Sample records for movement training learning

  1. An eye movement pre-training fosters the comprehension of processes and functions in technical systems.

    PubMed

    Skuballa, Irene T; Fortunski, Caroline; Renkl, Alexander

    2015-01-01

    The main research goal of the present study was to investigate in how far pre-training eye movements can facilitate knowledge acquisition in multimedia (pre-training principle). We combined considerations from research on eye movement modeling and pre-training to design and test a non-verbal eye movement-based pre-training. Participants in the experimental condition watched an animated circle moving in close spatial resemblance to a static visualization of a solar plant accompanied by a narration in a subsequently presented learning environment. This training was expected to foster top-down processes as reflected in gaze behavior during the learning process and enhance knowledge acquisition. We compared two groups (N = 45): participants in the experimental condition received pre-training in a first step and processed the learning material in a second step, whereas the control group underwent the second step without any pre-training. The pre-training group outperformed the control group in their learning outcomes, particularly in knowledge about processes and functions of the solar plant. However, the superior learning outcomes in the pre-training group could not be explained by eye-movement patterns. Furthermore, the pre-training moderated the relationship between experienced stress and learning outcomes. In the control group, high stress levels hindered learning, which was not found for the pre-training group. On a delayed posttest participants were requested to draw a picture of the learning content. Despite a non-significant effect of training on the quality of drawings, the pre-training showed associations between learning outcomes at the first testing time and process-related aspects in the quality of their drawings. Overall, non-verbal pre-training is a successful instructional intervention to promote learning processes in novices although these processes did not directly reflect in learners' eye movement behavior during learning.

  2. An eye movement pre-training fosters the comprehension of processes and functions in technical systems

    PubMed Central

    Skuballa, Irene T.; Fortunski, Caroline; Renkl, Alexander

    2015-01-01

    The main research goal of the present study was to investigate in how far pre-training eye movements can facilitate knowledge acquisition in multimedia (pre-training principle). We combined considerations from research on eye movement modeling and pre-training to design and test a non-verbal eye movement-based pre-training. Participants in the experimental condition watched an animated circle moving in close spatial resemblance to a static visualization of a solar plant accompanied by a narration in a subsequently presented learning environment. This training was expected to foster top-down processes as reflected in gaze behavior during the learning process and enhance knowledge acquisition. We compared two groups (N = 45): participants in the experimental condition received pre-training in a first step and processed the learning material in a second step, whereas the control group underwent the second step without any pre-training. The pre-training group outperformed the control group in their learning outcomes, particularly in knowledge about processes and functions of the solar plant. However, the superior learning outcomes in the pre-training group could not be explained by eye-movement patterns. Furthermore, the pre-training moderated the relationship between experienced stress and learning outcomes. In the control group, high stress levels hindered learning, which was not found for the pre-training group. On a delayed posttest participants were requested to draw a picture of the learning content. Despite a non-significant effect of training on the quality of drawings, the pre-training showed associations between learning outcomes at the first testing time and process-related aspects in the quality of their drawings. Overall, non-verbal pre-training is a successful instructional intervention to promote learning processes in novices although these processes did not directly reflect in learners' eye movement behavior during learning. PMID:26029138

  3. Gradual training reduces practice difficulty while preserving motor learning of a novel locomotor task.

    PubMed

    Sawers, Andrew; Hahn, Michael E

    2013-08-01

    Motor learning strategies that increase practice difficulty and the size of movement errors are thought to facilitate motor learning. In contrast to this, gradual training minimizes movement errors and reduces practice difficulty by incrementally introducing task requirements, yet remains as effective as sudden training and its large movement errors for learning novel reaching tasks. While attractive as a locomotor rehabilitation strategy, it remains unknown whether the efficacy of gradual training extends to learning locomotor tasks and their unique requirements. The influence of gradual vs. sudden training on learning a locomotor task, asymmetric split belt treadmill walking, was examined by assessing whole body sagittal plane kinematics during 24 hour retention and transfer performance following either gradual or sudden training. Despite less difficult and less specific practice for the gradual cohort on day 1, gradual training resulted in equivalent motor learning of the novel locomotor task as sudden training when assessed by retention and transfer a day later. This suggests that large movement errors and increased practice difficulty may not be necessary for learning novel locomotor tasks. Further, gradual training may present a viable locomotor rehabilitation strategy avoiding large movement errors that could limit or impair improvements in locomotor performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Time series association learning

    DOEpatents

    Papcun, George J.

    1995-01-01

    An acoustic input is recognized from inferred articulatory movements output by a learned relationship between training acoustic waveforms and articulatory movements. The inferred movements are compared with template patterns prepared from training movements when the relationship was learned to regenerate an acoustic recognition. In a preferred embodiment, the acoustic articulatory relationships are learned by a neural network. Subsequent input acoustic patterns then generate the inferred articulatory movements for use with the templates. Articulatory movement data may be supplemented with characteristic acoustic information, e.g. relative power and high frequency data, to improve template recognition.

  5. Comparison of haptic guidance and error amplification robotic trainings for the learning of a timing-based motor task by healthy seniors.

    PubMed

    Bouchard, Amy E; Corriveau, Hélène; Milot, Marie-Hélène

    2015-01-01

    With age, a decline in the temporal aspect of movement is observed such as a longer movement execution time and a decreased timing accuracy. Robotic training can represent an interesting approach to help improve movement timing among the elderly. Two types of robotic training-haptic guidance (HG; demonstrating the correct movement for a better movement planning and improved execution of movement) and error amplification (EA; exaggerating movement errors to have a more rapid and complete learning) have been positively used in young healthy subjects to boost timing accuracy. For healthy seniors, only HG training has been used so far where significant and positive timing gains have been obtained. The goal of the study was to evaluate and compare the impact of both HG and EA robotic trainings on the improvement of seniors' movement timing. Thirty-two healthy seniors (mean age 68 ± 4 years) learned to play a pinball-like game by triggering a one-degree-of-freedom hand robot at the proper time to make a flipper move and direct a falling ball toward a randomly positioned target. During HG and EA robotic trainings, the subjects' timing errors were decreased and increased, respectively, based on the subjects' timing errors in initiating a movement. Results showed that only HG training benefited learning, but the improvement did not generalize to untrained targets. Also, age had no influence on the efficacy of HG robotic training, meaning that the oldest subjects did not benefit more from HG training than the younger senior subjects. Using HG to teach the correct timing of movement seems to be a good strategy to improve motor learning for the elderly as for younger people. However, more studies are needed to assess the long-term impact of HG robotic training on improvement in movement timing.

  6. Skill transfer from symmetric and asymmetric bimanual training using a robotic system to single limb performance

    PubMed Central

    2012-01-01

    Background Humans are capable of fast adaptation to new unknown dynamics that affect their movements. Such motor learning is also believed to be an important part of motor rehabilitation. Bimanual training can improve post-stroke rehabilitation outcome and is associated with interlimb coordination between both limbs. Some studies indicate partial transfer of skills among limbs of healthy individuals. Another aspect of bimanual training is the (a)symmetry of bimanual movements and how these affect motor learning and possibly post-stroke rehabilitation. Methods A novel bimanual 2-DOF robotic system was used for both bimanual and unimanual reaching movements. 35 young healthy adults participated in the study. They were divided into 5 test groups that performed movements under different conditions (bimanual or unimanual movements and symmetric or asymmetric bimanual arm loads). The subjects performed a simple tracking exercise with the bimanual system. The exercise was developed to stimulate motor learning by applying a velocity-dependent disturbance torque to the handlebar. Each subject performed 255 trials divided into three phases: baseline without disturbance torque, training phase with disturbance torque and evaluation phase with disturbance torque. Results Performance was assessed with the maximal values of rotation errors of the handlebar. After exposure to disturbance torque, the errors decreased for both unimanual and bimanual training. Errors in unimanual evaluation following the bimanual training phase were not significantly different from errors in unimanual evaluation following unimanual training. There was no difference in performance following symmetric or asymmetric training. Changing the arm force symmetry during bimanual movements from asymmetric to symmetric had little influence on performance. Conclusions Subjects could adapt to an unknown disturbance torque that was changing the dynamics of the movements. The learning effect was present during both unimanual and bimanual training. Transfer of learned skills from bimanual training to unimanual movements was also observed, as bimanual training also improved single limb performance with the dominant arm. Changes of force symmetry did not have an effect on motor learning. As motor learning is believed to be an important mechanism of rehabilitation, our findings could be tested for future post-stroke rehabilitation systems. PMID:22805223

  7. There and back again: putting the vectorial movement planning hypothesis to a critical test.

    PubMed

    Kobak, Eva-Maria; Cardoso de Oliveira, Simone

    2014-01-01

    Based on psychophysical evidence about how learning of visuomotor transformation generalizes, it has been suggested that movements are planned on the basis of movement direction and magnitude, i.e., the vector connecting movement origin and targets. This notion is also known under the term "vectorial planning hypothesis". Previous psychophysical studies, however, have included separate areas of the workspace for training movements and testing the learning. This study eliminates this confounding factor by investigating the transfer of learning from forward to backward movements in a center-out-and-back task, in which the workspace for both movements is completely identical. Visual feedback allowed for learning only during movements towards the target (forward movements) and not while moving back to the origin (backward movements). When subjects learned the visuomotor rotation in forward movements, initial directional errors in backward movements also decreased to some degree. This learning effect in backward movements occurred predominantly when backward movements featured the same movement directions as the ones trained in forward movements (i.e., when opposite targets were presented). This suggests that learning was transferred in a direction specific way, supporting the notion that movement direction is the most prominent parameter used for motor planning.

  8. Object Permanence and Relational Words: A Lexical Training Study.

    ERIC Educational Resources Information Center

    Tomasello, Michael; Farrar, Michael Jeffrey

    1986-01-01

    Describes a lexical training program developed to teach object, visible movement, and invisible movement words to children at stage 5 (N=7) and stage 6 (N=16) object permanence development. Stage 6 children learned all three types of words equally well, while stage 5 children learned object and visible movement but not invisible movement words.…

  9. Laterality effects in motor learning by mental practice in right-handers.

    PubMed

    Gentili, R J; Papaxanthis, C

    2015-06-25

    Converging evidences suggest that mental movement simulation and actual movement production share similar neurocognitive and learning processes. Although a large body of data is available in the literature regarding mental states involving the dominant arm, examinations for the nondominant arm are sparse. Does mental training, through motor-imagery practice, with the dominant arm or the nondominant arm is equally efficient for motor learning? In the current study, we investigated laterality effects in motor learning by motor-imagery practice. Four groups of right-hander adults mentally and physically performed as fast and accurately as possible (speed/accuracy trade-off paradigm) successive reaching movements with their dominant or nondominant arm (physical-training-dominant-arm, mental-training-dominant-arm, physical-training-nondominant-arm, and mental-training-nondominant-arm groups). Movement time was recorded and analyzed before, during, and after the training sessions. We found that physical and mental practice had a positive effect on the motor performance (i.e., decrease in movement time) of both arms through similar learning process (i.e., similar exponential learning curves). However, movement time reduction in the posttest session was significantly higher after physical practice than motor-imagery practice for both arms. More importantly, motor-imagery practice with the dominant arm resulted in larger and more robust improvements in movement speed compared to motor-imagery practice with the nondominant arm. No such improvements were observed in the control group. Our results suggest a superiority of the dominant arm in motor learning by mental practice. We discussed these findings from the perspective of the internal models theory. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Generalization of Dynamics Learning Across Changes in Movement Amplitude

    PubMed Central

    Mattar, Andrew A. G.

    2010-01-01

    Studies on generalization show the nature of how learning is encoded in the brain. Previous studies have shown rather limited generalization of dynamics learning across changes in movement direction, a finding that is consistent with the idea that learning is primarily local. In contrast, studies show a broader pattern of generalization across changes in movement amplitude, suggesting a more general form of learning. To understand this difference, we performed an experiment in which subjects held a robotic manipulandum and made movements to targets along the body midline. Subjects were trained in a velocity-dependent force field while moving to a 15 cm target. After training, subjects were tested for generalization using movements to a 30 cm target. We used force channels in conjunction with movements to the 30 cm target to assess the extent of generalization. Force channels restricted lateral movements and allowed us to measure force production during generalization. We compared actual lateral forces to the forces expected if dynamics learning generalized fully. We found that, during the test for generalization, subjects produced reliably less force than expected. Force production was appropriate for the portion of the transfer movement in which velocities corresponded to those experienced with the 15 cm target. Subjects failed to produce the expected forces when velocities exceeded those experienced in the training task. This suggests that dynamics learning generalizes little beyond the range of one's experience. Consistent with this result, subjects who trained on the 30 cm target showed full generalization to the 15 cm target. We performed two additional experiments that show that interleaved trials to the 30 cm target during training on the 15 cm target can resolve the difference between the current results and those reported previously. PMID:20463200

  11. Robot-assisted adaptive training: custom force fields for teaching movement patterns.

    PubMed

    Patton, James L; Mussa-Ivaldi, Ferdinando A

    2004-04-01

    Based on recent studies of neuro-adaptive control, we tested a new iterative algorithm to generate custom training forces to "trick" subjects into altering their target-directed reaching movements to a prechosen movement as an after-effect of adaptation. The prechosen movement goal, a sinusoidal-shaped path from start to end point, was never explicitly conveyed to the subject. We hypothesized that the adaptation would cause an alteration in the feedforward command that would result in the prechosen movement. Our results showed that when forces were suddenly removed after a training period of 330 movements, trajectories were significantly shifted toward the prechosen movement. However, de-adaptation occurred (i.e., the after-effect "washed out") in the 50-75 movements that followed the removal of the training forces. A second experiment suppressed vision of hand location and found a detectable reduction in the washout of after-effects, suggesting that visual feedback of error critically influences learning. A final experiment demonstrated that after-effects were also present in the neighborhood of training--44% of original directional shift was seen in adjacent, unpracticed movement directions to targets that were 60 degrees different from the targets used for training. These results demonstrate the potential for these methods for teaching motor skills and for neuro-rehabilitation of brain-injured patients. This is a form of "implicit learning," because unlike explicit training methods, subjects learn movements with minimal instructions, no knowledge of, and little attention to the trajectory.

  12. Mental Transformation Skill in Young Children: The Role of Concrete and Abstract Motor Training.

    PubMed

    Levine, Susan C; Goldin-Meadow, Susan; Carlson, Matthew T; Hemani-Lopez, Naureen

    2018-05-01

    We examined the effects of three different training conditions, all of which involve the motor system, on kindergarteners' mental transformation skill. We focused on three main questions. First, we asked whether training that involves making a motor movement that is relevant to the mental transformation-either concretely through action (action training) or more abstractly through gestural movements that represent the action (move-gesture training)-resulted in greater gains than training using motor movements irrelevant to the mental transformation (point-gesture training). We tested children prior to training, immediately after training (posttest), and 1 week after training (retest), and we found greater improvement in mental transformation skill in both the action and move-gesture training conditions than in the point-gesture condition, at both posttest and retest. Second, we asked whether the total gain made by retest differed depending on the abstractness of the movement-relevant training (action vs. move-gesture), and we found that it did not. Finally, we asked whether the time course of improvement differed for the two movement-relevant conditions, and we found that it did-gains in the action condition were realized immediately at posttest, with no further gains at retest; gains in the move-gesture condition were realized throughout, with comparable gains from pretest-to-posttest and from posttest-to-retest. Training that involves movement, whether concrete or abstract, can thus benefit children's mental transformation skill. However, the benefits unfold differently over time-the benefits of concrete training unfold immediately after training (online learning); the benefits of more abstract training unfold in equal steps immediately after training (online learning) and during the intervening week with no additional training (offline learning). These findings have implications for the kinds of instruction that can best support spatial learning. Copyright © 2018 Cognitive Science Society, Inc.

  13. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.

    PubMed

    Cuppone, Anna Vera; Squeri, Valentina; Semprini, Marianna; Masia, Lorenzo; Konczak, Jürgen

    2016-01-01

    This study examined the trainability of the proprioceptive sense and explored the relationship between proprioception and motor learning. With vision blocked, human learners had to perform goal-directed wrist movements relying solely on proprioceptive/haptic cues to reach several haptically specified targets. One group received additional somatosensory movement error feedback in form of vibro-tactile cues applied to the skin of the forearm. We used a haptic robotic device for the wrist and implemented a 3-day training regimen that required learners to make spatially precise goal-directed wrist reaching movements without vision. We assessed whether training improved the acuity of the wrist joint position sense. In addition, we checked if sensory learning generalized to the motor domain and improved spatial precision of wrist tracking movements that were not trained. The main findings of the study are: First, proprioceptive acuity of the wrist joint position sense improved after training for the group that received the combined proprioceptive/haptic and vibro-tactile feedback (VTF). Second, training had no impact on the spatial accuracy of the untrained tracking task. However, learners who had received VTF significantly reduced their reliance on haptic guidance feedback when performing the untrained motor task. That is, concurrent VTF was highly salient movement feedback and obviated the need for haptic feedback. Third, VTF can be also provided by the limb not involved in the task. Learners who received VTF to the contralateral limb equally benefitted. In conclusion, somatosensory training can significantly enhance proprioceptive acuity within days when learning is coupled with vibro-tactile sensory cues that provide feedback about movement errors. The observable sensory improvements in proprioception facilitates motor learning and such learning may generalize to the sensorimotor control of the untrained motor tasks. The implications of these findings for neurorehabilitation are discussed.

  14. Enriched childhood experiences moderate age-related motor and cognitive decline

    PubMed Central

    Metzler, Megan J.; Saucier, Deborah M.; Metz, Gerlinde A.

    2012-01-01

    Aging is associated with deterioration of skilled manual movement. Specifically, aging corresponds with increased reaction time, greater movement duration, segmentation of movement, increased movement variability, and reduced ability to adapt to external forces and inhibit previously learned sequences. Moreover, it is thought that decreased lateralization of neural function in older adults may point to increased neural recruitment as a compensatory response to deterioration of key frontal and intra-hemispheric networks, particularly of callosal structures. However, factors that mediate age-related motor decline are not well understood. Here we show that music training in childhood is associated with reduced age-related decline of bimanual and unimanual motor skills in a MIDI keyboard motor learning task. Compared to older adults without music training, older adults with more than a year of music training demonstrated proficient bimanual and unimanual movement, evidenced by enhanced speed and decreased movement errors. Further, this group demonstrated significantly better implicit learning in the weather prediction task, a non-motor task. The performance of older adults with music training in those tasks was comparable to young adults. Older adults, however, displayed greater verbal ability compared to young adults irrespective of a past history of music training. Our results indicate that music training early in life may reduce age-associated decline of neural motor and cognitive networks. PMID:23423702

  15. A robot-aided visuo-motor training that improves proprioception and spatial accuracy of untrained movement.

    PubMed

    Elangovan, Naveen; Cappello, Leonardo; Masia, Lorenzo; Aman, Joshua; Konczak, Jürgen

    2017-12-06

    Proprioceptive function can become enhanced during motor learning. Yet, we have incomplete knowledge to what extent proprioceptive function is trainable and how a training that enhances proprioception may influence performance in untrained motor skills. To address this knowledge gap, healthy young adults (N = 14) trained in a visuomotor task that required learners to make increasingly accurate wrist movements. Using a robotic exoskeleton coupled with a virtual visual environment, participants tilted a virtual table through continuous wrist flexion/extension movements with the goal to position a rolling ball on table into a target. With learning progress, the level of difficulty increased by altering the virtual ball mechanics and the gain between joint movement and ball velocity. Before and after training, wrist position sense acuity and spatial movement accuracy in an untrained, discrete wrist-pointing task was assessed using the same robot. All participants showed evidence of proprioceptive-motor learning. Mean position sense discrimination threshold improved by 34%. Wrist movement accuracy in the untrained pointing task improved by 27% in 13/14 participants. This demonstrates that a short sensorimotor training challenging proprioception can a) effectively enhance proprioceptive acuity and b) improve the accuracy of untrained movement. These findings provide a scientific basis for applying such somatosensory-based motor training to clinical populations with known proprioceptive dysfunction to enhance sensorimotor performance.

  16. Conscious motor processing and movement self-consciousness: two dimensions of personality that influence laparoscopic training.

    PubMed

    Malhotra, Neha; Poolton, Jamie M; Wilson, Mark R; Fan, Joe K M; Masters, Rich S W

    2014-01-01

    Identifying personality factors that account for individual differences in surgical training and performance has practical implications for surgical education. Movement-specific reinvestment is a potentially relevant personality factor that has a moderating effect on laparoscopic performance under time pressure. Movement-specific reinvestment has 2 dimensions, which represent an individual's propensity to consciously control movements (conscious motor processing) or to consciously monitor their 'style' of movement (movement self-consciousness). This study aimed at investigating the moderating effects of the 2 dimensions of movement-specific reinvestment in the learning and updating (cross-handed technique) of laparoscopic skills. Medical students completed the Movement-Specific Reinvestment Scale, a psychometric assessment tool that evaluates the conscious motor processing and movement self-consciousness dimensions of movement-specific reinvestment. They were then trained to a criterion level of proficiency on a fundamental laparoscopic skills task and were tested on a novel cross-handed technique. Completion times were recorded for early-learning, late-learning, and cross-handed trials. Propensity for movement self-consciousness but not conscious motor processing was a significant predictor of task completion times both early (p = 0.036) and late (p = 0.002) in learning, but completion times during the cross-handed trials were predicted by the propensity for conscious motor processing (p = 0.04) rather than movement self-consciousness (p = 0.21). Higher propensity for movement self-consciousness is associated with slower performance times on novel and well-practiced laparoscopic tasks. For complex surgical techniques, however, conscious motor processing plays a more influential role in performance than movement self-consciousness. The findings imply that these 2 dimensions of movement-specific reinvestment have a differential influence in the learning and updating of laparoscopic skills. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  17. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability.

    PubMed

    Wu, Howard G; Miyamoto, Yohsuke R; Gonzalez Castro, Luis Nicolas; Ölveczky, Bence P; Smith, Maurice A

    2014-02-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning.

  18. Temporal structure of motor variability is dynamically regulated and predicts motor learning ability

    PubMed Central

    Wu, Howard G; Miyamoto, Yohsuke R; Castro, Luis Nicolas Gonzalez; Ölveczky, Bence P; Smith, Maurice A

    2015-01-01

    Individual differences in motor learning ability are widely acknowledged, yet little is known about the factors that underlie them. Here we explore whether movement-to-movement variability in motor output, a ubiquitous if often unwanted characteristic of motor performance, predicts motor learning ability. Surprisingly, we found that higher levels of task-relevant motor variability predicted faster learning both across individuals and across tasks in two different paradigms, one relying on reward-based learning to shape specific arm movement trajectories and the other relying on error-based learning to adapt movements in novel physical environments. We proceeded to show that training can reshape the temporal structure of motor variability, aligning it with the trained task to improve learning. These results provide experimental support for the importance of action exploration, a key idea from reinforcement learning theory, showing that motor variability facilitates motor learning in humans and that our nervous systems actively regulate it to improve learning. PMID:24413700

  19. Using dual tasks to test immediate transfer of training between naturalistic movements: a proof-of-principle study.

    PubMed

    Schaefer, Sydney Y; Lang, Catherine E

    2012-01-01

    Theories of motor learning predict that training a movement reduces the amount of attention needed for its performance (i.e., more automatic). If training one movement transfers, then the amount of attention needed for performing a second movement should also be reduced, as measured under dual task conditions. The authors' purpose was to test whether dual task paradigms are feasible for detecting transfer of training between two naturalistic movements. Immediately following motor training, subjects improved performance of a second untrained movement under single and dual task conditions. Subjects with no training did not. Improved performance in the untrained movement was likely due to transfer, and suggests that dual tasks may be feasible for detecting transfer between naturalistic actions.

  20. Restricted transfer of learning between unimanual and bimanual finger sequences

    PubMed Central

    Bai, Wenjun

    2016-01-01

    When training bimanual skills, such as playing piano, people sometimes practice each hand separately and at a later stage combine the movements of the two hands. This poses the critical question of whether motor skills can be acquired by separately practicing each subcomponent or should be trained as a whole. In the present study, we addressed this question by training human subjects for 4 days in a unimanual or bimanual version of the discrete sequence production task. Both groups were then tested on trained and untrained sequences on both unimanual and bimanual versions of the task. Surprisingly, we found no evidence of transfer from trained unimanual to bimanual or from trained bimanual to unimanual sequences. In half the participants, we also investigated whether cuing the sequences on the left and right hand with unique letters would change transfer. With these cues, untrained sequences that shared some components with the trained sequences were performed more quickly than sequences that did not. However, the amount of this transfer was limited to ∼10% of the overall sequence-specific learning gains. These results suggest that unimanual and bimanual sequences are learned in separate representations. Making participants aware of the interrelationship between sequences can induce some transferrable component, although the main component of the skill remains unique to unimanual or bimanual execution. NEW & NOTEWORTHY Studies in reaching movement demonstrated that approximately half of motor learning can transfer across unimanual and bimanual contexts, suggesting that neural representations for unimanual and bimanual movements are fairly overlapping at the level of elementary movement. In this study, we show that little or no transfer occurred across unimanual and bimanual sequential finger movements. This result suggests that bimanual sequences are represented at a level of the motor hierarchy that integrates movements of both hands. PMID:27974447

  1. Gaze training enhances laparoscopic technical skill acquisition and multi-tasking performance: a randomized, controlled study.

    PubMed

    Wilson, Mark R; Vine, Samuel J; Bright, Elizabeth; Masters, Rich S W; Defriend, David; McGrath, John S

    2011-12-01

    The operating room environment is replete with stressors and distractions that increase the attention demands of what are already complex psychomotor procedures. Contemporary research in other fields (e.g., sport) has revealed that gaze training interventions may support the development of robust movement skills. This current study was designed to examine the utility of gaze training for technical laparoscopic skills and to test performance under multitasking conditions. Thirty medical trainees with no laparoscopic experience were divided randomly into one of three treatment groups: gaze trained (GAZE), movement trained (MOVE), and discovery learning/control (DISCOVERY). Participants were fitted with a Mobile Eye gaze registration system, which measures eye-line of gaze at 25 Hz. Training consisted of ten repetitions of the "eye-hand coordination" task from the LAP Mentor VR laparoscopic surgical simulator while receiving instruction and video feedback (specific to each treatment condition). After training, all participants completed a control test (designed to assess learning) and a multitasking transfer test, in which they completed the procedure while performing a concurrent tone counting task. Not only did the GAZE group learn more quickly than the MOVE and DISCOVERY groups (faster completion times in the control test), but the performance difference was even more pronounced when multitasking. Differences in gaze control (target locking fixations), rather than tool movement measures (tool path length), underpinned this performance advantage for GAZE training. These results suggest that although the GAZE intervention focused on training gaze behavior only, there were indirect benefits for movement behaviors and performance efficiency. Additionally, focusing on a single external target when learning, rather than on complex movement patterns, may have freed-up attentional resources that could be applied to concurrent cognitive tasks.

  2. Using dual tasks to test immediate transfer of training between naturalistic movements: A proof-of-principle study

    PubMed Central

    Schaefer, Sydney Y.; Lang, Catherine E.

    2012-01-01

    Theories of motor learning predict that training a movement reduces the amount of attention needed for its performance (i.e. more automatic). If training one movement transfers, then the amount of attention needed for performing a second movement should also be reduced, as measured under dual task conditions. The purpose of this study was to test whether dual task paradigms are feasible for detecting transfer of training between two naturalistic movements. Immediately following motor training, subjects improved performance of a second untrained movement under both single and dual task conditions. Subjects with no training did not. Improved performance in the untrained movement was likely due to transfer, and suggests that dual tasks may be feasible for detecting transfer between naturalistic actions. PMID:22934682

  3. The effectiveness of robotic training depends on motor task characteristics.

    PubMed

    Marchal-Crespo, Laura; Rappo, Nicole; Riener, Robert

    2017-12-01

    Previous research suggests that the effectiveness of robotic training depends on the motor task to be learned. However, it is still an open question which specific task's characteristics influence the efficacy of error-modulating training strategies. Motor tasks can be classified based on the time characteristics of the task, in particular the task's duration (discrete vs. continuous). Continuous tasks require movements without distinct beginning or end. Discrete tasks require fast movements that include well-defined postures at the beginning and the end. We developed two games, one that requires a continuous movement-a tracking task-and one that requires discrete movements-a fast reaching task. We conducted an experiment with thirty healthy subjects to evaluate the effectiveness of three error-modulating training strategies-no guidance, error amplification (i.e., repulsive forces proportional to errors) and haptic guidance-on self-reported motivation and learning of the continuous and discrete games. Training with error amplification resulted in better motor learning than haptic guidance, besides the fact that error amplification reduced subjects' interest/enjoyment and perceived competence during training. Only subjects trained with error amplification improved their performance after training the discrete game. In fact, subjects trained without guidance improved the performance in the continuous game significantly more than in the discrete game, probably because the continuous task required greater attentional levels. Error-amplifying training strategies have a great potential to provoke better motor learning in continuous and discrete tasks. However, their long-lasting negative effects on motivation might limit their applicability in intense neurorehabilitation programs.

  4. Learning of Temporal and Spatial Movement Aspects: A Comparison of Four Types of Haptic Control and Concurrent Visual Feedback.

    PubMed

    Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter

    2015-01-01

    In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.

  5. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.

    PubMed

    Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J

    2007-03-28

    A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury.

  6. Multiple Motor Learning Strategies in Visuomotor Rotation

    PubMed Central

    Saijo, Naoki; Gomi, Hiroaki

    2010-01-01

    Background When exposed to a continuous directional discrepancy between movements of a visible hand cursor and the actual hand (visuomotor rotation), subjects adapt their reaching movements so that the cursor is brought to the target. Abrupt removal of the discrepancy after training induces reaching error in the direction opposite to the original discrepancy, which is called an aftereffect. Previous studies have shown that training with gradually increasing visuomotor rotation results in a larger aftereffect than with a suddenly increasing one. Although the aftereffect difference implies a difference in the learning process, it is still unclear whether the learned visuomotor transformations are qualitatively different between the training conditions. Methodology/Principal Findings We examined the qualitative changes in the visuomotor transformation after the learning of the sudden and gradual visuomotor rotations. The learning of the sudden rotation led to a significant increase of the reaction time for arm movement initiation and then the reaching error decreased, indicating that the learning is associated with an increase of computational load in motor preparation (planning). In contrast, the learning of the gradual rotation did not change the reaction time but resulted in an increase of the gain of feedback control, suggesting that the online adjustment of the reaching contributes to the learning of the gradual rotation. When the online cursor feedback was eliminated during the learning of the gradual rotation, the reaction time increased, indicating that additional computations are involved in the learning of the gradual rotation. Conclusions/Significance The results suggest that the change in the motor planning and online feedback adjustment of the movement are involved in the learning of the visuomotor rotation. The contributions of those computations to the learning are flexibly modulated according to the visual environment. Such multiple learning strategies would be required for reaching adaptation within a short training period. PMID:20195373

  7. Somatosensory Contribution to the Initial Stages of Human Motor Learning

    PubMed Central

    Bernardi, Nicolò F.; Darainy, Mohammad

    2015-01-01

    The early stages of motor skill acquisition are often marked by uncertainty about the sensory and motor goals of the task, as is the case in learning to speak or learning the feel of a good tennis serve. Here we present an experimental model of this early learning process, in which targets are acquired by exploration and reinforcement rather than sensory error. We use this model to investigate the relative contribution of motor and sensory factors to human motor learning. Participants make active reaching movements or matched passive movements to an unseen target using a robot arm. We find that learning through passive movements paired with reinforcement is comparable with learning associated with active movement, both in terms of magnitude and durability, with improvements due to training still observable at a 1 week retest. Motor learning is also accompanied by changes in somatosensory perceptual acuity. No stable changes in motor performance are observed for participants that train, actively or passively, in the absence of reinforcement, or for participants who are given explicit information about target position in the absence of somatosensory experience. These findings indicate that the somatosensory system dominates learning in the early stages of motor skill acquisition. SIGNIFICANCE STATEMENT The research focuses on the initial stages of human motor learning, introducing a new experimental model that closely approximates the key features of motor learning outside of the laboratory. The finding indicates that it is the somatosensory system rather than the motor system that dominates learning in the early stages of motor skill acquisition. This is important given that most of our computational models of motor learning are based on the idea that learning is motoric in origin. This is also a valuable finding for rehabilitation of patients with limited mobility as it shows that reinforcement in conjunction with passive movement results in benefits to motor learning that are as great as those observed for active movement training. PMID:26490869

  8. Skill learning from kinesthetic feedback.

    PubMed

    Pinzon, David; Vega, Roberto; Sanchez, Yerly Paola; Zheng, Bin

    2017-10-01

    It is important for a surgeon to perform surgical tasks under appropriate guidance from visual and kinesthetic feedback. However, our knowledge on kinesthetic (muscle) memory and its role in learning motor skills remains elementary. To discover the effect of exclusive kinesthetic training on kinesthetic memory in both performance and learning. In Phase 1, a total of twenty participants duplicated five 2 dimensional movements of increasing complexity via passive kinesthetic guidance, without visual or auditory stimuli. Five participants were asked to repeat the task in the Phase 2 over a period of three weeks, for a total of nine sessions. Subjects accurately recalled movement direction using kinesthetic memory, but recalling movement length was less precise. Over the nine training sessions, error occurrence dropped after the sixth session. Muscle memory constructs the foundation for kinesthetic training. Knowledge gained helps surgeons learn skills from kinesthetic information in the condition where visual feedback is limited. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Restricted transfer of learning between unimanual and bimanual finger sequences.

    PubMed

    Yokoi, Atsushi; Bai, Wenjun; Diedrichsen, Jörn

    2017-03-01

    When training bimanual skills, such as playing piano, people sometimes practice each hand separately and at a later stage combine the movements of the two hands. This poses the critical question of whether motor skills can be acquired by separately practicing each subcomponent or should be trained as a whole. In the present study, we addressed this question by training human subjects for 4 days in a unimanual or bimanual version of the discrete sequence production task. Both groups were then tested on trained and untrained sequences on both unimanual and bimanual versions of the task. Surprisingly, we found no evidence of transfer from trained unimanual to bimanual or from trained bimanual to unimanual sequences. In half the participants, we also investigated whether cuing the sequences on the left and right hand with unique letters would change transfer. With these cues, untrained sequences that shared some components with the trained sequences were performed more quickly than sequences that did not. However, the amount of this transfer was limited to ∼10% of the overall sequence-specific learning gains. These results suggest that unimanual and bimanual sequences are learned in separate representations. Making participants aware of the interrelationship between sequences can induce some transferrable component, although the main component of the skill remains unique to unimanual or bimanual execution. NEW & NOTEWORTHY Studies in reaching movement demonstrated that approximately half of motor learning can transfer across unimanual and bimanual contexts, suggesting that neural representations for unimanual and bimanual movements are fairly overlapping at the level of elementary movement. In this study, we show that little or no transfer occurred across unimanual and bimanual sequential finger movements. This result suggests that bimanual sequences are represented at a level of the motor hierarchy that integrates movements of both hands. Copyright © 2017 the American Physiological Society.

  10. Sequence specific motor performance gains after memory consolidation in children and adolescents.

    PubMed

    Dorfberger, Shoshi; Adi-Japha, Esther; Karni, Avi

    2012-01-01

    Memory consolidation for a trained sequence of finger opposition movements, in 9- and 12-year-old children, was recently found to be significantly less susceptible to interference by a subsequent training experience, compared to that of 17-year-olds. It was suggested that, in children, the experience of training on any sequence of finger movements may affect the performance of the sequence elements, component movements, rather than the sequence as a unit; the latter has been implicated in the learning of the task by adults. This hypothesis implied a possible childhood advantage in the ability to transfer the gains from a trained to the reversed, untrained, sequence of movements. Here we report the results of transfer tests undertaken to test this proposal in 9-, 12-, and 17-year-olds after training in the finger-to-thumb opposition sequence (FOS) learning task. Our results show that the performance gains in the trained sequence partially transferred from the left, trained hand, to the untrained hand at 48-hours after a single training session in the three age-groups tested. However, there was very little transfer of the gains from the trained to the untrained, reversed, sequence performed by either hand. The results indicate sequence specific post-training gains in FOS performance, as opposed to a general improvement in performance of the individual, component, movements that comprised both the trained and untrained sequences. These results do not support the proposal that the reduced susceptibility to interference, in children before adolescence, reflects a difference in movement syntax representation after training.

  11. Motor learning characterizes habilitation of children with hemiplegic cerebral palsy.

    PubMed

    Krebs, Hermano I; Fasoli, Susan E; Dipietro, Laura; Fragala-Pinkham, Maria; Hughes, Richard; Stein, Joel; Hogan, Neville

    2012-09-01

    This study tested in children with cerebral palsy (CP) whether motor habilitation resembles motor learning. Twelve children with hemiplegic CP ages 5 to 12 years with moderate to severe motor impairments underwent a 16-session robot-mediated planar therapy program to improve upper limb reach, with a focus on shoulder and elbow movements. Participants were trained to execute point-to-point movements (with robot assistance) with the affected arm and were evaluated (without robot assistance) in trained (point-to-point) and untrained (circle-drawing) conditions. Outcomes were measured at baseline, midpoint, immediately after the program, and 1 month postcompletion. Outcome measures were the Fugl-Meyer (FM), Quality of Upper Extremity Skills Test (QUEST), and Modified Ashworth Scale (MAS) scores; parent questionnaire; and robot-based kinematic metrics. To assess whether learning best characterizes motor habilitation in CP, the authors quantified (a) improvement on trained tasks at completion of training (acquisition) and 1 month following completion (retention) and (b) quantified generalization of improvement to untrained tasks. After robotic intervention, the authors found significant gains in the FM, QUEST, and parent questionnaire. Robot-based evaluations demonstrated significant improvement in trained movements and that improvement was sustained at follow-up. Furthermore, children improved their performance in untrained movements indicating generalization. Motor habilitation in CP exhibits some traits of motor learning. Optimal treatment may not require an extensive repertoire of tasks but rather a select set to promote generalization.

  12. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition

    PubMed Central

    Munoz-Organero, Mario; Ruiz-Blazquez, Ramona

    2017-01-01

    Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data). The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users), the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates (F = 0.77) even in the case of using different people executing a different sequence of movements and using different hardware. PMID:28208736

  13. Time-Elastic Generative Model for Acceleration Time Series in Human Activity Recognition.

    PubMed

    Munoz-Organero, Mario; Ruiz-Blazquez, Ramona

    2017-02-08

    Body-worn sensors in general and accelerometers in particular have been widely used in order to detect human movements and activities. The execution of each type of movement by each particular individual generates sequences of time series of sensed data from which specific movement related patterns can be assessed. Several machine learning algorithms have been used over windowed segments of sensed data in order to detect such patterns in activity recognition based on intermediate features (either hand-crafted or automatically learned from data). The underlying assumption is that the computed features will capture statistical differences that can properly classify different movements and activities after a training phase based on sensed data. In order to achieve high accuracy and recall rates (and guarantee the generalization of the system to new users), the training data have to contain enough information to characterize all possible ways of executing the activity or movement to be detected. This could imply large amounts of data and a complex and time-consuming training phase, which has been shown to be even more relevant when automatically learning the optimal features to be used. In this paper, we present a novel generative model that is able to generate sequences of time series for characterizing a particular movement based on the time elasticity properties of the sensed data. The model is used to train a stack of auto-encoders in order to learn the particular features able to detect human movements. The results of movement detection using a newly generated database with information on five users performing six different movements are presented. The generalization of results using an existing database is also presented in the paper. The results show that the proposed mechanism is able to obtain acceptable recognition rates ( F = 0.77) even in the case of using different people executing a different sequence of movements and using different hardware.

  14. Learning piano melodies in visuo-motor or audio-motor training conditions and the neural correlates of their cross-modal transfer.

    PubMed

    Engel, Annerose; Bangert, Marc; Horbank, David; Hijmans, Brenda S; Wilkens, Katharina; Keller, Peter E; Keysers, Christian

    2012-11-01

    To investigate the cross-modal transfer of movement patterns necessary to perform melodies on the piano, 22 non-musicians learned to play short sequences on a piano keyboard by (1) merely listening and replaying (vision of own fingers occluded) or (2) merely observing silent finger movements and replaying (on a silent keyboard). After training, participants recognized with above chance accuracy (1) audio-motor learned sequences upon visual presentation (89±17%), and (2) visuo-motor learned sequences upon auditory presentation (77±22%). The recognition rates for visual presentation significantly exceeded those for auditory presentation (p<.05). fMRI revealed that observing finger movements corresponding to audio-motor trained melodies is associated with stronger activation in the left rolandic operculum than observing untrained sequences. This region was also involved in silent execution of sequences, suggesting that a link to motor representations may play a role in cross-modal transfer from audio-motor training condition to visual recognition. No significant differences in brain activity were found during listening to visuo-motor trained compared to untrained melodies. Cross-modal transfer was stronger from the audio-motor training condition to visual recognition and this is discussed in relation to the fact that non-musicians are familiar with how their finger movements look (motor-to-vision transformation), but not with how they sound on a piano (motor-to-sound transformation). Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Learning Kinematic Constraints in Laparoscopic Surgery

    PubMed Central

    Huang, Felix C.; Mussa-Ivaldi, Ferdinando A.; Pugh, Carla M.; Patton, James L.

    2012-01-01

    To better understand how kinematic variables impact learning in surgical training, we devised an interactive environment for simulated laparoscopic maneuvers, using either 1) mechanical constraints typical of a surgical “box-trainer” or 2) virtual constraints in which free hand movements control virtual tool motion. During training, the virtual tool responded to the absolute position in space (Position-Based) or the orientation (Orientation-Based) of a hand-held sensor. Volunteers were further assigned to different sequences of target distances (Near-Far-Near or Far-Near-Far). Training with the Orientation-Based constraint enabled much lower path error and shorter movement times during training, which suggests that tool motion that simply mirrors joint motion is easier to learn. When evaluated in physically constrained (physical box-trainer) conditions, each group exhibited improved performance from training. However, Position-Based training enabled greater reductions in movement error relative to Orientation-Based (mean difference: 14.0 percent; CI: 0.7, 28.6). Furthermore, the Near-Far-Near schedule allowed a greater decrease in task time relative to the Far-Near-Far sequence (mean −13:5 percent, CI: −19:5, −7:5). Training that focused on shallow tool insertion (near targets) might promote more efficient movement strategies by emphasizing the curvature of tool motion. In addition, our findings suggest that an understanding of absolute tool position is critical to coping with mechanical interactions between the tool and trocar. PMID:23293709

  16. Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed

    PubMed Central

    Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J

    2007-01-01

    Background A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Methods Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. Results We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. Conclusion The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury. PMID:17391527

  17. Transfer of piano practice in fast performance of skilled finger movements.

    PubMed

    Furuya, Shinichi; Nakamura, Ayumi; Nagata, Noriko

    2013-11-01

    Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements.

  18. Behavioral and neural effects of congruency of visual feedback during short-term motor learning.

    PubMed

    Ossmy, Ori; Mukamel, Roy

    2018-05-15

    Visual feedback can facilitate or interfere with movement execution. Here, we describe behavioral and neural mechanisms by which the congruency of visual feedback during physical practice of a motor skill modulates subsequent performance gains. 18 healthy subjects learned to execute rapid sequences of right hand finger movements during fMRI scans either with or without visual feedback. Feedback consisted of a real-time, movement-based display of virtual hands that was either congruent (right virtual hand movement), or incongruent (left virtual hand movement yoked to the executing right hand). At the group level, right hand performance gains following training with congruent visual feedback were significantly higher relative to training without visual feedback. Conversely, performance gains following training with incongruent visual feedback were significantly lower. Interestingly, across individual subjects these opposite effects correlated. Activation in the Supplementary Motor Area (SMA) during training corresponded to individual differences in subsequent performance gains. Furthermore, functional coupling of SMA with visual cortices predicted individual differences in behavior. Our results demonstrate that some individuals are more sensitive than others to congruency of visual feedback during short-term motor learning and that neural activation in SMA correlates with such inter-individual differences. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. The Effect of Movement Imagery Training on Learning Forearm Pass in Volleyball

    ERIC Educational Resources Information Center

    Ay, Khitam Mousa; Halaweh, Rami Saleh; Al-Taieb, Mohammad Abu

    2013-01-01

    This study investigates the effect of movement imagery on learning the forearm pass in volleyball. Twenty four mail students from Physical Education Factuly at Jordan University (19 ± 0.5) years of age. After Completed the Movement Imagery Questionnaire-Revised (MIQ-R; Hall & Martin, 1997) the subjects randomly divided into two groups,…

  20. Transfer of learning between unimanual and bimanual rhythmic movement coordination: transfer is a function of the task dynamic.

    PubMed

    Snapp-Childs, Winona; Wilson, Andrew D; Bingham, Geoffrey P

    2015-07-01

    Under certain conditions, learning can transfer from a trained task to an untrained version of that same task. However, it is as yet unclear what those certain conditions are or why learning transfers when it does. Coordinated rhythmic movement is a valuable model system for investigating transfer because we have a model of the underlying task dynamic that includes perceptual coupling between the limbs being coordinated. The model predicts that (1) coordinated rhythmic movements, both bimanual and unimanual, are organised with respect to relative motion information for relative phase in the coupling function, (2) unimanual is less stable than bimanual coordination because the coupling is unidirectional rather than bidirectional, and (3) learning a new coordination is primarily about learning to perceive and use the relevant information which, with equal perceptual improvement due to training, yields equal transfer of learning from bimanual to unimanual coordination and vice versa [but, given prediction (2), the resulting performance is also conditioned by the intrinsic stability of each task]. In the present study, two groups were trained to produce 90° either unimanually or bimanually, respectively, and tested in respect to learning (namely improved performance in the trained 90° coordination task and improved visual discrimination of 90°) and transfer of learning (to the other, untrained 90° coordination task). Both groups improved in the task condition in which they were trained and in their ability to visually discriminate 90°, and this learning transferred to the untrained condition. When scaled by the relative intrinsic stability of each task, transfer levels were found to be equal. The results are discussed in the context of the perception-action approach to learning and performance.

  1. Transfer of piano practice in fast performance of skilled finger movements

    PubMed Central

    2013-01-01

    Background Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Results Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. Conclusions The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements. PMID:24175946

  2. Robot-supported upper limb training in a virtual learning environment : a pilot randomized controlled trial in persons with MS.

    PubMed

    Feys, Peter; Coninx, Karin; Kerkhofs, Lore; De Weyer, Tom; Truyens, Veronik; Maris, Anneleen; Lamers, Ilse

    2015-07-23

    Despite the functional impact of upper limb dysfunction in multiple sclerosis (MS), effects of intensive exercise programs and specifically robot-supported training have been rarely investigated in persons with advanced MS. To investigate the effects of additional robot-supported upper limb training in persons with MS compared to conventional treatment only. Seventeen persons with MS (pwMS) (median Expanded Disability Status Scale of 8, range 3.5-8.5) were included in a pilot RCT comparing the effects of additional robot-supported training to conventional treatment only. Additional training consisted of 3 weekly sessions of 30 min interacting with the HapticMaster robot within an individualised virtual learning environment (I-TRAVLE). Clinical measures at body function (Hand grip strength, Motricity Index, Fugl-Meyer) and activity (Action Research Arm test, Motor Activity Log) level were administered before and after an intervention period of 8 weeks. The intervention group were also evaluated on robot-mediated movement tasks in three dimensions, providing active range of motion, movement duration and speed and hand-path ratio as indication of movement efficiency in the spatial domain. Non-parametric statistics were applied. PwMS commented favourably on the robot-supported virtual learning environment and reported functional training effects in daily life. Movement tasks in three dimensions, measured with the robot, were performed in less time and for the transporting and reaching movement tasks more efficiently. There were however no significant changes for any clinical measure in neither intervention nor control group although observational analyses of the included cases indicated large improvements on the Fugl-Meyer in persons with more marked upper limb dysfunction. Robot-supported training lead to more efficient movement execution which was however, on group level, not reflected by significant changes on standard clinical tests. Persons with more marked upper limb dysfunction may benefit most from additional robot-supported training, but larger studies are needed. This trial is registered within the registry Clinical Trials GOV ( NCT02257606 ).

  3. Motor Learning Characterizes Habilitation of Children With Hemiplegic Cerebral Palsy

    PubMed Central

    Krebs, Hermano I.; Fasoli, Susan E.; Dipietro, Laura; Fragala-Pinkham, Maria; Hughes, Richard; Stein, Joel; Hogan, Neville

    2015-01-01

    Background This study tested in children with cerebral palsy (CP) whether motor habilitation resembles motor learning. Methods Twelve children with hemiplegic CP ages 5 to 12 years with moderate to severe motor impairments underwent a 16-session robot-mediated planar therapy program to improve upper limb reach, with a focus on shoulder and elbow movements. Participants were trained to execute point-to-point movements (with robot assistance) with the affected arm and were evaluated (without robot assistance) in trained (point-to-point) and untrained (circle-drawing) conditions. Outcomes were measured at baseline, midpoint, immediately after the program, and 1 month postcompletion. Outcome measures were the Fugl-Meyer (FM), Quality of Upper Extremity Skills Test (QUEST), and Modified Ashworth Scale (MAS) scores; parent questionnaire; and robot-based kinematic metrics. To assess whether learning best characterizes motor habilitation in CP, the authors quantified (a) improvement on trained tasks at completion of training (acquisition) and 1 month following completion (retention) and (b) quantified generalization of improvement to untrained tasks. Results After robotic intervention, the authors found significant gains in the FM, QUEST, and parent questionnaire. Robot-based evaluations demonstrated significant improvement in trained movements and that improvement was sustained at follow-up. Furthermore, children improved their performance in untrained movements indicating generalization. Conclusions Motor habilitation in CP exhibits some traits of motor learning. Optimal treatment may not require an extensive repertoire of tasks but rather a select set to promote generalization. PMID:22331211

  4. Computer-Based Training: Capitalizing on Lessons Learned

    ERIC Educational Resources Information Center

    Bedwell, Wendy L.; Salas, Eduardo

    2010-01-01

    Computer-based training (CBT) is a methodology for providing systematic, structured learning; a useful tool when properly designed. CBT has seen a resurgence given the serious games movement, which is at the forefront of integrating primarily entertainment computer-based games into education and training. This effort represents a multidisciplinary…

  5. Perceptual learning in sensorimotor adaptation.

    PubMed

    Darainy, Mohammad; Vahdat, Shahabeddin; Ostry, David J

    2013-11-01

    Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance. In the present study, we test the idea that perceptual learning alters somatosensory function and in so doing produces changes to human motor performance and sensorimotor adaptation. Subjects in these experiments undergo perceptual training in which a robotic device passively moves the subject's arm on one of a set of fan-shaped trajectories. Subjects are required to indicate whether the robot moved the limb to the right or the left and feedback is provided. Over the course of training both the perceptual boundary and acuity are altered. The perceptual learning is observed to improve both the rate and extent of learning in a subsequent sensorimotor adaptation task and the benefits persist for at least 24 h. The improvement in the present studies varies systematically with changes in perceptual acuity and is obtained regardless of whether the perceptual boundary shift serves to systematically increase or decrease error on subsequent movements. The beneficial effects of perceptual training are found to be substantially dependent on reinforced decision-making in the sensory domain. Passive-movement training on its own is less able to alter subsequent learning in the motor system. Overall, this study suggests perceptual learning plays an integral role in motor learning.

  6. Teachers' perceptions about children's movement and learning in early childhood education programmes.

    PubMed

    Gehris, J S; Gooze, R A; Whitaker, R C

    2015-01-01

    Efforts to improve the academic skills of preschool-aged children have resulted in approaches that tend to limit children's movement. However, movement experiences have long been considered important to children's learning and have received increased attention because of the obesity epidemic. Early childhood educators are important sources of information about if and how to promote learning and school readiness through movement, but little effort has been made to understand teachers' views on this topic. We conducted six focus groups with 37 teachers from a Head Start programme with centres in three cities in eastern Pennsylvania. We inquired about: (1) how movement influences children's learning; (2) what types of movement experiences are most beneficial for children; (3) what settings best support children's movement; and (4) challenges related to children's movement. To identify key themes from the focus groups, transcripts were analysed using an inductive method of coding. Teachers' views were expressed in four major themes. First, young children have an innate need to move, and teachers respond to this need by using movement experiences to prepare children to learn and to teach academic concepts and spatial awareness. However, teachers wanted more training in these areas. Second, movement prepares children for school and for life by building children's confidence and social skills. Third, teachers and children benefit from moving together because it motivates children and promotes teacher-child relationships. Finally, moving outdoors promotes learning by engaging children's senses and promoting community interaction. More training may be required to help early childhood educators use movement experiences to teach academic concepts and improve children's spatial awareness. Future interventions could examine the impacts on children's movement and learning of having teachers move with children during outdoor free play and including more natural features in the design of outdoor play areas. © 2014 John Wiley & Sons Ltd.

  7. Active versus Passive Training of a Complex Bimanual Task: Is Prescriptive Proprioceptive Information Sufficient for Inducing Motor Learning?

    PubMed Central

    Beets, Iseult A. M.; Macé, Marc; Meesen, Raf L. J.; Cuypers, Koen; Levin, Oron; Swinnen, Stephan P.

    2012-01-01

    Perceptual processes play an important role in motor learning. While it is evident that visual information greatly contributes to learning new movements, much less is known about provision of prescriptive proprioceptive information. Here, we investigated whether passive (proprioceptively-based) movement training was comparable to active training for learning a new bimanual task. Three groups practiced a bimanual coordination pattern with a 1∶2 frequency ratio and a 90° phase offset between both wrists with Lissajous feedback over the course of four days: 1) passive training; 2) active training; 3) no training (control). Retention findings revealed that passive as compared to active training resulted in equally successful acquisition of the frequency ratio but active training was more effective for acquisition of the new relative phasing between the limbs in the presence of augmented visual feedback. However, when this feedback was removed, performance of the new relative phase deteriorated in both groups whereas the frequency ratio was better preserved. The superiority of active over passive training in the presence of augmented feedback is hypothesized to result from active involvement in processes of error detection/correction and planning. PMID:22666379

  8. Perceptual learning modifies untrained pursuit eye movements.

    PubMed

    Szpiro, Sarit F A; Spering, Miriam; Carrasco, Marisa

    2014-07-07

    Perceptual learning improves detection and discrimination of relevant visual information in mature humans, revealing sensory plasticity. Whether visual perceptual learning affects motor responses is unknown. Here we implemented a protocol that enabled us to address this question. We tested a perceptual response (motion direction estimation, in which observers overestimate motion direction away from a reference) and a motor response (voluntary smooth pursuit eye movements). Perceptual training led to greater overestimation and, remarkably, it modified untrained smooth pursuit. In contrast, pursuit training did not affect overestimation in either pursuit or perception, even though observers in both training groups were exposed to the same stimuli for the same time period. A second experiment revealed that estimation training also improved discrimination, indicating that overestimation may optimize perceptual sensitivity. Hence, active perceptual training is necessary to alter perceptual responses, and an acquired change in perception suffices to modify pursuit, a motor response. © 2014 ARVO.

  9. Perceptual learning modifies untrained pursuit eye movements

    PubMed Central

    Szpiro, Sarit F. A.; Spering, Miriam; Carrasco, Marisa

    2014-01-01

    Perceptual learning improves detection and discrimination of relevant visual information in mature humans, revealing sensory plasticity. Whether visual perceptual learning affects motor responses is unknown. Here we implemented a protocol that enabled us to address this question. We tested a perceptual response (motion direction estimation, in which observers overestimate motion direction away from a reference) and a motor response (voluntary smooth pursuit eye movements). Perceptual training led to greater overestimation and, remarkably, it modified untrained smooth pursuit. In contrast, pursuit training did not affect overestimation in either pursuit or perception, even though observers in both training groups were exposed to the same stimuli for the same time period. A second experiment revealed that estimation training also improved discrimination, indicating that overestimation may optimize perceptual sensitivity. Hence, active perceptual training is necessary to alter perceptual responses, and an acquired change in perception suffices to modify pursuit, a motor response. PMID:25002412

  10. The decay of motor adaptation to novel movement dynamics reveals an asymmetry in the stability of motion state-dependent learning

    PubMed Central

    Hosseini, Eghbal A.; Nguyen, Katrina P.; Joiner, Wilsaan M.

    2017-01-01

    Motor adaptation paradigms provide a quantitative method to study short-term modification of motor commands. Despite the growing understanding of the role motion states (e.g., velocity) play in this form of motor learning, there is little information on the relative stability of memories based on these movement characteristics, especially in comparison to the initial adaptation. Here, we trained subjects to make reaching movements perturbed by force patterns dependent upon either limb position or velocity. Following training, subjects were exposed to a series of error-clamp trials to measure the temporal characteristics of the feedforward motor output during the decay of learning. The compensatory force patterns were largely based on the perturbation kinematic (e.g., velocity), but also showed a small contribution from the other motion kinematic (e.g., position). However, the velocity contribution in response to the position-based perturbation decayed at a slower rate than the position contribution to velocity-based training, suggesting a difference in stability. Next, we modified a previous model of motor adaptation to reflect this difference and simulated the behavior for different learning goals. We were interested in the stability of learning when the perturbations were based on different combinations of limb position or velocity that subsequently resulted in biased amounts of motion-based learning. We trained additional subjects on these combined motion-state perturbations and confirmed the predictions of the model. Specifically, we show that (1) there is a significant separation between the observed gain-space trajectories for the learning and decay of adaptation and (2) for combined motion-state perturbations, the gain associated to changes in limb position decayed at a faster rate than the velocity-dependent gain, even when the position-dependent gain at the end of training was significantly greater. Collectively, these results suggest that the state-dependent adaptation associated with movement velocity is relatively more stable than that based on position. PMID:28481891

  11. Effects of training pre-movement sensorimotor rhythms on behavioral performance

    NASA Astrophysics Data System (ADS)

    McFarland, Dennis J.; Sarnacki, William A.; Wolpaw, Jonathan R.

    2015-12-01

    Objective. Brain-computer interface (BCI) technology might contribute to rehabilitation of motor function. This speculation is based on the premise that modifying the electroencephalographic (EEG) activity will modify behavior, a proposition for which there is limited empirical data. The present study asked whether learned modulation of pre-movement sensorimotor rhythm (SMR) activity can affect motor performance in normal human subjects. Approach. Eight individuals first performed a joystick-based cursor-movement task with variable warning periods. Targets appeared randomly on a video monitor and subjects moved the cursor to the target and pressed a select button within 2 s. SMR features in the pre-movement EEG that correlated with performance speed and accuracy were identified. The subjects then learned to increase or decrease these features to control a two-target BCI task. Following successful BCI training, they were asked to increase or decrease SMR amplitude in order to initiate the joystick task. Main results. After BCI training, pre-movement SMR amplitude was correlated with performance in subjects with initial poor performance: lower amplitude was associated with faster and more accurate movement. The beneficial effect on performance of lower SMR amplitude was greater in subjects with lower initial performance levels. Significance. These results indicate that BCI-based SMR training can affect a standard motor behavior. They provide a rationale for studies that integrate such training into rehabilitation protocols and examine its capacity to enhance restoration of useful motor function.

  12. Impact of a Differential Learning Approach on Practical Exam Performance: A Controlled Study in a Preclinical Dental Course.

    PubMed

    Pabel, Sven-Olav; Pabel, Anne-Kathrin; Schmickler, Jan; Schulz, Xenia; Wiegand, Annette

    2017-09-01

    The aim of this study was to evaluate if differential learning in a preclinical dental course impacted the performance of dental students in a practical exam (preparation of a gold partial crown) immediately after the training session and 20 weeks later compared to conventional learning. This controlled study was performed in a preclinical course in operative dentistry at a dental school in Germany. Third-year students were trained in preparing gold partial crowns by using either the conventional learning (n=41) or the differential learning approach (n=32). The differential learning approach consisted of 20 movement exercises with a continuous change of movement execution during the learning session, while the conventional learning approach was mainly based on repetition, a methodological series of exercises, and correction of preparations during the training phase. Practical exams were performed immediately after the training session (T1) and 20 weeks later (T2, retention test). Preparations were rated by four independent and blinded examiners. At T1, no significant difference between the performance (exam passed) of the two groups was detected (conventional learning: 54.3%, differential learning: 68.0%). At T2, significantly more students passed the exam when trained by the differential learning approach (68.8%) than by the conventional learning approach (18.9%). Interrater reliability was moderate (Kappa: 0.57, T1) or substantial (Kappa: 0.67, T2), respectively. These results suggest that a differential learning approach can increase the manual skills of dental students.

  13. Quiet eye training improves surgical knot tying more than traditional technical training: a randomized controlled study.

    PubMed

    Causer, Joe; Harvey, Adrian; Snelgrove, Ryan; Arsenault, Gina; Vickers, Joan N

    2014-08-01

    We examined the effectiveness of technical training (TT) and quiet eye training (QE) on the performance of one-handed square knot tying in surgical residents. Twenty surgical residents were randomly assigned to the 2 groups and completed pretest, training, retention, and transfer tests. Participants wore a mobile eye tracker that simultaneously recorded their gaze and hand movements. Dependent variables were knot tying performance (%), QE duration (%), number of fixations, total movement time (s), and hand movement phase time (s). The QE training group had significantly higher performance scores, a longer QE duration, fewer fixations, faster total knot tying times, and faster movement phase times compared with the TT group. The QE group maintained performance in the transfer test, whereas the TT group significantly decreased performance from retention to transfer. QE training significantly improved learning, retention, and transfer of surgical knot tying compared with a traditional technical approach. Both performance effectiveness (performance outcome) and movement efficiency (hand movement times) were improved using QE modeling, instruction, and feedback. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Motor imagery training promotes motor learning in adolescents with cerebral palsy: comparison between left and right hemiparesis.

    PubMed

    Cabral-Sequeira, Audrey Sartori; Coelho, Daniel Boari; Teixeira, Luis Augusto

    2016-06-01

    This experiment was designed to evaluate the effects of pure motor imagery training (MIT) and its combination with physical practice on learning an aiming task with the more affected arm in adolescents suffering from cerebral palsy. Effect of MIT was evaluated as a function of side of hemiparesis. The experiment was accomplished by 11- to 16-year-old participants (M = 13.58 years), who suffered left (n = 16) or right (n = 15) mild hemiparesis. They were exposed to pure MIT (day 1) followed by physical practice (day 2) on an aiming task demanding movement accuracy and speed. Posttraining movement kinematics of the group receiving MIT were compared with movement kinematics of the control group after receiving recreational activities (day 1) and physical practice (day 2). Kinematic analysis showed that MIT led to decreased movement time and straighter hand displacements to the target. Performance achievements from MIT were increased with further physical practice, leading to enhanced effects on motor learning. Retention evaluation indicated that performance improvement from pure MIT and its combination with physical practice were stable over time. Performance achievements were equivalent between adolescents with either right or left hemiparesis, suggesting similar capacity between these groups to achieve performance improvement from pure imagery training and from its association with physical practice. Our results suggest that motor imagery training is a procedure potentially useful to increase motor learning achievements in individuals suffering from cerebral palsy.

