal stem cells and orthotopic site increase the tumor initiation potential of putative mouse mammary cancer stem cells derived from MMTV-PyMT mice.

    PubMed

    Lanza, Denise Grant; Ma, Jun; Guest, Ian; Uk-Lim, Chang; Glinskii, Anna; Glinsky, Gennadi; Sell, Stewart

    2012-12-01

    The ability to transplant mammary cancer stem cells, identified by the phenotype CD24(+)CD29(+)CD49f(+)Sca-1(low), is dependent on the microenvironment in which the cells are placed. Using the MMTV-PyMT mouse model of mammary cancer, we now report two methods of tumor growth enhancement: contributions of tumor stroma in the form of tumor-derived mesenchymal stem cells and orthotopic vs. heterotopic transplantation sites. To support evidence of stem cell function, tumor-derived mesenchymal stem cells differentiated into adipocyte- and osteocyte-like cells after culture in specific medium. Co-injection of tumor-initiating cells with tumor-derived mesenchymal stem cells significantly increased tumor initiation compared to subcutaneous injection of TICs alone; co-injection also allowed tumor initiation with a single TIC. Interestingly, we observed the formation of sarcomas after co-injections of tumor-derived mesenchymal stem cells or mouse embryonic fibroblasts with TICs; sarcomas are not observed in spontaneous MMTV-PyMT tumors and rarely observed in injections of TICs alone. Tumor initiation was also significantly increased in the orthotopic injection site compared to heterotopic injections. We conclude that tumor stroma and orthotopic sites both enhance tumor initiation by mammary cancer stem cells.

  2. Metabolism, Genomics, and DNA Repair in the Mouse Aging Liver

    PubMed Central

    Lebel, Michel; de Souza-Pinto, Nadja C.; Bohr, Vilhelm A.

    2011-01-01

    The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some of the DNA repair pathways affecting liver homeostasis with age using rodents as model systems. PMID:21559242

  3. Metabolism, genomics, and DNA repair in the mouse aging liver.

    PubMed

    Lebel, Michel; de Souza-Pinto, Nadja C; Bohr, Vilhelm A

    2011-01-01

    The liver plays a pivotal role in the metabolism of nutrients, drugs, hormones, and metabolic waste products, thereby maintaining body homeostasis. The liver undergoes substantial changes in structure and function within old age. Such changes are associated with significant impairment of many hepatic metabolic and detoxification activities, with implications for systemic aging and age-related disease. It has become clear, using rodent models as biological tools, that genetic instability in the form of gross DNA rearrangements or point mutations accumulate in the liver with age. DNA lesions, such as oxidized bases or persistent breaks, increase with age and correlate well with the presence of senescent hepatocytes. The level of DNA damage and/or mutation can be affected by changes in carcinogen activation, decreased ability to repair DNA, or a combination of these factors. This paper covers some of the DNA repair pathways affecting liver homeostasis with age using rodents as model systems.

  4. Effects of the co-carcinogen catechol on benzo(a)pyrene metabolism and DNA adduct formation in mouse skin

    SciTech Connect

    Melikian, A.A.; Leszczynska, J.M.; Hecht, S.S.; Hoffmann, D.

    1986-01-01

    We have studied the effects of the co-carcinogen catechol (1,2-dihydroxybenzene) on the metabolic activation of (/sup 3/H) benzo(a)pyrene (BaP) in mouse skin, in vivo and on the binding of BaP metabolites to DNA and protein at intervals from 0.5-24 h. Upon topical application of 0.015 mg (/sup 3/H)BaP and 0.25 or 0.5 mg catechol per mouse, catechol had little effect on the total amount of (/sup 3/H)BaP metabolized in mouse skin, but it affected the relative proportions of (/sup 3/H)BaP metabolites. Catechol (0.5 mg/mouse) decreased the proportion of water-soluble (/sup 3/H)BaP metabolites, ethyl acetate-soluble polar metabolites and quinones, but doubled the levels of unconjugated 3-hydroxy-BaP at all measured intervals after treatment. Catechol also caused a small increase in the levels of trans-7,8-dihydroxy-7,8-dihydroBaP and trans-9,10-dihydroxy-9,10-dihydroBaP 0.5 h after treatment. Two hours after treatment, the levels of these metabolites subsided to those of the controls. Catechol did not affect the levels of glutathione conjugates of BaP. However, it caused a decrease in glucuronide and sulphate conjugate formation from BaP. Catechol caused an approximately 2-fold increase in the formation of anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydroBaP (BPDE) DNA adducts and elevated the ratio of anti-syn-BPDE-DNA adducts 1.6 to 2.9-fold. Catechol treatment increased the radioactivity associated with epidermal proteins after (/sup 3/H)BaP application. Because catechol increased levels of 3-hydroxyBaP, we considered the possibility that 3-hydroxyBaP might enhance the tumor initiating activities of BaP or BPDE in mouse skin; a bioassay demonstrated that this was not the case. The results of this study indicate that one important effect of catechol related to its co-carcinogenicity is its ability to enhance formation of anti-BPDE-DNA adducts in mouse skin.

  5. Myeloid-derived suppressor cells are implicated in regulating permissiveness for tumor metastasis during mouse gestation

    PubMed Central

    Mauti, Laetitia A.; Le Bitoux, Marie-Aude; Baumer, Karine; Stehle, Jean-Christophe; Golshayan, Dela; Provero, Paolo; Stamenkovic, Ivan

    2011-01-01

    Metastasis depends on the ability of tumor cells to establish a relationship with the newly seeded tissue that is conducive to their survival and proliferation. However, the factors that render tissues permissive for metastatic tumor growth have yet to be fully elucidated. Breast tumors arising during pregnancy display early metastatic proclivity, raising the possibility that pregnancy may constitute a physiological condition of permissiveness for tumor dissemination. Here we have shown that during murine gestation, metastasis is enhanced regardless of tumor type, and that decreased NK cell activity is responsible for the observed increase in experimental metastasis. Gene expression changes in pregnant mouse lung and liver were shown to be similar to those detected in premetastatic sites and indicative of myeloid cell infiltration. Indeed, myeloid-derived suppressor cells (MDSCs) accumulated in pregnant mice and exerted an inhibitory effect on NK cell activity, providing a candidate mechanism for the enhanced metastatic tumor growth observed in gestant mice. Although the functions of MDSCs are not yet understood in the context of pregnancy, our observations suggest that they may represent a shared mechanism of immune suppression occurring during gestation and tumor growth. PMID:21646719

  6. Dosimetry study of PHOTOFRIN-mediated photodynamic therapy in a mouse tumor model

    NASA Astrophysics Data System (ADS)

    Qiu, Haixia; Kim, Michele M.; Penjweini, Rozhin; Zhu, Timothy C.

    2016-03-01

    It is well known in photodynamic therapy (PDT) that there is a large variability between PDT light dose and therapeutic outcomes. An explicit dosimetry model using apparent reacted 1O2 concentration [1O2]rx has been developed as a PDT dosimetric quantity to improve the accuracy of the predicted ability of therapeutic efficacy. In this study, this explicit macroscopic singlet oxygen model was adopted to establish the correlation between calculated reacted [1O2]rx and the tumor growth using Photofrin-mediated PDT in a mouse tumor model. Mice with radiation-induced fibrosarcoma (RIF) tumors were injected with Photofrin at a dose of 5 mg/kg. PDT was performed 24h later with different fluence rates (50, 75 and 150 mW/cm2) and different fluences (50 and 135 J/cm2) using a collimated light applicator coupled to a 630nm laser. The tumor volume was monitored daily after PDT and correlated with the total light fluence and [1O2]rx. Photophysical parameters as well as the singlet oxygen threshold dose for this sensitizer and the RIF tumor model were determined previously. The result showed that tumor growth rate varied greatly with light fluence for different fluence rates while [1O2]rx had a good correlation with the PDT-induced tumor growth rate. This preliminary study indicated that [1O2]rx could serve as a better dosimetric predictor for predicting PDT outcome than PDT light dose.

  7. Modification of Antitumor Immunity and Tumor Microenvironment by Resveratrol in Mouse Renal Tumor Model.

    PubMed

    Chen, Liang; Yang, Sixing; Liao, Wenbiao; Xiong, Yunhe

    2015-06-01

    Renal cell carcinoma (RCC) microenvironment plays critical roles in antitumor immune response. Resveratrol exhibits a direct antitumor effect in various tumor models. However, the immunomodulatory effect of resveratrol on RCC microenvironment is unknown. In this study, we found that administration of low dose of resveratrol inhibits Renca tumor growth and its inhibition effect depends on CD8(+) T cells. Moreover, the proportion of regulatory T cells is decreased, while the proportion of myeloid-derived suppressor cells does not alter after resveratrol treatment. More importantly, massive amount of activated CD8(+) T cells accumulates in tumor microenvironment in the resveratrol-treated group and shows increased cytotoxicity, as indicated by a higher expression of Fas ligand. We also found that resveratrol switches the expression of T-helper (Th) 2 cytokines such as interleukin (IL)-6 and IL-10 to Th 1 cytokines with dominance of interferon (IFN)-γ, which increases the expression of Fas in Renca cells. Furthermore, we found resveratrol down-regulates angiogenesis along with decreased level of vascular endothelial growth factor in tumor microenvironment. Our results strongly suggest that resveratrol might be used for RCC immunotherapy through modulating tumor microenvironment.

  8. Polymorphic expression of a human superficial bladder tumor antigen defined by mouse monoclonal antibodies.

    PubMed Central

    Fradet, Y; Islam, N; Boucher, L; Parent-Vaugeois, C; Tardif, M

    1987-01-01

    Three mouse monoclonal antibodies (mAbs), which define a highly restricted antigen, were obtained by simultaneous immunizations with superficial papillary bladder tumor cells and mouse polyclonal serum against normal urothelium. The antigen was detected by the avidin/biotin/peroxidase method in 30/44 superficial bladder tumors (68%) but in only 4/27 infiltrating urothelial cancers (with much less intensity). No normal adult or fetal tissues tested expressed the antigen, including normal urothelium from 40 individuals, 13 of whom had a bladder tumor positive for the antigen. Only 1 of 45 nonbladder tumors showed some reactivity with one of the three mAbs. Serological tests on a large panel of human cancer cell lines and normal cultured cells were negative. The antigen is highly stable and well preserved on paraffin-embedded tissues. Electrophoretic transfer blot experiments with fresh tumor extracts showed that all three mAbs react with a determinant on a component of 300,000 Mr (pI 9.5) and 62,000 Mr (pI 6.5). The antigen shows polymorphic expression at the cellular level on tissue sections and also at a molecular level on immunoblots where the two bands are differentially detected on extracts of a series of tumors but are not visualized on normal urothelium extracts. The characteristics of this antigenic system suggest that it may provide some insights about the biology of bladder cancer. Specific detection of the antigen on 70% of superficial bladder tumors with normal cytology may be useful for their diagnosis and follow-up. Images PMID:3313389

  9. Acute inflammation induces immunomodulatory effects on myeloid cells associated with anti-tumor responses in a tumor mouse model

    PubMed Central

    Salem, Mohamed L.; Attia, Zeinab I.; Galal, Sohaila M.

    2015-01-01

    Given the self nature of cancer, anti-tumor immune response is weak. As such, acute inflammation induced by microbial products can induce signals that result in initiation of an inflammatory cascade that helps activation of immune cells. We aimed to compare the nature and magnitude of acute inflammation induced by toll-like receptor ligands (TLRLs) on the tumor growth and the associated inflammatory immune responses. To induce acute inflammation in tumor-bearing host, CD1 mice were inoculated with intraperitoneal (i.p.) injection of Ehrlich ascites carcinoma (EAC) (5 × 105 cells/mouse), and then treated with i.p. injection on day 1, day 7 or days 1 + 7 with: (1) polyinosinic:polycytidylic (poly(I:C)) (TLR3L); (2) Poly-ICLC (clinical grade of TLR3L); (3) Bacillus Calmette Guerin (BCG) (coding for TLR9L); (4) Complete Freund’s adjuvant (CFA) (coding for TLR9L); and (5) Incomplete Freund’s Adjuvant (IFA). Treatment with poly(I:C), Poly-ICLC, BCG, CFA, or IFA induced anti-tumor activities as measured by 79.1%, 75.94%, 73.94%, 71.88% and 47.75% decreases, respectively in the total number of tumor cells collected 7 days after tumor challenge. Among the tested TLRLs, both poly(I:C) (TLR3L) and BCG (contain TLR9L) showed the highest anti-tumor effects as reflected by the decrease in the number of EAc cells. These effects were associated with a 2-fold increase in the numbers of inflammatory cells expressing the myeloid markers CD11b+Ly6G+, CD11b+Ly6G−, and CD11b+Ly6G−. We concluded that Provision of the proper inflammatory signal with optimally defined magnitude and duration during tumor growth can induce inflammatory immune cells with potent anti-tumor responses without vaccination. PMID:26966565

  10. Immunostimulatory early phenotype of tumor-associated macrophages does not predict tumor growth outcome in an HLA-DR mouse model of prostate cancer.

    PubMed

    Riabov, Vladimir; Kim, David; Chhina, Surmeet; Alexander, Richard B; Klyushnenkova, Elena N

    2015-07-01

    Tumor-associated macrophages (TAM) were shown to support the progression of many solid tumors. However, anti-tumor properties of TAM were also reported in several types of cancer. Here, we investigated the phenotype and functions of TAM in two transgenic mouse models of prostate cancer that display striking differences in tumor growth outcome. Mice expressing prostate-specific antigen (PSA) as a self-antigen specifically in prostate (PSAtg mice) rejected PSA-expressing transgenic adenocarcinoma of mouse prostate (TRAMP) tumors. However, the introduction of HLA-DRB1*1501 (DR2b) transgene presenting PSA-derived peptides in a MHC class II-restricted manner exacerbated the growth of TRAMP-PSA tumors in DR2bxPSA F 1 mice. Despite the difference in tumor growth outcome, tumors in both strains were equally and intensively infiltrated by macrophages on the first week after tumor challenge. TAM exhibited mixed M1/M2 polarization and simultaneously produced pro-inflammatory (TNFα, IL1β) and anti-inflammatory (IL10) cytokines. TAM from both mouse strains demonstrated antigen-presenting potential and pronounced immunostimulatory activity. Moreover, they equally induced apoptosis of tumor cells. In vivo depletion of macrophages in DR2bxPSA F 1 but not PSAtg mice aggravated tumor growth suggesting that macrophages more strongly contribute to anti-tumor immunity when specific presentation of PSA to CD4+ T cells is possible. In summary, we conclude that in the early stages of tumor progression, the phenotype and functional properties of TAM did not predict tumor growth outcome in two transgenic prostate cancer models. Furthermore, we demonstrated that during the initial stage of prostate cancer development, TAM have the potential to activate T cell immunity and mediate anti-tumor effects.

  11. Resveratrol Is Rapidly Metabolized in Athymic (Nu/Nu) Mice and Does Not Inhibit Human Melanoma Xenograft Tumor Growth1

    PubMed Central

    Niles, Richard M.; Cook, Carla P.; Meadows, Gary G.; Fu, Ya-Min; McLaughlin, Jerry L.; Rankin, Gary O.

    2006-01-01

    Resveratrol has been shown to have anticarcinogenic activity. We previously found that resveratrol inhibited growth and induced apoptosis in 2 human melanoma cell lines. In this study we determined whether resveratrol would inhibit human melanoma xenograft growth. Athymic mice received control diets or diets containing 110 μmol/L or 263 μmol/L resveratrol, 2 wk prior to subcutaneous injection of the tumor cells. Tumor growth was measured during a 3-wk period. Metabolism of resveratrol was assayed by bolus gavage of 75 mg/kg resveratrol in tumor-bearing and nontumor-bearing mice. Pellets containing 10–100 mg resveratrol were implanted into the mice, next to newly palpated tumors, and tumor growth determined. We also determined the effect of a major resveratrol metabolite, piceatannol, on experimental lung metastasis. Resveratrol, at any concentration tested, did not have a statistically significant effect on tumor growth. The higher levels of resveratrol tested (0.006% in food or 100 mg in slow-release pellets) tended to stimulate tumor growth (P = 0.08–0.09). Resveratrol and its major metabolites, resveratrol glucuronide and piceatannol, were found in serum, liver, skin, and tumor tissue. Piceatannol did not affect the in vitro growth of a murine melanoma cell line, but significantly stimulated the number of lung metastases when these melanoma cells were directly injected into the tail vein of the mouse. These results suggest that resveratrol is not likely to be useful in the treatment of melanoma and that the effects of phytochemicals on cell cultures may not translate to the whole animal system. PMID:16988123

  12. Childhood Brain Tumors, Residential Insecticide Exposure, and Pesticide Metabolism Genes

    PubMed Central

    Nielsen, Susan Searles; McKean-Cowdin, Roberta; Farin, Federico M.; Holly, Elizabeth A.; Preston-Martin, Susan; Mueller, Beth A.

    2010-01-01

    Background Insecticides that target the nervous system may play a role in the development of childhood brain tumors (CBTs). Constitutive genetic variation affects metabolism of these chemicals. Methods We analyzed population-based case–control data to examine whether CBT is associated with the functional genetic polymorphisms PON1C–108T, PON1Q192R, PON1L55M, BCHEA539T, FMO1C–9536A, FMO3E158K, ALDH3A1S134A, and GSTT1 (null). DNA was obtained from newborn screening archives for 201 cases and 285 controls, ≤ 10 years of age, and born in California or Washington State between 1978 and 1990. Conception-to-diagnosis home insecticide treatment history was ascertained by interview. Results We observed no biologically plausible main effects for any of the metabolic polymorphisms with CBT risk. However, we observed strong interactions between genotype and insecticide exposure during childhood. Among exposed children, CBT risk increased per PON1–108T allele [odds ratio (OR) = 1.8; 95% confidence interval (CI), 1.1–3.0] and FMO1–9536A (*6) allele (OR = 2.7; 95% CI, 1.2–5.9), whereas among children never exposed, CBT risk was not increased (PON1: OR = 0.7; 95% CI, 0.5–1.0, interaction p = 0.005; FMO1: OR = 1.0; 95% CI, 0.6–1.6, interaction p = 0.009). We observed a similar but statistically nonsignificant interaction between childhood exposure and BCHEA539T (interaction p = 0.08). These interactions were present among both Hispanic and non-Hispanic white children. Conclusion Based on known effects of these variants, these results suggest that exposure in childhood to organophosphorus and perhaps to carbamate insecticides in combination with a reduced ability to detoxify them may be associated with CBT. Confirmation in other studies is required. PMID:20056567

  13. Retinoid metabolism is altered in human and mouse cicatricial alopecia

    PubMed Central

    Everts, Helen B.; Silva, Kathleen A.; Montgomery, Shalise; Suo, Liye; Menser, Monica; Valet, Amy S.; King, Lloyd E.; Ong, David E; Sundberg, John P.

    2012-01-01

    C57BL/6 mice develop dermatitis and scarring alopecia resembling human cicatricial alopecias (CA), particularly the central centrifugal cicatricial alopecia (CCCA) type. To evaluate the role of retinoids in CA, expression of retinoid metabolism components were examined in these mice with mild, moderate, or severe CA compared to hair cycle matched mice with no disease. Two feeding studies were performed with dams fed either NIH 31 diet (study 1) or AIN93G diet (study 2). Adult mice were fed AIN93M diet with 4 (recommended), 28, or 56 IU vitamin A/g diet. Feeding the AIN93M diet to adults increased CA frequency over NIH 31 fed mice. Increased follicular dystrophy was seen in study 1 and increased dermal scars in study 2 in mice fed the 28 IU diet. These results indicate that retinoid metabolism is altered in CA in C57BL/6J mice that require precise levels of dietary vitamin A. Human patients with CCCA, pseudopelade (end stage scarring), and controls with no alopecia were also studied. Many retinoid metabolism proteins were increased in mild CCCA, but were undetectable in pseudopelade. Studies to determine if these dietary alterations in retinoid metabolism seen in C57BL/6J mice are also involved in different types of human CA are needed. PMID:23096705

  14. Identification of Tumor Rejection Antigens for Breast Cancer Using a Mouse Tumor Rejection Model

    DTIC Science & Technology

    2008-05-01

    Days after Tumor Implantation Tu m or S iz e (m m 3 ) 0 10 20 30 40 0 1000 2000 3000 PBS MMC Swap70...or Gsn, or irradiated whole tumor cells at day -42, -28, and -14. Live MMC cells were given subcutaneously on day 0. 0 10 20 30 40...hICD Mtv1 Mtv1 + FxyD3 Mtv1 + FxyD3 + hICD Days after MMC chalange Tu m or s iz e( m m 3) Figure 4. Multi-antigen vaccines

  15. Effective Metabolic Targeting of Human Osteosarcoma Cells In Vitro and in Orthotopic Nude-mouse Models with Recombinant Methioninase.

    PubMed

    Igarashi, Kentaro; Kawaguchi, Kei; Kiyuna, Tasuku; Miyake, Kentaro; Murakami, Takashi; Yamamoto, Norio; Hayashi, Katsuhiro; Kimura, Hiroaki; Miwa, Shinji; Tsuchiya, Hiroyuki; Hoffman, Robert M

    2017-09-01

    Methionine dependence may be the only known general metabolic defect in cancer. In order to exploit methionine dependence for therapy, our laboratory previously cloned L-methionine α-deamino-γ-mercaptomethane lyase [EC 4.4.1.11]) (recombinant methioninase [rMETase]), which was subsequently tested in mouse models of various types of human tumors. The present study aimed to investigate the efficacy of rMETase on human osteosarcoma cells in vitro and in vivo. Human osteosarcoma cell lines 143B, HOS and SOSN2 were tested in vitro for survival during a 72-h exposure to rMETase using the WST-8 assay. Half-maximal inhibitory concentrations were calculated for in vitro efficacy experiments. 143B cells were orthotopically transplanted into the tibia of nude mice. Mouse models were randomized into the following groups 1 week after transplantation: Group 1, untreated control; Group 2, cisplatinum (CDDP) [intraperitoneal (i.p.) injection at 6 mg/kg weekly, for 3 weeks], positive control; Group 3, rMETase, 100 units/mouse i.p. daily, for 21 days. Tumor sizes and body weight were measured with calipers and a digital balance once per week, respectively. rMETase significantly inhibited osteosarcoma cell growth, in a dose-dependent manner, in vitro. Both CDDP and rMETase treatment significantly inhibited tumor volume compared to untreated control mice at 5 weeks after initiation. Tumor volumes were as follows: Group 1, untreated, control: 1808.2 ± 344 mm(3); Group 2, CDDP: 1102.2 ± 316 mm(3), p=0.0008 compared to untreated control; Group 3, rMETase: 884.8 ± 361 mm(3), p=0.0001 compared to untreated control. There were no animal deaths in any group. The body weight of mice was not significantly different between any group. rMETase showed promising efficacy against osteosarcoma, a recalcitrant tumor type. Future studies will investigate the efficacy of rMETase on patient-derived orthotopic xenograft (PDOX) models of osteosarcoma as a bridge to testing rMETase in the clinic

  16. Quantification of tryptophan transport and metabolism in lung tumors using PET.

    PubMed

    Juhász, Csaba; Muzik, Otto; Lu, Xin; Jahania, M Salik; Soubani, Ayman O; Khalaf, Majid; Peng, Fangyu; Mangner, Thomas J; Chakraborty, Pulak K; Chugani, Diane C

    2009-03-01

    Abnormal tryptophan metabolism catalyzed by indoleamine 2,3-dioxygenase may play a prominent role in tumor immunoresistance in many tumor types, including lung tumors. The goal of this study was to evaluate the in vivo kinetics of alpha-(11)C-methyl-l-tryptophan (AMT), a PET tracer for tryptophan metabolism, in human lung tumors. Tracer transport and metabolic rates were evaluated in 18 lesions of 10 patients using dynamic PET/CT with AMT. The kinetic values were compared between tumors and unaffected lung tissue, tested against a simplified analytic approach requiring no arterial blood sampling, and correlated with standardized uptake values (SUVs) obtained from (18)F-FDG PET/CT scans. Most non-small cell lung cancers (NSCLCs) showed prolonged retention of AMT, but 3 other lesions (2 benign lesions and a rectal cancer metastasis) and unaffected lung tissue showed no such retention. Transport and metabolic rates of AMT were substantially higher in NSCLCs than in the other tumors and unaffected lung tissue. A simplified analytic approach provided an excellent estimate of transport rates but only suboptimal approximation of tryptophan metabolic rates. (18)F-FDG SUVs showed a positive correlation with AMT uptake, suggesting higher tryptophan transport and metabolism in tumors with higher proliferation rates. Prolonged retention of AMT in NSCLCs suggests high metabolic rates of tryptophan in these tumors. AMT PET/CT may be a clinically useful molecular imaging method for personalized cancer treatment by identifying and monitoring patients who have increased tumor tryptophan metabolism and are potentially sensitive to immunopharmacotherapy with indoleamine 2,3-dioxygenase inhibitors.

  17. The LKB1-AMPK pathway: metabolism and growth control in tumor suppression

    PubMed Central

    Shackelford, David B.; Shaw, Reuben J.

    2009-01-01

    In the past decade, studies of the human tumor suppressor LKB1 have uncovered a novel signaling pathway that links cell metabolism to growth control and cell polarity. LKB1 encodes a serine/threonine kinase that directly phosphorylates and activates AMPK, a central metabolic sensor. AMPK regulates lipid, cholesterol and glucose metabolism in specialized metabolic tissues such as liver, muscle, and adipose, a function that has made it a key therapeutic target in patients with diabetes. The connection of AMPK with several tumor suppressors suggests that therapeutic manipulation of this pathway with established diabetes drugs warrants further investigation in patients with cancer. PMID:19629071

  18. A Natural Language Processing (NLP) Tool to Assist in the Curation Of the Laboratory Mouse Tumor Biology Database

    PubMed Central

    Xu, Hua; Krupke, Debra; Blake, Judith; Friedman, Carol

    2006-01-01

    A substantial effort of the biological community involves the development of model organism databases containing key genomic information concerning specific organisms. This paper describes a developing natural language processing (NLP) tool, which is aimed at assisting curators of the Mouse Tumor Biology (MTB) Database of the Mouse Genome Informatics (MGI) group by helping them quickly find key information in the articles. PMID:17238769

  19. Optional strategies for reduced metabolism in gray mouse lemurs

    NASA Astrophysics Data System (ADS)

    Schmid, J.; Ganzhorn, J. U.

    2009-06-01

    Among the order of primates, torpor has been described only for the small Malagasy cheirogaleids Microcebus and Cheirogaleus. The nocturnal, gray mouse lemur, Microcebus murinus (approx. 60 g), is capable of entering into and spontaneously arousing from apparently daily torpor during the dry season in response to reduced temperatures and low food and water sources. Mark-recapture studies indicated that this primate species might also hibernate for several weeks, although physiological evidence is lacking. In the present study, we investigated patterns of body temperature in two free-ranging M. murinus during the austral winter using temperature-sensitive data loggers implanted subdermally. One lemur hibernated and remained inactive for 4 weeks. During this time, body temperature followed the ambient temperature passively with a minimum body temperature of 11.5°C, interrupted by irregular arousals to normothermic levels. Under the same conditions, the second individual displayed only short bouts of torpor in the early morning hours but maintained stable normothermic body temperatures throughout its nocturnal activity. Reduction of body temperature was less pronounced in the mouse lemur that utilized short bouts of torpor with a minimum value of 27°C. Despite the small sample size, our findings provide the first physiological confirmation that free-ranging individuals of M. murinus from the humid evergreen littoral rain forest have the option to utilize short torpor bouts or hibernation under the same conditions as two alternative energy-conserving physiological solutions to environmental constraints.

  20. Oncogenic Kit signaling and therapeutic intervention in a mouse model of gastrointestinal stromal tumor

    PubMed Central

    Rossi, Ferdinand; Ehlers, Imke; Agosti, Valter; Socci, Nicholas D.; Viale, Agnes; Sommer, Gunhild; Yozgat, Yasemin; Manova, Katia; Antonescu, Cristina R.; Besmer, Peter

    2006-01-01

    Kit receptor-activating mutations are critical in the pathogenesis of gastrointestinal stromal tumors (GIST). We investigated mechanisms of oncogenic Kit signaling and the consequences of therapeutic intervention in a mouse model of human GIST. Treatment of GIST mice with imatinib decreased cell proliferation and increased apoptosis in the tumor. Analysis of tumor tissue from imatinib-treated mice showed diminished phosphatidylinositol 3-kinase (PI3-kinase) and mammalian target of rapamycin (mTOR) signaling suggesting that oncogenic Kit signaling critically contributes to the translational response in GIST. Treatment with RAD001 (everolimus), an mTOR inhibitor, diminished the translational response and cell proliferation in tumor lesions, pointing to mTOR inhibition as a therapeutic approach for imatinib-resistant GIST. Analysis of RNA expression profiles in GIST lesions with and without imatinib treatment showed changes in expression of IFN-inducible genes and cell cycle regulators. These results convincingly show that KitV558Δ/+ mice represent a unique faithful mouse model of human familial GIST, and they demonstrate the utility of these mice for preclinical investigations and to elucidate oncogenic signaling mechanisms by using genetic approaches and targeted pharmacological intervention. PMID:16908864

  1. A comprehensive understanding of thioTEPA metabolism in the mouse using UPLC-ESI-QTOFMS-based metabolomics.

    PubMed

    Li, Fei; Patterson, Andrew D; Höfer, Constance C; Krausz, Kristopher W; Gonzalez, Frank J; Idle, Jeffrey R

    2011-04-15

    ThioTEPA, an alkylating agent with anti-tumor activity, has been used as an effective anticancer drug since the 1950s. However, a complete understanding of how its alkylating activity relates to clinical efficacy has not been achieved, the total urinary excretion of thioTEPA and its metabolites is not resolved, and the mechanism of formation of the potentially toxic metabolites S-carboxymethylcysteine (SCMC) and thiodiglycolic acid (TDGA) remains unclear. In this study, the metabolism of thioTEPA in a mouse model was comprehensively investigated using ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) based-metabolomics. The nine metabolites identified in mouse urine suggest that thioTEPA underwent ring-opening, N-dechloroethylation, and conjugation reactions in vivo. SCMC and TDGA, two downstream thioTEPA metabolites, were produced from thioTEPA from two novel metabolites 1,2,3-trichloroTEPA (VII) and dechloroethyltrichloroTEPA (VIII). SCMC and TDGA excretion were increased about 4-fold and 2-fold, respectively, in urine following the thioTEPA treatment. The main mouse metabolites of thioTEPA in vivo were TEPA (II), monochloroTEPA (III) and thioTEPA-mercapturate (IV). In addition, five thioTEPA metabolites were detected in serum and all shared similar disposition. Although thioTEPA has a unique chemical structure which is not maintained in the majority of its metabolites, metabolomic analysis of its biotransformation greatly contributed to the investigation of thioTEPA metabolism in vivo, and provides useful information to understand comprehensively the pharmacological activity and potential toxicity of thioTEPA in the clinic.

  2. Increased Metabolic Flexibility and Complexity in a Long-Lived Growth Hormone Insensitive Mouse Model

    PubMed Central

    2014-01-01

    The goal of this study was to test whether the “loss of the complexity” hypothesis can be applied to compare the metabolic patterns of mouse models with known differences in metabolic and endocrine function as well as life span. Here, we compare the complexity of locomotor activity and metabolic patterns (energy expenditure, VO2, and respiratory quotient) of the long-lived growth hormone receptor gene deleted mice (GHR− /−) and their wild-type littermates. Using approximate entropy as a measure of complexity, we observed greater metabolic complexity, as indicated by greater irregularity in the physiological fluctuations of the GHR− /− mice. Further analysis of the data also revealed lower energy costs of locomotor activity and a stronger relationship between locomotor activity and respiratory quotient in the GHR− /− mice relative to controls. These findings suggest underlying differences in metabolic modulation in the GHR− /− mice revealed especially through measures of complexity of their time-dependent fluctuations. PMID:23788654

  3. Transgenic Mouse Models for Alcohol Metabolism, Toxicity and Cancer

    PubMed Central

    Heit, Claire; Dong, Hongbin; Chen, Ying; Shah, Yatrik M.; Thompson, David C.; Vasiliou, Vasilis

    2015-01-01

    Alcohol abuse leads to tissue damage including a variety of cancers; however, the molecular mechanisms by which this damage occurs remains to be fully understood. The primary enzymes involved in ethanol metabolism include alcohol dehydrogenase (ADH), cytochrome P450 isoform 2E1, (CYP2E1), catalase (CAT), and aldehyde dehydrogenases (ALDH). Genetic polymorphisms in human genes encoding these enzymes are associated with increased risks of alcohol-related tissue damage, as well as differences in alcohol consumption and dependence. Oxidative stress resulting from ethanol oxidation is one established pathogenic event in alcohol-induced toxicity. Ethanol metabolism generates free radicals, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has been associated with diminished glutathione (GSH) levels as well as changes in other antioxidant mechanisms. In addition, the formation of protein and DNA adducts associated with the accumulation of ethanol-derived aldehydes can adversely affect critical biological functions and thereby promote cellular and tissue pathology. Animal models have proven to be valuable tools for investigating mechanisms underlying pathogenesis caused by alcohol. In this review, we provide a brief discussion on several animal models with genetic defects in alcohol metabolizing enzymes and GSH synthesizing enzymes and their relevance to alcohol research. PMID:25427919

  4. Transgenic mouse models for alcohol metabolism, toxicity, and cancer.

    PubMed

    Heit, Claire; Dong, Hongbin; Chen, Ying; Shah, Yatrik M; Thompson, David C; Vasiliou, Vasilis

    2015-01-01

    Alcohol abuse leads to tissue damage including a variety of cancers; however, the molecular mechanisms by which this damage occurs remain to be fully understood. The primary enzymes involved in ethanol metabolism include alcohol dehydrogenase (ADH), cytochrome P450 isoform 2E1, (CYP2E1), catalase (CAT), and aldehyde dehydrogenases (ALDH). Genetic polymorphisms in human genes encoding these enzymes are associated with increased risks of alcohol-related tissue damage, as well as differences in alcohol consumption and dependence. Oxidative stress resulting from ethanol oxidation is one established pathogenic event in alcohol-induced toxicity. Ethanol metabolism generates free radicals, such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), and has been associated with diminished glutathione (GSH) levels as well as changes in other antioxidant mechanisms. In addition, the formation of protein and DNA adducts associated with the accumulation of ethanol-derived aldehydes can adversely affect critical biological functions and thereby promote cellular and tissue pathology. Animal models have proven to be valuable tools for investigating mechanisms underlying pathogenesis caused by alcohol. In this review, we provide a brief discussion on several animal models with genetic defects in alcohol-metabolizing enzymes and GSH-synthesizing enzymes and their relevance to alcohol research.

  5. Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models

    PubMed Central

    Liu, Huiping; Patel, Manishkumar R.; Prescher, Jennifer A.; Patsialou, Antonia; Qian, Dalong; Lin, Jiahui; Wen, Susanna; Chang, Ya-Fang; Bachmann, Michael H.; Shimono, Yohei; Dalerba, Piero; Adorno, Maddalena; Lobo, Neethan; Bueno, Janet; Dirbas, Frederick M.; Goswami, Sumanta; Somlo, George; Condeelis, John; Contag, Christopher H.; Gambhir, Sanjiv Sam; Clarke, Michael F.

    2010-01-01

    To examine the role of breast cancer stem cells (BCSCs) in metastasis, we generated human-in-mouse breast cancer orthotopic models using patient tumor specimens, labeled with optical reporter fusion genes. These models recapitulate human cancer features not captured with previous models, including spontaneous metastasis in particular, and provide a useful platform for studies of breast tumor initiation and progression. With noninvasive imaging approaches, as few as 10 cells of stably labeled BCSCs could be tracked in vivo, enabling studies of early tumor growth and spontaneous metastasis. These advances in BCSC imaging revealed that CD44+ cells from both primary tumors and lung metastases are highly enriched for tumor-initiating cells. Our metastatic cancer models, combined with noninvasive imaging techniques, constitute an integrated approach that could be applied to dissect the molecular mechanisms underlying the dissemination of metastatic CSCs (MCSCs) and to explore therapeutic strategies targeting MCSCs in general or to evaluate individual patient tumor cells and predict response to therapy. PMID:20921380

  6. Indocyanine green enhanced near infrared laser treatment of SCK tumors in a mouse model pilot study

    NASA Astrophysics Data System (ADS)

    Shafirstein, Gal; Bäumler, Wolfgang; Friedman, Ran; Hennings, Leah; Webber, Jessica; Suen, James; Griffin, Robert J.

    2011-03-01

    Background and Purpose. Determine the efficacy of indocyanine green (ICG) dye in enhancing near infrared (NIR) laser ablation of tumors in a mouse model. Methods. Mammary carcinoma cells of A/J mice were injected subcutaneously in the lower back of female A/J mice (n=6). Five to seven days post inoculation the tumors (7-9 mm) were treated with 755-nm laser using 70 J/cm2 radiant exposures and 3-ms pulse time. Epidermal cooling was accomplished by cryogen spray cooling. Two minutes prior to laser irradiation mice were injected, intravenously, with 4 mg/kg body weight of ICG solution. Results. Complete tumor ablation was observed in the tumor region and minor damage was seen in the healthy skin. No major skin damage was observed post treatment. Substantial damage (up to 100% coagulative necrosis) was observed in tissue collected from tumors that were treated with laser/ICG. Conclusions. Intravenous administration of 4 mg/kg ICG significantly enhanced thermal ablation of tumors during NIR laser irradiation while sparing healthy skin.

  7. Model-Based Tumor Growth Dynamics and Therapy Response in a Mouse Model of De Novo Carcinogenesis

    PubMed Central

    Hadjiandreou, Marios M.; Rizki, Gizem; Achilleos, Achilleas; Strati, Katerina; Mitsis, Georgios D.

    2015-01-01

    Tumorigenesis is a complex, multistep process that depends on numerous alterations within the cell and contribution from the surrounding stroma. The ability to model macroscopic tumor evolution with high fidelity may contribute to better predictive tools for designing tumor therapy in the clinic. However, attempts to model tumor growth have mainly been developed and validated using data from xenograft mouse models, which fail to capture important aspects of tumorigenesis including tumor-initiating events and interactions with the immune system. In the present study, we investigate tumor growth and therapy dynamics in a mouse model of de novo carcinogenesis that closely recapitulates tumor initiation, progression and maintenance in vivo. We show that the rate of tumor growth and the effects of therapy are highly variable and mouse specific using a Gompertz model to describe tumor growth and a two-compartment pharmacokinetic/ pharmacodynamic model to describe the effects of therapy in mice treated with 5-FU. We show that inter-mouse growth variability is considerably larger than intra-mouse variability and that there is a correlation between tumor growth and drug kill rates. Our results show that in vivo tumor growth and regression in a double transgenic mouse model are highly variable both within and between subjects and that mathematical models can be used to capture the overall characteristics of this variability. In order for these models to become useful tools in the design of optimal therapy strategies and ultimately in clinical practice, a subject-specific modelling strategy is necessary, rather than approaches that are based on the average behavior of a given subject population which could provide erroneous results. PMID:26649886

  8. Involvement of Notch1 in the development of mouse mammary tumors.

    PubMed

    Diévart, A; Beaulieu, N; Jolicoeur, P

    1999-10-28

    The MMTV/neu transgenic (Tg) mice spontaneously develop mammary tumors stochastically after a long latent period, suggesting that the c-neu/erbB2 oncogene is not sufficient for tumor formation. To identify putative collaborator(s) of the c-neu/erbB2, we used the provirus insertional mutagenesis approach with mammary tumors arising in MMTV/neu Tg mice infected with the mouse mammary tumor virus (MMTV). The Notch1 gene was identified as a novel target for MMTV provirus insertional activation. In Notch1-rearranged tumors, the Notch1 gene was interrupted by the MMTV provirus insertion upstream of the exons coding for the TM domain. These insertions led to overexpression of novel 5' truncated approximately 7 kb RNA coding for 280 kDa mutant protein harboring only the Notch1 ectodomain, N(EC)mut. These may be involved in tumor formation. Another consequence of these insertions was the expression of truncated 3' Notch1 transcripts (3.5 - 4.5 kb) and proteins (86 - 110 kDa) deleted of most of the extracellular sequences (Notch1intra). We found that 3' truncated Notch1intra can transform HC11 mouse mammary epithelial cells in vitro. Deletion analysis revealed that the ankyrin-repeats and the domain 1 (aa 1751 - 1821) are required, while a signal peptide, the two conserved cysteines (C1652 and C1685) and the OPA and PEST sequences are dispensable for transformation. These results indicate that the N-terminally truncated Notch1intra protein behaves as an oncogene in this system.

  9. Circulating exosomes potentiate tumor malignant properties in a mouse model of chronic sleep fragmentation

    PubMed Central

    Khalyfa, Abdelnaby; Almendros, Isaac; Gileles-Hillel, Alex; Akbarpour, Mahzad; Trzepizur, Wojciech; Mokhlesi, Babak; Huang, Lei; Andrade, Jorge; Farré, Ramon; Gozal, David

    2016-01-01

    Background Chronic sleep fragmentation (SF) increases cancer aggressiveness in mice. Exosomes exhibit pleiotropic biological functions, including immune regulatory functions, antigen presentation, intracellular communication and inter-cellular transfer of RNA and proteins. We hypothesized that SF-induced alterations in biosynthesis and cargo of plasma exosomes may affect tumor cell properties. Results SF-derived exosomes increased tumor cell proliferation (~13%), migration (~2.3-fold) and extravasation (~10%) when compared to exosomes from SC-exposed mice. Similarly, Pre exosomes from OSA patients significantly enhanced proliferation and migration of human adenocarcinoma cells compared to Post. SF-exosomal cargo revealed 3 discrete differentially expressed miRNAs, and exploration of potential mRNA targets in TC1 tumor cells uncovered 132 differentially expressed genes that encode for multiple cancer-related pathways. Methods Plasma-derived exosomes from C57/B6 mice exposed to 6 wks of SF or sleep control (SC), and from adult human patients with obstructive sleep apnea (OSA) before (Pre) and after adherent treatment for 6 wks (Post) were co-cultured with mouse lung TC1 or human adenocarcinoma tumor cell lines, respectively. Proliferation, migration, invasion, endothelial barrier integrity and extravasation assays of tumor cells were performed. Plasma mouse exosomal miRNAs were profiled with arrays, and transcriptomic assessments of TC1 cells exposed to SF or SC exosomes were conducted to identify gene targets. Conclusions Chronic SF induces alterations in exosomal miRNA cargo that alter the biological properties of TC1 lung tumor cells to enhance their proliferative, migratory and extravasation properties, and similar findings occur in OSA patients, in whom SF is a constitutive component of their sleep disorder. Thus, exosomes could participate, at least in part, in the adverse cancer outcomes observed in OSA. PMID:27419627

  10. The effect of circadian rhythm on pharmacokinetics and metabolism of the Cdk inhibitor, roscovitine, in tumor mice model.

    PubMed

    Sallam, Hatem; El-Serafi, Ahmed T; Filipski, Elisabeth; Terelius, Ylva; Lévi, Francis; Hassan, Moustapha

    2015-06-01

    Roscovitine is a selective Cdk-inhibitor that is under investigation in phase II clinical trials under several conditions, including chemotherapy. Tumor growth inhibition has been previously shown to be affected by the dosing time of roscovitine in a Glasgow osteosarcoma xenograft mouse model. In the current study, we examined the effect of dose timing on the pharmacokinetics, biodistribution and metabolism of this drug in different organs in B6D2F1 mice. The drug was orally administered at resting (ZT3) or activity time of the mice (ZT19) at a dose of 300 mg/kg. Plasma and organs were removed at serial time points (10, 20 and 30 min; 1, 2, 4, 6, 8, 12 and 24 h) after the administration. Roscovitine and its carboxylic metabolite concentrations were analyzed using HPLC-UV, and pharmacokinetic parameters were calculated in different organs. We found that systemic exposure to roscovitine was 38% higher when dosing at ZT3, and elimination half-life was double compared to when dosing at ZT19. Higher organ concentrations expressed as (organ/plasma) ratio were observed when dosing at ZT3 in the kidney (180%), adipose tissue (188%), testis (132%) and lungs (112%), while the liver exposure to roscovitine was 120% higher after dosing at ZT19. The metabolic ratio was approximately 23% higher at ZT19, while the intrinsic clearance (CLint) was approximately 67% higher at ZT19, indicating faster and more efficient metabolism. These differences may be caused by circadian differences in the absorption, distribution, metabolism and excretion processes governing roscovitine disposition in the mice. In this article, we describe for the first time the chronobiodistribution of roscovitine in the mouse and the contribution of the dosing time to the variability of its metabolism. Our results may help in designing better dosing schedules of roscovitine in clinical trials.

  11. Metabolism of 17alpha-ethynylestradiol by intact liver parenchymal cells isolated from mouse and rat.

    PubMed

    Helton, E D; Casciano, D A; Althaus, Z R; Plant, H D

    1977-12-01

    Liver parenchymal cells isolated by perfusion from female C3H/HeN-MTV+Nctr mice and Sprague-Dawley rats were incubated with [6,7-3H] 17alpha-ethynylestradiol (EE2). The incubates were individually fractionated into free steroid (organic phase), steroid conjugates (aqueous), and bound steroids (macromolecular pellet). The rat had significantly less total free radioactive steroid but significantly more total conjugated and irreversibly bound radioactivity than the mouse. However, when the metabolic conversion of EE2 was compared in the rat and the mouse on a cellular basis (metabolic clearance per 10(6) cells), the rat was found to be less efficient than the mouse. The two species were essentially equivalent in their covalent binding when expressed on a per 10(6) cell basis. Purification of the free radiolabeled steriods on LH-20 demonstrated the mouse to have the parent compound and on identifiable 2-OH-EE2 fraction. The rat had EE2 and an identifiable 2-methoxy-EE2 fraction. A major metabolite fraction for both species was very nonpolar and, although not identified, was found to be ethynylated as demonstrated by silver-sulfoethylcellulose chromatography. The conjugate fractions of the mouse were indicative of glucuronide conjugation, whereas the rat had additional conjugate fractions suggestive of sulfoconjugation.

  12. SIRT4 has tumor suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism

    PubMed Central

    Jeong, Seung Min; Xiao, Cuiying; Finley, Lydia W.S; Lahusen, Tyler; Souza, Amanda L.; Pierce, Kerry; Li, Ying-Hua; Wang, Xiaoxu; Laurent, Gaëlle; German, Natalie J.; Xu, Xiaoling; Li, Cuiling; Wang, Rui-Hong; Lee, Jaewon; Csibi, Alfredo; Cerione, Richard; Blenis, John; Clish, Clary B.; Kimmelman, Alec; Deng, Chu-Xia; Haigis, Marcia C.

    2013-01-01

    SUMMARY DNA damage elicits a cellular signaling response that initiates cell cycle arrest and DNA repair. Here we find that DNA damage triggers a critical block in glutamine metabolism, which is required for proper DNA damage responses. This block requires the mitochondrial SIRT4, which is induced by numerous genotoxic agents and represses the metabolism of glutamine into TCA cycle. SIRT4 loss leads to both increased glutamine-dependent proliferation and stress-induced genomic instability, resulting in tumorigenic phenotypes. Moreover, SIRT4 knockout mice spontaneously develop lung tumors. Our data uncover SIRT4 as an important component of the DNA damage response pathway that orchestrates a metabolic block in glutamine metabolism, cell cycle arrest and tumor suppression. PMID:23562301

  13. Metabolism of [U-13C]glucose in Human Brain Tumors In Vivo

    PubMed Central

    Maher, Elizabeth A.; Marin-Valencia, Isaac; Bachoo, Robert M.; Mashimo, Tomoyuki; Raisanen, Jack; Hatanpaa, Kimmo J.; Jindal, Ashish; Jeffrey, F. Mark; Choi, Changho; Madden, Christopher; Mathews, Dana; Pascual, Juan M.; Mickey, Bruce E.; Malloy, Craig R.; DeBerardinis, Ralph J.

    2012-01-01

    Glioblastomas (GBMs) and brain metastases demonstrate avid uptake of 18fluoro-2-deoxyglucose (FDG) by positron emission tomography (PET) and display perturbations of intracellular metabolite pools by 1H magnetic resonance spectroscopy (MRS). These observations suggest that metabolic reprogramming contributes to brain tumor growth in vivo. The Warburg effect, excess metabolism of glucose to lactate in the presence of oxygen, is a hallmark of cancer cells in culture. FDG-positive tumors are assumed to metabolize glucose in a similar manner, with high rates of lactate formation compared to mitochondrial glucose oxidation, but few studies have specifically examined the metabolic fates of glucose in vivo. In particular, the capacity of human brain malignancies to oxidize glucose in the tricarboxylic acid cycle is unknown. Here we studied the metabolism of human brain tumors in situ. [U-13C]glucose was infused during surgical resection, and tumor samples were subsequently subjected to 13C NMR spectroscopy. Analysis of tumor metabolites revealed lactate production, as expected. We also determined that pyruvate dehydrogenase, turnover of the TCA cycle, anaplerosis and de novo glutamine and glycine synthesis contributed significantly to the ultimate disposition of glucose carbon. Surprisingly, less than 50% of the acetyl-CoA pool was derived from blood-borne glucose, suggesting that additional substrates contribute to tumor bioenergetics. This study illustrates a convenient approach that capitalizes on the high information content of 13C NMR spectroscopy and enables the analysis of intermediary metabolism in diverse malignancies growing in their native microenvironment. PMID:22419606

  14. Tumor loci and their interactions on mouse chromosome 19 that contribute to testicular germ cell tumors

    PubMed Central

    2014-01-01

    Background Complex genetic factors underlie testicular germ cell tumor (TGCT) development. One experimental approach to dissect the genetics of TGCT predisposition is to use chromosome substitution strains, such as the 129.MOLF-Chr 19 (M19). M19 carries chromosome (Chr) 19 from the MOLF whereas all other chromosomes are from the 129 strain. 71% of M19 males develop TGCTs in contrast to 5% in 129 strain. To identify and map tumor loci from M19 we generated congenic strains harboring MOLF chromosome 19 segments on 129 strain background and monitored their TGCT incidence. Results We found 3 congenic strains that each harbored tumor promoting loci that had high (14%-32%) whereas 2 other congenics had low (4%) TGCT incidences. To determine how multiple loci influence TGCT development, we created double and triple congenic strains. We found additive interactions were predominant when 2 loci were combined in double congenic strains. Surprisingly, we found an example where 2 loci, both which do not contribute significantly to TGCT, when combined in a double congenic strain resulted in greater than expected TGCT incidence (positive interaction). In an opposite example, when 2 loci with high TGCT incidences were combined, males of the double congenic showed lower than expected TGCT incidence (negative interaction). For the triple congenic strain, depending on the analysis, the overall TGCT incidence could be additive or could also be due to a positive interaction of one region with others. Additionally, we identified loci that promote bilateral tumors or testicular abnormalities. Conclusions The congenic strains each with their characteristic TGCT incidences, laterality of tumors and incidence of testicular abnormalities, are useful for identification of TGCT susceptibility modifier genes that map to Chr 19 and also for studies on the genetic and environmental causes of TGCT development. TGCTs are a consequence of aberrant germ cell and testis development. By defining

  15. Lactate Dehydrogenase C and Energy Metabolism in Mouse Sperm1

    PubMed Central

    Odet, Fanny; Gabel, Scott A.; Williams, Jason; London, Robert E.; Goldberg, Erwin; Eddy, Edward M.

    2011-01-01

    We demonstrated previously that disruption of the germ cell-specific lactate dehydrogenase C gene (Ldhc) led to male infertility due to defects in sperm function, including a rapid decline in sperm ATP levels, a decrease in progressive motility, and a failure to develop hyperactivated motility. We hypothesized that lack of LDHC disrupts glycolysis by feedback inhibition, either by causing a defect in renewal of the NAD+ cofactor essential for activity of glyceraldehyde 3-phosphate dehydrogenase, sperm (GAPDHS), or an accumulation of pyruvate. To test these hypotheses, nuclear magnetic resonance analysis was used to follow the utilization of labeled substrates in real time. We found that in sperm lacking LDHC, glucose consumption was disrupted, but the NAD:NADH ratio and pyruvate levels were unchanged, and pyruvate was rapidly metabolized to lactate. Moreover, the metabolic disorder induced by treatment with the lactate dehydrogenase (LDH) inhibitor sodium oxamate was different from that caused by lack of LDHC. This supported our earlier conclusion that LDHA, an LDH isozyme present in the principal piece of the flagellum, is responsible for the residual LDH activity in sperm lacking LDHC, but suggested that LDHC has an additional role in the maintenance of energy metabolism in sperm. By coimmunoprecipitation coupled with mass spectrometry, we identified 27 proteins associated with LDHC. A majority of these proteins are implicated in ATP synthesis, utilization, transport, and/or sequestration. This led us to hypothesize that in addition to its role in glycolysis, LDHC is part of a complex involved in ATP homeostasis that is disrupted in sperm lacking LDHC. PMID:21565994

  16. Emerging concepts in bioenergetics and cancer research: metabolic flexibility, coupling, symbiosis, switch, oxidative tumors, metabolic remodeling, signaling and bioenergetic therapy.

    PubMed

    Obre, Emilie; Rossignol, Rodrigue

    2015-02-01

    The field of energy metabolism dramatically progressed in the last decade, owing to a large number of cancer studies, as well as fundamental investigations on related transcriptional networks and cellular interactions with the microenvironment. The concept of metabolic flexibility was clarified in studies showing the ability of cancer cells to remodel the biochemical pathways of energy transduction and linked anabolism in response to glucose, glutamine or oxygen deprivation. A clearer understanding of the large-scale bioenergetic impact of C-MYC, MYCN, KRAS and P53 was obtained, along with its modification during the course of tumor development. The metabolic dialog between different types of cancer cells, but also with the stroma, also complexified the understanding of bioenergetics and raised the concepts of metabolic symbiosis and reverse Warburg effect. Signaling studies revealed the role of respiratory chain-derived reactive oxygen species for metabolic remodeling and metastasis development. The discovery of oxidative tumors in human and mice models related to chemoresistance also changed the prevalent view of dysfunctional mitochondria in cancer cells. Likewise, the influence of energy metabolism-derived oncometabolites emerged as a new means of tumor genetic regulation. The knowledge obtained on the multi-site regulation of energy metabolism in tumors was translated to cancer preclinical studies, supported by genetic proof of concept studies targeting LDHA, HK2, PGAM1, or ACLY. Here, we review those different facets of metabolic remodeling in cancer, from its diversity in physiology and pathology, to the search of the genetic determinants, the microenvironmental regulators and pharmacological modulators.

  17. Mineral metabolism in isolated mouse long bones: Opposite effects of microgravity on mineralization and resorption

    NASA Technical Reports Server (NTRS)

    Veldhuijzen, Jean Paul; Vanloon, Jack J. W. A.

    1994-01-01

    An experiment using isolated skeletal tissues under microgravity, is reported. Fetal mouse long bones (metatarsals) were cultured for 4 days in the Biorack facility of Spacelab during the IML-1 (International Microgravity Laboratory) mission of the Space Shuttle. Overall growth was not affected, however glucose consumption was significantly reduced under microgravity. Mineralization of the diaphysis was also strongly reduced under microgravity as compared to the on-board 1 g group. In contrast, mineral resorption by osteoclasts was signficantly increased. These results indicate that these fetal mouse long bones are a sensitive and useful model to further study the cellular mechanisms involved in the changed mineral metabolism of skeletal tissues under microgravity.

  18. Human coxsackie adenovirus receptor (CAR) expression in transgenic mouse prostate tumors enhances adenoviral delivery of genes.

    PubMed

    Bao, Yunhua; Peng, Weidan; Verbitsky, Amy; Chen, Jiping; Wu, Lily; Rauen, Katherine A; Sawicki, Janet A

    2005-09-01

    Transgenic mice that recapitulate the progression of human diseases are potentially useful models for testing the effectiveness of new therapeutic strategies. Their use in pre-clinical testing of adenovirally-delivered gene therapies, however, is limited because of restricted cell surface expression of Coxsackie adenovirus receptor (CAR) in mice. To develop a more suitable transgenic mouse model for testing adenoviral-based gene therapies for prostate cancer, we generated prostate specific antigen/human CAR (PSA/hCAR) transgenic mice in which a chimeric enhancer/promoter sequence of the human PSA gene drives expression of a functional hCAR coding sequence. Expression of an adenovirally-delivered luciferase reporter gene in prostate tumor cells in bigenic mice (PSA/hCAR + TRAMP) was enhanced compared to the level in tumor cells lacking the PSA/hCAR transgene. Breeding PSA/hCAR mice to existing transgenic mouse models for prostate cancer (e.g., TRAMP) results in improved mouse models for testing adenovirally-delivered therapeutic genes. Copyright 2005 Wiley-Liss, Inc.