  15. Sensori-Motor Learning with Movement Sonification: Perspectives from Recent Interdisciplinary Studies.

    PubMed

    Bevilacqua, Frédéric; Boyer, Eric O; Françoise, Jules; Houix, Olivier; Susini, Patrick; Roby-Brami, Agnès; Hanneton, Sylvain

    2016-01-01

    This article reports on an interdisciplinary research project on movement sonification for sensori-motor learning. First, we describe different research fields which have contributed to movement sonification, from music technology including gesture-controlled sound synthesis, sonic interaction design, to research on sensori-motor learning with auditory-feedback. In particular, we propose to distinguish between sound-oriented tasks and movement-oriented tasks in experiments involving interactive sound feedback. We describe several research questions and recently published results on movement control, learning and perception. In particular, we studied the effect of the auditory feedback on movements considering several cases: from experiments on pointing and visuo-motor tracking to more complex tasks where interactive sound feedback can guide movements, or cases of sensory substitution where the auditory feedback can inform on object shapes. We also developed specific methodologies and technologies for designing the sonic feedback and movement sonification. We conclude with a discussion on key future research challenges in sensori-motor learning with movement sonification. We also point out toward promising applications such as rehabilitation, sport training or product design.

  16. Time-specific contribution of the supplementary motor area to intermanual transfer of procedural knowledge

    PubMed Central

    Perez, MA; Tanaka, S; Wise, SP; Willingham, DT; Cohen, LG

    2008-01-01

    The supplementary motor area (SMA) makes a crucial contribution to intermanual transfer: the ability to use one hand to perform a skill practiced and learned with the other hand. However, the timing of this contribution relative to movement remains unknown. Here, 33 healthy volunteers performed a 12-item sequence in the serial reaction time task (SRTT). During training, each participant responded to a sequence of visual cues presented at 1 Hz by pressing one of 4 keys with their right hand. The measure of intermanual transfer was response time (RT) during repetition of the trained sequence with the left hand, which was at rest during learning. Participants were divided into 3 groups, which did not differ in their learning rates or amounts. In 2 groups, 1 Hz repetitive transcranial magnetic stimulation (rTMS) induced transient virtual lesions of the SMA during training, either 100 ms before each cue (the premovement group) or during each key press (the movement group). The third group received sham stimulation (the sham group). After training with the right hand, RTs for performance with the left (transfer) hand were longer for the premovement group than for the movement or sham groups. Thus SMA’s most crucial contribution to intermanual transfer occurs in the interval between movements, when the memory of a prior movement plays a role in encoding specific sequences. These results provide insight into frontal-lobe contributions to procedural knowledge. PMID:18815252

  17. "The Music, Movement, and Learning Connection": A Review

    ERIC Educational Resources Information Center

    Blasi, MaryJane; Foley, Mary B.

    2006-01-01

    In this article, the authors review "The Music, Movement, and Learning Connection," written by early childhood educator and musician Hap Palmer in the September 2001 issue of Young Children, which is of significant interest to parents and teachers. As trained musicians, the authors agree with Palmer's message about music's positive effect on…

  18. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning.

    PubMed

    Block, Hannah; Celnik, Pablo

    2013-12-01

    When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation on the trained (experiment 1) or untrained (experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity and that the number of movements performed at plateau is an important predictor of transfer.

  19. Neurodevelopmental perspectives on dance learning: Insights from early adolescence and young adulthood.

    PubMed

    Sumanapala, Dilini K; Walbrin, Jon; Kirsch, Louise P; Cross, Emily S

    2018-01-01

    Studies investigating human motor learning and movement perception have shown that similar sensorimotor brain regions are engaged when we observe or perform action sequences. However, the way these networks enable translation of complex observed actions into motor commands-such as in the context of dance-remains poorly understood. Emerging evidence suggests that the ability to encode specific visuospatial and kinematic movement properties encountered via different routes of sensorimotor experience may be an integral component of action learning throughout development. Using a video game-based dance training paradigm, we demonstrate that patterns of voxel activity in visual and sensorimotor brain regions when perceiving movements following training are related to the sensory modalities through which these movements were encountered during whole-body dance training. Compared to adolescents, young adults in this study demonstrated more distinctive patterns of voxel activity in visual cortices in relation to different types of sensorimotor experience. This finding suggests that cortical maturity might influence the extent to which prior sensorimotor experiences shape brain activity when watching others in action, and potentially impact how we acquire new motor skills. © 2018 Elsevier B.V. All rights reserved.

  20. Linear hypergeneralization of learned dynamics across movement speeds reveals anisotropic, gain-encoding primitives for motor adaptation.

    PubMed

    Joiner, Wilsaan M; Ajayi, Obafunso; Sing, Gary C; Smith, Maurice A

    2011-01-01

    The ability to generalize learned motor actions to new contexts is a key feature of the motor system. For example, the ability to ride a bicycle or swing a racket is often first developed at lower speeds and later applied to faster velocities. A number of previous studies have examined the generalization of motor adaptation across movement directions and found that the learned adaptation decays in a pattern consistent with the existence of motor primitives that display narrow Gaussian tuning. However, few studies have examined the generalization of motor adaptation across movement speeds. Following adaptation to linear velocity-dependent dynamics during point-to-point reaching arm movements at one speed, we tested the ability of subjects to transfer this adaptation to short-duration higher-speed movements aimed at the same target. We found near-perfect linear extrapolation of the trained adaptation with respect to both the magnitude and the time course of the velocity profiles associated with the high-speed movements: a 69% increase in movement speed corresponded to a 74% extrapolation of the trained adaptation. The close match between the increase in movement speed and the corresponding increase in adaptation beyond what was trained indicates linear hypergeneralization. Computational modeling shows that this pattern of linear hypergeneralization across movement speeds is not compatible with previous models of adaptation in which motor primitives display isotropic Gaussian tuning of motor output around their preferred velocities. Instead, we show that this generalization pattern indicates that the primitives involved in the adaptation to viscous dynamics display anisotropic tuning in velocity space and encode the gain between motor output and motion state rather than motor output itself.

  1. A Virtual Reality Dance Training System Using Motion Capture Technology

    ERIC Educational Resources Information Center

    Chan, J. C. P.; Leung, H.; Tang, J. K. T.; Komura, T.

    2011-01-01

    In this paper, a new dance training system based on the motion capture and virtual reality (VR) technologies is proposed. Our system is inspired by the traditional way to learn new movements-imitating the teacher's movements and listening to the teacher's feedback. A prototype of our proposed system is implemented, in which a student can imitate…

  2. Nurses' Learning Experiences with the Kinaesthetics Care Concept Training in a Nursing Home: A Qualitative Descriptive Study

    ERIC Educational Resources Information Center

    Fringer, André; Huth, Martina; Hantikainen, Virpi

    2015-01-01

    In geriatric care, movement support skills of nurses are often limited, resulting in unnecessary functional decline of older adult residents and physical strain of nurses. Kinaesthetics training aims to improve movement competences of nurses and residents. The aim of this qualitative descriptive study is to describe nursing teams' experience with…

  3. Visual Feedback of Tongue Movement for Novel Speech Sound Learning

    PubMed Central

    Katz, William F.; Mehta, Sonya

    2015-01-01

    Pronunciation training studies have yielded important information concerning the processing of audiovisual (AV) information. Second language (L2) learners show increased reliance on bottom-up, multimodal input for speech perception (compared to monolingual individuals). However, little is known about the role of viewing one's own speech articulation processes during speech training. The current study investigated whether real-time, visual feedback for tongue movement can improve a speaker's learning of non-native speech sounds. An interactive 3D tongue visualization system based on electromagnetic articulography (EMA) was used in a speech training experiment. Native speakers of American English produced a novel speech sound (/ɖ/; a voiced, coronal, palatal stop) before, during, and after trials in which they viewed their own speech movements using the 3D model. Talkers' productions were evaluated using kinematic (tongue-tip spatial positioning) and acoustic (burst spectra) measures. The results indicated a rapid gain in accuracy associated with visual feedback training. The findings are discussed with respect to neural models for multimodal speech processing. PMID:26635571

  4. Motor Interference Does Not Impair the Memory Consolidation of Imagined Movements

    ERIC Educational Resources Information Center

    Debarnot, Ursula; Maley, Laura; De Rossi, Danilo; Guillot, Aymeric

    2010-01-01

    The present study aimed to investigate whether an interference task might impact the sleep-dependent consolidation process of a mentally learned sequence of movements. Thirty-two participants were subjected to a first training session through motor imagery (MI) or physical practice (PP) of a finger sequence learning task. After 2 h, half of the…

  5. Automated Error Detection in Physiotherapy Training.

    PubMed

    Jovanović, Marko; Seiffarth, Johannes; Kutafina, Ekaterina; Jonas, Stephan M

    2018-01-01

    Manual skills teaching, such as physiotherapy education, requires immediate teacher feedback for the students during the learning process, which to date can only be performed by expert trainers. A machine-learning system trained only on correct performances to classify and score performed movements, to identify sources of errors in the movement and give feedback to the learner. We acquire IMU and sEMG sensor data from a commercial-grade wearable device and construct an HMM-based model for gesture classification, scoring and feedback giving. We evaluate the model on publicly available and self-generated data of an exemplary movement pattern executions. The model achieves an overall accuracy of 90.71% on the public dataset and 98.9% on our dataset. An AUC of 0.99 for the ROC of the scoring method could be achieved to discriminate between correct and untrained incorrect executions. The proposed system demonstrated its suitability for scoring and feedback in manual skills training.

  6. In-lab versus at-home activity recognition in ambulatory subjects with incomplete spinal cord injury.

    PubMed

    Albert, Mark V; Azeze, Yohannes; Courtois, Michael; Jayaraman, Arun

    2017-02-06

    Although commercially available activity trackers can aid in tracking therapy and recovery of patients, most devices perform poorly for patients with irregular movement patterns. Standard machine learning techniques can be applied on recorded accelerometer signals in order to classify the activities of ambulatory subjects with incomplete spinal cord injury in a way that is specific to this population and the location of the recording-at home or in the clinic. Subjects were instructed to perform a standardized set of movements while wearing a waist-worn accelerometer in the clinic and at-home. Activities included lying, sitting, standing, walking, wheeling, and stair climbing. Multiple classifiers and validation methods were used to quantify the ability of the machine learning techniques to distinguish the activities recorded in-lab or at-home. In the lab, classifiers trained and tested using within-subject cross-validation provided an accuracy of 91.6%. When the classifier was trained on data collected in the lab but tested on at home data, the accuracy fell to 54.6% indicating distinct movement patterns between locations. However, the accuracy of the at-home classifications, when training the classifier with at-home data, improved to 85.9%. Individuals with unique movement patterns can benefit from using tailored activity recognition algorithms easily implemented using modern machine learning methods on collected movement data.

  7. Mindful movement and skilled attention

    PubMed Central

    Clark, Dav; Schumann, Frank; Mostofsky, Stewart H.

    2015-01-01

    Bodily movement has long been employed as a foundation for cultivating mental skills such as attention, self-control or mindfulness, with recent studies documenting the positive impacts of mindful movement training, such as yoga and tai chi. A parallel “mind-body connection” has also been observed in many developmental disorders. We elaborate a spectrum of mindfulness by considering ADHD, in which deficient motor control correlates with impaired (disinhibited) behavioral control contributing to defining features of excessive distractibility and impulsivity. These data provide evidence for an important axis of variation for wellbeing, in which skillful cognitive control covaries with a capacity for skillful movement. We review empirical and theoretical literature on attention, cognitive control, mind wandering, mindfulness and skill learning, endorsing a model of skilled attention in which motor plans, attention, and executive goals are seen as mutually co-defining aspects of skilled behavior that are linked by reciprocal inhibitory and excitatory connections. Thus, any movement training should engage “higher-order” inhibition and selection and develop a repertoire of rehearsed procedures that coordinate goals, attention and motor plans. However, we propose that mindful movement practice may improve the functional quality of rehearsed procedures, cultivating a transferrable skill of attention. We adopt Langer’s spectrum of mindful learning that spans from “mindlessness” to engagement with the details of the present task and contrast this with the mental attitudes cultivated in standard mindfulness meditation. We particularly follow Feldenkrais’ suggestion that mindful learning of skills for organizing the body in movement might transfer to other forms of mental activity. The results of mindful movement training should be observed in multiple complementary measures, and may have tremendous potential benefit for individuals with ADHD and other populations. PMID:26190986

  8. Reorganization of finger coordination patterns through motor exploration in individuals after stroke.

    PubMed

    Ranganathan, Rajiv

    2017-09-11

    Impairment of hand and finger function after stroke is common and affects the ability to perform activities of daily living. Even though many of these coordination deficits such as finger individuation have been well characterized, it is critical to understand how stroke survivors learn to explore and reorganize their finger coordination patterns for optimizing rehabilitation. In this study, I examine the use of a body-machine interface to assess how participants explore their movement repertoire, and how this changes with continued practice. Ten participants with chronic stroke wore a data glove and the finger joint angles were mapped on to the position of a cursor on a screen. The task of the participants was to move the cursor back and forth between two specified targets on a screen. Critically, the map between the finger movements and cursor motion was altered so that participants sometimes had to generate coordination patterns that required finger individuation. There were two phases to the experiment - an initial assessment phase on day 1, followed by a learning phase (days 2-5) where participants trained to reorganize their coordination patterns. Participants showed difficulty in performing tasks which had maps that required finger individuation, and the degree to which they explored their movement repertoire was directly related to clinical tests of hand function. However, over four sessions of practice, participants were able to learn to reorganize their finger movement coordination pattern and improve their performance. Moreover, training also resulted in improvements in movement repertoire outside of the context of the specific task during free exploration. Stroke survivors show deficits in movement repertoire in their paretic hand, but facilitating movement exploration during training can increase the movement repertoire. This suggests that exploration may be an important element of rehabilitation to regain optimal function.

  9. First saccadic eye movement reveals persistent attentional guidance by implicit learning

    PubMed Central

    Jiang, Yuhong V.; Won, Bo-Yeong; Swallow, Khena M.

    2014-01-01

    Implicit learning about where a visual search target is likely to appear often speeds up search. However, whether implicit learning guides spatial attention or affects post-search decisional processes remains controversial. Using eye tracking, this study provides compelling evidence that implicit learning guides attention. In a training phase, participants often found the target in a high-frequency, “rich” quadrant of the display. When subsequently tested in a phase during which the target was randomly located, participants were twice as likely to direct the first saccadic eye movement to the previously rich quadrant than to any of the sparse quadrants. The attentional bias persisted for nearly 200 trials after training and was unabated by explicit instructions to distribute attention evenly. We propose that implicit learning guides spatial attention but in a qualitatively different manner than goal-driven attention. PMID:24512610

  10. Improving a Bimanual Motor Skill Through Unimanual Training

    PubMed Central

    Hayashi, Takuji; Nozaki, Daichi

    2016-01-01

    When we learn a bimanual motor skill (e.g., rowing a boat), we often break it down into unimanual practices (e.g., a rowing drill with the left or right arm). Such unimanual practice is thought to be useful for learning bimanual motor skills efficiently because the learner can concentrate on learning to perform a simpler component. However, it is not so straightforward to assume that unimanual training (UT) improves bimanual performance. We have previously demonstrated that motor memories for reaching movements consist of three different parts: unimanual-specific, bimanual-specific, and overlapping parts. According to this scheme, UT appears to be less effective, as its training effect is only partially transferred to the same limb for bimanual movement. In the present study, counter-intuitively, we demonstrate that, even after the bimanual skill is almost fully learned by means of bimanual training (BT), additional UT could further improve bimanual skill. We hypothesized that this effect occurs because UT increases the memory content in the overlapping part, which might contribute to an increase in the memory for bimanual movement. To test this hypothesis, we examined whether the UT performed after sufficient BT could improve the bimanual performance. Participants practiced performing bimanual reaching movements (BM) in the presence of a novel force-field imposed only on their left arm. As an index for the motor performance, we used the error-clamp method (i.e., after-effect of the left arm) to evaluate the force output to compensate for the force-field during the reaching movement. After sufficient BT, the training effect reached a plateau. However, UT performed subsequently improved the bimanual performance significantly. In contrast, when the same amount of BT was continued, the bimanual performance remained unchanged, highlighting the beneficial effect of UT on bimanual performance. Considering memory structure, we also expected that BT could improve unimanual performance, which was confirmed by another experiment. These results provide a new interpretation of why UT was useful for improving a bimanual skill, and propose a practical strategy for enhancing performance by performing training in various contexts. PMID:27471452

  11. The Role of Collaborative Learning on Training and Development Practices within the Australian Men's Shed Movement: A Study of Five Men's Sheds

    ERIC Educational Resources Information Center

    Cavanagh, Jillian; Southcombe, Amie; Bartram, Tim

    2014-01-01

    This study examines the role and impact of collaborative learning on training and development practices in Australian Men's Sheds. We use a case study approach, underpinned by Peters and Armstrong's theoretical framework of collaborative learning in adult education, to investigate five Men's Sheds. Semi-structured interviews were carried out with…

  12. Stimulating the cerebellum affects visuomotor adaptation but not intermanual transfer of learning

    PubMed Central

    Block, Hannah; Celnik, Pablo

    2013-01-01

    When systematic movement errors occur, the brain responds with a systematic change in motor behavior. This type of adaptive motor learning can transfer intermanually; adaptation of movements of the right hand in response to training with a perturbed visual signal (visuomotor adaptation) may carry over to the left hand. While visuomotor adaptation has been studied extensively, it is unclear whether the cerebellum, a structure involved in adaptation, is important for intermanual transfer as well. We addressed this question with three experiments in which subjects reached with their right hands as a 30° visuomotor rotation was introduced. Subjects received anodal or sham transcranial direct current stimulation (tDCS) on the trained (Experiment 1) or untrained (Experiment 2) hemisphere of the cerebellum, or, for comparison, motor cortex (M1). After the training period, subjects reached with their left hand, without visual feedback, to assess intermanual transfer of learning aftereffects. Stimulation of the right cerebellum caused faster adaptation, but none of the stimulation sites affected transfer. To ascertain whether cerebellar stimulation would increase transfer if subjects learned faster as well as a larger amount, in Experiment 3 anodal and sham cerebellar groups experienced a shortened training block such that the anodal group learned more than sham. Despite the difference in adaptation magnitude, transfer was similar across these groups, although smaller than in Experiment 1. Our results suggest that intermanual transfer of visuomotor learning does not depend on cerebellar activity, and that the number of movements performed at plateau is an important predictor of transfer. PMID:23625383

  13. Neuroprosthetic Decoder Training as Imitation Learning.

    PubMed

    Merel, Josh; Carlson, David; Paninski, Liam; Cunningham, John P

    2016-05-01

    Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user's intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user's intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector.

  14. Rapid motor learning in the translational vestibulo-ocular reflex

    NASA Technical Reports Server (NTRS)

    Zhou, Wu; Weldon, Patrick; Tang, Bingfeng; King, W. M.; Shelhamer, M. J. (Principal Investigator)

    2003-01-01

    Motor learning was induced in the translational vestibulo-ocular reflex (TVOR) when monkeys were repeatedly subjected to a brief (0.5 sec) head translation while they tried to maintain binocular fixation on a visual target for juice rewards. If the target was world-fixed, the initial eye speed of the TVOR gradually increased; if the target was head-fixed, the initial eye speed of the TVOR gradually decreased. The rate of learning acquisition was very rapid, with a time constant of approximately 100 trials, which was equivalent to <1 min of accumulated stimulation. These learned changes were consolidated over >or=1 d without any reinforcement, indicating induction of long-term synaptic plasticity. Although the learning generalized to targets with different viewing distances and to head translations with different accelerations, it was highly specific for the particular combination of head motion and evoked eye movement associated with the training. For example, it was specific to the modality of the stimulus (translation vs rotation) and the direction of the evoked eye movement in the training. Furthermore, when one eye was aligned with the heading direction so that it remained motionless during training, learning was not expressed in this eye, but only in the other nonaligned eye. These specificities show that the learning sites are neither in the sensory nor the motor limb of the reflex but in the sensory-motor transformation stage of the reflex. The dependence of the learning on both head motion and evoked eye movement suggests that Hebbian learning may be one of the underlying cellular mechanisms.

  15. The influence of action video game playing on eye movement behaviour during visual search in abstract, in-game and natural scenes.

    PubMed

    Azizi, Elham; Abel, Larry A; Stainer, Matthew J

    2017-02-01

    Action game playing has been associated with several improvements in visual attention tasks. However, it is not clear how such changes might influence the way we overtly select information from our visual world (i.e. eye movements). We examined whether action-video-game training changed eye movement behaviour in a series of visual search tasks including conjunctive search (relatively abstracted from natural behaviour), game-related search, and more naturalistic scene search. Forty nongamers were trained in either an action first-person shooter game or a card game (control) for 10 hours. As a further control, we recorded eye movements of 20 experienced action gamers on the same tasks. The results did not show any change in duration of fixations or saccade amplitude either from before to after the training or between all nongamers (pretraining) and experienced action gamers. However, we observed a change in search strategy, reflected by a reduction in the vertical distribution of fixations for the game-related search task in the action-game-trained group. This might suggest learning the likely distribution of targets. In other words, game training only skilled participants to search game images for targets important to the game, with no indication of transfer to the more natural scene search. Taken together, these results suggest no modification in overt allocation of attention. Either the skills that can be trained with action gaming are not powerful enough to influence information selection through eye movements, or action-game-learned skills are not used when deciding where to move the eyes.

  16. Active learning: learning a motor skill without a coach.

    PubMed

    Huang, Vincent S; Shadmehr, Reza; Diedrichsen, Jörn

    2008-08-01

    When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence.

  17. A comparison of hemisphere-specific training pattern in Inter-limb Learning Transfer (ILT) for stroke patients with hemiparesis.

    PubMed

    Yoo, In-gyu; Jung, Min-ye; Yoo, Eun-young; Park, Ji-hyuk; Kang, Dae-hyuk; Lee, Jin

    2014-01-01

    Stroke patients have major problems with impaired upper-extremity function. Unfortunately, many patients do not experience a full recovery from movement deficits in the upper extremities. The purpose of this study was to compare the effectiveness of inter-limb learning transfer (ILT) to the contralateral upper limb after both hemisphere-specific and -unspecific ipsilateral upper limb training for stroke patients with hemiparesis. Twenty-four stroke patients with hemiparesis participated. The hemisphere-specific training group performed reaching movements in a customized training setting in which non-dominant limb training participants began from a single starting location and proceeded to one of three target locations (1S3T condition); the dominant limb training participants started from one of three starting locations and proceeded to a single target location (3S1T condition). The hemisphere-unspecific training group performed these movements starting under reverse-start and target conditions. The non-dominant to dominant limb transfer, the hemisphere-specific training group performance time decreased significantly as compared with the pre-training session (p < 0.05). Also, the isolation contraction ratio was decreased significantly from that of the pre-training session in the biceps brachii muscles and increased significantly in the upper trapezius muscles (p < 0.05). And, dominant to non-dominant limb transfer in the hemisphere-specific training group significantly increased RMS amplitudes from the pre-training session in the biceps brachii and triceps muscles (p < 0.05). Also, the isolation contraction ratio was increased significantly from that of the pre-training session in the biceps brachii muscles and decreased significantly in the upper trapezius muscles (p < 0.05). However, the hemisphere-unspecific training group showed no significant differences in inter-limb learning transfer (ILT). The transfer of hemisphere-specific training from one arm to the other had a more positive influence on functional recovery than did hemisphere-unspecific training for patients with stroke and hemiparesis.

  18. On the Auditory-Proprioception Substitution Hypothesis: Movement Sonification in Two Deafferented Subjects Learning to Write New Characters

    PubMed Central

    Danna, Jérémy; Velay, Jean-Luc

    2017-01-01

    The aim of this study was to evaluate the compensatory effects of real-time auditory feedback on two proprioceptively deafferented subjects. The real-time auditory feedback was based on a movement sonification approach, consisting of translating some movement variables into synthetic sounds to make them audible. The two deafferented subjects and 16 age-matched control participants were asked to learn four new characters. The characters were learned under two different conditions, one without sonification and one with sonification, respecting a within-subject protocol. The results revealed that characters learned with sonification were reproduced more quickly and more fluently than characters learned without and that the effects of sonification were larger in deafferented than in control subjects. Secondly, whereas control subjects were able to learn the characters without sounds the deafferented subjects were able to learn them only when they were trained with sonification. Thirdly, although the improvement was still present in controls, the performance of deafferented subjects came back to the pre-test level 2 h after the training with sounds. Finally, the two deafferented subjects performed differently from each other, highlighting the importance of studying at least two subjects to better understand the loss of proprioception and its impact on motor control and learning. To conclude, movement sonification may compensate for a lack of proprioception, supporting the auditory-proprioception substitution hypothesis. However, sonification would act as a “sensory prosthesis” helping deafferented subjects to better feel their movements, without permanently modifying their motor performance once the prosthesis is removed. Potential clinical applications for motor rehabilitation are numerous: people with a limb prosthesis, with a stroke, or with some peripheral nerve injury may potentially be interested. PMID:28386211

  19. Spatial and Reversal Learning in the Morris Water Maze Are Largely Resistant to Six Hours of REM Sleep Deprivation Following Training

    ERIC Educational Resources Information Center

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair…

  20. Organising, Educating, and Training: Varieties of Activist Learning in Left Social Movements in Sheffield (UK)

    ERIC Educational Resources Information Center

    Grayson, John

    2011-01-01

    The article is based on activist research working in an anti-deportation social movement, and on sixteen interviews with both experienced and less experienced activists between 2009 and 2011. The anti deportation social movement made up of a range of organisations, is identified as a left social movement situated in an historic producer…

  1. Using virtual reality environment to facilitate training with advanced upper-limb prosthesis.

    PubMed

    Resnik, Linda; Etter, Katherine; Klinger, Shana Lieberman; Kambe, Charles

    2011-01-01

    Technological advances in upper-limb prosthetic design offer dramatically increased possibilities for powered movement. The DEKA Arm system allows users 10 powered degrees of movement. Learning to control these movements by utilizing a set of motions that, in most instances, differ from those used to obtain the desired action prior to amputation is a challenge for users. In the Department of Veterans Affairs "Study to Optimize the DEKA Arm," we attempted to facilitate motor learning by using a virtual reality environment (VRE) program. This VRE program allows users to practice controlling an avatar using the controls designed to operate the DEKA Arm in the real world. In this article, we provide highlights from our experiences implementing VRE in training amputees to use the full DEKA Arm. This article discusses the use of VRE in amputee rehabilitation, describes the VRE system used with the DEKA Arm, describes VRE training, provides qualitative data from a case study of a subject, and provides recommendations for future research and implementation of VRE in amputee rehabilitation. Our experience has led us to believe that training with VRE is particularly valuable for upper-limb amputees who must master a large number of controls and for those amputees who need a structured learning environment because of cognitive deficits.

  2. Reinforcement Learning of Two-Joint Virtual Arm Reaching in a Computer Model of Sensorimotor Cortex

    PubMed Central

    Neymotin, Samuel A.; Chadderdon, George L.; Kerr, Cliff C.; Francis, Joseph T.; Lytton, William W.

    2014-01-01

    Neocortical mechanisms of learning sensorimotor control involve a complex series of interactions at multiple levels, from synaptic mechanisms to cellular dynamics to network connectomics. We developed a model of sensory and motor neocortex consisting of 704 spiking model neurons. Sensory and motor populations included excitatory cells and two types of interneurons. Neurons were interconnected with AMPA/NMDA and GABAA synapses. We trained our model using spike-timing-dependent reinforcement learning to control a two-joint virtual arm to reach to a fixed target. For each of 125 trained networks, we used 200 training sessions, each involving 15 s reaches to the target from 16 starting positions. Learning altered network dynamics, with enhancements to neuronal synchrony and behaviorally relevant information flow between neurons. After learning, networks demonstrated retention of behaviorally relevant memories by using proprioceptive information to perform reach-to-target from multiple starting positions. Networks dynamically controlled which joint rotations to use to reach a target, depending on current arm position. Learning-dependent network reorganization was evident in both sensory and motor populations: learned synaptic weights showed target-specific patterning optimized for particular reach movements. Our model embodies an integrative hypothesis of sensorimotor cortical learning that could be used to interpret future electrophysiological data recorded in vivo from sensorimotor learning experiments. We used our model to make the following predictions: learning enhances synchrony in neuronal populations and behaviorally relevant information flow across neuronal populations, enhanced sensory processing aids task-relevant motor performance and the relative ease of a particular movement in vivo depends on the amount of sensory information required to complete the movement. PMID:24047323

  3. Asymmetries in the Control of Saccadic Eye Movements to Bifurcating Targets.

    ERIC Educational Resources Information Center

    Zeevi, Yehoshua Y.; And Others

    The examination of saccadic eye movements--rapid shifts in gaze from one visual area of interest to another--is useful in studying pilot's visual learning in flight simulator training. Saccadic eye movements are the basic oculomotor response associated with the acquisition of visual information and provide an objective measure of higher perceptual…

  4. Learning stochastic reward distributions in a speeded pointing task.

    PubMed

    Seydell, Anna; McCann, Brian C; Trommershäuser, Julia; Knill, David C

    2008-04-23

    Recent studies have shown that humans effectively take into account task variance caused by intrinsic motor noise when planning fast hand movements. However, previous evidence suggests that humans have greater difficulty accounting for arbitrary forms of stochasticity in their environment, both in economic decision making and sensorimotor tasks. We hypothesized that humans can learn to optimize movement strategies when environmental randomness can be experienced and thus implicitly learned over several trials, especially if it mimics the kinds of randomness for which subjects might have generative models. We tested the hypothesis using a task in which subjects had to rapidly point at a target region partly covered by three stochastic penalty regions introduced as "defenders." At movement completion, each defender jumped to a new position drawn randomly from fixed probability distributions. Subjects earned points when they hit the target, unblocked by a defender, and lost points otherwise. Results indicate that after approximately 600 trials, subjects approached optimal behavior. We further tested whether subjects simply learned a set of stimulus-contingent motor plans or the statistics of defenders' movements by training subjects with one penalty distribution and then testing them on a new penalty distribution. Subjects immediately changed their strategy to achieve the same average reward as subjects who had trained with the second penalty distribution. These results indicate that subjects learned the parameters of the defenders' jump distributions and used this knowledge to optimally plan their hand movements under conditions involving stochastic rewards and penalties.

  5. Effects of robotic manipulators on movements of novices and surgeons.

    PubMed

    Nisky, Ilana; Okamura, Allison M; Hsieh, Michael H

    2014-07-01

    Robot-assisted surgery is widely adopted for many procedures but has not realized its full potential to date. Based on human motor control theories, the authors hypothesized that the dynamics of the master manipulators impose challenges on the motor system of the user and may impair performance and slow down learning. Although studies have shown that robotic outcomes are correlated with the case experience of the surgeon, the relative contribution of cognitive versus motor skill is unknown. This study quantified the effects of da Vinci Si master manipulator dynamics on movements of novice users and experienced surgeons and suggests possible implications for training and robot design. In the reported study, six experienced robotic surgeons and ten novice nonmedical users performed movements under two conditions: teleoperation of a da Vinci Si Surgical system and freehand. A linear mixed model was applied to nine kinematic metrics (including endpoint error, movement time, peak speed, initial jerk, and deviation from a straight line) to assess the effects of teleoperation and expertise. To assess learning effects, t tests between the first and last movements of each type were used. All the users moved slower during teleoperation than during freehand movements (F(1,9343) = 345; p < 0.001). The experienced surgeons had smaller errors than the novices (F(1,14) = 36.8; p < 0.001). The straightness of movements depended on their direction (F(7,9343) = 117; p < 0.001). Learning effects were observed in all conditions. Novice users first learned the task and then the dynamics of the manipulator. The findings showed differences between the novices and the experienced surgeons for extremely simple point-to-point movements. The study demonstrated that manipulator dynamics affect user movements, suggesting that these dynamics could be improved in future robot designs. The authors showed the partial adaptation of novice users to the dynamics. Future studies are needed to evaluate whether it will be beneficial to include early training sessions dedicated to learning the dynamics of the manipulator.

  6. Speeding up the learning of robot kinematics through function decomposition.

    PubMed

    Ruiz de Angulo, Vicente; Torras, Carme

    2005-11-01

    The main drawback of using neural networks or other example-based learning procedures to approximate the inverse kinematics (IK) of robot arms is the high number of training samples (i.e., robot movements) required to attain an acceptable precision. We propose here a trick, valid for most industrial robots, that greatly reduces the number of movements needed to learn or relearn the IK to a given accuracy. This trick consists in expressing the IK as a composition of learnable functions, each having half the dimensionality of the original mapping. Off-line and on-line training schemes to learn these component functions are also proposed. Experimental results obtained by using nearest neighbors and parameterized self-organizing map, with and without the decomposition, show that the time savings granted by the proposed scheme grow polynomially with the precision required.

  7. Robotic guidance benefits the learning of dynamic, but not of spatial movement characteristics.

    PubMed

    Lüttgen, Jenna; Heuer, Herbert

    2012-10-01

    Robotic guidance is an engineered form of haptic-guidance training and intended to enhance motor learning in rehabilitation, surgery, and sports. However, its benefits (and pitfalls) are still debated. Here, we investigate the effects of different presentation modes on the reproduction of a spatiotemporal movement pattern. In three different groups of participants, the movement was demonstrated in three different modalities, namely visual, haptic, and visuo-haptic. After demonstration, participants had to reproduce the movement in two alternating recall conditions: haptic and visuo-haptic. Performance of the three groups during recall was compared with regard to spatial and dynamic movement characteristics. After haptic presentation, participants showed superior dynamic accuracy, whereas after visual presentation, participants performed better with regard to spatial accuracy. Added visual feedback during recall always led to enhanced performance, independent of the movement characteristic and the presentation modality. These findings substantiate the different benefits of different presentation modes for different movement characteristics. In particular, robotic guidance is beneficial for the learning of dynamic, but not of spatial movement characteristics.

  8. Investigating three types of continuous auditory feedback in visuo-manual tracking.

    PubMed

    Boyer, Éric O; Bevilacqua, Frédéric; Susini, Patrick; Hanneton, Sylvain

    2017-03-01

    The use of continuous auditory feedback for motor control and learning is still understudied and deserves more attention regarding fundamental mechanisms and applications. This paper presents the results of three experiments studying the contribution of task-, error-, and user-related sonification to visuo-manual tracking and assessing its benefits on sensorimotor learning. First results show that sonification can help decreasing the tracking error, as well as increasing the energy in participant's movement. In the second experiment, when alternating feedback presence, the user-related sonification did not show feedback dependency effects, contrary to the error and task-related feedback. In the third experiment, a reduced exposure of 50% diminished the positive effect of sonification on performance, whereas the increase of the average energy with sound was still significant. In a retention test performed on the next day without auditory feedback, movement energy was still superior for the groups previously trained with the feedback. Although performance was not affected by sound, a learning effect was measurable in both sessions and the user-related group improved its performance also in the retention test. These results confirm that a continuous auditory feedback can be beneficial for movement training and also show an interesting effect of sonification on movement energy. User-related sonification can prevent feedback dependency and increase retention. Consequently, sonification of the user's own motion appears as a promising solution to support movement learning with interactive feedback.

  9. Neuroprosthetic Decoder Training as Imitation Learning

    PubMed Central

    Merel, Josh; Paninski, Liam; Cunningham, John P.

    2016-01-01

    Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural activity of the user into movements of an end effector, such as a cursor or robotic arm. In practice, the decoder is often learned by updating its parameters while the user performs a task. When the user’s intention is not directly observable, recent methods have demonstrated value in training the decoder against a surrogate for the user’s intended movement. Here we show that training a decoder in this way is a novel variant of an imitation learning problem, where an oracle or expert is employed for supervised training in lieu of direct observations, which are not available. Specifically, we describe how a generic imitation learning meta-algorithm, dataset aggregation (DAgger), can be adapted to train a generic brain-computer interface. By deriving existing learning algorithms for brain-computer interfaces in this framework, we provide a novel analysis of regret (an important metric of learning efficacy) for brain-computer interfaces. This analysis allows us to characterize the space of algorithmic variants and bounds on their regret rates. Existing approaches for decoder learning have been performed in the cursor control setting, but the available design principles for these decoders are such that it has been impossible to scale them to naturalistic settings. Leveraging our findings, we then offer an algorithm that combines imitation learning with optimal control, which should allow for training of arbitrary effectors for which optimal control can generate goal-oriented control. We demonstrate this novel and general BCI algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an arm, a sophisticated and realistic end effector. PMID:27191387

  10. The Effects of Mirror Feedback during Target Directed Movements on Ipsilateral Corticospinal Excitability

    PubMed Central

    Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei V.; Tunik, Eugene

    2017-01-01

    Mirror visual feedback (MVF) training is a promising technique to promote activation in the lesioned hemisphere following stroke, and aid recovery. However, current outcomes of MVF training are mixed, in part, due to variability in the task undertaken during MVF. The present study investigated the hypothesis that movements directed toward visual targets may enhance MVF modulation of motor cortex (M1) excitability ipsilateral to the trained hand compared to movements without visual targets. Ten healthy subjects participated in a 2 × 2 factorial design in which feedback (veridical, mirror) and presence of a visual target (target present, target absent) for a right index-finger flexion task were systematically manipulated in a virtual environment. To measure M1 excitability, transcranial magnetic stimulation (TMS) was applied to the hemisphere ipsilateral to the trained hand to elicit motor evoked potentials (MEPs) in the untrained first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles at rest prior to and following each of four 2-min blocks of 30 movements (B1–B4). Targeted movement kinematics without visual feedback was measured before and after training to assess learning and transfer. FDI MEPs were decreased in B1 and B2 when movements were made with veridical feedback and visual targets were absent. FDI MEPs were decreased in B2 and B3 when movements were made with mirror feedback and visual targets were absent. FDI MEPs were increased in B3 when movements were made with mirror feedback and visual targets were present. Significant MEP changes were not present for the uninvolved ADM, suggesting a task-specific effect. Analysis of kinematics revealed learning occurred in visual target-directed conditions, but transfer was not sensitive to mirror feedback. Results are discussed with respect to current theoretical mechanisms underlying MVF-induced changes in ipsilateral excitability. PMID:28553218

  11. Computer use changes generalization of movement learning.

    PubMed

    Wei, Kunlin; Yan, Xiang; Kong, Gaiqing; Yin, Cong; Zhang, Fan; Wang, Qining; Kording, Konrad Paul

    2014-01-06

    Over the past few decades, one of the most salient lifestyle changes for us has been the use of computers. For many of us, manual interaction with a computer occupies a large portion of our working time. Through neural plasticity, this extensive movement training should change our representation of movements (e.g., [1-3]), just like search engines affect memory [4]. However, how computer use affects motor learning is largely understudied. Additionally, as virtually all participants in studies of perception and actions are computer users, a legitimate question is whether insights from these studies bear the signature of computer-use experience. We compared non-computer users with age- and education-matched computer users in standard motor learning experiments. We found that people learned equally fast but that non-computer users generalized significantly less across space, a difference negated by two weeks of intensive computer training. Our findings suggest that computer-use experience shaped our basic sensorimotor behaviors, and this influence should be considered whenever computer users are recruited as study participants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Changes in cortical, cerebellar and basal ganglia representation after comprehensive long term unilateral hand motor training.

    PubMed

    Walz, A D; Doppl, K; Kaza, E; Roschka, S; Platz, T; Lotze, M

    2015-02-01

    We were interested in motor performance gain after unilateral hand motor training and associated changes of cerebral and cerebellar movement representation tested with functional magnetic resonance imaging (fMRI) before and after training. Therefore, we trained the left hand of strongly right-handed healthy participants with a comprehensive training (arm ability training, AAT) over two weeks. Motor performance was tested for the trained and non-trained hand before and after the training period. Functional imaging was performed for the trained and the non-trained hand separately and comprised force modulation with the fist, sequential finger movements and a fast writing task. After the training period the performance gain of tapping movements was comparable for both hand sides, whereas the motor performance for writing showed a higher training effect for the trained hand. fMRI showed a reduction of activation in supplementary motor, dorsolateral prefrontal cortex, parietal cortical areas and lateral cerebellar areas during sequential finger movements over time. During left hand writing lateral cerebellar hemisphere also showed reduced activation, while activation of the anterior cerebellar hemisphere was increased. An initially high anterior cerebellar activation magnitude was a predictive value for high training outcome of finger tapping and visual guided movements. During the force modulation task we found increased activation in the striate. Overall, a comprehensive long-term training of the less skillful hand in healthy participants resulted in relevant motor performance improvements, as well as an intermanual learning transfer differently pronounced for the type of movement tested. Whereas cortical motor area activation decreased over time, cerebellar anterior hemisphere and striatum activity seem to represent increasing resources after long-term motor training. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Sensitivity Training: Relevance for Social Work Education.

    ERIC Educational Resources Information Center

    Papell, Catherine P.

    The author explores the validity of sensitivity training for professional social work education with its inherent concern for the relation between experiential and theoretical learning. The various streams in the sensitivity training movement are surveyed and the laboratory concept identified as particularly relevant. A human relations laboratory,…

  14. Negative viscosity can enhance learning of inertial dynamics.

    PubMed

    Huang, Felix C; Patton, James L; Mussa-Ivaldi, Ferdinando A

    2009-06-01

    We investigated how learning of inertial load manipulation is influenced by movement amplification with negative viscosity. Using a force-feedback device, subjects trained on anisotropic loads (5 orientations) with free movements in one of three conditions (inertia only, negative viscosity only, or combined), prior to common evaluation conditions (prescribed circular pattern with inertia only). Training with Combined-Load resulted in lower error (6.89±3.25%) compared to Inertia-Only (8.40±4.32%) and Viscosity-Only (8.17±4.13%) according to radial deviation analysis (% of trial mean radius). Combined-Load and Inertia-Only groups exhibited similar unexpected no-load trials (8.38±4.31% versus 8.91±4.70% of trial mean radius), which suggests comparable low-impedance strategies. These findings are remarkable since negative viscosity, only available during training, evidently enhanced learning when combined with inertia. Modeling analysis suggests that a feedforward after-effect of negative viscosity cannot predict such performance gains. Instead, results from Combined-Load training are consistent with greater feedforward inertia compensation along with a small increase in impedance control. The capability of the nervous system to generalize learning from negative viscosity suggests an intriguing new method for enhancing sensorimotor adaptation.

  15. Reducing errors benefits the field-based learning of a fundamental movement skill in children.

    PubMed

    Capio, C M; Poolton, J M; Sit, C H P; Holmstrom, M; Masters, R S W

    2013-03-01

    Proficient fundamental movement skills (FMS) are believed to form the basis of more complex movement patterns in sports. This study examined the development of the FMS of overhand throwing in children through either an error-reduced (ER) or error-strewn (ES) training program. Students (n = 216), aged 8-12 years (M = 9.16, SD = 0.96), practiced overhand throwing in either a program that reduced errors during practice (ER) or one that was ES. ER program reduced errors by incrementally raising the task difficulty, while the ES program had an incremental lowering of task difficulty. Process-oriented assessment of throwing movement form (Test of Gross Motor Development-2) and product-oriented assessment of throwing accuracy (absolute error) were performed. Changes in performance were examined among children in the upper and lower quartiles of the pretest throwing accuracy scores. ER training participants showed greater gains in movement form and accuracy, and performed throwing more effectively with a concurrent secondary cognitive task. Movement form improved among girls, while throwing accuracy improved among children with low ability. Reduced performance errors in FMS training resulted in greater learning than a program that did not restrict errors. Reduced cognitive processing costs (effective dual-task performance) associated with such approach suggest its potential benefits for children with developmental conditions. © 2011 John Wiley & Sons A/S.

  16. Muscle co-contraction patterns in robot-mediated force field learning to guide specific muscle group training.

    PubMed

    Pizzamiglio, Sara; Desowska, Adela; Shojaii, Pegah; Taga, Myriam; Turner, Duncan L

    2017-01-01

    Muscle co-contraction is a strategy of increasing movement accuracy and stability employed in dealing with force perturbation of movement. It is often seen in neuropathological populations. The direction of movement influences the pattern of co-contraction, but not all movements are easily achievable for populations with motor deficits. Manipulating the direction of the force instead, may be a promising rehabilitation protocol to train movement with use of a co-contraction reduction strategy. Force field learning paradigms provide a well described procedure to evoke and test muscle co-contraction. The aim of this study was to test the muscle co-contraction pattern in a wide range of arm muscles in different force-field directions utilising a robot-mediated force field learning paradigm of motor adaptation. Forty-two participants volunteered to participate in a study utilising robot-mediated force field motor adaptation paradigm with a clockwise or counter-clockwise force field. Kinematics and surface electromyography (EMG) of eight arm muscles were measured. Both muscle activation and co-contraction was earlier and stronger in flexors in the clockwise condition and in extensors in the counter-clockwise condition. Manipulating the force field direction leads to changes in the pattern of muscle co-contraction.

  17. Sensorimotor Learning of Acupuncture Needle Manipulation Using Visual Feedback

    PubMed Central

    Jung, Won-Mo; Lim, Jinwoong; Lee, In-Seon; Park, Hi-Joon; Wallraven, Christian; Chae, Younbyoung

    2015-01-01

    Objective Humans can acquire a wide variety of motor skills using sensory feedback pertaining to discrepancies between intended and actual movements. Acupuncture needle manipulation involves sophisticated hand movements and represents a fundamental skill for acupuncturists. We investigated whether untrained students could improve their motor performance during acupuncture needle manipulation using visual feedback (VF). Methods Twenty-one untrained medical students were included, randomly divided into concurrent (n = 10) and post-trial (n = 11) VF groups. Both groups were trained in simple lift/thrusting techniques during session 1, and in complicated lift/thrusting techniques in session 2 (eight training trials per session). We compared the motion patterns and error magnitudes of pre- and post-training tests. Results During motion pattern analysis, both the concurrent and post-trial VF groups exhibited greater improvements in motion patterns during the complicated lifting/thrusting session. In the magnitude error analysis, both groups also exhibited reduced error magnitudes during the simple lifting/thrusting session. For the training period, the concurrent VF group exhibited reduced error magnitudes across all training trials, whereas the post-trial VF group was characterized by greater error magnitudes during initial trials, which gradually reduced during later trials. Conclusions Our findings suggest that novices can improve the sophisticated hand movements required for acupuncture needle manipulation using sensorimotor learning with VF. Use of two types of VF can be beneficial for untrained students in terms of learning how to manipulate acupuncture needles, using either automatic or cognitive processes. PMID:26406248

  18. Sensorimotor Learning during a Marksmanship Task in Immersive Virtual Reality

    PubMed Central

    Rao, Hrishikesh M.; Khanna, Rajan; Zielinski, David J.; Lu, Yvonne; Clements, Jillian M.; Potter, Nicholas D.; Sommer, Marc A.; Kopper, Regis; Appelbaum, Lawrence G.

    2018-01-01

    Sensorimotor learning refers to improvements that occur through practice in the performance of sensory-guided motor behaviors. Leveraging novel technical capabilities of an immersive virtual environment, we probed the component kinematic processes that mediate sensorimotor learning. Twenty naïve subjects performed a simulated marksmanship task modeled after Olympic Trap Shooting standards. We measured movement kinematics and shooting performance as participants practiced 350 trials while receiving trial-by-trial feedback about shooting success. Spatiotemporal analysis of motion tracking elucidated the ballistic and refinement phases of hand movements. We found systematic changes in movement kinematics that accompanied improvements in shot accuracy during training, though reaction and response times did not change over blocks. In particular, we observed longer, slower, and more precise ballistic movements that replaced effort spent on corrections and refinement. Collectively, these results leverage developments in immersive virtual reality technology to quantify and compare the kinematics of movement during early learning of full-body sensorimotor orienting. PMID:29467693

  19. Motor Learning Curve and Long-Term Effectiveness of Modified Constraint-Induced Movement Therapy in Children with Unilateral Cerebral Palsy: A Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Geerdink, Yvonne; Aarts, Pauline; Geurts, Alexander C.

    2013-01-01

    The goal of this study was to determine the progression of manual dexterity during 6 weeks (54 h) (modified) constraint-induced movement therapy ((m)CIMT) followed by 2 weeks (18 h) bimanual training (BiT) in children with unilateral spastic cerebral palsy (CP), to establish whether and when a maximal training effect was reached and which factors…

  20. The neural correlates of learned motor acuity

    PubMed Central

    Yang, Juemin; Caffo, Brian; Mazzoni, Pietro; Krakauer, John W.

    2014-01-01

    We recently defined a component of motor skill learning as “motor acuity,” quantified as a shift in the speed-accuracy trade-off function for a task. These shifts are primarily driven by reductions in movement variability. To determine the neural correlates of improvement in motor acuity, we devised a motor task compatible with magnetic resonance brain imaging that required subjects to make finely controlled wrist movements under visual guidance. Subjects were imaged on day 1 and day 5 while they performed this task and were trained outside the scanner on intervening days 2, 3, and 4. The potential confound of performance changes between days 1 and 5 was avoided by constraining movement time to a fixed duration. After training, subjects showed a marked increase in success rate and a reduction in trial-by-trial variability for the trained task but not for an untrained control task, without changes in mean trajectory. The decrease in variability for the trained task was associated with increased activation in contralateral primary motor and premotor cortical areas and in ipsilateral cerebellum. A global nonlocalizing multivariate analysis confirmed that learning was associated with increased overall brain activation. We suggest that motor acuity is acquired through increases in the number of neurons recruited in contralateral motor cortical areas and in ipsilateral cerebellum, which could reflect increased signal-to-noise ratio in motor output and improved state estimation for feedback corrections, respectively. PMID:24848466

  1. Implicit motor learning promotes neural efficiency during laparoscopy.

    PubMed

    Zhu, Frank F; Poolton, Jamie M; Wilson, Mark R; Hu, Yong; Maxwell, Jon P; Masters, Rich S W

    2011-09-01

    An understanding of differences in expert and novice neural behavior can inform surgical skills training. Outside the surgical domain, electroencephalographic (EEG) coherence analyses have shown that during motor performance, experts display less coactivation between the verbal-analytic and motor planning regions than their less skilled counterparts. Reduced involvement of verbal-analytic processes suggests greater neural efficiency. The authors tested the utility of an implicit motor learning intervention specifically devised to promote neural efficiency by reducing verbal-analytic involvement in laparoscopic performance. In this study, 18 novices practiced a movement pattern on a laparoscopic trainer with either conscious awareness of the movement pattern (explicit motor learning) or suppressed awareness of the movement pattern (implicit motor learning). In a retention test, movement accuracy was compared between the conditions, and coactivation (EEG coherence) was assessed between the motor planning (Fz) region and both the verbal-analytic (T3) and the visuospatial (T4) cortical regions (T3-Fz and T4-Fz, respectively). Movement accuracy in the conditions was not different in a retention test (P = 0.231). Findings showed that the EEG coherence scores for the T3-Fz regions were lower for the implicit learners than for the explicit learners (P = 0.027), but no differences were apparent for the T4-Fz regions (P = 0.882). Implicit motor learning reduced EEG coactivation between verbal-analytic and motor planning regions, suggesting that verbal-analytic processes were less involved in laparoscopic performance. The findings imply that training techniques that discourage nonessential coactivation during motor performance may provide surgeons with more neural resources with which to manage other aspects of surgery.

  2. Robotic Assistance for Training Finger Movement Using a Hebbian Model: A Randomized Controlled Trial.

    PubMed

    Rowe, Justin B; Chan, Vicky; Ingemanson, Morgan L; Cramer, Steven C; Wolbrecht, Eric T; Reinkensmeyer, David J

    2017-08-01

    Robots that physically assist movement are increasingly used in rehabilitation therapy after stroke, yet some studies suggest robotic assistance discourages effort and reduces motor learning. To determine the therapeutic effects of high and low levels of robotic assistance during finger training. We designed a protocol that varied the amount of robotic assistance while controlling the number, amplitude, and exerted effort of training movements. Participants (n = 30) with a chronic stroke and moderate hemiparesis (average Box and Blocks Test 32 ± 18 and upper extremity Fugl-Meyer score 46 ± 12) actively moved their index and middle fingers to targets to play a musical game similar to GuitarHero 3 h/wk for 3 weeks. The participants were randomized to receive high assistance (causing 82% success at hitting targets) or low assistance (55% success). Participants performed ~8000 movements during 9 training sessions. Both groups improved significantly at the 1-month follow-up on functional and impairment-based motor outcomes, on depression scores, and on self-efficacy of hand function, with no difference between groups in the primary endpoint (change in Box and Blocks). High assistance boosted motivation, as well as secondary motor outcomes (Fugl-Meyer and Lateral Pinch Strength)-particularly for individuals with more severe finger motor deficits. Individuals with impaired finger proprioception at baseline benefited less from the training. Robot-assisted training can promote key psychological outcomes known to modulate motor learning and retention. Furthermore, the therapeutic effectiveness of robotic assistance appears to derive at least in part from proprioceptive stimulation, consistent with a Hebbian plasticity model.

  3. The Actor and His Body.

    ERIC Educational Resources Information Center

    Rubin, Lucille S., Ed.

    Fourteen brief articles deal with training actors to use their bodies effectively on stage. The articles discuss the following topics: the concept of succession-sequential movement (movement that passes through the body joint by joint); learning physical action through staged fight sequences; techniques of empty-handed combat; protecting students…

  4. Robotics, motor learning, and neurologic recovery.

    PubMed

    Reinkensmeyer, David J; Emken, Jeremy L; Cramer, Steven C

    2004-01-01

    Robotic devices are helping shed light on human motor control in health and injury. By using robots to apply novel force fields to the arm, investigators are gaining insight into how the nervous system models its external dynamic environment. The nervous system builds internal models gradually by experience and uses them in combination with impedance and feedback control strategies. Internal models are robust to environmental and neural noise, generalized across space, implemented in multiple brain regions, and developed in childhood. Robots are also being used to assist in repetitive movement practice following neurologic injury, providing insight into movement recovery. Robots can haptically assess sensorimotor performance, administer training, quantify amount of training, and improve motor recovery. In addition to providing insight into motor control, robotic paradigms may eventually enhance motor learning and rehabilitation beyond the levels possible with conventional training techniques.

  5. Relationship between Reinforcement and Eye Movements during Ocular Motor Training with Learning Disabled Children.

    ERIC Educational Resources Information Center

    Punnett, Audrey F.; Steinhauer, Gene D.

    1984-01-01

    Four reading disabled children were given eight sessions of ocular motor training with reinforcement and eight sessions without reinforcement. Two reading disabled control Ss were treated similarly but received no ocular motor training. Results demonstrated that reinforcement can improve ocular motor skills, which in turn elevates reading…

  6. Reinforcement learning for a biped robot based on a CPG-actor-critic method.

    PubMed

    Nakamura, Yutaka; Mori, Takeshi; Sato, Masa-aki; Ishii, Shin

    2007-08-01

    Animals' rhythmic movements, such as locomotion, are considered to be controlled by neural circuits called central pattern generators (CPGs), which generate oscillatory signals. Motivated by this biological mechanism, studies have been conducted on the rhythmic movements controlled by CPG. As an autonomous learning framework for a CPG controller, we propose in this article a reinforcement learning method we call the "CPG-actor-critic" method. This method introduces a new architecture to the actor, and its training is roughly based on a stochastic policy gradient algorithm presented recently. We apply this method to an automatic acquisition problem of control for a biped robot. Computer simulations show that training of the CPG can be successfully performed by our method, thus allowing the biped robot to not only walk stably but also adapt to environmental changes.

  7. Trial-by-trial adaptation of movements during mental practice under force field.

    PubMed

    Anwar, Muhammad Nabeel; Khan, Salman Hameed

    2013-01-01

    Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent force field. The results show that reaching movements performed with motor imagery have relatively a more focused generalization pattern and a higher learning rate in training direction.

  8. Retention of fundamental surgical skills learned in robot-assisted surgery.

    PubMed

    Suh, Irene H; Mukherjee, Mukul; Shah, Bhavin C; Oleynikov, Dmitry; Siu, Ka-Chun

    2012-12-01

    Evaluation of the learning curve for robotic surgery has shown reduced errors and decreased task completion and training times compared with regular laparoscopic surgery. However, most training evaluations of robotic surgery have only addressed short-term retention after the completion of training. Our goal was to investigate the amount of surgical skills retained after 3 months of training with the da Vinci™ Surgical System. Seven medical students without any surgical experience were recruited. Participants were trained with a 4-day training program of robotic surgical skills and underwent a series of retention tests at 1 day, 1 week, 1 month, and 3 months post-training. Data analysis included time to task completion, speed, distance traveled, and movement curvature by the instrument tip. Performance of the participants was graded using the modified Objective Structured Assessment of Technical Skills (OSATS) for robotic surgery. Participants filled out a survey after each training session by answering a set of questions. Time to task completion and the movement curvature was decreased from pre- to post-training and the performance was retained at all the corresponding retention periods: 1 day, 1 week, 1 month, and 3 months. The modified OSATS showed improvement from pre-test to post-test and this improvement was maintained during all the retention periods. Participants increased in self-confidence and mastery in performing robotic surgical tasks after training. Our novel comprehensive training program improved robot-assisted surgical performance and learning. All trainees retained their fundamental surgical skills for 3 months after receiving the training program.

  9. Learning a locomotor task: with or without errors?

    PubMed

    Marchal-Crespo, Laura; Schneider, Jasmin; Jaeger, Lukas; Riener, Robert

    2014-03-04

    Robotic haptic guidance is the most commonly used robotic training strategy to reduce performance errors while training. However, research on motor learning has emphasized that errors are a fundamental neural signal that drive motor adaptation. Thus, researchers have proposed robotic therapy algorithms that amplify movement errors rather than decrease them. However, to date, no study has analyzed with precision which training strategy is the most appropriate to learn an especially simple task. In this study, the impact of robotic training strategies that amplify or reduce errors on muscle activation and motor learning of a simple locomotor task was investigated in twenty two healthy subjects. The experiment was conducted with the MAgnetic Resonance COmpatible Stepper (MARCOS) a special robotic device developed for investigations in the MR scanner. The robot moved the dominant leg passively and the subject was requested to actively synchronize the non-dominant leg to achieve an alternating stepping-like movement. Learning with four different training strategies that reduce or amplify errors was evaluated: (i) Haptic guidance: errors were eliminated by passively moving the limbs, (ii) No guidance: no robot disturbances were presented, (iii) Error amplification: existing errors were amplified with repulsive forces, (iv) Noise disturbance: errors were evoked intentionally with a randomly-varying force disturbance on top of the no guidance strategy. Additionally, the activation of four lower limb muscles was measured by the means of surface electromyography (EMG). Strategies that reduce or do not amplify errors limit muscle activation during training and result in poor learning gains. Adding random disturbing forces during training seems to increase attention, and therefore improve motor learning. Error amplification seems to be the most suitable strategy for initially less skilled subjects, perhaps because subjects could better detect their errors and correct them. Error strategies have a great potential to evoke higher muscle activation and provoke better motor learning of simple tasks. Neuroimaging evaluation of brain regions involved in learning can provide valuable information on observed behavioral outcomes related to learning processes. The impacts of these strategies on neurological patients need further investigations.

  10. Game-Based Augmented Visual Feedback for Enlarging Speech Movements in Parkinson's Disease.

    PubMed

    Yunusova, Yana; Kearney, Elaine; Kulkarni, Madhura; Haworth, Brandon; Baljko, Melanie; Faloutsos, Petros

    2017-06-22

    The purpose of this pilot study was to demonstrate the effect of augmented visual feedback on acquisition and short-term retention of a relatively simple instruction to increase movement amplitude during speaking tasks in patients with dysarthria due to Parkinson's disease (PD). Nine patients diagnosed with PD, hypokinetic dysarthria, and impaired speech intelligibility participated in a training program aimed at increasing the size of their articulatory (tongue) movements during sentences. Two sessions were conducted: a baseline and training session, followed by a retention session 48 hr later. At baseline, sentences were produced at normal, loud, and clear speaking conditions. Game-based visual feedback regarding the size of the articulatory working space (AWS) was presented during training. Eight of nine participants benefited from training, increasing their sentence AWS to a greater degree following feedback as compared with the baseline loud and clear conditions. The majority of participants were able to demonstrate the learned skill at the retention session. This study demonstrated the feasibility of augmented visual feedback via articulatory kinematics for training movement enlargement in patients with hypokinesia due to PD. https://doi.org/10.23641/asha.5116840.

  11. Teacher Education in Informal Settings: A Key Element of Teacher Training

    ERIC Educational Resources Information Center

    Spencer, Jan; Maynard, Sally

    2014-01-01

    A significant amount of research supports the value of learning outside the classroom for creating effective learning opportunities, and for the social, cultural and emotional benefits it presents. Although there is a movement in place in the United Kingdom to integrate learning outside the classroom into classroom practice, many pre-service…

  12. Learning To Compete: Post-graduate Training in an Aerospace Company.

    ERIC Educational Resources Information Center

    Hyland, Paul; Sloan, Terry; Beckett, Ron

    2002-01-01

    A master of technology management degree program was offered to aerospace employees on site; many completed modules and 20 completed degrees. Responses from 38.5% of 65 participants indicated both personal and company benefits (improved capacity for change, movement toward a learning culture), but some experienced problems in applying learning on…

  13. Curved Saccade Trajectories Reveal Conflicting Predictions in Associative Learning

    ERIC Educational Resources Information Center

    Koenig, Stephan; Lachnit, Harald

    2011-01-01

    We report how the trajectories of saccadic eye movements are affected by memory interference acquired during associative learning. Human participants learned to perform saccadic choice responses based on the presentation of arbitrary central cues A, B, AC, BC, AX, BY, X, and Y that were trained to predict the appearance of a peripheral target…

  14. Effects of instructional focus on learning a classical ballet movement, the pirouette.

    PubMed

    Denardi, Renata Alvares; Corrêa, Umberto Cesar

    2013-01-01

    This study investigated how changes in the focus of instruction might affect the learning by individuals who are not trained dancers of a complex classical ballet movement, the pirouette. Seventy-two volunteer college students were divided into six groups according to the focus of instruction: (1.) head, (2.) arms, (3.) trunk, (4.) knees, (5.) feet, and (6.) controls. In the acquisition phase, all groups performed 160 trials, over 2 consecutive days. At the beginning of each day, they received verbal instruction regarding some of the general principles involved in performance of the pirouette and viewed a video that illustrated those principles. Each group (head, arms, etc., exclusive of controls) was then given specific directions for controlling focus on its body part while performing the movement. After a week, all participants were asked to complete a retention test, with no additional instruction. The trials were videotaped with two cameras (frontally and laterally), and the results were analyzed by 10 specially trained examiners, utilizing Movement Pattern and Error of Performance measures. They revealed that all groups improved in the acquisition phase, and the improvement was maintained in the retention test. No differences were revealed between groups. It was concluded that generalized instruction in basic principles of the movement was more effective than focus on specific body parts in the teaching and learning of the pirouette.

  15. A novel approach to enhance ACL injury prevention programs.

    PubMed

    Gokeler, Alli; Seil, Romain; Kerkhoffs, Gino; Verhagen, Evert

    2018-06-18

    Efficacy studies have demonstrated decreased anterior cruciate ligament (ACL) injury rates for athletes participating in injury prevention programs. Typically, ACL injury prevention programs entail a combination of plyometrics, strength training, agility and balance exercises. Unfortunately, improvements of movement patterns are not sustained over time. The reason may be related to the type of instructions given during training. Encouraging athletes to consciously control knee movements during exercises may not be optimal for the acquisition of complex motor skills as needed in complex sports environments. In the motor learning domain, these types of instructions are defined as an internal attentional focus. An internal focus, on one's own movements results in a more conscious type of control that may hamper motor learning. It has been established in numerous studies that an external focus of attention facilitates motor learning more effectively due to the utilization of automatic motor control. Subsequently, the athlete has more recourses available to anticipate on situations on the field and take appropriate feed forward directed actions. The purpose of this manuscript was to present methods to optimize motor skill acquisition of athletes and elaborate on athletes' behavior.

  16. Using Wearable Sensors and Machine Learning Models to Separate Functional Upper Extremity Use From Walking-Associated Arm Movements.

    PubMed

    McLeod, Adam; Bochniewicz, Elaine M; Lum, Peter S; Holley, Rahsaan J; Emmer, Geoff; Dromerick, Alexander W

    2016-02-01

    To improve measurement of upper extremity (UE) use in the community by evaluating the feasibility of using body-worn sensor data and machine learning models to distinguish productive prehensile and bimanual UE activity use from extraneous movements associated with walking. Comparison of machine learning classification models with criterion standard of manually scored videos of performance in UE prosthesis users. Rehabilitation hospital training apartment. Convenience sample of UE prosthesis users (n=5) and controls (n=13) similar in age and hand dominance (N=18). Participants were filmed executing a series of functional activities; a trained observer annotated each frame to indicate either UE movement directed at functional activity or walking. Synchronized data from an inertial sensor attached to the dominant wrist were similarly classified as indicating either a functional use or walking. These data were used to train 3 classification models to predict the functional versus walking state given the associated sensor information. Models were trained over 4 trials: on UE amputees and controls and both within subject and across subject. Model performance was also examined with and without preprocessing (centering) in the across-subject trials. Percent correct classification. With the exception of the amputee/across-subject trial, at least 1 model classified >95% of test data correctly for all trial types. The top performer in the amputee/across-subject trial classified 85% of test examples correctly. We have demonstrated that computationally lightweight classification models can use inertial data collected from wrist-worn sensors to reliably distinguish prosthetic UE movements during functional use from walking-associated movement. This approach has promise in objectively measuring real-world UE use of prosthetic limbs and may be helpful in clinical trials and in measuring response to treatment of other UE pathologies. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Accelerating locomotor savings in learning: compressing four training days to one.

    PubMed

    Day, Kevin A; Leech, Kristan A; Roemmich, Ryan T; Bastian, Amy J

    2018-06-01

    Acquiring new movements requires the capacity of the nervous system to remember previously experienced motor patterns. The phenomenon of faster relearning after initial learning is termed "savings." Here we studied how savings of a novel walking pattern develops over several days of practice and how this process can be accelerated. We introduced participants to a split-belt treadmill adaptation paradigm for 30 min for 5 consecutive days. By training day 5, participants were able to produce near-perfect performance when switching between split and tied-belt environments. We found that this was due to their ability to shift specific elements of their stepping pattern to account for the split treadmill speeds from day to day. We also applied a state-space model to further characterize multiday locomotor savings. We then explored methods of achieving comparable savings with less total training time. We studied people training only on day 1, with either one extended split-belt exposure or alternating four times between split-belt and tied-belt conditions rapidly in succession. Both of these single-day training groups were tested again on day 5. Experiencing four abbreviated exposures on day 1 improved the performance on day 5 compared with one extended exposure on day 1. Moreover, this abbreviated group performed similarly to the group that trained for 4 consecutive days before testing on day 5, despite only having one-quarter of the total training time. These results demonstrate that we can leverage training structure to achieve a high degree of performance while minimizing training sessions. NEW & NOTEWORTHY Learning a new movement requires repetition. Here, we demonstrate how to more efficiently train an adapted walking pattern. By compressing split-belt treadmill training delivered over 4 days to four abbreviated bouts of training delivered on the first day of training, we were able to induce equivalent savings over a 5-day span. These results suggest that we can manipulate the delivery of training to most efficiently drive multiday learning of a novel walking pattern.

  18. An operant approach to rehabilitation medicine: overcoming learned nonuse by shaping.

    PubMed

    Taub, E; Crago, J E; Burgio, L D; Groomes, T E; Cook, E W; DeLuca, S C; Miller, N E

    1994-03-01

    A new approach to the rehabilitation of movement, based primarily on the principles of operant conditioning, was derived from research with deafferented monkeys. The analysis suggests that a certain proportion of excess motor disability after certain types of injury involves a learned suppression of movement and may be termed learned nonuse. Learned nonuse can be overcome by changing the contingencies of reinforcement so that they strongly favor use of an affected upper extremity in the chronic postinjury situation. The techniques employed here involved 2 weeks of restricting movement of the opposite (unaffected) extremity and training of the affected limb. Initial work with humans has been with chronic stroke patients for whom the approach has yielded large improvements in motor ability and functional independence. We report here preliminary data suggesting that shaping with verbal feedback further enhances the motor recovery.

  19. A dual-learning paradigm can simultaneously train multiple characteristics of walking

    PubMed Central

    Toliver, Alexis; Bastian, Amy J.

    2016-01-01

    Impairments in human motor patterns are complex: what is often observed as a single global deficit (e.g., limping when walking) is actually the sum of several distinct abnormalities. Motor adaptation can be useful to teach patients more normal motor patterns, yet conventional training paradigms focus on individual features of a movement, leaving others unaddressed. It is known that under certain conditions, distinct movement components can be simultaneously adapted without interference. These previous “dual-learning” studies focused solely on short, planar reaching movements, yet it is unknown whether these findings can generalize to a more complex behavior like walking. Here we asked whether a dual-learning paradigm, incorporating two distinct motor adaptation tasks, can be used to simultaneously train multiple components of the walking pattern. We developed a joint-angle learning task that provided biased visual feedback of sagittal joint angles to increase peak knee or hip flexion during the swing phase of walking. Healthy, young participants performed this task independently or concurrently with another locomotor adaptation task, split-belt treadmill adaptation, where subjects adapted their step length symmetry. We found that participants were able to successfully adapt both components of the walking pattern simultaneously, without interference, and at the same rate as adapting either component independently. This leads us to the interesting possibility that combining rehabilitation modalities within a single training session could be used to help alleviate multiple deficits at once in patients with complex gait impairments. PMID:26961100

  20. Influence of Knee-to-Feet Jump Training on Vertical Jump and Hang Clean Performance.

    PubMed

    Stark, Laura; Pickett, Karla; Bird, Michael; King, Adam C

    2016-11-01

    Stark, L, Pickett, K, Bird, M, and King, AC. Influence of knee-to-feet jump training on vertical jump and hang clean performance. J Strength Cond Res 30(11): 3084-3089, 2016-From a motor learning perspective, the practice/training environment can result in positive, negative, or neutral transfer to the testing conditions. The purpose of this study was to examine the training effect of a novel movement (knee-to-feet [K2F] jumps) and whether a 6-week training program induced a positive transfer effect to other power-related movements (vertical jump and hang clean [HC]). Twenty-six intercollegiate athletes from power-emphasized sports were paired and counter-balanced into a control (i.e., maintained their respective sport-specific lifting regimen) or an experimental group (i.e., completed a 6-week progressive training program of K2F jumps in addition to respective lifting regimen). A pre- and posttest design was used to investigate the effect of training on K2F jump height and transfer effect to vertical jump height (VJH) and 2-repetition maximum (RM) HC performance. A significant increase in K2F jump height was found for the experimental group. Vertical jump height significantly increased from pre- to posttest but no group or interaction (group × time) effect was found, and there were nonsignificant differences for HC. Posttest data showed significant correlations between all pairs of the selected exercises with the highest correlation between K2F jump height and VJ H (R = 0.40) followed by VJH and 2RM HC (R = 0.38) and 2RM HC and K2F jump height (R = 0.23). The results suggest that K2F jump training induced the desired learning effect but was specific to the movement in that no effect of transfer occurred to the other power-related movements. This finding is value for strength and condition professionals who design training programs to enhance athletic performance.

  1. Learning by observing: the effect of multiple sessions of action-observation training on the spontaneous movement tempo and motor resonance.

    PubMed

    Lagravinese, Giovanna; Bisio, Ambra; Ruggeri, Piero; Bove, Marco; Avanzino, Laura

    2017-02-01

    The present study was designed to explore the changes in motor performance and motor resonance after multiple sessions of action observation (AO) training. Subjects were exposed to the observation of a video showing finger tapping movements executed at 3Hz, a frequency higher than the spontaneous one (2Hz) for four consecutive days. Motor performance and motor resonance were tested before the AO training on the first day, and on the last day. Results showed that multiple sessions of AO training induced a shift of the speed of execution of finger tapping movements toward the observed one and a change in motor resonance. Before the 3Hz-AO training cortical excitability was highest during the observation of the 2Hz video. This motor resonance effect was lost after one single session of 3Hz-AO training whereas after multiple sessions of 3Hz-AO training cortical excitability was highest during the observation of the 3Hz video. Our study shows for the first time that multiple sessions of AO training are able not only to induce performance gains but also to change the way by which the observer's motor system recognizes a certain movement as belonging to the individual motor repertoire. These results may encourage the development of novel rehabilitative protocols based on multiple sessions of action observation aimed to regain a correct movement when its spontaneous speed is modified by pathologies or to modify the innate temporal properties of certain movements. Copyright © 2017. Published by Elsevier Ltd.

  2. Reduction of errors during practice facilitates fundamental movement skill learning in children with intellectual disabilities.

    PubMed

    Capio, C M; Poolton, J M; Sit, C H P; Eguia, K F; Masters, R S W

    2013-04-01

    Children with intellectual disabilities (ID) have been found to have inferior motor proficiencies in fundamental movement skills (FMS). This study examined the effects of training the FMS of overhand throwing by manipulating the amount of practice errors. Participants included 39 children with ID aged 4-11 years who were allocated into either an error-reduced (ER) training programme or a more typical programme in which errors were frequent (error-strewn, ES). Throwing movement form, throwing accuracy, and throwing frequency during free play were evaluated. The ER programme improved movement form, and increased throwing activity during free play to a greater extent than the ES programme. Furthermore, ER learners were found to be capable of engaging in a secondary cognitive task while manifesting robust throwing accuracy performance. The findings support the use of movement skills training programmes that constrain practice errors in children with ID, suggesting that such approach results in improved performance and heightened movement engagement in free play. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 Blackwell Publishing Ltd.

  3. Using noise to shape motor learning

    PubMed Central

    Kording, Konrad P.; Mussa-Ivaldi, Ferdinando A.

    2016-01-01

    Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. NEW & NOTEWORTHY Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. PMID:27881721

  4. Using noise to shape motor learning.

    PubMed

    Thorp, Elias B; Kording, Konrad P; Mussa-Ivaldi, Ferdinando A

    2017-02-01

    Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. Copyright © 2017 the American Physiological Society.

  5. Refinement of learned skilled movement representation in motor cortex deep output layer

    PubMed Central

    Li, Qian; Ko, Ho; Qian, Zhong-Ming; Yan, Leo Y. C.; Chan, Danny C. W.; Arbuthnott, Gordon; Ke, Ya; Yung, Wing-Ho

    2017-01-01

    The mechanisms underlying the emergence of learned motor skill representation in primary motor cortex (M1) are not well understood. Specifically, how motor representation in the deep output layer 5b (L5b) is shaped by motor learning remains virtually unknown. In rats undergoing motor skill training, we detect a subpopulation of task-recruited L5b neurons that not only become more movement-encoding, but their activities are also more structured and temporally aligned to motor execution with a timescale of refinement in tens-of-milliseconds. Field potentials evoked at L5b in vivo exhibit persistent long-term potentiation (LTP) that parallels motor performance. Intracortical dopamine denervation impairs motor learning, and disrupts the LTP profile as well as the emergent neurodynamical properties of task-recruited L5b neurons. Thus, dopamine-dependent recruitment of L5b neuronal ensembles via synaptic reorganization may allow the motor cortex to generate more temporally structured, movement-encoding output signal from M1 to downstream circuitry that drives increased uniformity and precision of movement during motor learning. PMID:28598433

  6. Muscle cocontraction following dynamics learning.

    PubMed

    Darainy, Mohammad; Ostry, David J

    2008-09-01

    Coactivation of antagonist muscles is readily observed early in motor learning, in interactions with unstable mechanical environments and in motor system pathologies. Here we present evidence that the nervous system uses coactivation control far more extensively and that patterns of cocontraction during movement are closely tied to the specific requirements of the task. We have examined the changes in cocontraction that follow dynamics learning in tasks that are thought to involve finely sculpted feedforward adjustments to motor commands. We find that, even following substantial training, cocontraction varies in a systematic way that depends on both movement direction and the strength of the external load. The proportion of total activity that is due to cocontraction nevertheless remains remarkably constant. Moreover, long after indices of motor learning and electromyographic measures have reached asymptotic levels, cocontraction still accounts for a significant proportion of total muscle activity in all phases of movement and in all load conditions. These results show that even following dynamics learning in predictable and stable environments, cocontraction forms a central part of the means by which the nervous system regulates movement.

  7. Equilibrium point control of a monkey arm simulator by a fast learning tree structured artificial neural network.

    PubMed

    Dornay, M; Sanger, T D

    1993-01-01

    A planar 17 muscle model of the monkey's arm based on realistic biomechanical measurements was simulated on a Symbolics Lisp Machine. The simulator implements the equilibrium point hypothesis for the control of arm movements. Given initial and final desired positions, it generates a minimum-jerk desired trajectory of the hand and uses the backdriving algorithm to determine an appropriate sequence of motor commands to the muscles (Flash 1987; Mussa-Ivaldi et al. 1991; Dornay 1991b). These motor commands specify a temporal sequence of stable (attractive) equilibrium positions which lead to the desired hand movement. A strong disadvantage of the simulator is that it has no memory of previous computations. Determining the desired trajectory using the minimum-jerk model is instantaneous, but the laborious backdriving algorithm is slow, and can take up to one hour for some trajectories. The complexity of the required computations makes it a poor model for biological motor control. We propose a computationally simpler and more biologically plausible method for control which achieves the benefits of the backdriving algorithm. A fast learning, tree-structured network (Sanger 1991c) was trained to remember the knowledge obtained by the backdriving algorithm. The neural network learned the nonlinear mapping from a 2-dimensional cartesian planar hand position (x,y) to a 17-dimensional motor command space (u1, . . ., u17). Learning 20 training trajectories, each composed of 26 sample points [[x,y], [u1, . . ., u17] took only 20 min on a Sun-4 Sparc workstation. After the learning stage, new, untrained test trajectories as well as the original trajectories of the hand were given to the neural network as input. The network calculated the required motor commands for these movements. The resulting movements were close to the desired ones for both the training and test cases.

  8. The Intersection of Imagery Ability, Imagery Use, and Learning Style: An Exploratory Study

    ERIC Educational Resources Information Center

    Bolles, Gina; Chatfield, Steven J.

    2009-01-01

    This study explores the intersection of the individual's imagery ability, imagery use in dance training and performance, and learning style. Thirty-four intermediate-level ballet and modern dance students at the University of Oregon completed the Movement Imagery Questionnaire-Revised (MIQ-R) and Kolb's Learning Style Inventory-3 (LSI-3). The four…

  9. Prenatal Development of Interlimb Motor Learning in the Rat Fetus

    PubMed Central

    Robinson, Scott R.; Kleven, Gale A.; Brumley, Michele R.

    2010-01-01

    The role of sensory feedback in the early ontogeny of motor coordination remains a topic of speculation and debate. On E20 of gestation (the 20th day after conception, 2 days before birth), rat fetuses can alter interlimb coordination after a period of training with an interlimb yoke, which constrains limb movement and promotes synchronized, conjugate movement of the yoked limbs. The aim of this study was to determine how the ability to express this form of motor learning may change during prenatal development. Fetal rats were prepared for in vivo study at 4 ages (E18–21) and tested in a 65-min training-and-testing session examining hind limb motor learning. A significant increase in conjugate hind limb activity was expressed by E19, but not E18 fetuses, with further increases in conjugate hind limb activity on E20 and E21. These findings suggest substantial development of the ability of fetal rats to modify patterns of interlimb coordination in response to kinesthetic feedback during motor training before birth. PMID:20198121

  10. Reduced Motor Cortex Activity during Movement Preparation following a Period of Motor Skill Practice

    PubMed Central

    Wright, David J.; Holmes, Paul; Di Russo, Francesco; Loporto, Michela; Smith, Dave

    2012-01-01

    Experts in a skill produce movement-related cortical potentials (MRCPs) of smaller amplitude and later onset than novices. This may indicate that, following long-term training, experts require less effort to plan motor skill performance. However, no longitudinal evidence exists to support this claim. To address this, EEG was used to study the effect of motor skill training on cortical activity related to motor planning. Ten non-musicians took part in a 5-week training study learning to play guitar. At week 1, the MRCP was recorded from motor areas whilst participants played the G Major scale. Following a period of practice of the scale, the MRCP was recorded again at week 5. Results showed that the amplitude of the later pre-movement components were smaller at week 5 compared to week 1. This may indicate that, following training, less activity at motor cortex sites is involved in motor skill preparation. This supports claims for a more efficient motor preparation following motor skill training. PMID:23251647

  11. Diffusion tensor MRI tractography reveals increased fractional anisotropy (FA) in arcuate fasciculus following music-cued motor training.

    PubMed

    Moore, Emma; Schaefer, Rebecca S; Bastin, Mark E; Roberts, Neil; Overy, Katie

    2017-08-01

    Auditory cues are frequently used to support movement learning and rehabilitation, but the neural basis of this behavioural effect is not yet clear. We investigated the microstructural neuroplasticity effects of adding musical cues to a motor learning task. We hypothesised that music-cued, left-handed motor training would increase fractional anisotropy (FA) in the contralateral arcuate fasciculus, a fibre tract connecting auditory, pre-motor and motor regions. Thirty right-handed participants were assigned to a motor learning condition either with (Music Group) or without (Control Group) musical cues. Participants completed 20minutes of training three times per week over four weeks. Diffusion tensor MRI and probabilistic neighbourhood tractography identified FA, axial (AD) and radial (RD) diffusivity before and after training. Results revealed that FA increased significantly in the right arcuate fasciculus of the Music group only, as hypothesised, with trends for AD to increase and RD to decrease, a pattern of results consistent with activity-dependent increases in myelination. No significant changes were found in the left ipsilateral arcuate fasciculus of either group. This is the first evidence that adding musical cues to movement learning can induce rapid microstructural change in white matter pathways in adults, with potential implications for therapeutic clinical practice. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Nutrition and the Arts. Arizona Nutrition Education & Training Program.

    ERIC Educational Resources Information Center

    Arizona State Dept. of Education, Phoenix.

    This packet contains 12 lesson plans, listing learning activities, for teaching elementary school students about nutrition. The learning activities described involve art and art appreciation, encompassing such areas as drama, music, movement/dance, and visual arts. Recipes and cooking instruction are also included, along with references and notes…

  13. The Actuarial Turn in the Science of Learning Disabilities

    ERIC Educational Resources Information Center

    Danforth, Scot

    2011-01-01

    In the mid-1970s, Donald Hammill and his colleagues authored three scathing critiques of the two most trusted scientific traditions of learning disability treatment--movement education and psycholinguistic training (Hammill, 1972; Hammill & Larsen, 1974; Hammill, Goodman, & Wiederholt, 1974). These critical reviews of research rejected the older…

  14. The Core Competency Movement in Marriage and Family Therapy: Key Considerations from Other Disciplines

    ERIC Educational Resources Information Center

    Miller, John K.; Todahl, Jeff L.; Platt, Jason J.

    2010-01-01

    There is a growing movement to define competency within the field of marriage and family therapy (MFT), particularly with respect to the training of practitioners and the evaluation of clinical practice. Efforts to define competency, however, transcend the practice of MFT and much can be learned from the experiences of other disciplines.…

  15. Electromyographic and Neuromuscular Force Patterns Associated with Unexpectedly Loaded Rapid Limb Movements.

    ERIC Educational Resources Information Center

    Richardson, Charles; Simmons, Roger W.

    Bi-articular, unidirectional arm movements were studied to evaluate the electromyographic (EMG) and neuromuscular force patterns that occur when a limb is unexpectedly perturbed. A series of training trials were continued with a control load spring attached to the apparatus until a pre-specified criterion for learning was attained. The limb was…

  16. Freedom Train: The Underground Railroad as a Model of Christian Education, Antiracism, and Human Rights Advocacy

    ERIC Educational Resources Information Center

    Fears, Barbara A.

    2017-01-01

    The Underground Railroad is the first racially integrated civil/human rights movement in the United States. The basic concepts of "escape" and "travel" that undergird the movement offer a way of envisioning the teaching/learning exchange as leaving behind unhealthy ideologies, and as journeying with students from one place of…

  17. Reduction of Errors during Practice Facilitates Fundamental Movement Skill Learning in Children with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Capio, C. M.; Poolton, J. M.; Sit, C. H. P.; Eguia, K. F.; Masters, R. S. W.

    2013-01-01

    Background: Children with intellectual disabilities (ID) have been found to have inferior motor proficiencies in fundamental movement skills (FMS). This study examined the effects of training the FMS of overhand throwing by manipulating the amount of practice errors. Methods: Participants included 39 children with ID aged 4-11 years who were…

  18. Spectrum Management From A Training Range Perspective

    DTIC Science & Technology

    2012-01-01

    right up to the part where you got killed. • Goose: The defense department regrets to inform you that your sons are dead because they were stupid ...cost (time and lives) 4 Images source: Google images Training Basics • The “prime directives” of training: “Train As You’ll Fight – Fight As...Recording ground truth (movement, C2, actions) – Timely feedback and lessons learned 5 Image source: Google images The Realities of Live Training

  19. Nonhomogeneous transfer reveals specificity in speech motor learning.

    PubMed

    Rochet-Capellan, Amélie; Richer, Lara; Ostry, David J

    2012-03-01

    Does motor learning generalize to new situations that are not experienced during training, or is motor learning essentially specific to the training situation? In the present experiments, we use speech production as a model to investigate generalization in motor learning. We tested for generalization from training to transfer utterances by varying the acoustical similarity between these two sets of utterances. During the training phase of the experiment, subjects received auditory feedback that was altered in real time as they repeated a single consonant-vowel-consonant utterance. Different groups of subjects were trained with different consonant-vowel-consonant utterances, which differed from a subsequent transfer utterance in terms of the initial consonant or vowel. During the adaptation phase of the experiment, we observed that subjects in all groups progressively changed their speech output to compensate for the perturbation (altered auditory feedback). After learning, we tested for generalization by having all subjects produce the same single transfer utterance while receiving unaltered auditory feedback. We observed limited transfer of learning, which depended on the acoustical similarity between the training and the transfer utterances. The gradients of generalization observed here are comparable to those observed in limb movement. The present findings are consistent with the conclusion that speech learning remains specific to individual instances of learning.

  20. Nonhomogeneous transfer reveals specificity in speech motor learning

    PubMed Central

    Rochet-Capellan, Amélie; Richer, Lara

    2012-01-01

    Does motor learning generalize to new situations that are not experienced during training, or is motor learning essentially specific to the training situation? In the present experiments, we use speech production as a model to investigate generalization in motor learning. We tested for generalization from training to transfer utterances by varying the acoustical similarity between these two sets of utterances. During the training phase of the experiment, subjects received auditory feedback that was altered in real time as they repeated a single consonant-vowel-consonant utterance. Different groups of subjects were trained with different consonant-vowel-consonant utterances, which differed from a subsequent transfer utterance in terms of the initial consonant or vowel. During the adaptation phase of the experiment, we observed that subjects in all groups progressively changed their speech output to compensate for the perturbation (altered auditory feedback). After learning, we tested for generalization by having all subjects produce the same single transfer utterance while receiving unaltered auditory feedback. We observed limited transfer of learning, which depended on the acoustical similarity between the training and the transfer utterances. The gradients of generalization observed here are comparable to those observed in limb movement. The present findings are consistent with the conclusion that speech learning remains specific to individual instances of learning. PMID:22190628

  1. A Case Study to Evaluate Balance Training with Movement Test Items and through Teaching Observation: Beyond Specificity and Transfer of Learning

    ERIC Educational Resources Information Center

    Kluwe, Margret; Miyahara, Motohide; Heveldt, Kate

    2012-01-01

    Background: Specificity and transfer of learning have been examined in experimental studies. However, their findings may not be relevant to practitioners because of the difference between the experiment conditions and teaching situations. This case study investigates the theoretical issue of specificity vs. transfer of learning by conducting…

  2. Mechanisms underlying interlimb transfer of visuomotor rotations

    PubMed Central

    Wang, Jinsung; Sainburg, Robert L.

    2013-01-01

    We previously reported that opposite arm training improved the initial direction of dominant arm movements, whereas it only improved the final position accuracy of non-dominant arm movements. We now ask whether each controller accesses common, or separate, short-term memory resources. To address this question, we investigated interlimb transfer of learning for visuomotor rotations that were directed oppositely [clockwise (CW)/counterclockwise (CCW)] for the two arms. We expected that if information obtained by initial training was stored in the same short-term memory space for both arms, opposite arm training of a CW rotation would interfere with subsequent adaptation to a CCW rotation. All subjects first adapted to a 30° rotation (CW) in the visual display during reaching movements. Following this, they adapted to a 30° rotation in the opposite direction (CCW) with the other arm. In contrast to our previous findings for interlimb transfer of same direction rotations (CCW/CCW), no effects of opposite arm adaptation were indicated in the initial trials performed. This indicates that interlimb transfer is not obligatory, and suggests that short-term memory resources for the two limbs are independent. Through single trial analysis, we found that the direction and final position errors of the first trial of movement, following opposite arm training, were always the same as those of naive performance. This was true whether the opposite arm was trained with the same or the opposing rotation. When trained with the same rotation, transfer of learning did not occur until the second trial. These findings suggest that the selective use of opposite arm information is dependent on the first trial to probe current movement conditions. Interestingly, the final extent of adaptation appeared to be reduced by opposite arm training of opposing rotations. Thus, the extent of adaptation, but not initial information transfer, appears obligatorily affected by prior opposite arm adaptation. According to our findings, it is plausible that the initiation and the final extent of adaptation involve two independent neural processes. Theoretical implications of these findings are discussed. PMID:12677333

  3. Effects of head movement and proprioceptive feedback in training of sound localization

    PubMed Central

    Honda, Akio; Shibata, Hiroshi; Hidaka, Souta; Gyoba, Jiro; Iwaya, Yukio; Suzuki, Yôiti

    2013-01-01

    We investigated the effects of listeners' head movements and proprioceptive feedback during sound localization practice on the subsequent accuracy of sound localization performance. The effects were examined under both restricted and unrestricted head movement conditions in the practice stage. In both cases, the participants were divided into two groups: a feedback group performed a sound localization drill with accurate proprioceptive feedback; a control group conducted it without the feedback. Results showed that (1) sound localization practice, while allowing for free head movement, led to improvement in sound localization performance and decreased actual angular errors along the horizontal plane, and that (2) proprioceptive feedback during practice decreased actual angular errors in the vertical plane. Our findings suggest that unrestricted head movement and proprioceptive feedback during sound localization training enhance perceptual motor learning by enabling listeners to use variable auditory cues and proprioceptive information. PMID:24349686

  4. Vagus Nerve Stimulation Delivered During Motor Rehabilitation Improves Recovery in a Rat Model of Stroke

    PubMed Central

    Khodaparast, Navid; Hays, Seth A.; Sloan, Andrew M.; Fayyaz, Tabbassum; Hulsey, Daniel R.; Rennaker, Robert L.; Kilgard, Michael P.

    2014-01-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into three groups: vagus nerve stimulation during rehab, vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), pre-lesion training, post-lesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed one week of recovery before post-lesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All seventeen trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to pre-lesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to pre-lesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared to rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. PMID:24553102

  5. Patients suffering from rheumatic disease describing own experiences from participating in Basic Body Awareness Group Therapy: A qualitative pilot study.

    PubMed

    Olsen, Aarid Liland; Skjaerven, Liv Helvik

    2016-01-01

    Rheumatic diseases have physical and psychological impact on patients' movement and function. Basic Body Awareness Therapy focuses on promoting more functional movement quality in daily life. The purpose of this study was to describe patient experiences from participating in Basic Body Awareness Group Therapy for inpatients with rheumatic disease. A phenomenological design included data collection in two focus group interviews with seven patients. Giorgi's four-step phenomenological method was used for data analysis. Four main themes emerged: (1) "Movement exploration-being guided in movement" described informants' exploration of bodily signals and movement habits; (2) "Movement awareness training in a relational perspective" informants described experiences from being in a group setting; (3) "Movement awareness-integration and insight" described informants' reflections on movement experiences; and (4) "Integrating and practicing new movement habits" informants described how they used their movement experiences in daily life. The study described perspectives in movement learning experienced by patients. The results support the view that contact with the body can help patients exploring and cultivating their own resources for a more functional movement quality. Descriptions of relational movement learning aspects can contribute to our understanding of physiotherapy group design.

  6. [Remote intelligent Brunnstrom assessment system for upper limb rehabilitation for post-stroke based on extreme learning machine].

    PubMed

    Wang, Yue; Yu, Lei; Fu, Jianming; Fang, Qiang

    2014-04-01

    In order to realize an individualized and specialized rehabilitation assessment of remoteness and intelligence, we set up a remote intelligent assessment system of upper limb movement function of post-stroke patients during rehabilitation. By using the remote rehabilitation training sensors and client data sampling software, we collected and uploaded the gesture data from a patient's forearm and upper arm during rehabilitation training to database of the server. Then a remote intelligent assessment system, which had been developed based on the extreme learning machine (ELM) algorithm and Brunnstrom stage assessment standard, was used to evaluate the gesture data. To evaluate the reliability of the proposed method, a group of 23 stroke patients, whose upper limb movement functions were in different recovery stages, and 4 healthy people, whose upper limb movement functions were normal, were recruited to finish the same training task. The results showed that, compared to that of the experienced rehabilitation expert who used the Brunnstrom stage standard table, the accuracy of the proposed remote Brunnstrom intelligent assessment system can reach a higher level, as 92.1%. The practical effects of surgery have proved that the proposed system could realize the intelligent assessment of upper limb movement function of post-stroke patients remotely, and it could also make the rehabilitation of the post-stroke patients at home or in a community care center possible.

  7. The Effect of Haptic Guidance on Learning a Hybrid Rhythmic-Discrete Motor Task.

    PubMed

    Marchal-Crespo, Laura; Bannwart, Mathias; Riener, Robert; Vallery, Heike

    2015-01-01

    Bouncing a ball with a racket is a hybrid rhythmic-discrete motor task, combining continuous rhythmic racket movements with discrete impact events. Rhythmicity is exceptionally important in motor learning, because it underlies fundamental movements such as walking. Studies suggested that rhythmic and discrete movements are governed by different control mechanisms at different levels of the Central Nervous System. The aim of this study is to evaluate the effect of fixed/fading haptic guidance on learning to bounce a ball to a desired apex in virtual reality with varying gravity. Changing gravity changes dominance of rhythmic versus discrete control: The higher the value of gravity, the more rhythmic the task; lower values reduce the bouncing frequency and increase dwell times, eventually leading to a repetitive discrete task that requires initiation and termination, resembling target-oriented reaching. Although motor learning in the ball-bouncing task with varying gravity has been studied, the effect of haptic guidance on learning such a hybrid rhythmic-discrete motor task has not been addressed. We performed an experiment with thirty healthy subjects and found that the most effective training condition depended on the degree of rhythmicity: Haptic guidance seems to hamper learning of continuous rhythmic tasks, but it seems to promote learning for repetitive tasks that resemble discrete movements.

  8. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.

    PubMed

    Chadderdon, George L; Neymotin, Samuel A; Kerr, Cliff C; Lytton, William W

    2012-01-01

    Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1), no learning (0), or punishment (-1), corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.

  9. Reorganization of large-scale cognitive networks during automation of imagination of a complex sequential movement.

    PubMed

    Sauvage, C; De Greef, N; Manto, M; Jissendi, P; Nioche, C; Habas, C

    2015-04-01

    We investigated the functional reconfiguration of the cerebral networks involved in imagination of sequential movements of the left foot, both performed at regular and fast speed after mental imagery training. Thirty-five volunteers were scanned with a 3T MRI while they imagined a sequence of ankle movements (dorsiflexion, plantar flexion, varus and valgus) before and after mental practice. Subjects were distributed in two groups: the first group executed regular movements whereas the second group made fast movements. We applied the general linear model (GLM) and model-free, exploratory tensorial independent component analytic (TICA) approaches to identify plastic post-training effects on brain activation. GLM showed that post-training imagination of movement was accompanied by a dual effect: a specific recruitment of a medial prefronto-cingulo-parietal circuit reminiscent of the default-mode network, with the left putamen, and a decreased activity of a lateral fronto-parietal network. Training-related subcortical changes only consisted in an increased activity in the left striatum. Unexpectedly, no difference was observed in the cerebellum. TICA also revealed involvement of the left executive network, and of the dorsal control executive network but no significant differences were found between pre- and post-training phases. Therefore, repetitive motor mental imagery induced specific putamen (motor rehearsal) recruitment that one previously observed during learning of overt movements, and, simultaneously, a specific shift of activity from the dorsolateral prefrontal cortex (attention, working memory) to the medial posterior parietal and cingulate cortices (mental imagery and memory rehearsal). Our data complement and confirm the notion that differential and coupled recruitment of cognitive networks can constitute a neural marker of training effects. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Active prospective control is required for effective sensorimotor learning.

    PubMed

    Snapp-Childs, Winona; Casserly, Elizabeth; Mon-Williams, Mark; Bingham, Geoffrey P

    2013-01-01

    Passive modeling of movements is often used in movement therapy to overcome disabilities caused by stroke or other disorders (e.g. Developmental Coordination Disorder or Cerebral Palsy). Either a therapist or, recently, a specially designed robot moves or guides the limb passively through the movement to be trained. In contrast, action theory has long suggested that effective skill acquisition requires movements to be actively generated. Is this true? In view of the former, we explicitly tested the latter. Previously, a method was developed that allows children with Developmental Coordination Disorder to produce effective movements actively, so as to improve manual performance to match that of typically developing children. In the current study, we tested practice using such active movements as compared to practice using passive movement. The passive movement employed, namely haptic tracking, provided a strong test of the comparison, one that showed that the mere inaction of the muscles is not the problem. Instead, lack of prospective control was. The result was no effective learning with passive movement while active practice with prospective control yielded significant improvements in performance.

  11. Effects of Lips and Hands on Auditory Learning of Second-Language Speech Sounds

    ERIC Educational Resources Information Center

    Hirata, Yukari; Kelly, Spencer D.

    2010-01-01

    Purpose: Previous research has found that auditory training helps native English speakers to perceive phonemic vowel length contrasts in Japanese, but their performance did not reach native levels after training. Given that multimodal information, such as lip movement and hand gesture, influences many aspects of native language processing, the…

  12. Effects of lips and hands on auditory learning of second-language speech sounds.

    PubMed

    Hirata, Yukari; Kelly, Spencer D

    2010-04-01

    Previous research has found that auditory training helps native English speakers to perceive phonemic vowel length contrasts in Japanese, but their performance did not reach native levels after training. Given that multimodal information, such as lip movement and hand gesture, influences many aspects of native language processing, the authors examined whether multimodal input helps to improve native English speakers' ability to perceive Japanese vowel length contrasts. Sixty native English speakers participated in 1 of 4 types of training: (a) audio-only; (b) audio-mouth; (c) audio-hands; and (d) audio-mouth-hands. Before and after training, participants were given phoneme perception tests that measured their ability to identify short and long vowels in Japanese (e.g., /kato/ vs. /kato/). Although all 4 groups improved from pre- to posttest (replicating previous research), the participants in the audio-mouth condition improved more than those in the audio-only condition, whereas the 2 conditions involving hand gestures did not. Seeing lip movements during training significantly helps learners to perceive difficult second-language phonemic contrasts, but seeing hand gestures does not. The authors discuss possible benefits and limitations of using multimodal information in second-language phoneme learning.

  13. Aging reduces experience-induced sensorimotor plasticity. A magnetoencephalographic study.

    PubMed

    Mary, Alison; Bourguignon, Mathieu; Wens, Vincent; Op de Beeck, Marc; Leproult, Rachel; De Tiège, Xavier; Peigneux, Philippe

    2015-01-01

    Modulation of the mu-alpha and mu-beta spontaneous rhythms reflects plastic neural changes within the primary sensorimotor cortex (SM1). Using magnetoencephalography (MEG), we investigated how aging modifies experience-induced plasticity after learning a motor sequence, looking at post- vs. pre-learning changes in the modulation of mu rhythms during the execution of simple hand movements. Fifteen young (18-30 years) and fourteen older (65-75 years) right-handed healthy participants performed auditory-cued key presses using all four left fingers simultaneously (Simple Movement task - SMT) during two separate sessions. Following both SMT sessions, they repeatedly practiced a 5-elements sequential finger-tapping task (FTT). Mu power calculated during SMT was averaged across 18 gradiometers covering the right sensorimotor region and compared before vs. after sequence learning in the alpha (9/10/11Hz) and the beta (18/20/22Hz) bands separately. Source power maps in the mu-alpha and mu-beta bands were localized using Dynamic Statistical Parametric Mapping (dSPM). The FTT sequence was performed faster at retest than at the end of the learning session, indicating an offline boost in performance. Analyses conducted on SMT sessions revealed enhanced rebound after learning in the right SM1, 3000-3500ms after the initiation of movement, in young as compared to older participants. Source reconstruction indicated that mu-beta is located in the precentral gyrus (motor processes) and mu-alpha is located in the postcentral gyrus (somatosensory processes) in both groups. The enhanced post-movement rebound in young subjects potentially reflects post-training plastic changes in SM1. Age-related decreases in post-training modulatory effects suggest reduced experience-dependent plasticity in the aging brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The Generalization of Visuomotor Learning to Untrained Movements and Movement Sequences Based on Movement Vector and Goal Location Remapping

    PubMed Central

    Wu, Howard G.

    2013-01-01

    The planning of goal-directed movements is highly adaptable; however, the basic mechanisms underlying this adaptability are not well understood. Even the features of movement that drive adaptation are hotly debated, with some studies suggesting remapping of goal locations and others suggesting remapping of the movement vectors leading to goal locations. However, several previous motor learning studies and the multiplicity of the neural coding underlying visually guided reaching movements stand in contrast to this either/or debate on the modes of motor planning and adaptation. Here we hypothesize that, during visuomotor learning, the target location and movement vector of trained movements are separately remapped, and we propose a novel computational model for how motor plans based on these remappings are combined during the control of visually guided reaching in humans. To test this hypothesis, we designed a set of experimental manipulations that effectively dissociated the effects of remapping goal location and movement vector by examining the transfer of visuomotor adaptation to untrained movements and movement sequences throughout the workspace. The results reveal that (1) motor adaptation differentially remaps goal locations and movement vectors, and (2) separate motor plans based on these features are effectively averaged during motor execution. We then show that, without any free parameters, the computational model we developed for combining movement-vector-based and goal-location-based planning predicts nearly 90% of the variance in novel movement sequences, even when multiple attributes are simultaneously adapted, demonstrating for the first time the ability to predict how motor adaptation affects movement sequence planning. PMID:23804099

  15. Predictive and tempo-flexible synchronization to a visual metronome in monkeys.

    PubMed

    Takeya, Ryuji; Kameda, Masashi; Patel, Aniruddh D; Tanaka, Masaki

    2017-07-21

    Predictive and tempo-flexible synchronization to an auditory beat is a fundamental component of human music. To date, only certain vocal learning species show this behaviour spontaneously. Prior research training macaques (vocal non-learners) to tap to an auditory or visual metronome found their movements to be largely reactive, not predictive. Does this reflect the lack of capacity for predictive synchronization in monkeys, or lack of motivation to exhibit this behaviour? To discriminate these possibilities, we trained monkeys to make synchronized eye movements to a visual metronome. We found that monkeys could generate predictive saccades synchronized to periodic visual stimuli when an immediate reward was given for every predictive movement. This behaviour generalized to novel tempi, and the monkeys could maintain the tempo internally. Furthermore, monkeys could flexibly switch from predictive to reactive saccades when a reward was given for each reactive response. In contrast, when humans were asked to make a sequence of reactive saccades to a visual metronome, they often unintentionally generated predictive movements. These results suggest that even vocal non-learners may have the capacity for predictive and tempo-flexible synchronization to a beat, but that only certain vocal learning species are intrinsically motivated to do it.

  16. Self Study Course for Adult 4-H Leaders.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins. Human Factors Research Lab.

    This self study programed text for training Four H Club leaders covers the value and the objectives of the Four H movement; basic principles of program planning; useful club meeting formats and guidelines for delegating authority; types of learning and examples of planned learning experiences; teaching methods and their objectives; growth and…

  17. Enacting Change through Action Learning: Mobilizing and Managing Power and Emotion

    ERIC Educational Resources Information Center

    Conklin, James; Cohen-Schneider, Rochelle; Linkewich, Beth; Legault, Emma

    2012-01-01

    This paper reports on a study of how action learning facilitates the movement of knowledge between social contexts. The study involved a community organization that provides educational services related to aphasia and members of a complex continuing care (CCC) practice that received training from the agency. People with aphasia (PWA) (a disability…

  18. Smooth Pursuit Eye Movement of Monkeys Naive to Laboratory Setups With Pictures and Artificial Stimuli.

    PubMed

    Botschko, Yehudit; Yarkoni, Merav; Joshua, Mati

    2018-01-01

    When animal behavior is studied in a laboratory environment, the animals are often extensively trained to shape their behavior. A crucial question is whether the behavior observed after training is part of the natural repertoire of the animal or represents an outlier in the animal's natural capabilities. This can be investigated by assessing the extent to which the target behavior is manifested during the initial stages of training and the time course of learning. We explored this issue by examining smooth pursuit eye movements in monkeys naïve to smooth pursuit tasks. We recorded the eye movements of monkeys from the 1st days of training on a step-ramp paradigm. We used bright spots, monkey pictures and scrambled versions of the pictures as moving targets. We found that during the initial stages of training, the pursuit initiation was largest for the monkey pictures and in some direction conditions close to target velocity. When the pursuit initiation was large, the monkeys mostly continued to track the target with smooth pursuit movements while correcting for displacement errors with small saccades. Two weeks of training increased the pursuit eye velocity in all stimulus conditions, whereas further extensive training enhanced pursuit slightly more. The training decreased the coefficient of variation of the eye velocity. Anisotropies that grade pursuit across directions were observed from the 1st day of training and mostly persisted across training. Thus, smooth pursuit in the step-ramp paradigm appears to be part of the natural repertoire of monkeys' behavior and training adjusts monkeys' natural predisposed behavior.

  19. Persistence of improvements in postural strategies following motor control training in people with recurrent low back pain.

    PubMed

    Tsao, Henry; Hodges, Paul W

    2008-08-01

    This study investigated long-term effects of training on postural control using the model of deficits in activation of transversus abdominis (TrA) in people with recurrent low back pain (LBP). Nine volunteers with LBP attended four sessions for assessment and/or training (initial, two weeks, four weeks and six months). Training of repeated isolated voluntary TrA contractions were performed at the initial and two-week session with feedback from real-time ultrasound imaging. Home program involved training twice daily for four weeks. Electromyographic activity (EMG) of trunk and deltoid muscles was recorded with surface and fine-wire electrodes. Rapid arm movement and walking were performed at each session, and immediately after training on the first two sessions. Onset of trunk muscle activation relative to prime mover deltoid during arm movements, and the coefficient of variation (CV) of EMG during averaged gait cycle were calculated. Over four weeks of training, onset of TrA EMG was earlier during arm movements and CV of TrA EMG was reduced (consistent with more sustained EMG activity). Changes were retained at six months follow-up (p<0.05). These results show persistence of motor control changes following training and demonstrate that this training approach leads to motor learning of automatic postural control strategies.

  20. Amount of kinematic feedback affects learning of speech motor skills.

    PubMed

    Ballard, Kirrie J; Smith, Heather D; Paramatmuni, Divija; McCabe, Patricia; Theodoros, Deborah G; Murdoch, Bruce E

    2012-01-01

    Knowledge of Performance (KP) feedback, such as biofeedback or kinematic feedback, is used to provide information on the nature and quality of movement responses for the purpose of guiding active learning or rehabilitation of motor skills. It has been proposed that KP feedback may interfere with long-term learning when provided throughout training. Here, twelve healthy English-speaking adults were trained to produce a trilled Russian [r] in words with KP kinematic feedback using electropalatography (EPG) and without KP (noKP). Five one-hour training sessions were provided over one week with testing pretraining and one day and one week posttraining. No group differences were found at pretraining or one day post training for production accuracy. A group by time interaction supported the hypothesis that providing kinematic feedback continually during skill acquisition interferes with retention.

  1. Sleep Consolidates Motor Learning of Complex Movement Sequences in Mice.

    PubMed

    Nagai, Hirotaka; de Vivo, Luisa; Bellesi, Michele; Ghilardi, Maria Felice; Tononi, Giulio; Cirelli, Chiara

    2017-02-01

    Sleep-dependent consolidation of motor learning has been extensively studied in humans, but it remains unclear why some, but not all, learned skills benefit from sleep. Here, we compared 2 different motor tasks, both requiring the mice to run on an accelerating device. In the rotarod task, mice learn to maintain balance while running on a small rod, while in the complex wheel task, mice run on an accelerating wheel with an irregular rung pattern. In the rotarod task, performance improved to the same extent after sleep or after sleep deprivation (SD). Overall, using 7 different experimental protocols (41 sleep deprived mice, 26 sleeping controls), we found large interindividual differences in the learning and consolidation of the rotarod task, but sleep before/after training did not account for this variability. By contrast, using the complex wheel, we found that sleep after training, relative to SD, led to better performance from the beginning of the retest session, and longer sleep was correlated with greater subsequent performance. As in humans, the effects of sleep showed large interindividual variability and varied between fast and slow learners, with sleep favoring the preservation of learned skills in fast learners and leading to a net offline gain in the performance in slow learners. Using Fos expression as a proxy for neuronal activation, we also found that complex wheel training engaged motor cortex and hippocampus more than the rotarod training. Sleep specifically consolidates a motor skill that requires complex movement sequences and strongly engages both motor cortex and hippocampus. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  2. Digital Environment for Movement Control in Surgical Skill Training.

    PubMed

    Juanes, Juan A; Gómez, Juan J; Peguero, Pedro D; Ruisoto, Pablo

    2016-06-01

    Intelligent environments are increasingly becoming useful scenarios for handling computers. Technological devices are practical tools for learning and acquiring clinical skills as part of the medical training process. Within the framework of the advanced user interface, we present a technological application using Leap Motion, to enhance interaction with the user in the process of a laparoscopic surgical intervention and integrate the navigation through augmented reality images using manual gestures. Thus, we intend to achieve a more natural interaction with the objects that participate in a surgical intervention, which are augmented and related to the user's hand movements.

  3. Testing Response-Stimulus Equivalence Relations Using Differential Responses as a Sample

    ERIC Educational Resources Information Center

    Shimizu, Hirofumi

    2006-01-01

    This study tested the notion that an equivalence relation may include a response when differential responses are paired with stimuli presented during training. Eight normal adults learned three kinds of computer mouse movements as differential response topographies (R1, R2, and R3). Next, in matching-to-sample training, one of the response…

  4. A robotic wheelchair trainer: design overview and a feasibility study

    PubMed Central

    2010-01-01

    Background Experiencing independent mobility is important for children with a severe movement disability, but learning to drive a powered wheelchair can be labor intensive, requiring hand-over-hand assistance from a skilled therapist. Methods To improve accessibility to training, we developed a robotic wheelchair trainer that steers itself along a course marked by a line on the floor using computer vision, haptically guiding the driver's hand in appropriate steering motions using a force feedback joystick, as the driver tries to catch a mobile robot in a game of "robot tag". This paper provides a detailed design description of the computer vision and control system. In addition, we present data from a pilot study in which we used the chair to teach children without motor impairment aged 4-9 (n = 22) to drive the wheelchair in a single training session, in order to verify that the wheelchair could enable learning by the non-impaired motor system, and to establish normative values of learning rates. Results and Discussion Training with haptic guidance from the robotic wheelchair trainer improved the steering ability of children without motor impairment significantly more than training without guidance. We also report the results of a case study with one 8-year-old child with a severe motor impairment due to cerebral palsy, who replicated the single-session training protocol that the non-disabled children participated in. This child also improved steering ability after training with guidance from the joystick by an amount even greater than the children without motor impairment. Conclusions The system not only provided a safe, fun context for automating driver's training, but also enhanced motor learning by the non-impaired motor system, presumably by demonstrating through intuitive movement and force of the joystick itself exemplary control to follow the course. The case study indicates that a child with a motor system impaired by CP can also gain a short-term benefit from driver's training with haptic guidance. PMID:20707886

  5. A robotic wheelchair trainer: design overview and a feasibility study.

    PubMed

    Marchal-Crespo, Laura; Furumasu, Jan; Reinkensmeyer, David J

    2010-08-13

    Experiencing independent mobility is important for children with a severe movement disability, but learning to drive a powered wheelchair can be labor intensive, requiring hand-over-hand assistance from a skilled therapist. To improve accessibility to training, we developed a robotic wheelchair trainer that steers itself along a course marked by a line on the floor using computer vision, haptically guiding the driver's hand in appropriate steering motions using a force feedback joystick, as the driver tries to catch a mobile robot in a game of "robot tag". This paper provides a detailed design description of the computer vision and control system. In addition, we present data from a pilot study in which we used the chair to teach children without motor impairment aged 4-9 (n = 22) to drive the wheelchair in a single training session, in order to verify that the wheelchair could enable learning by the non-impaired motor system, and to establish normative values of learning rates. Training with haptic guidance from the robotic wheelchair trainer improved the steering ability of children without motor impairment significantly more than training without guidance. We also report the results of a case study with one 8-year-old child with a severe motor impairment due to cerebral palsy, who replicated the single-session training protocol that the non-disabled children participated in. This child also improved steering ability after training with guidance from the joystick by an amount even greater than the children without motor impairment. The system not only provided a safe, fun context for automating driver's training, but also enhanced motor learning by the non-impaired motor system, presumably by demonstrating through intuitive movement and force of the joystick itself exemplary control to follow the course. The case study indicates that a child with a motor system impaired by CP can also gain a short-term benefit from driver's training with haptic guidance.

  6. Balance maintenance as an acquired motor skill: Delayed gains and robust retention after a single session of training in a virtual environment.

    PubMed

    Elion, Orit; Sela, Itamar; Bahat, Yotam; Siev-Ner, Itzhak; Weiss, Patrice L Tamar; Karni, Avi

    2015-06-03

    Does the learning of a balance and stability skill exhibit time-course phases and transfer limitations characteristic of the acquisition and consolidation of voluntary movement sequences? Here we followed the performance of young adults trained in maintaining balance while standing on a moving platform synchronized with a virtual reality road travel scene. The training protocol included eight 3 min long iterations of the road scene. Center of Pressure (CoP) displacements were analyzed for each task iteration within the training session, as well as during tests at 24h, 4 weeks and 12 weeks post-training to test for consolidation phase ("offline") gains and assess retention. In addition, CoP displacements in reaction to external perturbations were assessed before and after the training session and in the 3 subsequent post-training assessments (stability tests). There were significant reductions in CoP displacements as experience accumulated within session, with performance stabilizing by the end of the session. However, CoP displacements were further reduced at 24h post-training (delayed "offline" gains) and these gains were robustly retained. There was no transfer of the practice-related gains to performance in the stability tests. The time-course of learning the balance maintenance task, as well as the limitation on generalizing the gains to untrained conditions, are in line with the results of studies of manual movement skill learning. The current results support the conjecture that a similar repertoire of basic neuronal mechanisms of plasticity may underlay skill (procedural, "how to" knowledge) acquisition and skill memory consolidation in voluntary and balance maintenance tasks. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Impact of online visual feedback on motor acquisition and retention when learning to reach in a force field.

    PubMed

    Batcho, C S; Gagné, M; Bouyer, L J; Roy, J S; Mercier, C

    2016-11-19

    When subjects learn a novel motor task, several sources of feedback (proprioceptive, visual or auditory) contribute to the performance. Over the past few years, several studies have investigated the role of visual feedback in motor learning, yet evidence remains conflicting. The aim of this study was therefore to investigate the role of online visual feedback (VFb) on the acquisition and retention stages of motor learning associated with training in a reaching task. Thirty healthy subjects made ballistic reaching movements with their dominant arm toward two targets, on 2 consecutive days using a robotized exoskeleton (KINARM). They were randomly assigned to a group with (VFb) or without (NoVFb) VFb of index position during movement. On day 1, the task was performed before (baseline) and during the application of a velocity-dependent resistive force field (adaptation). To assess retention, participants repeated the task with the force field on day 2. Motor learning was characterized by: (1) the final endpoint error (movement accuracy) and (2) the initial angle (iANG) of deviation (motor planning). Even though both groups showed motor adaptation, the NoVFb-group exhibited slower learning and higher final endpoint error than the VFb-group. In some condition, subjects trained without visual feedback used more curved initial trajectories to anticipate for the perturbation. This observation suggests that learning to reach targets in a velocity-dependent resistive force field is possible even when feedback is limited. However, the absence of VFb leads to different strategies that were only apparent when reaching toward the most challenging target. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles

    PubMed Central

    Weiss, Patrice L.; Keshner, Emily A.

    2015-01-01

    The primary focus of rehabilitation for individuals with loss of upper limb movement as a result of acquired brain injury is the relearning of specific motor skills and daily tasks. This relearning is essential because the loss of upper limb movement often results in a reduced quality of life. Although rehabilitation strives to take advantage of neuroplastic processes during recovery, results of traditional approaches to upper limb rehabilitation have not entirely met this goal. In contrast, enriched training tasks, simulated with a wide range of low- to high-end virtual reality–based simulations, can be used to provide meaningful, repetitive practice together with salient feedback, thereby maximizing neuroplastic processes via motor learning and motor recovery. Such enriched virtual environments have the potential to optimize motor learning by manipulating practice conditions that explicitly engage motivational, cognitive, motor control, and sensory feedback–based learning mechanisms. The objectives of this article are to review motor control and motor learning principles, to discuss how they can be exploited by virtual reality training environments, and to provide evidence concerning current applications for upper limb motor recovery. The limitations of the current technologies with respect to their effectiveness and transfer of learning to daily life tasks also are discussed. PMID:25212522

  9. Training to acquire psychomotor skills for endoscopic endonasal surgery using a personal webcam trainer.

    PubMed

    Hirayama, Ryuichi; Fujimoto, Yasunori; Umegaki, Masao; Kagawa, Naoki; Kinoshita, Manabu; Hashimoto, Naoya; Yoshimine, Toshiki

    2013-05-01

    Existing training methods for neuroendoscopic surgery have mainly emphasized the acquisition of anatomical knowledge and procedures for operating an endoscope and instruments. For laparoscopic surgery, various training systems have been developed to teach handling of an endoscope as well as the manipulation of instruments for speedy and precise endoscopic performance using both hands. In endoscopic endonasal surgery (EES), especially using a binostril approach to the skull base and intradural lesions, the learning of more meticulous manipulation of instruments is mandatory, and it may be necessary to develop another type of training method for acquiring psychomotor skills for EES. Authors of the present study developed an inexpensive, portable personal trainer using a webcam and objectively evaluated its utility. Twenty-five neurosurgeons volunteered for this study and were divided into 2 groups, a novice group (19 neurosurgeons) and an experienced group (6 neurosurgeons). Before and after the exercises of set tasks with a webcam box trainer, the basic endoscopic skills of each participant were objectively assessed using the virtual reality simulator (LapSim) while executing 2 virtual tasks: grasping and instrument navigation. Scores for the following 11 performance variables were recorded: instrument time, instrument misses, instrument path length, and instrument angular path (all of which were measured in both hands), as well as tissue damage, max damage, and finally overall score. Instrument time was indicated as movement speed; instrument path length and instrument angular path as movement efficiency; and instrument misses, tissue damage, and max damage as movement precision. In the novice group, movement speed and efficiency were significantly improved after the training. In the experienced group, significant improvement was not shown in the majority of virtual tasks. Before the training, significantly greater movement speed and efficiency were demonstrated in the experienced group, but no difference in movement precision was shown between the 2 groups. After the training, no significant differences were shown between the 2 groups in the majority of the virtual tasks. Analysis revealed that the webcam trainer improved the basic skills of the novices, increasing movement speed and efficiency without sacrificing movement precision. Novices using this unique webcam trainer showed improvement in psychomotor skills for EES. The authors believe that training in terms of basic endoscopic skills is meaningful and that the webcam training system can play a role in daily off-the-job training for EES.

  10. Using Functional Electrical Stimulation Mediated by Iterative Learning Control and Robotics to Improve Arm Movement for People With Multiple Sclerosis.

    PubMed

    Sampson, Patrica; Freeman, Chris; Coote, Susan; Demain, Sara; Feys, Peter; Meadmore, Katie; Hughes, Ann-Marie

    2016-02-01

    Few interventions address multiple sclerosis (MS) arm dysfunction but robotics and functional electrical stimulation (FES) appear promising. This paper investigates the feasibility of combining FES with passive robotic support during virtual reality (VR) training tasks to improve upper limb function in people with multiple sclerosis (pwMS). The system assists patients in following a specified trajectory path, employing an advanced model-based paradigm termed iterative learning control (ILC) to adjust the FES to improve accuracy and maximise voluntary effort. Reaching tasks were repeated six times with ILC learning the optimum control action from previous attempts. A convenience sample of five pwMS was recruited from local MS societies, and the intervention comprised 18 one-hour training sessions over 10 weeks. The accuracy of tracking performance without FES and the amount of FES delivered during training were analyzed using regression analysis. Clinical functioning of the arm was documented before and after treatment with standard tests. Statistically significant results following training included: improved accuracy of tracking performance both when assisted and unassisted by FES; reduction in maximum amount of FES needed to assist tracking; and less impairment in the proximal arm that was trained. The system was well tolerated by all participants with no increase in muscle fatigue reported. This study confirms the feasibility of FES combined with passive robot assistance as a potentially effective intervention to improve arm movement and control in pwMS and provides the basis for a follow-up study.

  11. Citius, Altius, Fortius: beneficial effects of resistance training for young athletes: Narrative review.

    PubMed

    Faigenbaum, Avery D; Lloyd, Rhodri S; MacDonald, James; Myer, Gregory D

    2016-01-01

    The motto of the Olympic Games is Citius, Altius, Fortius which is Latin for 'Faster, Higher, Stronger'. It is a clarion call to all competitors, including the youngest, to engage in training strategies that prepare athletes to be the best in the world. Existing research indicates that various forms of resistance training can elicit performance improvements in young athletes. Stronger young athletes will be better prepared to learn complex movements, master sport tactics, and sustain the demands of training and competition. An integrative training programme grounded in resistance training and motor skill development can optimise a young athlete's potential to maximise their athletic and sporting performance, while reducing the risk of a sports-related injury. Resistance training may be especially important for modern-day young athletes who are more likely to specialise in one sport at an early age at the expense of enhancing general physical fitness and learning diversified sport skills. Structured interventions that include qualified instruction; targeted movement practice; and strength and conditioning activities that are developmentally appropriate, progressive and technique driven are needed to attain a level of athleticism that is consistent with the Olympic motto. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Reversed Effects of Intermittent Theta Burst Stimulation following Motor Training That Vary as a Function of Training-Induced Changes in Corticospinal Excitability

    PubMed Central

    Stöckel, Tino; Summers, Jeffery J.; Hinder, Mark R.

    2015-01-01

    Intermittent theta burst stimulation (iTBS) has the potential to enhance corticospinal excitability (CSE) and subsequent motor learning. However, the effects of iTBS following motor learning are unknown. The purpose of the present study was to explore the effect of iTBS on CSE and performance following motor learning. Therefore twenty-four healthy participants practiced a ballistic motor task for a total of 150 movements. iTBS was subsequently applied to the trained motor cortex (STIM group) or the vertex (SHAM group). Performance and CSE were assessed before motor learning and before and after iTBS. Training significantly increased performance and CSE in both groups. In STIM group participants, subsequent iTBS significantly reduced motor performance with smaller reductions in CSE. CSE changes as a result of motor learning were negatively correlated with both the CSE changes and performance changes as a result of iTBS. No significant effects of iTBS were found for SHAM group participants. We conclude that iTBS has the potential to degrade prior motor learning as a function of training-induced CSE changes. That means the expected LTP-like effects of iTBS are reversed following motor learning. PMID:26167305

  13. Reversed Effects of Intermittent Theta Burst Stimulation following Motor Training That Vary as a Function of Training-Induced Changes in Corticospinal Excitability.

    PubMed

    Stöckel, Tino; Summers, Jeffery J; Hinder, Mark R

    2015-01-01

    Intermittent theta burst stimulation (iTBS) has the potential to enhance corticospinal excitability (CSE) and subsequent motor learning. However, the effects of iTBS following motor learning are unknown. The purpose of the present study was to explore the effect of iTBS on CSE and performance following motor learning. Therefore twenty-four healthy participants practiced a ballistic motor task for a total of 150 movements. iTBS was subsequently applied to the trained motor cortex (STIM group) or the vertex (SHAM group). Performance and CSE were assessed before motor learning and before and after iTBS. Training significantly increased performance and CSE in both groups. In STIM group participants, subsequent iTBS significantly reduced motor performance with smaller reductions in CSE. CSE changes as a result of motor learning were negatively correlated with both the CSE changes and performance changes as a result of iTBS. No significant effects of iTBS were found for SHAM group participants. We conclude that iTBS has the potential to degrade prior motor learning as a function of training-induced CSE changes. That means the expected LTP-like effects of iTBS are reversed following motor learning.

  14. Simultaneous acquisition of multiple auditory-motor transformations in speech

    PubMed Central

    Rochet-Capellan, Amelie; Ostry, David J.

    2011-01-01

    The brain easily generates the movement that is needed in a given situation. Yet surprisingly, the results of experimental studies suggest that it is difficult to acquire more than one skill at a time. To do so, it has generally been necessary to link the required movement to arbitrary cues. In the present study, we show that speech motor learning provides an informative model for the acquisition of multiple sensorimotor skills. During training, subjects are required to repeat aloud individual words in random order while auditory feedback is altered in real-time in different ways for the different words. We find that subjects can quite readily and simultaneously modify their speech movements to correct for these different auditory transformations. This multiple learning occurs effortlessly without explicit cues and without any apparent awareness of the perturbation. The ability to simultaneously learn several different auditory-motor transformations is consistent with the idea that in speech motor learning, the brain acquires instance specific memories. The results support the hypothesis that speech motor learning is fundamentally local. PMID:21325534

  15. Kinematic and neurophysiological consequences of an assisted-force-feedback brain-machine interface training: a case study.

    PubMed

    Silvoni, Stefano; Cavinato, Marianna; Volpato, Chiara; Cisotto, Giulia; Genna, Clara; Agostini, Michela; Turolla, Andrea; Ramos-Murguialday, Ander; Piccione, Francesco

    2013-01-01

    In a proof-of-principle prototypical demonstration we describe a new type of brain-machine interface (BMI) paradigm for upper limb motor-training. The proposed technique allows a fast contingent and proportionally modulated stimulation of afferent proprioceptive and motor output neural pathways using operant learning. Continuous and immediate assisted-feedback of force proportional to rolandic rhythm oscillations during actual movements was employed and illustrated with a single case experiment. One hemiplegic patient was trained for 2 weeks coupling somatosensory brain oscillations with force-field control during a robot-mediated center-out motor-task whose execution approaches movements of everyday life. The robot facilitated actual movements adding a modulated force directed to the target, thus providing a non-delayed proprioceptive feedback. Neuro-electric, kinematic, and motor-behavioral measures were recorded in pre- and post-assessments without force assistance. Patient's healthy arm was used as control since neither a placebo control was possible nor other control conditions. We observed a generalized and significant kinematic improvement in the affected arm and a spatial accuracy improvement in both arms, together with an increase and focalization of the somatosensory rhythm changes used to provide assisted-force-feedback. The interpretation of the neurophysiological and kinematic evidences reported here is strictly related to the repetition of the motor-task and the presence of the assisted-force-feedback. Results are described as systematic observations only, without firm conclusions about the effectiveness of the methodology. In this prototypical view, the design of appropriate control conditions is discussed. This study presents a novel operant-learning-based BMI-application for motor-training coupling brain oscillations and force feedback during an actual movement.