  19. Hepatocellular carcinoma mouse models: Hepatitis B virus-associated hepatocarcinogenesis and haploinsufficient tumor suppressor genes

    PubMed Central

    Teng, Yuan-Chi; Shen, Zhao-Qing; Kao, Cheng-Heng; Tsai, Ting-Fen

    2016-01-01

    The multifactorial and multistage pathogenesis of hepatocellular carcinoma (HCC) has fascinated a wide spectrum of scientists for decades. While a number of major risk factors have been identified, their mechanistic roles in hepatocarcinogenesis still need to be elucidated. Many tumor suppressor genes (TSGs) have been identified as being involved in HCC. These TSGs can be classified into two groups depending on the situation with respect to allelic mutation/loss in the tumors: the recessive TSGs with two required mutated alleles and the haploinsufficient TSGs with one required mutated allele. Hepatitis B virus (HBV) is one of the most important risk factors associated with HCC. Although mice cannot be infected with HBV due to the narrow host range of HBV and the lack of a proper receptor, one advantage of mouse models for HBV/HCC research is the numerous and powerful genetic tools that help investigate the phenotypic effects of viral proteins and allow the dissection of the dose-dependent action of TSGs. Here, we mainly focus on the application of mouse models in relation to HBV-associated HCC and on TSGs that act either in a recessive or in a haploinsufficient manner. Discoveries obtained using mouse models will have a great impact on HCC translational medicine. PMID:26755878

  20. Carcinogenicity evaluation: comparison of tumor data from dual control groups in the CD-1 mouse.

    PubMed

    Baldrick, Paul; Reeve, Lesley

    2007-06-01

    Current regulatory thinking allows for the use of single control groups for rodent carcinogenicity testing although there has been a trend until recently to use dual control groups. To date, virtually nothing has been published on whether a shift from dual to single control groups will affect the identification of tumorigenic risk potential in these studies. A recent evaluation of dual control carcinogenicity data in the rat (Baldrick, Toxicol Pathol 2005, 33: 283-291) showed that although no major differences in tumor incidences between the control groups were found, some interstudy variation occurred and in cases were a notable difference was seen, the use of 2 control groups, as well as robust, contemporary background data, allowed an easier interpretation of findings in drug-treated groups. In this paper, the results of 10 mouse carcinogenicity studies, performed between 1991 and 2004, with 2 control groups, are presented. As in the rat, interstudy variation was seen and in some cases, the use of dual control groups assisted in the tumor risk assessment. Thus, the continued use of 2 control groups can have a vital role in mouse carcinogenicity studies. The paper also presents an update on survival, on the range and extent of background spontaneous neoplasms and comments on genetic drift in this commonly used mouse strain.

  1. Advanced Imaging Approaches to Characterize Stromal and Metabolic Changes in In Vivo Mammary Tumor Models

    DTIC Science & Technology

    2015-02-01

    Optical imaging , metabolism, tumor microenvironment, NADH, FAD, intravital imaging , collagen, metastasis 3.Overall Project Summary Our preliminary...Keely, KW Eliceiri. Novel Intravital Imaging Approaches to Characterize Collagen Alignment in Defined Mammary Tumor Models. Microscopy and...fixturing for intravital FLIM imaging through a rodent mammary imaging window. Stage is raised to accommodate tall 20xW objective. 14     Figure

  2. Increased expression of nonmuscle myosin IIs is associated with 3MC-induced mouse tumor.

    PubMed

    Saha, Shekhar; Dey, Sumit K; Das, Provas; Jana, Siddhartha S

    2011-11-01

    Administration of the chemical carcinogen, 3-methylcholanthrene (3MC), in the hind leg induces the progressive formation of tumors in mice within 110 days. Previous reports suggest that transformation of muscle cells to atypical cells is one of the causes of tumor formation. Molecular events that lead to transformation of normal cells to atypical cells are not well understood. Here, we investigate the effect of 3MC on the expression of nonmuscle myosin IIs (NM IIs) which are known to be involved in cell migration, division and adhesion. Mass spectroscopy analysis reveals that tumor tissue contains 64.5% NM II-A, 34% II-B and only 1.5% II-C of total NM IIs, whereas these three isoforms of NM IIs are undetectable by mass spectroscopy in normal tissue associated with the tumor (NTAT) from the hind leg. Quantification of heavy chain mRNAs of NM II suggests that tumor tissue contains 25.7-fold and 19.03-fold more of NM II-A and II-B, respectively, compared with NTAT. Unlike NM II-B, which is detected only after tumor formation, II-A is detectable as early as day 7 after a second dose of 3MC. Immunofluorescence confocal microscopy reveals that fibroblast cells which are sparsely distributed in normal tissue are densely populated but of atypical shape in the tumor. These findings suggest that transformation of fibroblasts or non-fibroblast cells to atypical, cancerous cells is associated with increased levels of NM II-A and NM II-B expression in the 3MC-induced tumor mouse model. 3MC-induced transformation is further demonstrated in C2C12 myotubes.

  3. Heterotypic mouse models of canine osteosarcoma recapitulate tumor heterogeneity and biological behavior

    PubMed Central

    Tomiyasu, Hirotaka; Garbe, John R.; Cornax, Ingrid; Amaya, Clarissa; O'Sullivan, M. Gerard; Subramanian, Subbaya

    2016-01-01

    ABSTRACT Osteosarcoma (OS) is a heterogeneous and rare disease with a disproportionate impact because it mainly affects children and adolescents. Lamentably, more than half of patients with OS succumb to metastatic disease. Clarification of the etiology of the disease, development of better strategies to manage progression, and methods to guide personalized treatments are among the unmet health needs for OS patients. Progress in managing the disease has been hindered by the extreme heterogeneity of OS; thus, better models that accurately recapitulate the natural heterogeneity of the disease are needed. For this study, we used cell lines derived from two spontaneous canine OS tumors with distinctly different biological behavior (OS-1 and OS-2) for heterotypic in vivo modeling that recapitulates the heterogeneous biology and behavior of this disease. Both cell lines demonstrated stability of the transcriptome when grown as orthotopic xenografts in athymic nude mice. Consistent with the behavior of the original tumors, OS-2 xenografts grew more rapidly at the primary site and had greater propensity to disseminate to lung and establish microscopic metastasis. Moreover, OS-2 promoted formation of a different tumor-associated stromal environment than OS-1 xenografts. OS-2-derived tumors comprised a larger percentage of the xenograft tumors than OS-1-derived tumors. In addition, a robust pro-inflammatory population dominated the stromal cell infiltrates in OS-2 xenografts, whereas a mesenchymal population with a gene signature reflecting myogenic signaling dominated those in the OS-1 xenografts. Our studies show that canine OS cell lines maintain intrinsic features of the tumors from which they were derived and recapitulate the heterogeneous biology and behavior of bone cancer in mouse models. This system provides a resource to understand essential interactions between tumor cells and the stromal environment that drive the progression and metastatic propensity of OS. PMID

  4. Hephaestin and ceruloplasmin facilitate iron metabolism in the mouse kidney

    PubMed Central

    Jiang, Bo; Liu, Guohao; Zheng, Jiashuo; Chen, Mengxia; Maimaitiming, Zaitunamu; Chen, Min; Liu, Shunli; Jiang, Ruiwei; Fuqua, Brie K.; Dunaief, Joshua L.; Vulpe, Chris D.; Anderson, Gregory J.; Wang, Hongwei; Chen, Huijun

    2016-01-01

    Multicopper ferroxidases (MCFs) play an important role in cellular iron homeostasis. However, the role of MCFs in renal metabolism remains unclear. We used Hephaestin (Heph) and Ceruloplasmin (Cp) single or double (Heph/Cp) knockout (KO) mice to study the roles of MCFs in the kidney. Renal iron levels and the expression of iron metabolism genes were examined. The non-heme iron content both in the renal cortex and medulla of Heph/Cp KO mice was significantly increased. Perls’ Prussian blue staining showed iron accumulation on the apical side of renal tubular cells in Heph/Cp KO mice. A significant increase in ferritin protein expression was also observed in the renal medulla and cortex of Heph/Cp KO mice. Both DMT1 and TfR1 protein expression were significantly decreased in the renal medulla of Heph/Cp KO mice, while the expression of DMT1 protein was significantly increased in the renal cortex of these animals. Significant increase in proteinuria and total urinary iron was observed in the double knockout mice, and this was associated with compromised structural integrity. These results suggest that KO of both the HEPH and CP genes leads to kidney iron deposition and toxicity, MCFs could protect kidney against a damage from iron excess. PMID:27991585

  5. Comparative metabolism of ortho-phenylphenol in mouse, rat and man.

    PubMed

    Bartels, M J; McNett, D A; Timchalk, C; Mendrala, A L; Christenson, W R; Sangha, G K; Brzak, K A; Shabrang, S N

    1998-06-01

    1. Ortho-phenylphenol (OPP) was well absorbed in the male B6C3F1 mouse, with 84 and 98% of the administered radioactivity recovered in the 0-48-h urine of animals administered a single oral dose of 15 or 800 mg/kg respectively. High absorption and rapid elimination were also seen in the female and male F344 rat with 86 and 89% respectively of a single oral dose (27-28 mg/kg) found in the urine in 24 h. OPP was also rapidly eliminated from human volunteers following dermal exposure for 8 h (0.006 mg/kg), with 99% of the absorbed dose in the urine in 48 h. 2. Sulphation of OPP was found to be the major metabolic pathway at low doses in all three species, accounting for 57, 82 and 69% of the urinary radioactivity in the male mouse (15 mg/kg, p.o.), male rat (28 mg/kg, p.o.) and male human volunteers (0.006 mg/kg, dermal). OPP-glucuronide was also present in all species, representing 29, 7 and 4% of the total urinary metabolites in the low dose groups of mouse, rat and human volunteers respectively. 3. Conjugates of 2-phenylhydroquinone (PHQ) in these single-dose studies accounted for 12, 5 and 15% of the dose in mouse, rat and human, respectively. Little or no free OPP was found in any species. No free PHQ or PBQ was found in the mouse, rat or human (LOD = 0.1-0.6%). 4. A novel metabolite, the sulphate conjugate of 2,4'-dihydroxybiphenyl, was identified in rat and man, comprising 3 and 13% of the low dose respectively. 5. Dose-dependent shifts in metabolism were seen in the mouse for conjugation of parent OPP, indicating saturation of the sulphation pathway. Dose-dependent increases in total PHQ were also observed in mouse. 6. This study was initiated to elucidate a mechanistic basis for the difference in carcinogenic potential for OPP between rat and mouse. However, the minor differences seen in the metabolism of OPP in these two species do not appear to account for the differences in urinary bladder toxicity and tumour response between mouse and rat.

  6. Metabolic, ventilatory, and hygric physiology of the gracile mouse opossum (Gracilinanus agilis).

    PubMed

    Cooper, C E; Withers, P C; Cruz-Neto, A P

    2009-01-01

    We present the first complete study of basic laboratory-measured physiological variables (metabolism, thermoregulation, evaporative water loss, and ventilation) for a South American marsupial, the gracile mouse opossum (Gracilinanus agilis). Body temperature (T(b)) was thermolabile below thermoneutrality (T(b) = 33.5 degrees C), but a substantial gradient between T(b) and ambient temperature (T(a)) was sustained even at T(a) = 12 degrees C (T(b) = 30.6 degrees C). Basal metabolic rate of 1.00 mL O2 g(-1) h(-1) at T(a) = 30 degrees C conformed to the general allometric relationship for marsupials, as did wet thermal conductance (5.7 mL O2 g(-1) h(-1) degrees C(-1)). Respiratory rate, tidal volume, and minute volume at thermoneutrality matched metabolic demand such that O2 extraction was 12.4%, and ventilation increased in proportion to metabolic rate at low T(a). Ventilatory accommodation of increased metabolic rate at low T(a) was by an increase in respiratory rate rather than by tidal volume or O2 extraction. Evaporative water loss at the lower limit of thermoneutrality conformed to that of other marsupials. Relative water economy was negative at thermoneutrality but positive below T(a) = 12 degrees C. Interestingly, the Neotropical gracile mouse opossums have a more positive water economy at low T(a) than an Australian arid-zone marsupial, perhaps reflecting seasonal variation in water availability for the mouse opossum. Torpor occurred at low T(a), with spontaneous arousal when T(b) > 20 degrees C. Torpor resulted in absolute energy and water savings but lower relative water economy. We found no evidence that gracile mouse opossums differ physiologically from other marsupials, despite their Neotropical distribution, sympatry with placental mammals, and long period of separation from Australian marsupials.

  7. Characterization of Differential Cocaine Metabolism in Mouse and Rat through Metabolomics-Guided Metabolite Profiling

    PubMed Central

    Yao, Dan; Shi, Xiaolei; Wang, Lei; Gosnell, Blake A.

    2013-01-01

    Rodent animal models have been widely used for studying neurologic and toxicological events associated with cocaine abuse. It is known that the mouse is more susceptible to cocaine-induced hepatotoxicity (CIH) than the rat. However, the causes behind this species-dependent sensitivity to cocaine have not been elucidated. In this study, cocaine metabolism in the mouse and rat was characterized through LC-MS-based metabolomic analysis of urine samples and were further compared through calculating the relative abundance of individual cocaine metabolites. The results showed that the levels of benzoylecgonine, a major cocaine metabolite from ester hydrolysis, were comparable in the urine from the mice and rats treated with the same dose of cocaine. However, the levels of the cocaine metabolites from oxidative metabolism, such as N-hydroxybenzoylnorecgonine and hydroxybenzoylecgonine, differed dramatically between the two species, indicating species-dependent cocaine metabolism. Subsequent structural analysis through accurate mass analysis and LC-MS/MS fragmentation revealed that N-oxidation reactions, including N-demethylation and N-hydroxylation, are preferred metabolic routes in the mouse, while extensive aryl hydroxylation reactions occur in the rat. Through stable isotope tracing and in vitro enzyme reactions, a mouse-specific α-glucoside of N-hydroxybenzoylnorecgonine and a group of aryl hydroxy glucuronides high in the rat were identified and structurally elucidated. The differences in the in vivo oxidative metabolism of cocaine between the two rodent species were confirmed by the in vitro microsomal incubations. Chemical inhibition of P450 enzymes further revealed that different P450-mediated oxidative reactions in the ecgonine and benzoic acid moieties of cocaine contribute to the species-dependent biotransformation of cocaine. PMID:23034697

  8. Microdistribution of specific rat monoclonal antibodies to mouse tissues and human tumor xenografts.

    PubMed

    Kennel, S J; Falcioni, R; Wesley, J W

    1991-03-01

    Detailed evaluations of the microdistribution of 125I-labeled monoclonal antibodies (MoAbs) to normal tissue antigens were conducted in BALB/c mice. MoAb 273-34A, which binds to a target molecule on the lumenal surface of lung endothelial cells, localizes quickly and efficiently throughout the lung vasculature. MoAb 133-13A, which binds to an antigen on macrophage-like cells expressed in nearly equal amounts in lung, liver, and spleen, localizes most efficiently to spleen and less well to liver and lung. The microdistribution of MoAb 133-13A in liver and spleen is consistent with the antigen distribution in these organs, but in the lung a more diffuse microdistribution is observed, indicating poor access of MoAb to the antigen-positive alveolar macrophages. These findings are consistent with the hypothesis that tight endothelium (lung) represents a significant barrier to extravasation of MoAb into tissue while fenestrated (spleen) and sinusoidal (liver) endothelium are more easily penetrated. In human tumor bearing nu/nu mice, the microdistribution of MoAb to the beta 4 and alpha 6 subunits of integrin was studied. These MoAbs do not cross-react with murine integrins and thus are tumor-specific in the nu/nu mouse model. Localization of 125I-labeled MoAb 450-11A, which reacts with an intercellular domain of beta 4 integrin, is very weak and diffuse. All MoAbs to extracellular domains (mouse 450-9D, 450-30A1, and rat 439-9B) localize well to the tumor. Microdistribution of these MoAbs in the 3 different tumors is nonuniform with heavy distribution near the blood vessels, whereas antigen distribution as determined by immunoperoxidase shows a much more uniform pattern throughout the tumors. In experiments with 125I-labeled MoAb 439-9B F(ab')2, the nonuniform pattern of distribution was not changed. Gross and microdistribution of different doses of 125I-labeled MoAb 439-9B were studied. The percent of injected dose per g of MoAb in the tumor at 48 h did not vary

  9. Mutant IDH1 Disrupts the Mouse Subventricular Zone and Alters Brain Tumor Progression.

    PubMed

    Pirozzi, Christopher J; Carpenter, Austin B; Waitkus, Matthew S; Wang, Catherine Y; Zhu, Huishan; Hansen, Landon J; Chen, Lee H; Greer, Paula K; Feng, Jie; Wang, Yu; Bock, Cheryl B; Fan, Ping; Spasojevic, Ivan; McLendon, Roger E; Bigner, Darell D; He, Yiping; Yan, Hai

    2017-02-01

    IDH1 mutations occur in the majority of low-grade gliomas and lead to the production of the oncometabolite, D-2-hydroxyglutarate (D-2HG). To understand the effects of tumor-associated mutant IDH1 (IDH1-R132H) on both the neural stem cell (NSC) population and brain tumorigenesis, genetically faithful cell lines and mouse model systems were generated. Here, it is reported that mouse NSCs expressing Idh1-R132H displayed reduced proliferation due to p53-mediated cell cycle arrest as well as a decreased ability to undergo neuronal differentiation. In vivo, Idh1-R132H expression reduced proliferation of cells within the germinal zone of the subventricular zone (SVZ). The NSCs within this area were dispersed and disorganized in mutant animals, suggesting that Idh1-R132H perturbed the NSCs and the microenvironment from which gliomas arise. Additionally, tumor-bearing animals expressing mutant Idh1 displayed a prolonged survival and also overexpressed Olig2, features consistent with IDH1-mutated human gliomas. These data indicate that mutant Idh1 disrupts the NSC microenvironment and the candidate cell of origin for glioma; thus, altering the progression of tumorigenesis. Additionally, this study provides a mutant Idh1 brain tumor model that genetically recapitulates human disease, laying the foundation for future investigations on mutant IDH1-mediated brain tumorigenesis and targeted therapy.

  10. The role of neutralizing antibodies for mouse mammary tumor virus transmission and mammary cancer development

    NASA Astrophysics Data System (ADS)

    Finke, Daniela; Luther, Sanjiv A.; Acha-Orbea, Hans

    2003-01-01

    Mouse mammary tumor virus (MMTV) infection establishes chronic germinal centers and a lifelong neutralizing Ab response. We show that removal of the draining lymph node after establishment of the germinal center reaction led to complete loss of neutralizing Abs despite comparable infection levels in peripheral lymphocytes. Importantly, in the absence of neutralization, only the exocrine organs mammary gland, salivary gland, pancreas, and skin showed strikingly increased infection, resulting in accelerated mammary tumor development. Induction of stronger neutralization did not influence chronic infection levels of peripheral lymphoid organs but strongly inhibited mammary gland infection and virus transmission to the next generation. Taken together, we provide evidence that a tight equilibrium in virus neutralization allows limited infection of exocrine organs and controls cancer development in susceptible mouse strains. These experiments show that a strong neutralizing Ab response induced after infection is not able to control lymphoid MMTV infection. Strong neutralization, however, is capable of blocking amplification of mammary gland infection, tumor development, and virus transmission to the next generation. The results also indicate a role of neutralization in natural resistance to MMTV infection.

  11. Study of protein modifications induced by phorbol ester tumor promoters in mouse skin

    SciTech Connect

    Nelson, K.G.

    1981-08-01

    The purpose of this study was to determine if the phorbol ester tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) induced any specific changes in mouse epidermal proteins using the high resolution technique of two-dimensional electrophoresis. To accomplish this goal of determining the specificity and possibly the stage in promotion with which these protein changes were associated, epidermal proteins were analyzed (1) after treatment of adult mouse epidermis with several weakly promoting hyperplasiogenic agents, (2) following treatment with TPA in combination with various inhibitors of tumor promotion, (3) in basal kerotinocytes isolated from adult epidermis following treatment with TPA or several weakly promoting agents, and (4) during an initiation-promotion experiment. Evidence was found which indicated that the potent tumor promoter TPA as well as the weakly promoting hyperplasiogenic agents, mezerein, ethylphenylpropiolate (EPP), and mechanical abrasion, induced similar modifications of epidermal proteins, particularly among the keratins. These keratin modifications progressed with time following treatment resulting in a keratin pattern which resembled that of newborn epidermis.

  12. Investigating the role of macrophages in tumor formation using a MaFIA mouse model.

    PubMed

    Clifford, A B; Elnaggar, A M; Robison, R A; O'Neill, K

    2013-08-01

    Tumor-associated macrophages (TAMs) interact with tumors in their development, growth and metastatic activities. Using a transgenic mouse model that allows for the selective depletion of macrophages we were able to access the macrophage's potential to facilitate metastasis. In the MaFIA (Macrophage Fas-Induced Apoptosis) mouse, transgene-expressing cells of the myeloid lineage undergo death by apoptosis in the presence of the drug AP20187. Enhanced green fluorescent protein (EGFP) was fused to the suicide gene to allow identification of transgene-expressing cells. Tumor induction was accomplished by subdermal and intravenous injections of B16-F10 melanoma cells. Metastasis in mice with depleted macrophages was compared to metastasis in normal control mice. The lungs and kidneys were examined for metastatic cells. The macrophage-depleted groups showed significantly less metastasis (P>0.001) compared to the control groups. We theorize that macrophages may aid the metastatic process by fusing with melanoma cells. Using appropriate cell markers and fluorescence-activated cell sorting, we were able to detect a small population of double-positive cells. We confirmed cell fusion by microscopic analysis, visualizing the cell's morphology by both immunohistochemistry and immunofluorescence. The presence of double-positive cells suggests macrophage/cancer cell fusion could be a possible mechanism for metastasis.

  13. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system

    PubMed Central

    Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim

    2013-01-01

    Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. PMID:23834399

  14. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system.

    PubMed

    Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim

    2013-09-01

    Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. © 2013 Anatomical Society.

  15. Acute Inflammation induced by the biopsy of mouse mammary tumors promotes the development of metastasis

    PubMed Central

    Hobson, Julia; Gummadidala, Phani; Silverstrim, Brian; Grier, Dore; Bunn, Janice; James, Ted; Rincon, Mercedes

    2014-01-01

    Development of metastasis in peripheral tissues is a major problem in the fight to cure breast cancer. Although it is becoming evident that chronic inflammation can contribute to tumor progression and metastasis, the effect of acute inflammation in primary tumor is less known. Using mouse models for breast cancer here we show that biopsy of mammary tumors increases the frequency of lung metastases. This effect is associated with the recruitment of inflammatory cells to the lung and elevated levels of certain cytokines such as IL-6 in the lung airways. Antiinflammatory treatment prior to and after the biopsy reduces the development of metastases triggered by the biopsy. In addition, while lack of IL-6 does not affect primary tumor development, it protects from increasing number of metastases upon biopsy. Thus, our studies show that in addition to chronic inflammation, acute immune response caused by invasive procedures in the primary tumor may cause an increased risk on peripheral metastases, but the risk could be decreased by anti-inflammatory treatments. PMID:23715631

  16. Mouse Handling Limits the Impact of Stress on Metabolic Endpoints

    PubMed Central

    Ghosal, Sriparna; Nunley, Amanda; Mahbod, Parinaz; Lewis, Alfor G.; Smith, Eric P.; Tong, Jenny; D’Alessio, David A.; Herman, James P.

    2015-01-01

    Studies focused on end-points that are confounded by stress are best performed under minimally stressful conditions. The objective of this study was to demonstrate the impact of handling designed to reduce animal stress on measurements of glucose tolerance. A cohort of mice (CD1.C57BL/6) naïve to any specific handling were subjected to either a previously described “cup” handling method, or a “tail-picked” method in which the animals were picked up by the tail (as is common for metabolic studies). Following training, an elevated plus maze (EPM) test was performed followed by measurement of blood glucose and plasma corticosterone. A second cohort (CD1.C57BL/6) was rendered obese by exposure to a high fat diet, handled with either the tail-picked or cup method and subjected to an intraperitoneal glucose tolerance test. A third cohort of C57BL/6 mice was exposed to a cup regimen that included a component of massage and was subjected to tests of anxiety-like behavior, glucose homeostasis, and corticosterone secretion. We found that the cup mice showed reduced anxiety-like behaviors in the EPM coupled with a reduction in blood glucose levels compared to mice handled by the tail-picked method. Additionally, cup mice on the high fat diet exhibited improved glucose tolerance compared to tail-picked controls. Finally, we found that the cup/massage group showed lower glucose levels following an overnight fast, and decreased anxiety-like behaviors associated with lower stress-induced plasma corticosterone concentration compared to tail-picked controls. These data demonstrate that application of handling methods that reduce anxiety-like behaviors in mice mitigates the confounding contribution of stress to interpretation of metabolic endpoints (such as glucose tolerance). PMID:26079207

  17. Mouse handling limits the impact of stress on metabolic endpoints.

    PubMed

    Ghosal, Sriparna; Nunley, Amanda; Mahbod, Parinaz; Lewis, Alfor G; Smith, Eric P; Tong, Jenny; D'Alessio, David A; Herman, James P

    2015-10-15

    Studies focused on end-points that are confounded by stress are best performed under minimally stressful conditions. The objective of this study was to demonstrate the impact of handling designed to reduce animal stress on measurements of glucose tolerance. A cohort of mice (CD1.C57BL/6) naïve to any specific handling was subjected to either a previously described "cup" handling method, or a "tail-picked" method in which the animals were picked up by the tail (as is common for metabolic studies). Following training, an elevated plus maze (EPM) test was performed followed by measurement of blood glucose and plasma corticosterone. A second cohort (CD1.C57BL/6) was rendered obese by exposure to a high fat diet, handled with either the tail-picked or cup method and subjected to an intraperitoneal glucose tolerance test. A third cohort of C57BL/6 mice was exposed to a cup regimen that included a component of massage and was subjected to tests of anxiety-like behavior, glucose homeostasis, and corticosterone secretion. We found that the cup mice showed reduced anxiety-like behaviors in the EPM coupled with a reduction in blood glucose levels compared to mice handled by the tail-picked method. Additionally, cup mice on the high fat diet exhibited improved glucose tolerance compared to tail-picked controls. Finally, we found that the cup/massage group showed lower glucose levels following an overnight fast, and decreased anxiety-like behaviors associated with lower stress-induced plasma corticosterone concentration compared to tail-picked controls. These data demonstrate that application of handling methods that reduce anxiety-like behaviors in mice mitigates the confounding contribution of stress to interpretation of metabolic endpoints (such as glucose tolerance). Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Kyotorphin transport and metabolism in rat and mouse neonatal astrocytes.

    PubMed

    Xiang, Jianming; Jiang, Huidi; Hu, Yongjun; Smith, David E; Keep, Richard F

    2010-08-06

    Neuropeptide inactivation is generally thought to occur via peptidase-mediated degradation. However, a recent study found increased analgesia after L-kyotorphin (L-Tyr-L-Arg; L-KTP) administration in mice lacking an oligopeptide transporter, PEPT2. The current study examines the role of PEPT2 in L-KTP uptake by astrocytes and compares it to astrocytic L-KTP degradation. L-[(3)H]KTP uptake was measured in primary cultures of neonatal astrocytes from rats and from Pept2(+/+) and Pept2(-/-) mice. Uptake was further characterized using potential inhibitors. L-[(3)H]KTP degradation was examined in primary astrocyte cultures from Pept2(-/-) mice by following the formation of L-[(3)H]tyrosine. The uptake of L-[(3)H]KTP in both rat and Pept2(+/+) mouse neonatal astrocytes was inhibited by known PEPT2 inhibitors. L-[(3)H]KTP uptake was also reduced in Pept2(-/-) astrocytes as compared to those from Pept2(+/+) mice. Kinetic analysis indicated the presence of a high affinity (K(m) approximately 50 microM) transporter for L-[(3)H]KTP, identified as Pept2, and a low affinity transporter (K(m) approximately 3-4 mM), inhibited by amastatin, bestatin and tyrosine. Astrocytes also degraded L-KTP through a low affinity peptidase (K(m) approximately 2 mM). Astrocytic clearance of L-KTP occurs via both peptidase activity and transport. These processes occur at similar rates and may be linked. This supports the contention that oligopeptide transport may have an impact on the extracellular clearance (and potentially activity) of certain neuropeptides. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Modeling alveolar soft part sarcomagenesis in the mouse: a role for lactate in the tumor microenvironment

    PubMed Central

    Goodwin, Matthew L.; Jin, Huifeng; Straessler, Krystal; Smith-Fry, Kyllie; Zhu, Ju-Fen; Monument, Michael J.; Grossmann, Allie; Randall, R. Lor; Capecchi, Mario R.; Jones, Kevin B.