  16. Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement

    PubMed Central

    Looi, Chung Yen; Duta, Mihaela; Brem, Anna-Katharine; Huber, Stefan; Nuerk, Hans-Christoph; Cohen Kadosh, Roi

    2016-01-01

    Cognitive training offers the potential for individualised learning, prevention of cognitive decline, and rehabilitation. However, key research challenges include ecological validity (training design), transfer of learning and long-term effects. Given that cognitive training and neuromodulation affect neuroplasticity, their combination could promote greater, synergistic effects. We investigated whether combining transcranial direct current stimulation (tDCS) with cognitive training could further enhance cognitive performance compared to training alone, and promote transfer within a short period of time. Healthy adults received real or sham tDCS over their dorsolateral prefrontal cortices during two 30-minute mathematics training sessions involving body movements. To examine the role of training, an active control group received tDCS during a non-mathematical task. Those who received real tDCS performed significantly better in the game than the sham group, and showed transfer effects to working memory, a related but non-numerical cognitive domain. This transfer effect was absent in active and sham control groups. Furthermore, training gains were more pronounced amongst those with lower baseline cognitive abilities, suggesting the potential for reducing cognitive inequalities. All effects associated with real tDCS remained 2 months post-training. Our study demonstrates the potential benefit of this approach for long-term enhancement of human learning and cognition. PMID:26902664

  17. Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement.

    PubMed

    Looi, Chung Yen; Duta, Mihaela; Brem, Anna-Katharine; Huber, Stefan; Nuerk, Hans-Christoph; Cohen Kadosh, Roi

    2016-02-23

    Cognitive training offers the potential for individualised learning, prevention of cognitive decline, and rehabilitation. However, key research challenges include ecological validity (training design), transfer of learning and long-term effects. Given that cognitive training and neuromodulation affect neuroplasticity, their combination could promote greater, synergistic effects. We investigated whether combining transcranial direct current stimulation (tDCS) with cognitive training could further enhance cognitive performance compared to training alone, and promote transfer within a short period of time. Healthy adults received real or sham tDCS over their dorsolateral prefrontal cortices during two 30-minute mathematics training sessions involving body movements. To examine the role of training, an active control group received tDCS during a non-mathematical task. Those who received real tDCS performed significantly better in the game than the sham group, and showed transfer effects to working memory, a related but non-numerical cognitive domain. This transfer effect was absent in active and sham control groups. Furthermore, training gains were more pronounced amongst those with lower baseline cognitive abilities, suggesting the potential for reducing cognitive inequalities. All effects associated with real tDCS remained 2 months post-training. Our study demonstrates the potential benefit of this approach for long-term enhancement of human learning and cognition.

  18. Motor cortex is required for learning but not executing a motor skill

    PubMed Central

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu; Dhawale, Ashesh; Kampff, Adam R.; Ölveczky, Bence P.

    2018-01-01

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, yet its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex’s established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in ‘tutoring’ these circuits during learning. PMID:25892304

  19. Changes in Striatal Dopamine Release Associated with Human Motor-Skill Acquisition

    PubMed Central

    Kawashima, Shoji; Ueki, Yoshino; Kato, Takashi; Matsukawa, Noriyuki; Mima, Tatsuya; Hallett, Mark; Ito, Kengo; Ojika, Kosei

    2012-01-01

    The acquisition of new motor skills is essential throughout daily life and involves the processes of learning new motor sequence and encoding elementary aspects of new movement. Although previous animal studies have suggested a functional importance for striatal dopamine release in the learning of new motor sequence, its role in encoding elementary aspects of new movement has not yet been investigated. To elucidate this, we investigated changes in striatal dopamine levels during initial skill-training (Day 1) compared with acquired conditions (Day 2) using 11C-raclopride positron-emission tomography. Ten volunteers learned to perform brisk contractions using their non-dominant left thumbs with the aid of visual feedback. On Day 1, the mean acceleration of each session was improved through repeated training sessions until performance neared asymptotic levels, while improved motor performance was retained from the beginning on Day 2. The 11C-raclopride binding potential (BP) in the right putamen was reduced during initial skill-training compared with under acquired conditions. Moreover, voxel-wise analysis revealed that 11C-raclopride BP was particularly reduced in the right antero-dorsal to the lateral part of the putamen. Based on findings from previous fMRI studies that show a gradual shift of activation within the striatum during the initial processing of motor learning, striatal dopamine may play a role in the dynamic cortico-striatal activation during encoding of new motor memory in skill acquisition. PMID:22355391

  20. REM Restriction Persistently Alters Strategy Used to Solve a Spatial Task

    ERIC Educational Resources Information Center

    Bjorness, Theresa E.; Tysor, Michael K.; Poe, Gina R.; Riley, Brett T.

    2005-01-01

    We tested the hypothesis that rapid eye movement (REM) sleep is important for complex associative learning by restricting rats from entering REM sleep for 4 h either immediately after training on an eight-box spatial task (0-4 REMr) or 4 h following training (4-8 REMr). Both groups of REM-restricted rats eventually reached the same overall…

  1. Seeing is believing: effects of visual contextual cues on learning and transfer of locomotor adaptation.

    PubMed

    Torres-Oviedo, Gelsy; Bastian, Amy J

    2010-12-15

    Devices such as robots or treadmills are often used to drive motor learning because they can create novel physical environments. However, the learning (i.e., adaptation) acquired on these devices only partially generalizes to natural movements. What determines the specificity of motor learning, and can this be reliably made more general? Here we investigated the effect of visual cues on the specificity of split-belt walking adaptation. We systematically removed vision to eliminate the visual-proprioceptive mismatch that is a salient cue specific to treadmills: vision indicates that we are not moving while leg proprioception indicates that we are. We evaluated the adaptation of temporal and spatial features of gait (i.e., timing and location of foot landing), their transfer to walking over ground, and washout of adaptation when subjects returned to the treadmill. Removing vision during both training (i.e., on the treadmill) and testing (i.e., over ground) strongly improved the transfer of treadmill adaptation to natural walking. Removing vision only during training increased transfer of temporal adaptation, whereas removing vision only during testing increased the transfer of spatial adaptation. This dissociation reveals differences in adaptive mechanisms for temporal and spatial features of walking. Finally training without vision increased the amount that was learned and was linked to the variability in the behavior during adaptation. In conclusion, contextual cues can be manipulated to modulate the magnitude, transfer, and washout of device-induced learning in humans. These results bring us closer to our ultimate goal of developing rehabilitation strategies that improve movements beyond the clinical setting.

  2. Exploring the impact of visual and movement based priming on a motor intervention in the acute phase post-stroke in persons with severe hemiparesis of the upper extremity

    PubMed Central

    Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard

    2016-01-01

    Purpose Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Methods Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. Results The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. Conclusion This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. PMID:27636200

  3. Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition.

    PubMed

    Fong, Simon; Song, Wei; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K L

    2017-02-27

    In this paper, a novel training/testing process for building/using a classification model based on human activity recognition (HAR) is proposed. Traditionally, HAR has been accomplished by a classifier that learns the activities of a person by training with skeletal data obtained from a motion sensor, such as Microsoft Kinect. These skeletal data are the spatial coordinates (x, y, z) of different parts of the human body. The numeric information forms time series, temporal records of movement sequences that can be used for training a classifier. In addition to the spatial features that describe current positions in the skeletal data, new features called 'shadow features' are used to improve the supervised learning efficacy of the classifier. Shadow features are inferred from the dynamics of body movements, and thereby modelling the underlying momentum of the performed activities. They provide extra dimensions of information for characterising activities in the classification process, and thereby significantly improve the classification accuracy. Two cases of HAR are tested using a classification model trained with shadow features: one is by using wearable sensor and the other is by a Kinect-based remote sensor. Our experiments can demonstrate the advantages of the new method, which will have an impact on human activity detection research.

  4. Training Classifiers with Shadow Features for Sensor-Based Human Activity Recognition

    PubMed Central

    Fong, Simon; Song, Wei; Cho, Kyungeun; Wong, Raymond; Wong, Kelvin K. L.

    2017-01-01

    In this paper, a novel training/testing process for building/using a classification model based on human activity recognition (HAR) is proposed. Traditionally, HAR has been accomplished by a classifier that learns the activities of a person by training with skeletal data obtained from a motion sensor, such as Microsoft Kinect. These skeletal data are the spatial coordinates (x, y, z) of different parts of the human body. The numeric information forms time series, temporal records of movement sequences that can be used for training a classifier. In addition to the spatial features that describe current positions in the skeletal data, new features called ‘shadow features’ are used to improve the supervised learning efficacy of the classifier. Shadow features are inferred from the dynamics of body movements, and thereby modelling the underlying momentum of the performed activities. They provide extra dimensions of information for characterising activities in the classification process, and thereby significantly improve the classification accuracy. Two cases of HAR are tested using a classification model trained with shadow features: one is by using wearable sensor and the other is by a Kinect-based remote sensor. Our experiments can demonstrate the advantages of the new method, which will have an impact on human activity detection research. PMID:28264470

  5. Social environment influences performance in a cognitive task in natural variants of the foraging gene.

    PubMed

    Kohn, Nancy R; Reaume, Christopher J; Moreno, Celine; Burns, James G; Sokolowski, Marla B; Mery, Frederic

    2013-01-01

    In Drosophila melanogaster, natural genetic variation in the foraging gene affects the foraging behaviour of larval and adult flies, larval reward learning, adult visual learning, and adult aversive training tasks. Sitters (for(s)) are more sedentary and aggregate within food patches whereas rovers (for(R)) have greater movement within and between food patches, suggesting that these natural variants are likely to experience different social environments. We hypothesized that social context would differentially influence rover and sitter behaviour in a cognitive task. We measured adult rover and sitter performance in a classical olfactory training test in groups and alone. All flies were reared in groups, but fly training and testing were done alone and in groups. Sitters trained and tested in a group had significantly higher learning performances compared to sitters trained and tested alone. Rovers performed similarly when trained and tested alone and in a group. In other words, rovers learning ability is independent of group training and testing. This suggests that sitters may be more sensitive to the social context than rovers. These differences in learning performance can be altered by pharmacological manipulations of PKG activity levels, the foraging (for) gene's gene product. Learning and memory is also affected by the type of social interaction (being in a group of the same strain or in a group of a different strain) in rovers, but not in sitters. These results suggest that for mediates social learning and memory in D. melanogaster.

  6. Substance P signalling in primary motor cortex facilitates motor learning in rats.

    PubMed

    Hertler, Benjamin; Hosp, Jonas Aurel; Blanco, Manuel Buitrago; Luft, Andreas Rüdiger

    2017-01-01

    Among the genes that are up-regulated in response to a reaching training in rats, Tachykinin 1 (Tac1)-a gene that encodes the neuropeptide Substance P (Sub P)-shows an especially strong expression. Using Real-Time RT-PCR, a detailed time-course of Tac1 expression could be defined: a significant peak occurs 7 hours after training ended at the first and second training session, whereas no up-regulation could be detected at a later time-point (sixth training session). To assess the physiological role of Sub P during movement acquisition, microinjections into the primary motor cortex (M1) contralateral to the trained paw were performed. When Sub P was injected before the first three sessions of a reaching training, effectiveness of motor learning became significantly increased. Injections at a time-point when rats already knew the task (i.e. training session ten and eleven) had no effect on reaching performance. Sub P injections did not influence the improvement of performance within a single training session, but retention of performance between sessions became strengthened at a very early stage (i.e. between baseline-training and first training session). Thus, Sub P facilitates motor learning in the very early phase of skill acquisition by supporting memory consolidation. In line with these findings, learning related expression of the precursor Tac1 occurs at early but not at later time-points during reaching training.

  7. Long-term practice effects on a new skilled motor learning: an electrophysiological study.

    PubMed

    Fattapposta, F; Amabile, G; Cordischi, M V; Di Venanzio, D; Foti, A; Pierelli, F; D'Alessio, C; Pigozzi, F; Parisi, A; Morrocutti, C

    1996-12-01

    Cortical functions concerned with the execution of skilled movements can be studied through complex interactive tasks. Skilled performance task (SPT) offers the greatest deal of information about the electrophysiological components reflecting pre-programming, execution of the movement and control of the results. Overall, these components are indicated as "movement-related brain macropotentials' (MRBMs). Among them, Bereitschaftspotential (BP) reflects cerebral processes related to the preparation of movement and skilled performance positivity (SPP) reflects control processes on the result of performance. There is some evidence supporting a training effect on MRBMs, but less clear is whether long-term practice of a skilled activity could modify learning strategies of a new skilled task. We recorded MRBMs in subjects trained for a long time to perform a highly skillful athletic activity, i.e. gun shooting, and in a group of control subjects without any former experience in skilled motor activities. Our findings demonstrated the existence of a relationship between pre-programming and performance control, as suggested by decrease of BP amplitude and increase of SPP amplitude in presence of high levels of performance. Long-term practice seems to develop better control models on performance, that reduce the need of a high mental effort in pre-programming a skilled action.

  8. Towards Emotion Detection in Educational Scenarios from Facial Expressions and Body Movements through Multimodal Approaches

    PubMed Central

    Saneiro, Mar; Salmeron-Majadas, Sergio

    2014-01-01

    We report current findings when considering video recordings of facial expressions and body movements to provide affective personalized support in an educational context from an enriched multimodal emotion detection approach. In particular, we describe an annotation methodology to tag facial expression and body movements that conform to changes in the affective states of learners while dealing with cognitive tasks in a learning process. The ultimate goal is to combine these annotations with additional affective information collected during experimental learning sessions from different sources such as qualitative, self-reported, physiological, and behavioral information. These data altogether are to train data mining algorithms that serve to automatically identify changes in the learners' affective states when dealing with cognitive tasks which help to provide emotional personalized support. PMID:24892055

  9. Towards emotion detection in educational scenarios from facial expressions and body movements through multimodal approaches.

    PubMed

    Saneiro, Mar; Santos, Olga C; Salmeron-Majadas, Sergio; Boticario, Jesus G

    2014-01-01

    We report current findings when considering video recordings of facial expressions and body movements to provide affective personalized support in an educational context from an enriched multimodal emotion detection approach. In particular, we describe an annotation methodology to tag facial expression and body movements that conform to changes in the affective states of learners while dealing with cognitive tasks in a learning process. The ultimate goal is to combine these annotations with additional affective information collected during experimental learning sessions from different sources such as qualitative, self-reported, physiological, and behavioral information. These data altogether are to train data mining algorithms that serve to automatically identify changes in the learners' affective states when dealing with cognitive tasks which help to provide emotional personalized support.

  10. Learning to Recognize Actions From Limited Training Examples Using a Recurrent Spiking Neural Model

    PubMed Central

    Panda, Priyadarshini; Srinivasa, Narayan

    2018-01-01

    A fundamental challenge in machine learning today is to build a model that can learn from few examples. Here, we describe a reservoir based spiking neural model for learning to recognize actions with a limited number of labeled videos. First, we propose a novel encoding, inspired by how microsaccades influence visual perception, to extract spike information from raw video data while preserving the temporal correlation across different frames. Using this encoding, we show that the reservoir generalizes its rich dynamical activity toward signature action/movements enabling it to learn from few training examples. We evaluate our approach on the UCF-101 dataset. Our experiments demonstrate that our proposed reservoir achieves 81.3/87% Top-1/Top-5 accuracy, respectively, on the 101-class data while requiring just 8 video examples per class for training. Our results establish a new benchmark for action recognition from limited video examples for spiking neural models while yielding competitive accuracy with respect to state-of-the-art non-spiking neural models. PMID:29551962

  11. Moments of movement: active learning and practice development.

    PubMed

    Dewing, Jan

    2010-01-01

    As our understanding of practice development becomes more sophisticated, we enhance our understanding of how the facilitation of learning in and from practice, can be more effectively achieved. This paper outlines an approach for enabling and maximizing learning within practice development known as 'Active Learning'. It considers how, given establishing a learning culture is a prerequisite for the sustainability of PD within organisations, practice developers can do more to maximize learning for practitioners and other stakeholders. Active Learning requires that more attention be given by organisations committed to PD, at a corporate and strategic level for how learning strategies are developed in the workplace. Specifically, a move away from a heavy reliance on training may be required. Practice development facilitators also need to review: how they organise and offer learning, so that learning strategies are consistent with the vision, aims and processes of PD; have skills in the planning, delivery and evaluation of learning as part of their role and influence others who provide more traditional methods of training and education.

  12. Integrated versus isolated training of the hemiparetic upper extremity in haptically rendered virtual environments.

    PubMed

    Qiu, Qinyin; Fluet, Gerard G; Saleh, Soha; Lafond, Ian; Merians, Alma S; Adamovich, Sergei V

    2010-01-01

    This paper describes the preliminary results of an ongoing study of the effects of two training approaches on motor function and learning in persons with hemi paresis due to cerebrovascular accidents. Eighteen subjects with chronic stroke performed eight, three-hour sessions of sensorimotor training in haptically renedered environments. Eleven subjects performed training activities that integrated hand and arm movement while another seven subjects performed activities that trained the hand and arm with separately. As a whole, the eighteen subjects made statistically significant improvements in motor function as evidenced by robust improvements in Wolf Motor Function Test times and corresponding improvements in Jebsen Test of Hand Function times. There were no significant between group effects for these tests. However, the two training approaches elicited different patterns and magnitudes of performance improvement that suggest that they may elicit different types of change in motor learning and or control.

  13. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments.

    PubMed

    Effenberg, Alfred O; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill-even exceeding usually expected acoustic rhythmic effects on motor learning.

  14. Movement Sonification: Effects on Motor Learning beyond Rhythmic Adjustments

    PubMed Central

    Effenberg, Alfred O.; Fehse, Ursula; Schmitz, Gerd; Krueger, Bjoern; Mechling, Heinz

    2016-01-01

    Motor learning is based on motor perception and emergent perceptual-motor representations. A lot of behavioral research is related to single perceptual modalities but during last two decades the contribution of multimodal perception on motor behavior was discovered more and more. A growing number of studies indicates an enhanced impact of multimodal stimuli on motor perception, motor control and motor learning in terms of better precision and higher reliability of the related actions. Behavioral research is supported by neurophysiological data, revealing that multisensory integration supports motor control and learning. But the overwhelming part of both research lines is dedicated to basic research. Besides research in the domains of music, dance and motor rehabilitation, there is almost no evidence for enhanced effectiveness of multisensory information on learning of gross motor skills. To reduce this gap, movement sonification is used here in applied research on motor learning in sports. Based on the current knowledge on the multimodal organization of the perceptual system, we generate additional real-time movement information being suitable for integration with perceptual feedback streams of visual and proprioceptive modality. With ongoing training, synchronously processed auditory information should be initially integrated into the emerging internal models, enhancing the efficacy of motor learning. This is achieved by a direct mapping of kinematic and dynamic motion parameters to electronic sounds, resulting in continuous auditory and convergent audiovisual or audio-proprioceptive stimulus arrays. In sharp contrast to other approaches using acoustic information as error-feedback in motor learning settings, we try to generate additional movement information suitable for acceleration and enhancement of adequate sensorimotor representations and processible below the level of consciousness. In the experimental setting, participants were asked to learn a closed motor skill (technique acquisition of indoor rowing). One group was treated with visual information and two groups with audiovisual information (sonification vs. natural sounds). For all three groups learning became evident and remained stable. Participants treated with additional movement sonification showed better performance compared to both other groups. Results indicate that movement sonification enhances motor learning of a complex gross motor skill—even exceeding usually expected acoustic rhythmic effects on motor learning. PMID:27303255

  15. Locomotion training of legged robots using hybrid machine learning techniques

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Doerschuk, Peggy I.; Zhang, Wen-Ran; Li, Andrew L.

    1995-01-01

    In this study artificial neural networks and fuzzy logic are used to control the jumping behavior of a three-link uniped robot. The biped locomotion control problem is an increment of the uniped locomotion control. Study of legged locomotion dynamics indicates that a hierarchical controller is required to control the behavior of a legged robot. A structured control strategy is suggested which includes navigator, motion planner, biped coordinator and uniped controllers. A three-link uniped robot simulation is developed to be used as the plant. Neurocontrollers were trained both online and offline. In the case of on-line training, a reinforcement learning technique was used to train the neurocontroller to make the robot jump to a specified height. After several hundred iterations of training, the plant output achieved an accuracy of 7.4%. However, when jump distance and body angular momentum were also included in the control objectives, training time became impractically long. In the case of off-line training, a three-layered backpropagation (BP) network was first used with three inputs, three outputs and 15 to 40 hidden nodes. Pre-generated data were presented to the network with a learning rate as low as 0.003 in order to reach convergence. The low learning rate required for convergence resulted in a very slow training process which took weeks to learn 460 examples. After training, performance of the neurocontroller was rather poor. Consequently, the BP network was replaced by a Cerebeller Model Articulation Controller (CMAC) network. Subsequent experiments described in this document show that the CMAC network is more suitable to the solution of uniped locomotion control problems in terms of both learning efficiency and performance. A new approach is introduced in this report, viz., a self-organizing multiagent cerebeller model for fuzzy-neural control of uniped locomotion is suggested to improve training efficiency. This is currently being evaluated for a possible patent by NASA, Johnson Space Center. An alternative modular approach is also developed which uses separate controllers for each stage of the running stride. A self-organizing fuzzy-neural controller controls the height, distance and angular momentum of the stride. A CMAC-based controller controls the movement of the leg from the time the foot leaves the ground to the time of landing. Because the leg joints are controlled at each time step during flight, movement is smooth and obstacles can be avoided. Initial results indicate that this approach can yield fast, accurate results.

  16. The Investigation of Laparoscopic Instrument Movement Control and Learning Effect

    PubMed Central

    Lin, Chiuhsiang Joe

    2013-01-01

    Laparoscopic surgery avoids large incisions for intra-abdominal operations as required in conventional open surgery. Whereas the patient benefits from laparoscopic techniques, the surgeon encounters new difficulties that were not present during open surgery procedures. However, limited literature has been published in the essential movement characteristics such as magnification, amplitude, and angle. For this reason, the present study aims to investigate the essential movement characteristics of instrument manipulation via Fitts' task and to develop an instrument movement time predicting model. Ten right-handed subjects made discrete Fitts' pointing tasks using a laparoscopic trainer. The experimental results showed that there were significant differences between the three factors in movement time and in throughput. However, no significant differences were observed in the improvement rate for movement time and throughput between these three factors. As expected, the movement time was rather variable and affected markedly by direction to target. The conventional Fitts' law model was extended by incorporating a directional parameter into the model. The extended model was shown to better fit the data than the conventional model. These findings pointed to a design direction for the laparoscopic surgery training program, and the predictive model can be used to establish standards in the training procedure. PMID:23984348

  17. Capture, Learning, and Classification of Upper Extremity Movement Primitives in Healthy Controls and Stroke Patients

    PubMed Central

    Guerra, Jorge; Uddin, Jasim; Nilsen, Dawn; Mclnerney, James; Fadoo, Ammarah; Omofuma, Isirame B.; Hughes, Shatif; Agrawal, Sunil; Allen, Peter; Schambra, Heidi M.

    2017-01-01

    There currently exist no practical tools to identify functional movements in the upper extremities (UEs). This absence has limited the precise therapeutic dosing of patients recovering from stroke. In this proof-of-principle study, we aimed to develop an accurate approach for classifying UE functional movement primitives, which comprise functional movements. Data were generated from inertial measurement units (IMUs) placed on upper body segments of older healthy individuals and chronic stroke patients. Subjects performed activities commonly trained during rehabilitation after stroke. Data processing involved the use of a sliding window to obtain statistical descriptors, and resulting features were processed by a Hidden Markov Model (HMM). The likelihoods of the states, resulting from the HMM, were segmented by a second sliding window and their averages were calculated. The final predictions were mapped to human functional movement primitives using a Logistic Regression algorithm. Algorithm performance was assessed with a leave-one-out analysis, which determined its sensitivity, specificity, and positive and negative predictive values for all classified primitives. In healthy control and stroke participants, our approach identified functional movement primitives embedded in training activities with, on average, 80% precision. This approach may support functional movement dosing in stroke rehabilitation. PMID:28813877

  18. Exploring the impact of visual and movement based priming on a motor intervention in the acute phase post-stroke in persons with severe hemiparesis of the upper extremity.

    PubMed

    Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard

    2017-07-01

    Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. Implications for Rehabilitation Rehabilitation of individuals with severely paretic upper extremities after stroke is challenging due to limited movement capacity and few options for therapeutic training. Long-term functional recovery of the arm after stroke depends on early return of active hand control, establishing a need for acute training methods focused distally. This study demonstrates the feasibility of an early hand-based intervention using virtual reality based priming and scaled motor activities which can allow for participation by persons without the motor control required for traditionally presented rehabilitation and testing.

  19. The impact of sensorimotor experience on affective evaluation of dance

    PubMed Central

    Kirsch, Louise P.; Drommelschmidt, Kim A.; Cross, Emily S.

    2013-01-01

    Past research demonstrates that we are more likely to positively evaluate a stimulus if we have had previous experience with that stimulus. This has been shown for judgment of faces, architecture, artworks and body movements. In contrast, other evidence suggests that this relationship can also work in the inverse direction, at least in the domain of watching dance. Specifically, it has been shown that in certain contexts, people derive greater pleasure from watching unfamiliar movements they would not be able to physically reproduce compared to simpler, familiar actions they could physically reproduce. It remains unknown, however, how different kinds of experience with complex actions, such as dance, might change observers' affective judgments of these movements. Our aim was to clarify the relationship between experience and affective evaluation of whole body movements. In a between-subjects design, participants received either physical dance training with a video game system, visual and auditory experience or auditory experience only. Participants' aesthetic preferences for dance stimuli were measured before and after the training sessions. Results show that participants from the physical training group not only improved their physical performance of the dance sequences, but also reported higher enjoyment and interest in the stimuli after training. This suggests that physically learning particular movements leads to greater enjoyment while observing them. These effects are not simply due to increased familiarity with audio or visual elements of the stimuli, as the other two training groups showed no increase in aesthetic ratings post-training. We suggest these results support an embodied simulation account of aesthetics, and discuss how the present findings contribute to a better understanding of the shaping of preferences by sensorimotor experience. PMID:24027511

  20. Different types of avoidance behavior in rats produce dissociable post-training changes in sleep.

    PubMed

    Fogel, Stuart M; Smith, Carlyle T; Higginson, Caitlin D; Beninger, Richard J

    2011-02-01

    Avoidance learning affects post-training sleep, and post-training sleep deprivation impairs performance. However, not all rats learn to make avoidance responses, and some rats fail to escape; a definitive behavior of learned helplessness, a model of depression. This study investigated the changes in sleep associated with different behaviors adopted following avoidance training. Rats (n=53) were trained for 100 trials over 2 days (50 trials/day), followed by 23-24 h of post-training polysomnography, then re-tested (25 trials). At re-test, rats were categorized into: 1) Active Avoiders (AA; n=22), 2), Non-learning (NL; n=21), or 3) Escape Failures (EF; n=10). AA rats increased avoidances over days, whereas the NL and EF groups did not. EF rats increased escape failures over days, whereas the NL and AA rats did not. EF rats had increased rapid eye movement (REM) sleep in the first 4h on training day 1. They also had increased non-REM sleep in the first 4h and last 4h on both training days. AA rats had increased REM sleep 13-20 h post-training. The type of behavioral strategy adopted throughout training is associated with a unique pattern of changes in post-training sleep. Training-dependent changes in post-acquisition sleep may reflect distinct processes involved in the consolidation of these different memory traces. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Dual-hemisphere transcranial direct current stimulation over primary motor cortex enhances consolidation of a ballistic thumb movement.

    PubMed

    Koyama, Soichiro; Tanaka, Satoshi; Tanabe, Shigeo; Sadato, Norihiro

    2015-02-19

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates motor performance and learning. Previous studies have shown that tDCS over the primary motor cortex (M1) can facilitate consolidation of various motor skills. However, the effect of tDCS on consolidation of newly learned ballistic movements remains unknown. The present study tested the hypothesis that tDCS over M1 enhances consolidation of ballistic thumb movements in healthy adults. Twenty-eight healthy subjects participated in an experiment with a single-blind, sham-controlled, between-group design. Fourteen subjects practiced a ballistic movement with their left thumb during dual-hemisphere tDCS. Subjects received 1mA anodal tDCS over the contralateral M1 and 1mA cathodal tDCS over the ipsilateral M1 for 25min during the training session. The remaining 14 subjects underwent identical training sessions, except that dual-hemisphere tDCS was applied for only the first 15s (sham group). All subjects performed the task again at 1h and 24h later. Primary measurements examined improvement in peak acceleration of the ballistic thumb movement at 1h and 24h after stimulation. Improved peak acceleration was significantly greater in the tDCS group (144.2±15.1%) than in the sham group (98.7±9.1%) (P<0.05) at 24h, but not 1h, after stimulation. Thus, dual-hemisphere tDCS over M1 enhanced consolidation of ballistic thumb movement in healthy adults. Dual-hemisphere tDCS over M1 may be useful to improve elemental motor behaviors, such as ballistic movements, in patients with subcortical strokes. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.

    PubMed

    Golkhou, Vahid; Parnianpour, Mohamad; Lucas, Caro

    2005-04-01

    In this study, we have used a single link system with a pair of muscles that are excited with alpha and gamma signals to achieve both point to point and oscillatory movements with variable amplitude and frequency.The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear muscle-like-actuators for control purposes, existence of nonlinear spindle-like sensors and Golgi tendon organ-like sensor, actions of gravity and external loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops.A reinforcement learning method with an actor-critic (AC) architecture instead of middle and low level of central nervous system (CNS), is used to track a desired trajectory. The actor in this structure is a two layer feedforward neural network and the critic is a model of the cerebellum. The critic is trained by state-action-reward-state-action (SARSA) method. The critic will train the actor by supervisory learning based on the prior experiences. Simulation studies of oscillatory movements based on the proposed algorithm demonstrate excellent tracking capability and after 280 epochs the RMS error for position and velocity profiles were 0.02, 0.04 rad and rad/s, respectively.

  3. Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation

    PubMed Central

    Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits of the upper extremity may practice rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although this technology enables intensive task-oriented training, it may also lead to slacking when the assistance is too supportive. Preserving the engagement of the patients while providing “assistance-as-needed” during the exercises, therefore remains an ongoing challenge. We applied a commercially available seven degree-of-freedom arm exoskeleton to provide passive gravity compensation during task-oriented training in a virtual environment. During this 4-week pilot study, five severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living. The subjects received virtual reality feedback from their three-dimensional movements. The level of difficulty for the exercise was adjusted by a performance-dependent real-time adaptation algorithm. The goal of this algorithm was the automated improvement of the range of motion. In the course of 20 training and feedback sessions, this unsupervised adaptive training concept led to a progressive increase of the virtual training space (p < 0.001) in accordance with the subjects' abilities. This learning curve was paralleled by a concurrent improvement of real world kinematic parameters, i.e., range of motion (p = 0.008), accuracy of movement (p = 0.01), and movement velocity (p < 0.001). Notably, these kinematic gains were paralleled by motor improvements such as increased elbow movement (p = 0.001), grip force (p < 0.001), and upper extremity Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 (p = 0.026). Combining gravity-compensating assistance with adaptive closed-loop feedback in virtual reality provides customized rehabilitation environments for severely affected stroke patients. This approach may facilitate motor learning by progressively challenging the subject in accordance with the individual capacity for functional restoration. It might be necessary to apply concurrent restorative interventions to translate these improvements into relevant functional gains of severely motor impaired patients in activities of daily living. PMID:27895550

  4. Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation.

    PubMed

    Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits of the upper extremity may practice rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although this technology enables intensive task-oriented training, it may also lead to slacking when the assistance is too supportive. Preserving the engagement of the patients while providing "assistance-as-needed" during the exercises, therefore remains an ongoing challenge. We applied a commercially available seven degree-of-freedom arm exoskeleton to provide passive gravity compensation during task-oriented training in a virtual environment. During this 4-week pilot study, five severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living. The subjects received virtual reality feedback from their three-dimensional movements. The level of difficulty for the exercise was adjusted by a performance-dependent real-time adaptation algorithm. The goal of this algorithm was the automated improvement of the range of motion. In the course of 20 training and feedback sessions, this unsupervised adaptive training concept led to a progressive increase of the virtual training space ( p < 0.001) in accordance with the subjects' abilities. This learning curve was paralleled by a concurrent improvement of real world kinematic parameters, i.e., range of motion ( p = 0.008), accuracy of movement ( p = 0.01), and movement velocity ( p < 0.001). Notably, these kinematic gains were paralleled by motor improvements such as increased elbow movement ( p = 0.001), grip force ( p < 0.001), and upper extremity Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 ( p = 0.026). Combining gravity-compensating assistance with adaptive closed-loop feedback in virtual reality provides customized rehabilitation environments for severely affected stroke patients. This approach may facilitate motor learning by progressively challenging the subject in accordance with the individual capacity for functional restoration. It might be necessary to apply concurrent restorative interventions to translate these improvements into relevant functional gains of severely motor impaired patients in activities of daily living.

  5. Remembering the orientation of newly learned characters depends on the associated writing knowledge: a comparison between handwriting and typing.

    PubMed

    Longcamp, Marieke; Boucard, Céline; Gilhodes, Jean-Claude; Velay, Jean-Luc

    2006-10-01

    Recent data support the idea that movements play a crucial role in letter representation and suggest that handwriting knowledge contributes to visual recognition of letters. If so, using different motor activities while subjects are learning to write should affect their subsequent recognition performances. In order to test this hypothesis, we trained adult participants to write new characters either by copying them or by typing them on a keyboard. After three weeks of training we ran a series of tests requiring visual processing of the characters' orientation. Tests were ran immediately, one week after, and three weeks after the end of the training period. Results showed that when the characters had been learned by typing, they were more frequently confused with their mirror images than when they had been written by hand. This handwriting advantage did not appear immediately, but mostly three weeks after the end of the training. Our results therefore suggest that the stability of the characters' representation in memory depends on the nature of the motor activity produced during learning.

  6. The role of oculomotor information in the learning of sequential aiming movements.

    PubMed

    Helsen, Werner F; Tremblay, Luc; Van Den Berg, Miek; Elliott, Digby

    2004-03-01

    With their eyes initially on either the home, midline, or final end position, 30 participants practiced a 2-target aiming movement. After 120 acquisition trials, participants performed a retention test and were then transferred to each of the other 2 eye conditions. During acquisition, all groups improved over practice, but the home group showed the greatest improvement. The temporal improvement was most pronounced in the times spent after peak velocity. Retention and transfer tests indicated that participants performed best under eye-movement conditions that were the same as the 1 they had practiced in. There was also positive transfer of training between conditions in which the oculomotor information was similar. Thus, to optimize learning, one should practice under the same afferent and oculomotor conditions that will be required for the final performance.

  7. Substance P signalling in primary motor cortex facilitates motor learning in rats

    PubMed Central

    Hertler, Benjamin; Hosp, Jonas Aurel; Blanco, Manuel Buitrago

    2017-01-01

    Among the genes that are up-regulated in response to a reaching training in rats, Tachykinin 1 (Tac1)—a gene that encodes the neuropeptide Substance P (Sub P)—shows an especially strong expression. Using Real-Time RT-PCR, a detailed time-course of Tac1 expression could be defined: a significant peak occurs 7 hours after training ended at the first and second training session, whereas no up-regulation could be detected at a later time-point (sixth training session). To assess the physiological role of Sub P during movement acquisition, microinjections into the primary motor cortex (M1) contralateral to the trained paw were performed. When Sub P was injected before the first three sessions of a reaching training, effectiveness of motor learning became significantly increased. Injections at a time-point when rats already knew the task (i.e. training session ten and eleven) had no effect on reaching performance. Sub P injections did not influence the improvement of performance within a single training session, but retention of performance between sessions became strengthened at a very early stage (i.e. between baseline-training and first training session). Thus, Sub P facilitates motor learning in the very early phase of skill acquisition by supporting memory consolidation. In line with these findings, learning related expression of the precursor Tac1 occurs at early but not at later time-points during reaching training. PMID:29281692

  8. Learning Online at Rio Hondo Community College.

    ERIC Educational Resources Information Center

    Balch, David E.; Patino, I. F.

    1999-01-01

    Recounts Rio Hondo Community College's decision to "go online" in anticipation of reduced funding, needed expansion, increased inservice training, changing student demographics, and the movement into computer technology. Summarizes the changes faced by the college and discusses how its Public Service Department involved administrators…

  9. Two Processes in Early Bimanual Motor Skill Learning

    PubMed Central

    Yeganeh Doost, Maral; Orban de Xivry, Jean-Jacques; Bihin, Benoît; Vandermeeren, Yves

    2017-01-01

    Most daily activities are bimanual and their efficient performance requires learning and retention of bimanual coordination. Despite in-depth knowledge of the various stages of motor skill learning in general, how new bimanual coordination control policies are established is still unclear. We designed a new cooperative bimanual task in which subjects had to move a cursor across a complex path (a circuit) as fast and as accurately as possible through coordinated bimanual movements. By looking at the transfer of the skill between different circuits and by looking at training with varying circuits, we identified two processes in early bimanual motor learning. Loss of performance due to the switch in circuit after 15 min of training amounted to 20%, which suggests that a significant portion of improvements in bimanual performance is specific to the used circuit (circuit-specific skill). In contrast, the loss of performance due to the switch in circuit was 5% after 4 min of training. This suggests that learning the new bimanual coordination control policy dominates early in the training and is independent of the used circuit. Finally, switching between two circuits throughout training did not affect the early stage of learning (i.e., the first few minutes), but did affect the later stage. Together, these results suggest that early bimanual motor skill learning includes two different processes. Learning the new bimanual coordination control policy predominates in the first minutes whereas circuit-specific skill improvements unfold later in parallel with further improvements in the bimanual coordination control policy. PMID:29326573

  10. White matter microstructure changes induced by motor skill learning utilizing a body machine interface.

    PubMed

    Wang, Xue; Casadio, Maura; Weber, Kenneth A; Mussa-Ivaldi, Ferdinando A; Parrish, Todd B

    2014-03-01

    The purpose of this study is to identify white matter microstructure changes following bilateral upper extremity motor skill training to increase our understanding of learning-induced structural plasticity and enhance clinical strategies in physical rehabilitation. Eleven healthy subjects performed two visuo-spatial motor training tasks over 9 sessions (2-3 sessions per week). Subjects controlled a cursor with bilateral simultaneous movements of the shoulders and upper arms using a body machine interface. Before the start and within 2days of the completion of training, whole brain diffusion tensor MR imaging data were acquired. Motor training increased fractional anisotropy (FA) values in the posterior and anterior limbs of the internal capsule, the corona radiata, and the body of the corpus callosum by 4.19% on average indicating white matter microstructure changes induced by activity-dependent modulation of axon number, axon diameter, or myelin thickness. These changes may underlie the functional reorganization associated with motor skill learning. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Nicotine increases fear responses and brain acetylcholinesterase activity in a context-dependent manner in zebrafish.

    PubMed

    Ziani, Paola R; Müller, Talise E; Stefanello, Flavia V; Fontana, Barbara D; Duarte, Tâmie; Canzian, Julia; Rosemberg, Denis B

    2018-07-01

    Nicotine is an alkaloid with positive effects on learning and memory processes. Exposure to conspecific alarm substance (CAS) elicits fear responses in zebrafish, but the effects of nicotine on aversive behaviors and associative learning in this species remain unclear. Here, we evaluated whether nicotine enhances contextual fear responses in zebrafish and investigated a putative involvement of brain acetylcholinesterase (AChE) in associative learning. Fish were exposed to 1 mg/L nicotine for 3 min and then kept in non-chlorinated water for 20 min. Later, animals were transferred to experimental tanks in the absence or presence of 3.5 mL/L CAS for 5 min (training session). After 24 h, fish were tested in tanks with similar or altered context in the absence of CAS (post-training session) and brain AChE activity was further assessed. At training, CAS increased freezing, erratic movements, and decreased the time spent in top area, while nicotine abolished the effects of CAS on erratic movements. Nicotine/CAS group tested in a similar context showed exacerbated freezing and reduced transitions to top area. Moreover, a decrease in distance traveled was observed in control, nicotine, and nicotine/CAS groups at post-training. Nicotine also stimulated brain AChE activity in CAS-exposed animals reintroduced in tanks with similar context. Although freezing bouts and time spent in top could serve as behavioral endpoints that reflect CAS-induced sensitization, the effects of nicotine occurred in a context-dependent manner. Collectively, our data suggest an involvement of cholinergic signaling in aversive learning, reinforcing the growing utility of zebrafish models to explore the neurobehavioral effects of nicotine in vertebrates. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. A Mirror Therapy-Based Action Observation Protocol to Improve Motor Learning After Stroke.

    PubMed

    Harmsen, Wouter J; Bussmann, Johannes B J; Selles, Ruud W; Hurkmans, Henri L P; Ribbers, Gerard M

    2015-07-01

    Mirror therapy is a priming technique to improve motor function of the affected arm after stroke. To investigate whether a mirror therapy-based action observation (AO) protocol contributes to motor learning of the affected arm after stroke. A total of 37 participants in the chronic stage after stroke were randomly allocated to the AO or control observation (CO) group. Participants were instructed to perform an upper-arm reaching task as fast and as fluently as possible. All participants trained the upper-arm reaching task with their affected arm alternated with either AO or CO. Participants in the AO group observed mirrored video tapes of reaching movements performed by their unaffected arm, whereas participants in the CO group observed static photographs of landscapes. The experimental condition effect was investigated by evaluating the primary outcome measure: movement time (in seconds) of the reaching movement, measured by accelerometry. Movement time decreased significantly in both groups: 18.3% in the AO and 9.1% in the CO group. Decrease in movement time was significantly more in the AO compared with the CO group (mean difference = 0.14 s; 95% confidence interval = 0.02, 0.26; P = .026). The present study showed that a mirror therapy-based AO protocol contributes to motor learning after stroke. © The Author(s) 2014.

  13. Functional connectivity between face-movement and speech-intelligibility areas during auditory-only speech perception.

    PubMed

    Schall, Sonja; von Kriegstein, Katharina

    2014-01-01

    It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (<2 min/speaker). This was followed by an auditory-only speech recognition task and a control task (voice recognition) involving the learned speakers' voices in the MRI scanner. As hypothesized, we found that, during speech recognition, familiarity with the speaker's face increased the functional connectivity between the face-movement sensitive posterior superior temporal sulcus (STS) and an anterior STS region that supports auditory speech intelligibility. There was no difference between normal participants and prosopagnosics. This was expected because previous findings have shown that both groups use the face-movement sensitive STS to optimize auditory-only speech comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas.

  14. Action observation versus motor imagery in learning a complex motor task: a short review of literature and a kinematics study.

    PubMed

    Gatti, R; Tettamanti, A; Gough, P M; Riboldi, E; Marinoni, L; Buccino, G

    2013-04-12

    Both motor imagery and action observation have been shown to play a role in learning or re-learning complex motor tasks. According to a well accepted view they share a common neurophysiological basis in the mirror neuron system. Neurons within this system discharge when individuals perform a specific action and when they look at another individual performing the same or a motorically related action. In the present paper, after a short review of literature on the role of action observation and motor imagery in motor learning, we report the results of a kinematics study where we directly compared motor imagery and action observation in learning a novel complex motor task. This involved movement of the right hand and foot in the same angular direction (in-phase movement), while at the same time moving the left hand and foot in an opposite angular direction (anti-phase movement), all at a frequency of 1Hz. Motor learning was assessed through kinematics recording of wrists and ankles. The results showed that action observation is better than motor imagery as a strategy for learning a novel complex motor task, at least in the fast early phase of motor learning. We forward that these results may have important implications in educational activities, sport training and neurorehabilitation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Learning feedback and feedforward control in a mirror-reversed visual environment.

    PubMed

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn

    2015-10-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. Copyright © 2015 the American Physiological Society.

  16. Learning feedback and feedforward control in a mirror-reversed visual environment

    PubMed Central

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi

    2015-01-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. PMID:26245313

  17. Motor cortex is required for learning but not for executing a motor skill.

    PubMed

    Kawai, Risa; Markman, Timothy; Poddar, Rajesh; Ko, Raymond; Fantana, Antoniu L; Dhawale, Ashesh K; Kampff, Adam R; Ölveczky, Bence P

    2015-05-06

    Motor cortex is widely believed to underlie the acquisition and execution of motor skills, but its contributions to these processes are not fully understood. One reason is that studies on motor skills often conflate motor cortex's established role in dexterous control with roles in learning and producing task-specific motor sequences. To dissociate these aspects, we developed a motor task for rats that trains spatiotemporally precise movement patterns without requirements for dexterity. Remarkably, motor cortex lesions had no discernible effect on the acquired skills, which were expressed in their distinct pre-lesion forms on the very first day of post-lesion training. Motor cortex lesions prior to training, however, rendered rats unable to acquire the stereotyped motor sequences required for the task. These results suggest a remarkable capacity of subcortical motor circuits to execute learned skills and a previously unappreciated role for motor cortex in "tutoring" these circuits during learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    PubMed Central

    Marchal-Crespo, Laura; Michels, Lars; Jaeger, Lukas; López-Olóriz, Jorge; Riener, Robert

    2017-01-01

    Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS) in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL), i.e., precuneus, and temporal cortex. These neuroimaging findings indicate that gait-like motor learning depends on interplay between subcortical, cerebellar, and fronto-parietal brain regions. An interesting observation was the low activation observed in the brain's reward system after training with error amplification compared to training without perturbations. Our results suggest that to enhance learning of a locomotor task, errors should be augmented based on subjects' skill level. The impacts of these strategies on motor learning, brain activation, and motivation in neurological patients need further investigation. PMID:29021739

  19. The role of multisensor data fusion in neuromuscular control of a sagittal arm with a pair of muscles using actor-critic reinforcement learning method.

    PubMed

    Golkhou, V; Parnianpour, M; Lucas, C

    2004-01-01

    In this study, we consider the role of multisensor data fusion in neuromuscular control using an actor-critic reinforcement learning method. The model we use is a single link system actuated by a pair of muscles that are excited with alpha and gamma signals. Various physiological sensor information such as proprioception, spindle sensors, and Golgi tendon organs have been integrated to achieve an oscillatory movement with variable amplitude and frequency, while achieving a stable movement with minimum metabolic cost and coactivation. The system is highly nonlinear in all its physical and physiological attributes. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops. This paper proposes a reinforcement learning method with an Actor-Critic architecture instead of middle and low level of central nervous system (CNS). The Actor in this structure is a two layer feedforward neural network and the Critic is a model of the cerebellum. The Critic is trained by the State-Action-Reward-State-Action (SARSA) method. The Critic will train the Actor by supervisory learning based on previous experiences. The reinforcement signal in SARSA is evaluated based on available alternatives concerning the concept of multisensor data fusion. The effectiveness and the biological plausibility of the present model are demonstrated by several simulations. The system showed excellent tracking capability when we integrated the available sensor information. Addition of a penalty for activation of muscles resulted in much lower muscle coactivation while keeping the movement stable.

  20. Strategies for stroke rehabilitation.

    PubMed

    Dobkin, Bruce H

    2004-09-01

    Rehabilitation after hemiplegic stroke has typically relied on the training of patients in compensatory strategies. The translation of neuroscientific research into care has led to new approaches and renewed promise for better outcomes. Improved motor control can progress with task-specific training incorporating increased use of proximal and distal movements during intensive practice of real-world activities. Functional gains are incorrectly said to plateau by 3-6 months. Many patients retain latent sensorimotor function that can be realised any time after stroke with a pulse of goal-directed therapy. The amount of practice probably best determines gains for a given level of residual movement ability. Clinicians should encourage patients to build greater strength, speed, endurance, and precision of multijoint movements on tasks that increase independence and enrich daily activity. Imaging tools may help clinicians determine the capacity of residual networks to respond to a therapeutic approach and help establish optimal dose-response curves for training. Promising adjunct approaches include practice with robotic devices or in a virtual environment, electrical stimulation to increase cortical excitability during training, and drugs to optimise molecular mechanisms for learning. Biological strategies for neural repair may augment rehabilitation in the next decade.

  1. Strategies for stroke rehabilitation

    PubMed Central

    Dobkin, Bruce H

    2014-01-01

    Rehabilitation after hemiplegic stroke has typically relied on the training of patients in compensatory strategies. The translation of neuroscientific research into care has led to new approaches and renewed promise for better outcomes. Improved motor control can progress with task-specific training incorporating increased use of proximal and distal movements during intensive practice of real-world activities. Functional gains are incorrectly said to plateau by 3–6 months. Many patients retain latent sensorimotor function that can be realised any time after stroke with a pulse of goal-directed therapy. The amount of practice probably best determines gains for a given level of residual movement ability. Clinicians should encourage patients to build greater strength, speed, endurance, and precision of multijoint movements on tasks that increase independence and enrich daily activity. Imaging tools may help clinicians determine the capacity of residual networks to respond to a therapeutic approach and help establish optimal dose-response curves for training. Promising adjunct approaches include practice with robotic devices or in a virtual environment, electrical stimulation to increase cortical excitability during training, and drugs to optimise molecular mechanisms for learning. Biological strategies for neural repair may augment rehabilitation in the next decade. PMID:15324721

  2. Cathodal Transcranial Direct Current Stimulation Over Left Dorsolateral Prefrontal Cortex Area Promotes Implicit Motor Learning in a Golf Putting Task.

    PubMed

    Zhu, Frank F; Yeung, Andrew Y; Poolton, Jamie M; Lee, Tatia M C; Leung, Gilberto K K; Masters, Rich S W

    2015-01-01

    Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke.

    PubMed

    Goodman, Ronald N; Rietschel, Jeremy C; Roy, Anindo; Jung, Brian C; Diaz, Jason; Macko, Richard F; Forrester, Larry W

    2014-01-01

    Robotics is rapidly emerging as a viable approach to enhance motor recovery after disabling stroke. Current principles of cognitive motor learning recognize a positive relationship between reward and motor learning. Yet no prior studies have established explicitly whether reward improves the rate or efficacy of robotics-assisted rehabilitation or produces neurophysiologic adaptations associated with motor learning. We conducted a 3 wk, 9-session clinical pilot with 10 people with chronic hemiparetic stroke, randomly assigned to train with an impedance-controlled ankle robot (anklebot) under either high reward (HR) or low reward conditions. The 1 h training sessions entailed playing a seated video game by moving the paretic ankle to hit moving onscreen targets with the anklebot only providing assistance as needed. Assessments included paretic ankle motor control, learning curves, electroencephalograpy (EEG) coherence and spectral power during unassisted trials, and gait function. While both groups exhibited changes in EEG, the HR group had faster learning curves (p = 0.05), smoother movements (p

  4. Motor memory is encoded as a gain-field combination of intrinsic and extrinsic action representations.

    PubMed

    Brayanov, Jordan B; Press, Daniel Z; Smith, Maurice A

    2012-10-24

    Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action. A first experiment showed that the generalization pattern reflected a memory that was intermediate between intrinsic and extrinsic representations. A second experiment showed that this intermediate representation could not arise from separate intrinsic and extrinsic learning. Instead, we find that the representation of learning is based on a gain-field combination of local representations in intrinsic and extrinsic coordinates. This gain-field representation generalizes between actions by effectively computing similarity based on the (Mahalanobis) distance across intrinsic and extrinsic coordinates and is in line with neural recordings showing mixed intrinsic-extrinsic representations in motor and parietal cortices.

  5. Training directionally selective motion pathways can significantly improve reading efficiency

    NASA Astrophysics Data System (ADS)

    Lawton, Teri

    2004-06-01

    This study examined whether perceptual learning at early levels of visual processing would facilitate learning at higher levels of processing. This was examined by determining whether training the motion pathways by practicing leftright movement discrimination, as found previously, would improve the reading skills of inefficient readers significantly more than another computer game, a word discrimination game, or the reading program offered by the school. This controlled validation study found that practicing left-right movement discrimination 5-10 minutes twice a week (rapidly) for 15 weeks doubled reading fluency, and significantly improved all reading skills by more than one grade level, whereas inefficient readers in the control groups barely improved on these reading skills. In contrast to previous studies of perceptual learning, these experiments show that perceptual learning of direction discrimination significantly improved reading skills determined at higher levels of cognitive processing, thereby being generalized to a new task. The deficits in reading performance and attentional focus experienced by the person who struggles when reading are suggested to result from an information overload, resulting from timing deficits in the direction-selectivity network proposed by Russell De Valois et al. (2000), that following practice on direction discrimination goes away. This study found that practicing direction discrimination rapidly transitions the inefficient 7-year-old reader to an efficient reader.

  6. Training Compliance Control Yields Improvements in Drawing as a Function of Beery Scores

    PubMed Central

    Snapp-Childs, Winona; Flatters, Ian; Fath, Aaron; Mon-Williams, Mark; Bingham, Geoffrey P.

    2014-01-01

    Many children have difficulty producing movements well enough to improve in sensori-motor learning. Previously, we developed a training method that supports active movement generation to allow improvement at a 3D tracing task requiring good compliance control. Here, we tested 7–8 year old children from several 2nd grade classrooms to determine whether 3D tracing performance could be predicted using the Beery VMI. We also examined whether 3D tracing training lead to improvements in drawing. Baseline testing included Beery, a drawing task on a tablet computer, and 3D tracing. We found that baseline performance in 3D tracing and drawing co-varied with the visual perception (VP) component of the Beery. Differences in 3D tracing between children scoring low versus high on the Beery VP replicated differences previously found between children with and without motor impairments, as did post-training performance that eliminated these differences. Drawing improved as a result of training in the 3D tracing task. The training method improved drawing and reduced differences predicted by Beery scores. PMID:24651280

  7. Startle stimuli reduce the internal model control in discrete movements.

    PubMed

    Wright, Zachary A; Rogers, Mark W; MacKinnon, Colum D; Patton, James L

    2009-01-01

    A well known and major component of movement control is the feedforward component, also known as the internal model. This model predicts and compensates for expected forces seen during a movement, based on recent experience, so that a well-learned task such as reaching to a target can be executed in a smooth straight manner. It has recently been shown that the state of preparation of planned movements can be tested using a startling acoustic stimulus (SAS). SAS, presented 500, 250 or 0 ms before the expected "go" cue resulted in the early release of the movement trajectory associated with the after-effects of the force field training (i.e. the internal model). In a typical motor adaptation experiment with a robot-applied force field, we tested if a SAS stimulus influences the size of after-effects that are typically seen. We found that in all subjects the after-effect magnitudes were significantly reduced when movements were released by SAS, although this effect was not further modulated by the timing of SAS. Reduced after-effects reveal at least partial existence of learned preparatory control, and identify startle effects that could influence performance in tasks such as piloting, teleoperation, and sports.

  8. Brain-Compatible Learning: Principles and Applications in Athletic Training

    PubMed Central

    2003-01-01

    Objective: To discuss the principles of brain-compatible learning research and provide insights into how this research may be applied in athletic training education to benefit the profession. Background: In the past decade, new brain-imaging techniques have allowed us to observe the brain while it is learning. The field of neuroscience has produced a body of empirical data that provides a new understanding of how we learn. This body of data has implications in education, although the direct study of these implications is in its infancy. Description: An overview of how the brain learns at a cellular level is provided, followed by a discussion of the principles of brain-compatible learning. Applications of these principles and implications for the field of athletic training education are also offered. Application: Many educational-reform fads have garnered attention in the past. Brain-compatible learning will not likely be one of those, as its origin is in neuroscience, not education. Brain-compatible learning is not an educational-reform movement. It does not prescribe how to run your classroom or offer specific techniques to use. Rather, it provides empirical data about how the brain learns and suggests guidelines to be considered while preparing lessons for your students. These guidelines may be incorporated into every educational setting, with every type of curriculum and every age group. The field of athletic training lends itself well to many of the basic principles of brain-compatible learning. PMID:16558681

  9. A good training based on insufficiency: Work in health care as an ethics.

    PubMed

    Casetto, Sidnei J; Henz, Alexandre O; Garcia, Maurício L; Aguiar, Fernanda B; Montenegro, Julia T; Unzueta, Leandro B; Capozzolo, Angela A

    2016-03-01

    The article discusses psychology training in health care at the Federal University of São Paulo. It places curriculum guidelines in a changing movement of training for health professions, proposing Work in Health Care as one of its common axes. In the Baixada Santista campus, the course is based on learning by experience, public health services and multidisciplinary team work. Three vectors derived from the experience in this project and its assessment are discussed: a common clinic, work in health care as an ethics and the idea of good training by insufficiency. © The Author(s) 2016.

  10. Degraded expression of learned feedforward control in movements released by startle.

    PubMed

    Wright, Zachary A; Carlsen, Anthony N; MacKinnon, Colum D; Patton, James L

    2015-08-01

    Recent work has shown that preplanned motor programs can be rapidly released via fast conducting pathways using a startling acoustic stimulus. Our question was whether the startle-elicited response might also release a recently learned internal model, which draws on experience to predict and compensate for expected perturbations in a feedforward manner. Our initial investigation using adaptation to robotically produced forces showed some evidence of this, but the results were potentially confounded by co-contraction caused by startle. In this study, we eliminated this confound by asking subjects to make reaching movements in the presence of a visual distortion. Results show that a startle stimulus (1) decreased performance of the recently learned task and (2) reduced after-effect magnitude. Since the recall of learned control was reduced, but not eliminated during startle trials, we suggest that multiple neural centers (cortical and subcortical) are involved in such learning and adaptation. These findings have implications for motor training in areas such as piloting, teleoperation, sports, and rehabilitation.

  11. Development of a Countermeasure to Mitigate Postflight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Ruttley, T. M.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Evidence for the potential efficacy of an adaptive generalization gait training program can be obtained from numerous studies in the motor learning literature which have demonstrated that systematically varying the conditions of training enhances the ability of the performer to learn and retain a novel motor task. These variable practice training approaches have been used in applied contexts to improve motor skills required in a number of different sports. The central nervous system (CNS) can produce voluntary movement in an almost infinite number of ways. For example, locomotion can be achieved with many different combinations of joint angles, muscle activation patterns and forces. The CNS can exploit these degrees of freedom to enhance motor response adaptability during periods of adaptive flux like that encountered during a change in gravitational environment. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to normal. Rather the training regimen should facilitate the reorganization of available sensory and motor subsystems to achieve safe and effective locomotion as soon as possible after long duration space flight. Indeed, this approach has been proposed as a basic feature underlying effective neurological rehabilitation. We have previously confirmed that subjects participating in an adaptive generalization training program using a variety of visuomotor distortions and throwing as the dependent measure can learn to enhance their ability to adapt to a novel sensorimotor environment (Roller et al., 2001). Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. In other words, our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. A gait adaptability training program can be superimposed on nominal treadmill exercise activities thus ensuring that no additional crew time is required to perform this type of training regimen and that it can be implemented with current in-flight exercise systems available on the International Space Station.

  12. Robot Training With Vector Fields Based on Stroke Survivors' Individual Movement Statistics.

    PubMed

    Wright, Zachary A; Lazzaro, Emily; Thielbar, Kelly O; Patton, James L; Huang, Felix C

    2018-02-01

    The wide variation in upper extremity motor impairments among stroke survivors necessitates more intelligent methods of customized therapy. However, current strategies for characterizing individual motor impairments are limited by the use of traditional clinical assessments (e.g., Fugl-Meyer) and simple engineering metrics (e.g., goal-directed performance). Our overall approach is to statistically identify the range of volitional movement capabilities, and then apply a robot-applied force vector field intervention that encourages under-expressed movements. We investigated whether explorative training with such customized force fields would improve stroke survivors' (n = 11) movement patterns in comparison to a control group that trained without forces (n = 11). Force and control groups increased Fugl-Meyer UE scores (average of 1.0 and 1.1, respectively), which is not considered clinically meaningful. Interestingly, participants from both groups demonstrated dramatic increases in their range of velocity during exploration following only six days of training (average increase of 166.4% and 153.7% for the Force and Control group, respectively). While both groups showed evidence of improvement, we also found evidence that customized forces affected learning in a systematic way. When customized forces were active, we observed broader distributions of velocity that were not present in the controls. Second, we found that these changes led to specific changes in unassisted motion. In addition, while the shape of movement distributions changed significantly for both groups, detailed analysis of the velocity distributions revealed that customized forces promoted a greater proportion of favorable changes. Taken together, these results provide encouraging evidence that patient-specific force fields based on individuals' movement statistics can be used to create new movement patterns and shape them in a customized manner. To the best of our knowledge, this paper is the first to directly link engineering assessments of stroke survivors' exploration movement behaviors to the design of customized robot therapy.

  13. Validation and learning in the Procedicus KSA virtual reality surgical simulator.

    PubMed

    Ström, P; Kjellin, A; Hedman, L; Johnson, E; Wredmark, T; Felländer-Tsai, L

    2003-02-01

    Advanced simulator training within medicine is a rapidly growing field. Virtual reality simulators are being introduced as cost-saving educational tools, which also lead to increased patient safety. Fifteen medical students were included in the study. For 10 medical students performance was monitored, before and after 1 h of training, in two endoscopic simulators (the Procedicus KSA with haptic feedback and anatomical graphics and the established MIST simulator without this haptic feedback and graphics). Five medical students performed 50 tests in the Procedicus KSA in order to analyze learning curves. One of these five medical students performed multiple training sessions during 2 weeks and performed more than 300 tests. There was a significant improvement after 1 h of training regarding time, movement economy, and total score. The results in the two simulators were highly correlated. Our results show that the use of surgical simulators as a pedagogical tool in medical student training is encouraging. It shows rapid learning curves and our suggestion is to introduce endoscopic simulator training in undergraduate medical education during the course in surgery when motivation is high and before the development of "negative stereotypes" and incorrect practices.

  14. Keeping an Eye on Noisy Movements: On Different Approaches to Perceptual-Motor Skill Research and Training.

    PubMed

    Dicks, Matt; Button, Chris; Davids, Keith; Chow, Jia Yi; van der Kamp, John

    2017-04-01

    Contemporary theorizing on the complementary nature of perception and action in expert performance has led to different emphases in the study of movement coordination and gaze behavior. On the one hand, coordination research has examined the role of variability in movement control, evidencing that variability facilitates individualized adaptations during both learning and performance. On the other hand, and at odds with this principle, the majority of gaze behavior studies have tended to average data over participants and trials, proposing the importance of universal 'optimal' gaze patterns in a given task, for all performers, irrespective of stage of learning. In this article, we discuss new lines of inquiry with the aim of reconciling these two distinct approaches. We consider the role of inter- and intra-individual variability in gaze behaviors and suggest directions for future research.