    2014-01-01

    Summary Alveolar soft part sarcoma (ASPS), a deadly soft tissue malignancy with a predilection for adolescents and young adults, associates consistently with t(X;17) translocations that generate the fusion gene ASPSCR1-TFE3. We proved the oncogenic capacity of this fusion gene by driving sarcomagenesis in mice from conditional ASPSCR1-TFE3 expression. The completely penetrant tumors were indistinguishable from human ASPS by histology and gene expression. They formed preferentially in the anatomic environment highest in lactate--the cranial vault--, expressed high levels of lactate importers, harbored abundant mitochondria, metabolized lactate as a metabolic substrate and responded to the administration of exogenous lactate with tumor cell proliferation and angiogenesis. These data demonstrate lactate’s role as a driver of alveolar soft part sarcomagenesis. PMID:25453902

  20. Patients with Old Age or Proximal Tumors Benefit from Metabolic Syndrome in Early Stage Gastric Cancer

    PubMed Central

    Zhang, Ying; Liu, Jian-xin; Yu, Hong-mei; Liang, Wei-ping; Jin, Ying; Ren, Chao; He, Ming-ming; Chen, Wei-wei; Luo, Hui-yan; Wang, Zhi-qiang; Zhang, Dong-sheng; Wang, Feng-hua; Li, Yu-hong; Xu, Rui-hua

    2014-01-01

    Background Metabolic syndrome and/or its components have been demonstrated to be risk factors for several cancers. They are also found to influence survival in breast, colon and prostate cancer, but the prognostic value of metabolic syndrome in gastric cancer has not been investigated. Methods Clinical data and pre-treatment information of metabolic syndrome of 587 patients diagnosed with early stage gastric cancer were retrospectively collected. The associations of metabolic syndrome and/or its components with clinical characteristics and overall survival in early stage gastric cancer were analyzed. Results Metabolic syndrome was identified to be associated with a higher tumor cell differentiation (P = 0.036). Metabolic syndrome was also demonstrated to be a significant and independent predictor for better survival in patients aged >50 years old (P = 0.009 in multivariate analysis) or patients with proximal gastric cancer (P = 0.047 in multivariate analysis). No association was found between single metabolic syndrome component and overall survival in early stage gastric cancer. In addition, patients with hypertension might have a trend of better survival through a good control of blood pressure (P = 0.052 in univariate analysis). Conclusions Metabolic syndrome was associated with a better tumor cell differentiation in patients with early stage gastric cancer. Moreover, metabolic syndrome was a significant and independent predictor for better survival in patients with old age or proximal tumors. PMID:24599168

  1. Patients with old age or proximal tumors benefit from metabolic syndrome in early stage gastric cancer.

    PubMed

    Wei, Xiao-li; Qiu, Miao-zhen; Lin, Huan-xin; Zhang, Ying; Liu, Jian-xin; Yu, Hong-mei; Liang, Wei-ping; Jin, Ying; Ren, Chao; He, Ming-ming; Chen, Wei-wei; Luo, Hui-yan; Wang, Zhi-qiang; Zhang, Dong-sheng; Wang, Feng-hua; Li, Yu-hong; Xu, Rui-hua

    2014-01-01

    Metabolic syndrome and/or its components have been demonstrated to be risk factors for several cancers. They are also found to influence survival in breast, colon and prostate cancer, but the prognostic value of metabolic syndrome in gastric cancer has not been investigated. Clinical data and pre-treatment information of metabolic syndrome of 587 patients diagnosed with early stage gastric cancer were retrospectively collected. The associations of metabolic syndrome and/or its components with clinical characteristics and overall survival in early stage gastric cancer were analyzed. Metabolic syndrome was identified to be associated with a higher tumor cell differentiation (P=0.036). Metabolic syndrome was also demonstrated to be a significant and independent predictor for better survival in patients aged >50 years old (P=0.009 in multivariate analysis) or patients with proximal gastric cancer (P=0.047 in multivariate analysis). No association was found between single metabolic syndrome component and overall survival in early stage gastric cancer. In addition, patients with hypertension might have a trend of better survival through a good control of blood pressure (P=0.052 in univariate analysis). Metabolic syndrome was associated with a better tumor cell differentiation in patients with early stage gastric cancer. Moreover, metabolic syndrome was a significant and independent predictor for better survival in patients with old age or proximal tumors.

  2. IFN-γ Rα is a key determinant of CD8+ T cell-mediated tumor elimination or tumor escape and relapse in FVB mouse.

    PubMed

    Kmieciak, Maciej; Payne, Kyle K; Wang, Xiang-Yang; Manjili, Masoud H

    2013-01-01

    During the past decade, the dual function of the immune system in tumor inhibition and tumor progression has become appreciated. We have previously reported that neu-specific T cells can induce rejection of neu positive mouse mammary carcinoma (MMC) and also facilitate tumor relapse by inducing neu antigen loss and epithelial to mesenchymal transition (EMT). Here, we sought to determine the mechanism by which CD8+ T cells either eliminate the tumor, or maintain tumor cells in a dormant state and eventually facilitate tumor relapse. We show that tumor cells that express high levels of IFN-γ Rα are eliminated by CD8+ T cells. In contrast, tumor cells that express low levels of IFN-γ Rα do not die but remain dormant and quiescent in the presence of IFN-γ producing CD8+ T cells until they hide themselves from the adaptive immune system by losing the tumor antigen, neu. Relapsed tumor cells show CD44+CD24- phenotype with higher rates of tumorigenesis, in vivo. Acquisition of CD44+CD24- phenotype in relapsed tumors was not solely due to Darwinian selection. Our data suggest that tumor cells control the outcome of tumor immune surveillance through modulation of the expression of    IFN-γ Rα.

  3. Enzymological analysis of the tumor suppressor A-C1 reveals a novel group of phospholipid-metabolizing enzymes.

    PubMed

    Shinohara, Naoki; Uyama, Toru; Jin, Xing-Hua; Tsuboi, Kazuhito; Tonai, Takeharu; Houchi, Hitoshi; Ueda, Natsuo

    2011-11-01

    A-C1 protein is the product of a tumor suppressor gene negatively regulating the oncogene Ras and belongs to the HRASLS (HRAS-like suppressor) subfamily. We recently found that four members of this subfamily expressed in human tissues function as phospholipid-metabolizing enzymes. Here we examined a possible enzyme activity of A-C1. The homogenates of COS-7 cells overexpressing recombinant A-C1s from human, mouse, and rat showed a phospholipase A½ (PLA½) activity toward phosphatidylcholine (PC). This finding was confirmed with the purified A-C1. The activity was Ca²⁺ independent, and dithiothreitol and Nonidet P-40 were indispensable for full activity. Phosphatidylethanolamine (PE) was also a substrate and the phospholipase A₁ (PLA₁) activity was dominant over the PLA₂ activity. Furthermore, the protein exhibited acyltransferase activities transferring an acyl group of PCs to the amino group of PEs and the hydroxyl group of lyso PCs. As for tissue distribution in human, mouse, and rat, A-C1 mRNA was abundantly expressed in testis, skeletal muscle, brain, and heart. These results demonstrate that A-C1 is a novel phospholipid-metabolizing enzyme. Moreover, the fact that all five members of the HRASLS subfamily, including A-C1, show similar catalytic properties strongly suggests that these proteins constitute a new class of enzymes showing PLA½ and acyltransferase activities.

  4. Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T

    NASA Astrophysics Data System (ADS)

    Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.

    2017-02-01

    The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.

  5. Regulatory T cells as suppressors of anti-tumor immunity: Role of metabolism.

    PubMed

    De Rosa, Veronica; Di Rella, Francesca; Di Giacomo, Antonio; Matarese, Giuseppe

    2017-06-01

    Novel concepts in immunometabolism support the hypothesis that glucose consumption is also used to modulate anti-tumor immune responses, favoring growth and expansion of specific cellular subsets defined in the past as suppressor T cells and currently reborn as regulatory T (Treg) cells. During the 1920s, Otto Warburg and colleagues observed that tumors consumed high amounts of glucose compared to normal tissues, even in the presence of oxygen and completely functioning mitochondria. However, the role of the Warburg Effect is still not completely understood, particularly in the context of an ongoing anti-tumor immune response. Current experimental evidence suggests that tumor-derived metabolic restrictions can drive T cell hyporesponsiveness and immune tolerance. For example, several glycolytic enzymes, deregulated in cancer, contribute to tumor progression independently from their canonical metabolic activity. Indeed, they can control apoptosis, gene expression and activation of specific intracellular pathways, thus suggesting a direct link between metabolic switches and pro-tumorigenic transcriptional programs. Focus of this review is to define the specific metabolic pathways controlling Treg cell immunobiology in the context of anti-tumor immunity and tumor progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Metabolic shifts induced by human H460 cells in tumor-bearing mice.

    PubMed

    Liu, Linsheng; Wang, Yaqiong; Zheng, Tian; Cao, Bei; Li, Mengjie; Shi, Jian; Aa, Nan; Wang, Xinwen; Zhao, Chunyan; Aa, Jiye; Wang, Guangji

    2016-03-01

    Tumor markers are most popularly used in diagnosis of various cancers clinically. However, the confounding factors of individual background diversities, such as genetics, food preferences, living styles, physical exercises, etc., greatly challenge the identification of tumor markers. Study of the metabolic impact of inoculated tumors on model animals can facilitate the identification of metabolomic markers relevant to tumor insult. In this study, serum metabolites from nude mice (n = 14) inoculated with human H460 cells (human nonsmall cell lung carcinoma) were profiled using gas chromatography time-of-flight mass spectrometry. The mice with inoculated tumors showed an obviously different metabolic pattern from the control; identification of the discriminatory metabolites suggested the metabolic perturbation of free fatty acids, amino acids, glycolysis and tricarboxylic acid (TCA) cycle turnover. The significantly decreased TCA intermediates, free fatty acids, 3-hydroxybutyric acid and fluctuating amino acids (t-test, p < 0.05) in serum of tumor-bearing mice characterized the metabolic impact of local inoculated H460 tumor cells on the whole system. This indicates that they are candidate metabolomic markers for translational study of lung cancer, clinically.

  7. Effect of chronic intermittent hypoxia on theophylline metabolism in mouse liver.

    PubMed

    Chen, Xiao-yang; Zeng, Yi-ming; Zhang, Yi-xiang; Wang, Wan-yu; Wu, Run-hua

    2013-01-01

    Chronic intermittent hypoxia (CIH) has been associated with abnormalities in the liver, which is the most important organ for drug metabolism. This study aimed to investigate the effect of CIH on theophylline metabolism in mouse liver. Eight C57BL/6J mice were exposed to CIH for 12 weeks. Eight C57BL/6J mice were exposed to room air as a control group. Serum levels of alanine aminotransferase and aspartate aminotransferase were measured. Liver histology was observed by light and electron microscopy. Total hepatic cytochrome P450 concentration was measured. Hepatocytes were isolated and incubated with 15 mg/ml theophylline for four hours. After incubation, the theophylline concentration in the supernatant was measured and the theophylline metabolism rate was calculated. CIH did not affect the serum transaminase levels. Livers from mice exposed to CIH showed hepatocellular edema, and liver cells had fuzzy rough endoplasmic reticulum under the electron microscope. The theophylline metabolism rate was significantly inhibited by CIH compared with controls; (16.60 ± 2.43)% vs. (21.58 ± 4.52)% (P = 0.02). The total liver cytochrome P450 concentration in the CIH group was significantly lower than in the control group; (0.83 ± 0.08) vs. (1.13 ± 0.21) mol/mg microsomal protein (P = 0.004). CIH decreases theophylline metabolism by mouse hepatocytes, which may correlate with the downregulation of cytochrome P450 expression by CIH.

  8. Transgenic Mouse Models Resistant to Diet-Induced Metabolic Disease: Is Energy Balance the Key?

    PubMed Central

    Gilliam, Laura A. A.

    2012-01-01

    The prevalence and economic burden of obesity and type 2 diabetes is a driving force for the discovery of molecular targets to improve insulin sensitivity and glycemic control. Here, we review several transgenic mouse models that identify promising targets, ranging from proteins involved in the insulin signaling pathway, alterations of genes affecting energy metabolism, and transcriptional metabolic regulators. Despite the diverse endpoints in each model, a common thread that emerges is the necessity for maintenance of energy balance, suggesting pharmacotherapy must target the development of drugs that decrease energy intake, accelerate energy expenditure in a well controlled manner, or augment natural compensatory responses to positive energy balance. PMID:22700428

  9. Transgenic mouse models resistant to diet-induced metabolic disease: is energy balance the key?

    PubMed

    Gilliam, Laura A A; Neufer, P Darrell

    2012-09-01

    The prevalence and economic burden of obesity and type 2 diabetes is a driving force for the discovery of molecular targets to improve insulin sensitivity and glycemic control. Here, we review several transgenic mouse models that identify promising targets, ranging from proteins involved in the insulin signaling pathway, alterations of genes affecting energy metabolism, and transcriptional metabolic regulators. Despite the diverse endpoints in each model, a common thread that emerges is the necessity for maintenance of energy balance, suggesting pharmacotherapy must target the development of drugs that decrease energy intake, accelerate energy expenditure in a well controlled manner, or augment natural compensatory responses to positive energy balance.

  10. KRAS Genotype Correlates with Proteasome Inhibitor Ixazomib Activity in Preclinical In Vivo Models of Colon and Non-Small Cell Lung Cancer: Potential Role of Tumor Metabolism

    PubMed Central

    Chattopadhyay, Nibedita; Berger, Allison J.; Koenig, Erik; Bannerman, Bret; Garnsey, James; Bernard, Hugues; Hales, Paul; Maldonado Lopez, Angel; Yang, Yu; Donelan, Jill; Jordan, Kristen; Tirrell, Stephen; Stringer, Bradley; Xia, Cindy; Hather, Greg; Galvin, Katherine; Manfredi, Mark; Rhodes, Nelson; Amidon, Ben

    2015-01-01

    In non-clinical studies, the proteasome inhibitor ixazomib inhibits cell growth in a broad panel of solid tumor cell lines in vitro. In contrast, antitumor activity in xenograft tumors is model-dependent, with some solid tumors showing no response to ixazomib. In this study we examined factors responsible for ixazomib sensitivity or resistance using mouse xenograft models. A survey of 14 non-small cell lung cancer (NSCLC) and 6 colon xenografts showed a striking relationship between ixazomib activity and KRAS genotype; tumors with wild-type (WT) KRAS were more sensitive to ixazomib than tumors harboring KRAS activating mutations. To confirm the association between KRAS genotype and ixazomib sensitivity, we used SW48 isogenic colon cancer cell lines. Either KRAS-G13D or KRAS-G12V mutations were introduced into KRAS-WT SW48 cells to generate cells that stably express activated KRAS. SW48 KRAS WT tumors, but neither SW48-KRAS-G13D tumors nor SW48-KRAS-G12V tumors, were sensitive to ixazomib in vivo. Since activated KRAS is known to be associated with metabolic reprogramming, we compared metabolite profiling of SW48-WT and SW48-KRAS-G13D tumors treated with or without ixazomib. Prior to treatment there were significant metabolic differences between SW48 WT and SW48-KRAS-G13D tumors, reflecting higher oxidative stress and glucose utilization in the KRAS-G13D tumors. Ixazomib treatment resulted in significant metabolic regulation, and some of these changes were specific to KRAS WT tumors. Depletion of free amino acid pools and activation of GCN2-eIF2α-pathways were observed both in tumor types. However, changes in lipid beta oxidation were observed in only the KRAS WT tumors. The non-clinical data presented here show a correlation between KRAS genotype and ixazomib sensitivity in NSCLC and colon xenografts and provide new evidence of regulation of key metabolic pathways by proteasome inhibition. PMID:26709701

  11. HDAC Activity Is Required for Efficient Core Promoter Function at the Mouse Mammary Tumor Virus Promoter

    PubMed Central

    Lee, Sang C.; Magklara, Angeliki; Smith, Catharine L.

    2011-01-01

    Histone deacetylases (HDACs) have been shown to be required for basal or inducible transcription at a variety of genes by poorly understood mechanisms. We demonstrated previously that HDAC inhibition rapidly repressed transcription from the mouse mammary tumor virus (MMTV) promoter by a mechanism that does not require the binding of upstream transcription factors. In the current study, we find that HDACs work through the core promoter sequences of MMTV as well as those of several cellular genes to facilitate transcriptional initiation through deacetylation of nonhistone proteins. PMID:21253530

  12. In vivo and in vitro radiosensitivities ofnewly established mouse ascites tumors

    SciTech Connect

    Okamoto, M.; Tsuboi, A.; Tsuchiya, T.

    1981-03-01

    The response of two newly established mouse mammary tumors to x irradiation in vitro and in vivo was studied by colony-forming assay in soft agar. Cells irradiated in vivo were more resistant than those irradiated in vitro. The D/sub 0/ values for in vitro irradiation were 112 rad at both exponential and stationary phases, while those for in vivo irradiation were 303 rad at exponential phase and 556 rad at stationary phase. This increase in D/sub 0/ value, which is greater than the OER, suggests that radiosensitivity in vivo cannot be explained only by hypoxia.

  13. Topical application of ochratoxin A causes DNA damage and tumor initiation in mouse skin.

    PubMed

    Kumar, Rahul; Ansari, Kausar M; Chaudhari, Bhushan P; Dhawan, Alok; Dwivedi, Premendra D; Jain, Swatantra K; Das, Mukul

    2012-01-01

    Skin cancer is one of the most common forms of cancer and 2-3 million new cases are being diagnosed globally each year. Along with UV rays, environmental pollutants/chemicals including mycotoxins, contaminants of various foods and feed stuffs, could be one of the aetiological factors of skin cancer. In the present study, we evaluated the DNA damaging potential and dermal carcinogenicity of a mycotoxin, ochratoxin A (OTA), with the rationale that dermal exposure to OTA in workers may occur during their involvement in pre and post harvest stages of agriculture. A single topical application of OTA (20-80 µg/mouse) resulted in significant DNA damage along with elevated γ-H2AX level in skin. Alteration in oxidative stress markers such as lipid peroxidation, protein carbonyl, glutathione content and antioxidant enzymes was observed in a dose (20-80 µg/mouse) and time-dependent (12-72 h) manner. The oxidative stress was further emphasized by the suppression of Nrf2 translocation to nucleus following a single topical application of OTA (80 µg/mouse) after 24 h. OTA (80 µg/mouse) application for 12-72 h caused significant enhancement in- (a) reactive oxygen species generation, (b) activation of ERK1/2, p38 and JNK MAPKs, (c) cell cycle arrest at G0/G1 phase (37-67%), (d) induction of apoptosis (2.0-11.0 fold), (e) expression of p53, p21/waf1, (f) Bax/Bcl-2 ratio, (g) cytochrome c level, (h) activities of caspase 9 (1.2-1.8 fold) and 3 (1.7-2.2 fold) as well as poly ADP ribose polymerase cleavage. In a two-stage mouse skin tumorigenesis protocol, it was observed that a single topical application of OTA (80 µg/mouse) followed by twice weekly application of 12-O-tetradecanoylphorbol-13-acetate for 24 week leads to tumor formation. These results suggest that OTA has skin tumor initiating property which may be related to oxidative stress, MAPKs signaling and DNA damage.

  14. Tumor redox metabolism correlation with the expression level of red fluorescent protein

    NASA Astrophysics Data System (ADS)

    Sha, Shuang; Wang, Anle; Lin, Qiaoya; Zhang, Zhihong

    2015-03-01

    The redox metabolism is variable and complicated with the progress of tumor development. Whether the tumor redox state will affect the exogenous gene expression or not, are still not clear now . To investigate the relationship between tumor endogenous redox state and the exogenous gene expression level, a far red fluorescent protein fRFP was used to monitor tumor cells proliferation and as an exogenous protein expression in tumors. NADH (nicotinamide adenine dinucleotide) and Fp (flavin protein) are two important coenzymes in the mitochondria respiratory chain, which can be as a standard representation for redox metabolism state. Three tumor subcutaneous models (melanoma, human pancreatic carcinoma and nasopharyngeal carcinoma) were used to observe their redox state and protein expression by our home-made redox scanner. The results showed that the distribution of fRFP fluorescent protein expression in the inner tumor regions are heterogeneous, and the fluorescent intensity of fRFP and the fluorescent intensity of NADH have high correlation. In addition, we also found the linear coefficient in three tumors are different, the value of coefficient is (R2 = 0.966 and R2 = 0.943) in melanoma, (R2 = 0.701 and R2 = 0.942) in human pancreatic carcinoma, and (R2 = 0.994) in nasopharyngeal carcinoma, respectively. From these results, we consider that the exogenous protein expression of fRFP in tumor had some relationship with the tumor redox state of NADH.

  15. Reduced metabolism in the hypothalamus of the anorectic anx/anx mouse.

    PubMed

    Bergström, Ulrika; Lindfors, Charlotte; Svedberg, Marie; Johansen, Jeanette E; Häggkvist, Jenny; Schalling, Martin; Wibom, Rolf; Katz, Abram; Nilsson, Ida A K

    2017-04-01

    The anorectic anx/anx mouse exhibits a mitochondrial complex I dysfunction that is related to aberrant expression of hypothalamic neuropeptides and transmitters regulating food intake. Hypothalamic activity, i.e. neuronal firing and transmitter release, is dependent on glucose utilization and energy metabolism. To better understand the role of hypothalamic activity in anorexia, we assessed carbohydrate and high-energy phosphate metabolism, in vivo and in vitro, in the anx/anx hypothalamus. In the fasted state, hypothalamic glucose uptake in the anx/anx mouse was reduced by ~50% of that seen in wild-type (wt) mice (P < 0.05). Under basal conditions, anx/anx hypothalamus ATP and glucose 6-P contents were similar to those in wt hypothalamus, whereas phosphocreatine was elevated (~2-fold; P < 0.001) and lactate was reduced (~35%; P < 0.001). The anx/anx hypothalamus had elevated total AMPK (~25%; P < 0.05) and GLUT4 (~60%; P < 0.01) protein contents, whereas GLUT1 and GLUT3 were similar to that of wt hypothalamus. Interestingly, the activation state of AMPK (ratio of phosphorylated AMPK/total AMPK) was significantly decreased in hypothalamus of the anx/anx mouse (~60% of that in wt; P < 0.05). Finally, during metabolic stress (ischemia), accumulation of lactate (measure of glycolysis) and IMP and AMP (breakdown products of ATP) were ~50% lower in anx/anx vs wt hypothalamus. These data demonstrate that carbohydrate and high-energy phosphate utilization in the anx/anx hypothalamus are diminished under basal and stress conditions. The decrease in hypothalamic metabolism may contribute to the anorectic behavior of the anx/anx mouse, i.e. its inability to regulate food intake in accordance with energy status. © 2017 Society for Endocrinology.

  16. Circadian disruption promotes tumor growth by anabolic host metabolism; experimental evidence in a rat model.

    PubMed

    Guerrero-Vargas, Natalí N; Navarro-Espíndola, Raful; Guzmán-Ruíz, Mara A; Basualdo, María Del Carmen; Espitia-Bautista, Estefania; López-Bago, Ana; Lascurain, Ricardo; Córdoba-Manilla, Cinthya; Buijs, Ruud M; Escobar, Carolina

    2017-09-06

    Light at night creates a conflicting signal to the biological clock and disrupts circadian physiology. In rodents, light at night increases the risk to develop mood disorders, overweight, disrupted energy metabolism, immune dysfunction and cancer. We hypothesized that constant light (LL) in rats may facilitate tumor growth via disrupted metabolism and increased inflammatory response in the host, inducing a propitious microenvironment for tumor cells. Male Wistar rats were exposed to LL or a regular light-dark cycle (LD) for 5 weeks. Body weight gain, food consumption, triglycerides and glucose blood levels were evaluated; a glucose tolerance test was also performed. Inflammation and sickness behavior were evaluated after the administration of intravenous lipopolysaccharide. Tumors were induced by subcutaneous inoculation of glioma cells (C6). In tumor-bearing rats, the metabolic state and immune cells infiltration to the tumor was investigated by using immunohistochemistry and flow cytometry. The mRNA expression of genes involved metabolic, growth, angiogenes and inflammatory pathways was measured in the tumor microenvironment by qPCR. Tumor growth was also evaluated in animals fed with a high sugar diet. We found that LL induced overweight, high plasma triglycerides and glucose levels as well as reduced glucose clearance. In response to an LPS challenge, LL rats responded with higher pro-inflammatory cytokines and exacerbated sickness behavior. Tumor cell inoculation resulted in increased tumor volume in LL as compared with LD rats, associated with high blood glucose levels and decreased triglycerides levels in the host. More macrophages were recruited in the LL tumor and the microenvironment was characterized by upregulation of genes involved in lipogenesis (Acaca, Fasn, and Pparγ), glucose uptake (Glut-1), and tumor growth (Vegfα, Myc, Ir) suggesting that LL tumors rely on these processes in order to support their enhanced growth. Genes related with the

  17. Metabolic coupling in urothelial bladder cancer compartments and its correlation to tumor aggressiveness

    PubMed Central

    Afonso, Julieta; Santos, Lúcio L.; Morais, António; Amaro, Teresina; Longatto-Filho, Adhemar; Baltazar, Fátima

    2016-01-01

    abstract Monocarboxylate transporters (MCTs) are vital for intracellular pH homeostasis by extruding lactate from highly glycolytic cells. These molecules are key players of the metabolic reprogramming of cancer cells, and evidence indicates a potential contribution in urothelial bladder cancer (UBC) aggressiveness and chemoresistance. However, the specific role of MCTs in the metabolic compartmentalization within bladder tumors, namely their preponderance on the tumor stroma, remains to be elucidated. Thus, we evaluated the immunoexpression of MCTs in the different compartments of UBC tissue samples (n = 111), assessing the correlations among them and with the clinical and prognostic parameters. A significant decrease in positivity for MCT1 and MCT4 occurred from normoxic toward hypoxic regions. Significant associations were found between the expression of MCT4 in hypoxic tumor cells and in the tumor stroma. MCT1 staining in normoxic tumor areas, and MCT4 staining in hypoxic regions, in the tumor stroma and in the blood vessels were significantly associated with UBC aggressiveness. MCT4 concomitant positivity in hypoxic tumor cells and in the tumor stroma, as well as positivity in each of these regions concomitant with MCT1 positivity in normoxic tumor cells, was significantly associated with an unfavourable clinicopathological profile, and predicted lower overall survival rates among patients receiving platinum-based chemotherapy. Our results point to the existence of a multi-compartment metabolic model in UBC, providing evidence of a metabolic coupling between catabolic stromal and cancer cells’ compartments, and the anabolic cancer cells. It is urgent to further explore the involvement of this metabolic coupling in UBC progression and chemoresistance. PMID:26636903

  18. Generation and analysis of mouse intestinal tumors and organoids harboring APC and K-Ras mutations.

    PubMed

    van Es, Johan H; Clevers, Hans

    2015-01-01

    Genetically engineered mouse models of intestinal cancer are experimental systems in which mice are genetically manipulated to develop malignancies in the gastrointestinal tract. These models enable researchers to study the mechanisms of onset, progression, and metastasis of the disease. They also provide a valuable biological system which is suitable for testing (novel) drugs in vivo. Recently, an in vitro culture model has been established in which intestinal epithelial stem cells can grow into three-dimensional, ever-expanding epithelial organoids that retain their original organ identity and genetic stability. This culture system has been applied to diseased epithelia, such as adenoma, adenocarcinoma, and Barrett's epithelium. These organoids can be particularly useful for studying the mechanisms of intestinal tumors and to test (novel) drugs in vitro. Here, we describe our current laboratory protocols to generate and analyze intestinal tumors and organoids harboring APC and K-Ras double mutations.

  19. Tumour effect on arginine/ornithine metabolic relationship in hypertrophic mouse kidney.

    PubMed

    Manteuffel-Cymborowska, M; Chmurzyńska, W; Peska, M; Grzelakowska-Sztabert, B

    1997-03-01

    The presence of a tumour significantly changes nitrogen metabolism, including that of amino acids and polyamines, in host animals. In this study, we examine whether developing tumours affect the metabolic relationship of arginine and ornithine, precursors of polyamines, in the testosterone-induced hypertrophic mouse kidney model. Androgen-induced changes in the activity of enzymes involved with ornithine biosynthesis (arginase), its consumption (ornithine aminotransferase, OAT and ornithine decarboxylase, ODC) and the hypertrophy of host mouse kidney were not affected by the presence of an ascitic tumour (EAC) and only slightly by a mammary carcinoma (MaCa). The HPLC determined renal level of arginine and ornithine showed a striking homeostasis and was disturbed neither by testosterone nor EAC. The effect of MaCa and testosterone on the levels of both amino acids, although significant, was not very pronounced. Developing tumours, especially ascitic, altered the renal activity of OAT and ODC, but not of arginase, in testosterone-untreated mice. All examined tumours, EAC, L 1210 and MaCa actively metabolized arginine and ornithine. the tumour content of arginine which coincided with the activity of arginase, resulted in a marked increase of the ornithine/arginine ratio in tumours, when compared with kidneys. These results indicate that the androgen-induced anabolic response in mouse kidney is preserved, in spite of tumour requirements for essential metabolites.

  20. Underestimated contribution of skeletal muscle in ornithine metabolism during mouse postnatal development.

    PubMed

    Ladeuix, Benjamin; Duchamp, Claude; Levillain, Olivier

    2014-01-01

    Ornithine aminotransferase (L-ornithine 2-oxoacid aminotransferase, OAT) is widely expressed in organs, but studies in mice have focused primarily on the intestine, kidney and liver because of the high OAT-specific activity in these tissues. This study aimed to investigate OAT activity in adult mouse tissues to assess the potential contribution to ornithine metabolism and to determine OAT control during postnatal development. OAT activity was widely distributed in mouse tissues. Sexual dimorphism was observed for most tissues in adults, with greater activity in females than in males. The contribution of skeletal muscles to total OAT activity (34% in males and 27% in females) was the greatest (50%) of the investigated tissues in pre-weaned mice and was similar to that of the liver in adults. OAT activity was found to be regulated in a tissue-specific manner during postnatal development in parallel with large changes in the plasma testosterone and corticosterone levels. After weaning, OAT activity markedly increased in the liver but dropped in the skeletal muscle and adipose tissue. Anticipating weaning for 3 days led to an earlier reduction of OAT activity in skeletal muscles. Orchidectomy in adults decreased OAT activity in the liver but increased it in skeletal muscle and adipose tissue. We concluded that the contribution of skeletal muscle to mouse ornithine metabolism may have been underestimated. The regulation of OAT in skeletal muscles differs from that in the liver. The present findings suggest important and tissue-specific metabolic roles for OAT during postnatal development in mice.