  15. Communication Education and International Audiences: Reflections on Instructional Challenges and Pedagogical Strategy

    ERIC Educational Resources Information Center

    Campbell, Heather; Strawser, Michael G.; George, Stephen

    2016-01-01

    As the movement toward international education continues, institutions must be proficient when reaching and teaching international students. Instructors should engage unique learning styles, address individual student needs, and take part in additional training to effectively teach international student learners. These instructional imperatives…

  16. Timing-dependent modulation of the posterior parietal cortex–primary motor cortex pathway by sensorimotor training

    PubMed Central

    Jin, Seung-Hyun; Joutsen, Atte; Poston, Brach; Aizen, Joshua; Ellenstein, Aviva; Hallett, Mark

    2012-01-01

    Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC–M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC–M1 connectivity before and after training, whereas electroencephalography (EEG) was used to assess PPC–M1 connectivity during training. Facilitation from PPC to M1 was quantified using paired-pulse TMS at conditioning-test intervals of 2, 4, 6, and 8 ms by measuring motor-evoked potentials (MEPs). TMS was applied at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal–motor interactions are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC–M1 connectivity returns to baseline. PMID:22442568

  17. Human motor transfer is determined by the scaling of size and accuracy of movement.

    PubMed

    Kwon, Oh-Sang; Zelaznik, Howard N; Chiu, George; Pizlo, Zygmunt

    2011-01-01

    A transfer of training design was used to examine the role of the Index of Difficulty (ID) on transfer of learning in a sequential Fitts's law task. Specifically, the role of the ratio between the accuracy and size of movement (ID) in transfer was examined. Transfer of skilled movement is better when both the size and accuracy of movement are changed by the same factor (ID is constant) than when only size or accuracy is changed. The authors infer that the size-accuracy ratio is capturing the control strategies employed during practice and thus promotes efficient transfer. Furthermore, efficient transfer is not dependent on maintaining relative timing invariance and thus the authors provide further evidence that relative timing is not an essential feature of movement control.

  18. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.

    PubMed

    Vasan, Gautham; Pilarski, Patrick M

    2017-07-01

    Prosthetic arms should restore and extend the capabilities of someone with an amputation. They should move naturally and be able to perform elegant, coordinated movements that approximate those of a biological arm. Despite these objectives, the control of modern-day prostheses is often nonintuitive and taxing. Existing devices and control approaches do not yet give users the ability to effect highly synergistic movements during their daily-life control of a prosthetic device. As a step towards improving the control of prosthetic arms and hands, we introduce an intuitive approach to training a prosthetic control system that helps a user achieve hard-to-engineer control behaviours. Specifically, we present an actor-critic reinforcement learning method that for the first time promises to allow someone with an amputation to use their non-amputated arm to teach their prosthetic arm how to move through a wide range of coordinated motions and grasp patterns. We evaluate our method during the myoelectric control of a multi-joint robot arm by non-amputee users, and demonstrate that by using our approach a user can train their arm to perform simultaneous gestures and movements in all three degrees of freedom in the robot's hand and wrist based only on information sampled from the robot and the user's above-elbow myoelectric signals. Our results indicate that this learning-from-demonstration paradigm may be well suited to use by both patients and clinicians with minimal technical knowledge, as it allows a user to personalize the control of his or her prosthesis without having to know the underlying mechanics of the prosthetic limb. These preliminary results also suggest that our approach may extend in a straightforward way to next-generation prostheses with precise finger and wrist control, such that these devices may someday allow users to perform fluid and intuitive movements like playing the piano, catching a ball, and comfortably shaking hands.

  19. SU-E-J-191: Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, J; Cao, R; Pei, X

    Purpose: Real-time motion tracking is a critical issue in image guided radiotherapy due to the time latency caused by image processing and system response. It is of great necessity to fast and accurately predict the future position of the respiratory motion and the tumor location. Methods: The prediction of respiratory position was done based on the positioning and tracking module in ARTS-IGRT system which was developed by FDS Team (www.fds.org.cn). An approach involving with the extreme learning machine (ELM) was adopted to predict the future respiratory position as well as the tumor’s location by training the past trajectories. For themore » training process, a feed-forward neural network with one single hidden layer was used for the learning. First, the number of hidden nodes was figured out for the single layered feed forward network (SLFN). Then the input weights and hidden layer biases of the SLFN were randomly assigned to calculate the hidden neuron output matrix. Finally, the predicted movement were obtained by applying the output weights and compared with the actual movement. Breathing movement acquired from the external infrared markers was used to test the prediction accuracy. And the implanted marker movement for the prostate cancer was used to test the implementation of the tumor motion prediction. Results: The accuracy of the predicted motion and the actual motion was tested. Five volunteers with different breathing patterns were tested. The average prediction time was 0.281s. And the standard deviation of prediction accuracy was 0.002 for the respiratory motion and 0.001 for the tumor motion. Conclusion: The extreme learning machine method can provide an accurate and fast prediction of the respiratory motion and the tumor location and therefore can meet the requirements of real-time tumor-tracking in image guided radiotherapy.« less

  20. The relevance of Newton's laws and selected principles of physics to dance techniques: Theory and application

    NASA Astrophysics Data System (ADS)

    Lei, Li

    1999-07-01

    In this study the researcher develops and presents a new model, founded on the laws of physics, for analyzing dance technique. Based on a pilot study of four advanced dance techniques, she creates a new model for diagnosing, analyzing and describing basic, intermediate and advanced dance techniques. The name for this model is ``PED,'' which stands for Physics of Expressive Dance. The research design consists of five phases: (1) Conduct a pilot study to analyze several advanced dance techniques chosen from Chinese dance, modem dance, and ballet; (2) Based on learning obtained from the pilot study, create the PED Model for analyzing dance technique; (3) Apply this model to eight categories of dance technique; (4) Select two advanced dance techniques from each category and analyze these sample techniques to demonstrate how the model works; (5) Develop an evaluation framework and use it to evaluate the effectiveness of the model, taking into account both scientific and artistic aspects of dance training. In this study the researcher presents new solutions to three problems highly relevant to dance education: (1) Dancers attempting to learn difficult movements often fail because they are unaware of physics laws; (2) Even those who do master difficult movements can suffer injury due to incorrect training methods; (3) Even the best dancers can waste time learning by trial and error, without scientific instruction. In addition, the researcher discusses how the application of the PED model can benefit dancers, allowing them to avoid inefficient and ineffective movements and freeing them to focus on the artistic expression of dance performance. This study is unique, presenting the first comprehensive system for analyzing dance techniques in terms of physics laws. The results of this study are useful, allowing a new level of awareness about dance techniques that dance professionals can utilize for more effective and efficient teaching and learning. The approach utilized in this study is universal, and can be applied to any dance movement and to any dance style.

  1. The globus pallidus pars interna in goal-oriented and routine behaviors: Resolving a long-standing paradox.

    PubMed

    Piron, Camille; Kase, Daisuke; Topalidou, Meropi; Goillandeau, Michel; Orignac, Hugues; N'Guyen, Tho-Haï; Rougier, Nicolas; Boraud, Thomas

    2016-08-01

    There is an apparent contradiction between experimental data showing that the basal ganglia are involved in goal-oriented and routine behaviors and clinical observations. Lesion or disruption by deep brain stimulation of the globus pallidus interna has been used for various therapeutic purposes ranging from the improvement of dystonia to the treatment of Tourette's syndrome. None of these approaches has reported any severe impairment in goal-oriented or automatic movement. To solve this conundrum, we trained 2 monkeys to perform a variant of a 2-armed bandit-task (with different reward contingencies). In the latter we alternated blocks of trials with choices between familiar rewarded targets that elicit routine behavior and blocks with novel pairs of targets that require an intentional learning process. Bilateral inactivation of the globus pallidus interna, by injection of muscimol, prevents animals from learning new contingencies while performance remains intact, although slower for the familiar stimuli. We replicate in silico these data by adding lateral competition and Hebbian learning in the cortical layer of the theoretical model of the cortex-basal ganglia loop that provided the framework of our experimental approach. The basal ganglia play a critical role in the deliberative process that underlies learning but are not necessary for the expression of routine movements. Our approach predicts that after pallidotomy or during stimulation, patients should have difficulty with complex decision-making processes or learning new goal-oriented behaviors. © 2016 Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  2. Spatial and reversal learning in the Morris water maze are largely resistant to six hours of REM sleep deprivation following training

    PubMed Central

    Walsh, Christine M.; Booth, Victoria; Poe, Gina R.

    2011-01-01

    This first test of the role of REM (rapid eye movement) sleep in reversal spatial learning is also the first attempt to replicate a much cited pair of papers reporting that REM sleep deprivation impairs the consolidation of initial spatial learning in the Morris water maze. We hypothesized that REM sleep deprivation following training would impair both hippocampus-dependent spatial learning and learning a new target location within a familiar environment: reversal learning. A 6-d protocol was divided into the initial spatial learning phase (3.5 d) immediately followed by the reversal phase (2.5 d). During the 6 h following four or 12 training trials/day of initial or reversal learning phases, REM sleep was eliminated and non-REM sleep left intact using the multiple inverted flowerpot method. Contrary to our hypotheses, REM sleep deprivation during four or 12 trials/day of initial spatial or reversal learning did not affect training performance. However, some probe trial measures indicated REM sleep-deprivation–associated impairment in initial spatial learning with four trials/day and enhancement of subsequent reversal learning. In naive animals, REM sleep deprivation during normal initial spatial learning was followed by a lack of preference for the subsequent reversal platform location during the probe. Our findings contradict reports that REM sleep is essential for spatial learning in the Morris water maze and newly reveal that short periods of REM sleep deprivation do not impair concurrent reversal learning. Effects on subsequent reversal learning are consistent with the idea that REM sleep serves the consolidation of incompletely learned items. PMID:21677190

  3. Randomized Controlled Study of a Remote Flipped Classroom Neuro-otology Curriculum.

    PubMed

    Carrick, Frederick Robert; Abdulrahman, Mahera; Hankir, Ahmed; Zayaruzny, Maksim; Najem, Kinda; Lungchukiet, Palita; Edwards, Roger A

    2017-01-01

    Medical Education can be delivered in the traditional classroom or via novel technology including an online classroom. To test the hypothesis that learning in an online classroom would result in similar outcomes as learning in the traditional classroom when using a flipped classroom pedagogy. Randomized controlled trial. A total of 274 subjects enrolled in a Neuro-otology training program for non-Neuro-otologists of 25 h held over a 3-day period. Subjects were randomized into a "control" group attending a traditional classroom and a "trial" group of equal numbers participating in an online synchronous Internet streaming classroom using the Adobe Connect e-learning platform. Subjects were randomized into a "control" group attending a traditional classroom and a "treatment" group of equal numbers participating in an online synchronous Internet streaming classroom. Pre- and post-multiple choice examinations of VOR, Movement, Head Turns, Head Tremor, Neurodegeneration, Inferior Olivary Complex, Collateral Projections, Eye Movement Training, Visual Saccades, Head Saccades, Visual Impairment, Walking Speed, Neuroprotection, Autophagy, Hyperkinetic Movement, Eye and Head Stability, Oscilllatory Head Movements, Gaze Stability, Leaky Neural Integrator, Cervical Dystonia, INC and Head Tilts, Visual Pursuits, Optokinetic Stimulation, and Vestibular Rehabilitation. All candidates took a pretest examination of the subject material. The 2-9 h and 1-8 h sessions over three consecutive days were given live in the classroom and synchronously in the online classroom using the Adobe Connect e-learning platform. Subjects randomized to the online classroom attended the lectures in a location of their choice and viewed the sessions live on the Internet. A posttest examination was given to all candidates after completion of the course. Two sample unpaired t tests with equal variances were calculated for all pretests and posttests for all groups including gender differences. All 274 subjects demonstrated statistically significant learning by comparison of their pre- and posttest scores. There were no statistically significant differences in the test scores between the two groups of 137 subjects each (0.8%, 95% CI 85.45917-86.67952; P  = 0.9195). A total of 101 males in the traditional classroom arm had statistically significant lower scores than 72 females (0.8%, 95% CI 84.65716-86.53096; P  = 0.0377) but not in the online arm (0.8%, 95% CI 85.46172-87.23135; P  = 0.2176) with a moderate effect size (Cohen's d  = -0.407). The use of a synchronous online classroom in neuro-otology clinical training has demonstrated similar outcomes to the traditional classroom. The online classroom is a low cost and effective complement to medical specialty training in Neuro-Otology. The significant difference in outcomes between males and females who attended the traditional classroom suggests that women may do better than males in this learning environment, although the effect size is moderate. Clinicaltrials.gov, identifier NCT03079349.

  4. Skill-memory consolidation in the striatum

    PubMed Central

    Willuhn, Ingo; Steiner, Heinz

    2008-01-01

    The sensorimotor striatum is important for procedural learning, including skill learning. Our previous findings indicate that this part of the striatum mediates the acquisition of a motor skill in a running-wheel task and that this skill learning is dependent on striatal D1 dopamine receptors. Here, we investigated whether the sensorimotor striatum is also involved in the consolidation of this skill memory and whether this consolidation is modified by the indirect dopamine receptor agonist cocaine. Rats were trained on a running wheel for two days (40 min/day) to learn a new motor skill, that is, the ability to control the movement of the wheel. Before each training session, the animals received an injection of vehicle or cocaine (25 mg/kg; i.p.). Immediately following the training session, an intrastriatal infusion of 2% lidocaine (1 μl) or a sham infusion were administered. Wheel-skill performance was tested before and repeatedly after the training. Our results show that post-trial intrastriatal infusion of lidocaine disrupted late-stage long-term skill memory (post-training days 6-26), but spared early long-term memory (1 day after the training). Skill consolidation was more susceptible to such disruption in animals that practiced less during the training. Cocaine given pre-trial prevented this post-trial disruption of skill consolidation. These findings indicate that the sensorimotor striatum is critical for consolidation of late but not early long-term skill memory. Furthermore, cocaine appeared to stabilize motor memory formation by protecting consolidation processes after the training. PMID:18687364

  5. Sonification and haptic feedback in addition to visual feedback enhances complex motor task learning.

    PubMed

    Sigrist, Roland; Rauter, Georg; Marchal-Crespo, Laura; Riener, Robert; Wolf, Peter

    2015-03-01

    Concurrent augmented feedback has been shown to be less effective for learning simple motor tasks than for complex tasks. However, as mostly artificial tasks have been investigated, transfer of results to tasks in sports and rehabilitation remains unknown. Therefore, in this study, the effect of different concurrent feedback was evaluated in trunk-arm rowing. It was then investigated whether multimodal audiovisual and visuohaptic feedback are more effective for learning than visual feedback only. Naïve subjects (N = 24) trained in three groups on a highly realistic virtual reality-based rowing simulator. In the visual feedback group, the subject's oar was superimposed to the target oar, which continuously became more transparent when the deviation between the oars decreased. Moreover, a trace of the subject's trajectory emerged if deviations exceeded a threshold. The audiovisual feedback group trained with oar movement sonification in addition to visual feedback to facilitate learning of the velocity profile. In the visuohaptic group, the oar movement was inhibited by path deviation-dependent braking forces to enhance learning of spatial aspects. All groups significantly decreased the spatial error (tendency in visual group) and velocity error from baseline to the retention tests. Audiovisual feedback fostered learning of the velocity profile significantly more than visuohaptic feedback. The study revealed that well-designed concurrent feedback fosters complex task learning, especially if the advantages of different modalities are exploited. Further studies should analyze the impact of within-feedback design parameters and the transferability of the results to other tasks in sports and rehabilitation.

  6. Sunspot drawings handwritten character recognition method based on deep learning

    NASA Astrophysics Data System (ADS)

    Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li

    2016-05-01

    High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.

  7. Facial Expression Training Optimises Viewing Strategy in Children and Adults

    PubMed Central

    Pollux, Petra M. J.; Hall, Sophie; Guo, Kun

    2014-01-01

    This study investigated whether training-related improvements in facial expression categorization are facilitated by spontaneous changes in gaze behaviour in adults and nine-year old children. Four sessions of a self-paced, free-viewing training task required participants to categorize happy, sad and fear expressions with varying intensities. No instructions about eye movements were given. Eye-movements were recorded in the first and fourth training session. New faces were introduced in session four to establish transfer-effects of learning. Adults focused most on the eyes in all sessions and increased expression categorization accuracy after training coincided with a strengthening of this eye-bias in gaze allocation. In children, training-related behavioural improvements coincided with an overall shift in gaze-focus towards the eyes (resulting in more adult-like gaze-distributions) and towards the mouth for happy faces in the second fixation. Gaze-distributions were not influenced by the expression intensity or by the introduction of new faces. It was proposed that training enhanced the use of a uniform, predominantly eyes-biased, gaze strategy in children in order to optimise extraction of relevant cues for discrimination between subtle facial expressions. PMID:25144680

  8. Effecting Change in Attitudes and Behavior of Teachers: An Analysis.

    ERIC Educational Resources Information Center

    Marshall, Bernice Solomon

    The author presents a model for inservice teacher training entitled the Process Oriented In-Service Experience (POISE) and attempts to identify changes occurring in the process movement and dynamics of interaction as reflected in attitudes and behaviors of teachers participating in this modified, small-group, process learning experience under…

  9. Relative cortico-subcortical shift in brain activity but preserved training-induced neural modulation in older adults during bimanual motor learning.

    PubMed

    Santos Monteiro, Thiago; Beets, Iseult A M; Boisgontier, Matthieu P; Gooijers, Jolien; Pauwels, Lisa; Chalavi, Sima; King, Brad; Albouy, Geneviève; Swinnen, Stephan P

    2017-10-01

    To study age-related differences in neural activation during motor learning, functional magnetic resonance imaging scans were acquired from 25 young (mean 21.5-year old) and 18 older adults (mean 68.6-year old) while performing a bimanual coordination task before (pretest) and after (posttest) a 2-week training intervention on the task. We studied whether task-related brain activity and training-induced brain activation changes differed between age groups, particularly with respect to the hyperactivation typically observed in older adults. Findings revealed that older adults showed lower performance levels than younger adults but similar learning capability. At the cerebral level, the task-related hyperactivation in parietofrontal areas and underactivation in subcortical areas observed in older adults were not differentially modulated by the training intervention. However, brain activity related to task planning and execution decreased from pretest to posttest in temporo-parieto-frontal areas and subcortical areas in both age groups, suggesting similar processes of enhanced activation efficiency with advanced skill level. Furthermore, older adults who displayed higher activity in prefrontal regions at pretest demonstrated larger training-induced performance gains. In conclusion, in spite of prominent age-related brain activation differences during movement planning and execution, the mechanisms of learning-related reduction of brain activation appear to be similar in both groups. Importantly, cerebral activity during early learning can differentially predict the amplitude of the training-induced performance benefit between young and older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effects of reflex-based self-defence training on police performance in simulated high-pressure arrest situations.

    PubMed

    Renden, Peter G; Savelsbergh, Geert J P; Oudejans, Raôul R D

    2017-05-01

    We investigated the effects of reflex-based self-defence training on police performance in simulated high-pressure arrest situations. Police officers received this training as well as a regular police arrest and self-defence skills training (control training) in a crossover design. Officers' performance was tested on several variables in six reality-based scenarios before and after each training intervention. Results showed improved performance after the reflex-based training, while there was no such effect of the regular police training. Improved performance could be attributed to better communication, situational awareness (scanning area, alertness), assertiveness, resolution, proportionality, control and converting primary responses into tactical movements. As officers trained complete violent situations (and not just physical skills), they learned to use their actions before physical contact for de-escalation but also for anticipation on possible attacks. Furthermore, they learned to respond against attacks with skills based on their primary reflexes. The results of this study seem to suggest that reflex-based self-defence training better prepares officers for performing in high-pressure arrest situations than the current form of police arrest and self-defence skills training. Practitioner Summary: Police officers' performance in high-pressure arrest situations improved after a reflex-based self-defence training, while there was no such effect of a regular police training. As officers learned to anticipate on possible attacks and to respond with skills based on their primary reflexes, they were better able to perform effectively.

  11. Effects of physical guidance on short-term learning of walking on a narrow beam.

    PubMed

    Domingo, Antoinette; Ferris, Daniel P

    2009-11-01

    Physical guidance is often used in rehabilitation when teaching patients to re-learn movements. However, the effects of guidance on motor learning of complex skills, such as walking balance, are not clear. We tested four groups of healthy subjects that practiced walking on a narrow (1.27 cm) or wide (2.5 cm) treadmill-mounted balance beam, with or without physical guidance. Assistance was given by springs attached to a hip belt that applied restoring forces towards beam center. Subjects were evaluated while walking unassisted before and after training by calculating the number of times subjects stepped off of the beam per minute of successful walking on the beam (Failures per Minute). Subjects in Unassisted groups had greater performance improvements in walking balance from pre to post compared to subjects in Assisted groups. During training, Unassisted groups had more Failures per Minute than Assisted groups. Performance improvements were smaller in Narrow Beam groups than in Wide Beam groups. The Unassisted-Wide and Assisted-Narrow groups had similar Failures per Minute during training, but the Unassisted-Wide group had much greater performance gains after training. These results suggest that physical assistance can hinder motor learning of walking balance, assistance appears less detrimental for more difficult tasks, and task-specific dynamics are important to learning independent of error experience.

  12. Functional Connectivity between Face-Movement and Speech-Intelligibility Areas during Auditory-Only Speech Perception

    PubMed Central

    Schall, Sonja; von Kriegstein, Katharina

    2014-01-01

    It has been proposed that internal simulation of the talking face of visually-known speakers facilitates auditory speech recognition. One prediction of this view is that brain areas involved in auditory-only speech comprehension interact with visual face-movement sensitive areas, even under auditory-only listening conditions. Here, we test this hypothesis using connectivity analyses of functional magnetic resonance imaging (fMRI) data. Participants (17 normal participants, 17 developmental prosopagnosics) first learned six speakers via brief voice-face or voice-occupation training (<2 min/speaker). This was followed by an auditory-only speech recognition task and a control task (voice recognition) involving the learned speakers’ voices in the MRI scanner. As hypothesized, we found that, during speech recognition, familiarity with the speaker’s face increased the functional connectivity between the face-movement sensitive posterior superior temporal sulcus (STS) and an anterior STS region that supports auditory speech intelligibility. There was no difference between normal participants and prosopagnosics. This was expected because previous findings have shown that both groups use the face-movement sensitive STS to optimize auditory-only speech comprehension. Overall, the present findings indicate that learned visual information is integrated into the analysis of auditory-only speech and that this integration results from the interaction of task-relevant face-movement and auditory speech-sensitive areas. PMID:24466026

  13. Introduction of a method for quantitative evaluation of spontaneous motor activity development with age in infants.

    PubMed

    Disselhorst-Klug, Catherine; Heinze, Franziska; Breitbach-Faller, Nico; Schmitz-Rode, Thomas; Rau, Günter

    2012-04-01

    Coordination between perception and action is required to interact with the environment successfully. This is already trained by very young infants who perform spontaneous movements to learn how their body interacts with the environment. The strategies used by the infants for this purpose change with age. Therefore, very early progresses in action control made by the infants can be investigated by monitoring the development of spontaneous motor activity. In this paper, an objective method is introduced, which allows the quantitative evaluation of the development of spontaneous motor activity in newborns. The introduced methodology is based on the acquisition of spontaneous movement trajectories of the feet by 3D movement analysis and subsequent calculation of specific movement parameters from them. With these movement-based parameters, it was possible to provide an objective description of age-dependent developmental steps in healthy newborns younger than 6 months. Furthermore, it has been shown that pathologies like infantile cerebral palsy influence development of motor activity significantly. Since the introduced methodology is objective and quantitative, it is suitable to monitor how newborns train their cognitive processes, which will enable them to cope with their environment by motor interaction.

  14. Dynamic Sensorimotor Planning during Long-Term Sequence Learning: The Role of Variability, Response Chunking and Planning Errors

    PubMed Central

    Verstynen, Timothy; Phillips, Jeff; Braun, Emily; Workman, Brett; Schunn, Christian; Schneider, Walter

    2012-01-01

    Many everyday skills are learned by binding otherwise independent actions into a unified sequence of responses across days or weeks of practice. Here we looked at how the dynamics of action planning and response binding change across such long timescales. Subjects (N = 23) were trained on a bimanual version of the serial reaction time task (32-item sequence) for two weeks (10 days total). Response times and accuracy both showed improvement with time, but appeared to be learned at different rates. Changes in response speed across training were associated with dynamic changes in response time variability, with faster learners expanding their variability during the early training days and then contracting response variability late in training. Using a novel measure of response chunking, we found that individual responses became temporally correlated across trials and asymptoted to set sizes of approximately 7 bound responses at the end of the first week of training. Finally, we used a state-space model of the response planning process to look at how predictive (i.e., response anticipation) and error-corrective (i.e., post-error slowing) processes correlated with learning rates for speed, accuracy and chunking. This analysis yielded non-monotonic association patterns between the state-space model parameters and learning rates, suggesting that different parts of the response planning process are relevant at different stages of long-term learning. These findings highlight the dynamic modulation of response speed, variability, accuracy and chunking as multiple movements become bound together into a larger set of responses during sequence learning. PMID:23056630

  15. Learning gestures for customizable human-computer interaction in the operating room.

    PubMed

    Schwarz, Loren Arthur; Bigdelou, Ali; Navab, Nassir

    2011-01-01

    Interaction with computer-based medical devices in the operating room is often challenging for surgeons due to sterility requirements and the complexity of interventional procedures. Typical solutions, such as delegating the interaction task to an assistant, can be inefficient. We propose a method for gesture-based interaction in the operating room that surgeons can customize to personal requirements and interventional workflow. Given training examples for each desired gesture, our system learns low-dimensional manifold models that enable recognizing gestures and tracking particular poses for fine-grained control. By capturing the surgeon's movements with a few wireless body-worn inertial sensors, we avoid issues of camera-based systems, such as sensitivity to illumination and occlusions. Using a component-based framework implementation, our method can easily be connected to different medical devices. Our experiments show that the approach is able to robustly recognize learned gestures and to distinguish these from other movements.

  16. Short Term Motor-Skill Acquisition Improves with Size of Self-Controlled Virtual Hands

    PubMed Central

    Ossmy, Ori; Mukamel, Roy

    2017-01-01

    Visual feedback in general, and from the body in particular, is known to influence the performance of motor skills in humans. However, it is unclear how the acquisition of motor skills depends on specific visual feedback parameters such as the size of performing effector. Here, 21 healthy subjects physically trained to perform sequences of finger movements with their right hand. Through the use of 3D Virtual Reality devices, visual feedback during training consisted of virtual hands presented on the screen, tracking subject’s hand movements in real time. Importantly, the setup allowed us to manipulate the size of the displayed virtual hands across experimental conditions. We found that performance gains increase with the size of virtual hands. In contrast, when subjects trained by mere observation (i.e., in the absence of physical movement), manipulating the size of the virtual hand did not significantly affect subsequent performance gains. These results demonstrate that when it comes to short-term motor skill learning, the size of visual feedback matters. Furthermore, these results suggest that highest performance gains in individual subjects are achieved when the size of the virtual hand matches their real hand size. These results may have implications for optimizing motor training schemes. PMID:28056023

  17. Motor Memory Is Encoded as a Gain-Field Combination of Intrinsic and Extrinsic Action Representations

    PubMed Central

    Brayanov, Jordan B.; Press, Daniel Z.; Smith, Maurice A.

    2013-01-01

    Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action. A first experiment showed that the generalization pattern reflected a memory that was intermediate between intrinsic and extrinsic representations. A second experiment showed that this intermediate representation could not arise from separate intrinsic and extrinsic learning. Instead, we find that the representation of learning is based on a gain-field combination of local representations in intrinsic and extrinsic coordinates. This gain-field representation generalizes between actions by effectively computing similarity based on the (Mahalanobis) distance across intrinsic and extrinsic coordinates and is in line with neural recordings showing mixed intrinsic-extrinsic representations in motor and parietal cortices. PMID:23100418

  18. The influence of writing practice on letter recognition in preschool children: a comparison between handwriting and typing.

    PubMed

    Longcamp, Marieke; Zerbato-Poudou, Marie-Thérèse; Velay, Jean-Luc

    2005-05-01

    A large body of data supports the view that movement plays a crucial role in letter representation and suggests that handwriting contributes to the visual recognition of letters. If so, changing the motor conditions while children are learning to write by using a method based on typing instead of handwriting should affect their subsequent letter recognition performances. In order to test this hypothesis, we trained two groups of 38 children (aged 3-5 years) to copy letters of the alphabet either by hand or by typing them. After three weeks of learning, we ran two recognition tests, one week apart, to compare the letter recognition performances of the two groups. The results showed that in the older children, the handwriting training gave rise to a better letter recognition than the typing training.

  19. A Concentration Training Approach for the Movement Professional

    ERIC Educational Resources Information Center

    Mack, Mick

    2009-01-01

    Recent studies have shown that the learner's focus of attention is an important factor that influences motor skill learning. Furthermore, the ability to concentrate has been deemed one of the most important keys to effective sport performance and is essential to performing one's best. Other experts have concluded that concentration is indeed a…

  20. FUNdamental Integrative Training (FIT) for Physical Education

    ERIC Educational Resources Information Center

    Bukowsky, Michael; Faigenbaum, Avery D.; Myer, Gregory D.

    2014-01-01

    There is a growing need for physical education teachers to integrate different types of fitness activities into their lessons in order to provide opportunities for all students to learn and practice a variety of movement skills that will enhance their physical fitness and support free-time physical activity. An increased focus on age-appropriate…

  1. Humanistic Approaches to Teaching and Learning: Focus on Adults.

    ERIC Educational Resources Information Center

    Feinberg, Jean Haskell

    During its infancy period, humanistic education was strongly influenced and nurtured by T-Group and Human Relations Training, along with the personal growth and encounter activities of the human potential movement. As it moved into childhood, humanistic education recognized the need for more practical methods of implementing its new ideas and…

  2. Do We Need a Community College Institute?

    ERIC Educational Resources Information Center

    Singer, Derek S.

    1968-01-01

    Pre- and in-service training of junior college administrators and teachers should be planned, directed, staffed, and administered by the junior college movement. Elements essential to such an institutional school are (1) the unique role of the junior college, (2) learning theory and teaching practices, (3) curriculum goals, (4) student affect, (5)…

  3. [Virtual reality simulation training in gynecology: review and perspectives].

    PubMed

    Ricard-Gauthier, Dominique; Popescu, Silvia; Benmohamed, Naida; Petignat, Patrick; Dubuisson, Jean

    2016-10-26

    Laparoscopic simulation has rapidly become an important tool for learning and acquiring technical skills in surgery. It is based on two different complementary pedagogic tools : the box model trainer and the virtual reality simulator. The virtual reality simulator has shown its efficiency by improving surgical skills, decreasing operating time, improving economy of movements and improving self-confidence. The main objective of this tool is the opportunity to easily organize a regular, structured and uniformed training program enabling an automated individualized feedback.

  4. Virtual environments for motor rehabilitation: review.

    PubMed

    Holden, Maureen K

    2005-06-01

    In this paper, the current "state of the art" for virtual reality (VR) applications in the field of motor rehabilitation is reviewed. The paper begins with a brief overview of available equipment options. Next, a discussion of the scientific rationale for use of VR in motor rehabilitation is provided. Finally, the major portion of the paper describes the various VR systems that have been developed for use with patients, and the results of clinical studies reported to date in the literature. Areas covered include stroke rehabilitation (upper and lower extremity training, spatial and perceptual-motor training), acquired brain injury, Parkinson's disease, orthopedic rehabilitation, balance training, wheelchair mobility and functional activities of daily living training, and the newly developing field of telerehabilitation. Four major findings emerge from these studies: (1) people with disabilities appear capable of motor learning within virtual environments; (2) movements learned by people with disabilities in VR transfer to real world equivalent motor tasks in most cases, and in some cases even generalize to other untrained tasks; (3) in the few studies (n = 5) that have compared motor learning in real versus virtual environments, some advantage for VR training has been found in all cases; and (4) no occurrences of cybersickness in impaired populations have been reported to date in experiments where VR has been used to train motor abilities.

  5. Eye movement training is most effective when it involves a task-relevant sensorimotor decision.

    PubMed

    Fooken, Jolande; Lalonde, Kathryn M; Mann, Gurkiran K; Spering, Miriam

    2018-04-01

    Eye and hand movements are closely linked when performing everyday actions. We conducted a perceptual-motor training study to investigate mutually beneficial effects of eye and hand movements, asking whether training in one modality benefits performance in the other. Observers had to predict the future trajectory of a briefly presented moving object, and intercept it at its assumed location as accurately as possible with their finger. Eye and hand movements were recorded simultaneously. Different training protocols either included eye movements or a combination of eye and hand movements with or without external performance feedback. Eye movement training did not transfer across modalities: Irrespective of feedback, finger interception accuracy and precision improved after training that involved the hand, but not after isolated eye movement training. Conversely, eye movements benefited from hand movement training or when external performance feedback was given, thus improving only when an active interceptive task component was involved. These findings indicate only limited transfer across modalities. However, they reveal the importance of creating a training task with an active sensorimotor decision to improve the accuracy and precision of eye and hand movements.

  6. Training Performance of Laparoscopic Surgery in Two- and Three-Dimensional Displays.

    PubMed

    Lin, Chiuhsiang Joe; Cheng, Chih-Feng; Chen, Hung-Jen; Wu, Kuan-Ying

    2017-04-01

    This research investigated differences in the effects of a state-of-art stereoscopic 3-dimensional (3D) display and a traditional 2-dimensional (2D) display in simulated laparoscopic surgery over a longer duration than in previous publications and studied the learning effects of the 2 display systems on novices. A randomized experiment with 2 factors, image dimensions and image sequence, was conducted to investigate differences in the mean movement time, the mean error frequency, NASA-TLX cognitive workload, and visual fatigue in pegboard and circle-tracing tasks. The stereoscopic 3D display had advantages in mean movement time ( P < .001 and P = .002) and mean error frequency ( P = .010 and P = .008) in both the tasks. There were no significant differences in the objective visual fatigue ( P = .729 and P = .422) and in the NASA-TLX ( P = .605 and P = .937) cognitive workload between the 3D and the 2D displays on both the tasks. For the learning effect, participants who used the stereoscopic 3D display first had shorter mean movement time in the 2D display environment on both the pegboard ( P = .011) and the circle-tracing ( P = .017) tasks. The results of this research suggest that a stereoscopic system would not result in higher objective visual fatigue and cognitive workload than a 2D system, and it might reduce the performance time and increase the precision of surgical operations. In addition, learning efficiency of the stereoscopic system on the novices in this study demonstrated its value for training and education in laparoscopic surgery.

  7. Training to improve manual control in 7-8 and 10-12 year old children: Training eliminates performance differences between ages.

    PubMed

    Snapp-Childs, Winona; Fath, Aaron J; Watson, Carol A; Flatters, Ian; Mon-Williams, Mark; Bingham, Geoffrey P

    2015-10-01

    Many children have difficulty producing movements well enough to improve in perceptuo-motor learning. We have developed a training method that supports active movement generation to allow improvement in a 3D tracing task requiring good compliance control. We previously tested 7-8 year old children who exhibited poor performance and performance differences before training. After training, performance was significantly improved and performance differences were eliminated. According to the Dynamic Systems Theory of development, appropriate support can enable younger children to acquire the ability to perform like older children. In the present study, we compared 7-8 and 10-12 year old school children and predicted that younger children would show reduced performance that was nonetheless amenable to training. Indeed, the pre-training performance of the 7-8 year olds was worse than that of the 10-12 year olds, but post-training performance was equally good for both groups. This was similar to previous results found using this training method for children with DCD and age-matched typically developing children. We also found in a previous study of 7-8 year old school children that training in the 3D tracing task transferred to a 2D drawing task. We now found similar transfer for the 10-12 year olds. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The effects of error augmentation on learning to walk on a narrow balance beam.

    PubMed

    Domingo, Antoinette; Ferris, Daniel P

    2010-10-01

    Error augmentation during training has been proposed as a means to facilitate motor learning due to the human nervous system's reliance on performance errors to shape motor commands. We studied the effects of error augmentation on short-term learning of walking on a balance beam to determine whether it had beneficial effects on motor performance. Four groups of able-bodied subjects walked on a treadmill-mounted balance beam (2.5-cm wide) before and after 30 min of training. During training, two groups walked on the beam with a destabilization device that augmented error (Medium and High Destabilization groups). A third group walked on a narrower beam (1.27-cm) to augment error (Narrow). The fourth group practiced walking on the 2.5-cm balance beam (Wide). Subjects in the Wide group had significantly greater improvements after training than the error augmentation groups. The High Destabilization group had significantly less performance gains than the Narrow group in spite of similar failures per minute during training. In a follow-up experiment, a fifth group of subjects (Assisted) practiced with a device that greatly reduced catastrophic errors (i.e., stepping off the beam) but maintained similar pelvic movement variability. Performance gains were significantly greater in the Wide group than the Assisted group, indicating that catastrophic errors were important for short-term learning. We conclude that increasing errors during practice via destabilization and a narrower balance beam did not improve short-term learning of beam walking. In addition, the presence of qualitatively catastrophic errors seems to improve short-term learning of walking balance.

  9. Impact of movement training on upper limb motor strategies in persons with shoulder impingement syndrome

    PubMed Central

    Roy, Jean-Sébastien; Moffet, Hélène; McFadyen, Bradford J; Lirette, Richard

    2009-01-01

    Background Movement deficits, such as changes in the magnitude of scapulohumeral and scapulathoracic muscle activations or perturbations in the kinematics of the glenohumeral, sternoclavicular and scapulothoracic joints, have been observed in people with shoulder impingement syndrome. Movement training has been suggested as a mean to contribute to the improvement of the motor performance in persons with musculoskeletal impairments. However, the impact of movement training on the movement deficits of persons with shoulder impingement syndrome is still unknown. The aim of this study was to evaluate the short-term effects of supervised movement training with feedback on the motor strategies of persons with shoulder impingement syndrome. Methods Thirty-three subjects with shoulder impingement were recruited. They were involved in two visits, one day apart. During the first visit, supervised movement training with feedback was performed. The upper limb motor strategies were evaluated before, during, immediately after and 24 hours after movement training. They were characterized during reaching movements in the frontal plane by EMG activity of seven shoulder muscles and total excursion and final position of the wrist, elbow, shoulder, clavicle and trunk. Movement training consisted of reaching movements performed under the supervision of a physiotherapist who gave feedback aimed at restoring shoulder movements. One-way repeated measures ANOVAs were run to analyze the effect of movement training. Results During, immediately after and 24 hours after movement training with feedback, the EMG activity was significantly decreased compared to the baseline level. For the kinematics, total joint excursion of the trunk and final joint position of the trunk, shoulder and clavicle were significantly improved during and immediately after training compared to baseline. Twenty-four hours after supervised movement training, the kinematics of trunk, shoulder and clavicle were back to the baseline level. Conclusion Movement training with feedback brought changes in motor strategies and improved temporarily some aspects of the kinematics. However, one training session was not enough to bring permanent improvement in the kinematic patterns. These results demonstrate the potential of movement training in the rehabilitation of movement deficits associated with shoulder impingement syndrome. PMID:19445724

  10. Associative visual learning by tethered bees in a controlled visual environment.

    PubMed

    Buatois, Alexis; Pichot, Cécile; Schultheiss, Patrick; Sandoz, Jean-Christophe; Lazzari, Claudio R; Chittka, Lars; Avarguès-Weber, Aurore; Giurfa, Martin

    2017-10-10

    Free-flying honeybees exhibit remarkable cognitive capacities but the neural underpinnings of these capacities cannot be studied in flying insects. Conversely, immobilized bees are accessible to neurobiological investigation but display poor visual learning. To overcome this limitation, we aimed at establishing a controlled visual environment in which tethered bees walking on a spherical treadmill learn to discriminate visual stimuli video projected in front of them. Freely flying bees trained to walk into a miniature Y-maze displaying these stimuli in a dark environment learned the visual discrimination efficiently when one of them (CS+) was paired with sucrose and the other with quinine solution (CS-). Adapting this discrimination to the treadmill paradigm with a tethered, walking bee was successful as bees exhibited robust discrimination and preferred the CS+ to the CS- after training. As learning was better in the maze, movement freedom, active vision and behavioral context might be important for visual learning. The nature of the punishment associated with the CS- also affects learning as quinine and distilled water enhanced the proportion of learners. Thus, visual learning is amenable to a controlled environment in which tethered bees learn visual stimuli, a result that is important for future neurobiological studies in virtual reality.

  11. Effects of physical guidance on short-term learning of walking on a narrow beam

    PubMed Central

    Domingo, Antoinette; Ferris, Daniel P.

    2009-01-01

    Physical guidance is often used in rehabilitation when teaching patients to re-learn movements. However, the effects of guidance on motor learning of complex skills, such as walking balance, are not clear. We tested four groups of healthy subjects that practiced walking on a narrow (1.27 cm) or wide (2.5 cm) treadmill-mounted balance beam, with or without physical guidance. Assistance was given by springs attached to a hip belt that applied restoring forces towards beam center. Subjects were evaluated while walking unassisted before and after training by calculating the number of times subjects stepped off of the beam per minute of successful walking on the beam (Failures per Minute). Subjects in Unassisted groups had greater performance improvements in walking balance from pre to post compared to subjects in Assisted groups. During training, Unassisted groups had more Failures per Minute than Assisted groups. Performance improvements were smaller in Narrow Beam groups than in Wide Beam groups. The Unassisted-Wide and Assisted-Narrow groups had similar Failures per Minute during training, but the Unassisted-Wide group had much greater performance gains after training. These results suggest that physical assistance can hinder motor learning of walking balance, assistance appears less detrimental for more difficult tasks, and task-specific dynamics are important to learning independent of error experience. PMID:19674900

  12. Relearning of Writing Skills in Parkinson's Disease After Intensive Amplitude Training.

    PubMed

    Nackaerts, Evelien; Heremans, Elke; Vervoort, Griet; Smits-Engelsman, Bouwien C M; Swinnen, Stephan P; Vandenberghe, Wim; Bergmans, Bruno; Nieuwboer, Alice

    2016-08-01

    Micrographia occurs in approximately 60% of people with Parkinson's disease (PD). Although handwriting is an important task in daily life, it is not clear whether relearning and consolidation (ie the solid storage in motor memory) of this skill is possible in PD. The objective was to conduct for the first time a controlled study into the effects of intensive motor learning to improve micrographia in PD. In this placebo-controlled study, 38 right-handed people with PD were randomized into 2 groups, receiving 1 of 2 equally time-intensive training programs (30 min/day, 5 days/week for 6 weeks). The experimental group (n = 18) performed amplitude training focused at improving writing size. The placebo group (n = 20) received stretch and relaxation exercises. Participants' writing skills were assessed using a touch-sensitive writing tablet and a pen-and-paper test, pre- and posttraining, and after a 6-week retention period. The primary outcome was change in amplitude during several tests of consolidation: (1) transfer, using trained and untrained sequences performed with and without target zones; and (2) automatization, using single- and dual-task sequences. The group receiving amplitude training significantly improved in amplitude and variability of amplitude on the transfer and automatization task. Effect sizes varied between 7% and 17%, and these benefits were maintained after the 6-week retention period. Moreover, there was transfer to daily life writing. These results show automatization, transfer, and retention of increased writing size (diminished micrographia) after intensive amplitude training, indicating that consolidation of motor learning is possible in PD. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  13. Before your very eyes: the value and limitations of eye tracking in medical education.

    PubMed

    Kok, Ellen M; Jarodzka, Halszka

    2017-01-01

    Medicine is a highly visual discipline. Physicians from many specialties constantly use visual information in diagnosis and treatment. However, they are often unable to explain how they use this information. Consequently, it is unclear how to train medical students in this visual processing. Eye tracking is a research technique that may offer answers to these open questions, as it enables researchers to investigate such visual processes directly by measuring eye movements. This may help researchers understand the processes that support or hinder a particular learning outcome. In this article, we clarify the value and limitations of eye tracking for medical education researchers. For example, eye tracking can clarify how experience with medical images mediates diagnostic performance and how students engage with learning materials. Furthermore, eye tracking can also be used directly for training purposes by displaying eye movements of experts in medical images. Eye movements reflect cognitive processes, but cognitive processes cannot be directly inferred from eye-tracking data. In order to interpret eye-tracking data properly, theoretical models must always be the basis for designing experiments as well as for analysing and interpreting eye-tracking data. The interpretation of eye-tracking data is further supported by sound experimental design and methodological triangulation. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  14. Effects of Online Augmented Kinematic and Perceptual Feedback on Treatment of Speech Movements in Apraxia of Speech

    PubMed Central

    McNeil, M.R.; Katz, W.F.; Fossett, T.R.D.; Garst, D.M.; Szuminsky, N.J.; Carter, G.; Lim, K.Y.

    2010-01-01

    Apraxia of speech (AOS) is a motor speech disorder characterized by disturbed spatial and temporal parameters of movement. Research on motor learning suggests that augmented feedback may provide a beneficial effect for training movement. This study examined the effects of the presence and frequency of online augmented visual kinematic feedback (AVKF) and clinician-provided perceptual feedback on speech accuracy in 2 adults with acquired AOS. Within a single-subject multiple-baseline design, AVKF was provided using electromagnetic midsagittal articulography (EMA) in 2 feedback conditions (50 or 100%). Articulator placement was specified for speech motor targets (SMTs). Treated and baselined SMTs were in the initial or final position of single-syllable words, in varying consonant-vowel or vowel-consonant contexts. SMTs were selected based on each participant's pre-assessed erred productions. Productions were digitally recorded and online perceptual judgments of accuracy (including segment and intersegment distortions) were made. Inter- and intra-judge reliability for perceptual accuracy was high. Results measured by visual inspection and effect size revealed positive acquisition and generalization effects for both participants. Generalization occurred across vowel contexts and to untreated probes. Results of the frequency manipulation were confounded by presentation order. Maintenance of learned and generalized effects were demonstrated for 1 participant. These data provide support for the role of augmented feedback in treating speech movements that result in perceptually accurate speech production. Future investigations will explore the independent contributions of each feedback type (i.e. kinematic and perceptual) in producing efficient and effective training of SMTs in persons with AOS. PMID:20424468

  15. Making music in a group: synchronization and shared experience.

    PubMed

    Overy, Katie

    2012-04-01

    To consider the full impact of musical learning on the brain, it is important to study the nature of everyday, non-expert forms of musical behavior alongside expert instrumental training. Such informal forms of music making tend to include social interaction, synchronization, body movements, and positive shared experiences. Here, I propose that when designing music intervention programs for scientific purposes, such features may have advantages over instrumental training, depending on the specific research aims, contexts, and measures. With reference to a selection of classroom approaches to music education and to the shared affective motion experience (SAME) model of emotional responses to music, I conclude that group learning may be particularly valuable in music pedagogy. © 2012 New York Academy of Sciences.

  16. An evaluation of training effectiveness of an intelligent tutoring system

    NASA Technical Reports Server (NTRS)

    Johnson, Debra Steele; Pieper, Kalen F.; Culbert, Chris

    1992-01-01

    The study evaluated the training effectiveness of an intelligent tutoring system (ITS) for the Remote Manipulator System (RMS). The study examined how well individuals learn the training content and skills from the RMS ITS and to what extent the content and skills learned using the ITS transfer to RMS task performance in the SES, a high fidelity simulator. Three astronauts completed 8 2-hour ITS sessions addressing movement in three coordinate systems, grapple, ungrapple, berth, and unberth procedures, and singularities and reach limits. Their performance was also observed in an SES training session. Performance data were collected using multiple measures: ITS task performance, transfer performance on the SES, a conceptual knowledge test, an opinion survey completed by astronauts, and comments and observations from astronauts and trainers. Results indicated the RMS ITS to be moderately effective and provided evidence of the efficacy of ITS's, in general. Comments and suggestions are provided relating to how the ITS could be improved and to enable decision makers to judge the effectiveness of the RMS ITS.

  17. Teaching as an Act of Problem-Posing: A Collective Call to Action

    ERIC Educational Resources Information Center

    Cacicio, Sarah; Le, Uyen Uyen

    2014-01-01

    Without a doubt, the movement toward corporatized, standardized, and even sanitized education models in K-12 education impacts the way students at the higher education level view teaching and learning. New York City public school teachers have been trained to focus entirely on measurable outcomes. Writing is taught as a well-structured paragraph…

  18. Creating a Team Tutor Using GIFT

    ERIC Educational Resources Information Center

    Gilbert, Stephen B.; Slavina, Anna; Dorneich, Michael C.; Sinatra, Anne M.; Bonner, Desmond; Johnston, Joan; Holub, Joseph; MacAllister, Anastacia; Winer, Eliot

    2018-01-01

    With the movement in education towards collaborative learning, it is becoming more important that learners be able to work together in groups and teams. Intelligent tutoring systems (ITSs) have been used successfully to teach individuals, but so far only a few ITSs have been used for the purpose of training teams. This is due to the difficulty of…

  19. Development and implementation of a virtual reality laparoscopic colorectal training curriculum.

    PubMed

    Wynn, Greg; Lykoudis, Panagis; Berlingieri, Pasquale

    2017-12-12

    Contemporary surgical training can be compromised by fewer practical opportunities. Simulation can fill this gap to optimize skills' development and progress monitoring. A structured virtual reality (VR) laparoscopic sigmoid colectomy curriculum is constructed and its validity and outcomes assessed. Parameters and thresholds were defined by analysing the performance of six expert surgeons completing the relevant module on the LAP Mentor simulator. Fourteen surgical trainees followed the curriculum, performance being recorded and analysed. Evidence of validity was assessed. Time to complete procedure, number of movements of right and left instrument, and total path length of right and left instrument movements demonstrated evidence of validity and clear learning curves, with a median of 14 attempts needed to complete the curriculum. A structured curriculum is proposed for training in laparoscopic sigmoid colectomy in a VR environment based on objective metrics in addition to expert consensus. Validity has been demonstrated for some key metrics. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Motor Learning in Stroke: Trained Patients Are Not Equal to Untrained Patients With Less Impairment

    PubMed

    Hardwick, Robert M; Rajan, Vikram A; Bastian, Amy J; Krakauer, John W; Celnik, Pablo A

    2017-02-01

    Stroke rehabilitation assumes motor learning contributes to motor recovery, yet motor learning in stroke has received little systematic investigation. Here we aimed to illustrate that despite matching levels of performance on a task, a trained patient should not be considered equal to an untrained patient with less impairment. We examined motor learning in healthy control participants and groups of stroke survivors with mild-to-moderate or moderate-to-severe motor impairment. Participants performed a series of isometric contractions of the elbow flexors to navigate an on-screen cursor to different targets, and trained to perform this task over a 4-day period. The speed-accuracy trade-off function (SAF) was assessed for each group, controlling for differences in self-selected movement speeds between individuals. The initial SAF for each group was proportional to their impairment. All groups were able to improve their performance through skill acquisition. Interestingly, training led the moderate-to-severe group to match the untrained (baseline) performance of the mild-to-moderate group, while the trained mild-to-moderate group matched the untrained (baseline) performance of the controls. Critically, this did not make the two groups equivalent; they differed in their capacity to improve beyond this matched performance level. Specifically, the trained groups had reached a plateau, while the untrained groups had not. Despite matching levels of performance on a task, a trained patient is not equal to an untrained patient with less impairment. This has important implications for decisions both on the focus of rehabilitation efforts for chronic stroke, as well as for returning to work and other activities.

  1. Motor-skill learning in a novel running-wheel task is dependent on D1 dopamine receptors in the striatum

    PubMed Central

    Willuhn, Ingo; Steiner, Heinz

    2008-01-01

    Evidence indicates that dopamine receptors regulate processes of procedural learning in the sensorimotor striatum. Our previous studies revealed that the indirect dopamine receptor agonist cocaine alters motor-skill learning-associated gene regulation in the sensorimotor striatum. Cocaine-induced gene regulation in the striatum is principally mediated by D1 dopamine receptors. We investigated the effects of cocaine and striatal D1 receptor antagonism on motor-skill learning. Rats were trained on a running wheel (40–60 min, 2–5 days) to learn a new motor skill, that is, the ability to control the movement of the wheel. Immediately before each training session, the animals received an injection of vehicle or cocaine (25 mg/kg, i.p.), and/or the D1 receptor antagonist SCH-23390 (0, 3, 10 μg/kg, i.p., or 0, 0.3, 1 μg, intrastriatal via chronically implanted cannula). The animal’s ability to control/balance the moving wheel (wheel skill) was tested before and repeatedly after the training. Normal wheel-skill memory lasted for at least 4 weeks. Cocaine administered before the training tended to attenuate skill learning. Systemic administration of SCH-23390 alone also impaired skill learning. However, cocaine given in conjunction with the lower SCH-23390 dose (3 μg/kg) reversed the inhibition of skill learning produced by the D1 receptor antagonist, enabling intact skill performance during the whole post-training period. In contrast, when cocaine was administered with the higher SCH-23390 dose (10 μg/kg), skill performance was normalized 1–6 days after the training, but these rats lost their improved wheel skill by day 18 after the training. Similar effects were produced by SCH-23390 (0.3–1 μg) infused into the striatum. Our results indicate that cocaine interferes with normal motor-skill learning, which seems to be dependent on optimal D1 receptor signaling. Furthermore, our findings demonstrate that D1 receptors in the striatum are critical for consolidation of long-term skill memory. PMID:18343588

  2. Real-Time Subject-Independent Pattern Classification of Overt and Covert Movements from fNIRS Signals

    PubMed Central

    Rana, Mohit; Prasad, Vinod A.; Guan, Cuntai; Birbaumer, Niels; Sitaram, Ranganatha

    2016-01-01

    Recently, studies have reported the use of Near Infrared Spectroscopy (NIRS) for developing Brain–Computer Interface (BCI) by applying online pattern classification of brain states from subject-specific fNIRS signals. The purpose of the present study was to develop and test a real-time method for subject-specific and subject-independent classification of multi-channel fNIRS signals using support-vector machines (SVM), so as to determine its feasibility as an online neurofeedback system. Towards this goal, we used left versus right hand movement execution and movement imagery as study paradigms in a series of experiments. In the first two experiments, activations in the motor cortex during movement execution and movement imagery were used to develop subject-dependent models that obtained high classification accuracies thereby indicating the robustness of our classification method. In the third experiment, a generalized classifier-model was developed from the first two experimental data, which was then applied for subject-independent neurofeedback training. Application of this method in new participants showed mean classification accuracy of 63% for movement imagery tasks and 80% for movement execution tasks. These results, and their corresponding offline analysis reported in this study demonstrate that SVM based real-time subject-independent classification of fNIRS signals is feasible. This method has important applications in the field of hemodynamic BCIs, and neuro-rehabilitation where patients can be trained to learn spatio-temporal patterns of healthy brain activity. PMID:27467528

  3. Exercise-enhanced Neuroplasticity Targeting Motor and Cognitive Circuitry in Parkinson’s Disease

    PubMed Central

    Petzinger, G. M.; Fisher, B. E.; McEwen, S.; Beeler, J. A.; Walsh, J. P.; Jakowec, M. W.

    2013-01-01

    The purpose of this review is to highlight the potential role of exercise in promoting neuroplasticity and repair in Parkinson’s disease (PD). Exercise interventions in individuals with PD incorporate goal-based motor skill training in order to engage cognitive circuitry important in motor learning. Using this exercise approach, physical therapy facilitates learning through instruction and feedback (reinforcement), and encouragement to perform beyond self-perceived capability. Individuals with PD become more cognitively engaged with the practice and learning of movements and skills that were previously automatic and unconscious. Studies that have incorporated both goal-based training and aerobic exercise have supported the potential for improving both cognitive and automatic components of motor control. Utilizing animal models, basic research is beginning to reveal exercise-induced effects on neuroplasticity. Since neuroplasticity occurs at the level of circuits and synaptic connections, we examine the effects of exercise from this perspective. PMID:23769598

  4. Assisting Movement Training and Execution With Visual and Haptic Feedback.

    PubMed

    Ewerton, Marco; Rother, David; Weimar, Jakob; Kollegger, Gerrit; Wiemeyer, Josef; Peters, Jan; Maeda, Guilherme

    2018-01-01

    In the practice of motor skills in general, errors in the execution of movements may go unnoticed when a human instructor is not available. In this case, a computer system or robotic device able to detect movement errors and propose corrections would be of great help. This paper addresses the problem of how to detect such execution errors and how to provide feedback to the human to correct his/her motor skill using a general, principled methodology based on imitation learning. The core idea is to compare the observed skill with a probabilistic model learned from expert demonstrations. The intensity of the feedback is regulated by the likelihood of the model given the observed skill. Based on demonstrations, our system can, for example, detect errors in the writing of characters with multiple strokes. Moreover, by using a haptic device, the Haption Virtuose 6D, we demonstrate a method to generate haptic feedback based on a distribution over trajectories, which could be used as an auxiliary means of communication between an instructor and an apprentice. Additionally, given a performance measurement, the haptic device can help the human discover and perform better movements to solve a given task. In this case, the human first tries a few times to solve the task without assistance. Our framework, in turn, uses a reinforcement learning algorithm to compute haptic feedback, which guides the human toward better solutions.

  5. Recontextualizing Dance Skills: Overcoming Impediments to Motor Learning and Expressivity in Ballet Dancers

    PubMed Central

    Karin, Janet

    2016-01-01

    The process of transmitting ballet’s complex technique to young dancers can interfere with the innate processes that give rise to efficient, expressive and harmonious movement. With the intention of identifying possible solutions, this article draws on research across the fields of neurology, psychology, motor learning, and education, and considers their relevance to ballet as an art form, a technique, and a training methodology. The integration of dancers’ technique and expressivity is a core theme throughout the paper. A brief outline of the historical development of ballet’s aesthetics and training methods leads into factors that influence dancers’ performance. An exploration of the role of the neuromotor system in motor learning and the acquisition of expert skills reveals the roles of sensory awareness, imagery, and intention in cuing efficient, expressive movement. It also indicates potentially detrimental effects of conscious muscle control, explicit learning and persistent naïve beliefs. Finally, the paper presents a new theory regarding the acquisition of ballet skills. Recontextualization theory proposes that placing a problematic task within a new context may engender a new conceptual approach and/or sensory intention, and hence the genesis of new motor programs; and that these new programs may lead to performance that is more efficient, more rewarding for the dancer, more pleasing aesthetically, and more expressive. From an anecdotal point of view, this theory appears to be supported by the progress of many dancers at various stages of their dancing lives. PMID:27047437

  6. Recontextualizing Dance Skills: Overcoming Impediments to Motor Learning and Expressivity in Ballet Dancers.

    PubMed

    Karin, Janet

    2016-01-01

    The process of transmitting ballet's complex technique to young dancers can interfere with the innate processes that give rise to efficient, expressive and harmonious movement. With the intention of identifying possible solutions, this article draws on research across the fields of neurology, psychology, motor learning, and education, and considers their relevance to ballet as an art form, a technique, and a training methodology. The integration of dancers' technique and expressivity is a core theme throughout the paper. A brief outline of the historical development of ballet's aesthetics and training methods leads into factors that influence dancers' performance. An exploration of the role of the neuromotor system in motor learning and the acquisition of expert skills reveals the roles of sensory awareness, imagery, and intention in cuing efficient, expressive movement. It also indicates potentially detrimental effects of conscious muscle control, explicit learning and persistent naïve beliefs. Finally, the paper presents a new theory regarding the acquisition of ballet skills. Recontextualization theory proposes that placing a problematic task within a new context may engender a new conceptual approach and/or sensory intention, and hence the genesis of new motor programs; and that these new programs may lead to performance that is more efficient, more rewarding for the dancer, more pleasing aesthetically, and more expressive. From an anecdotal point of view, this theory appears to be supported by the progress of many dancers at various stages of their dancing lives.

  7. Meta-analysis of learning design on sciences to develop a teacher’s professionalism training model

    NASA Astrophysics Data System (ADS)

    Alimah, S.; Anggraito, Y. U.; Prasetyo, A. P. B.; Saptono, S.

    2018-03-01

    This research explored a meta-analysis ofthe teaching design on sciences teachers’ lesson plans to develop the training model in achieving 21st-century learning competence and the implementation of the scientifically literate school model. This is a qualitative research with descriptively qualitative analysis. The sample was the members of sciences teacher’s organizations in Brebes Central Java Indonesia. Data was collected by documentation, observation, interviews, and questionnaires scale understanding. Analysis of the lesson plans focused on the correctness of development concept and integration of Strengthening Character Education; School Literacy Movement; Communication, Collaboration, Critical Thinking and Creativity; and Higher Order Thinking Skill. The sciences teachers had a good understanding of the components of the lesson plan, but needed further training. The integration of the character education by the teacher was not explicitly written into their lesson plan. The teachers’ skill to integrate the components was still needed improvements. It is found that training and mentoring of lesson plan development to improve the skills of science teachers in achieving 21st-century learning competencies are still urgent to be done. The training and mentoring model proposed here is Peretipe model, to help teachers skillfully design good lesson plans based on Technological Pedagogical, and Content Knowledge.

  8. Effects of a mirror-induced visual illusion on a reaching task in stroke patients: implications for mirror therapy training.

    PubMed

    Selles, Ruud W; Michielsen, Marian E; Bussmann, Johannes B J; Stam, Henk J; Hurkmans, Henri L; Heijnen, Iris; de Groot, Danielle; Ribbers, Gerard M

    2014-09-01

    Although most mirror therapy studies have shown improved motor performance in stroke patients, the optimal mirror training protocol still remains unclear. To study the relative contribution of a mirror in training a reaching task and of unilateral and bimanual training with a mirror. A total of 93 stroke patients at least 6 months poststroke were instructed to perform a reaching task as fast and as fluently as possible. They performed 70 practice trials after being randomly allocated to 1 of 5 experimental groups: training with (1) the paretic arm with direct view (Paretic-No Mirror), (2) the nonparetic arm with direct view (Nonparetic-No Mirror), (3) the nonparetic arm with mirror reflection (Nonparetic Mirror), (4) both sides and with a nontransparent screen preventing visual control of paretic side (Bilateral-Screen), and (5) both sides with mirror reflection of the nonparetic arm (Bilateral-Mirror). As baseline and follow-up, patients performed 6 trials using only their paretic side. Primary outcome measure was the movement time. We found the largest intervention effect in the Paretic-No Mirror condition. However, the Nonparetic-Mirror condition was not significantly different from the Paretic-No Mirror condition, while the Unaffected-No Mirror condition had significantly less improvement than the Paretic-No Mirror condition. In addition, movement time improved significantly less in the bimanual conditions and there was no difference between both bimanual conditions or between both mirror conditions. The present study confirms that using a mirror reflection can facilitate motor learning. In this task, bimanual movement using mirror training was less effective than unilateral training. © The Author(s) 2014.

  9. Twelve tips for postgraduate or undergraduate medics building a basic microsurgery simulation training course.

    PubMed

    Mason, Katrina A; Theodorakopoulou, Evgenia; Pafitanis, Georgios; Ghanem, Ali M; Myers, Simon R

    2016-09-01

    Microsurgery is used in a variety of surgical specialties, including Plastic Surgery, Maxillofacial Surgery, Ophthalmic Surgery, Otolaryngology and Neurosurgery. It is considered one of the most technically challenging fields of surgery. Microsurgical skills demand fine, precise and controlled movements, and microsurgical skill acquisition has a steep initial learning curve. Microsurgical simulation provides a safe environment for skill acquisition before operating clinically. The traditional starting point for anyone wanting to pursue microsurgery is a basic simulation training course. We present twelve tips for postgraduate and undergraduate medics on how to set up and run a basic ex-vivo microsurgery simulation training course suitable for their peers.

  10. Improving fundamental movement skills in Hong Kong students through an assessment for learning intervention that emphasizes fun, mastery, and support: the A + FMS randomized controlled trial study protocol.