  1. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment

    PubMed Central

    Ohta, Akio

    2016-01-01

    Within tumors, some areas are less oxygenated than others. Since their home ground is under chronic hypoxia, tumor cells adapt to this condition by activating aerobic glycolysis; however, this hypoxic environment is very harsh for incoming immune cells. Deprivation of oxygen limits availability of energy sources and induces accumulation of extracellular adenosine in tumors. Extracellular adenosine, upon binding with adenosine receptors on the surface of various immune cells, suppresses pro-inflammatory activities. In addition, signaling through adenosine receptors upregulates a number of anti-inflammatory molecules and immunoregulatory cells, leading to the establishment of a long-lasting immunosuppressive environment. Thus, due to hypoxia and adenosine, tumors can discourage antitumor immune responses no matter how the response was induced, whether it was spontaneous or artificially introduced with a therapeutic intention. Preclinical studies have shown the significance of adenosine in tumor survival strategy by demonstrating tumor regression after inactivation of adenosine receptors, inhibition of adenosine-producing enzymes, or reversal of tissue hypoxia. These promising results indicate a potential use of the inhibitors of the hypoxia–adenosine pathway for cancer immunotherapy. PMID:27066002

  2. The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism

    PubMed Central

    Lu, Jianrong; Tan, Ming; Cai, Qingsong

    2014-01-01

    Compared to normal cells, cancer cells strongly upregulate glucose uptake and glycolysis to give rise to increased yield of intermediate glycolytic metabolites and the end product pyruvate. Moreover, glycolysis is uncoupled from the mitochondrial tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in cancer cells. Consequently, the majority of glycolysis-derived pyruvate is diverted to lactate fermentation and kept away from mitochondrial oxidative metabolism. This metabolic phenotype is known as the Warburg effect. While it has become widely accepted that the glycolytic intermediates provide essential anabolic support for cell proliferation and tumor growth, it remains largely elusive whether and how the Warburg metabolic phenotype may play a role in tumor progression. We hereby review the cause and consequence of the restrained oxidative metabolism, in particular in tumor metastasis. Cells change or lose their extracellular matrix during the metastatic process. Inadequate/inappropriate matrix attachment generates reactive oxygen species (ROS) and causes a specific type of cell death, termed anoikis, in normal cells. Although anoikis is a barrier to metastasis, cancer cells have often acquired elevated threshold for anoikis and hence heightened metastatic potential. As ROS are inherent byproducts of oxidative metabolism, forced stimulation of glucose oxidation in cancer cells raises oxidative stress and restores cells’ sensitivity to anoikis. Therefore, by limiting the pyruvate flux into mitochondrial oxidative metabolism, the Warburg effect enables cancer cells to avoid excess ROS generation from mitochondrial respiration and thus gain increased anoikis resistance and survival advantage for metastasis. Consistent with this notion, pro-metastatic transcription factors HIF and Snail attenuate oxidative metabolism, whereas tumor suppressor p53 and metastasis suppressor KISS1 promote mitochondrial oxidation. Collectively, these findings reveal

  3. The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism.

    PubMed

    Lu, Jianrong; Tan, Ming; Cai, Qingsong

    2015-01-28

    Compared to normal cells, cancer cells strongly upregulate glucose uptake and glycolysis to give rise to increased yield of intermediate glycolytic metabolites and the end product pyruvate. Moreover, glycolysis is uncoupled from the mitochondrial tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in cancer cells. Consequently, the majority of glycolysis-derived pyruvate is diverted to lactate fermentation and kept away from mitochondrial oxidative metabolism. This metabolic phenotype is known as the Warburg effect. While it has become widely accepted that the glycolytic intermediates provide essential anabolic support for cell proliferation and tumor growth, it remains largely elusive whether and how the Warburg metabolic phenotype may play a role in tumor progression. We hereby review the cause and consequence of the restrained oxidative metabolism, in particular in the context of tumor metastasis. Cells change or lose their extracellular matrix during the metastatic process. Inadequate/inappropriate matrix attachment generates reactive oxygen species (ROS) and causes a specific type of cell death, termed anoikis, in normal cells. Although anoikis is a barrier to metastasis, cancer cells have often acquired elevated threshold for anoikis and hence heightened metastatic potential. As ROS are inherent byproducts of oxidative metabolism, forced stimulation of glucose oxidation in cancer cells raises oxidative stress and restores cells' sensitivity to anoikis. Therefore, by limiting the pyruvate flux into mitochondrial oxidative metabolism, the Warburg effect enables cancer cells to avoid excess ROS generation from mitochondrial respiration and thus gain increased anoikis resistance and survival advantage for metastasis. Consistent with this notion, pro-metastatic transcription factors HIF and Snail attenuate oxidative metabolism, whereas tumor suppressor p53 and metastasis suppressor KISS1 promote mitochondrial oxidation. Collectively, these

  4. Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis.

    PubMed

    Hlady, Ryan A; Novakova, Slavomira; Opavska, Jana; Klinkebiel, David; Peters, Staci L; Bies, Juraj; Hannah, Jay; Iqbal, Javeed; Anderson, Kristi M; Siebler, Hollie M; Smith, Lynette M; Greiner, Timothy C; Bastola, Dhundy; Joshi, Shantaram; Lockridge, Oksana; Simpson, Melanie A; Felsher, Dean W; Wagner, Kay-Uwe; Chan, Wing C; Christman, Judith K; Opavsky, Rene

    2012-01-01

    DNA methyltransferase 3B (Dnmt3b) belongs to a family of enzymes responsible for methylation of cytosine residues in mammals. DNA methylation contributes to the epigenetic control of gene transcription and is deregulated in virtually all human tumors. To better understand the generation of cancer-specific methylation patterns, we genetically inactivated Dnmt3b in a mouse model of MYC-induced lymphomagenesis. Ablation of Dnmt3b function using a conditional knockout in T cells accelerated lymphomagenesis by increasing cellular proliferation, which suggests that Dnmt3b functions as a tumor suppressor. Global methylation profiling revealed numerous gene promoters as potential targets of Dnmt3b activity, the majority of which were demethylated in Dnmt3b-/- lymphomas, but not in Dnmt3b-/- pretumor thymocytes, implicating Dnmt3b in maintenance of cytosine methylation in cancer. Functional analysis identified the gene Gm128 (which we termed herein methylated in normal thymocytes [Ment]) as a target of Dnmt3b activity. We found that Ment was gradually demethylated and overexpressed during tumor progression in Dnmt3b-/- lymphomas. Similarly, MENT was overexpressed in 67% of human lymphomas, and its transcription inversely correlated with methylation and levels of DNMT3B. Importantly, knockdown of Ment inhibited growth of mouse and human cells, whereas overexpression of Ment provided Dnmt3b+/+ cells with a proliferative advantage. Our findings identify Ment as an enhancer of lymphomagenesis that contributes to the tumor suppressor function of Dnmt3b and suggest it could be a potential target for anticancer therapies.

  5. Diminution of mouse epidermal superoxide dismutase and catalase activities by tumor promotors

    SciTech Connect

    Solanki, V.; Rana, R.S.; Slaga, T.J.

    1981-01-01

    The effects of phorbol ester tumor promoters and related compounds on superoxide dismutase (SOD) and catalase were examined. The treatment of adult mouse skin with 2 ..mu..g 12-0-tetradecanoylphorbol-13-acetate (TPA) resulted in a sustained decrease in the basal levels of both SOD and catalase activities in the epidermis. A decline in SOD activity occurred within 2 h after application and the maximum effect was seen at 16-17 h. The decrease in SOD activity was always accompanied by a similar decline in the epidermal catalase activity. The alterations in both enzymes occurred against a high background of enhanced protein synthesis which indicates that the effect of TPA is selective for SOD and catalase. Other tumor promoters such as phorbol 12,13-dibutyrate and the non-phorbol tumor promoter anthraline also lowered the activities of both the enzymes. Mezerein, a resiniferonol derivative with weak promoting activity but a potent stage-II promoter, appeared to be more potent than TPA in lowering the basal levels. These results indicate that damage which favors neoplastic progression would occur in TPA-treated mouse skin due to the accumulation of free radicals resulting from low levels of SOD and catalase activity. In addition, the TPA-caused decrease in the levels of SOD and catalase was not prevented by either retinoic acid, fluocinolone acetonide, tosyl amino-2-phenylethyl chloromethyl ketone, or butylated hydroxytoluene, suggesting that inhibition of tumor promotion by these agents is not mediated through alterations in the levels of enzymatic activities which decrease free radical concentrations.

  6. Inhibition of TPA-induced tumor promotion in CD-1 mouse epidermis by a polyphenolic fraction from grape seeds.

    PubMed

    Bomser, J A; Singletary, K W; Wallig, M A; Smith, M A

    1999-01-29

    The anti-tumor promoting activity of a polyphenolic fraction from grape seeds (GSP) was examined in CD-1 mouse skin epidermis. Specifically, the ability of this fraction to inhibit 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced tumor promotion and two markers of promotion in mouse skin, ornithine decarboxylase (ODC) and myeloperoxidase (MPO) activities, was evaluated. Pretreatment of mouse skin with 5, 10, 20 and 30 mg of GSP resulted in a dose-dependent reduction in TPA-induced epidermal ODC activity of 27, 37, 48 and 70%, respectively, compared to controls. In addition, pretreatment of mouse skin with 1, 5, 10 and 20 mg of GSP resulted in a significant 43, 39, 54 and 73% inhibition of MPO activity, respectively, compared to controls. In 7,12-dimethylbenz[a]anthracene (DMBA)-initiated CD-1 mice, biweekly treatment of mouse skin with 5, 10, and 20 mg of GSP 20 min prior to TPA application resulted in a 30, 40, and 60% inhibition of final skin tumor incidence, respectively, compared to controls. In addition, the final number of tumors per mouse in the 5, 10 and 20 mg GSP-treated animals was decreased 63, 51, and 94%, respectively, compared to controls. These studies indicate that GSP possesses anti-tumor promoting activity when applied to CD-1 mouse skin prior to treatment with TPA. The mechanism of this tumor inhibition is due, in part, to a GSP-associated inhibition of TPA-induced epidermal ODC and MPO activities. Thus, GSP warrants further evaluation as a skin cancer chemopreventative agent.

  7. The sweet spot: FDG and other 2-carbon glucose analogs for multi-modal metabolic imaging of tumor metabolism.

    PubMed

    Cox, Benjamin L; Mackie, Thomas R; Eliceiri, Kevin W

    2015-01-01

    Multi-modal imaging approaches of tumor metabolism that provide improved specificity, physiological relevance and spatial resolution would improve diagnosing of tumors and evaluation of tumor progression. Currently, the molecular probe FDG, glucose fluorinated with (18)F at the 2-carbon, is the primary metabolic approach for clinical diagnostics with PET imaging. However, PET lacks the resolution necessary to yield intratumoral distributions of deoxyglucose, on the cellular level. Multi-modal imaging could elucidate this problem, but requires the development of new glucose analogs that are better suited for other imaging modalities. Several such analogs have been created and are reviewed here. Also reviewed are several multi-modal imaging studies that have been performed that attempt to shed light on the cellular distribution of glucose analogs within tumors. Some of these studies are performed in vitro, while others are performed in vivo, in an animal model. The results from these studies introduce a visualization gap between the in vitro and in vivo studies that, if solved, could enable the early detection of tumors, the high resolution monitoring of tumors during treatment, and the greater accuracy in assessment of different imaging agents.

  8. Extract of Vernonia condensata, Inhibits Tumor Progression and Improves Survival of Tumor-allograft Bearing Mouse

    PubMed Central

    Thomas, Elizabeth; Gopalakrishnan, Vidya; Somasagara, Ranganatha R.; Choudhary, Bibha; Raghavan, Sathees C.

    2016-01-01

    Medicinal plants are considered as one of the ideal sources for cancer therapy due to their bioactive contents and low toxicity to humans. Vernonia genus is one of the common medicinal plants, which has wide spread usage in food and medicine. However, there are limited studies to explore its anticancer properties. In the current study, we have used Vernonia condensata, to explore its anticancer activity using various approaches. Here, we show that extract prepared from Vernonia condensata (VCE) exhibits cytotoxic properties against various cancer cells in a dose- and time-dependent manner. Interestingly, when treated with VCE, there was no significant cytotoxicity in peripheral blood mononuclear cells (PBMCs). Flow cytometry analysis revealed that although VCE induced cell death, arrest was not observed. VCE treatment led to disruption of mitochondrial membrane potential in a concentration dependent manner resulting in activation of apoptosis culminating in cell death. Immunoblotting studies revealed that VCE activated intrinsic pathway of apoptosis. More importantly, VCE treatment resulted in tumor regression leading to significant enhancement in life span in treated mice, without showing any detectable side effects. Therefore, for the first time our study reveals the potential of extract from Vernonia condensata to be used as an anticancer agent. PMID:27009490

  9. Immunomodulatory and anti-tumor effects of Nigella glandulifera freyn and sint seeds on ehrlich ascites carcinoma in mouse model

    PubMed Central

    Aikemu, Ainiwaer; Xiaerfuding, Xiadiya; Shiwenhui, Chengyufeng; Abudureyimu, Meiliwan; Maimaitiyiming, Dilinuer

    2013-01-01

    Aim: This study investigated the immunomodulatory and anti-tumor effects of Nigella glandulifera Freyn and Sint seeds (NGS) on Ehrlich ascites carcinoma in a mouse model. Materials and Methods: Kunming mice with transplanted Ehrlich ascites tumor cells (EAC) were treated with NGS by oral administration. On the 11th day after the EAC implant, mouse thymus, liver, spleen and kidney tumors were removed for histopathological analysis. Blood samples were taken for hematological and biochemical analyses. Results: The results indicate that NGS treatment leads to an increase in TNF-α, IL-1β, and IL-2 blood serum levels. Absence of viable EAC and presence of necrotic cells were observed in the tumor tissue of the NGS-treated animals. Conclusions: The study results indicated that a water extract of NGS had the highest anti-tumor effect. Moreover, NGS treatment also showed an increase in the immune system activity. PMID:23929999

  10. Propranolol hydrochloride enhancement of tumor perfusion and uptake of gallium-67 in a mouse sarcoma

    SciTech Connect

    Bomber, P.; McCready, R.; Hammersley, P.

    1986-02-01

    The effect of propranolol hydrochloride on the blood perfusion of a mouse sarcoma and other tissues has been studied using /sup 86/Rb. The maximum increase in relative tumor perfusion (2x controls) occurred 15 min after an i.v. administration of 10 mg per kg propranolol hydrochloride. To study the effect of this drug on the uptake of /sup 67/Ga, it was injected at a concentration of 10 mg/kg 10 min before administering 3 microCi (110 kBq) (/sup 67/Ga)citrate. Tissue uptakes were measured 4 hr later. The tumor: blood ratio increased from 1.16 +/- 0.17 to 3.41 +/- 2.27 (s.d.) and tumor: liver ratio increased from 2.39 +/- 0.30 to 7.13 +/- 3.52 (s.d.). The results showed that propranolol hydrochloride can improve the relative tumor blood flow and radiopharmaceutical concentration in an animal model. It is hoped that this and other agents will yield similar results in the human situation.

  11. Assessment of Tumor Cells in a Mouse Model of Diffuse Infiltrative Glioma by Raman Spectroscopy

    PubMed Central

    Tanahashi, Kuniaki; Natsume, Atsushi; Motomura, Kazuya; Watabe, Naoki; Muraishi, Shuichi; Nakahara, Hitoshi; Saito, Yahachi; Takeuchi, Ichiro; Wakabayashi, Toshihiko

    2014-01-01

    Glioma of infiltrative nature is challenging for surgeons to achieve tumor-specific and maximal resection. Raman spectroscopy provides structural information on the targeted materials as vibrational shifts. We utilized Raman spectroscopy to distinguish invasive tumors from normal tissues. Spectra obtained from replication-competent avian sarcoma-(RCAS-) based infiltrative glioma cells and glioma tissues (resembling low-grade human glioma) were compared with those obtained from normal mouse astrocytes and normal tissues. In cell analysis, the spectra at 950–1000, 1030, 1050–1100, 1120–1130, 1120–1200, 1200–1300, 1300–1350, and 1450 cm−1 were significantly higher in infiltrative glioma cells than in normal astrocytes. In brain tissue analysis, the spectra at 1030, 1050–1100, and 1200–1300 cm−1 were significantly higher in infiltrative glioma tissues than in normal brain tissues. These spectra reflect the structures of proteins, lipids, and DNA content. The sensitivity and specificity to predict glioma cells by distinguishing normal cells were 98.3% and 75.0%, respectively. Principal component analysis elucidated the significance of spectral difference between tumor tissues and normal tissues. It is possible to distinguish invasive tumors from normal tissues by using Raman spectroscopy. PMID:25247190

  12. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis

    PubMed Central

    Chen, Sidi; Sanjana, Neville E.; Zheng, Kaijie; Shalem, Ophir; Lee, Kyungheon; Shi, Xi; Scott, David A.; Song, Jun; Pan, Jen Q.; Weissleder, Ralph; Lee, Hakho; Zhang, Feng; Sharp, Phillip A.

    2015-01-01

    Summary Genetic screens are powerful tools for identifying genes responsible for diverse phenotypes. Here we describe a genome-wide CRISPR-Cas9-mediated loss-of-function screen in tumor growth and metastasis. We mutagenized a non-metastatic mouse cancer cell line using a genome-scale library with 67,405 single guide RNAs (sgRNAs). The mutant cell pool rapidly generates metastases when transplanted into immunocompromised mice. Enriched sgRNAs in lung metastases and late stage primary tumors were found to target a small set of genes, suggesting specific loss-of-function mutations drive tumor growth and metastasis. Individual sgRNAs and a small pool of 624 sgRNAs targeting the top scoring genes from the primary screen dramatically accelerate metastasis. In all of these experiments, the effect of mutations on primary tumor growth positively correlates with the development of metastases. Our study demonstrates Cas9-based screening as a robust method to systematically assay gene phenotypes in cancer evolution in vivo. PMID:25748654

  13. The tumor suppressor WW domain-containing oxidoreductase modulates cell metabolism

    PubMed Central

    Abu-Remaileh, Muhannad

    2015-01-01

    The WW domain-containing oxidoreductase (WWOX) encodes a tumor suppressor that is frequently altered in cancer. WWOX binds several proteins and thus is postulated to be involved in a variety of cellular processes. Interestingly, Wwox-knockout mice develop normally in utero but succumb to hypoglycemia and other metabolic defects early in life resulting in their death by 3–4 weeks of age. Cumulative evidence has linked WWOX with cellular metabolism including steroid metabolism, high-density lipoprotein cholesterol (HDL-C) metabolism, bone metabolism and, more recently, glucose metabolism. In this review, we discuss these evolving functions for WWOX and how its deletion affects cellular metabolism and neoplastic progression. PMID:25491415

  14. Chondrocytic differentiation of peripheral neuroectodermal tumor cell line in nude mouse xenograft.

    PubMed

    Goji, J; Sano, K; Nakamura, H; Ito, H

    1992-08-01

    We have established a cell line (KU-SN) from a peripheral neuroectodermal tumor originating in the left scapula of a 4-year-old girl. The original tumor was immunoreactive with antibodies for neurofilament proteins, neuron-specific enolase, vimentin, S100 protein, and beta 2-microglobulin. Dense core granules, 50-150 nm in diameter, were identified by electron microscopy. The cell line was established from tumor cells in metastatic lung fluid. KU-SN cells were immunoreactive with the antibodies for neurofilament proteins, vimentin, neuron-specific enolase, S100 protein, glial fibrillary acidic protein, cytokeratin, and carcinoembryonic antigen. Besides these neuronal features, KU-SN cells express type 2 collagen and insulin-like growth factor 1 receptor. The addition of insulin-like growth factor 1 (100 ng/ml) increased the growth rate of KU-SN cells 2.1-fold over control. Some cells were positive for Alcian blue and alkaline phosphatase staining. Cytogenetic analysis of KU-SN cells disclosed a reciprocal chromosomal translocation [t(11,22)]. Northern blot analysis of KU-SN cells demonstrated amplified expression of the c-myc gene but not the N-myc gene. When tumor cells were transplanted into nude mice, cartilage was formed. The cartilage was immunoreactive with the antibody for HLA-ABC, indicating that it was derived from the tumor cells, not from mouse tissue. Chondrocytic differentiation was not observed in xenografts of Ewing's sarcoma cell lines SK-ES or RD-ES or the peripheral neuroectodermal tumor cell line SK-N-MC. These results indicate that KU-SN cells represent primitive neural crest cells having the potential for chondrocytic differentiation.

  15. Cathepsin B-Specific Metabolic Precursor for In Vivo Tumor-Specific Fluorescence Imaging.

    PubMed

    Shim, Man Kyu; Yoon, Hong Yeol; Ryu, Ju Hee; Koo, Heebeom; Lee, Sangmin; Park, Jae Hyung; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Kim, Kwangmeyung

    2016-11-14

    Recently, metabolic glycoengineering with bioorthogonal click reactions has focused on improving the tumor targeting efficiency of nanoparticles as delivery vehicles for anticancer drugs or imaging agents. It is the key technique for developing tumor-specific metabolic precursors that can generate unnatural glycans on the tumor-cell surface. A cathepsin B-specific cleavable substrate (KGRR) conjugated with triacetylated N-azidoacetyl-d-mannosamine (RR-S-Ac3 ManNAz) was developed to enable tumor cells to generate unnatural glycans that contain azide groups. The generation of azide groups on the tumor cell surface was exogenously and specifically controlled by the amount of RR-S-Ac3 ManNAz that was fed to target tumor cells. Moreover, unnatural glycans on the tumor cell surface were conjugated with near infrared fluorescence (NIRF) dye-labeled molecules by a bioorthogonal click reaction in cell cultures and in tumor-bearing mice. Therefore, our RR-S-Ac3 ManNAz is promising for research in tumor-specific imaging or drug delivery.

  16. Diagnostic value of metabolic heterogeneity as a reliable parameter for differentiating malignant parotid gland tumors.

    PubMed

    Kim, Bum Soo; Kim, Seong-Jang; Pak, Kyoungjune

    2016-06-01

    Exact classifying between malignant and benign tumors in the parotid gland is important because the cancer has relatively poor prognosis. There have been several studies that F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) can differentiate between malignant and benign parotid gland tumors. However, the role of FDG PET is still controversial because many benign parotid gland tumors, such as Warthin's tumor and pleomorphic adenoma, show high FDG uptake. We hypothesized that metabolic heterogeneity would differentiate malignant parotid tumors because tumoral heterogeneity is an important characteristic in the malignancies. From January 2010 to April 2015, we retrospectively reviewed the 46 patients who showed FDG uptake at the parotid gland. To differentiate malignant parotid gland tumors, we obtained maximum SUV and mean SUV. Metabolic tumor volume and total lesion glycolysis were measured as metabolic volumetric parameters. We also included heterogeneity parameters of FDG PET such as heterogeneity factor (HF) and the coefficient of variation for all patients. There was significant difference of HF between malignant (-0.30 ± 0.25; range -0.937 to -0.084) and benign parotid gland tumors (-0.06 ± 0.05; range -0.291 to -0.012; p < 0.0001). In receiver operating characteristic analysis, when ≤-0.084 was used as the cut-off value for HF, the sensitivity and specificity were 100 % (95 % CI 81.5-100) and 89.2 % (95 % CI 71.8-97.7), respectively. HF showed the highest area under the curve of 0.947 among the parameters. In logistic regression analysis, the HF was the most powerful factor for differentiation of the parotid gland tumors (p = 0.002). Our results suggest that HF can be utilized as a reliable and non-invasive method for differentiation of malignant and benign parotid gland tumors.

  17. Mouse mammary tumor like virus sequences in breast milk from healthy lactating women.

    PubMed

    Johal, Harpreet; Ford, Caroline; Glenn, Wendy; Heads, Joy; Lawson, James; Rawlinson, William

    2011-08-01

    Mouse mammary tumor virus (MMTV) has been a long standing candidate as a potential cause of some human breast cancers. Forty years ago, electron microscopic images of MMTV-like particles were identified in milk from 5% of healthy lactating women. These observations, however, have not been confirmed by modern methods. The purpose of this study was to confirm the presence of MMTV-like DNA sequences in human milk from normal lactating women. Standard and in situ PCR analyses were conducted on DNA extracted from fresh breast milk samples collected from a group of 91 healthy lactating women volunteers. The MMTV-like viral positive PCR products were sequenced and a phylogenetic tree was constructed to compare these sequences. Immunohistochemistry analyses were performed on breast milk cells using polyclonal rabbit antibodies against affinity-purified MMTV envelope glycoproteins 52/36. MMTV-like envelope gene sequences were identified by PCR in 5% (4/91) of breast milk samples from healthy lactating women volunteers. These observations were confirmed by in situ PCR and immunohistochemistry using MMTV gp52/36 antibodies. These findings confirm the presence of MMTV-like gene sequences in human milk. As MMTV is transmitted via milk from mouse mothers to their newborn pups to cause mammary tumors when they become adults, this indicates a means of transmission of this virus in humans.

  18. Study of the primo vascular system utilizing a melanoma tumor model in a green fluorescence protein expressing mouse.

    PubMed

    Heo, Chaejeong; Hong, Min Young; Jo, Areum; Lee, Young Hee; Suh, Minah

    2011-09-01

    A melanoma tumor is a representative malignant tumor. Melanoma tumor growth involves vigorous angiogenesis around the tumor and a vasculogenic-like network inside an aggressive tumor. Primo vessels (PVs) are also found on the surface of the tumor and coexist alongside blood vessels (BVs), and sometimes within the BVs. We hypothesized that the primo vessels system plays a significant role in regulating the development of a melanoma tumor, and therefore has a tight coupling with BVs and angiogenesis. To prove this hypothesis, we developed a murine melanoma model by inoculating melanoma cell lines into the abdominal region. We used a green fluorescent protein (GFP) expressing mouse as a host to distinguish the endogenous source of the tumor PVs. We found strong formation of PVs on the tumor that coexisted with BVs and expression of GFP. PVs also had a tight coupling with adipose tissues, especially with white adipose tissue. These data suggest that the PVs of an induced melanoma tumor evolve endogenously from the host body and may be highly related to BVs and adipose tissue. This model of PVs in an overexpressing GFP mouse is a useful system for observing PVs, primo nodes, and primo vessel networks, and has potential to be developed as a model for examining novel treatments for cancer metastasis.

  19. Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis.

    PubMed

    Morony, S; Capparelli, C; Sarosi, I; Lacey, D L; Dunstan, C R; Kostenuik, P J

    2001-06-01

    Certain malignancies, including breast cancer, frequently metastasize to bone, where the tumor cells induce osteoclasts to locally destroy bone. Osteoprotegerin (OPG), a member of the tumor necrosis factor receptor family, is a negative regulator of osteoclast differentiation, activation, and survival. We tested the ability of recombinant OPG to inhibit tumor-induced osteoclastogenesis, osteolysis, and skeletal tumor burden in two animal models. In a syngeneic model, mouse colon adenocarcinoma (Colon-26) cells were injected into the left ventricle of mice. Treatment with OPG dose-dependently decreased the number and area of radiographically evident lytic bone lesions, which, at the highest dose, were undetectable. Histologically, OPG also decreased skeletal tumor burden and tumor-associated osteoclasts. In a nude mouse model, OPG treatment completely prevented radiographic osteolytic lesions caused by human MDA-MB-231 breast cancer cells. Histologically, OPG decreased skeletal tumor burden by 75% and completely eradicated MDA tumor-associated osteoclasts. In both models, OPG had no effect on metastatic tumor burden in a panel of soft tissue organs. These data indicate that OPG may be an effective therapy for preventing osteolysis and decreasing skeletal tumor burden in patients with bone metastasis.

  20. New mouse models for metabolic bone diseases generated by genome-wide ENU mutagenesis.

    PubMed

    Sabrautzki, Sibylle; Rubio-Aliaga, Isabel; Hans, Wolfgang; Fuchs, Helmut; Rathkolb, Birgit; Calzada-Wack, Julia; Cohrs, Christian M; Klaften, Matthias; Seedorf, Hartwig; Eck, Sebastian; Benet-Pagès, Ana; Favor, Jack; Esposito, Irene; Strom, Tim M; Wolf, Eckhard; Lorenz-Depiereux, Bettina; Hrabě de Angelis, Martin

    2012-08-01

    Metabolic bone disorders arise as primary diseases or may be secondary due to a multitude of organ malfunctions. Animal models are required to understand the molecular mechanisms responsible for the imbalances of bone metabolism in disturbed bone mineralization diseases. Here we present the isolation of mutant mouse models for metabolic bone diseases by phenotyping blood parameters that target bone turnover within the large-scale genome-wide Munich ENU Mutagenesis Project. A screening panel of three clinical parameters, also commonly used as biochemical markers in patients with metabolic bone diseases, was chosen. Total alkaline phosphatase activity and total calcium and inorganic phosphate levels in plasma samples of F1 offspring produced from ENU-mutagenized C3HeB/FeJ male mice were measured. Screening of 9,540 mice led to the identification of 257 phenodeviants of which 190 were tested by genetic confirmation crosses. Seventy-one new dominant mutant lines showing alterations of at least one of the biochemical parameters of interest were confirmed. Fifteen mutations among three genes (Phex, Casr, and Alpl) have been identified by positional-candidate gene approaches and one mutation of the Asgr1 gene, which was identified by next-generation sequencing. All new mutant mouse lines are offered as a resource for the scientific community.