    PubMed

    Chan, Cecilia; Ha, Amy; Ng, Johan Y Y

    2016-01-01

    Assessment for learning has been identified as an effective strategy to help children learn more effectively. Developing children to master basic movement skills in primary school requires formative assessments to inform instruction and learning. This study reports the rationale and methods for an assessment-based intervention that emphasizes fun, mastery and support (A + FMS) designed to improve fundamental movement skill (FMS) proficiency of primary schoolchildren. Utilizing a cluster randomized controlled trial, the A + FMS intervention was designed to improve FMS proficiency of Hong Kong Chinese schoolchildren. A target sample of 282 students or more from 10 Grade 3 classes (from five schools) will be recruited and randomly assigned into an experimental group or a wait-list control group. Competence motivation theory provided a framework for the intervention that emphasizes fun activities to develop basic fundamentals, improving mastery of movement, and providing support for teaching and learning skills. Primary outcome measures are the raw scores of six objectively measured FMS (i.e., jump, hop, skip, dribble, catch, and overhand throw). Secondary outcomes include self-reported measures: enjoyment in physical education, perceived physical competence, perceived skill competence, and perceived social support. Teachers in the experimental group are required to attend a six-h training workshop and integrate 550 min of assessment for learning strategies into their physical education lessons. Resources such as videos, skills checklists, and equipment will also be provided to support children to accumulate extra learning and practice time after school. The rate of changes in primary and secondary outcomes across the experimental and control groups will be compared to determine the effectiveness of the program. The A + FMS is an innovative school-based intervention targeting improvements in movement mastery by supporting physical education teachers in FMS instruction and assessment practices. The findings from the study may be used to guide pre-service teacher education and continuous professional development in FMS teaching and assessment. Trial registration CUHK_CCRB00479.

  11. Effects of continuous visual feedback during sitting balance training in chronic stroke survivors.

    PubMed

    Pellegrino, Laura; Giannoni, Psiche; Marinelli, Lucio; Casadio, Maura

    2017-10-16

    Postural control deficits are common in stroke survivors and often the rehabilitation programs include balance training based on visual feedback to improve the control of body position or of the voluntary shift of body weight in space. In the present work, a group of chronic stroke survivors, while sitting on a force plate, exercised the ability to control their Center of Pressure with a training based on continuous visual feedback. The goal of this study was to test if and to what extent chronic stroke survivors were able to learn the task and transfer the learned ability to a condition without visual feedback and to directions and displacement amplitudes different from those experienced during training. Eleven chronic stroke survivors (5 Male - 6 Female, age: 59.72 ± 12.84 years) participated in this study. Subjects were seated on a stool positioned on top of a custom-built force platform. Their Center of Pressure positions were mapped to the coordinate of a cursor on a computer monitor. During training, the cursor position was always displayed and the subjects were to reach targets by shifting their Center of Pressure by moving their trunk. Pre and post-training subjects were required to reach without visual feedback of the cursor the training targets as well as other targets positioned in different directions and displacement amplitudes. During training, most stroke survivors were able to perform the required task and to improve their performance in terms of duration, smoothness, and movement extent, although not in terms of movement direction. However, when we removed the visual feedback, most of them had no improvement with respect to their pre-training performance. This study suggests that postural training based exclusively on continuous visual feedback can provide limited benefits for stroke survivors, if administered alone. However, the positive gains observed during training justify the integration of this technology-based protocol in a well-structured and personalized physiotherapy training, where the combination of the two approaches may lead to functional recovery.

  12. Self-organization of head-centered visual responses under ecological training conditions.

    PubMed

    Mender, Bedeho M W; Stringer, Simon M

    2014-01-01

    We have studied the development of head-centered visual responses in an unsupervised self-organizing neural network model which was trained under ecological training conditions. Four independent spatio-temporal characteristics of the training stimuli were explored to investigate the feasibility of the self-organization under more ecological conditions. First, the number of head-centered visual training locations was varied over a broad range. Model performance improved as the number of training locations approached the continuous sampling of head-centered space. Second, the model depended on periods of time where visual targets remained stationary in head-centered space while it performed saccades around the scene, and the severity of this constraint was explored by introducing increasing levels of random eye movement and stimulus dynamics. Model performance was robust over a range of randomization. Third, the model was trained on visual scenes where multiple simultaneous targets where always visible. Model self-organization was successful, despite never being exposed to a visual target in isolation. Fourth, the duration of fixations during training were made stochastic. With suitable changes to the learning rule, it self-organized successfully. These findings suggest that the fundamental learning mechanism upon which the model rests is robust to the many forms of stimulus variability under ecological training conditions.

  13. Dreaming of a Learning Task is Associated with Enhanced Sleep-Dependent Memory Consolidation

    PubMed Central

    Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph; Stickgold, Robert

    2010-01-01

    Summary It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects (n=99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state. PMID:20417102

  14. The Effects of Rhythmicity and Amplitude on Transfer of Motor Learning

    PubMed Central

    Ben-Tov, Mor; Levy-Tzedek, Shelly; Karniel, Amir

    2012-01-01

    We perform rhythmic and discrete arm movements on a daily basis, yet the motor control literature is not conclusive regarding the mechanisms controlling these movements; does a single mechanism generate both movement types, or are they controlled by separate mechanisms? A recent study reported partial asymmetric transfer of learning from discrete movements to rhythmic movements. Other studies have shown transfer of learning between large-amplitude to small-amplitude movements. The goal of this study is to explore which aspect is important for learning to be transferred from one type of movement to another: rhythmicity, amplitude or both. We propose two hypotheses: (1) Rhythmic and discrete movements are generated by different mechanisms; therefore we expect to see a partial or no transfer of learning between the two types of movements; (2) Within each movement type (rhythmic/discrete), there will be asymmetric transition of learning from larger movements to smaller ones. We used a learning-transfer paradigm, in which 70 participants performed flexion/extension movements with their forearm, and switched between types of movement, which differed in amplitude and/or rhythmicity. We found partial transfer of learning between discrete and rhythmic movements, and an asymmetric transfer of learning from larger movements to smaller movements (within the same type of movement). Our findings suggest that there are two different mechanisms underlying the generation of rhythmic and discrete arm movements, and that practicing on larger movements helps perform smaller movements; the latter finding might have implications for rehabilitation. PMID:23056549

  15. The effects of rhythmicity and amplitude on transfer of motor learning.

    PubMed

    Ben-Tov, Mor; Levy-Tzedek, Shelly; Karniel, Amir

    2012-01-01

    We perform rhythmic and discrete arm movements on a daily basis, yet the motor control literature is not conclusive regarding the mechanisms controlling these movements; does a single mechanism generate both movement types, or are they controlled by separate mechanisms? A recent study reported partial asymmetric transfer of learning from discrete movements to rhythmic movements. Other studies have shown transfer of learning between large-amplitude to small-amplitude movements. The goal of this study is to explore which aspect is important for learning to be transferred from one type of movement to another: rhythmicity, amplitude or both. We propose two hypotheses: (1) Rhythmic and discrete movements are generated by different mechanisms; therefore we expect to see a partial or no transfer of learning between the two types of movements; (2) Within each movement type (rhythmic/discrete), there will be asymmetric transition of learning from larger movements to smaller ones. We used a learning-transfer paradigm, in which 70 participants performed flexion/extension movements with their forearm, and switched between types of movement, which differed in amplitude and/or rhythmicity. We found partial transfer of learning between discrete and rhythmic movements, and an asymmetric transfer of learning from larger movements to smaller movements (within the same type of movement). Our findings suggest that there are two different mechanisms underlying the generation of rhythmic and discrete arm movements, and that practicing on larger movements helps perform smaller movements; the latter finding might have implications for rehabilitation.

  16. Effect of tonic pain on motor acquisition and retention while learning to reach in a force field.

    PubMed

    Lamothe, Mélanie; Roy, Jean-Sébastien; Bouffard, Jason; Gagné, Martin; Bouyer, Laurent J; Mercier, Catherine

    2014-01-01

    Most patients receiving intensive rehabilitation to improve their upper limb function experience pain. Despite this, the impact of pain on the ability to learn a specific motor task is still unknown. The aim of this study was to determine whether the presence of experimental tonic pain interferes with the acquisition and retention stages of motor learning associated with training in a reaching task. Twenty-nine healthy subjects were randomized to either a Control or Pain Group (receiving topical capsaicin cream on the upper arm during training on Day 1). On two consecutive days, subjects made ballistic movements towards two targets (NEAR/FAR) using a robotized exoskeleton. On Day 1, the task was performed without (baseline) and with a force field (adaptation). The adaptation task was repeated on Day 2. Task performance was assessed using index distance from the target at the end of the reaching movement. Motor planning was assessed using initial angle of deviation of index trajectory from a straight line to the target. Results show that tonic pain did not affect baseline reaching. Both groups improved task performance across time (p<0.001), but the Pain group showed a larger final error (under-compensation) than the Control group for the FAR target (p = 0.030) during both acquisition and retention. Moreover, a Group x Time interaction (p = 0.028) was observed on initial angle of deviation, suggesting that subjects with Pain made larger adjustments in the feedforward component of the movement over time. Interestingly, behaviour of the Pain group was very stable from the end of Day 1 (with pain) to the beginning of Day 2 (pain-free), indicating that the differences observed could not solely be explained by the impact of pain on immediate performance. This suggests that if people learn to move differently in the presence of pain, they might maintain this altered strategy over time.

  17. Haptic Guidance Improves the Visuo-Manual Tracking of Trajectories

    PubMed Central

    Bluteau, Jérémy; Coquillart, Sabine; Payan, Yohan; Gentaz, Edouard

    2008-01-01

    Background Learning to perform new movements is usually achieved by following visual demonstrations. Haptic guidance by a force feedback device is a recent and original technology which provides additional proprioceptive cues during visuo-motor learning tasks. The effects of two types of haptic guidances-control in position (HGP) or in force (HGF)–on visuo-manual tracking (“following”) of trajectories are still under debate. Methodology/Principals Findings Three training techniques of haptic guidance (HGP, HGF or control condition, NHG, without haptic guidance) were evaluated in two experiments. Movements produced by adults were assessed in terms of shapes (dynamic time warping) and kinematics criteria (number of velocity peaks and mean velocity) before and after the training sessions. Trajectories consisted of two Arabic and two Japanese-inspired letters in Experiment 1 and ellipses in Experiment 2. We observed that the use of HGF globally improves the fluency of the visuo-manual tracking of trajectories while no significant improvement was found for HGP or NHG. Conclusion/Significance These results show that the addition of haptic information, probably encoded in force coordinates, play a crucial role on the visuo-manual tracking of new trajectories. PMID:18335049

  18. Facilitation of learning induced by both random and gradual visuomotor task variation

    PubMed Central

    Braun, Daniel A.; Wolpert, Daniel M.

    2012-01-01

    Motor task variation has been shown to be a key ingredient in skill transfer, retention, and structural learning. However, many studies only compare training of randomly varying tasks to either blocked or null training, and it is not clear how experiencing different nonrandom temporal orderings of tasks might affect the learning process. Here we study learning in human subjects who experience the same set of visuomotor rotations, evenly spaced between −60° and +60°, either in a random order or in an order in which the rotation angle changed gradually. We compared subsequent learning of three test blocks of +30°→−30°→+30° rotations. The groups that underwent either random or gradual training showed significant (P < 0.01) facilitation of learning in the test blocks compared with a control group who had not experienced any visuomotor rotations before. We also found that movement initiation times in the random group during the test blocks were significantly (P < 0.05) lower than for the gradual or the control group. When we fit a state-space model with fast and slow learning processes to our data, we found that the differences in performance in the test block were consistent with the gradual or random task variation changing the learning and retention rates of only the fast learning process. Such adaptation of learning rates may be a key feature of ongoing meta-learning processes. Our results therefore suggest that both gradual and random task variation can induce meta-learning and that random learning has an advantage in terms of shorter initiation times, suggesting less reliance on cognitive processes. PMID:22131385

  19. Conceptualizing Learning in the Climate Justice Movement

    ERIC Educational Resources Information Center

    Kluttz, Jenalee; Walter, Pierre

    2018-01-01

    This article extends Scandrett et al.'s conceptual framework for social movement learning to understand learning and knowledge creation in the climate justice movement. Drawing on radical pluralist theoretical approaches to social movement learning, learning in the climate justice movement is conceptualized at the micro, meso, and macro levels,…

  20. The combined effects of action observation and passive proprioceptive training on adaptive motor learning.

    PubMed

    Lei, Yuming; Bao, Shancheng; Wang, Jinsung

    2016-09-07

    Sensorimotor adaptation can be induced by action observation, and also by passive training. Here, we investigated the effect of a protocol that combined action observation and passive training on visuomotor adaptation, by comparing it with the effect of action observation or passive training alone. Subjects were divided into five conditions during the training session: (1) action observation, in which the subjects watched a video of a model who adapted to a novel visuomotor rotation; (2) proprioceptive training, in which the subject's arm was moved passively to target locations that were associated with desired trajectories; (3) combined training, in which the subjects watched the video of a model during a half of the session and experienced passive movements during the other half; (4) active training, in which the subjects adapted actively to the rotation; and (5) a control condition, in which the subjects did not perform any task. Following that session, all subjects adapted to the same visuomotor rotation. Results showed that the subjects in the combined training condition adapted to the rotation significantly better than those in the observation or proprioceptive training condition, although their performance was not as good as that of those who adapted actively. These findings suggest that although a protocol that combines action observation and passive training consists of all the processes involved in active training (error detection and correction, effector-specific and proprioceptively based reaching movements), these processes in that protocol may work differently as compared to a protocol in which the same processes are engaged actively. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. The effect of haptic guidance and visual feedback on learning a complex tennis task.

    PubMed

    Marchal-Crespo, Laura; van Raai, Mark; Rauter, Georg; Wolf, Peter; Riener, Robert

    2013-11-01

    While haptic guidance can improve ongoing performance of a motor task, several studies have found that it ultimately impairs motor learning. However, some recent studies suggest that the haptic demonstration of optimal timing, rather than movement magnitude, enhances learning in subjects trained with haptic guidance. Timing of an action plays a crucial role in the proper accomplishment of many motor skills, such as hitting a moving object (discrete timing task) or learning a velocity profile (time-critical tracking task). The aim of the present study is to evaluate which feedback conditions-visual or haptic guidance-optimize learning of the discrete and continuous elements of a timing task. The experiment consisted in performing a fast tennis forehand stroke in a virtual environment. A tendon-based parallel robot connected to the end of a racket was used to apply haptic guidance during training. In two different experiments, we evaluated which feedback condition was more adequate for learning: (1) a time-dependent discrete task-learning to start a tennis stroke and (2) a tracking task-learning to follow a velocity profile. The effect that the task difficulty and subject's initial skill level have on the selection of the optimal training condition was further evaluated. Results showed that the training condition that maximizes learning of the discrete time-dependent motor task depends on the subjects' initial skill level. Haptic guidance was especially suitable for less-skilled subjects and in especially difficult discrete tasks, while visual feedback seems to benefit more skilled subjects. Additionally, haptic guidance seemed to promote learning in a time-critical tracking task, while visual feedback tended to deteriorate the performance independently of the task difficulty and subjects' initial skill level. Haptic guidance outperformed visual feedback, although additional studies are needed to further analyze the effect of other types of feedback visualization on motor learning of time-critical tasks.

  2. Cognitive theories and the design of e-learning environments.

    PubMed

    Gillani, Bijan; O'Guinn, Christina

    2004-01-01

    Cognitive development refers to a mental process by which knowledge is acquired, stored, and retrieved to solve problems. Therefore, cognitive developmental theories attempt to explain cognitive activities that contribute to students' intellectual development and their capacity to learn and solve problems. Cognitive developmental research has had a great impact on the constructivism movement in education and educational technology. In order to appreciate how cognitive developmental theories have contributed to the design, process and development of constructive e-learning environments, we shall first present Piaget's cognitive theory and derive an inquiry training model from it that will support a constructivism approach to teaching and learning. Second, we will discuss an example developed by NASA that used the Web as an appropriate instructional delivery medium to apply Piaget's cognitive theory to create e-learning environments.

  3. Cerebellar-M1 Connectivity Changes Associated with Motor Learning Are Somatotopic Specific.

    PubMed

    Spampinato, Danny A; Block, Hannah J; Celnik, Pablo A

    2017-03-01

    One of the functions of the cerebellum in motor learning is to predict and account for systematic changes to the body or environment. This form of adaptive learning is mediated by plastic changes occurring within the cerebellar cortex. The strength of cerebellar-to-cerebral pathways for a given muscle may reflect aspects of cerebellum-dependent motor adaptation. These connections with motor cortex (M1) can be estimated as cerebellar inhibition (CBI): a conditioning pulse of transcranial magnetic stimulation delivered to the cerebellum before a test pulse over motor cortex. Previously, we have demonstrated that changes in CBI for a given muscle representation correlate with learning a motor adaptation task with the involved limb. However, the specificity of these effects is unknown. Here, we investigated whether CBI changes in humans are somatotopy specific and how they relate to motor adaptation. We found that learning a visuomotor rotation task with the right hand changed CBI, not only for the involved first dorsal interosseous of the right hand, but also for an uninvolved right leg muscle, the tibialis anterior, likely related to inter-effector transfer of learning. In two follow-up experiments, we investigated whether the preparation of a simple hand or leg movement would produce a somatotopy-specific modulation of CBI. We found that CBI changes only for the effector involved in the movement. These results indicate that learning-related changes in cerebellar-M1 connectivity reflect a somatotopy-specific interaction. Modulation of this pathway is also present in the context of interlimb transfer of learning. SIGNIFICANCE STATEMENT Connectivity between the cerebellum and motor cortex is a critical pathway for the integrity of everyday movements and understanding the somatotopic specificity of this pathway in the context of motor learning is critical to advancing the efficacy of neurorehabilitation. We found that adaptive learning with the hand affects cerebellar-motor cortex connectivity, not only for the trained hand, but also for an untrained leg muscle, an effect likely related to intereffector transfer of learning. Furthermore, we introduce a novel method to measure cerebellar-motor cortex connectivity during movement preparation. With this technique, we show that, outside the context of learning, modulation of cerebellar-motor cortex connectivity is somatotopically specific to the effector being moved. Copyright © 2017 the authors 0270-6474/17/372377-10$15.00/0.

  4. Influence of mental practice and movement observation on motor memory, cognitive function and motor performance in the elderly

    PubMed Central

    Altermann, Caroline D. C.; Martins, Alexandre S.; Carpes, Felipe P.; Mello-Carpes, Pâmela B.

    2014-01-01

    Background With aging, it is important to maintain cognitive and motor functions to ensure autonomy and quality of life. During the acquisition of motor skills, it is necessary for the elderly to understand the purpose of the proposed activities. Physical and mental practice, as well as demonstrations, are strategies used to learn movements. Objectives To investigate the influence of mental practice and the observation of movement on motor memory and to understand the relationship between cognitive function and motor performance in the execution of a sequence of digital movements in the elderly. Method This was a cross-sectional study conducted with 45 young and 45 aged subjects. The instruments used were Mini-Mental State Examination (MMSE), Manual Preference Inventory and a Digital Motor Task (composed of a training of a sequence of movements, an interval and a test phase). The subjects were divided into three subgroups: control, mental practice and observation of movement. Results The elderly depend more strongly on mental practice for the acquisition of a motor memory. In comparing the performances of people in different age groups, we found that in the elderly, there was a negative correlation between the MMSE score and the execution time as well as the number of errors in the motor task. Conclusions For the elderly, mental practice can advantage motor performance. Also, there is a significant relationship between cognitive function, learning and the execution of new motor skills. PMID:24839046

  5. Dissociable effects of practice variability on learning motor and timing skills.

    PubMed

    Caramiaux, Baptiste; Bevilacqua, Frédéric; Wanderley, Marcelo M; Palmer, Caroline

    2018-01-01

    Motor skill acquisition inherently depends on the way one practices the motor task. The amount of motor task variability during practice has been shown to foster transfer of the learned skill to other similar motor tasks. In addition, variability in a learning schedule, in which a task and its variations are interweaved during practice, has been shown to help the transfer of learning in motor skill acquisition. However, there is little evidence on how motor task variations and variability schedules during practice act on the acquisition of complex motor skills such as music performance, in which a performer learns both the right movements (motor skill) and the right time to perform them (timing skill). This study investigated the impact of rate (tempo) variability and the schedule of tempo change during practice on timing and motor skill acquisition. Complete novices, with no musical training, practiced a simple musical sequence on a piano keyboard at different rates. Each novice was assigned to one of four learning conditions designed to manipulate the amount of tempo variability across trials (large or small tempo set) and the schedule of tempo change (randomized or non-randomized order) during practice. At test, the novices performed the same musical sequence at a familiar tempo and at novel tempi (testing tempo transfer), as well as two novel (but related) sequences at a familiar tempo (testing spatial transfer). We found that practice conditions had little effect on learning and transfer performance of timing skill. Interestingly, practice conditions influenced motor skill learning (reduction of movement variability): lower temporal variability during practice facilitated transfer to new tempi and new sequences; non-randomized learning schedule improved transfer to new tempi and new sequences. Tempo (rate) and the sequence difficulty (spatial manipulation) affected performance variability in both timing and movement. These findings suggest that there is a dissociable effect of practice variability on learning complex skills that involve both motor and timing constraints.

  6. Implications of CI therapy for visual deficit training

    PubMed Central

    Taub, Edward; Mark, Victor W.; Uswatte, Gitendra

    2014-01-01

    We address here the question of whether the techniques of Constraint Induced (CI) therapy, a family of treatments that has been employed in the rehabilitation of movement and language after brain damage might apply to the rehabilitation of such visual deficits as unilateral spatial neglect and visual field deficits. CI therapy has been used successfully for the upper and lower extremities after chronic stroke, cerebral palsy (CP), multiple sclerosis (MS), other central nervous system (CNS) degenerative conditions, resection of motor areas of the brain, focal hand dystonia, and aphasia. Treatments making use of similar methods have proven efficacious for amblyopia. The CI therapy approach consists of four major components: intensive training, training by shaping, a “transfer package” to facilitate the transfer of gains from the treatment setting to everyday activities, and strong discouragement of compensatory strategies. CI therapy is said to be effective because it overcomes learned nonuse, a learned inhibition of movement that follows injury to the CNS. In addition, CI therapy produces substantial increases in the gray matter of motor areas on both sides of the brain. We propose here that these mechanisms are examples of more general processes: learned nonuse being considered parallel to sensory nonuse following damage to sensory areas of the brain, with both having in common diminished neural connections (DNCs) in the nervous system as an underlying mechanism. CI therapy would achieve its therapeutic effect by strengthening the DNCs. Use-dependent cortical reorganization is considered to be an example of the more general neuroplastic mechanism of brain structure repurposing. If the mechanisms involved in these broader categories are involved in each of the deficits being considered, then it may be the principles underlying efficacious treatment in each case may be similar. The lessons learned during CI therapy research might then prove useful for the treatment of visual deficits. PMID:25346665

  7. Intermanual transfer effect in young children after training in a complex skill: mechanistic, pseudorandomized, pretest-posttest study.

    PubMed

    Romkema, Sietske; Bongers, Raoul M; van der Sluis, Corry K

    2015-05-01

    Intermanual transfer implies that motor skills learned on one side of the body transfer to the untrained side. This effect was previously noted in adults practicing with a prosthesis simulator. The study objective was to determine whether intermanual transfer is present in children practicing prosthetic handling. A mechanistic, pseudorandomized, pretest-posttest design was used. The study was conducted in a primary school in the Netherlands. The participants were children who were able-bodied (N=48; 25 boys, 23 girls; mean age=5.1 years) and randomly assigned to an experimental group or a control group. The experimental group performed 5 training sessions using a prosthesis simulator on the training arm. Before (pretest), immediately after (posttest), and 6 days after (retention test) the training program, their ability to handle the prosthesis with the contralateral (test) arm was measured. The control group only performed the tests. Half of the children performed the tests with the dominant hand, and the other half performed the tests with the nondominant hand. During the tests, movement time and control of force were measured. An interaction effect of group by test was found for movement time. Post hoc tests revealed significant improvement in the experimental group between the posttest and the retention test. No force control effect was found. Only children who were able-bodied were included. Measurements should have been masked and obtained without tester interference. The fact that 4 children whose results were slower than the mean result discontinued training may have biased the findings. The intermanual transfer effect was present in 5-year-old children undergoing training in prosthetic handling. After training of one hand, children's movement times for the other, untrained hand improved. This finding may be helpful for training children who are novice users of a prosthesis. © 2015 American Physical Therapy Association.

  8. Current Techniques of Teaching and Learning in Bariatric Surgical Procedures: A Systematic Review.

    PubMed

    Kaijser, Mirjam; van Ramshorst, Gabrielle; van Wagensveld, Bart; Pierie, Jean-Pierre

    The gastric sleeve resection and gastric bypass are the 2 most commonly performed bariatric procedures. This article provides an overview of current teaching and learning methods of those techniques in resident and fellow training. A database search was performed on Pubmed, Embase, and the Education Resources Information Center (ERIC) to identify the methods used to provide training in bariatric surgery worldwide. After exclusion based on titles and abstracts, full texts of the selected articles were assessed. Included articles were reviewed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. In total, 2442 titles were identified and 14 full text articles met inclusion criteria. Four publications described an ex vivo training course, and 6 focused on at least 1 step of the gastric bypass procedure. Two randomized controlled trials (RCT) provided high-quality evidence on training aspects. Surgical coaching caused significant improvement of Bariatric Objective Structured Assessment of Technical Skills (BOSATS) scores (3.60 vs. 3.90, p = 0.017) and reduction of technical errors (18 vs. 10, p = 0.003). A preoperative warm-up increased global rating scales (GRS) scores on depth perception (p = 0.02), bimanual dexterity (p = 0.01), and efficiency of movements (p = 0.03). Stepwise education, surgical coaching, warming up, Internet-based knowledge modules, and ex vivo training courses are effective in relation to bariatric surgical training of residents and fellows, possibly shortening their learning curves. Copyright © 2018 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  9. Body-Machine Interfaces after Spinal Cord Injury: Rehabilitation and Brain Plasticity.

    PubMed

    Seáñez-González, Ismael; Pierella, Camilla; Farshchiansadegh, Ali; Thorp, Elias B; Wang, Xue; Parrish, Todd; Mussa-Ivaldi, Ferdinando A

    2016-12-19

    The purpose of this study was to identify rehabilitative effects and changes in white matter microstructure in people with high-level spinal cord injury following bilateral upper-extremity motor skill training. Five subjects with high-level (C5-C6) spinal cord injury (SCI) performed five visuo-spatial motor training tasks over 12 sessions (2-3 sessions per week). Subjects controlled a two-dimensional cursor with bilateral simultaneous movements of the shoulders using a non-invasive inertial measurement unit-based body-machine interface. Subjects' upper-body ability was evaluated before the start, in the middle and a day after the completion of training. MR imaging data were acquired before the start and within two days of the completion of training. Subjects learned to use upper-body movements that survived the injury to control the body-machine interface and improved their performance with practice. Motor training increased Manual Muscle Test scores and the isometric force of subjects' shoulders and upper arms. Moreover, motor training increased fractional anisotropy (FA) values in the cingulum of the left hemisphere by 6.02% on average, indicating localized white matter microstructure changes induced by activity-dependent modulation of axon diameter, myelin thickness or axon number. This body-machine interface may serve as a platform to develop a new generation of assistive-rehabilitative devices that promote the use of, and that re-strengthen, the motor and sensory functions that survived the injury.

  10. Stroke and neurodegenerative disorders. 3. Stroke: rehabilitation management.

    PubMed

    Bogey, Ross A; Geis, Carolyn C; Bryant, Phillip R; Moroz, Alex; O'neill, Bryan J

    2004-03-01

    This self-directed learning module highlights common rehabilitation issues in stroke survivors. Topics include spasticity, constraint-induced movement therapy, partial body weight-supported treadmill training, virtual reality training, vestibular retraining, aphasia treatment, and cognitive retraining. It is part of the study chapter on stroke and neurodegenerative disorders in the Self-Directed Physiatric Education Program for practitioners and trainees in physical medicine and rehabilitation. (a) To identify and review the treatment options for poststroke spasticity; (b) to review the use of body weight-supported treadmill training in stroke patients; (c) to describe virtual reality training as an adjunct in stroke rehabilitation; (d) to review vestibular rehabilitation; (e) to discuss advances in aphasia treatment; (f) to discuss cognitive retraining; and (g) to provide an update on treatment of neglect syndromes.

  11. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks.

    PubMed

    Xia, Peng; Hu, Jie; Peng, Yinghong

    2017-10-25

    A novel model based on deep learning is proposed to estimate kinematic information for myoelectric control from multi-channel electromyogram (EMG) signals. The neural information of limb movement is embedded in EMG signals that are influenced by all kinds of factors. In order to overcome the negative effects of variability in signals, the proposed model employs the deep architecture combining convolutional neural networks (CNNs) and recurrent neural networks (RNNs). The EMG signals are transformed to time-frequency frames as the input to the model. The limb movement is estimated by the model that is trained with the gradient descent and backpropagation procedure. We tested the model for simultaneous and proportional estimation of limb movement in eight healthy subjects and compared it with support vector regression (SVR) and CNNs on the same data set. The experimental studies show that the proposed model has higher estimation accuracy and better robustness with respect to time. The combination of CNNs and RNNs can improve the model performance compared with using CNNs alone. The model of deep architecture is promising in EMG decoding and optimization of network structures can increase the accuracy and robustness. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  12. Observation learning versus physical practice leads to different consolidation outcomes in a movement timing task.

    PubMed

    Trempe, Maxime; Sabourin, Maxime; Rohbanfard, Hassan; Proteau, Luc

    2011-03-01

    Motor learning is a process that extends beyond training sessions. Specifically, physical practice triggers a series of physiological changes in the CNS that are regrouped under the term "consolidation" (Stickgold and Walker 2007). These changes can result in between-session improvement or performance stabilization (Walker 2005). In a series of three experiments, we tested whether consolidation also occurs following observation. In Experiment 1, participants observed an expert model perform a sequence of arm movements. Although we found evidence of observation learning, no significant difference was revealed between participants asked to reproduce the observed sequence either 5 min or 24 h later (no between-session improvement). In Experiment 2, two groups of participants observed an expert model perform two distinct movement sequences (A and B) either 10 min or 8 h apart; participants then physically performed both sequences after a 24-h break. Participants in the 8-h group performed Sequence B less accurately compared to participants in the 5-min group, suggesting that the memory representation of the first sequence had been stabilized and that it interfered with the learning of the second sequence. Finally, in Experiment 3, the initial observation phase was replaced by a physical practice phase. In contrast with the results of Experiment 2, participants in the 8-h group performed Sequence B significantly more accurately compared to participants in the 5-min group. Together, our results suggest that the memory representation of a skill learned through observation undergoes consolidation. However, consolidation of an observed motor skill leads to distinct behavioural outcomes in comparison with physical practice.

  13. Electroencephalographic identifiers of motor adaptation learning

    NASA Astrophysics Data System (ADS)

    Özdenizci, Ozan; Yalçın, Mustafa; Erdoğan, Ahmetcan; Patoğlu, Volkan; Grosse-Wentrup, Moritz; Çetin, Müjdat

    2017-08-01

    Objective. Recent brain-computer interface (BCI) assisted stroke rehabilitation protocols tend to focus on sensorimotor activity of the brain. Relying on evidence claiming that a variety of brain rhythms beyond sensorimotor areas are related to the extent of motor deficits, we propose to identify neural correlates of motor learning beyond sensorimotor areas spatially and spectrally for further use in novel BCI-assisted neurorehabilitation settings. Approach. Electroencephalographic (EEG) data were recorded from healthy subjects participating in a physical force-field adaptation task involving reaching movements through a robotic handle. EEG activity recorded during rest prior to the experiment and during pre-trial movement preparation was used as features to predict motor adaptation learning performance across subjects. Main results. Subjects learned to perform straight movements under the force-field at different adaptation rates. Both resting-state and pre-trial EEG features were predictive of individual adaptation rates with relevance of a broad network of beta activity. Beyond sensorimotor regions, a parieto-occipital cortical component observed across subjects was involved strongly in predictions and a fronto-parietal cortical component showed significant decrease in pre-trial beta-powers for users with higher adaptation rates and increase in pre-trial beta-powers for users with lower adaptation rates. Significance. Including sensorimotor areas, a large-scale network of beta activity is presented as predictive of motor learning. Strength of resting-state parieto-occipital beta activity or pre-trial fronto-parietal beta activity can be considered in BCI-assisted stroke rehabilitation protocols with neurofeedback training or volitional control of neural activity for brain-robot interfaces to induce plasticity.

  14. Robotic neurorehabilitation: a computational motor learning perspective

    PubMed Central

    Huang, Vincent S; Krakauer, John W

    2009-01-01

    Conventional neurorehabilitation appears to have little impact on impairment over and above that of spontaneous biological recovery. Robotic neurorehabilitation has the potential for a greater impact on impairment due to easy deployment, its applicability across of a wide range of motor impairment, its high measurement reliability, and the capacity to deliver high dosage and high intensity training protocols. We first describe current knowledge of the natural history of arm recovery after stroke and of outcome prediction in individual patients. Rehabilitation strategies and outcome measures for impairment versus function are compared. The topics of dosage, intensity, and time of rehabilitation are then discussed. Robots are particularly suitable for both rigorous testing and application of motor learning principles to neurorehabilitation. Computational motor control and learning principles derived from studies in healthy subjects are introduced in the context of robotic neurorehabilitation. Particular attention is paid to the idea of context, task generalization and training schedule. The assumptions that underlie the choice of both movement trajectory programmed into the robot and the degree of active participation required by subjects are examined. We consider rehabilitation as a general learning problem, and examine it from the perspective of theoretical learning frameworks such as supervised and unsupervised learning. We discuss the limitations of current robotic neurorehabilitation paradigms and suggest new research directions from the perspective of computational motor learning. PMID:19243614

  15. An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning.

    PubMed

    Yang, Geng; Deng, Jia; Pang, Gaoyang; Zhang, Hao; Li, Jiayi; Deng, Bin; Pang, Zhibo; Xu, Juan; Jiang, Mingzhe; Liljeberg, Pasi; Xie, Haibo; Yang, Huayong

    2018-01-01

    Surface electromyography signal plays an important role in hand function recovery training. In this paper, an IoT-enabled stroke rehabilitation system was introduced which was based on a smart wearable armband (SWA), machine learning (ML) algorithms, and a 3-D printed dexterous robot hand. User comfort is one of the key issues which should be addressed for wearable devices. The SWA was developed by integrating a low-power and tiny-sized IoT sensing device with textile electrodes, which can measure, pre-process, and wirelessly transmit bio-potential signals. By evenly distributing surface electrodes over user's forearm, drawbacks of classification accuracy poor performance can be mitigated. A new method was put forward to find the optimal feature set. ML algorithms were leveraged to analyze and discriminate features of different hand movements, and their performances were appraised by classification complexity estimating algorithms and principal components analysis. According to the verification results, all nine gestures can be successfully identified with an average accuracy up to 96.20%. In addition, a 3-D printed five-finger robot hand was implemented for hand rehabilitation training purpose. Correspondingly, user's hand movement intentions were extracted and converted into a series of commands which were used to drive motors assembled inside the dexterous robot hand. As a result, the dexterous robot hand can mimic the user's gesture in a real-time manner, which shows the proposed system can be used as a training tool to facilitate rehabilitation process for the patients after stroke.

  16. Bihemispheric Transcranial Direct Current Stimulation Enhances Effector-Independent Representations of Motor Synergy and Sequence Learning

    PubMed Central

    Husain, Masud; Wiestler, Tobias; Diedrichsen, Jörn

    2014-01-01

    Complex manual tasks—everything from buttoning up a shirt to playing the piano—fundamentally involve two components: (1) generating specific patterns of muscle activity (here, termed “synergies”); and (2) stringing these into purposeful sequences. Although transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) has been found to increase the learning of motor sequences, it is unknown whether it can similarly facilitate motor synergy learning. Here, we determined the effects of tDCS on the learning of motor synergies using a novel hand configuration task that required the production of difficult muscular activation patterns. Bihemispheric tDCS was applied to M1 of healthy, right-handed human participants during 4 d of repetitive left-hand configuration training in a double-blind design. tDCS augmented synergy learning, leading subsequently to faster and more synchronized execution. This effect persisted for at least 4 weeks after training. Qualitatively similar tDCS-associated improvements occurred during training of finger sequences in a separate subject cohort. We additionally determined whether tDCS only improved the acquisition of motor memories for specific synergies/sequences or whether it also facilitated more general parts of the motor representations, which could be transferred to novel movements. Critically, we observed that tDCS effects generalized to untrained hand configurations and untrained finger sequences (i.e., were nonspecific), as well as to the untrained hand (i.e., were effector-independent). Hence, bihemispheric tDCS may be a promising adjunct to neurorehabilitative training regimes, in which broad transfer to everyday tasks is highly desirable. PMID:24431461

  17. cTBS disruption of the supplementary motor area perturbs cortical sequence representation but not behavioural performance.

    PubMed

    Solopchuk, Oleg; Alamia, Andrea; Dricot, Laurence; Duque, Julie; Zénon, Alexandre

    2017-12-01

    Neuroimaging studies have repeatedly emphasized the role of the supplementary motor area (SMA) in motor sequence learning, but interferential approaches have led to inconsistent findings. Here, we aimed to test the role of the SMA in motor skill learning by combining interferential and neuroimaging techniques. Sixteen subjects were trained on simple finger movement sequences for 4 days. Afterwards, they underwent two neuroimaging sessions, in which they executed both trained and novel sequences. Prior to entering the scanner, the subjects received inhibitory transcranial magnetic stimulation (TMS) over the SMA or a control site. Using multivariate fMRI analysis, we confirmed that motor training enhances the neural representation of motor sequences in the SMA, in accordance with previous findings. However, although SMA inhibition altered sequence representation (i.e. between-sequence decoding accuracy) in this area, behavioural performance remained unimpaired. Our findings question the causal link between the neuroimaging correlate of elementary motor sequence representation in the SMA and sequence generation, calling for a more thorough investigation of the role of this region in performance of learned motor sequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Learning in a Virtual Environment Using Haptic Systems for Movement Re-Education: Can This Medium Be Used for Remodeling Other Behaviors and Actions?

    PubMed Central

    Merians, Alma S; Fluet, Gerard G; Qiu, Qinyin; Lafond, Ian; Adamovich, Sergei V

    2011-01-01

    Robotic systems that are interfaced with virtual reality gaming and task simulations are increasingly being developed to provide repetitive intensive practice to promote increased compliance and facilitate better outcomes in rehabilitation post-stroke. A major development in the use of virtual environments (VEs) has been to incorporate tactile information and interaction forces into what was previously an essentially visual experience. Robots of varying complexity are being interfaced with more traditional virtual presentations to provide haptic feedback that enriches the sensory experience and adds physical task parameters. This provides forces that produce biomechanical and neuromuscular interactions with the VE that approximate real-world movement more accurately than visual-only VEs, simulating the weight and force found in upper extremity tasks. The purpose of this article is to present an overview of several systems that are commercially available for ambulation training and for training movement of the upper extremity. We will also report on the system that we have developed (NJIT-RAVR system) that incorporates motivating and challenging haptic feedback effects into VE simulations to facilitate motor recovery of the upper extremity post-stroke. The NJIT-RAVR system trains both the upper arm and the hand. The robotic arm acts as an interface between the participants and the VEs, enabling multiplanar movements against gravity in a three-dimensional workspace. The ultimate question is whether this medium can provide a motivating, challenging, gaming experience with dramatically decreased physical difficulty levels, which would allow for participation by an obese person and facilitate greater adherence to exercise regimes. PMID:21527097

  19. Musical Sequence Learning and EEG Correlates of Audiomotor Processing

    PubMed Central

    Schalles, Matt D.; Pineda, Jaime A.

    2015-01-01

    Our motor and auditory systems are functionally connected during musical performance, and functional imaging suggests that the association is strong enough that passive music listening can engage the motor system. As predictive coding constrains movement sequence selections, could the motor system contribute to sequential processing of musical passages? If this is the case, then we hypothesized that the motor system should respond preferentially to passages of music that contain similar sequential information, even if other aspects of music, such as the absolute pitch, have been altered. We trained piano naive subjects with a learn-to play-by-ear paradigm, to play a simple melodic sequence over five days. After training, we recorded EEG of subjects listening to the song they learned to play, a transposed version of that song, and a control song with different notes and sequence from the learned song. Beta band power over sensorimotor scalp showed increased suppression for the learned song, a moderate level of suppression for the transposed song, and no suppression for the control song. As beta power is associated with attention and motor processing, we interpret this as support of the motor system's activity during covert perception of music one can play and similar musical sequences. PMID:26527118

  20. Contextual interference effects on the acquisition of skill and strength of the bench press.

    PubMed

    Naimo, Marshall A; Zourdos, Michael C; Wilson, Jacob M; Kim, Jeong-Su; Ward, Emery G; Eccles, David W; Panton, Lynn B

    2013-06-01

    The purpose of this study was to investigate contextual interference effects on skill acquisition and strength gains during the learning of the bench press movement. Twenty-four healthy, college-aged males and females were stratified to control, high contextual interference (HCI), and low contextual interference (LCI) groups. Treatment groups were provided with written and visual instruction on proper bench press form and practiced the bench press and dart throwing for four weeks. Within each session, LCI performed all bench press sets before undertaking dart-throws. HCI undertook dart-throws immediately following each set of bench press. Control only did testing. Measurements, including one repetition maximum (1RM), checklist scores based on video recordings of participants' 1RM's, and dart-throw test scores were taken at pre-test, 1 week, 2 week, post-test, and retention test. Results were consistent with the basic premise of the contextual interference effect. LCI had significant improvements in percent 1RM and checklist scores during training, but were mostly absent after training (post-test and retention test). HCI had significant improvements in percent 1RM and checklist scores both during and after training. Thus, HCI may augment strength and movement skill on the bench press since proper technique is an important component of resistance exercise movements. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Transfer of Learning between Hemifields in Multiple Object Tracking: Memory Reduces Constraints of Attention

    PubMed Central

    Lapierre, Mark; Howe, Piers D. L.; Cropper, Simon J.

    2013-01-01

    Many tasks involve tracking multiple moving objects, or stimuli. Some require that individuals adapt to changing or unfamiliar conditions to be able to track well. This study explores processes involved in such adaptation through an investigation of the interaction of attention and memory during tracking. Previous research has shown that during tracking, attention operates independently to some degree in the left and right visual hemifields, due to putative anatomical constraints. It has been suggested that the degree of independence is related to the relative dominance of processes of attention versus processes of memory. Here we show that when individuals are trained to track a unique pattern of movement in one hemifield, that learning can be transferred to the opposite hemifield, without any evidence of hemifield independence. However, learning is not influenced by an explicit strategy of memorisation of brief periods of recognisable movement. The findings lend support to a role for implicit memory in overcoming putative anatomical constraints on the dynamic, distributed spatial allocation of attention involved in tracking multiple objects. PMID:24349555

  2. Neural correlates of skill acquisition: decreased cortical activity during a serial interception sequence learning task.

    PubMed

    Gobel, Eric W; Parrish, Todd B; Reber, Paul J

    2011-10-15

    Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of the frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Neural Correlates of Skill Acquisition: Decreased Cortical Activity During a Serial Interception Sequence Learning Task

    PubMed Central

    Gobel, Eric W.; Parrish, Todd B.; Reber, Paul J.

    2011-01-01

    Learning of complex motor skills requires learning of component movements as well as the sequential structure of their order and timing. Using a Serial Interception Sequence Learning (SISL) task, participants learned a sequence of precisely timed interception responses through training with a repeating sequence. Following initial implicit learning of the repeating sequence, functional MRI data were collected during performance of that known sequence and compared with activity evoked during novel sequences of actions, novel timing patterns, or both. Reduced activity was observed during the practiced sequence in a distributed bilateral network including extrastriate occipital, parietal, and premotor cortical regions. These reductions in evoked activity likely reflect improved efficiency in visuospatial processing, spatio-motor integration, motor planning, and motor execution for the trained sequence, which is likely supported by nondeclarative skill learning. In addition, the practiced sequence evoked increased activity in the left ventral striatum and medial prefrontal cortex, while the posterior cingulate was more active during periods of better performance. Many prior studies of perceptual-motor skill learning have found increased activity in motor areas of frontal cortex (e.g., motor and premotor cortex, SMA) and striatal areas (e.g., the putamen). The change in activity observed here (i.e., decreased activity across a cortical network) may reflect skill learning that is predominantly expressed through more accurate performance rather than decreased reaction time. PMID:21771663

  4. An evidence-based virtual reality training program for novice laparoscopic surgeons.

    PubMed

    Aggarwal, Rajesh; Grantcharov, Teodor P; Eriksen, Jens R; Blirup, Dorthe; Kristiansen, Viggo B; Funch-Jensen, Peter; Darzi, Ara

    2006-08-01

    To develop an evidence-based virtual reality laparoscopic training curriculum for novice laparoscopic surgeons to achieve a proficient level of skill prior to participating in live cases. Technical skills for laparoscopic surgery must be acquired within a competency-based curriculum that begins in the surgical skills laboratory. Implementation of this program necessitates the definition of the validity, learning curves and proficiency criteria on the training tool. The study recruited 40 surgeons, classified into experienced (performed >100 laparoscopic cholecystectomies) or novice groups (<10 laparoscopic cholecystectomies). Ten novices and 10 experienced surgeons were tested on basic tasks, and 11 novices and 9 experienced surgeons on a procedural module for dissection of Calot triangle. Performance of the 2 groups was assessed using time, error, and economy of movement parameters. All basic tasks demonstrated construct validity (Mann-Whitney U test, P < 0.05), and learning curves for novices plateaued at a median of 7 repetitions (Friedman's test, P < 0.05). Expert surgeons demonstrated a learning rate at a median of 2 repetitions (P < 0.05). Performance on the dissection module demonstrated significant differences between experts and novices (P < 0.002); learning curves for novice subjects plateaued at the fourth repetition (P < 0.05). Expert benchmark criteria were defined for validated parameters on each task. A competency-based training curriculum for novice laparoscopic surgeons has been defined. This can serve to ensure that junior trainees have acquired prerequisite levels of skill prior to entering the operating room, and put them directly into practice.

  5. The comparison between motor imagery and verbal rehearsal on the learning of sequential movements

    PubMed Central

    Saimpont, Arnaud; Lafleur, Martin F.; Malouin, Francine; Richards, Carol L.; Doyon, Julien; Jackson, hb Philip L.

    2013-01-01

    Mental practice refers to the cognitive rehearsal of a physical activity. It is widely used by athletes to enhance their performance and its efficiency to help train motor function in people with physical disabilities is now recognized. Mental practice is generally based on motor imagery (MI), i.e., the conscious simulation of a movement without its actual execution. It may also be based on verbal rehearsal (VR), i.e., the silent rehearsal of the labels associated with an action. In this study, the effect of MI training or VR on the learning and retention of a foot-sequence task was investigated. Thirty right-footed subjects, aged between 22 and 37 years old (mean: 27.4 ± 4.1 years) and randomly assigned to one of three groups, practiced a serial reaction time task involving a sequence of three dorsiflexions and three plantar flexions with the left foot. One group (n = 10) mentally practiced the sequence with MI for 5 weeks, another group (n = 10) mentally practiced the sequence with VR of the foot positions for the same duration, and a control group (n = 10) did not practice the sequence mentally. The time to perform the practiced sequence as well as an unpracticed sequence was recorded before training, immediately after training and 6 months after training (retention). The main results showed that the speed improvement after training was significantly greater in the MI group compared to the control group and tended to be greater in the VR group compared to the control group. The improvement in performance did not differ in the MI and VR groups. At retention, however, no difference in response times was found among the three groups, indicating that the effect of mental practice did not last over a long period without training. Interestingly, this pattern of results was similar for the practiced and non-practiced sequence. Overall, these results suggest that both MI training and VR help to improve motor performance and that mental practice may induce non-specific effects. PMID:24302905

  6. The emergence of mirror-like response properties from domain-general principles in vision and audition.

    PubMed

    Saygin, Ayse P; Dick, Frederic

    2014-04-01

    Like Cook et al., we suggest that mirror neurons are a fascinating product of cross-modal learning. As predicted by an associative account, responses in motor regions are observed for novel and/or abstract visual stimuli such as point-light and android movements. Domain-specific mirror responses also emerge as a function of audiomotor expertise that is slowly acquired over years of intensive training.

  7. [Transposition errors during learning to reproduce a sequence by the right- and the left-hand movements: simulation of positional and movement coding].

    PubMed

    Liakhovetskiĭ, V A; Bobrova, E V; Skopin, G N

    2012-01-01

    Transposition errors during the reproduction of a hand movement sequence make it possible to receive important information on the internal representation of this sequence in the motor working memory. Analysis of such errors showed that learning to reproduce sequences of the left-hand movements improves the system of positional coding (coding ofpositions), while learning of the right-hand movements improves the system of vector coding (coding of movements). Learning of the right-hand movements after the left-hand performance involved the system of positional coding "imposed" by the left hand. Learning of the left-hand movements after the right-hand performance activated the system of vector coding. Transposition errors during learning to reproduce movement sequences can be explained by neural network using either vector coding or both vector and positional coding.

  8. Physiological and psychophysiological responses to an exer-game training protocol.

    PubMed

    Bronner, Shaw; Pinsker, Russell; Naik, Rutika; Noah, J Adam

    2016-03-01

    Exer-games and virtual reality offer alternative opportunities to provide neuro-rehabilitation and exercise that are fun. Our goal was to determine how effective they are in achieving motor learning goals and fitness benefits as players gain experience. We employed a repeated measures design to determine changes in physical exertion and engagement with training. Fourteen healthy adults trained on the XBOX Kinect video game Dance Central using a skill-based protocol to examine changes in energy expenditure (EE), heart rate (HR), METs, limb movement, game proficiency, and player engagement in initial, post-training, and transfer-testing of a full-body dance exer-game. Data were analyzed using repeated measures analysis of variance, p<0.05. Both EE, HR, and METs increased from initial (EE 4.89±1.35, HR 103±18, METs 4.25±0.72) to post-training (EE 5.92±1.25, HR 110±15, METs 5.05±0.75) and were greatest during transfer-testing (EE 6.34±1.35, HR 115±17, METs 5.42±0.88, p≤0.001). Proficiency, measured by game scores, also increased from initial to post-training and transfer-testing (p≤0.002). Limb movement and player engagement remained unchanged. It is important to understand whether player physiological and psychophysiological responses change with continued game-play. Although Dance Central involves whole-body movement, physical exertion remained at moderate levels after training. As exer-game and virtual reality systems move from their initial novelty, research about how players react to continued involvement with a game can guide game developers to maintain a freshness through game progression that preserves the participant's attentional focus, minimizes attrition and maintains a prescribed level of energy exertion. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Daytime Sleep Enhances Consolidation of the Spatial but Not Motoric Representation of Motor Sequence Memory

    PubMed Central

    Albouy, Geneviève; Fogel, Stuart; Pottiez, Hugo; Nguyen, Vo An; Ray, Laura; Lungu, Ovidiu; Carrier, Julie; Robertson, Edwin; Doyon, Julien

    2013-01-01

    Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap) on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial) and egocentric (motor) representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM) sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle) or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates. PMID:23300993

  10. Short time sports exercise boosts motor imagery patterns: implications of mental practice in rehabilitation programs

    PubMed Central

    Wriessnegger, Selina C.; Steyrl, David; Koschutnig, Karl; Müller-Putz, Gernot R.

    2014-01-01

    Motor imagery (MI) is a commonly used paradigm for the study of motor learning or cognitive aspects of action control. The rationale for using MI training to promote the relearning of motor function arises from research on the functional correlates that MI shares with the execution of physical movements. While most of the previous studies investigating MI were based on simple movements in the present study a more attractive mental practice was used to investigate cortical activation during MI. We measured cerebral responses with functional magnetic resonance imaging (fMRI) in twenty three healthy volunteers as they imagined playing soccer or tennis before and after a short physical sports exercise. Our results demonstrated that only 10 min of training are enough to boost MI patterns in motor related brain regions including premotor cortex and supplementary motor area (SMA) but also fronto-parietal and subcortical structures. This supports previous findings that MI has beneficial effects especially in combination with motor execution when used in motor rehabilitation or motor learning processes. We conclude that sports MI combined with an interactive game environment could be a promising additional tool in future rehabilitation programs aiming to improve upper or lower limb functions or support neuroplasticity. PMID:25071505

  11. Tandem internal models execute motor learning in the cerebellum.

    PubMed

    Honda, Takeru; Nagao, Soichi; Hashimoto, Yuji; Ishikawa, Kinya; Yokota, Takanori; Mizusawa, Hidehiro; Ito, Masao

    2018-06-25

    In performing skillful movement, humans use predictions from internal models formed by repetition learning. However, the computational organization of internal models in the brain remains unknown. Here, we demonstrate that a computational architecture employing a tandem configuration of forward and inverse internal models enables efficient motor learning in the cerebellum. The model predicted learning adaptations observed in hand-reaching experiments in humans wearing a prism lens and explained the kinetic components of these behavioral adaptations. The tandem system also predicted a form of subliminal motor learning that was experimentally validated after training intentional misses of hand targets. Patients with cerebellar degeneration disease showed behavioral impairments consistent with tandemly arranged internal models. These findings validate computational tandemization of internal models in motor control and its potential uses in more complex forms of learning and cognition. Copyright © 2018 the Author(s). Published by PNAS.

  12. The effects of differential and variable training on the quality parameters of a handball throw.

    PubMed

    Wagner, Herbert; Müller, Erich

    2008-01-01

    The aim of this study was to undertake a comprehensive temporal, effective, and practical training study (variable and differential learning) that would offer athletes the opportunity to increase their performance, and to analyse the effects by measuring kinematics and quality parameters. Two participants of differing standards--a player of the first Austrian League and an Olympic and World Champion--but of similar anthropometric characteristics were recruited. One of the participants (Austrian League) was tested on five different occasions (pre-test and four retests) to measure the effects of four different training phases using kinematic analysis. The results of the study indicate an increase in ball velocity within the differential training phases (first, second, and fourth phases), different proximal-to-distal sequences of the participants, and a change of movement pattern during training measured by the segment velocities and the angle-time courses.

  13. Neutralization of Nogo-A Enhances Synaptic Plasticity in the Rodent Motor Cortex and Improves Motor Learning in Vivo

    PubMed Central

    Weinmann, Oliver; Kellner, Yves; Yu, Xinzhu; Vicente, Raul; Gullo, Miriam; Kasper, Hansjörg; Lussi, Karin; Ristic, Zorica; Luft, Andreas R.; Rioult-Pedotti, Mengia; Zuo, Yi; Zagrebelsky, Marta; Schwab, Martin E.

    2014-01-01

    The membrane protein Nogo-A is known as an inhibitor of axonal outgrowth and regeneration in the CNS. However, its physiological functions in the normal adult CNS remain incompletely understood. Here, we investigated the role of Nogo-A in cortical synaptic plasticity and motor learning in the uninjured adult rodent motor cortex. Nogo-A and its receptor NgR1 are present at cortical synapses. Acute treatment of slices with function-blocking antibodies (Abs) against Nogo-A or against NgR1 increased long-term potentiation (LTP) induced by stimulation of layer 2/3 horizontal fibers. Furthermore, anti-Nogo-A Ab treatment increased LTP saturation levels, whereas long-term depression remained unchanged, thus leading to an enlarged synaptic modification range. In vivo, intrathecal application of Nogo-A-blocking Abs resulted in a higher dendritic spine density at cortical pyramidal neurons due to an increase in spine formation as revealed by in vivo two-photon microscopy. To investigate whether these changes in synaptic plasticity correlate with motor learning, we trained rats to learn a skilled forelimb-reaching task while receiving anti-Nogo-A Abs. Learning of this cortically controlled precision movement was improved upon anti-Nogo-A Ab treatment. Our results identify Nogo-A as an influential molecular modulator of synaptic plasticity and as a regulator for learning of skilled movements in the motor cortex. PMID:24966370

  14. A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition.

    PubMed

    Statton, Matthew A; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J

    2015-01-01

    Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise-resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs.

  15. A Single Bout of Moderate Aerobic Exercise Improves Motor Skill Acquisition

    PubMed Central

    Statton, Matthew A.; Encarnacion, Marysol; Celnik, Pablo; Bastian, Amy J.

    2015-01-01

    Long-term exercise is associated with improved performance on a variety of cognitive tasks including attention, executive function, and long-term memory. Remarkably, recent studies have shown that even a single bout of aerobic exercise can lead to immediate improvements in declarative learning and memory, but less is known about the effect of exercise on motor learning. Here we sought to determine the effect of a single bout of moderate intensity aerobic exercise on motor skill learning. In experiment 1, we investigated the effect of moderate aerobic exercise on motor acquisition. 24 young, healthy adults performed a motor learning task either immediately after 30 minutes of moderate intensity running, after running followed by a long rest period, or after slow walking. Motor skill was assessed via a speed-accuracy tradeoff function to determine how exercise might differentially affect two distinct components of motor learning performance: movement speed and accuracy. In experiment 2, we investigated both acquisition and retention of motor skill across multiple days of training. 20 additional participants performed either a bout of running or slow walking immediately before motor learning on three consecutive days, and only motor learning (no exercise) on a fourth day. We found that moderate intensity running led to an immediate improvement in motor acquisition for both a single session and on multiple sessions across subsequent days, but had no effect on between-day retention. This effect was driven by improved movement accuracy, as opposed to speed. However, the benefit of exercise was dependent upon motor learning occurring immediately after exercise–resting for a period of one hour after exercise diminished the effect. These results demonstrate that moderate intensity exercise can prime the nervous system for the acquisition of new motor skills, and suggest that similar exercise protocols may be effective in improving the outcomes of movement rehabilitation programs. PMID:26506413

  16. A literature review on observational learning for medical motor skills and anesthesia teaching.

    PubMed

    Cordovani, Ligia; Cordovani, Daniel

    2016-12-01

    Motor skill practice is very important to improve performance of medical procedures and could be enhanced by observational practice. Observational learning could be particularly important in the medical field considering that patients' safety prevails over students' training. The mechanism of observational learning is based on the mirror neuron system, originally discovered in the monkey pre-motor cortex. Today we know that humans have a similar system, and its role is to understand and reproduce the observed actions of others. Many studies conclude that humans are able to plan and to make movements based on visual information by mapping a representation of observed actions, especially when the motor system is committed to do it. Moreover most researchers considered observational learning effective for complex skills, such as medical procedures. Additionally, observational learning could play a relevant role during anesthesia training since the learner works in pairs most of the time (dyad practice). Some teaching approaches should be taken into consideration: an implicit engagement of the observer motor system is required, immediate feedback seems to have an important effect, and a combination of observational and physical practice could be better than physical practice alone. In an environment where effectiveness and efficacy are essential, observational learning seems to fit well.

  17. Reconstruction of shifting elbow joint compliant characteristics during fast and slow movements.

    PubMed

    Latash, M L; Gottlieb, G L

    1991-01-01

    The purpose of this study was to experimentally investigate the applicability of the equilibrium-point hypothesis to the dynamics of single-joint movements. Subjects were trained to perform relatively slow (movement time 600-1000 ms) or fast (movement time 200-300 ms) single-joint elbow flexion movements against a constant extending torque bias. They were instructed to reproduce the same time pattern of central motor command for a series of movements when the external torque could slowly and unpredictably increase, decrease, or remain constant. For fast movements, the total muscle torque was calculated as a sum of external and inertial components. Analysis of the data allowed reconstruction of the elbow joint compliant characteristics at different times during execution of the learned motor command. "Virtual" trajectories of the movements, representing time-varying changes in a central control parameter, were reconstructed and compared with the "actual" trajectories. For slow movements, the actual trajectories lagged behind the virtual ones. There were no consistent changes in the joint stiffness during slow movements. Similar analysis of experiments without voluntary movements demonstrated a lack of changes in the central parameters, supporting the assumption that the subjects were able to keep the same central motor command in spite of externally imposed unexpected torque perturbations. For the fast movements, the virtual trajectories were N-shaped, and the joint stiffness demonstrated a considerable increase near the middle of the movement. These findings contradict an hypothesis of monotonic joint compliant characteristic translation at a nearly constant rate during such movements.

  18. Creating collaborative learning environments for transforming primary care practices now.

    PubMed

    Miller, William L; Cohen-Katz, Joanne

    2010-12-01

    The renewal of primary care waits just ahead. The patient-centered medical home (PCMH) movement and a refreshing breeze of collaboration signal its arrival with demonstration projects and pilots appearing across the country. An early message from this work suggests that the development of collaborative, cross-disciplinary teams may be essential for the success of the PCMH. Our focus in this article is on training existing health care professionals toward being thriving members of this transformed clinical care team in a relationship-centered PCMH. Our description of the optimal conditions for collaborative training begins with delineating three types of teams and how they relate to levels of collaboration. We then describe how to create a supportive, safe learning environment for this type of training, using a different model of professional socialization, and tools for building culture. Critical skills related to practice development and the cross-disciplinary collaborative processes are also included. Despite significant obstacles in readying current clinicians to be members of thriving collaborative teams, a few next steps toward implementing collaborative training programs for existing professionals are possible using competency-based and adult learning approaches. Grasping the long awaited arrival of collaborative primary health care will also require delivery system and payment reform. Until that happens, there is an abundance of work to be done envisioning new collaborative training programs and initiating a nation-wide effort to motivate and reeducate our colleagues. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  19. Verbal Auditory Cueing of Improvisational Dance: A Proposed Method for Training Agency in Parkinson’s Disease

    PubMed Central

    Batson, Glenna; Hugenschmidt, Christina E.; Soriano, Christina T.

    2016-01-01

    Dance is a non-pharmacological intervention that helps maintain functional independence and quality of life in people with Parkinson’s disease (PPD). Results from controlled studies on group-delivered dance for people with mild-to-moderate stage Parkinson’s have shown statistically and clinically significant improvements in gait, balance, and psychosocial factors. Tested interventions include non-partnered dance forms (ballet and modern dance) and partnered (tango). In all of these dance forms, specific movement patterns initially are learned through repetition and performed in time-to-music. Once the basic steps are mastered, students may be encouraged to improvise on the learned steps as they perform them in rhythm with the music. Here, we summarize a method of teaching improvisational dance that advances previous reported benefits of dance for people with Parkinson’s disease (PD). The method relies primarily on improvisational verbal auditory cueing with less emphasis on directed movement instruction. This method builds on the idea that daily living requires flexible, adaptive responses to real-life challenges. In PD, movement disorders not only limit mobility but also impair spontaneity of thought and action. Dance improvisation demands open and immediate interpretation of verbally delivered movement cues, potentially fostering the formation of spontaneous movement strategies. Here, we present an introduction to a proposed method, detailing its methodological specifics, and pointing to future directions. The viewpoint advances an embodied cognitive approach that has eco-validity in helping PPD meet the changing demands of daily living. PMID:26925029

  20. Long-term training modifies the modular structure and organization of walking balance control

    PubMed Central

    Allen, Jessica L.

    2015-01-01

    How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. PMID:26467521

  1. Long-term training modifies the modular structure and organization of walking balance control.

    PubMed

    Sawers, Andrew; Allen, Jessica L; Ting, Lena H

    2015-12-01

    How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. Copyright © 2015 the American Physiological Society.

  2. Al-Qaeda's operational evolution: behavioral and organizational perspectives.

    PubMed

    Borum, Randy; Gelles, Michael

    2005-01-01

    Al-Qaeda is widely regarded by the military, law enforcement, diplomatic, and intelligence communities as being the foremost threat to U.S. national security and safety. The nature of this threat, however, has changed since al-Qaeda first emerged in the late 1980s. This article describes the emergence of a new form of transnational terrorism and details al-Qaeda's progression from being an organization to an ideological movement. Drawing on a theory of social movements, we analyze its trajectory and the levels of influence. We also offer a behavioral perspective in explaining how al-Qaeda has adapted as a learning organization with new leadership, tactics, and patterns of recruitment and training.

  3. Commentary driver training: Effects of commentary exposure, practice and production on hazard perception and eye movements.

    PubMed

    Young, Angela H; Crundall, David; Chapman, Peter

    2017-04-01

    Commentary driving typically involves being trained in how to produce a verbal running commentary about what you can see, what you are doing, what might happen and what action you will take to avoid potential hazards, while driving. Although video-based commentary training has been associated with subsequent hazard perception improvements, it can have a negative impact on hazard perception when a live commentary is produced at test (Young, Chapman, & Crundall, 2014). In the current study we use balanced training and testing blocks to isolate the effects of commentary exposure, production of a commentary with and without practice, and learning from earlier self-generation of commentary on behavioural and eye movement measures. Importantly, both commentary exposed and unexposed groups gave hazard perception responses during the commentary video, ensuring that the unexposed control group remained engaged in the procedure throughout. Results show that producing a live commentary is detrimental to concurrent hazard perception, even after practice, and does not enhance any later effect of commentary exposure. Although commentary exposure led to an initial increase in the accuracy of hazard perception responses, this effect was limited to the first occasion of testing, and showed no later benefits relative to engaged hazard exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The effect of augmented reality training on percutaneous needle placement in spinal facet joint injections.

    PubMed

    Yeo, Caitlin T; Ungi, Tamas; U-Thainual, Paweena; Lasso, Andras; McGraw, Robert C; Fichtinger, Gabor

    2011-07-01

    The purpose of this study was to determine if augmented reality image overlay and laser guidance systems can assist medical trainees in learning the correct placement of a needle for percutaneous facet joint injection. The Perk Station training suite was used to conduct and record the needle insertion procedures. A total of 40 volunteers were randomized into two groups of 20. 1) The Overlay group received a training session that consisted of four insertions with image and laser guidance, followed by two insertions with laser overlay only. 2) The Control group received a training session of six classical freehand insertions. Both groups then conducted two freehand insertions. The movement of the needle was tracked during the series of insertions. The final insertion procedure was assessed to determine if there was a benefit to the overlay method compared to the freehand insertions. The Overlay group had a better success rate (83.3% versus 68.4%, p=0.002), and potential for less tissue damage as measured by the amount of needle movement inside the phantom (3077.6 mm(2) versus 5607.9 mm(2) , p =0.01). These results suggest that an augmented reality overlay guidance system can assist medical trainees in acquiring technical competence in a percutaneous needle insertion procedure. © 2011 IEEE

  5. A unified probabilistic framework for spontaneous facial action modeling and understanding.

    PubMed

    Tong, Yan; Chen, Jixu; Ji, Qiang

    2010-02-01

    Facial expression is a natural and powerful means of human communication. Recognizing spontaneous facial actions, however, is very challenging due to subtle facial deformation, frequent head movements, and ambiguous and uncertain facial motion measurements. Because of these challenges, current research in facial expression recognition is limited to posed expressions and often in frontal view. A spontaneous facial expression is characterized by rigid head movements and nonrigid facial muscular movements. More importantly, it is the coherent and consistent spatiotemporal interactions among rigid and nonrigid facial motions that produce a meaningful facial expression. Recognizing this fact, we introduce a unified probabilistic facial action model based on the Dynamic Bayesian network (DBN) to simultaneously and coherently represent rigid and nonrigid facial motions, their spatiotemporal dependencies, and their image measurements. Advanced machine learning methods are introduced to learn the model based on both training data and subjective prior knowledge. Given the model and the measurements of facial motions, facial action recognition is accomplished through probabilistic inference by systematically integrating visual measurements with the facial action model. Experiments show that compared to the state-of-the-art techniques, the proposed system yields significant improvements in recognizing both rigid and nonrigid facial motions, especially for spontaneous facial expressions.

  6. Effect of Movement Velocity During Resistance Training on Dynamic Muscular Strength: A Systematic Review and Meta-Analysis.

    PubMed

    Davies, Timothy B; Kuang, Kenny; Orr, Rhonda; Halaki, Mark; Hackett, Daniel

    2017-08-01

    Movement velocity is an acute resistance-training variable that can be manipulated to potentially optimize dynamic muscular strength development. However, it is unclear whether performing faster or slower repetitions actually influences dynamic muscular strength gains. We conducted a systematic review and meta-analysis to examine the effect of movement velocity during resistance training on dynamic muscular strength. Five electronic databases were searched using terms related to movement velocity and resistance training. Studies were deemed eligible for inclusion if they met the following criteria: randomized and non-randomized comparative studies; published in English; included healthy adults; used isotonic resistance-exercise interventions directly comparing fast or explosive training to slower movement velocity training; matched in prescribed intensity and volume; duration ≥4 weeks; and measured dynamic muscular strength changes. A total of 15 studies were identified that investigated movement velocity in accordance with the criteria outlined. Fast and moderate-slow resistance training were found to produce similar increases in dynamic muscular strength when all studies were included. However, when intensity was accounted for, there was a trend for a small effect favoring fast compared with moderate-slow training when moderate intensities, defined as 60-79% one repetition maximum, were used (effect size 0.31; p = 0.06). Strength gains between conditions were not influenced by training status and age. Overall, the results suggest that fast and moderate-slow resistance training improve dynamic muscular strength similarly in individuals within a wide range of training statuses and ages. Resistance training performed at fast movement velocities using moderate intensities showed a trend for superior muscular strength gains as compared to moderate-slow resistance training. Both training practices should be considered for novice to advanced, young and older resistance trainers targeting dynamic muscular strength.

  7. A balanced motor primitive framework can simultaneously explain motor learning in unimanual and bimanual movements.

    PubMed

    Takiyama, Ken; Sakai, Yutaka

    2017-02-01

    Certain theoretical frameworks have successfully explained motor learning in either unimanual or bimanual movements. However, no single theoretical framework can comprehensively explain motor learning in both types of movement because the relationship between these two types of movement remains unclear. Although our recent model of a balanced motor primitive framework attempted to simultaneously explain motor learning in unimanual and bimanual movements, this model focused only on a limited subset of bimanual movements and therefore did not elucidate the relationships between unimanual movements and various bimanual movements. Here, we extend the balanced motor primitive framework to simultaneously explain motor learning in unimanual and various bimanual movements as well as the transfer of learning effects between unimanual and various bimanual movements; these phenomena can be simultaneously explained if the mean activity of each primitive for various unimanual movements is balanced with the corresponding mean activity for various bimanual movements. Using this balanced condition, we can reproduce the results of prior behavioral and neurophysiological experiments. Furthermore, we demonstrate that the balanced condition can be implemented in a simple neural network model. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Learning optimal eye movements to unusual faces

    PubMed Central

    Peterson, Matthew F.; Eckstein, Miguel P.

    2014-01-01

    Eye movements, which guide the fovea’s high resolution and computational power to relevant areas of the visual scene, are integral to efficient, successful completion of many visual tasks. How humans modify their eye movements through experience with their perceptual environments, and its functional role in learning new tasks, has not been fully investigated. Here, we used a face identification task where only the mouth discriminated exemplars to assess if, how, and when eye movement modulation may mediate learning. By interleaving trials of unconstrained eye movements with trials of forced fixation, we attempted to separate the contributions of eye movements and covert mechanisms to performance improvements. Without instruction, a majority of observers substantially increased accuracy and learned to direct their initial eye movements towards the optimal fixation point. The proximity of an observer’s default face identification eye movement behavior to the new optimal fixation point and the observer’s peripheral processing ability were predictive of performance gains and eye movement learning. After practice in a subsequent condition in which observers were directed to fixate different locations along the face, including the relevant mouth region, all observers learned to make eye movements to the optimal fixation point. In this fully learned state, augmented fixation strategy accounted for 43% of total efficiency improvements while covert mechanisms accounted for the remaining 57%. The findings suggest a critical role for eye movement planning to perceptual learning, and elucidate factors that can predict when and how well an observer can learn a new task with unusual exemplars. PMID:24291712

  9. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network.

    PubMed

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions.

  10. Sequence learning in Parkinson's disease: Focusing on action dynamics and the role of dopaminergic medication.

    PubMed

    Ruitenberg, Marit F L; Duthoo, Wout; Santens, Patrick; Seidler, Rachael D; Notebaert, Wim; Abrahamse, Elger L

    2016-12-01

    Previous studies on movement sequence learning in Parkinson's disease (PD) have produced mixed results. A possible explanation for the inconsistent findings is that some studies have taken dopaminergic medication into account while others have not. Additionally, in previous studies the response modalities did not allow for an investigation of the action dynamics of sequential movements as they unfold over time. In the current study we investigated sequence learning in PD by specifically considering the role of medication status in a sequence learning task where mouse movements were performed. The focus on mouse movements allowed us to examine the action dynamics of sequential movement in terms of initiation time, movement time, movement accuracy, and velocity. PD patients performed the sequence learning task once on their regular medication, and once after overnight withdrawal from their medication. Results showed that sequence learning as reflected in initiation times was impaired when PD patients performed the task ON medication compared to OFF medication. In contrast, sequence learning as reflected in the accuracy of movement trajectories was enhanced when performing the task ON compared to OFF medication. Our findings suggest that while medication enhances execution processes of movement sequence learning, it may at the same time impair planning processes that precede actual execution. Overall, the current study extends earlier findings on movement sequence learning in PD by differentiating between various components of performance, and further refines previous dopamine overdose effects in sequence learning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Virtual reality welder training

    NASA Astrophysics Data System (ADS)

    White, Steven A.; Reiners, Dirk; Prachyabrued, Mores; Borst, Christoph W.; Chambers, Terrence L.

    2010-01-01

    This document describes the Virtual Reality Simulated MIG Lab (sMIG), a system for Virtual Reality welder training. It is designed to reproduce the experience of metal inert gas (MIG) welding faithfully enough to be used as a teaching tool for beginning welding students. To make the experience as realistic as possible it employs physically accurate and tracked input devices, a real-time welding simulation, real-time sound generation and a 3D display for output. Thanks to being a fully digital system it can go beyond providing just a realistic welding experience by giving interactive and immediate feedback to the student to avoid learning wrong movements from day 1.

  12. Differences in Learning Volitional (Manual) and Non-Volitional (Posture) Aspects of a Complex Motor Skill in Young Adult Dyslexic and Skilled Readers

    PubMed Central

    Sela, Itamar; Karni, Avi

    2012-01-01

    The ‘Cerebellar Deficit Theory’ of developmental dyslexia proposes that a subtle developmental cerebellar dysfunction leads to deficits in attaining ‘automatic’ procedures and therefore manifests as subtle motor impairments (e.g., balance control, motor skill learning) in addition to the reading and phonological difficulties. A more recent version of the theory suggests a core deficit in motor skill acquisition. This study was undertaken to compare the time-course and the nature of practice-related changes in volitional (manual) and non-volitional (posture) motor performance in dyslexic and typical readers while learning a new movement sequence. Seventeen dyslexic and 26 skilled young adult readers underwent a three-session training program in which they practiced a novel sequence of manual movements while standing in a quiet stance position. Both groups exhibited robust and well-retained gains in speed, with no loss of accuracy, on the volitional, manual, aspects of the task, with a time-course characteristic of procedural learning. However, the dyslexic readers exhibited a pervasive slowness in the initiation of volitional performance. In addition, while typical readers showed clear and well-retained task-related adaptation of the balance and posture control system, the dyslexic readers had significantly larger sway and variance of sway throughout the three sessions and were less efficient in adapting the posture control system to support the acquisition of the novel movement sequence. These results support the notion of a non-language-related deficit in developmental dyslexia, one related to the recruitment of motor systems for effective task performance rather than to a general motor learning disability. PMID:23049736

  13. Perceptual Learning in Children With Infantile Nystagmus: Effects on 2D Oculomotor Behavior.

    PubMed

    Huurneman, Bianca; Boonstra, F Nienke; Goossens, Jeroen

    2016-08-01

    To determine changes in oculomotor behavior after 10 sessions of perceptual learning on a letter discrimination task in children with infantile nystagmus (IN). Children with IN (18 children with idiopathic IN and 18 with oculocutaneous albinism accompanied by IN) aged 6 to 11 years were divided into two training groups matched on diagnosis: an uncrowded training group (n = 18) and a crowded training group (n = 18). Target letters always appeared briefly (500 ms) at an eccentric location, forcing subjects to quickly redirect their gaze. Training occurred twice per week for 5 consecutive weeks (3500 trials total). Norm data and test-retest values were collected from children with normal vision (n = 11). Outcome measures were: nystagmus characteristics (amplitude, frequency, intensity, and the expanded nystagmus acuity function); fixation stability (the bivariate contour ellipse area and foveation time); and saccadic eye movements (latencies and accuracy) made during a simple saccade task and a crowded letter-identification task. After training, saccadic responses of children with IN improved on the saccade task (latencies decreased by 14 ± 4 ms and gains increased by 0.03 ± 0.01), but not on the crowded letter task. There were also no training-induced changes in nystagmus characteristics and fixation stability. Although children with normal vision had shorter latencies in the saccade task (47 ± 14 ms at baseline), test-retest changes in their saccade gains and latencies were almost equal to the training effects observed in children with IN. Our results suggest that the improvement in visual performance after perceptual learning in children with IN is primarily due to improved sensory processing rather than improved two-dimensional oculomotor behavior.

  14. Enhancing astronaut performance using sensorimotor adaptability training

    PubMed Central

    Bloomberg, Jacob J.; Peters, Brian T.; Cohen, Helen S.; Mulavara, Ajitkumar P.

    2015-01-01

    Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments—enhancing their ability to “learn to learn.” We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts. PMID:26441561

  15. Enhancing astronaut performance using sensorimotor adaptability training.

    PubMed

    Bloomberg, Jacob J; Peters, Brian T; Cohen, Helen S; Mulavara, Ajitkumar P

    2015-01-01

    Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments-enhancing their ability to "learn to learn." We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.

  16. Kinematics effectively delineate accomplished users of endovascular robotics with a physical training model.

    PubMed

    Duran, Cassidy; Estrada, Sean; O'Malley, Marcia; Lumsden, Alan B; Bismuth, Jean

    2015-02-01

    Endovascular robotics systems, now approved for clinical use in the United States and Europe, are seeing rapid growth in interest. Determining who has sufficient expertise for safe and effective clinical use remains elusive. Our aim was to analyze performance on a robotic platform to determine what defines an expert user. During three sessions, 21 subjects with a range of endovascular expertise and endovascular robotic experience (novices <2 hours to moderate-extensive experience with >20 hours) performed four tasks on a training model. All participants completed a 2-hour training session on the robot by a certified instructor. Completion times, global rating scores, and motion metrics were collected to assess performance. Electromagnetic tracking was used to capture and to analyze catheter tip motion. Motion analysis was based on derivations of speed and position including spectral arc length and total number of submovements (inversely proportional to proficiency of motion) and duration of submovements (directly proportional to proficiency). Ninety-eight percent of competent subjects successfully completed the tasks within the given time, whereas 91% of noncompetent subjects were successful. There was no significant difference in completion times between competent and noncompetent users except for the posterior branch (151 s:105 s; P = .01). The competent users had more efficient motion as evidenced by statistically significant differences in the metrics of motion analysis. Users with >20 hours of experience performed significantly better than those newer to the system, independent of prior endovascular experience. This study demonstrates that motion-based metrics can differentiate novice from trained users of flexible robotics systems for basic endovascular tasks. Efficiency of catheter movement, consistency of performance, and learning curves may help identify users who are sufficiently trained for safe clinical use of the system. This work will help identify the learning curve and specific movements that translate to expert robotic navigation. Copyright © 2015 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  17. Using Mindful Movement in Cooperative Learning while Learning about Angles

    ERIC Educational Resources Information Center

    Shoval, Ella

    2011-01-01

    Unlike studies on cooperative learning that have focused on the verbal communication aspect of learning, this study focuses on the non-verbal aspect--mindful movement, which is the use of body movement to aid academic learning. Our research examined the link between five learning activities occurring within a cooperative group of children using…

  18. From Social Movement Learning to Sociomaterial Movement Learning? Addressing the Possibilities and Limits of New Materialism

    ERIC Educational Resources Information Center

    McGregor, Callum

    2014-01-01

    In recent years academic interest in social movement learning (SML) has flourished. "Studies in the Education of Adults" has arguably emerged as the premier international forum for exploring the links between adult learning and movements for progressive change. In parallel to this subfield, yet largely in isolation from it,…

  19. Neurofeedback training of alpha-band coherence enhances motor performance.

    PubMed

    Mottaz, Anais; Solcà, Marco; Magnin, Cécile; Corbet, Tiffany; Schnider, Armin; Guggisberg, Adrian G

    2015-09-01

    Neurofeedback training of motor cortex activations with brain-computer interface systems can enhance recovery in stroke patients. Here we propose a new approach which trains resting-state functional connectivity associated with motor performance instead of activations related to movements. Ten healthy subjects and one stroke patient trained alpha-band coherence between their hand motor area and the rest of the brain using neurofeedback with source functional connectivity analysis and visual feedback. Seven out of ten healthy subjects were able to increase alpha-band coherence between the hand motor cortex and the rest of the brain in a single session. The patient with chronic stroke learned to enhance alpha-band coherence of his affected primary motor cortex in 7 neurofeedback sessions applied over one month. Coherence increased specifically in the targeted motor cortex and in alpha frequencies. This increase was associated with clinically meaningful and lasting improvement of motor function after stroke. These results provide proof of concept that neurofeedback training of alpha-band coherence is feasible and behaviorally useful. The study presents evidence for a role of alpha-band coherence in motor learning and may lead to new strategies for rehabilitation. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Improving Exercise Performance with an Accelerometer-Based Smartphone App: A Randomized Controlled Trial.

    PubMed

    Bittel, Daniel C; Bittel, Adam J; Williams, Christine; Elazzazi, Ashraf

    2017-05-01

    Proper exercise form is critical for the safety and efficacy of therapeutic exercise. This research examines if a novel smartphone application, designed to monitor and provide real-time corrections during resistance training, can reduce performance errors and elicit a motor learning response. Forty-two participants aged 18 to 65 years were randomly assigned to treatment and control groups. Both groups were tested for the number of movement errors made during a 10-repetition set completed at baseline, immediately after, and 1 to 2 weeks after a single training session of knee extensions. The treatment group trained with real-time, smartphone-generated feedback, whereas the control subjects did not. Group performance (number of errors) was compared across test sets using a 2-factor mixed-model analysis of variance. No differences were observed between groups for age, sex, or resistance training experience. There was a significant interaction between test set and group. The treatment group demonstrated fewer errors on posttests 1 and 2 compared with pretest (P < 0.05). There was no reduction in the number of errors on any posttest for control subjects. Smartphone apps, such as the one used in this study, may enhance patient supervision, safety, and exercise efficacy across rehabilitation settings. A single training session with the app promoted motor learning and improved exercise performance.

  1. Fundamental movement skills in preschoolers: a randomized controlled trial targeting object control proficiency.

    PubMed

    Donath, L; Faude, O; Hagmann, S; Roth, R; Zahner, L

    2015-11-01

    Adequately developed fundamental movement skills, particularly object control dimensions, are considered essential to learn more complex movement patterns and to increase the likelihood to successfully participate in organized and non-organized sports during later years. Thus, the present randomized controlled trial aimed at improving object control dimensions at an early state in a kindergarten setting. Catching, throwing, kicking, rolling and stationary dribbling were assessed via gross motor development 2 (TGMD-2) testing in 41 normally developed preschoolers. On a cluster-randomized basis [strata: age, sex and body mass index (BMI)], three kindergartens were randomly assigned to an intervention group (n = 22, INT, age: 4.6 ± 1.0 years; BMI: 16.2 ± 1.1 kg/m(2) ) and three to a control group (n = 19, CON: age: 4.5 ± 1.2 years; BMI: 16.8 ± 1.2 kg/m(2) ). Twelve structured training sessions were given within 6 weeks (12 sessions). The total training volume was 330 min. Moderate time × group interaction were observed for the total sum score (Δ+22%, P = 0.05) and dribbling (Δ+41%, P = 0.002). Adjusting for baseline differences analyses of covariance did not affect these results. Interestingly, likely to most likely practically worthwhile effects were detected for the total sum score, catching and dribbling. Object control dimensions such as dribbling and catching that apparently rely on rhythmical movement patterns and anticipatory eye-hand coordination seem to benefit from short-term object control training. These skills are considered important for successful team-sport participation and appropriate sportive motor development. © 2015 John Wiley & Sons Ltd.

  2. Experiencing a reaching task passively with one arm while adapting to a visuomotor rotation with the other can lead to substantial transfer of motor learning across the arms.

    PubMed

    Bao, Shancheng; Lei, Yuming; Wang, Jinsung

    2017-01-18

    The extent of transfer following visuomotor adaptation across the arms is typically limited as compared to that within the same arm. However, we have demonstrated that interlimb transfer can occur nearly completely if one arm performs reaching movements associated with a desired trajectory repeatedly and actively during an initial training session in which the other arm adapts to a novel visuomotor adaptation. Based on that finding, we argued that the absence of instances associated with specific motor effectors is the major reason for limited interlimb transfer. Here, we examined whether providing movement instances associated with one arm passively while adapting to a visuomotor rotation with the opposite arm could also lead to a greater extent of interlimb transfer. We had subjects perform reaching movements either actively or passively with the right arm while adapting to a 30° visuomotor rotation with the left arm (training session), and then had them perform reaching movements under the rotation condition with the right arm (transfer session). Results showed that the extent of transfer observed in the active and the passive training groups was significantly greater than that observed in a control group who only experienced the testing session. This finding suggests that providing effector-specific instances can increase the extent of interlimb transfer substantially, regardless of whether the instances are provided actively or passively. The current finding may have implications for neurorehabilitation targeted for individuals with motor impairment, such as persons with stroke or spinal cord injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Learning in a virtual environment using haptic systems for movement re-education: can this medium be used for remodeling other behaviors and actions?

    PubMed

    Merians, Alma S; Fluet, Gerard G; Qiu, Qinyin; Lafond, Ian; Adamovich, Sergei V

    2011-03-01

    Robotic systems that are interfaced with virtual reality gaming and task simulations are increasingly being developed to provide repetitive intensive practice to promote increased compliance and facilitate better outcomes in rehabilitation post-stroke. A major development in the use of virtual environments (VEs) has been to incorporate tactile information and interaction forces into what was previously an essentially visual experience. Robots of varying complexity are being interfaced with more traditional virtual presentations to provide haptic feedback that enriches the sensory experience and adds physical task parameters. This provides forces that produce biomechanical and neuromuscular interactions with the VE that approximate real-world movement more accurately than visual-only VEs, simulating the weight and force found in upper extremity tasks. The purpose of this article is to present an overview of several systems that are commercially available for ambulation training and for training movement of the upper extremity. We will also report on the system that we have developed (NJIT-RAVR system) that incorporates motivating and challenging haptic feedback effects into VE simulations to facilitate motor recovery of the upper extremity post-stroke. The NJIT-RAVR system trains both the upper arm and the hand. The robotic arm acts as an interface between the participants and the VEs, enabling multiplanar movements against gravity in a three-dimensional workspace. The ultimate question is whether this medium can provide a motivating, challenging, gaming experience with dramatically decreased physical difficulty levels, which would allow for participation by an obese person and facilitate greater adherence to exercise regimes. © 2011 Diabetes Technology Society.

  4. An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning

    PubMed Central

    Yang, Geng; Pang, Gaoyang; Zhang, Hao; Li, Jiayi; Deng, Bin; Pang, Zhibo; Xu, Juan; Jiang, Mingzhe; Liljeberg, Pasi; Xie, Haibo; Yang, Huayong

    2018-01-01

    Surface electromyography signal plays an important role in hand function recovery training. In this paper, an IoT-enabled stroke rehabilitation system was introduced which was based on a smart wearable armband (SWA), machine learning (ML) algorithms, and a 3-D printed dexterous robot hand. User comfort is one of the key issues which should be addressed for wearable devices. The SWA was developed by integrating a low-power and tiny-sized IoT sensing device with textile electrodes, which can measure, pre-process, and wirelessly transmit bio-potential signals. By evenly distributing surface electrodes over user’s forearm, drawbacks of classification accuracy poor performance can be mitigated. A new method was put forward to find the optimal feature set. ML algorithms were leveraged to analyze and discriminate features of different hand movements, and their performances were appraised by classification complexity estimating algorithms and principal components analysis. According to the verification results, all nine gestures can be successfully identified with an average accuracy up to 96.20%. In addition, a 3-D printed five-finger robot hand was implemented for hand rehabilitation training purpose. Correspondingly, user’s hand movement intentions were extracted and converted into a series of commands which were used to drive motors assembled inside the dexterous robot hand. As a result, the dexterous robot hand can mimic the user’s gesture in a real-time manner, which shows the proposed system can be used as a training tool to facilitate rehabilitation process for the patients after stroke. PMID:29805919

  5. Motor imagery training improves precision of an upper limb movement in patients with hemiparesis.

    PubMed

    Grabherr, Luzia; Jola, Corinne; Berra, Gilberto; Theiler, Robert; Mast, Fred W

    2015-01-01

    In healthy participants, beneficial effects of motor imagery training on movement execution have been shown for precision, strength, and speed. In the clinical context, it is still debated whether motor imagery provides an effective rehabilitation technique in patients with motor deficits. To compare the effectiveness of two different types of movement training: motor imagery vs. motor execution. Twenty-five patients with hemiparesis were assigned to one of two training groups: the imagery or the execution-training group. Both groups completed a baseline test before they received six training sessions, each of which was followed by a test session. Using a novel and precisely quantifiable test, we assessed how accurately patients performed an upper limb movement. Both training groups improved performance over the six test sessions but the improvement was significantly larger in the imagery group. That is, the imagery group was able to perform more precise movements than the execution group after the sixth training session while there was no difference at the beginning of the training. The results provide evidence for the benefit of motor imagery training in patients with hemiparesis and thus suggest the integration of cognitive training in conventional physiotherapy practice.

  6. Musical training increases functional connectivity, but does not enhance mu suppression.

    PubMed

    Wu, C Carolyn; Hamm, Jeff P; Lim, Vanessa K; Kirk, Ian J

    2017-09-01

    Musical training provides an ideal platform for investigating action representation for sound. Learning to play an instrument requires integration of sensory and motor perception-action processes. Functional neuroimaging studies have indicated that listening to trained music can result in the activity in premotor areas, even after a short period of training. These studies suggest that action representation systems are heavily dependent on specific sensorimotor experience. However, others suggest that because humans naturally move to music, sensorimotor training is not necessary and there is a more general action representation for music. We previously demonstrated that EEG mu suppression, commonly implemented to demonstrate mirror-neuron-like action representation while observing movements, can also index action representations for sounds in pianists. The current study extends these findings to a group of non-musicians who learned to play randomised sequences on a piano, in order to acquire specific sound-action mappings for the five fingers of their right hand. We investigated training-related changes in neural dynamics as indexed by mu suppression and task-related coherence measures. To test the specificity of training effects, we included sounds similar to those encountered in the training and additionally rhythm sequences. We found no effect of training on mu suppression between pre- and post-training EEG recordings. However, task-related coherence indexing functional connectivity between electrodes over audiomotor areas increased after training. These results suggest that long-term training in musicians and short-term training in novices may be associated with different stages of audiomotor integration that can be reflected in different EEG measures. Furthermore, the changes in functional connectivity were specifically found for piano tones, and were not apparent when participants listened to rhythms, indicating some degree of specificity related to training. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Rewards modulate saccade latency but not exogenous spatial attention.

    PubMed

    Dunne, Stephen; Ellison, Amanda; Smith, Daniel T

    2015-01-01

    The eye movement system is sensitive to reward. However, whilst the eye movement system is extremely flexible, the extent to which changes to oculomotor behavior induced by reward paradigms persist beyond the training period or transfer to other oculomotor tasks is unclear. To address these issues we examined the effects of presenting feedback that represented small monetary rewards to spatial locations on the latency of saccadic eye movements, the time-course of learning and extinction of the effects of rewarding saccades on exogenous spatial attention and oculomotor inhibition of return. Reward feedback produced a relative facilitation of saccadic latency in a stimulus driven saccade task which persisted for three blocks of extinction trials. However, this hemifield-specific effect failed to transfer to peripheral cueing tasks. We conclude that rewarding specific spatial locations is unlikely to induce long-term, systemic changes to the human oculomotor or attention systems.

  8. Forgetting motor programmes: retrieval dynamics in procedural memory.

    PubMed

    Tempel, Tobias; Frings, Christian

    2014-01-01

    When motor sequences are stored in memory in a categorised manner, selective retrieval of some sequences can induce forgetting of the non-retrieved sequences. We show that such retrieval-induced forgetting (RIF) occurs not only in cued recall but also in a test assessing memory indirectly by providing novel test cues without involving recall of items. Participants learned several sequential finger movements (SFMs), each consisting of the movement of two fingers of either the left or the right hand. Subsequently, they performed retrieval practice on half of the sequences of one hand. A final task then required participants to enter letter dyads. A subset of these dyads corresponded to the previously learned sequences. RIF was present in the response times during the entering of the dyads. The finding of RIF in the slowed-down execution of motor programmes overlapping with initially trained motor sequences suggests that inhibition resolved interference between procedural representations of the acquired motor sequences of one hand during retrieval practice.

  9. Increased functional connectivity between cortical hand areas and praxis network associated with training-related improvements in non-dominant hand precision drawing.

    PubMed

    Philip, Benjamin A; Frey, Scott H

    2016-07-01

    Chronic forced use of the non-dominant left hand yields substantial improvements in the precision and quality of writing and drawing. These changes may arise from increased access by the non-dominant (right) hemisphere to dominant (left) hemisphere mechanisms specialized for end-point precision control. To evaluate this prediction, 22 healthy right-handed adults underwent resting state functional connectivity (FC) MRI scans before and after 10 days of training on a left hand precision drawing task. 89% of participants significantly improved left hand speed, accuracy, and smoothness. Smoothness gains were specific to the trained left hand and persistent: 6 months after training, 71% of participants exhibited above-baseline movement smoothness. Contrary to expectations, we found no evidence of increased FC between right and left hemisphere hand areas. Instead, training-related improvements in left hand movement smoothness were associated with increased FC between both sensorimotor hand areas and a left-lateralized parieto-prefrontal network implicated in manual praxis. By contrast, skill retention at 6 months was predicted by changes including decreased FC between the representation of the trained left hand and bilateral sensorimotor, parietal, and premotor cortices, possibly reflecting consolidation and a disengagement of early learning processes. These data indicate that modest amounts of training (<200min total) can induce substantial, persistent improvements the precision and quality of non-dominant hand control in healthy adults, supported by strengthened connectivity between bilateral sensorimotor hand areas and a left-lateralized parieto-prefrontal praxis network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. There is plenty of room for motor learning at the bottom of the Fugl-Meyer: Acquisition of a novel bimanual wheelchair skill after chronic stroke using an unmasking technology.

    PubMed

    Sarigul-Klijn, Yasemin; Lobo-Prat, Joan; Smith, Brendan W; Thayer, Sage; Zondervan, Daniel; Chan, Vicky; Stoller, Oliver; Reinkensmeyer, David J

    2017-07-01

    Many people with a stroke have a severely paretic arm, and it is often assumed that they are unable to learn novel, skilled behaviors that incorporate use of that arm. Here, we show that a group of people with chronic stroke (n = 5, upper extremity Fugl-Meyer scores: 31, 30, 26, 22, 8) learned to use their impaired arm to propel a novel, yoked-clutch lever drive wheelchair. Over six daily training sessions, each involving about 134 training movements with their "useless" arm, the users gradually achieved a 3-fold increase in wheelchair speed on average, with a 4-6 fold increase for three of the participants. They did this by learning a bimanual skill: pushing the levers with both arms while activating the yoked-clutches at the right time with their ipsilesional (i.e. "good") hand to propel the wheelchair forward. They perceived the task as highly motivating and useful. The speed improvements exceeded a 1.5-factor improvement observed when young, unimpaired users learned to propel the chair. The learning rate also exceeded a sample of learning rates from a variety of classic learning studies. These results suggest that appropriately-designed assistive technologies (or "unmasking technologies - UTs") can unleash a powerful, latent ability for motor learning even for severely paretic arms. While UTs may not reduce clinical impairment, they may facilitate large improvements in a specific functional ability.

  11. 30 CFR 57.9160 - Train movement during shift changes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Train movement during shift changes. 57.9160 Section 57.9160 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND..., the movement of underground trains carrying rock or material shall be limited to areas where the...

  12. 30 CFR 57.9160 - Train movement during shift changes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Train movement during shift changes. 57.9160 Section 57.9160 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND..., the movement of underground trains carrying rock or material shall be limited to areas where the...

  13. 30 CFR 57.9160 - Train movement during shift changes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Train movement during shift changes. 57.9160 Section 57.9160 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND..., the movement of underground trains carrying rock or material shall be limited to areas where the...

  14. 30 CFR 57.9160 - Train movement during shift changes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Train movement during shift changes. 57.9160 Section 57.9160 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND..., the movement of underground trains carrying rock or material shall be limited to areas where the...

  15. 30 CFR 57.9160 - Train movement during shift changes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Train movement during shift changes. 57.9160 Section 57.9160 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND..., the movement of underground trains carrying rock or material shall be limited to areas where the...

  16. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus

    PubMed Central

    Krebs, Hermano I; Ferraro, Mark; Buerger, Stephen P; Newbery, Miranda J; Makiyama, Antonio; Sandmann, Michael; Lynch, Daniel; Volpe, Bruce T; Hogan, Neville

    2004-01-01

    Background Previous results with the planar robot MIT-MANUS demonstrated positive benefits in trials with over 250 stroke patients. Consistent with motor learning, the positive effects did not generalize to other muscle groups or limb segments. Therefore we are designing a new class of robots to exercise other muscle groups or limb segments. This paper presents basic engineering aspects of a novel robotic module that extends our approach to anti-gravity movements out of the horizontal plane and a pilot study with 10 outpatients. Patients were trained during the initial six-weeks with the planar module (i.e., performance-based training limited to horizontal movements with gravity compensation). This training was followed by six-weeks of robotic therapy that focused on performing vertical arm movements against gravity. The 12-week protocol includes three one-hour robot therapy sessions per week (total 36 robot treatment sessions). Results Pilot study demonstrated that the protocol was safe and well tolerated with no patient presenting any adverse effect. Consistent with our past experience with persons with chronic strokes, there was a statistically significant reduction in tone measurement from admission to discharge of performance-based planar robot therapy and we have not observed increases in muscle tone or spasticity during the anti-gravity training protocol. Pilot results showed also a reduction in shoulder-elbow impairment following planar horizontal training. Furthermore, it suggested an additional reduction in shoulder-elbow impairment following the anti-gravity training. Conclusion Our clinical experiments have focused on a fundamental question of whether task specific robotic training influences brain recovery. To date several studies demonstrate that in mature and damaged nervous systems, nurture indeed has an effect on nature. The improved recovery is most pronounced in the trained limb segments. We have now embarked on experiments that test whether we can continue to influence recovery, long after the acute insult, with a novel class of spatial robotic devices. This pilot results support the pursuit of further clinical trials to test efficacy and the pursuit of optimal therapy following brain injury. PMID:15679916

  17. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus.

    PubMed

    Krebs, Hermano I; Ferraro, Mark; Buerger, Stephen P; Newbery, Miranda J; Makiyama, Antonio; Sandmann, Michael; Lynch, Daniel; Volpe, Bruce T; Hogan, Neville

    2004-10-26

    BACKGROUND: Previous results with the planar robot MIT-MANUS demonstrated positive benefits in trials with over 250 stroke patients. Consistent with motor learning, the positive effects did not generalize to other muscle groups or limb segments. Therefore we are designing a new class of robots to exercise other muscle groups or limb segments. This paper presents basic engineering aspects of a novel robotic module that extends our approach to anti-gravity movements out of the horizontal plane and a pilot study with 10 outpatients. Patients were trained during the initial six-weeks with the planar module (i.e., performance-based training limited to horizontal movements with gravity compensation). This training was followed by six-weeks of robotic therapy that focused on performing vertical arm movements against gravity. The 12-week protocol includes three one-hour robot therapy sessions per week (total 36 robot treatment sessions). RESULTS: Pilot study demonstrated that the protocol was safe and well tolerated with no patient presenting any adverse effect. Consistent with our past experience with persons with chronic strokes, there was a statistically significant reduction in tone measurement from admission to discharge of performance-based planar robot therapy and we have not observed increases in muscle tone or spasticity during the anti-gravity training protocol. Pilot results showed also a reduction in shoulder-elbow impairment following planar horizontal training. Furthermore, it suggested an additional reduction in shoulder-elbow impairment following the anti-gravity training. CONCLUSION: Our clinical experiments have focused on a fundamental question of whether task specific robotic training influences brain recovery. To date several studies demonstrate that in mature and damaged nervous systems, nurture indeed has an effect on nature. The improved recovery is most pronounced in the trained limb segments. We have now embarked on experiments that test whether we can continue to influence recovery, long after the acute insult, with a novel class of spatial robotic devices. This pilot results support the pursuit of further clinical trials to test efficacy and the pursuit of optimal therapy following brain injury.

  18. Generalization of perceptual and motor learning: a causal link with memory encoding and consolidation?

    PubMed

    Censor, N

    2013-10-10

    In both perceptual and motor learning, numerous studies have shown specificity of learning to the trained eye or hand and to the physical features of the task. However, generalization of learning is possible in both perceptual and motor domains. Here, I review evidence for perceptual and motor learning generalization, suggesting that generalization patterns are affected by the way in which the original memory is encoded and consolidated. Generalization may be facilitated during fast learning, with possible engagement of higher-order brain areas recurrently interacting with the primary visual or motor cortices encoding the stimuli or movements' memories. Such generalization may be supported by sleep, involving functional interactions between low and higher-order brain areas. Repeated exposure to the task may alter generalization patterns of learning and overall offline learning. Development of unifying frameworks across learning modalities and better understanding of the conditions under which learning can generalize may enable to gain insight regarding the neural mechanisms underlying procedural learning and have useful clinical implications. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Bridging education and training in ageing and disability: the European Care Certificate (ECC)

    PubMed Central

    Churchill, James; Gyorki, Eva

    2009-01-01

    Introduction There has been significant movement of workers between EU countries seeking work in the social care sector, causing problems for workers and employers who cannot easily evaluate the worth of qualifications gained abroad. The European Care Certificate (ECC) helps workers start work in the social care sector by defining basic knowledge and offering recognition for their learning. Development of product A LEONARDO project involving six countries (BE, UK, AT, DE, RO, PO) established a set of learning outcomes—the BESCLO (Basic European Social Care Learning Outcomes) covering eight key areas of knowledge (not competence). Existing awards and courses become ‘ECC compliant’ by demonstrating coverage of all the BESCLO. Students pass a multi-choice exam to gain the Certificate. There is a developing system of Lead and Delivery Partners spreading the ECC across Europe. Conclusion The BESCLO covers essential knowledge with a common set of values in social care. The ECC fits within existing training courses, is cheap and easy to operate, is at entry level, covers all client groups, can be made available in any language and is equally useful in recruitment, workplace induction training, or more formal college/university courses as an early achievement marker. Website: http://www.eclicence.eu

  20. Repeated Sleep Restriction in Adolescent Rats Altered Sleep Patterns and Impaired Spatial Learning/Memory Ability

    PubMed Central

    Yang, Su-Rong; Sun, Hui; Huang, Zhi-Li; Yao, Ming-Hui; Qu, Wei-Min

    2012-01-01

    Study Objectives: To investigate possible differences in the effect of repeated sleep restriction (RSR) during adolescence and adulthood on sleep homeostasis and spatial learning and memory ability. Design: The authors examined electroencephalograms of rats as they were subjected to 4-h daily sleep deprivation that continued for 7 consecutive days and assessed the spatial learning and memory by Morris water maze test (WMT). Participants: Adolescent and adult rats. Measurements and Results: Adolescent rats exhibited a similar amount of rapid eye movement (REM) and nonrapid eye movement (NREM) sleep with higher slow wave activity (SWA, 0.5-4 Hz) and fewer episodes and conversions with prolonged durations, indicating they have better sleep quality than adult rats. After RSR, adult rats showed strong rebound of REM sleep by 31% on sleep deprivation day 1; this value was 37% on sleep deprivation day 7 in adolescents compared with 20-h baseline level. On sleep deprivation day 7, SWA in adult and adolescent rats increased by 47% and 33%, and such elevation lasted for 5 h and 7 h, respectively. Furthermore, the authors investigated the effects of 4-h daily sleep deprivation immediately after the water maze training sessions on spatial cognitive performance. Adolescent rats sleep-restricted for 7 days traveled a longer distance to find the hidden platform during the acquisition training and had fewer numbers of platform crossings in the probe trial than those in the control group, something that did not occur in the sleep-deprived adult rats. Conclusions: Repeated sleep restriction (RSR) altered sleep profiles and mildly impaired spatial learning and memory capability in adolescent rats. Citation: Yang SR; Sun H; Huang ZL; Yao MH; Qu WM. Repeated sleep restriction in adolescent rats altered sleep patterns and impaired spatial learning/memory ability. SLEEP 2012;35(6):849-859. PMID:22654204

  1. Watch Your Step Children! Learning Two-Digit Numbers through Mirror-Based Observation of Self-Initiated Body Movements

    ERIC Educational Resources Information Center

    Ruiter, Margina; Loyens, Sofie; Paas, Fred

    2015-01-01

    It was investigated whether task-related body movements yield beneficial effects on children's learning of two-digit numbers and whether these learning effects are affected by mirror-based self-observation of those movements. Participants were 118 first-graders, who were randomly assigned to two movement conditions and two non-movement control…

  2. Reorganization of corticospinal output during motor learning

    PubMed Central

    Peters, Andrew J.; Lee, Jun; Hedrick, Nathan G.; O’Neil, Keelin; Komiyama, Takaki

    2017-01-01

    Motor learning is accompanied by widespread changes within the motor cortex, but it is unknown whether these changes are ultimately funneled through a stable corticospinal output channel or if the corticospinal output itself is plastic. We investigated the consistency of the relationship between corticospinal neuron activity and movement through in vivo two-photon calcium imaging in mice learning a lever-press task. Corticospinal neurons exhibited heterogeneous correlations with movement, with the majority of movement-modulated neurons decreasing activity during movement. Individual cells changed their activity across days which led to novel associations between corticospinal activity and movement. Unlike previous observations in layer 2/3, activity accompanying learned movements did not become more consistent with learning, and instead the activity of dissimilar movements became more decorrelated. These results indicate that the relationship between corticospinal activity and movement is dynamic, and the types of activity and plasticity are different from and possibly complementary to layer 2/3. PMID:28671694

  3. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory.

    PubMed

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination ( PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading ( Raz-Kids ( RK )). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.

  4. Training on Movement Figure-Ground Discrimination Remediates Low-Level Visual Timing Deficits in the Dorsal Stream, Improving High-Level Cognitive Functioning, Including Attention, Reading Fluency, and Working Memory

    PubMed Central

    Lawton, Teri; Shelley-Tremblay, John

    2017-01-01

    The purpose of this study was to determine whether neurotraining to discriminate a moving test pattern relative to a stationary background, figure-ground discrimination, improves vision and cognitive functioning in dyslexics, as well as typically-developing normal students. We predict that improving the speed and sensitivity of figure-ground movement discrimination (PATH to Reading neurotraining) acts to remediate visual timing deficits in the dorsal stream, thereby improving processing speed, reading fluency, and the executive control functions of attention and working memory in both dyslexic and normal students who had PATH neurotraining more than in those students who had no neurotraining. This prediction was evaluated by measuring whether dyslexic and normal students improved on standardized tests of cognitive skills following neurotraining exercises, more than following computer-based guided reading (Raz-Kids (RK)). The neurotraining used in this study was visually-based training designed to improve magnocellular function at both low and high levels in the dorsal stream: the input to the executive control networks coding working memory and attention. This approach represents a paradigm shift from the phonologically-based treatment for dyslexia, which concentrates on high-level speech and reading areas. This randomized controlled-validation study was conducted by training the entire second and third grade classrooms (42 students) for 30 min twice a week before guided reading. Standardized tests were administered at the beginning and end of 12-weeks of intervention training to evaluate improvements in academic skills. Only movement-discrimination training remediated both low-level visual timing deficits and high-level cognitive functioning, including selective and sustained attention, reading fluency and working memory for both dyslexic and normal students. Remediating visual timing deficits in the dorsal stream revealed the causal role of visual movement discrimination training in improving high-level cognitive functions such as attention, reading acquisition and working memory. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways in the dorsal stream is a fundamental cause of dyslexia and being at-risk for reading problems in normal students, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological or language deficits, requiring a paradigm shift from phonologically-based treatment of dyslexia to a visually-based treatment. This study shows that visual movement-discrimination can be used not only to diagnose dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:28555097

  5. A Comparison of Independent Event-Related Desynchronization Responses in Motor-Related Brain Areas to Movement Execution, Movement Imagery, and Movement Observation.

    PubMed

    Duann, Jeng-Ren; Chiou, Jin-Chern

    2016-01-01

    Electroencephalographic (EEG) event-related desynchronization (ERD) induced by movement imagery or by observing biological movements performed by someone else has recently been used extensively for brain-computer interface-based applications, such as applications used in stroke rehabilitation training and motor skill learning. However, the ERD responses induced by the movement imagery and observation might not be as reliable as the ERD responses induced by movement execution. Given that studies on the reliability of the EEG ERD responses induced by these activities are still lacking, here we conducted an EEG experiment with movement imagery, movement observation, and movement execution, performed multiple times each in a pseudorandomized order in the same experimental runs. Then, independent component analysis (ICA) was applied to the EEG data to find the common motor-related EEG source activity shared by the three motor tasks. Finally, conditional EEG ERD responses associated with the three movement conditions were computed and compared. Among the three motor conditions, the EEG ERD responses induced by motor execution revealed the alpha power suppression with highest strengths and longest durations. The ERD responses of the movement imagery and movement observation only partially resembled the ERD pattern of the movement execution condition, with slightly better detectability for the ERD responses associated with the movement imagery and faster ERD responses for movement observation. This may indicate different levels of involvement in the same motor-related brain circuits during different movement conditions. In addition, because the resulting conditional EEG ERD responses from the ICA preprocessing came with minimal contamination from the non-related and/or artifactual noisy components, this result can play a role of the reference for devising a brain-computer interface using the EEG ERD features of movement imagery or observation.

  6. Virtual Sensorimotor Training for Balance: Pilot Study Results for Children With Fetal Alcohol Spectrum Disorders.

    PubMed

    Jirikowic, Tracy; Westcott McCoy, Sarah; Price, Robert; Ciol, Marcia A; Hsu, Lin-Ya; Kartin, Deborah

    2016-01-01

    To examine the effects of Sensorimotor Training to Affect Balance, Engagement, and Learning (STABEL), a virtual reality system to train sensory adaptation for balance control, for children with fetal alcohol spectrum disorders (FASDs). Twenty-three children with FASDs received STABEL training in a university laboratory, or home, or were controls. The Movement Assessment Battery for Children-2nd edition (MABC-2) and Pediatric Clinical Test of Sensory Interaction for Balance-2 (P-CTSIB-2) were analyzed by group (lab, home, and control), session (pre-STABEL, 1 week post-STABEL, and 1 month post-STABEL), and group-by-session interaction. Significant effects were group and session for MABC-2 Balance and interaction for MABC-2 Total Motor and P-CTSIB-2. Preliminary results support improved sensory adaptation, balance, and motor performance post-STABEL, which warrant further study with a larger, randomized sample.

  7. The Art of Movement and Letter Learning.

    ERIC Educational Resources Information Center

    Haslett, Jacqueline G.

    Movement education techniques can be used to enhance childen's creative and expressive abilities, which can help to develop a sound self image and to transfer knowledge to reading skills. Numerous studies have explored perceptual and motor learning, movement therapy, and the needs of children with learning difficulties. Movement concepts have been…

  8. Effects of cerebellar nuclear inactivation on the learning of a complex forelimb movement in cats.

    PubMed

    Wang, J J; Shimansky, Y; Bracha, V; Bloedel, J R

    1998-05-01

    The purpose of this study was to determine the effects of inactivating concurrently the cerebellar interposed and dentate nuclei on the capacity of cats to acquire and retain a complex, goal-directed forelimb movement. To assess the effects on acquisition, cats were required to learn to move a vertical manipulandum bar through a two-segment template with a shape approximating an inverted "L" after the injection of muscimol (saline for the control group) in the interposed and dentate cerebellar nuclei. During training periods, they were exposed progressively to more difficult templates, which were created by decreasing the angle between the two segments of the template. After determining the most difficult template the injected animals could learn within the specified time and performance constraints, the retraining phase of the experiment was initiated in which the cats were required to execute the same sequence of templates in the absence of any injection. This stage of the experiment assessed retention and determined the extent of any relearning required to execute the task at criterion levels. Next, the animals were overtrained without any injection on the most difficult template they could perform. Finally, to determine the effects of nuclear inactivation on retention after extensive retraining, their capacity to perform the same template was determined after muscimol injection in the interposed and dentate nuclei. The findings show that during the inactivation of the dentate and interposed nuclei the animals could learn to execute the more difficult templates. However, when required to execute the most difficult template learned under muscimol on the day after injections were discontinued, the cats had to "relearn" (reacquire) the movement. Finally, when the cerebellar nuclei were inactivated after the animals learned the task in the absence of any injections during the retraining phase, retention was not blocked. The data indicate that the intermediate and lateral cerebellum are not required either for learning this type of complex voluntary movement or for retaining the capacity to perform the task once it is learned. Nevertheless, when the cerebellum becomes available for executing a task learned in the absence of this structure, reacquisition of the behavior usually is necessary. It is hypothesized that the relearning observed after acquisition during muscimol inactivation reflects the tendency of the system to incorporate the cerebellum into the interactions responsible for the learning and performance of a motor sequence that is optimal for executing the task.

  9. Brain-Machine Interface control of a robot arm using actor-critic rainforcement learning.

    PubMed

    Pohlmeyer, Eric A; Mahmoudi, Babak; Geng, Shijia; Prins, Noeline; Sanchez, Justin C

    2012-01-01

    Here we demonstrate how a marmoset monkey can use a reinforcement learning (RL) Brain-Machine Interface (BMI) to effectively control the movements of a robot arm for a reaching task. In this work, an actor-critic RL algorithm used neural ensemble activity in the monkey's motor cortext to control the robot movements during a two-target decision task. This novel approach to decoding offers unique advantages for BMI control applications. Compared to supervised learning decoding methods, the actor-critic RL algorithm does not require an explicit set of training data to create a static control model, but rather it incrementally adapts the model parameters according to its current performance, in this case requiring only a very basic feedback signal. We show how this algorithm achieved high performance when mapping the monkey's neural states (94%) to robot actions, and only needed to experience a few trials before obtaining accurate real-time control of the robot arm. Since RL methods responsively adapt and adjust their parameters, they can provide a method to create BMIs that are robust against perturbations caused by changes in either the neural input space or the output actions they generate under different task requirements or goals.

  10. Movement analysis of upper limb during resistance training using general purpose robot arm "PA10"

    NASA Astrophysics Data System (ADS)

    Morita, Yoshifumi; Yamamoto, Takashi; Suzuki, Takahiro; Hirose, Akinori; Ukai, Hiroyuki; Matsui, Nobuyuki

    2005-12-01

    In this paper we perform movement analysis of an upper limb during resistance training. We selected sanding training, which is one type of resistance training for upper limbs widely performed in occupational therapy. Our final aims in the future are to quantitatively evaluate the therapeutic effect of upper limb motor function during training and to develop a new rehabilitation training support system. For these purposes, first of all we perform movement analysis using a conventional training tool. By measuring upper limb motion during the sanding training we perform feature abstraction. Next we perform movement analysis using the simulated sanding training system. This system is constructed using the general purpose robot arm "PA10". This system enables us to measure the force/torque exerted by subjects and to easily change the load of resistance. The control algorithm is based on impedance control. We found these features of the upper limb motion during the sanding training.

  11. Effect of task-oriented training and high-variability practice on gross motor performance and activities of daily living in children with spastic diplegia.

    PubMed

    Kwon, Hae-Yeon; Ahn, So-Yoon

    2016-10-01

    [Purpose] This study investigates how a task-oriented training and high-variability practice program can affect the gross motor performance and activities of daily living for children with spastic diplegia and provides an effective and reliable clinical database for future improvement of motor performances skills. [Subjects and Methods] This study randomly assigned seven children with spastic diplegia to each intervention group including that of a control group, task-oriented training group, and a high-variability practice group. The control group only received neurodevelopmental treatment for 40 minutes, while the other two intervention groups additionally implemented a task-oriented training and high-variability practice program for 8 weeks (twice a week, 60 min per session). To compare intra and inter-relationships of the three intervention groups, this study measured gross motor performance measure (GMPM) and functional independence measure for children (WeeFIM) before and after 8 weeks of training. [Results] There were statistically significant differences in the amount of change before and after the training among the three intervention groups for the gross motor performance measure and functional independence measure. [Conclusion] Applying high-variability practice in a task-oriented training course may be considered an efficient intervention method to improve motor performance skills that can tune to movement necessary for daily livelihood through motor experience and learning of new skills as well as change of tasks learned in a complex environment or similar situations to high-variability practice.

  12. It Pays to Go Off-Track: Practicing with Error-Augmenting Haptic Feedback Facilitates Learning of a Curve-Tracing Task

    PubMed Central

    Williams, Camille K.; Tremblay, Luc; Carnahan, Heather

    2016-01-01

    Researchers in the domain of haptic training are now entering the long-standing debate regarding whether or not it is best to learn a skill by experiencing errors. Haptic training paradigms provide fertile ground for exploring how various theories about feedback, errors and physical guidance intersect during motor learning. Our objective was to determine how error minimizing, error augmenting and no haptic feedback while learning a self-paced curve-tracing task impact performance on delayed (1 day) retention and transfer tests, which indicate learning. We assessed performance using movement time and tracing error to calculate a measure of overall performance – the speed accuracy cost function. Our results showed that despite exhibiting the worst performance during skill acquisition, the error augmentation group had significantly better accuracy (but not overall performance) than the error minimization group on delayed retention and transfer tests. The control group’s performance fell between that of the two experimental groups but was not significantly different from either on the delayed retention test. We propose that the nature of the task (requiring online feedback to guide performance) coupled with the error augmentation group’s frequent off-target experience and rich experience of error-correction promoted information processing related to error-detection and error-correction that are essential for motor learning. PMID:28082937

  13. The response of the anterior striatum during adult human vocal learning

    PubMed Central

    Leech, Robert; Iverson, Paul; Wise, Richard J. S.

    2014-01-01

    Research on mammals predicts that the anterior striatum is a central component of human motor learning. However, because vocalizations in most mammals are innate, much of the neurobiology of human vocal learning has been inferred from studies on songbirds. Essential for song learning is a pathway, the homolog of mammalian cortical-basal ganglia “loops,” which includes the avian striatum. The present functional magnetic resonance imaging (fMRI) study investigated adult human vocal learning, a skill that persists throughout life, albeit imperfectly given that late-acquired languages are spoken with an accent. Monolingual adult participants were scanned while repeating novel non-native words. After training on the pronunciation of half the words for 1 wk, participants underwent a second scan. During scanning there was no external feedback on performance. Activity declined sharply in left and right anterior striatum, both within and between scanning sessions, and this change was independent of training and performance. This indicates that adult speakers rapidly adapt to the novel articulatory movements, possibly by using motor sequences from their native speech to approximate those required for the novel speech sounds. Improved accuracy correlated only with activity in motor-sensory perisylvian cortex. We propose that future studies on vocal learning, using different behavioral and pharmacological manipulations, will provide insights into adult striatal plasticity and its potential for modification in both educational and clinical contexts. PMID:24805076

  14. Muscular coordination and strength training. Implications for injury rehabilitation.

    PubMed

    Rutherford, O M

    1988-03-01

    Strength training is commonly used in the rehabilitation of muscles atrophied as a result of injury and/or disuse. Studies on the effects of conventional leg extension training in healthy subjects have shown the changes to be very task-specific to the training manoeuvre itself. After conventional leg extension training for the quadriceps muscle the major improvement was in weightlifting ability with only small increases in isometric strength. The maximum dynamic force and power output during sprint cycling showed no improvement. These results suggest that the major benefit of this type of training is learning to coordinate the different muscle groups involved in the training movement rather than intrinsic increases in strength of the muscle group being trained. Other studies have shown changes in strength to be specific to the length and speed at which the muscle has been trained. The implication for rehabilitation is that strength training for isolated muscle groups may not be the most effective way of increasing functional ability. As the major changes are task-specific it may be better to incorporate the training into task-related practice. This would have the advantage of strengthening the muscle groups affected whilst increasing performance in those activities which are required in daily life.

  15. Studies of learned helplessness in honey bees (Apis mellifera ligustica).

    PubMed

    Dinges, Christopher W; Varnon, Christopher A; Cota, Lisa D; Slykerman, Stephen; Abramson, Charles I

    2017-04-01

    The current study reports 2 experiments investigating learned helplessness in the honey bee (Apis mellifera ligustica). In Experiment 1, we used a traditional escape method but found the bees' activity levels too high to observe changes due to treatment conditions. The bees were not able to learn in this traditional escape procedure; thus, such procedures may be inappropriate to study learned helplessness in honey bees. In Experiment 2, we used an alternative punishment, or passive avoidance, method to investigate learned helplessness. Using a master and yoked design where bees were trained as either master or yoked and tested as either master or yoked, we found that prior training with unavoidable and inescapable shock in the yoked condition interfered with avoidance and escape behavior in the later master condition. Unlike control bees, learned helplessness bees failed to restrict their movement to the safe compartment following inescapable shock. Unlike learned helplessness studies in other animals, no decrease in general activity was observed. Furthermore, we did not observe a "freezing" response to inescapable aversive stimuli-a phenomenon, thus far, consistently observed in learned helplessness tests with other species. The bees, instead, continued to move back and forth between compartments despite punishment in the incorrect compartment. These findings suggest that, although traditional escape methods may not be suitable, honey bees display learned helplessness in passive avoidance procedures. Thus, regardless of behavioral differences from other species, honey bees can be a unique invertebrate model organism for the study of learned helplessness. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Fast attainment of computer cursor control with noninvasively acquired brain signals

    NASA Astrophysics Data System (ADS)

    Bradberry, Trent J.; Gentili, Rodolphe J.; Contreras-Vidal, José L.

    2011-06-01

    Brain-computer interface (BCI) systems are allowing humans and non-human primates to drive prosthetic devices such as computer cursors and artificial arms with just their thoughts. Invasive BCI systems acquire neural signals with intracranial or subdural electrodes, while noninvasive BCI systems typically acquire neural signals with scalp electroencephalography (EEG). Some drawbacks of invasive BCI systems are the inherent risks of surgery and gradual degradation of signal integrity. A limitation of noninvasive BCI systems for two-dimensional control of a cursor, in particular those based on sensorimotor rhythms, is the lengthy training time required by users to achieve satisfactory performance. Here we describe a novel approach to continuously decoding imagined movements from EEG signals in a BCI experiment with reduced training time. We demonstrate that, using our noninvasive BCI system and observational learning, subjects were able to accomplish two-dimensional control of a cursor with performance levels comparable to those of invasive BCI systems. Compared to other studies of noninvasive BCI systems, training time was substantially reduced, requiring only a single session of decoder calibration (~20 min) and subject practice (~20 min). In addition, we used standardized low-resolution brain electromagnetic tomography to reveal that the neural sources that encoded observed cursor movement may implicate a human mirror neuron system. These findings offer the potential to continuously control complex devices such as robotic arms with one's mind without lengthy training or surgery.

  17. Shared internal models for feedforward and feedback control.

    PubMed

    Wagner, Mark J; Smith, Maurice A

    2008-10-15

    A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.

  18. From action to abstraction: Using the hands to learn math

    PubMed Central

    Novack, Miriam A.; Congdon, Eliza L.; Hemani-Lopez, Naureen; Goldin-Meadow, Susan

    2014-01-01

    Previous research has shown that children benefit from gesturing during math instruction. Here we ask whether gesturing promotes learning because it is itself a physical action, or because it uses physical action to represent abstract ideas. To address this question, we taught third-grade children a strategy for solving mathematical equivalence problems that was instantiated in one of three ways: (1) in the physical action children performed on objects, (2) in a concrete gesture miming that action, or (3) in an abstract gesture. All three types of hand movements helped children learn how to solve the problems on which they were trained. However, only gesture led to success on problems that required generalizing the knowledge gained. The results provide the first evidence that gesture promotes transfer of knowledge better than action, and suggest that the beneficial effects gesture has on learning may reside in the features that differentiate it from action. PMID:24503873

  19. Movement Pattern and Parameter Learning in Children: Effects of Feedback Frequency

    ERIC Educational Resources Information Center

    Goh, Hui-Ting; Kantak, Shailesh S.; Sullivan, Katherine J.

    2012-01-01

    Reduced feedback during practice has been shown to be detrimental to movement accuracy in children but not in young adults. We hypothesized that the reduced accuracy is attributable to reduced movement parameter learning, but not pattern learning, in children. A rapid arm movement task that required the acquisition of a motor pattern scaled to…

  20. Impaired Voluntary Movement Control and Its Rehabilitation in Cerebral Palsy.

    PubMed

    Gordon, Andrew M

    2016-01-01

    Cerebral palsy is caused by early damage to the developing brain, as the most common pediatric neurological disorder. Hemiplegia (unilateral spastic cerebral palsy) is the most common subtype, and the resulting impairments, lateralized to one body side, especially affect the upper extremity, limiting daily function. This chapter first describes the pathophysiology and mechanisms underlying impaired upper extremity control of cerebral palsy. It will be shown that the severity of impaired hand function closely relates to the integrity of the corticospinal tract innervating the affected hand. It will also shown that the developing corticospinal tract can reorganize its connectivity depending on the timing and location of CNS injury, which also has implications for the severity of hand impairments and rehabilitation. The mechanisms underlying impaired motor function will be highlighted, including deficits in movement execution and planning and sensorimotor integration. It will be shown that despite having unimanual hand impairments, bimanual movement control deficits and mirror movements also impact function. Evidence for motor learning-based therapies including Constraint-Induced Movement Therapy and Bimanual Training, and the possible pathophysiological predictors of treatment outcome and plasticity will be described. Finally, future directions for rehabilitations will be presented.

  1. A developmental study of the effect of music training on timed movements.

    PubMed

    Braun Janzen, Thenille; Thompson, William F; Ranvaud, Ronald

    2014-01-01

    When people clap to music, sing, play a musical instrument, or dance, they engage in temporal entrainment. We examined the effect of music training on the precision of temporal entrainment in 57 children aged 10-14 years (31 musicians, 26 non-musicians). Performance was examined for two tasks: self-paced finger tapping (discrete movements) and circle drawing (continuous movements). For each task, participants synchronized their movements with a steady pacing signal and then continued the movement at the same rate in the absence of the pacing signal. Analysis of movements during the continuation phase revealed that musicians were more accurate than non-musicians at finger tapping and, to a lesser extent, circle drawing. Performance on the finger-tapping task was positively associated with the number of years of formal music training, whereas performance on the circle-drawing task was positively associated with the age of participants. These results indicate that music training and maturation of the motor system reinforce distinct skills of timed movement.