  1. Longitudinal evaluation of the metabolic response of a tumor xenograft model to single fraction radiation therapy using magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Tessier, A. G.; Yahya, A.; Larocque, M. P.; Fallone, B. G.; Syme, A.

    2014-09-01

    Proton magnetic resonance spectroscopy (MRS) was used to evaluate the metabolic profile of human glioblastoma multiform brain tumors grown as xenografts in nude mice before, and at multiple time points after single fraction radiation therapy. Tumors were grown over the thigh in 16 mice in this study, of which 5 served as untreated controls and 11 had their tumors treated to 800 cGy with 200 kVp x-rays. Spectra were acquired within 24 h pre-treatment, and then at 3, 7 and 14 d post-treatment using a 9.4 T animal magnetic resonance (MR) system. For the untreated control tumors, spectra (1-2 per mouse) were acquired at different stages of tumor growth. Spectra were obtained with the PRESS pulse sequence using a 3  ×  3 × 3 mm3 voxel. Analysis was performed with the LCModel software platform. Six metabolites were profiled for this analysis: alanine (Ala), myo-inositol (Ins), taurine (Tau), creatine and phosphocreatine (Cr + PCr), glutamine and glutamate (Glu + Gln), and total choline (glycerophosphocholine + phosphocholine) (GPC + PCh). For the treated cohort, most metabolite/water concentration ratios were found to decrease in the short term at 3 and 7 d post-treatment, followed by an increase at 14 d post-treatment toward pre-treatment values. The lowest concentrations were observed at 7 d post-treatment, with magnitudes (relative to pre-treatment concentration ratios) of: 0.42  ±  24.6% (Ala), 0.43  ±  15.3% (Ins), 0.68  ±  27.9% (Tau), 0.52  ±  14.6% (GPC+PCh), 0.49  ±  21.0% (Cr + PCr) and 0.78  ±  24.5% (Glu + Gln). Control animals did not demonstrate any significant correlation between tumor volume and metabolite concentration, indicating that the observed kinetics were the result of the therapeutic intervention. We have demonstrated the feasibility of using MRS to follow multiple metabolic markers over time for the purpose of evaluating therapeutic response of tumors to radiation therapy. This study provides

  2. Tumor cell metabolism: the marriage of molecular genetics and proteomics with cellular intermediary metabolism; proceed with caution!

    PubMed

    Costello, Leslie C; Franklin, Renty B

    2006-11-07

    Metabolic transformations of malignant cells are essential to the development and progression of all cancers. The understanding of the pathogenesis and progression of cancer requires the establishment of the altered genetic/metabolic factors that are essential to the development, growth, and proliferation of the malignant cells. Recognition of this important relationship has resulted in a resurgence of interest in the intermediary metabolism of tumor cells. The role of molecular genetics and proteomics and the application of molecular technology in assessing altered cellular metabolism has become a major area of biomedical research. The contemporary generation of biomedical scientists is exceptionally well trained in all areas of molecular biology and molecular technology, which are now important tools to be applied to the regulation of cellular intermediary metabolism. Simultaneously, the didactic and methodological training associated with the principles and operation of metabolic pathways, enzymology, cellular enzyme activity, and associated biochemical implications has been diminished and often eliminated from the pre- and post-doctoral programs. Interpretations and conclusions of alterations in cellular enzyme activity and associated metabolic pathways based on genetic/proteomic changes can and will result in misrepresentation of important metabolic implications in malignancy and other diseases. It is essential that the genetic/proteomic studies be coupled to biochemical/metabolic cellular events to satisfy the axiom: "genetic transformations and proteomic alterations will have little relevancy to disease processes if the genetic/proteomic alterations are not manifested in altered and impaired cellular and metabolic function". The appropriate marriage of molecular genetics/proteomics with the regulation of cellular intermediary metabolism will provide new revelations and understanding of malignancy that could not be achieved in earlier generations.

  3. Continuous imaging of the blood vessels in tumor mouse dorsal skin window chamber model by using SD-OCT

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Yang, Shaozhuang; Yu, Bin; Wang, Qi; Lin, Danying; Gao, Jian; Zhang, Peiqi; Ma, Yiqun; Qu, Junle; Niu, Hanben

    2016-03-01

    Optical Coherence Tomography (OCT) has been widely applied into microstructure imaging of tissues or blood vessels with a series of advantages, including non-destructiveness, real-time imaging, high resolution and high sensitivity. In this study, a Spectral Domain OCT (SD-OCT) system with higher sensitivity and signal-to-noise ratio (SNR) was built up, which was used to observe the blood vessel distribution and blood flow in the dorsal skin window chamber of the nude mouse tumor model. In order to obtain comparable data, the distribution images of blood vessels were collected from the same mouse before and after tumor injection. In conclusion, in vivo blood vessel distribution images of the tumor mouse model have been continuously obtained during around two weeks.

  4. Imaging of eye tumor in the mouse model of retinoblastoma with spectral-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jiao, Shuliang; Ruggeri, Marco; Wehbe, Hassan; Gregory, Giovanni; Jockovich, Maria E.; Hackam, Abigail; Puliafito, Carmen A.

    2007-02-01

    Noninvasive in vivo examination of the rodent retina without sacrificing the animal is the key to being able to perform longitudinal studies. This allows the monitoring of disease progression and the response to therapies through its entire course in individual animal. A high-speed high resolution three-dimensional spectral-domain OCT is built for non-contact in vivo imaging of rodent retina. The system is able to acquire high quality 3D images of the rodent retina in 2.7 seconds (total imaging time is ~5 minutes). The system was tested on mice with normal retina (B6/SJLF2), mouse model for photoreceptor degeneration (Rho -/-), and mouse model for retinoblastoma (LH BETAT AG). For the first time to our knowledge, 3D image of the tumor in retinoblastoma mouse model was successfully imaged in vivo. By segmenting the tumor boundaries in each frame of the OCT image the volume of the tumor was successfully calculated.

  5. Whole-genome sequencing of a malignant granular cell tumor with metabolic response to pazopanib

    PubMed Central

    Wei, Lei; Liu, Song; Conroy, Jeffrey; Wang, Jianmin; Papanicolau-Sengos, Antonios; Glenn, Sean T.; Murakami, Mitsuko; Liu, Lu; Hu, Qiang; Conroy, Jacob; Miles, Kiersten Marie; Nowak, David E.; Liu, Biao; Qin, Maochun; Bshara, Wiam; Omilian, Angela R.; Head, Karen; Bianchi, Michael; Burgher, Blake; Darlak, Christopher; Kane, John; Merzianu, Mihai; Cheney, Richard; Fabiano, Andrew; Salerno, Kilian; Talati, Chetasi; Khushalani, Nikhil I.; Trump, Donald L.; Johnson, Candace S.; Morrison, Carl D.

    2015-01-01

    Granular cell tumors are an uncommon soft tissue neoplasm. Malignant granular cell tumors comprise <2% of all granular cell tumors, are associated with aggressive behavior and poor clinical outcome, and are poorly understood in terms of tumor etiology and systematic treatment. Because of its rarity, the genetic basis of malignant granular cell tumor remains unknown. We performed whole-genome sequencing of one malignant granular cell tumor with metabolic response to pazopanib. This tumor exhibited a very low mutation rate and an overall stable genome with local complex rearrangements. The mutation signature was dominated by C>T transitions, particularly when immediately preceded by a 5′ G. A loss-of-function mutation was detected in a newly recognized tumor suppressor candidate, BRD7. No mutations were found in known targets of pazopanib. However, we identified a receptor tyrosine kinase pathway mutation in GFRA2 that warrants further evaluation. To the best of our knowledge, this is only the second reported case of a malignant granular cell tumor exhibiting a response to pazopanib, and the first whole-genome sequencing of this uncommon tumor type. The findings provide insight into the genetic basis of malignant granular cell tumors and identify potential targets for further investigation. PMID:27148567

  6. Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR).

    PubMed

    Meyer, Carola W; Reitmeir, Peter; Tschöp, Matthias H

    2015-09-01

    Current comprehensive mouse metabolic phenotyping involves studying energy balance in cohorts of mice via indirect calorimetry, which determines heat release from changes in respiratory air composition. Here, we describe the measurement of daily energy expenditure (DEE) and basal metabolic rate (BMR) in mice. These well-defined metabolic descriptors serve as meaningful first-line read-outs for metabolic phenotyping and should be reported when exploring energy expenditure in mice. For further guidance, the issue of appropriate sample sizes and the frequency of sampling of metabolic measurements is also discussed.

  7. Enriched Environment-induced Maternal Weight Loss Reprograms Metabolic Gene Expression in Mouse Offspring*

    PubMed Central

    Wei, Yanchang; Yang, Cai-Rong; Wei, Yan-Ping; Ge, Zhao-Jia; Zhao, Zhen-Ao; Zhang, Bing; Hou, Yi; Schatten, Heide; Sun, Qing-Yuan

    2015-01-01

    The global prevalence of weight loss is increasing, especially in young women. However, the extent and mechanisms by which maternal weight loss affects the offspring is still poorly understood. Here, using an enriched environment (EE)-induced weight loss model, we show that maternal weight loss improves general health and reprograms metabolic gene expression in mouse offspring, and the epigenetic alterations can be inherited for at least two generations. EE in mothers induced weight loss and its associated physiological and metabolic changes such as decreased adiposity and improved glucose tolerance and insulin sensitivity. Relative to controls, their offspring exhibited improved general health such as reduced fat accumulation, decreased plasma and hepatic lipid levels, and improved glucose tolerance and insulin sensitivity. Maternal weight loss altered gene expression patterns in the liver of offspring with coherent down-regulation of genes involved in lipid and cholesterol biosynthesis. Epigenomic profiling of offspring livers revealed numerous changes in cytosine methylation depending on maternal weight loss, including reproducible changes in promoter methylation over several key lipid biosynthesis genes, correlated with their expression patterns. Embryo transfer studies indicated that oocyte alteration in response to maternal metabolic conditions is a strong factor in determining metabolic and epigenetic changes in offspring. Several important lipid metabolism-related genes have been identified to partially inherit methylated alleles from oocytes. Our study reveals a molecular and mechanistic basis of how maternal lifestyle modification affects metabolic changes in the offspring. PMID:25555918

  8. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome.

    PubMed

    Lai, Hao; Jia, Xiao; Yu, Qiuxiao; Zhang, Chenglu; Qiao, Jie; Guan, Youfei; Kang, Jihong

    2014-11-01

    Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy associated with both reproductive and metabolic disorders. Dehydroepiandrosterone (DHEA) is currently used to induce a PCOS mouse model. High-fat diet (HFD) has been shown to cause obesity and infertility in female mice. The possible effect of an HFD on the phenotype of DHEA-induced PCOS mice is unknown. The aim of the present study was to investigate both reproductive and metabolic features of DHEA-induced PCOS mice fed a normal chow or a 60% HFD. Prepubertal C57BL/6 mice (age 25 days) on the normal chow or an HFD were injected (s.c.) daily with the vehicle sesame oil or DHEA for 20 consecutive days. At the end of the experiment, both reproductive and metabolic characteristics were assessed. Our data show that an HFD did not affect the reproductive phenotype of DHEA-treated mice. The treatment of HFD, however, caused significant metabolic alterations in DHEA-treated mice, including obesity, glucose intolerance, dyslipidemia, and pronounced liver steatosis. These findings suggest that HFD induces distinct metabolic features in DHEA-induced PCOS mice. The combined DHEA and HFD treatment may thus serve as a means of studying the mechanisms involved in metabolic derangements of this syndrome, particularly in the high prevalence of hepatic steatosis in women with PCOS.

  9. Interrogating Tumor Metabolism and Tumor Microenvironments Using Molecular Positron Emission Tomography Imaging. Theranostic Approaches to Improve Therapeutics

    PubMed Central

    Jacobson, Orit

    2013-01-01

    Positron emission tomography (PET) is a noninvasive molecular imaging technology that is becoming increasingly important for the measurement of physiologic, biochemical, and pharmacological functions at cellular and molecular levels in patients with cancer. Formation, development, and aggressiveness of tumor involve a number of molecular pathways, including intrinsic tumor cell mutations and extrinsic interaction between tumor cells and the microenvironment. Currently, evaluation of these processes is mainly through biopsy, which is invasive and limited to the site of biopsy. Ongoing research on specific target molecules of the tumor and its microenvironment for PET imaging is showing great potential. To date, the use of PET for diagnosing local recurrence and metastatic sites of various cancers and evaluation of treatment response is mainly based on [18F]fluorodeoxyglucose ([18F]FDG), which measures glucose metabolism. However, [18F]FDG is not a target-specific PET tracer and does not give enough insight into tumor biology and/or its vulnerability to potential treatments. Hence, there is an increasing need for the development of selective biologic radiotracers that will yield specific biochemical information and allow for noninvasive molecular imaging. The possibility of cancer-associated targets for imaging will provide the opportunity to use PET for diagnosis and therapy response monitoring (theranostics) and thus personalized medicine. This article will focus on the review of non-[18F]FDG PET tracers for specific tumor biology processes and their preclinical and clinical applications. PMID:24064460

  10. Oncogenic and tumor-suppressive mouse models for breast cancer engaging HER2/neu.

    PubMed

    Fry, Elizabeth A; Taneja, Pankaj; Inoue, Kazushi

    2017-02-01

    The human c-ErbB2 (HER2) gene is amplified in ∼20% of human breast cancers (BCs), but the protein is overexpressed in ∼30% of the cases indicating that multiple different mechanisms contribute to HER2 overexpression in tumors. It has long been used as a molecular marker of BC for subcategorization for the prediction of prognosis and determination of therapeutic strategies. In comparison to ER(+) BCs, HER2-positive BCs are more invasive, but the patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors at least at early stages. To understand the pathophysiology of HER2-driven carcinogenesis and test HER2-targeting therapeutic agents in vivo, numerous mouse models have been created that faithfully reproduce HER2(+) BCs in mice. They include MMTV-neu (active mutant or wild type, rat neu or HER2) models, neu promoter-driven neuNT-transgenic mice, neuNT-knock-in mice at the neu locus and doxycycline-inducible neuNT-transgenic models. HER2/neu activates the Phosphatidylinositol-3 kinase-AKT-NF-κB pathway to stimulate the mitogenic cyclin D1/Cdk4-Rb-E2F pathway. Of note, overexpression of HER2 also stimulates the cell autonomous Dmp1-Arf-p53 tumor suppressor pathway to quench oncogenic signals to prevent the emergence of cancer cells. Hence tumor development by MMTV-neu mice was dramatically accelerated in mice that lack Dmp1, Arf or p53 with invasion and metastasis. Expressions of neuNT under the endogenous promoter underwent gene amplification, closely recapitulating human HER2(+) BCs. MMTV-HER2 models have been shown to be useful to test humanized monoclonal antibodies to HER2. These mouse models will be useful for the screening of novel therapeutic agents against BCs with HER2 overexpression.

  11. In vivo MR guided boiling histotripsy in a mouse tumor model evaluated by MRI and histopathology.

    PubMed

    Hoogenboom, Martijn; Eikelenboom, Dylan; den Brok, Martijn H; Veltien, Andor; Wassink, Melissa; Wesseling, Pieter; Dumont, Erik; Fütterer, Jurgen J; Adema, Gosse J; Heerschap, Arend

    2016-06-01

    Boiling histotripsy (BH) is a new high intensity focused ultrasound (HIFU) ablation technique to mechanically fragmentize soft tissue into submicrometer fragments. So far, ultrasound has been used for BH treatment guidance and evaluation. The in vivo histopathological effects of this treatment are largely unknown. Here, we report on an MR guided BH method to treat subcutaneous tumors in a mouse model. The treatment effects of BH were evaluated one hour and four days later with MRI and histopathology, and compared with the effects of thermal HIFU (T-HIFU). The lesions caused by BH were easily detected with T2 w imaging as a hyper-intense signal area with a hypo-intense rim. Histopathological evaluation showed that the targeted tissue was completely disintegrated and that a narrow transition zone (<200 µm) containing many apoptotic cells was present between disintegrated and vital tumor tissue. A high level of agreement was found between T2 w imaging and H&E stained sections, making T2 w imaging a suitable method for treatment evaluation during or directly after BH. After T-HIFU, contrast enhanced imaging was required for adequate detection of the ablation zone. On histopathology, an ablation zone with concentric layers was seen after T-HIFU. In line with histopathology, contrast enhanced MRI revealed that after BH or T-HIFU perfusion within the lesion was absent, while after BH in the transition zone some micro-hemorrhaging appeared. Four days after BH, the transition zone with apoptotic cells was histologically no longer detectable, corresponding to the absence of a hypo-intense rim around the lesion in T2 w images. This study demonstrates the first results of in vivo BH on mouse tumor using MRI for treatment guidance and evaluation and opens the way for more detailed investigation of the in vivo effects of BH. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model.

    PubMed

    Martínez-García, Cristina; Izquierdo, Adriana; Velagapudi, Vidya; Vivas, Yurena; Velasco, Ismael; Campbell, Mark; Burling, Keith; Cava, Fernando; Ros, Manuel; Oresic, Matej; Vidal-Puig, Antonio; Medina-Gomez, Gema

    2012-09-01

    Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD) through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2) knockout (KO) mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27(Kip1) expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ) and parathyroid hormone-related protein (PTHrP) expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1), and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice.

  13. Metabolism of ginger component [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human.

    PubMed

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-05-01

    There are limited data on the metabolism of [6]-shogaol (6S), a major bioactive component of ginger. This study demonstrates metabolism of 6S in liver microsomes from mouse, rat, dog, monkey, and human. The in vitro metabolism of 6S was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with 6S, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E,4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites, M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than 6S. We conclude that 6S is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning preclinical trials toward 6S chemoprevention. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Metabolism of Ginger Component [6]-Shogaol in Liver Microsomes from Mouse, Rat, Dog, Monkey, and Human

    PubMed Central

    Chen, Huadong; Soroka, Dominique; Zhu, Yingdong; Sang, Shengmin

    2013-01-01

    Scope There are limited data on the metabolism of [6]-shogaol, a major bioactive component of ginger. This study demonstrates metabolism of [6]-shogaol in liver microsomes from mouse, rat, dog, monkey, and human. Methods and results The in vitro metabolism of [6]-shogaol was compared among five species using liver microsomes from mouse, rat, dog, monkey, and human. Following incubations with [6]-shogaol, three major reductive metabolites 1-(4'-hydroxy-3'-methoxyphenyl)-4-decen-3-ol (M6), 1-(4′-hydroxy-3′-methoxyphenyl)-decan-3-ol (M9), and 1-(4'-hydroxy-3'-methoxyphenyl)-decan-3-one (M11), as well as two new oxidative metabolites (1E, 4E)-1-(4'-hydroxy-3'-methoxyphenyl)-deca-1,4-dien-3-one (M14) and (E)-1-(4'-hydroxy-3'-methoxyphenyl)-dec-1-en-3-one (M15) were found in all species. The kinetic parameters of M6 in liver microsomes from each respective species were quantified using Michaelis-Menten theory. A broad CYP-450 inhibitor, 1-aminobenzotriazole, precluded the formation of oxidative metabolites M14 and M15, and 18β-glycyrrhetinic acid, an aldo-keto reductase inhibitor, eradicated the formation of the reductive metabolites M6, M9, and M11 in all species. Metabolites M14 and M15 were tested for cancer cell growth inhibition and induction of apoptosis and both showed substantial activity, with M14 displaying greater potency than [6]-shogaol. Conclusion We conclude that [6]-shogaol is metabolized extensively in mammalian species mouse, rat, dog, monkey, and human, and that there are significant interspecies differences to consider when planning pre-clinical trials towards [6]-shogaol chemoprevention. PMID:23322474

  15. Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model

    PubMed Central

    Martínez-García, Cristina; Izquierdo, Adriana; Velagapudi, Vidya; Vivas, Yurena; Velasco, Ismael; Campbell, Mark; Burling, Keith; Cava, Fernando; Ros, Manuel; Orešič, Matej; Vidal-Puig, Antonio; Medina-Gomez, Gema

    2012-01-01

    SUMMARY Individuals with metabolic syndrome are at high risk of developing chronic kidney disease (CKD) through unclear pathogenic mechanisms. Obesity and diabetes are known to induce glucolipotoxic effects in metabolically relevant organs. However, the pathogenic role of glucolipotoxicity in the aetiology of diabetic nephropathy is debated. We generated a murine model, the POKO mouse, obtained by crossing the peroxisome proliferator-activated receptor gamma 2 (PPARγ2) knockout (KO) mouse into a genetically obese ob/ob background. We have previously shown that the POKO mice showed: hyperphagia, insulin resistance, hyperglycaemia and dyslipidaemia as early as 4 weeks of age, and developed a complete loss of normal β-cell function by 16 weeks of age. Metabolic phenotyping of the POKO model has led to investigation of the structural and functional changes in the kidney and changes in blood pressure in these mice. Here we demonstrate that the POKO mouse is a model of renal disease that is accelerated by high levels of glucose and lipid accumulation. Similar to ob/ob mice, at 4 weeks of age these animals exhibited an increased urinary albumin:creatinine ratio and significantly increased blood pressure, but in contrast showed a significant increase in the renal hypertrophy index and an associated increase in p27Kip1 expression compared with their obese littermates. Moreover, at 4 weeks of age POKO mice showed insulin resistance, an alteration of lipid metabolism and glomeruli damage associated with increased transforming growth factor beta (TGFβ) and parathyroid hormone-related protein (PTHrP) expression. At this age, levels of proinflammatory molecules, such as monocyte chemoattractant protein-1 (MCP-1), and fibrotic factors were also increased at the glomerular level compared with levels in ob/ob mice. At 12 weeks of age, renal damage was fully established. These data suggest an accelerated lesion through glucolipotoxic effects in the renal pathogenesis in POKO mice

  16. Int-6, a highly conserved, widely expressed gene, is mutated by mouse mammary tumor virus in mammary preneoplasia.

    PubMed Central

    Marchetti, A; Buttitta, F; Miyazaki, S; Gallahan, D; Smith, G H; Callahan, R

    1995-01-01

    With a unique mouse mammary tumor model system in which mouse mammary tumor virus (MMTV) insertional mutations can be detected during progression from preneoplasia to frank malignancy, including metastasis, we have discovered a new common integration site (designated Int-6) for MMTV in mouse mammary tumors. MMTV was integrated into Int-6 in a mammary hyperplastic outgrowth line, its tumors and metastases, and two independent mammary tumors arising in unrelated mice. The Int-6 gene is ubiquitously expressed as a 1.4-kb RNA species in adult tissues and is detected beginning at day 8 of embryonic development. The nucleotide sequence of Int-6 is unrelated to any of the known genes in the GenBank database. MMTV integrates within introns of the gene in the opposite transcriptional orientation. In each tumor tested, this results in the expression of a truncated Int-6/long terminal repeat (LTR) chimeric RNA species which is terminated at a cryptic termination signal in the MMTV LTR. Since the nonrearranged Int-6 alleles in these tumors contain no mutations, we favor the conclusion that truncation of the Int-6 gene product either biologically activates its function or represents a dominant-negative mutation. PMID:7853537

  17. [The mechanism of anti-tumor immune response against mouse melanoma to xenogeneic vaccination].

    PubMed

    Luo, Feng; Mao, Yong-qiu; Kan, Bing; He, Qiu-Ming; Jiang, Yu; Peng, Feng; Yang, Li; Tian, Ling

    2004-11-01

    To investigate the immunological mechanism for inhibiting melanoma growth in mouse by vaccination with xenogeneic melanocytes. Xenogeneic vaccine was prepared from pig eye melanocytes. By means of indirect ELISA the antibodies against pig melanocytes and B16 melanoma cells in immunized mice sera were detected and the immunoglobulin subclass were analyzed. Then after purification, the immunoglobulins were used for the inhibition of cell proliferation in vitro. Analyses of cross-reactive antigen in both pig melanocytes and B16 melanoma cells were performed by Western blot. Xenogeneic vaccine was used before B16 melanoma challenge in C57 BL/c mice and then the growth of tumor was monitored. Meanwhile, other mice immunized with xenogeneic vaccine were depleted of NK cells or CD4+ or CD8+ T lymphocytes. The antibodies against pig melanocytes and B16 melanoma cells in mice sera were not detected by indirect ELISA until 2 weeks after first xenogeneic vaccination, and after the first finding, the antibody titers increased with the time of immunization. The anti-tumor activity and production of autoantibodies, conspicuously those of the elevated IgG, could be abrogated by the depletion of CD4+ T lymphocytes. The cross-reactive antigen with 180 kda protein in both pig melanocytes and B16 melanoma cells was confirmed. Xenogeneic vaccination resulted in inhibition of tumor growth in 90% of the immunized mice. The protective immune response elicited in this fashion was dispelled in the mice depleted of CD4+ T lymphocytes. However this response was found in 70% of the mice depleted of CD8+ T lymphocytes, and the depletion NK cells did not influence the anti-tumor effect of the vaccine. The anti-tumor immune response is capable of inhibiting melanoma growth; both humoral immunity and cellular immunity could be induced by xenogeneic melanocytes vaccination. This immune response is mainly mediated by CD4+ T lymphocytes.

  18. Potent suppressive activity of chlorophyll a and b from green tea (Camellia sinensis) against tumor promotion in mouse skin.

    PubMed

    Higashi-Okai, K; Okai, Y

    1998-09-01

    Potent antigenotoxic and anti-tumor promoting activities of chlorophyll a from green tea (camellia sinensis) have been shown using in vitro cell culture experiments (Okai Y. et al. (1996) Mutation Res., 370, 11-17). In the present study, the authors analyzed in vivo effects of chlorophyll a and b from green tea on tumor promotion in mouse skin in the following ways. 1. When chlorophyll a and b from green tea were applied before each treatment by a tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA) on BALB/c mouse skin initiated by 7, 12-dimethylbenz [a] an-thracene (DMBA), they caused significant suppression in a dose-dependent manner against BALB/c mouse skin tumorigenesis. 2. Chlorophyll a and b showed significant suppressive effects against TPA-induced inflammatory reaction such as edema formation in BALB/c mouse ear skin in a dose-dependent fashion. These results suggest that chlorophyll a and b possess potent suppressive activities against tumor promotion in mouse skin.

  19. Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry.

    PubMed

    Lee, Sangmin; Koo, Heebeom; Na, Jin Hee; Han, Seung Jin; Min, Hyun Su; Lee, So Jin; Kim, Sun Hwa; Yun, Seok Hyun; Jeong, Seo Young; Kwon, Ick Chan; Choi, Kuiwon; Kim, Kwangmeyung

    2014-03-25

    Tumor-targeting strategies for nanoparticles have been predominantly based on optimization of physical properties or conjugation with biological ligands. However, their tumor-targeting abilities remain limited and insufficient. Furthermore, traditional biological binding molecules have intrinsic limitations originating from the limited amount of cellular receptors and the heterogeneity of tumor cells. Our two-step in vivo tumor-targeting strategy for nanoparticles is based on metabolic glycoengineering and click chemistry. First, an intravenous injection of precursor-loaded glycol chitosan nanoparticles generates azide groups on tumor tissue specifically by the enhanced permeation and retention (EPR) effect followed by metabolic glycoengineering. These 'receptor-like' chemical groups then enhance the tumor-targeting ability of drug-containing nanoparticles by copper-free click chemistry in vivo during a second intravenous injection. The advantage of this protocol over traditional binding molecules is that there are significantly more binding molecules on the surface of most tumor cells regardless of cell type. The subsequent enhanced tumor-targeting ability can significantly enhance the cancer therapeutic efficacy in animal studies.

  20. Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells

    PubMed Central

    Wang, Yuan Yuan; Attané, Camille; Milhas, Delphine; Dirat, Béatrice; Dauvillier, Stéphanie; Guerard, Adrien; Gilhodes, Julia; Lazar, Ikrame; Alet, Nathalie; Laurent, Victor; Le Gonidec, Sophie; Hervé, Caroline; Bost, Frédéric; Ren, Guo Sheng; Bono, Françoise; Escourrou, Ghislaine; Prentki, Marc; Nieto, Laurence; Valet, Philippe

    2017-01-01

    In breast cancer, a key feature of peritumoral adipocytes is their loss of lipid content observed both in vitro and in human tumors. The free fatty acids (FFAs), released by adipocytes after lipolysis induced by tumor secretions, are transferred and stored in tumor cells as triglycerides in lipid droplets. In tumor cell lines, we demonstrate that FFAs can be released over time from lipid droplets through an adipose triglyceride lipase–dependent (ATGL-dependent) lipolytic pathway. In vivo, ATGL is expressed in human tumors where its expression correlates with tumor aggressiveness and is upregulated by contact with adipocytes. The released FFAs are then used for fatty acid β-oxidation (FAO), an active process in cancer but not normal breast epithelial cells, and regulated by coculture with adipocytes. However, in cocultivated cells, FAO is uncoupled from ATP production, leading to AMPK/acetyl-CoA carboxylase activation, a circle that maintains this state of metabolic remodeling. The increased invasive capacities of tumor cells induced by coculture are completely abrogated by inhibition of the coupled ATGL-dependent lipolysis/FAO pathways. These results show a complex metabolic symbiosis between tumor-surrounding adipocytes and cancer cells that stimulate their invasiveness, highlighting ATGL as a potential therapeutic target to impede breast cancer progression. PMID:28239646

  1. Gender differences in methionine accumulation and metabolism in freshly isolated mouse hepatocytes: Potential roles in toxicity

    SciTech Connect

    Dever, Joseph T.; Elfarra, Adnan A.

    2009-05-01

    L-Methionine (Met) is hepatotoxic at high concentrations. Because Met toxicity in freshly isolated mouse hepatocytes is gender-dependent, the goal of this study was to assess the roles of Met accumulation and metabolism in the increased sensitivity of male hepatocytes to Met toxicity compared with female hepatocytes. Male hepatocytes incubated with Met (30 mM) at 37 {sup o}C exhibited higher levels of intracellular Met at 0.5, 1.0, and 1.5 h, respectively, compared to female hepatocytes. Conversely, female hepatocytes had higher levels of S-adenosyl-L-methionine compared to male hepatocytes. Female hepatocytes also exhibited higher L-methionine-L-sulfoxide levels relative to control hepatocytes, whereas the increases in L-methionine-D-sulfoxide (Met-D-O) levels were similar in hepatocytes of both genders. Addition of aminooxyacetic acid (AOAA), an inhibitor of Met transamination, significantly increased Met levels at 1.5 h and increased Met-D-O levels at 1.0 and 1.5 h only in Met-exposed male hepatocytes. No gender differences in cytosolic Met transamination activity by glutamine transaminase K were detected. However, female mouse liver cytosol exhibited higher methionine-DL-sulfoxide (MetO) reductase activity than male mouse liver cytosol at low (0.25 and 0.5 mM) MetO concentrations. Collectively, these results suggest that increased cellular Met accumulation, decreased Met transmethylation, and increased Met and MetO transamination in male mouse hepatocytes may be contributing to the higher sensitivity of the male mouse hepatocytes to Met toxicity in comparison with female mouse hepatocytes.

  2. Gender differences in methionine accumulation and metabolism in freshly isolated mouse hepatocytes: potential roles in toxicity.

    PubMed

    Dever, Joseph T; Elfarra, Adnan A

    2009-05-01

    L-methionine (Met) is hepatotoxic at high concentrations. Because Met toxicity in freshly isolated mouse hepatocytes is gender-dependent, the goal of this study was to assess the roles of Met accumulation and metabolism in the increased sensitivity of male hepatocytes to Met toxicity compared with female hepatocytes. Male hepatocytes incubated with Met (30 mM) at 37 degrees C exhibited higher levels of intracellular Met at 0.5, 1.0, and 1.5 h, respectively, compared to female hepatocytes. Conversely, female hepatocytes had higher levels of S-adenosyl-L-methionine compared to male hepatocytes. Female hepatocytes also exhibited higher L-methionine-L-sulfoxide levels relative to control hepatocytes, whereas the increases in L-methionine-D-sulfoxide (Met-D-O) levels were similar in hepatocytes of both genders. Addition of aminooxyacetic acid (AOAA), an inhibitor of Met transamination, significantly increased Met levels at 1.5 h and increased Met-d-O levels at 1.0 and 1.5 h only in Met-exposed male hepatocytes. No gender differences in cytosolic Met transamination activity by glutamine transaminase K were detected. However, female mouse liver cytosol exhibited higher methionine-dl-sulfoxide (MetO) reductase activity than male mouse liver cytosol at low (0.25 and 0.5 mM) MetO concentrations. Collectively, these results suggest that increased cellular Met accumulation, decreased Met transmethylation, and increased Met and MetO transamination in male mouse hepatocytes may be contributing to the higher sensitivity of the male mouse hepatocytes to Met toxicity in comparison with female mouse hepatocytes.

  3. Spatio-temporal Model of Xenobiotic Distribution and Metabolism in an in Silico Mouse Liver Lobule

    NASA Astrophysics Data System (ADS)

    Fu, Xiao; Sluka, James; Clendenon, Sherry; Glazier, James; Ryan, Jennifer; Dunn, Kenneth; Wang, Zemin; Klaunig, James

    Our study aims to construct a structurally plausible in silico model of a mouse liver lobule to simulate the transport of xenobiotics and the production of their metabolites. We use a physiologically-based model to calculate blood-flow rates in a network of mouse liver sinusoids and simulate transport, uptake and biotransformation of xenobiotics within the in silico lobule. Using our base model, we then explore the effects of variations of compound-specific (diffusion, transport and metabolism) and compound-independent (temporal alteration of blood flow pattern) parameters, and examine their influence on the distribution of xenobiotics and metabolites. Our simulations show that the transport mechanism (diffusive and transporter-mediated) of xenobiotics and blood flow both impact the regional distribution of xenobiotics in a mouse hepatic lobule. Furthermore, differential expression of metabolic enzymes along each sinusoid's portal to central axis, together with differential cellular availability of xenobiotics, induce non-uniform production of metabolites. Thus, the heterogeneity of the biochemical and biophysical properties of xenobiotics, along with the complexity of blood flow, result in different exposures to xenobiotics for hepatocytes at different lobular locations. We acknowledge support from National Institute of Health GM 077138 and GM 111243.

  4. Enhanced oncogenic behavior of human and mouse cells after cellular hybridization with Burkitt tumor cells.

    PubMed Central

    Glaser, R; Ablashi, D V; Nonoyama, M; Henle, W; Easton, J

    1977-01-01

    Studies were made of the expression of the Epstein-Barr virus (EBV) in somatic hybrids of Burkitt tumor cells and human or mouse cells to determine whether EBV genetic information associated with the capacity to transform leukocytes of human and non-human primates could be maintained and expressed in nonlymphoblastoid cells. Data obtained thus far suggest that at least one characteristic associated with cellular transformation (loss of contact inhibition) is expressed only in nonlymphoblastoid cells in which the EBV genome is maintained. In addition, we have demonstrated that human epithelial/Burkitt hybrid cells (D98/HR-1 and D98/Raji) are more oncogenic in nude (athymic) mice than are cells of the human epithelial parental line, D98, or one of the Burkitt lymphoblastoid parent cell lines (Raji); the HR-1 Burkitt parent cell line was as oncogenic as the hybrid cell lines but the time required to induce tumors was much longer. Thus, human epithelial cells show alteration of growth properties in vitro and in vivo after cellular hybridization with Burkitt tumor cells. Images PMID:196293

  5. Increased Skin Tumor Incidence and Keratinocyte Hyper-Proliferation in a Mouse Model of Down Syndrome

    PubMed Central

    Yang, Annan; Currier, Duane; Poitras, Jennifer L.; Reeves, Roger H.

    2016-01-01

    Down syndrome (DS) is a genetic disorder caused by the presence of an extra copy of human chromosome 21 (Hsa21). People with DS display multiple clinical traits as a result of the dosage imbalance of several hundred genes. While many outcomes of trisomy are deleterious, epidemiological studies have shown a significant risk reduction for most solid tumors in DS. Reduced tumor incidence has also been demonstrated in functional studies using trisomic DS mouse models. Therefore, it was interesting to find that Ts1Rhr trisomic mice developed more papillomas than did their euploid littermates in a DMBA-TPA chemical carcinogenesis paradigm. Papillomas in Ts1Rhr mice also proliferated faster. The increased proliferation was likely caused by a stronger response of trisomy to TPA induction. Treatment with TPA caused hyperkeratosis to a greater degree in Ts1Rhr mice than in euploid, reminiscent of hyperkeratosis seen in people with DS. Cultured trisomic keratinocytes also showed increased TPA-induced proliferation compared to euploid controls. These outcomes suggest that altered gene expression in trisomy could elevate a proliferation signalling pathway. Gene expression analysis of cultured keratinocytes revealed upregulation of several trisomic and disomic genes may contribute to this hyperproliferation. The contributions of these genes to hyper-proliferation were further validated in a siRNA knockdown experiment. The unexpected findings reported here add a new aspect to our understanding of tumorigenesis with clinical implications for DS and demonstrates the complexity of the tumor repression phenotype in this frequent condition. PMID:26752700

  6. Induction of megakaryocytic colony-stimulating activity in mouse skin by inflammatory agents and tumor promoters

    SciTech Connect

    Clark, D.A.; Dessypris, E.N.; Koury, M.J.

    1987-03-01

    The production of megakaryocytic colony-stimulating activity (MEG-CSA) was assayed in acetic acid extracts of skin from mice topically treated with inflammatory and tumor-promoting agents. A rapid induction of MEG-CSA was found in skin treated both with phorbol 12-myristate 13-acetate (PMA), a strong tumor promoter, and with mezerein, a weak tumor promoter, but no induction was found in untreated skin. The time course of induction of MEG-CSA following treatment of skin with PMA or mezerein was very similar to that previously demonstrated for the induction of granulocyte-macrophage colony-stimulating activity in mouse skin by these agents. The induced MEG-CSA was found in both the epidermis and the dermis. Pretreatment of the skin with US -methasone abrogated the MEG-CSA induction. The cell number response curve suggests that the MEG-CSA acts directly on the progenitor cells of the megakaryocyte colonies. That topical administration of diterpene esters results in the rapid, local induction of MEG-CSA which can be blocked by US -methasone pretreatment suggests a mechanism for the thrombocytosis associated with some inflammatory states. The indirect action in which diterpene esters induce in certain cells the production or release of growth regulatory factors for other cell types may also aid in understanding their carcinogenic properties.

  7. Prolactin effects on the dietary regulation of mouse mammary tumor virus proviral DNA expression.

    PubMed Central

    Hamada, N; Engelman, R W; Tomita, Y; Chen, R F; Iwai, H; Good, R A; Day, N K

    1990-01-01

    Chronic energy-intake restriction inhibits mouse mammary tumor virus (MMTV)-induced mammary tumors in C3H/Ou mice by greater than 90%. We have shown that associated with suppression of mammary tumorigenesis there is a reduction or inhibition of circulating prolactin, MMTV particles expressed, and MMTV mRNA transcription in mammary glands (and in most organs tested). To understand the concerted action of prolactin, energy-consumption level, and MMTV on inducing mammary tumors, experiments were designed to control prolactin and energy levels in order to evaluate their effects on MMTV mRNA expression. Mice on restricted diets were grafted with adenohypophyses, and mice fed ad libitum were treated with the dopaminomimetic agent octahydrobenzo [g]quinoline. Adenohypophyseal grafting significantly increased prolactin in dietary (energy)-restricted mice, and this effect was associated with an increase in MMTV mRNA expression within the mammary gland; a linear correlation between prolactin levels and MMTV mRNA expression in the mammary gland was found. Conversely, elimination of the nocturnal peak of circulating prolactin by i.p. injection of dopaminomimetic octahydrobenzo [g]quinoline to mice fed ad libitum delayed (by 8 weeks) and reduced (even as long as 25 weeks) mammary gland MMTV mRNA expression. These findings associate prolactin influences with MMTV mRNA production in mice and help explain the link between chronic energy-intake restriction and reduced MMTV gene expression. Images PMID:1975696

  8. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR

    PubMed Central

    Abt, Melissa A.; Grek, Christina L.; Ghatnekar, Gautam S.; Yeh, Elizabeth S.

    2016-01-01

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death 1. Common sites of metastatic spread include lung, lymph node, brain, and bone 2. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level 3–6. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level 7, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue. PMID:26862835

  9. Evaluation of Lung Metastasis in Mouse Mammary Tumor Models by Quantitative Real-time PCR.

    PubMed

    Abt, Melissa A; Grek, Christina L; Ghatnekar, Gautam S; Yeh, Elizabeth S

    2016-01-29

    Metastatic disease is the spread of malignant tumor cells from the primary cancer site to a distant organ and is the primary cause of cancer associated death. Common sites of metastatic spread include lung, lymph node, brain, and bone. Mechanisms that drive metastasis are intense areas of cancer research. Consequently, effective assays to measure metastatic burden in distant sites of metastasis are instrumental for cancer research. Evaluation of lung metastases in mammary tumor models is generally performed by gross qualitative observation of lung tissue following dissection. Quantitative methods of evaluating metastasis are currently limited to ex vivo and in vivo imaging based techniques that require user defined parameters. Many of these techniques are at the whole organism level rather than the cellular level. Although newer imaging methods utilizing multi-photon microscopy are able to evaluate metastasis at the cellular level, these highly elegant procedures are more suited to evaluating mechanisms of dissemination rather than quantitative assessment of metastatic burden. Here, a simple in vitro method to quantitatively assess metastasis is presented. Using quantitative Real-time PCR (QRT-PCR), tumor cell specific mRNA can be detected within the mouse lung tissue.

  10. Transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

    PubMed

    Liu, Bigang; Gong, Shuai; Li, Qiuhui; Chen, Xin; Moore, John; Suraneni, Mahipal V; Badeaux, Mark D; Jeter, Collene R; Shen, Jianjun; Mehmood, Rashid; Fan, Qingxia; Tang, Dean G

    2017-08-08

    This project was undertaken to address a critical cancer biology question: Is overexpression of the pluripotency molecule Nanog sufficient to initiate tumor development in a somatic tissue? Nanog1 is critical for the self-renewal and pluripotency of ES cells, and its retrotransposed homolog, NanogP8 is preferentially expressed in somatic cancer cells. Our work has shown that shRNA-mediated knockdown of NanogP8 in prostate, breast, and colon cancer cells inhibits tumor regeneration whereas inducible overexpression of NanogP8 promotes cancer stem cell phenotypes and properties. To address the key unanswered question whether tissue-specific overexpression of NanogP8 is sufficient to promote tumor development in vivo, we generated a NanogP8 transgenic mouse model, in which the ARR2PB promoter was used to drive NanogP8 cDNA. Surprisingly, the ARR2PB-NanogP8 transgenic mice were viable, developed normally, and did not form spontaneous tumors in >2 years. Also, both wild type and ARR2PB-NanogP8 transgenic mice responded similarly to castration and regeneration and castrated ARR2PB-NanogP8 transgenic mice also did not develop tumors. By crossing the ARR2PB-NanogP8 transgenic mice with ARR2PB-Myc (i.e., Hi-Myc) mice, we found that the double transgenic (i.e., ARR2PB-NanogP8; Hi-Myc) mice showed similar tumor incidence and histology to the Hi-Myc mice. Interestingly, however, we observed white dots in the ventral lobes of the double transgenic prostates, which were characterized as overgrown ductules/buds featured by crowded atypical Nanog-expressing luminal cells. Taken together, our present work demonstrates that transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

  11. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer

    PubMed Central

    Walsh, Alex J.; Cook, Rebecca S.; Sanders, Melinda E.; Aurisicchio, Luigi; Ciliberto, Gennaro; Arteaga, Carlos L.; Skala, Melissa C.

    2014-01-01

    There is a need for technologies to predict the efficacy of cancer treatment in individual patients. Here we show that optical metabolic imaging of organoids derived from primary tumors can predict therapeutic response of xenografts and measure anti-tumor drug responses in human-tumor derived organoids. Optical metabolic imaging quantifies the fluorescence intensity and lifetime of NADH and FAD, co-enzymes of metabolism. As early as 24 hours after treatment with clinically relevant anti-cancer drugs, the optical metabolic imaging index of responsive organoids decreased (p<0.001) and was further reduced when effective therapies were combined (p<5×10–6), with no change in drug-resistant organoids. Drug response in xenograft-derived organoids was validated with tumor growth measurements in vivo and stains for proliferation and apoptosis. Heterogeneous cellular responses to drug treatment were also resolved in organoids. Optical metabolic imaging shows potential as a high-throughput screen to test the efficacy of a panel of drugs to select optimal drug combinations. PMID:25100563

  12. T cell-mediated antitumor immune response eliminates skin tumors induced by mouse papillomavirus, MmuPV1.

    PubMed

    Joh, Joongho; Chilton, Paula M; Wilcher, Sarah A; Zahin, Maryam; Park, Jino; Proctor, Mary L; Ghim, Shin-Je; Jenson, Alfred B

    2017-09-19

    Previous studies of naturally occurring mouse papillomavirus (PV) MmuPV1-induced tumors in B6.Cg-Foxn1(nu/nu) mice suggest that T cell deficiency is necessary and sufficient for the development of such tumors. To confirm this, MmuPV1-induced tumors were transplanted from T cell-deficient mice into immunocompetent congenic mice. Consequently, the tumors regressed and eventually disappeared. The elimination of MmuPV1-infected skin/tumors in immunocompetent mice was consistent with the induction of antitumor T cell immunity. This was confirmed by adoptive cell experiments using hyperimmune splenocytes collected from graft-recipient mice. In the present study, such splenocytes were injected into T cell-deficient mice infected with MmuPV1, and they eliminated both early-stage and fully formed tumors. We clearly show that anti-tumor T cell immunity activated during tumor regression in immunocompetent mice effectively eliminates tumors developing in T cell-deficient congenic mice. The results corroborate the notion that PV-induced tumors are strongly linked to the immune status of the host, and that PV antigens are major anti-tumor antigens. Successful anti-PV T cell responses should, therefore, lead to effective anti-tumor immune therapy in human PV-infected patients. Copyright © 2017. Published by Elsevier Inc.

  13. Energy transfer in "parasitic" cancer metabolism: mitochondria are the powerhouse and Achilles' heel of tumor cells.

    PubMed

    Martinez-Outschoorn, Ubaldo E; Pestell, Richard G; Howell, Anthony; Tykocinski, Mark L; Nagajyothi, Fnu; Machado, Fabiana S; Tanowitz, Herbert B; Sotgia, Federica; Lisanti, Michael P

    2011-12-15

    It is now widely recognized that the tumor microenvironment promotes cancer cell growth and metastasis via changes in cytokine secretion and extracellular matrix remodeling. However, the role of tumor stromal cells in providing energy for epithelial cancer cell growth is a newly emerging paradigm. For example, we and others have recently proposed that tumor growth and metastasis is related to an energy imbalance. Host cells produce energy-rich nutrients via catabolism (through autophagy, mitophagy, and aerobic glycolysis), which are then transferred to cancer cells to fuel anabolic tumor growth. Stromal cell-derived L-lactate is taken up by cancer cells and is used for mitochondrial oxidative phosphorylation (OXPHOS) to produce ATP efficiently. However, "parasitic" energy transfer may be a more generalized mechanism in cancer biology than previously appreciated. Two recent papers in Science and Nature Medicine now show that lipolysis in host tissues also fuels tumor growth. These studies demonstrate that free fatty acids produced by host cell lipolysis are re-used via beta-oxidation (beta-OX) in cancer cell mitochondria. Thus, stromal catabolites (such as lactate, ketones, glutamine and free fatty acids) promote tumor growth by acting as high-energy onco-metabolites. As such, host catabolism, via autophagy, mitophagy and lipolysis, may explain the pathogenesis of cancer-associated cachexia and provides exciting new druggable targets for novel therapeutic interventions. Taken together, these findings also suggest that tumor cells promote their own growth and survival by behaving as a "parasitic organism." Hence, we propose the term "Parasitic Cancer Metabolism" to describe this type of metabolic coupling in tumors. Targeting tumor cell mitochondria (OXPHOS and beta-OX) would effectively uncouple tumor cells from their hosts, leading to their acute starvation. In this context, we discuss new evidence that high-energy onco-metabolites (produced by the stroma) can

  14. Metabolic Effects of Bariatric Surgery in Mouse Models of Circadian Disruption

    PubMed Central

    Arble, Deanna M.; Sandoval, Darleen A.; Turek, Fred W.; Woods, Stephen C.; Seeley, Randy J.

    2015-01-01

    Background/Objectives Mounting evidence supports a link between circadian disruption and metabolic disease. Humans with circadian disruption (e.g., night-shift workers) have an increased risk of obesity and cardiometabolic diseases compared to the non-disrupted population. However, it is unclear if the obesity and obesity-related disorders associated with circadian disruption respond to therapeutic treatments as well as individuals with other types of obesity. Subjects/Methods Here, we test the effectiveness of the commonly used bariatric surgical procedure, Vertical Sleeve Gastrectomy (VSG) in mouse models of genetic and environmental circadian disruption. Results VSG led to a reduction in body weight and fat mass in both ClockΔ19 mutant and constant-light mouse models (P < .05), resulting in an overall metabolic improvement independent of circadian disruption. Interestingly, the decrease in body weight occurred without altering diurnal feeding or activity patterns (P > .05). Within circadian-disrupted models, VSG also led to improved glucose tolerance and lipid handling (P < .05). Conclusions Together these data demonstrate that VSG is an effective treatment for the obesity associated with circadian disruption, and that the potent effects of bariatric surgery are orthogonal to circadian biology. However, since the effects of bariatric surgery are independent of circadian disruption, VSG cannot be considered a cure for circadian disruption. These data have important implications for circadian-disrupted obese patients. Moreover, these results reveal new information about the metabolic pathways governing the effects of bariatric surgery as well as of circadian disruption. PMID:25869599

  15. Vitamin D, intermediary metabolism and prostate cancer tumor progression

    PubMed Central

    Wang, Wei-Lin W.; Tenniswood, Martin

    2014-01-01

    Epidemiological data have demonstrated an inverse association between serum vitamin D3 levels, cancer incidence and related mortality. However, the effects of vitamin D on prostate cancer biology and its utility for prevention of prostate cancer progression are not as well-defined. The data are often conflicting: some reports suggest that vitamin D3 induces apoptosis in androgen dependent prostate cancer cell lines, while others suggest that vitamin D3 only induces cell cycle arrest. Recent molecular studies have identified an extensive synergistic crosstalk between the vitamin D- and androgen-mediated mRNA and miRNA expression, adding an additional layer of post-transcriptional regulation to the known VDR- and AR-regulated gene activation. The Warburg effect, the inefficient metabolic pathway that converts glucose to lactate for rapid energy generation, is a phenomenon common to many different types of cancer. This process supports cell proliferation and promotes cancer progression via alteration of glucose, glutamine and lipid metabolism. Prostate cancer is a notable exception to this general process since the metabolic switch that occurs early during malignancy is the reverse of the Warburg effect. This “anti-Warburg effect” is due to the unique biology of normal prostate cells that harbor a truncated TCA cycle that is required to produce and secret citrate. In prostate cancer cells, the TCA cycle activity is restored and citrate oxidation is used to produce energy for cancer cell proliferation. 1,25(OH)2D3 and androgen together modulates the TCA cycle via transcriptional regulation of zinc transporters, suggesting that 1,25(OH)2D3 and androgen maintain normal prostate metabolism by blocking citrate oxidation. These data demonstrate the importance of androgens in the anti-proliferative effect of vitamin D in prostate cancer and highlight the importance of understanding the crosstalk between these two signaling pathways. PMID:24860512

  16. Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 1: mode of action studies in the mouse.

    PubMed

    Green, Trevor; Toghill, Alison; Lee, Robert; Waechter, Felix; Weber, Edgar; Noakes, James

    2005-07-01

    Thiamethoxam, a neonicotinoid insecticide, which is not mutagenic either in vitro or in vivo, caused an increased incidence of liver tumors in mice when fed in the diet for 18 months at concentrations in the range 500 to 2500 ppm. A number of dietary studies of up to 50 weeks duration have been conducted in order to identify the mode of action for the development of the liver tumors seen at the end of the cancer bioassay. Both thiamethoxam and its major metabolites have been tested in these studies. Over the duration of a 50-week thiamethoxam dietary feeding study in mice, the earliest change, within one week, is a marked reduction (by up to 40%) in plasma cholesterol. This was followed 10 weeks later by evidence of liver toxicity including single cell necrosis and an increase in apoptosis. After 20 weeks there was a significant increase in hepatic cell replication rates. All of these changes persisted from the time they were first observed until the end of the study at 50 weeks. They occurred in a dose-dependent manner and were only observed at doses (500, 1250, 2500 ppm) where liver tumors were increased in the cancer bioassay. There was a clear no-effect level of 200 ppm. The changes seen in this study are consistent with the development of liver cancer in mice and form the basis of the mode of action. When the major metabolites of thiamethoxam, CGA322704, CGA265307, and CGA330050 were tested in dietary feeding studies of up to 20 weeks duration, only metabolite CGA330050 induced the same changes as those seen in the liver in the thiamethoxam feeding study. It was concluded that thiamethoxam is hepatotoxic and hepatocarcinogenic as a result of its metabolism to CGA330050. Metabolite CGA265307 was also shown to be an inhibitor of inducible nitric oxide synthase and to increase the hepatotoxicity of carbon tetrachloride. It is proposed that CGA265307, through its effects on nitric oxide synthase, exacerbates the toxicity of CGA330050 in thiamethoxam treated mice.

  17. Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using Genetically Engineered Mouse Models and Human Circulating Tumor Cells

    DTIC Science & Technology

    2016-12-01

    ABT-263/AZD8055 treatment (Fig. 3D) were performed within the same experiment. Traditional human cell-line xenograft experiments 6-10 week-old... performed on human cell lines, following mouse sacrifice and tumor collection, tissue was fixed in paraformaldehyde overnight, and stored in 70% EtOH until...Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING ORGANIZATION: Massachusetts General Hospital

  18. Nuclear receptor CAR-regulated expression of the FAM84A gene during the development of mouse liver tumors.

    PubMed

    Kamino, Hiroki; Yamazaki, Yuichi; Saito, Kosuke; Takizawa, Daichi; Kakizaki, Satoru; Moore, Rick; Negishi, Masahiko

    2011-06-01

    The nuclear xenobiotic receptor CAR is a phenobarbital (PB)-activated transcription factor. Using a mouse model of two-step liver tumorigenesis, in which tumor growth was initiated by diethyl nitrosamine (DEN) and promoted by chronic treatment with PB, we previously demonstrated that tumors developed only in the presence of CAR. Here, we have identified the FAM84A (family with sequence similarity 84, member A) gene as a CAR-regulated gene that is over-expressed during development of phenobarbital-promoted mouse liver tumors. FAM84A mRNA was induced in the liver of DEN/PB-treated mice prior to the development of liver tumors and this induction continued in the non-tumor as well as tumor tissues of a tumor-bearing liver. Western blotting demonstated that FAM84A protein expression increased in mouse liver after PB treatment; however, the FAM84A protein in liver and liver tumors was not phosphorylated at the serine 38 residue, which has been reported to correlate with morphological changes in cells. Immunohistochemistry analysis revealed the cytoplasmic localization of FAM84A protein and its expression during tumor development in normal tissues (especially in hepatocytes around the central vein), eosinophilic foci, adenomas and carcinomas. HepG2 cell-based reporter assays indicated that CAR activated the FAM84A promoter. Exogenous over-expression of FAM84A in HepG2 cells resulted in increased cell migration. The physiological function of FAM84A remains unknown, but our results suggest that FAM84A is up-regulated by CAR during the development of liver tumors, and may play an important role in the progression of liver cancer by increasing cell migration.

  19. Expression of slow skeletal TnI in adult mouse hearts confers metabolic protection to ischemia

    PubMed Central

    Pound, Kayla M.; Arteaga, Grace M.; Fasano, Mathew; Wilder, Tanganyika; Fischer, Susan K.; Warren, Chad M.; Wende, Adam R.; Farjah, Mariam; Abel, E. Dale; Solaro, R. John; Lewandowski, E. Douglas

    2011-01-01

    Changes in metabolic and myofilament phenotypes coincide in developing hearts. Posttranslational modification of sarcomere proteins influences contractility, affecting the energetic cost of contraction. However, metabolic adaptations to sarcomeric phenotypes are not well understood, particularly during pathophysiological stress. This study explored metabolic adaptations to expression of the fetal, slow skeletal muscle troponin I (ssTnI). Hearts expressing ssTnI exhibited no significant ATP loss during 5 minutes of global ischemia, while non-transgenic littermates (NTG) showed continual ATP loss. At 7 min ischemia TG-ssTnI hearts retained 80±12% of ATP vs. 49±6% in NTG (P<0.05). Hearts expressing ssTnI also had increased AMPK phosphorylation. The mechanism of ATP preservation was augmented glycolysis. Glycolytic end products (lactate and alanine) were 38% higher in TG-ssTnI than NTG at 2 min and 27% higher at 5 min. This additional glycolysis was supported exclusively by exogenous glucose, and not glycogen. Thus, expression of a fetal myofilament protein in adult mouse hearts induced elevated anaerobic ATP production during ischemia via metabolic adaptations consistent with the resistance to hypoxia of fetal hearts. The general findings hold important relevance to both our current understanding of the association between metabolic and contractile phenotypes and the potential for invoking cardioprotective mechanisms against ischemic stress. PMID:21640727

  20. Targeting Forkhead box O1 from the concept to metabolic diseases: lessons from mouse models.

    PubMed

    Cheng, Zhiyong; White, Morris F

    2011-02-15

    Forkhead box O (FOXO) transcription factors have been implicated in regulating the metabolism, cellular proliferation, stress resistance, apoptosis, and longevity. Through the insulin receptor substrate → phosphoinositide 3-kinase → Akt signal cascade, FOXO integrates insulin action with the systemic nutrient and energy homeostasis. Activation of FOXO1 in liver induces gluconeogenesis via phosphoenolpyruvate carboxykinase (PEPCK)/glucose 6-phosphate pathway, and disrupts mitochondrial metabolism and lipid metabolism via heme oxygenase 1/sirtuin 1/Ppargc1α pathway. In skeletal muscle, FOXO1 activation underpins the carbohydrate/lipid switch during fasting state. Inhibition of FOXO1 under physiological conditions accounts for maintenance of skeletal muscle mass/function and adipose differentiation. In pancreatic β-cells, nuclear translocation of FOXO1 antagonizes pancreatic and duodenal homeobox 1 and attenuates β-cells proliferation and insulin secretion. Regardless, FOXO1 promotes the proliferation of β-cells through induction of Cyclin D1 in low nutrition, and elicits antioxidant mechanism to protect against β-cell failure during oxidative insults. In the brain, FOXO1 controls food intake through transcriptional regulation of the orexigenic neuropeptide Y, agouti-related protein, and carboxypeptidase E. In this article, we review the role of FOXO1 in the regulation of metabolism and energy expenditure based on recent findings from mouse models, and discuss the therapeutic value of targeting FOXO1 in metabolic diseases.

  1. Targeting Forkhead Box O1 from the Concept to Metabolic Diseases: Lessons from Mouse Models

    PubMed Central

    Cheng, Zhiyong

    2011-01-01

    Abstract Forkhead box O (FOXO) transcription factors have been implicated in regulating the metabolism, cellular proliferation, stress resistance, apoptosis, and longevity. Through the insulin receptor substrate → phosphoinositide 3-kinase → Akt signal cascade, FOXO integrates insulin action with the systemic nutrient and energy homeostasis. Activation of FOXO1 in liver induces gluconeogenesis via phosphoenolpyruvate carboxykinase (PEPCK)/glucose 6-phosphate pathway, and disrupts mitochondrial metabolism and lipid metabolism via heme oxygenase 1/sirtuin 1/Ppargc1α pathway. In skeletal muscle, FOXO1 activation underpins the carbohydrate/lipid switch during fasting state. Inhibition of FOXO1 under physiological conditions accounts for maintenance of skeletal muscle mass/function and adipose differentiation. In pancreatic β-cells, nuclear translocation of FOXO1 antagonizes pancreatic and duodenal homeobox 1 and attenuates β-cells proliferation and insulin secretion. Regardless, FOXO1 promotes the proliferation of β-cells through induction of Cyclin D1 in low nutrition, and elicits antioxidant mechanism to protect against β-cell failure during oxidative insults. In the brain, FOXO1 controls food intake through transcriptional regulation of the orexigenic neuropeptide Y, agouti-related protein, and carboxypeptidase E. In this article, we review the role of FOXO1 in the regulation of metabolism and energy expenditure based on recent findings from mouse models, and discuss the therapeutic value of targeting FOXO1 in metabolic diseases. Antioxid. Redox Signal. 14, 649–661. PMID:20615072

  2. Naringenin Ameliorates Doxorubicin Toxicity and Hypoxic Condition in Dalton's Lymphoma Ascites Tumor Mouse Model: Evidence from Electron Paramagnetic Resonance Imaging.

    PubMed

    Kathiresan, Venkatesan; Subburaman, Swathika; Krishna, Arun Venkatesh; Natarajan, Mathivanan; Rathinasamy, Gandhidasan; Ganesan, Kumaresan; Ramachandran, Murugesan

    2016-01-01

    Doxorubicin (DOX) is a well-known cytotoxic agent used extensively as a chemotherapeutic drug to eradicate a wide variety of human cancers. Reactive oxygen species (ROS)-mediated oxidative stress during DOX treatment can induce cardiac, renal, and hepatic toxicities, which can constrain its use as a potential cytotoxic agent. The present work investigates the antioxidant potential of naringenin (NAR) against DOXinduced toxicities of a Dalton's lymphoma ascites (DLA) tumor-bearing mouse model. Mice were randomized into four groups: a negative control, positive control, DOX (2.5 mg/kg) treated, and DOX (2.5 mg/kg) + NAR (50 mg/kg/d) treated. DOX administration significantly altered the levels of functional markers in blood and antioxidant enzymes in kidney, heart, lung, liver, spleen, and tumor tissues. These changes in antioxidant enzymes and successive lipid peroxidation were prevented by NAR supplementation, resulting in decreases in the risk of toxicity due to DOX therapy. Histopathology results and electron paramagnetic resonance imaging (EPRI) of the tumor microenvironment confirmed this evidence. Using EPRI, pharmacokinetics of the nitroxide, 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3-CP) was monitored intratumorally before and after chemotherapy. EPRI of the DOX + NAR-treated mouse model showed reduced tumor size with significant modification of the hypoxic condition inside the tumor microenvironment. Consequently, these findings suggest that NAR treatment significantly reduces DOX-induced toxicity and the hypoxic condition in a DLA tumor-bearing mouse model.

  3. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  4. INDUCTION OF DNA ADDUCTS, TUMORS, AND KI-RAS ONCOGENE MUTATIONS IN STRAIN A/J MOUSE LUNG BY IP. ADMINISTRATION OF DIBENZ[A,H]ANTHRACENE

    EPA Science Inventory

    Induction of DNA adducts, tumors, and Ki-ras oncogene mutations in strain AlJ mouse lung by ip. administration of dibenz[a,h]anthracene

    Previous studies of polycyclic aromatic hydrocarbon (P AH) induced lung tumors in the strain NJ mouse model system have demonstrated qua...

  5. STI571 (Gleevec) improves tumor growth delay and survival in irradiated mouse models of glioblastoma

    SciTech Connect

    Geng Ling; Shinohara, Eric T.; Kim, Dong; Tan Jiahuai; Osusky, Kate; Shyr, Yu; Hallahan, Dennis E. . E-mail: Dennis.Hallahan@mcmail.vanderbilt.edu

    2006-01-01

    Purpose: Glioblastoma multiforme (GBM) is a devastating brain neoplasm that is essentially incurable. Although radiation therapy prolongs survival, GBMs progress within areas of irradiation. Recent studies in invertebrates have shown that STI571 (Gleevec; Novartis, East Hanover, NJ) enhances the cytotoxicity of ionizing radiation. In the present study, the effectiveness of STI571 in combination with radiation was studied in mouse models of GBM. Methods and Materials: Murine GL261 and human D54 GBM cell lines formed tumors in brains and hind limbs of C57BL6 and nude mice, respectively. GL261 and D54 cells were treated with 5 {mu}mol/L of STI571 for 1 h and/or irradiated with 3 Gy. Protein was analyzed by Western immunoblots probed with antibodies to caspase 3, cleaved caspase 3, phospho-Akt, Akt, and platelet-derived growth factor receptor (PDGFR) {alpha} and {beta}. Tumor volumes were assessed in mice bearing GL261 or D54 tumors treated with 21 Gy administered in seven fractionated doses. Histologic sections from STI571-treated mice were stained with phospho-Akt and phospho-PDGFR {beta} antibodies. Kaplan-Meier survival curves were used to study the response of mice bearing intracranial implants of GL261. Results: STI571 penetrated the blood-brain barrier, which resulted in a reduction in phospho-PDGFR in GBM. STI571-induced apoptosis in GBM was significantly enhanced by irradiation. STI571 combined with irradiation induced caspase 3 cleavage in GBM cells. Glioblastoma multiforme response to therapy correlated with an increase in tumor growth delay and survival when STI571 was administered in conjunction with daily irradiation. Conclusion: These findings suggest that STI571 has the potential to augment radiotherapy and thereby improve median survival.

  6. Tumor-Specific Multiple Stimuli-Activated Dendrimeric Nanoassemblies with Metabolic Blockade Surmount Chemotherapy Resistance.

    PubMed

    Li, Yachao; Xu, Xianghui; Zhang, Xiao; Li, Yunkun; Zhang, Zhijun; Gu, Zhongwei

    2017-01-24

    Chemotherapy resistance remains a serious impediment to successful antitumor therapy around the world. However, existing chemotherapeutic approaches are difficult to cope with the notorious multidrug resistance in clinical treatment. Herein, we developed tumor-specific multiple stimuli-activated dendrimeric nanoassemblies with a metabolic blockade to completely combat both physiological barriers and cellular factors of multidrug resistance. With a sophisticated molecular and supramolecular engineering, this type of tumor-specific multiple stimuli-activated nanoassembly based on dendrimeric prodrugs can hierarchically break through the sequential physiological barriers of drug resistance, including stealthy dendritic PEGylated corona to optimize blood transportation, robust nanostructures for efficient tumor passive targeting and accumulation, enzyme-activated tumor microenvironment targeted to deepen tumor penetration and facilitate cellular uptake, cytoplasmic redox-sensitive disintegration for sufficient release of encapsulated agents, and lysosome acid-triggered nucleus delivery of antitumor drugs. In the meantime, we proposed a versatile tactic of a tumor-specific metabolism blockade for provoking several pathways (ATP restriction, apoptotic activation, and anti-apoptotic inhibition) to restrain multiple cellular factors of drug resistance. The highly efficient antitumor activity to drug-resistant MCF-7R tumor in vitro and in vivo supports this design and strongly defeats both physiological barriers and cellular factors of chemotherapy resistance. This work sets up an innovative dendrimeric nanosystem to surmount multidrug resistance, contributing to the development of a comprehensive nanoparticulate strategy for future clinical applications.

  7. The metabolism and kinetics of doxazosin in man, mouse, rat and dog

    PubMed Central

    Kaye, B.; Cussans, N. J.; Faulkner, J. K.; Stopher, D. A.; Reid, J. L.

    1986-01-01

    1 The metabolic fate of doxazosin was investigated in man, mouse, rat and dog using 14C-labelled compound. Bioavailability and pharmacokinetic studies were also conducted with non-labelled drug, using a specific h.p.l.c. method. 2 Following both oral and intravenous administration, the major route of elimination of drug-related compounds was via the faeces for all species studied. Comparison of the oral and intravenous data show that doxazosin is completely absorbed in man, mouse and rat and is moderately well absorbed in dog. 3 The drug is extensively metabolized, e.g. only about 5% of the dose was excreted unchanged in man. Metabolism in man mainly involves 6- and 7- O-demethylation and 6′ and 7′-hydroxylation. These and some minor products were common to the mouse, rat or dog and man. 4 Plasma protein binding was high in all species studied, ranging from 95.3% in the rat to 98.3% in human patients. 5 Oral bioavailability is 60% in dog and approximately 50% in the rat, which is similar to the value of 63% reported for man at therapeutic doses. Mean plasma clearance values were 13 ml min-1 kg-1 (dogs), 30 ml min-1 kg-1 (rats) and 1.2 ml min-1 kg-1 (human subjects). Mean plasma half-life values were 5 h in dogs and 1.2 h in rats: a value of 9 h was reported for human volunteers (cf. 2.5 h for prazosin). The long plasma half-life of doxazosin provides the basis for once-daily dosing. PMID:2939865

  8. The role of protein glycosylation in the compartmentalization and processing of mouse mammary tumor virus glycoproteins in mouse mammary tumor virus-infected rat hepatoma cells.

    PubMed

    Firestone, G L

    1983-05-25

    The relationship of protein glycosylation to compartmentalization and processing of mouse mammary tumor virus (MTV) glycoproteins has been examined in M1.54, a cloned line of MTV-infected rat hepatoma tissue culture cells. Previous work established that full maturation of MTV glycoproteins in this cell line requires dexamethasone, a synthetic glucocorticoid (Firestone, G. L., Payvar, F., and Yamamoto, K. R. (1982) Nature (Lond.) 300, 221-225). The ability to regulate production of the full complement of five mature membrane-associated and secreted viral glycoproteins from one initially synthesized precursor has been used to advantage in the present work. At concentrations of tunicamycin that specifically inhibit N-linked protein glycosylation, incorporation of [35S]methionine into total cellular and secreted protein is not detectably affected, MTV-specific mRNAs are produced normally, and the nonglycosylated form of the glycosylated viral precursor polyprotein accumulates within the cells. However, tunicamycin inhibits the site-specific cleavage of the glycosylated polyprotein and distribution of MTV polypeptides to the cell surface and extracellular fractions. Thus, when tunicamycin-treated cultures of M1.54 are exposed to dexamethasone and [35S]methionine, no labeled viral antigens are detected in the culture medium. Similarly, tunicamycin prevents the appearance of membrane-associated viral antigens that can be labeled externally by lactoperoxidase-mediated iodination and it protects the cells against the cytolytic effects of MTV-specific antiserum and complement. Taken together, these results are consistent with the view that while glycosylation of some proteins may be unessential for their compartmentalization and processing, it does appear to be correlated with proper maturation of others. The hormone-dependent maturation of MTV glycoproteins in M1.54 may be particularly useful for study of this latter class since glycosylation is stringently associated with

  9. Rapamycin Promotes Mouse 4T1 Tumor Metastasis that Can Be Reversed by a Dendritic Cell-Based Vaccine.

    PubMed

    Lin, Tien-Jen; Liang, Wen-Miin; Hsiao, Pei-Wen; M S, Pradeep; Wei, Wen-Chi; Lin, Hsin-Ting; Yin, Shu-Yi; Yang, Ning-Sun

    2015-01-01

    Suppression of tumor metastasis is a key strategy for successful cancer interventions. Previous studies indicated that rapamycin (sirolimus) may promote tumor regression activity or enhance immune response against tumor targets. However, rapamycin also exhibits immunosuppressant effects and is hence used clinically as an organ transplantation drug. We hypothesized that the immunosuppressive activities of rapamycin might also negatively mediate host immunity, resulting in promotion of tumor metastasis. In this study, the effects of rapamycin and phytochemical shikonin were investigated in vitro and in vivo in a 4T1 mouse mammary tumor model through quantitative assessment of immunogenic cell death (ICD), autophagy, tumor growth and metastasis. Tumor-bearing mice were immunized with test vaccines to monitor their effect on tumor metastasis. We found that intraperitoneal (ip) administration of rapamycin after a tumor-resection surgery drastically increased the metastatic activity of 4T1 tumors. Possible correlation of this finding to human cancers was suggested by epidemiological analysis of data from Taiwan's National Health Insurance Research Database (NHIRD). Since our previous studies showed that modified tumor cell lysate (TCL)-pulsed, dendritic cell (DC)-based cancer vaccines can effectively suppress metastasis in mouse tumor models, we assessed whether such vaccines may help offset this rapamycin-promoted metastasis. We observed that shikonin efficiently induced ICD of 4T1 cells in culture, and DC vaccines pulsed with shikonin-treated TCL (SK-TCL-DC) significantly suppressed rapamycin-enhanced metastasis and Treg cell expansion in test mice. In conclusion, rapamycin treatment in mice (and perhaps in humans) promotes metastasis and the effect may be offset by treatment with a DC-based cancer vaccine.

  10. STAT3 Mediated Remodeling of the Tumor Microenvironment Results in Enhanced Tumor Drug Delivery in a Mouse Model of Pancreatic Cancer

    PubMed Central

    Nagathihalli, Nagaraj S.; Castellanos, Jason A.; Shi, Chanjuan; Beesetty, Yugandhar; Reyzer, Michelle L.; Caprioli, Richard; Chen, Xi; Walsh, Alex J.; Skala, Melissa C.; Moses, Harold L.; Merchant, Nipun B.

    2015-01-01

    BACKGROUND & AIMS A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the presence of a dense desmoplastic reaction (stroma) that impedes drug delivery to the tumor. Attempts to deplete the tumor stroma have resulted in formation of more aggressive tumors. We have identified STAT3 as a biomarker of resistance to cytotoxic and molecularly targeted therapy in PDAC. The purpose of this study is to investigate the effects of targeting STAT3 on the PDAC stroma and on therapeutic resistance. METHODS Activated STAT3 protein expression was determined in human pancreatic tissues and tumor cell lines. In vivo effects of AZD1480, a JAK/STAT3 inhibitor, gemcitabine or the combination were determined in Ptf1acre/+;LSL-KrasG12D/+;Tgfbr2flox/flox (PKT) mice and in orthotopic tumor xenografts. Drug delivery was analyzed by MALDI-imaging mass spectrometry. Collagen second harmonic generation (SHG) imaging quantified tumor collagen alignment and density. RESULTS STAT3 activation correlates with decreased survival and advanced tumor stage in patients with PDAC. STAT3 inhibition combined with gemcitabine significantly inhibits tumor growth in both an orthotopic and the PKT mouse model of PDAC. This combined therapy attenuates in vivo expression of SPARC, increases microvessel density and enhances drug delivery to the tumor without depletion of stromal collagen or hyaluronan. Instead, the PDAC tumors demonstrate vascular normalization, remodeling of the tumor stroma and downregulation of cytidine deaminase (Cda). CONCLUSIONS Targeted inhibition of STAT3 combined with gemcitabine enhances in vivo drug delivery and therapeutic response in PDAC. These effects occur through tumor stromal remodeling and downregulation of Cda without depletion of tumor stromal content. PMID:26255562

  11. Insulin Signaling, Resistance, and the Metabolic Syndrome: Insights from Mouse Models to Disease Mechanisms

    PubMed Central

    Guo, Shaodong

    2014-01-01

    Insulin resistance is a major underlying mechanism for the “metabolic syndrome”, which is also known as insulin resistance syndrome. Metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. Metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies demonstrate that insulin and its signaling cascade normally control cell growth, metabolism and survival through activation of mitogen-activated protein kinases (MAPKs) and phosphotidylinositide-3-kinase (PI3K), of which activation of PI-3K-associated with insulin receptor substrate-1 and -2 (IRS1, 2) and subsequent Akt→Foxo1 phosphorylation cascade has a central role in control of nutrient homeostasis and organ survival. Inactivation of Akt and activation of Foxo1, through suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and over nutrition may provide the underlying mechanisms for metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will likely provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the feature of the metabolic syndrome. Emphasis will be placed on the role of IRS1, IRS2, and associated signaling pathways that couple to Akt and the forkhead/winged helix transcription factor Foxo1. PMID:24281010

  12. Acute metabolic decompensation due to influenza in a mouse model of ornithine transcarbamylase deficiency.

    PubMed

    McGuire, Peter J; Tarasenko, Tatiana N; Wang, Tony; Levy, Ezra; Zerfas, Patricia M; Moran, Thomas; Lee, Hye Seung; Bequette, Brian J; Diaz, George A

    2014-02-01

    The urea cycle functions to incorporate ammonia, generated by normal metabolism, into urea. Urea cycle disorders (UCDs) are caused by loss of function in any of the enzymes responsible for ureagenesis, and are characterized by life-threatening episodes of acute metabolic decompensation with hyperammonemia (HA). A prospective analysis of interim HA events in a cohort of individuals with ornithine transcarbamylase (OTC) deficiency, the most common UCD, revealed that intercurrent infection was the most common precipitant of acute HA and was associated with markers of increased morbidity when compared with other precipitants. To further understand these clinical observations, we developed a model system of metabolic decompensation with HA triggered by viral infection (PR8 influenza) using spf-ash mice, a model of OTC deficiency. Both wild-type (WT) and spf-ash mice displayed similar cytokine profiles and lung viral titers in response to PR8 influenza infection. During infection, spf-ash mice displayed an increase in liver transaminases, suggesting a hepatic sensitivity to the inflammatory response and an altered hepatic immune response. Despite having no visible pathological changes by histology, WT and spf-ash mice had reduced CPS1 and OTC enzyme activities, and, unlike WT, spf-ash mice failed to increase ureagenesis. Depression of urea cycle function was seen in liver amino acid analysis, with reductions seen in aspartate, ornithine and arginine during infection. In conclusion, we developed a model system of acute metabolic decompensation due to infection in a mouse model of a UCD. In addition, we have identified metabolic perturbations during infection in the spf-ash mice, including a reduction of urea cycle intermediates. This model of acute metabolic decompensation with HA due to infection in UCD serves as a platform for exploring biochemical perturbations and the efficacy of treatments, and could be adapted to explore acute decompensation in other types of inborn

  13. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models into disease mechanisms.

    PubMed

    Guo, Shaodong

    2014-02-01

    Insulin resistance is a major underlying mechanism responsible for the 'metabolic syndrome', which is also known as insulin resistance syndrome. The incidence of the metabolic syndrome is increasing at an alarming rate, becoming a major public and clinical problem worldwide. The metabolic syndrome is represented by a group of interrelated disorders, including obesity, hyperglycemia, hyperlipidemia, and hypertension. It is also a significant risk factor for cardiovascular disease and increased morbidity and mortality. Animal studies have demonstrated that insulin and its signaling cascade normally control cell growth, metabolism, and survival through the activation of MAPKs and activation of phosphatidylinositide-3-kinase (PI3K), in which the activation of PI3K associated with insulin receptor substrate 1 (IRS1) and IRS2 and subsequent Akt→Foxo1 phosphorylation cascade has a central role in the control of nutrient homeostasis and organ survival. The inactivation of Akt and activation of Foxo1, through the suppression IRS1 and IRS2 in different organs following hyperinsulinemia, metabolic inflammation, and overnutrition, may act as the underlying mechanisms for the metabolic syndrome in humans. Targeting the IRS→Akt→Foxo1 signaling cascade will probably provide a strategy for therapeutic intervention in the treatment of type 2 diabetes and its complications. This review discusses the basis of insulin signaling, insulin resistance in different mouse models, and how a deficiency of insulin signaling components in different organs contributes to the features of the metabolic syndrome. Emphasis is placed on the role of IRS1, IRS2, and associated signaling pathways that are coupled to Akt and the forkhead/winged helix transcription factor Foxo1.

  14. Acute metabolic decompensation due to influenza in a mouse model of ornithine transcarbamylase deficiency

    PubMed Central

    McGuire, Peter J.; Tarasenko, Tatiana N.; Wang, Tony; Levy, Ezra; Zerfas, Patricia M.; Moran, Thomas; Lee, Hye Seung; Bequette, Brian J.; Diaz, George A.

    2014-01-01

    ABSTRACT The urea cycle functions to incorporate ammonia, generated by normal metabolism, into urea. Urea cycle disorders (UCDs) are caused by loss of function in any of the enzymes responsible for ureagenesis, and are characterized by life-threatening episodes of acute metabolic decompensation with hyperammonemia (HA). A prospective analysis of interim HA events in a cohort of individuals with ornithine transcarbamylase (OTC) deficiency, the most common UCD, revealed that intercurrent infection was the most common precipitant of acute HA and was associated with markers of increased morbidity when compared with other precipitants. To further understand these clinical observations, we developed a model system of metabolic decompensation with HA triggered by viral infection (PR8 influenza) using spf-ash mice, a model of OTC deficiency. Both wild-type (WT) and spf-ash mice displayed similar cytokine profiles and lung viral titers in response to PR8 influenza infection. During infection, spf-ash mice displayed an increase in liver transaminases, suggesting a hepatic sensitivity to the inflammatory response and an altered hepatic immune response. Despite having no visible pathological changes by histology, WT and spf-ash mice had reduced CPS1 and OTC enzyme activities, and, unlike WT, spf-ash mice failed to increase ureagenesis. Depression of urea cycle function was seen in liver amino acid analysis, with reductions seen in aspartate, ornithine and arginine during infection. In conclusion, we developed a model system of acute metabolic decompensation due to infection in a mouse model of a UCD. In addition, we have identified metabolic perturbations during infection in the spf-ash mice, including a reduction of urea cycle intermediates. This model of acute metabolic decompensation with HA due to infection in UCD serves as a platform for exploring biochemical perturbations and the efficacy of treatments, and could be adapted to explore acute decompensation in other types

  15. A pharmacological evidence of positive association between mouse intermale aggression and brain serotonin metabolism.

    PubMed

    Kulikov, A V; Osipova, D V; Naumenko, V S; Terenina, E; Mormède, P; Popova, N K

    2012-07-15

    The neurotransmitter serotonin (5-HT) is involved in the regulation of mouse intermale aggression. Previously, it was shown that intensity of mouse intermale aggression was positively associated with activity of the key enzyme of 5-HT synthesis - tryptophan hydroxylase 2 (TPH2) in mouse brain. The aim of the present study was to investigate the effect of pharmacological activation or inhibition of 5-HT synthesis in the brain on intermale aggression in two mouse strains differing in the TPH2 activity: C57BL/6J (B6, high TPH2 activity, high aggressiveness) and CC57BR/Mv (BR, low TPH2 activity, low aggressiveness). Administration of 5-HT precursor L-tryptophan (300 mg/kg, i.p.) to BR mice significantly increased the 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) levels in the midbrain as well as the number of attacks and their duration in the resident-intruder test. And vice versa, administration of TPH2 inhibitor p-chlorophenylalanine (pCPA) (300 mg/kg, i.p., for 3 consecutive days) to B6 mice dramatically reduced the 5-HT and 5-HIAA contents in brain structures and attenuated the frequency and the duration of aggressive attacks. At the same time, L-tryptophan or pCPA did not influence the percentage of aggressive mice and the attack latency reflecting the threshold of aggressive reaction. This result indicated that the intensity of intermale aggression, but not the threshold of aggressive reaction is positively dependent on 5-HT metabolism in mouse brain. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Knockdown of ROS1 gene sensitizes breast tumor growth to doxorubicin in a syngeneic mouse model.

    PubMed

    Tiash, Snigdha; Chua, Ming Jang; Chowdhury, Ezharul Hoque

    2016-06-01

    Treatment of breast cancer, the second leading cause of female deaths worldwide, with classical drugs is often accompanied by treatment failure and relapse of disease condition. Development of chemoresistance and drug toxicity compels compromising the drug concentration below the threshold level with the consequence of therapeutic inefficacy. Moreover, amplification and over-activation of proto-oncogenes in tumor cells make the treatment more challenging. The oncogene, ROS1 which is highly expressed in diverse types of cancers including breast carcinoma, functions as a survival protein aiding cancer progression. Thus we speculated that selective silencing of ROS1 gene by carrier-mediated delivery of siRNA might sensitize the cancer cells to the classical drugs at a relatively low concentration. In this investigation we showed that intracellular delivery of c-ROS1-targeting siRNA using pH-sensitive inorganic nanoparticles of carbonate apatite sensitizes mouse breast cancer cells (4T1) to doxorubicin, but not to cisplatin or paclitaxel, with the highest enhancement in chemosensitivity obtained at 40 nM of the drug concentration. Although intravenous administrations of ROS1-loaded nanoparticles reduced growth of the tumor, a further substantial effect on growth retardation was noted when the mice were treated with the siRNA- and Dox-bound particles, thus suggesting that silencing of ROS1 gene could sensitize the mouse breast cancer cells both in vitro and in vivo to doxorubicin as a result of synergistic effect of the gene knockdown and the drug action, eventually preventing activation of the survival pathway protein, AKT1. Our findings therefore provide valuable insight into the potential cross-talk between the pathways of ROS1 and doxorubicin for future development of effective therapeutics for breast cancer.

  17. Pathways of trans,trans-muconaldehyde metabolism in mouse liver cytosol: reversibility of monoreductive metabolism and formation of end products.

    PubMed

    Zhang, Z; Kline, S A; Kirley, T A; Goldstein, B D; Witz, G

    1993-01-01

    The metabolism of trans,trans-muconaldehyde (MUC), a hematotoxic agent which is a presumed in vivo metabolite of benzene, was studied in mouse liver cytosol. MUC was incubated for 30 min at 37 degrees C with mouse liver cytosol (from CD-1 mice) supplemented with NAD+ and the products were analyzed by reverse phase HPLC. Two products were detected in addition to the previously identified acid-aldehyde 6-oxo-trans,trans-2,4-hexadienoic acid (COOH-M-CHO) and the diacid trans,trans-muconic acid (COOH-M-COOH). Based on the molecular weight (112) obtained by thermo-spray LC-mass spectrometry and the absorbance maximum (269 nm), one of the products was identified as the aldehyde-alcohol 6-hydroxy-trans,trans-2,4-hexadienal (CHO-M-OH). The second product was identified as 6-hydroxy-trans,trans-2,4-hexadienoic acid (COOH-M-OH) by coelution with authentic standard, the fragmentation pattern obtained by electron impact mass spectrometry and the absorbance maximum (258 nm). Time course and concentration dependency studies indicate that COOH-M-OH and COOH-M-COOH are end products of MUC metabolism while CHO-M-OH, and COOH-M-CHO, the initially formed mono-reduction and mono-oxidation products, respectively, are the intermediates leading to these end products. The metabolite COOH-M-OH is formed mainly by oxidation of CHO-M-OH and to a much lesser extent by reduction of CHO-M-COOH, whereas COOH-M-COOH is formed solely by oxidation of COOH-M-CHO. The reduction of MUC to CHO-M-OH is reversible, whereas oxidation to COOH-M-CHO is not. The compound CHO-M-OH is not only oxidized to COOH-M-OH by oxidation of the aldehyde functional group, but is also converted back to MUC by oxidation of the alcohol functional group.

  18. Prevalence of mouse mammary tumor virus (MMTV) in wild house mice (Mus musculis) in southeastern Australia.

    PubMed

    Faedo, Margaret; Hinds, Lyn A; Singleton, Grant R; Rawlinson, William D

    2007-10-01

    We determined the prevalence of mouse mammary tumor virus (MMTV) in introduced, free-roaming, wild house mice (Mus musculus domesticus) [corrected] and compared envelope (env) and long terminal repeat (LTR) nucleotide sequences of viruses from wild mice and other sources. Mice were trapped on two occasions, in October (spring) and the following May (autumn) of 2003-2004 in the Mallee region of