  2. Moving the eye of the beholder. Motor components in vision determine aesthetic preference.

    PubMed

    Topolinski, Sascha

    2010-09-01

    Perception entails not only sensory input (e.g., merely seeing), but also subsidiary motor processes (e.g., moving the eyes); such processes have been neglected in research on aesthetic preferences. To fill this gap, the present research manipulated the fluency of perceptual motor processes independently from sensory input and predicted that this increased fluency would result in increased aesthetic preference for stimulus movements that elicited the same motor movements as had been previously trained. Specifically, addressing the muscles that move the eyes, I trained participants to follow a stimulus movement without actually seeing it. Experiment 1 demonstrated that ocular-muscle training resulted in the predicted increase in preference for trained stimulus movements compared with untrained stimulus movements, although participants had not previously seen any of the movements. Experiments 2 and 3 showed that actual motor matching and not perceptual similarity drove this effect. Thus, beauty may be not only in the eye of the beholder, but also in the eyes' movements.

  3. Region and task-specific activation of Arc in primary motor cortex of rats following motor skill learning.

    PubMed

    Hosp, J A; Mann, S; Wegenast-Braun, B M; Calhoun, M E; Luft, A R

    2013-10-10

    Motor learning requires protein synthesis within the primary motor cortex (M1). Here, we show that the immediate early gene Arc/Arg3.1 is specifically induced in M1 by learning a motor skill. Arc mRNA was quantified using a fluorescent in situ hybridization assay in adult Long-Evans rats learning a skilled reaching task (SRT), in rats performing reaching-like forelimb movement without learning (ACT) and in rats that were trained in the operant but not the motor elements of the task (controls). Apart from M1, Arc expression was assessed within the rostral motor area (RMA), primary somatosensory cortex (S1), striatum (ST) and cerebellum. In SRT animals, Arc mRNA levels in M1 contralateral to the trained limb were 31% higher than ipsilateral (p<0.001), 31% higher than in the contralateral M1 of ACT animals (p<0.001) and 48% higher than in controls (p<0.001). Arc mRNA expression in SRT was positively correlated with learning success between two sessions (r=0.52; p=0.026). For RMA, S1, ST or cerebellum no significant differences in Arc mRNA expression were found between hemispheres or across behaviors. As Arc expression has been related to different forms of cellular plasticity, these findings suggest a link between M1 Arc expression and motor skill learning in rats. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Symmetry Breaking Analysis of Prism Adaptation's Latent Aftereffect

    ERIC Educational Resources Information Center

    Frank, Till D.; Blau, Julia J. C.; Turvey, Michael T.

    2012-01-01

    The effect of prism adaptation on movement is typically reduced when the movement at test (prisms off) differs on some dimension from the movement at training (prisms on). Some adaptation is latent, however, and only revealed through further testing in which the movement at training is fully reinstated. Applying a nonlinear attractor dynamic model…

  5. Neuroplasticity of prehensile neural networks after quadriplegia.

    PubMed

    Di Rienzo, F; Guillot, A; Mateo, S; Daligault, S; Delpuech, C; Rode, G; Collet, C

    2014-08-22

    Targeting cortical neuroplasticity through rehabilitation-based practice is believed to enhance functional recovery after spinal cord injury (SCI). While prehensile performance is severely disturbed after C6-C7 SCI, subjects with tetraplegia can learn a compensatory passive prehension using the tenodesis effect. During tenodesis, an active wrist extension triggers a passive flexion of the fingers allowing grasping. We investigated whether motor imagery training could promote activity-dependent neuroplasticity and improve prehensile tenodesis performance. SCI participants (n=6) and healthy participants (HP, n=6) took part in a repeated measurement design. After an extended baseline period of 3 weeks including repeated magnetoencephalography (MEG) measurements, MI training was embedded within the classical course of physiotherapy for 5 additional weeks (three sessions per week). An immediate MEG post-test and a follow-up at 2 months were performed. Before MI training, compensatory activations and recruitment of deafferented cortical regions characterized the cortical activity during actual and imagined prehension in SCI participants. After MI training, MEG data yielded reduced compensatory activations. Cortical recruitment became similar to that in HP. Behavioral analysis evidenced decreased movement variability suggesting motor learning of tenodesis. Data suggest that MI training participated to reverse compensatory neuroplasticity in SCI participants, and promoted the integration of new upper limb prehensile coordination in the neural networks functionally dedicated to the control of healthy prehension before injury. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Effect of transcranial direct current stimulation (tDCS) during complex whole body motor skill learning.

    PubMed

    Kaminski, Elisabeth; Hoff, Maike; Sehm, Bernhard; Taubert, Marco; Conde, Virginia; Steele, Christopher J; Villringer, Arno; Ragert, Patrick

    2013-09-27

    The aim of the study was to investigate tDCS effects on motor skill learning in a complex whole body dynamic balance task (DBT). We hypothesized that tDCS over the supplementary motor area (SMA), a region that is known to be involved in the control of multi-joint whole body movements, will result in polarity specific changes in DBT learning. In a randomized sham-controlled, double-blinded parallel design, we applied 20 min of tDCS over the supplementary motor area (SMA) and prefrontal cortex (PFC) while subjects performed a DBT. Anodal tDCS over SMA with the cathode placed over contralateral PFC impaired motor skill learning of the DBT compared to sham. This effect was still present on the second day of training. Reversing the polarity (cathode over SMA, anode over PFC) did not affect motor skill learning neither on the first nor on the second day of training. To better disentangle whether the impaired motor skill learning was due to a modulation of SMA or PFC, we performed an additional control experiment. Here, we applied anodal tDCS over SMA together with a larger and presumably more ineffective electrode (cathode) over PFC. Interestingly this alternative tDCS electrode setup did not affect the outcome of DBT learning. Our results provide novel evidence that a modulation of the (right) PFC seems to impair complex multi-joint motor skill learning. Hence, future studies should take the positioning of both tDCS electrodes into account when investigating complex motor skill learning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning.

    PubMed

    Watts, Alain; Gritton, Howard J; Sweigart, Jamie; Poe, Gina R

    2012-09-26

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State-performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS.

  8. Antidepressant Suppression of Non-REM Sleep Spindles and REM Sleep Impairs Hippocampus-Dependent Learning While Augmenting Striatum-Dependent Learning

    PubMed Central

    Watts, Alain; Gritton, Howard J.; Sweigart, Jamie

    2012-01-01

    Rapid eye movement (REM) sleep enhances hippocampus-dependent associative memory, but REM deprivation has little impact on striatum-dependent procedural learning. Antidepressant medications are known to inhibit REM sleep, but it is not well understood if antidepressant treatments impact learning and memory. We explored antidepressant REM suppression effects on learning by training animals daily on a spatial task under familiar and novel conditions, followed by training on a procedural memory task. Daily treatment with the antidepressant and norepinephrine reuptake inhibitor desipramine (DMI) strongly suppressed REM sleep in rats for several hours, as has been described in humans. We also found that DMI treatment reduced the spindle-rich transition-to-REM sleep state (TR), which has not been previously reported. DMI REM suppression gradually weakened performance on a once familiar hippocampus-dependent maze (reconsolidation error). DMI also impaired learning of the novel maze (consolidation error). Unexpectedly, learning of novel reward positions and memory of familiar positions were equally and oppositely correlated with amounts of TR sleep. Conversely, DMI treatment enhanced performance on a separate striatum-dependent, procedural T-maze task that was positively correlated with the amounts of slow-wave sleep (SWS). Our results suggest that learning strategy switches in patients taking REM sleep-suppressing antidepressants might serve to offset sleep-dependent hippocampal impairments to partially preserve performance. State–performance correlations support a model wherein reconsolidation of hippocampus-dependent familiar memories occurs during REM sleep, novel information is incorporated and consolidated during TR, and dorsal striatum-dependent procedural learning is augmented during SWS. PMID:23015432

  9. Learning and Treatment of Anaphylaxis by Laypeople: A Simulation Study Using Pupilar Technology

    PubMed Central

    Fernandez-Mendez, Felipe; Barcala-Furelos, Roberto; Padron-Cabo, Alexis; Garcia-Magan, Carlos; Moure-Gonzalez, Jose; Contreras-Jordan, Onofre; Rodriguez-Nuñez, Antonio

    2017-01-01

    An anaphylactic shock is a time-critical emergency situation. The decision-making during emergencies is an important responsibility but difficult to study. Eye-tracking technology allows us to identify visual patterns involved in the decision-making. The aim of this pilot study was to evaluate two training models for the recognition and treatment of anaphylaxis by laypeople, based on expert assessment and eye-tracking technology. A cross-sectional quasi-experimental simulation study was made to evaluate the identification and treatment of anaphylaxis. 50 subjects were randomly assigned to four groups: three groups watching different training videos with content supervised by sanitary personnel and one control group who received face-to-face training during paediatric practice. To evaluate the learning, a simulation scenario represented by an anaphylaxis' victim was designed. A device capturing eye movement as well as expert valuation was used to evaluate the performance. The subjects that underwent paediatric face-to-face training achieved better and faster recognition of the anaphylaxis. They also used the adrenaline injector with better precision and less mistakes, and they needed a smaller number of visual fixations to recognise the anaphylaxis and to make the decision to inject epinephrine. Analysing the different video formats, mixed results were obtained. Therefore, they should be tested to evaluate their usability before implementation. PMID:28758128

  10. Learning and Treatment of Anaphylaxis by Laypeople: A Simulation Study Using Pupilar Technology.

    PubMed

    Fernandez-Mendez, Felipe; Saez-Gallego, Nieves Maria; Barcala-Furelos, Roberto; Abelairas-Gomez, Cristian; Padron-Cabo, Alexis; Perez-Ferreiros, Alexandra; Garcia-Magan, Carlos; Moure-Gonzalez, Jose; Contreras-Jordan, Onofre; Rodriguez-Nuñez, Antonio

    2017-01-01

    An anaphylactic shock is a time-critical emergency situation. The decision-making during emergencies is an important responsibility but difficult to study. Eye-tracking technology allows us to identify visual patterns involved in the decision-making. The aim of this pilot study was to evaluate two training models for the recognition and treatment of anaphylaxis by laypeople, based on expert assessment and eye-tracking technology. A cross-sectional quasi-experimental simulation study was made to evaluate the identification and treatment of anaphylaxis. 50 subjects were randomly assigned to four groups: three groups watching different training videos with content supervised by sanitary personnel and one control group who received face-to-face training during paediatric practice. To evaluate the learning, a simulation scenario represented by an anaphylaxis' victim was designed. A device capturing eye movement as well as expert valuation was used to evaluate the performance. The subjects that underwent paediatric face-to-face training achieved better and faster recognition of the anaphylaxis. They also used the adrenaline injector with better precision and less mistakes, and they needed a smaller number of visual fixations to recognise the anaphylaxis and to make the decision to inject epinephrine. Analysing the different video formats, mixed results were obtained. Therefore, they should be tested to evaluate their usability before implementation.

  11. The Effect of Core Stability Training on Functional Movement Patterns in Collegiate Athletes.

    PubMed

    Bagherian, Sajad; Ghasempoor, Khodayar; Rahnama, Nader; Wikstrom, Erik A

    2018-02-06

    Pre-participation examinations are the standard approach for assessing poor movement quality that would increase musculoskeletal injury risk. However, little is known about how core stability influences functional movement patterns. The primary purpose of this study was to determine the effect of an 8-week core stability program on functional movement patterns in collegiate athletes. The secondary purpose was to determine if the core stability training program would be more effective in those with worse movement quality (i.e. ≤14 baseline FMS score). Quasi-experimental design. Athletic Training Facility. One-hundred collegiate athletes. Functional movement patterns included the Functional Movement Screen (FMS), Lateral step down (LSD) and Y balance test (YBT) and were assessed before and after the 8-week program. Participants were placed into 1 of the 2 groups: intervention and control. The intervention group was required to complete a core stability training program that met 3 times per week for 8-week. Significant group x time interactions demonstrated improvements in FMS, LSD and YBT scores in the experimental group relative to the control group (p<0.001). Independent sample t-tests demonstrate that change scores were larger (greater improvement) for the FMS total score and Hurdle step (p<0.001) in athletes with worse movement quality. An 8-week core stability training program enhances functional movement patterns and dynamic postural control in collegiate athletes. The benefits are more pronounced in collegiate athletes with poor movement quality.

  12. Movement and Learning in the Early Years: Supporting Dyspraxia (DCD) and Other Difficulties

    ERIC Educational Resources Information Center

    Macintrye, Christine; McVitty, Kim

    2004-01-01

    This book is written to support parents and practitioners who wish to understand movement and how it contributes to all aspects of learning--intellectual, social and emotional, as well as the movement/motor aspect itself. Moreover, as there is a huge increase in the number of children with movement learning difficulties (Keen, 2001), that is…

  13. Effects of inactivating individual cerebellar nuclei on the performance and retention of an operantly conditioned forelimb movement.

    PubMed

    Milak, M S; Shimansky, Y; Bracha, V; Bloedel, J R

    1997-08-01

    These experiments were designed to examine the effects of inactivating separately each of the major cerebellar nuclear regions in cats on the execution and retention of a previously learned, operantly conditioned volitional forelimb movement. The experiments test the postulates that the cerebellar nuclei, and particularly the interposed nuclei, contribute substantially to the spatial and temporal features of the interjoint coordination required to execute the task and that the engram necessary for the retention of this task is not located in any one of the cerebellar nuclei. All cats were trained to perform a task in which they were required to reach for and grasp a vertical bar at the sound of a tone and move the bar to a reward zone through a template consisting of two straight grooves in the shape of an inverted "L." After the task was learned, the effects of inactivating separately each nuclear region (the fastigial, interposed, and dentate nuclei) using muscimol microinjections were determined. Data were analyzed by quantifying several features of the movement's kinematics and by determining changes in the organization of the reaching component of the movement using an application of dimensionality analysis, an analysis that examines the correlation among the changes in joint angles and limb segment positions during the task. The retention of the previously learned task also was assessed after each injection. Injections of each nuclear region affected temporal and spatial features of the learned movement. However, the largest effects resulted from inactivating the interposed nuclei. These effects included an increased length of the reach trajectory, an accentuated deviation of the wrist trajectory from a straight line, cyclic movement of the distal extremity as the target was approached, a difficulty in grasping the bar, altered temporal features of the movement, and a highly characteristic change in the dimensionality measurements. The changes in dimensionality reflected a decreased correlation (linear interdependence) of the joint angular velocities coupled with an increased correlation among the linear velocities of markers located on the joints themselves. Related but less consistent changes in dimensionality resulted from fastigial injections. The motor sequence required to negotiate the template could be executed after the nuclear microinjections, indicating that retention of the motor sequence was not affected by the inactivation of any of the cerebellar nuclei. However, in two of the five animals, some decreases in performance were observed after dentate injection that were not characteristic of changes related to an effect on retention. These data suggest that the cerebellum plays an important role in regulating the consistent, stereotypic organization of complex goal-directed movements, including the temporal correlation among joint angle velocities. The data also indicate that the retention of the task is not dependent on any of the individual cerebellar nuclear regions. Consequently, these structures are unlikely to be critical storage sites for the engram established during the learning of this task.

  14. Learning styles and the prospective ophthalmologist.

    PubMed

    Modi, Neil; Williams, Olayinka; Swampillai, Andrew J; Waqar, Salman; Park, Jonathan; Kersey, Thomas L; Sleep, Tamsin

    2015-04-01

    Understanding the learning styles of individual trainees may enable trainers to tailor an educational program and optimise learning. Surgical trainees have previously been shown to demonstrate a tendency towards particular learning styles. We seek to clarify the relationship between learning style and learned surgical performance using a simulator, prior to surgical training. The Kolb Learning Style Inventory was administered to a group of thirty junior doctors. Participants were then asked to perform a series of tasks using the EyeSi virtual reality cataract surgery simulator (VR Magic, Mannheim, Germany). All completed a standard introductory programme to eliminate learning curve. They then undertook four attempts of level 4 forceps module binocularly. Total score, odometer movement (mm), corneal area injured (mm(2)), lens area injured (mm(2)) and total time taken (seconds) recorded. Mean age was 31.6 years. No significant correlation was found between any learning style and any variable on the EyeSi cataract surgery simulator. There is a predominant learning style amongst surgical residents. There is however no demonstrable learning style that results in a better (or worse) performance on the EyeSi surgery simulator and hence in learning and performing cataract surgery.

  15. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke

    PubMed Central

    2012-01-01

    This study, conducted in a group of nine chronic patients with right-side hemiparesis after stroke, investigated the effects of a robotic-assisted rehabilitation training with an upper limb robotic exoskeleton for the restoration of motor function in spatial reaching movements. The robotic assisted rehabilitation training was administered for a period of 6 weeks including reaching and spatial antigravity movements. To assess the carry-over of the observed improvements in movement during training into improved function, a kinesiologic assessment of the effects of the training was performed by means of motion and dynamic electromyographic analysis of reaching movements performed before and after training. The same kinesiologic measurements were performed in a healthy control group of seven volunteers, to determine a benchmark for the experimental observations in the patients’ group. Moreover degree of functional impairment at the enrolment and discharge was measured by clinical evaluation with upper limb Fugl-Meyer Assessment scale (FMA, 0–66 points), Modified Ashworth scale (MA, 0–60 pts) and active ranges of motion. The robot aided training induced, independently by time of stroke, statistical significant improvements of kinesiologic (movement time, smoothness of motion) and clinical (4.6 ± 4.2 increase in FMA, 3.2 ± 2.1 decrease in MA) parameters, as a result of the increased active ranges of motion and improved co-contraction index for shoulder extension/flexion. Kinesiologic parameters correlated significantly with clinical assessment values, and their changes after the training were affected by the direction of motion (inward vs. outward movement) and position of target to be reached (ipsilateral, central and contralateral peripersonal space). These changes can be explained as a result of the motor recovery induced by the robotic training, in terms of regained ability to execute single joint movements and of improved interjoint coordination of elbow and shoulder joints. PMID:22681653

  16. Effects of Integrated Physical Exercises and Gestures on Preschool Children's Foreign Language Vocabulary Learning

    ERIC Educational Resources Information Center

    Mavilidi, Myrto-Foteini; Okely, Anthony D.; Chandler, Paul; Cliff, Dylan P.; Paas, Fred

    2015-01-01

    Research suggests that integrating human movement into a cognitive learning task can be effective for learning due to its cognitive and physiological effects. In this study, the learning effects of enacting words through whole-body movements (i.e., physical exercise) and part-body movements (i.e., gestures) were investigated in a foreign language…

  17. Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: recalibrating or learning de novo?

    PubMed

    Telgen, Sebastian; Parvin, Darius; Diedrichsen, Jörn

    2014-10-08

    Motor learning tasks are often classified into adaptation tasks, which involve the recalibration of an existing control policy (the mapping that determines both feedforward and feedback commands), and skill-learning tasks, requiring the acquisition of new control policies. We show here that this distinction also applies to two different visuomotor transformations during reaching in humans: Mirror-reversal (left-right reversal over a mid-sagittal axis) of visual feedback versus rotation of visual feedback around the movement origin. During mirror-reversal learning, correct movement initiation (feedforward commands) and online corrections (feedback responses) were only generated at longer latencies. The earliest responses were directed into a nonmirrored direction, even after two training sessions. In contrast, for visual rotation learning, no dependency of directional error on reaction time emerged, and fast feedback responses to visual displacements of the cursor were immediately adapted. These results suggest that the motor system acquires a new control policy for mirror reversal, which initially requires extra processing time, while it recalibrates an existing control policy for visual rotations, exploiting established fast computational processes. Importantly, memory for visual rotation decayed between sessions, whereas memory for mirror reversals showed offline gains, leading to better performance at the beginning of the second session than in the end of the first. With shifts in time-accuracy tradeoff and offline gains, mirror-reversal learning shares common features with other skill-learning tasks. We suggest that different neuronal mechanisms underlie the recalibration of an existing versus acquisition of a new control policy and that offline gains between sessions are a characteristic of latter. Copyright © 2014 the authors 0270-6474/14/3413768-12$15.00/0.

  18. A tale of two trainers: virtual reality versus a video trainer for acquisition of basic laparoscopic skills.

    PubMed

    Debes, Anders J; Aggarwal, Rajesh; Balasundaram, Indran; Jacobsen, Morten B

    2010-06-01

    This study aimed to assess the transferability of basic laparoscopic skills between a virtual reality simulator (MIST-VR) and a video trainer box (D-Box). Forty-six medical students were randomized into 2 groups, training on MIST-VR or D-Box. After training with one modality, a crossover assessment on the other was performed. When tested on MIST-VR, the MIST-VR group showed significantly shorter time (90.3 seconds vs 188.6 seconds, P <.001), better economy of movements (4.40 vs 7.50, P <.001), and lower score (224.7 vs 527.0, P <.001). However, when assessed on the D-Box, there was no difference between the groups for time (402.0 seconds vs 325.6 seconds, P = .152), total hand movements (THC) (289 vs 262, P = .792), or total path length (TPL) (34.9 m vs 34.6 m, P = .388). Both simulators provide significant improvement in performance. Our results indicate that skills learned on the MIST-VR are transferable to the D-Box, but the opposite cannot be demonstrated. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Learning fast accurate movements requires intact frontostriatal circuits

    PubMed Central

    Shabbott, Britne; Ravindran, Roshni; Schumacher, Joseph W.; Wasserman, Paula B.; Marder, Karen S.; Mazzoni, Pietro

    2013-01-01

    The basal ganglia are known to play a crucial role in movement execution, but their importance for motor skill learning remains unclear. Obstacles to our understanding include the lack of a universally accepted definition of motor skill learning (definition confound), and difficulties in distinguishing learning deficits from execution impairments (performance confound). We studied how healthy subjects and subjects with a basal ganglia disorder learn fast accurate reaching movements. We addressed the definition and performance confounds by: (1) focusing on an operationally defined core element of motor skill learning (speed-accuracy learning), and (2) using normal variation in initial performance to separate movement execution impairment from motor learning abnormalities. We measured motor skill learning as performance improvement in a reaching task with a speed-accuracy trade-off. We compared the performance of subjects with Huntington's disease (HD), a neurodegenerative basal ganglia disorder, to that of premanifest carriers of the HD mutation and of control subjects. The initial movements of HD subjects were less skilled (slower and/or less accurate) than those of control subjects. To factor out these differences in initial execution, we modeled the relationship between learning and baseline performance in control subjects. Subjects with HD exhibited a clear learning impairment that was not explained by differences in initial performance. These results support a role for the basal ganglia in both movement execution and motor skill learning. PMID:24312037

  20. 78 FR 13156 - Petition for Waiver of Compliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... for this charter train movement that includes the safety of train operations, equipment, passenger... request this exception for a one-time, one-day, roundtrip, chartered passenger train movement on June 23, 2013, over the Brazos Drawbridge. The charter train will operate from Sacramento to the Sears Point...

  1. Is that really my movement? - Students' experiences of a video-supported interactive learning model for movement awareness.

    PubMed

    Backåberg, Sofia; Gummesson, Christina; Brunt, David; Rask, Mikael

    2015-01-01

    Healthcare staff and students have a great risk of developing musculoskeletal symptoms. One cause of this is heavy load related work activities such as manual handling, in which the quality of individual work technique may play a major role. Preventive interventions and well-defined educational strategies to support movement awareness and long-lasting movement changes need to be developed. The aim of the present study was to explore nursing students' experiences of a newly developed interactive learning model for movement awareness. The learning model, which is based on a life-world perspective with focus on interpersonal interaction, has been used with 11 undergraduate students from the second and final year. Each student participated in three individual video sessions with a facilitator. Two individual interviews were carried out with each student during the learning process and one interview 12-18 months after the last session. The interviews were audio-recorded and transcribed verbatim, and a phenomenological hermeneutic method inspired by Paul Ricoeur and described by Lindseth and Norberg was used to interpret the interviews and diary notes. The interpretation resulted in three key themes and nine subthemes. The key themes were; "Obtaining better preconditions for bodily awareness," "Experiencing changes in one's own movement," and "Experiencing challenges in the learning process." The interactive learning model entails a powerful and challenging experience that develops movement awareness. The experience of meaningfulness and usefulness emerges increasingly and alternates with a feeling of discomfort. The learning model may contribute to the body of knowledge of well-defined educational strategies in movement awareness and learning in, for example, preventive interventions and ergonomic education. It may also be valuable in other practical learning situations where movement awareness is required.

  2. The "I Am Learning" Curriculum: Developing a Movement Awareness in Young Children.

    ERIC Educational Resources Information Center

    Carson, Linda M.

    2001-01-01

    Discusses the importance of developing young children's movement awareness, focusing on the components of movement awareness; comprehensive movement awareness categories (traveling, stabilizing, and manipulating actions); and movement concepts as the modifiers of the actions. The paper explains how to implement the "I Am Learning" movement…

  3. A deep (learning) dive into visual search behaviour of breast radiologists

    NASA Astrophysics Data System (ADS)

    Mall, Suneeta; Brennan, Patrick C.; Mello-Thoms, Claudia

    2018-03-01

    Visual search, the process of detecting and identifying objects using the eye movements (saccades) and the foveal vision, has been studied for identification of root causes of errors in the interpretation of mammography. The aim of this study is to model visual search behaviour of radiologists and their interpretation of mammograms using deep machine learning approaches. Our model is based on a deep convolutional neural network, a biologically-inspired multilayer perceptron that simulates the visual cortex, and is reinforced with transfer learning techniques. Eye tracking data obtained from 8 radiologists (of varying experience levels in reading mammograms) reviewing 120 two-view digital mammography cases (59 cancers) have been used to train the model, which was pre-trained with the ImageNet dataset for transfer learning. Areas of the mammogram that received direct (foveally fixated), indirect (peripherally fixated) or no (never fixated) visual attention were extracted from radiologists' visual search maps (obtained by a head mounted eye tracking device). These areas, along with the radiologists' assessment (including confidence of the assessment) of suspected malignancy were used to model: 1) Radiologists' decision; 2) Radiologists' confidence on such decision; and 3) The attentional level (i.e. foveal, peripheral or none) obtained by an area of the mammogram. Our results indicate high accuracy and low misclassification in modelling such behaviours.

  4. 49 CFR 231.30 - Locomotives used in switching service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... constitute a road movement. However, this term does not include movement of a train or part of a train within yard limits by the road locomotive and the placement of locomotives or cars in a train or their removal from a train by the road locomotive while en route to the train's destination. (3) Safety tread surface...

  5. 49 CFR 231.30 - Locomotives used in switching service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... constitute a road movement. However, this term does not include movement of a train or part of a train within yard limits by the road locomotive and the placement of locomotives or cars in a train or their removal from a train by the road locomotive while en route to the train's destination. (3) Safety tread surface...

  6. 49 CFR 231.30 - Locomotives used in switching service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... constitute a road movement. However, this term does not include movement of a train or part of a train within yard limits by the road locomotive and the placement of locomotives or cars in a train or their removal from a train by the road locomotive while en route to the train's destination. (3) Safety tread surface...

  7. 49 CFR 231.30 - Locomotives used in switching service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... constitute a road movement. However, this term does not include movement of a train or part of a train within yard limits by the road locomotive and the placement of locomotives or cars in a train or their removal from a train by the road locomotive while en route to the train's destination. (3) Safety tread surface...

  8. 49 CFR 231.30 - Locomotives used in switching service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... constitute a road movement. However, this term does not include movement of a train or part of a train within yard limits by the road locomotive and the placement of locomotives or cars in a train or their removal from a train by the road locomotive while en route to the train's destination. (3) Safety tread surface...

  9. Abnormal global and local event detection in compressive sensing domain

    NASA Astrophysics Data System (ADS)

    Wang, Tian; Qiao, Meina; Chen, Jie; Wang, Chuanyun; Zhang, Wenjia; Snoussi, Hichem

    2018-05-01

    Abnormal event detection, also known as anomaly detection, is one challenging task in security video surveillance. It is important to develop effective and robust movement representation models for global and local abnormal event detection to fight against factors such as occlusion and illumination change. In this paper, a new algorithm is proposed. It can locate the abnormal events on one frame, and detect the global abnormal frame. The proposed algorithm employs a sparse measurement matrix designed to represent the movement feature based on optical flow efficiently. Then, the abnormal detection mission is constructed as a one-class classification task via merely learning from the training normal samples. Experiments demonstrate that our algorithm performs well on the benchmark abnormal detection datasets against state-of-the-art methods.

  10. The role of auditory feedback in music-supported stroke rehabilitation: A single-blinded randomised controlled intervention.

    PubMed

    van Vugt, F T; Kafczyk, T; Kuhn, W; Rollnik, J D; Tillmann, B; Altenmüller, E

    2016-01-01

    Learning to play musical instruments such as piano was previously shown to benefit post-stroke motor rehabilitation. Previous work hypothesised that the mechanism of this rehabilitation is that patients use auditory feedback to correct their movements and therefore show motor learning. We tested this hypothesis by manipulating the auditory feedback timing in a way that should disrupt such error-based learning. We contrasted a patient group undergoing music-supported therapy on a piano that emits sounds immediately (as in previous studies) with a group whose sounds are presented after a jittered delay. The delay was not noticeable to patients. Thirty-four patients in early stroke rehabilitation with moderate motor impairment and no previous musical background learned to play the piano using simple finger exercises and familiar children's songs. Rehabilitation outcome was not impaired in the jitter group relative to the normal group. Conversely, some clinical tests suggests the jitter group outperformed the normal group. Auditory feedback-based motor learning is not the beneficial mechanism of music-supported therapy. Immediate auditory feedback therapy may be suboptimal. Jittered delay may increase efficacy of the proposed therapy and allow patients to fully benefit from motivational factors of music training. Our study shows a novel way to test hypotheses concerning music training in a single-blinded way, which is an important improvement over existing unblinded tests of music interventions.

  11. Effects of Vibrotactile Feedback on Human Learning of Arm Motions

    PubMed Central

    Bark, Karlin; Hyman, Emily; Tan, Frank; Cha, Elizabeth; Jax, Steven A.; Buxbaum, Laurel J.; Kuchenbecker, Katherine J.

    2015-01-01

    Tactile cues generated from lightweight, wearable actuators can help users learn new motions by providing immediate feedback on when and how to correct their movements. We present a vibrotactile motion guidance system that measures arm motions and provides vibration feedback when the user deviates from a desired trajectory. A study was conducted to test the effects of vibrotactile guidance on a subject’s ability to learn arm motions. Twenty-six subjects learned motions of varying difficulty with both visual (V), and visual and vibrotactile (VVT) feedback over the course of four days of training. After four days of rest, subjects returned to perform the motions from memory with no feedback. We found that augmenting visual feedback with vibrotactile feedback helped subjects reduce the root mean square (rms) angle error of their limb significantly while they were learning the motions, particularly for 1DOF motions. Analysis of the retention data showed no significant difference in rms angle errors between feedback conditions. PMID:25486644

  12. Rats' learning of a new motor skill: insight into the evolution of motor sequence learning.

    PubMed

    Hermer-Vazquez, Linda; Moshtagh, Nasim

    2009-05-01

    Recent behavioral and neural evidence has suggested that ethologically relevant sub-movements (movement primitives) are used by primates for more complex motor skill learning. These primitives include extending the hand, grasping an object, and holding food while moving it toward the mouth. In prior experiments with rats performing a reach-to-grasp-food task, we observed that especially during early task learning, rats appeared to have movement primitives similar to those seen in primates. Unlike primates, however, during task learning the rats performed these sub-movements in a disordered manner not seen in humans or macaques, e.g. with the rat chewing before placing the food pellet in its mouth. Here, in two experiments, we tested the hypothesis that for rats, learning this ecologically relevant skill involved learning to concatenate the sub-movements in the correct order. The results confirmed our initial observations, and suggested that several aspects of forepaw/hand use, taken for granted in primate studies, must be learned by rats to perform a logically connected and seemingly ecologically important series of sub-movements. We discuss our results from a comparative and evolutionary perspective.

  13. Develop a wearable ankle robot for in-bed acute stroke rehabilitation.

    PubMed

    Ren, Yupeng; Xu, Tao; Wang, Liang; Yang, Chung Yong; Guo, Xin; Harvey, Richard L; Zhang, Li-Qun

    2011-01-01

    Movement training is important in motor recovery post stroke and early intervention is critical to stroke rehabilitation. However, acute stroke survivors are actively trained with activities helpful for recovery of mobility in only 13% of the time in the acute phase. Considering the first few months post stroke is critical in stroke recovery (neuroplasticity), there is a strong need for movement therapy and manipulate/mobilize the joints. There is a lack of in-bed robotic rehabilitation in acute stroke. This study seeks to meet the clinic need and deliver intensive passive and active movement therapy using a wearable robot to enhance motor function in acute stroke. Passively, the wearable robot stretches the joint to its extreme positions safely and forcefully. Actively, movement training is conducted and game playing is used to guide and motivate the patient in movement training.

  14. Sensory training with vibration-induced kinesthetic illusions improves proprioceptive integration in patients with Parkinson's disease.

    PubMed

    Ribot-Ciscar, Edith; Aimonetti, Jean-Marc; Azulay, Jean-Philippe

    2017-12-15

    The present study investigates whether proprioceptive training, based on kinesthetic illusions, can help in re-educating the processing of muscle proprioceptive input, which is impaired in patients with Parkinson's disease (PD). The processing of proprioceptive input before and after training was evaluated by determining the error in the amplitude of voluntary dorsiflexion ankle movement (20°), induced by applying a vibration on the tendon of the gastrocnemius-soleus muscle (a vibration-induced movement error). The training consisted of the subjects focusing their attention upon a series of illusory movements of the ankle. Eleven PD patients and eleven age-matched control subjects were tested. Before training, vibration reduced dorsiflexion amplitude in controls by 4.3° (P<0.001); conversely, vibration was inefficient in PD's movement amplitude (reduction of 2.1°, P=0.20). After training, vibration significantly reduced the estimated movement amplitude in PD patients by 5.3° (P=0.01). This re-emergence of a vibration-induced error leads us to conclude that proprioceptive training, based on kinesthetic illusions, is a simple means for re-educating the processing of muscle proprioceptive input in PD patients. Such complementary training should be included in rehabilitation programs that presently focus on improving balance and motor performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of human-robot interaction on muscular synergies on healthy people and post-stroke chronic patients.

    PubMed

    Scano, A; Chiavenna, A; Caimmi, M; Malosio, M; Tosatti, L M; Molteni, F

    2017-07-01

    Robot-assisted training is a widely used technique to promote motor re-learning on post-stroke patients that suffer from motor impairment. While it is commonly accepted that robot-based therapies are potentially helpful, strong insights about their efficacy are still lacking. The motor re-learning process may act on muscular synergies, which are groups of co-activating muscles that, being controlled as a synergic group, allow simplifying the problem of motor control. In fact, by coordinating a reduced amount of neural signals, complex motor patterns can be elicited. This paper aims at analyzing the effects of robot assistance during 3D-reaching movements in the framework of muscular synergies. 5 healthy people and 3 neurological patients performed free and robot-assisted reaching movements at 2 different speeds (slow and quasi-physiological). EMG recordings were used to extract muscular synergies. Results indicate that the interaction with the robot very slightly alters healthy people patterns but, on the contrary, it may promote the emergency of physiological-like synergies on neurological patients.

  16. A Control Simulation Method of High-Speed Trains on Railway Network with Irregular Influence

    NASA Astrophysics Data System (ADS)

    Yang, Li-Xing; Li, Xiang; Li, Ke-Ping

    2011-09-01

    Based on the discrete time method, an effective movement control model is designed for a group of highspeed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics of high-speed trains under the interruption of stochastic irregular events. In the model, the high-speed rail traffic system is supposed to be equipped with the moving-block signalling system to guarantee maximum traversing capacity of the railway. To keep the safety of trains' movements, some operational strategies are proposed to control the movements of trains in the model, including traction operation, braking operation, and entering-station operation. The numerical simulations show that the designed model can well describe the movements of high-speed trains on the rail network. The research results can provide the useful information not only for investigating the propagation features of relevant delays under the irregular disturbance but also for rerouting and rescheduling trains on the rail network.

  17. Improving the 'how' and 'what' decisions of elite table tennis players.

    PubMed

    Raab, Markus; Masters, Rich S W; Maxwell, Jonathan P

    2005-06-01

    Training methods in sport usually focus on improving either technical or tactical aspects of performance, ignoring the fact that successful performance requires the athlete to simultaneously decide what movement to perform and how it should be executed. Young elite table tennis players were trained, in a first phase, to improve their forehand and backhand movements and, in a second phase, to make a tactical switch between forehand and backhand movements. Half of the players took part in behavioral training focusing on how to perform the required movements, whereas half received additional video feedback about their technical and tactical performance (decision training). The results indicate that improvements of how decisions (techniques) and what decisions (tactics) can occur as a consequence of combining technical and tactical training. These results were stable in delayed Post-test analyses of competitive matches. It was concluded that a combination of both technical and tactical training is beneficial to elite table tennis performers, particularly during early seasonal training programs.

  18. Movement Issues Identified in Movement ABC2 Checklist Parent Ratings for Students with Persisting Dysgraphia, Dyslexia, and OWL LD and Typical Literacy Learners.

    PubMed

    Nielsen, Kathleen; Henderson, Sheila; Barnett, Anna L; Abbott, Robert D; Berninger, Virginia

    2018-01-01

    Movement, which draws on motor skills and executive functions for managing them, plays an important role in literacy learning (e.g., movement of mouth during oral reading and movement of hand and fingers during writing); but relatively little research has focused on movement skills in students with specific learning disabilities as the current study did. Parents completed normed Movement Assessment Battery for Children Checklist, 2nd edition (ABC-2), ratings and their children in grades 4 to 9 ( M = 11 years, 11 months; 94 boys, 61 girls) completed diagnostic assessment used to assign them to diagnostic groups: control typical language learning ( N = 42), dysgraphia (impaired handwriting) ( N = 29), dyslexia (impaired word decoding/reading and spelling) ( N = 65), or oral and written language learning disability (OWL LD) (impaired syntax in oral and written language) ( N = 19). The research aims were to (a) correlate the Movement ABC-2 parent ratings for Scale A Static/Predictable Environment (15 items) and Scale B Dynamic/Unpredictable Environment (15 items) with reading and writing achievement in total sample varying within and across different skills; and (b) compare each specific learning disability group with the control group on Movement ABC-2 parent ratings for Scale A, Scale B, and Scale C Movement-Related (Non-Motor Executive Functions, or Self-Efficacy, or Affect) (13 items). At least one Movement ABC-2 parent rating was correlated with each assessed literacy achievement skill. Each of three specific learning disability groups differed from the control group on two Scale A (static/predictable environment) items (fastens buttons and forms letters with pencil or pen) and on three Scale C items (distractibility, overactive, and underestimates own ability); but only OWL LD differed from control on Scale B (dynamic/unpredictable environment) items. Applications of findings to assessment and instruction for students ascertained for and diagnosed with persisting specific learning disabilities in literacy learning, and future research directions are discussed.

  19. Patient adaptive control of end-effector based gait rehabilitation devices using a haptic control framework.

    PubMed

    Hussein, Sami; Kruger, Jörg

    2011-01-01

    Robot assisted training has proven beneficial as an extension of conventional therapy to improve rehabilitation outcome. Further facilitation of this positive impact is expected from the application of cooperative control algorithms to increase the patient's contribution to the training effort according to his level of ability. This paper presents an approach for cooperative training for end-effector based gait rehabilitation devices. Thereby it provides the basis to firstly establish sophisticated cooperative control methods in this class of devices. It uses a haptic control framework to synthesize and render complex, task specific training environments, which are composed of polygonal primitives. Training assistance is integrated as part of the environment into the haptic control framework. A compliant window is moved along a nominal training trajectory compliantly guiding and supporting the foot motion. The level of assistance is adjusted via the stiffness of the moving window. Further an iterative learning algorithm is used to automatically adjust this assistance level. Stable haptic rendering of the dynamic training environments and adaptive movement assistance have been evaluated in two example training scenarios: treadmill walking and stair climbing. Data from preliminary trials with one healthy subject is provided in this paper. © 2011 IEEE

  20. Toward the Autism Motor Signature: Gesture patterns during smart tablet gameplay identify children with autism

    NASA Astrophysics Data System (ADS)

    Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T.

    2016-08-01

    Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3-6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children’s motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay.

  1. Toward the Autism Motor Signature: Gesture patterns during smart tablet gameplay identify children with autism.

    PubMed

    Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T

    2016-08-24

    Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3-6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children's motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay.

  2. Toward the Autism Motor Signature: Gesture patterns during smart tablet gameplay identify children with autism

    PubMed Central

    Anzulewicz, Anna; Sobota, Krzysztof; Delafield-Butt, Jonathan T.

    2016-01-01

    Autism is a developmental disorder evident from infancy. Yet, its clinical identification requires expert diagnostic training. New evidence indicates disruption to motor timing and integration may underpin the disorder, providing a potential new computational marker for its early identification. In this study, we employed smart tablet computers with touch-sensitive screens and embedded inertial movement sensors to record the movement kinematics and gesture forces made by 37 children 3–6 years old with autism and 45 age- and gender-matched children developing typically. Machine learning analysis of the children’s motor patterns identified autism with up to 93% accuracy. Analysis revealed these patterns consisted of greater forces at contact and with a different distribution of forces within a gesture, and gesture kinematics were faster and larger, with more distal use of space. These data support the notion disruption to movement is core feature of autism, and demonstrate autism can be computationally assessed by fun, smart device gameplay. PMID:27553971

  3. Moving and Learning: Expanding Style and Increasing Flexibility

    ERIC Educational Resources Information Center

    Peterson, Kay; DeCato, Lisa; Kolb, David A.

    2015-01-01

    This article introduces ways in which movement can enhance one's understanding of how to learn using Experiential Learning Theory (ELT) concepts of the Learning Cycle, Learning Styles, and Learning Flexibility. The theoretical correspondence between the dialectic dimensions of the Learning Cycle and the dimensions of the Laban Movement Analysis…

  4. Learning curves and impact of previous operative experience on performance on a virtual reality simulator to test laparoscopic surgical skills.

    PubMed

    Grantcharov, Teodor P; Bardram, Linda; Funch-Jensen, Peter; Rosenberg, Jacob

    2003-02-01

    The study was carried out to analyze the learning rate for laparoscopic skills on a virtual reality training system and to establish whether the simulator was able to differentiate between surgeons with different laparoscopic experience. Forty-one surgeons were divided into three groups according to their experience in laparoscopic surgery: masters (group 1, performed more than 100 cholecystectomies), intermediates (group 2, between 15 and 80 cholecystectomies), and beginners (group 3, fewer than 10 cholecystectomies) were included in the study. The participants were tested on the Minimally Invasive Surgical Trainer-Virtual Reality (MIST-VR) 10 consecutive times within a 1-month period. Assessment of laparoscopic skills included time, errors, and economy of hand movement, measured by the simulator. The learning curves regarding time reached plateau after the second repetition for group 1, the fifth repetition for group 2, and the seventh repetition for group 3 (Friedman's tests P <0.05). Experienced surgeons did not improve their error or economy of movement scores (Friedman's tests, P >0.2) indicating the absence of a learning curve for these parameters. Group 2 error scores reached plateau after the first repetition, and group 3 after the fifth repetition. Group 2 improved their economy of movement score up to the third repetition and group 3 up to the sixth repetition (Friedman's tests, P <0.05). Experienced surgeons (group 1) demonstrated best performance parameters, followed by group 2 and group 3 (Mann-Whitney test P <0.05). Different learning curves existed for surgeons with different laparoscopic background. The familiarization rate on the simulator was proportional to the operative experience of the surgeons. Experienced surgeons demonstrated best laparoscopic performance on the simulator, followed by those with intermediate experience and the beginners. These differences indicate that the scoring system of MIST-VR is sensitive and specific to measuring skills relevant for laparoscopic surgery.

  5. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform.

    PubMed

    Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo

    2015-01-01

    Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain-computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants' ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke.

  6. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform

    PubMed Central

    Elnady, Ahmed Mohamed; Zhang, Xin; Xiao, Zhen Gang; Yong, Xinyi; Randhawa, Bubblepreet Kaur; Boyd, Lara; Menon, Carlo

    2015-01-01

    Traditional, hospital-based stroke rehabilitation can be labor-intensive and expensive. Furthermore, outcomes from rehabilitation are inconsistent across individuals and recovery is hard to predict. Given these uncertainties, numerous technological approaches have been tested in an effort to improve rehabilitation outcomes and reduce the cost of stroke rehabilitation. These techniques include brain–computer interface (BCI), robotic exoskeletons, functional electrical stimulation (FES), and proprioceptive feedback. However, to the best of our knowledge, no studies have combined all these approaches into a rehabilitation platform that facilitates goal-directed motor movements. Therefore, in this paper, we combined all these technologies to test the feasibility of using a BCI-driven exoskeleton with FES (robotic training device) to facilitate motor task completion among individuals with stroke. The robotic training device operated to assist a pre-defined goal-directed motor task. Because it is hard to predict who can utilize this type of technology, we considered whether the ability to adapt skilled movements with proprioceptive feedback would predict who could learn to control a BCI-driven robotic device. To accomplish this aim, we developed a motor task that requires proprioception for completion to assess motor-proprioception ability. Next, we tested the feasibility of robotic training system in individuals with chronic stroke (n = 9) and found that the training device was well tolerated by all the participants. Ability on the motor-proprioception task did not predict the time to completion of the BCI-driven task. Both participants who could accurately target (n = 6) and those who could not (n = 3), were able to learn to control the BCI device, with each BCI trial lasting on average 2.47 min. Our results showed that the participants’ ability to use proprioception to control motor output did not affect their ability to use the BCI-driven exoskeleton with FES. Based on our preliminary results, we show that our robotic training device has potential for use as therapy for a broad range of individuals with stroke. PMID:25870554

  7. Brain Gym. Simple Activities for Whole Brain Learning.

    ERIC Educational Resources Information Center

    Dennison, Paul E.; Dennison, Gail E.

    This booklet contains simple movements and activities that are used with students in Educational Kinesiology to enhance their experience of whole brain learning. Whole brain learning through movement repatterning and Brain Gym activities enable students to access those parts of the brain previously unavailable to them. These movements of body and…

  8. Protest as Pedagogy: Exploring Teaching and Learning in Indigenous Environmental Movements

    ERIC Educational Resources Information Center

    Lowan-Trudeau, Gregory

    2017-01-01

    This article reports on a recent study into the experiences of Indigenous and allied environmental activists with teaching and learning during and as a result of Indigenous environmental movements. This inquiry is grounded in a theoretical framework informed by decolonization and cultural revitalization, social movement learning, and repressive…

  9. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation.

    PubMed

    Ota, Simone M; Moreira, Karin Di Monteiro; Suchecki, Deborah; Oliveira, Maria Gabriela M; Tiba, Paula A

    2013-11-01

    Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. Wistar male rats weighing 300-400 g. Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained.

  10. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury.

    PubMed

    Varoqui, Deborah; Niu, Xun; Mirbagheri, Mehdi M

    2014-03-31

    In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities-characterized by increases in the over-ground walking speed and endurance-is generally observed in patients. To better understand the mechanisms underlying these improvements, we studied the effects of Lokomat training on impaired ankle voluntary movement, known to be an important limiting factor in gait for iSCI patients. Fifteen chronic iSCI subjects performed twelve 1-hour sessions of Lokomat training over the course of a month. The voluntary movement was qualified by measuring active range of motion, maximal velocity peak and trajectory smoothness for the spastic ankle during a movement from full plantar-flexion (PF) to full dorsi-flexion (DF) at the patient's maximum speed. Dorsi- and plantar-flexor muscle strength was quantified by isometric maximal voluntary contraction (MVC). Clinical assessments were also performed using the Timed Up and Go (TUG), the 10-meter walk (10MWT) and the 6-minute walk (6MWT) tests. All evaluations were performed both before and after the training and were compared to a control group of fifteen iSCI patients. After the Lokomat training, the active range of motion, the maximal velocity, and the movement smoothness were significantly improved in the voluntary movement. Patients also exhibited an improvement in the MVC for their ankle dorsi- and plantar-flexor muscles. In terms of functional activity, we observed an enhancement in the mobility (TUG) and the over-ground gait velocity (10MWT) with training. Correlation tests indicated a significant relationship between ankle voluntary movement performance and the walking clinical assessments. The improvements of the kinematic and kinetic parameters of the ankle voluntary movement, and their correlation with the functional assessments, support the therapeutic effect of robotic-assisted locomotor training on motor impairment in chronic iSCI.

  11. An Introduction to the Inverted/Flipped Classroom Model in Education and Advanced Training in Medicine and in the Healthcare Professions.

    PubMed

    Tolks, Daniel; Schäfer, Christine; Raupach, Tobias; Kruse, Leona; Sarikas, Antonio; Gerhardt-Szép, Susanne; Kllauer, Gertrud; Lemos, Martin; Fischer, Martin R; Eichner, Barbara; Sostmann, Kai; Hege, Inga

    2016-01-01

    In describing the inverted classroom model (ICM), the following paper is meant to provide an introduction to the subject matter and to serve as a practical guide for those wishing to employ its methods in basic and advanced medical training and education. The ICM is a blended-learning method in which a self-directed learning phase (individual phase) precedes the classroom-instruction phase. During the online phase, factual knowledge is imparted that serves as a basis for the classroom phase. The classroom phase should subsequently be used to assimilate and implement the previously gained knowledge. In contrast, traditional course concepts impart factual knowledge in lectures, for example, or in other face-to-face teaching formats and are followed by the students' self-instruction in order to assimilate this knowledge. The goal of the ICM is the shift from passive learning to accelerated learning in order to foster learning at cognitively demanding levels such as analysis, synthesis and evaluation. The concurrent increase in production and use of screencasts and educational videos, the Open Educational Resources "movement" and the widespread use of Massive Open Online Courses (MOOCS) have contributed to the increased dissemination of the inverted-classroom method. The intention of the present paper is to provide an introduction to the subject matter and simultaneously to offer a short overview of important projects and research results in the field of medical education and other health professions. Furthermore, an outline is given of the advantages and disadvantages of the model as well as its potential benefit to the future of medical education and training.

  12. Transfer of strength and power training to sports performance.

    PubMed

    Young, Warren B

    2006-06-01

    The purposes of this review are to identify the factors that contribute to the transference of strength and power training to sports performance and to provide resistance-training guidelines. Using sprinting performance as an example, exercises involving bilateral contractions of the leg muscles resulting in vertical movement, such as squats and jump squats, have minimal transfer to performance. However, plyometric training, including unilateral exercises and horizontal movement of the whole body, elicits significant increases in sprint acceleration performance, thus highlighting the importance of movement pattern and contraction velocity specificity. Relatively large gains in power output in nonspecific movements (intramuscular coordination) can be accompanied by small changes in sprint performance. Research on neural adaptations to resistance training indicates that intermuscular coordination is an important component in achieving transfer to sports skills. Although the specificity of resistance training is important, general strength training is potentially useful for the purposes of increasing body mass, decreasing the risk of soft-tissue injuries, and developing core stability. Hypertrophy and general power exercises can enhance sports performance, but optimal transfer from training also requires a specific exercise program.

  13. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke.

    PubMed

    De Santis, Dalia; Zenzeri, Jacopo; Casadio, Maura; Masia, Lorenzo; Riva, Assunta; Morasso, Pietro; Squeri, Valentina

    2014-01-01

    Proprioception has a crucial role in promoting or hindering motor learning. In particular, an intact position sense strongly correlates with the chances of recovery after stroke. A great majority of neurological patients present both motor dysfunctions and impairments in kinesthesia, but traditional robot and virtual reality training techniques focus either in recovering motor functions or in assessing proprioceptive deficits. An open challenge is to implement effective and reliable tests and training protocols for proprioception that go beyond the mere position sense evaluation and exploit the intrinsic bidirectionality of the kinesthetic sense, which refers to both sense of position and sense of movement. Modulated haptic interaction has a leading role in promoting sensorimotor integration, and it is a natural way to enhance volitional effort. Therefore, we designed a preliminary clinical study to test a new proprioception-based motor training technique for augmenting kinesthetic awareness via haptic feedback. The feedback was provided by a robotic manipulandum and the test involved seven chronic hemiparetic subjects over 3 weeks. The protocol included evaluation sessions that consisted of a psychometric estimate of the subject's kinesthetic sensation, and training sessions, in which the subject executed planar reaching movements in the absence of vision and under a minimally assistive haptic guidance made by sequences of graded force pulses. The bidirectional haptic interaction between the subject and the robot was optimally adapted to each participant in order to achieve a uniform task difficulty over the workspace. All the subjects consistently improved in the perceptual scores as a consequence of training. Moreover, they could minimize the level of haptic guidance in time. Results suggest that the proposed method is effective in enhancing kinesthetic acuity, but the level of impairment may affect the ability of subjects to retain their improvement in time.

  14. Robot-Assisted Training of the Kinesthetic Sense: Enhancing Proprioception after Stroke

    PubMed Central

    De Santis, Dalia; Zenzeri, Jacopo; Casadio, Maura; Masia, Lorenzo; Riva, Assunta; Morasso, Pietro; Squeri, Valentina

    2015-01-01

    Proprioception has a crucial role in promoting or hindering motor learning. In particular, an intact position sense strongly correlates with the chances of recovery after stroke. A great majority of neurological patients present both motor dysfunctions and impairments in kinesthesia, but traditional robot and virtual reality training techniques focus either in recovering motor functions or in assessing proprioceptive deficits. An open challenge is to implement effective and reliable tests and training protocols for proprioception that go beyond the mere position sense evaluation and exploit the intrinsic bidirectionality of the kinesthetic sense, which refers to both sense of position and sense of movement. Modulated haptic interaction has a leading role in promoting sensorimotor integration, and it is a natural way to enhance volitional effort. Therefore, we designed a preliminary clinical study to test a new proprioception-based motor training technique for augmenting kinesthetic awareness via haptic feedback. The feedback was provided by a robotic manipulandum and the test involved seven chronic hemiparetic subjects over 3 weeks. The protocol included evaluation sessions that consisted of a psychometric estimate of the subject’s kinesthetic sensation, and training sessions, in which the subject executed planar reaching movements in the absence of vision and under a minimally assistive haptic guidance made by sequences of graded force pulses. The bidirectional haptic interaction between the subject and the robot was optimally adapted to each participant in order to achieve a uniform task difficulty over the workspace. All the subjects consistently improved in the perceptual scores as a consequence of training. Moreover, they could minimize the level of haptic guidance in time. Results suggest that the proposed method is effective in enhancing kinesthetic acuity, but the level of impairment may affect the ability of subjects to retain their improvement in time. PMID:25601833

  15. Changing conversations: teaching safety and quality in residency training.

    PubMed

    Voss, John D; May, Natalie B; Schorling, John B; Lyman, Jason A; Schectman, Joel M; Wolf, Andrew M D; Nadkarni, Mohan M; Plews-Ogan, Margaret

    2008-11-01

    Improving patient safety and quality in health care is one of medicine's most pressing challenges. Residency training programs have a unique opportunity to meet this challenge by training physicians in the science and methods of patient safety and quality improvement (QI).With support from the Health Resources and Services Administration, the authors developed an innovative, longitudinal, experiential curriculum in patient safety and QI for internal medicine residents at the University of Virginia. This two-year curriculum teaches the critical concepts and skills of patient safety and QI: systems thinking and human factors analysis, root cause analysis (RCA), and process mapping. Residents apply these skills in a series of QI and patient safety projects. The constructivist educational model creates a learning environment that actively engages residents in improving the quality and safety of their medical practice.Between 2003 and 2005, 38 residents completed RCAs of adverse events. The RCAs identified causes and proposed useful interventions that have produced important care improvements. Qualitative analysis demonstrates that the curriculum shifted residents' thinking about patient safety to a systems-based approach. Residents completed 237 outcome assessments during three years. Results indicate that seminars met predefined learning objectives and were interactive and enjoyable. Residents strongly believe they gained important skills in all domains.The challenge to improve quality and safety in health care requires physicians to learn new knowledge and skills. Graduate medical education can equip new physicians with the skills necessary to lead the movement to safer and better quality of care for all patients.This article is part of a theme issue of Academic Medicine on the Title VII health professions training programs.

  16. The Music, Movement, and Learning Connection.

    ERIC Educational Resources Information Center

    Palmer, Hap

    2001-01-01

    Offers suggestions for combining music and movement in early childhood settings to enhance children's learning. Suggestions include choosing songs that encourage active involvement, incorporating children's ideas and interests in curriculum planning, using music and movement to recognize the whole child, and making music and movement sessions…

  17. Performance-based robotic assistance during rhythmic arm exercises.

    PubMed

    Leconte, Patricia; Ronsse, Renaud

    2016-09-13

    Rhythmic and discrete upper-limb movements are two fundamental motor primitives controlled by different neural pathways, at least partially. After stroke, both primitives can be impaired. Both conventional and robot-assisted therapies mainly train discrete functional movements like reaching and grasping. However, if the movements form two distinct neural and functional primitives, both should be trained to recover the complete motor repertoire. Recent studies show that rhythmic movements tend to be less impaired than discrete ones, so combining both movement types in therapy could support the execution of movements with a higher degree of impairment by movements that are performed more stably. A new performance-based assistance method was developed to train rhythmic movements with a rehabilitation robot. The algorithm uses the assist-as-needed paradigm by independently assessing and assisting movement features of smoothness, velocity, and amplitude. The method relies on different building blocks: (i) an adaptive oscillator captures the main movement harmonic in state variables, (ii) custom metrics measure the movement performance regarding the three features, and (iii) adaptive forces assist the patient. The patient is encouraged to improve performance regarding these three features with assistance forces computed in parallel to each other. The method was tested with simulated jerky signals and a pilot experiment with two stroke patients, who were instructed to make circular movements with an end-effector robot with assistance during half of the trials. Simulation data reveal sensitivity of the metrics for assessing the features while limiting interference between them. The assistance's effectiveness with stroke patients is established since it (i) adapts to the patient's real-time performance, (ii) improves patient motor performance, and (iii) does not lead the patient to slack. The smoothness assistance was by far the most used by both patients, while it provided no active mechanical work to the patient on average. Our performance-based assistance method for training rhythmic movements is a viable candidate to complement robot-assisted upper-limb therapies for training a larger motor repertoire.

  18. Developing Movement as Inclusive Pedagogy

    ERIC Educational Resources Information Center

    Peter, Melanie; Walter, Ofra

    2010-01-01

    This article details the emergence of a training framework to support professional development in inclusive Movement teaching. This arose from a collaborative research project in spring 2008 (supported by the Training and Development Agency, UK), between two universities in England and Israel. Movement education is surprisingly underused globally,…

  19. Low-noise encoding of active touch by layer 4 in the somatosensory cortex.

    PubMed

    Hires, Samuel Andrew; Gutnisky, Diego A; Yu, Jianing; O'Connor, Daniel H; Svoboda, Karel

    2015-08-06

    Cortical spike trains often appear noisy, with the timing and number of spikes varying across repetitions of stimuli. Spiking variability can arise from internal (behavioral state, unreliable neurons, or chaotic dynamics in neural circuits) and external (uncontrolled behavior or sensory stimuli) sources. The amount of irreducible internal noise in spike trains, an important constraint on models of cortical networks, has been difficult to estimate, since behavior and brain state must be precisely controlled or tracked. We recorded from excitatory barrel cortex neurons in layer 4 during active behavior, where mice control tactile input through learned whisker movements. Touch was the dominant sensorimotor feature, with >70% spikes occurring in millisecond timescale epochs after touch onset. The variance of touch responses was smaller than expected from Poisson processes, often reaching the theoretical minimum. Layer 4 spike trains thus reflect the millisecond-timescale structure of tactile input with little noise.

  20. Using virtual reality technology and hand tracking technology to create software for training surgical skills in 3D game

    NASA Astrophysics Data System (ADS)

    Zakirova, A. A.; Ganiev, B. A.; Mullin, R. I.

    2015-11-01

    The lack of visible and approachable ways of training surgical skills is one of the main problems in medical education. Existing simulation training devices are not designed to teach students, and are not available due to the high cost of the equipment. Using modern technologies such as virtual reality and hands movements fixation technology we want to create innovative method of learning the technics of conducting operations in 3D game format, which can make education process interesting and effective. Creating of 3D format virtual simulator will allow to solve several conceptual problems at once: opportunity of practical skills improvement unlimited by the time without the risk for patient, high realism of environment in operational and anatomic body structures, using of game mechanics for information perception relief and memorization of methods acceleration, accessibility of this program.

  1. Abstract rule learning in 11- and 14-month-old infants.

    PubMed

    Koulaguina, Elena; Shi, Rushen

    2013-02-01

    This study tests the hypothesis that distributional information can guide infants in the generalization of word order movement rules at the initial stage of language acquisition. Participants were 11- and 14-month-old infants. Stimuli were sentences in Russian, a language that was unknown to our infants. During training the word order of each sentence was transformed following a consistent pattern (e.g., ABC-BAC). During the test phase infants heard novel sentences that respected the trained rule and ones that violated the trained rule (i.e., a different transformation such as ABC-ACB). Stimuli words had highly variable phonological and morphological shapes. The cue available was the positional information of words and their non-adjacent relations across sentences. We found that 14-month-olds, but not 11-month-olds, showed evidence of abstract rule generalization to novel instances. The implications of this finding to early syntactic acquisition are discussed.

  2. CONSTRUCTION AND VALIDATION OF LOW COST LAPAROSCOPIC SIMULATOR USING ANDROID SMARTPHONE AND POP CAST AND A LAPTOP.

    PubMed

    Vyas, A; Goel, G

    2017-09-01

    Minimal invasive surgery training requires a lot of practice and for this purpose innovative tools are needed to develop methods for practice and training skills outside the operating room. Commercially available devices are readily available but cost effectiveness and availability are major limiting factors in resource limited setting. We present an innovative and cost effective laparoscopic simulator which can be easily manufactured and used for practice of laparoscopic surgery. Using a free android application, such as IP webcam we can relay video to laptop without the use of any cables and uniquely we use the flash of a camera as the light source and a selfie stick for movement of the camera. Use of this type of setup can help to reduce cost of simulated learning in low income countries and makes laparoscopic training facilities readily available. Copyright© Authors.

  3. Motor imagery: lessons learned in movement science might be applicable for spaceflight

    PubMed Central

    Bock, Otmar; Schott, Nadja; Papaxanthis, Charalambos

    2015-01-01

    Before participating in a space mission, astronauts undergo parabolic-flight and underwater training to facilitate their subsequent adaptation to weightlessness. Unfortunately, similar training methods can’t be used to prepare re-adaptation to planetary gravity. Here, we propose a quick, simple and inexpensive approach that could be used to prepare astronauts both for the absence and for the renewed presence of gravity. This approach is based on motor imagery (MI), a process in which actions are produced in working memory without any overt output. Training protocols based on MI have repeatedly been shown to modify brain circuitry and to improve motor performance in healthy young adults, healthy seniors and stroke victims, and are routinely used to optimize performance of elite athletes. We propose to use similar protocols preflight, to prepare for weightlessness, and late inflight, to prepare for landing. PMID:26042004

  4. Effects of virtual reality training with modified constraint-induced movement therapy on upper extremity function in acute stage stroke: a preliminary study.

    PubMed

    Ji, Eun-Kyu; Lee, Sang-Heon

    2016-11-01

    [Purpose] The purpose of this study was to investigate the effects of virtual reality training combined with modified constraint-induced movement therapy on upper extremity motor function recovery in acute stage stroke patients. [Subjects and Methods] Four acute stage stroke patients participated in the study. A multiple baseline single subject experimental design was utilized. Modified constraint-induced movement therapy was used according to the EXplaining PLastICITy after stroke protocol during baseline sessions. Virtual reality training with modified constraint-induced movement therapy was applied during treatment sessions. The Manual Function Test and the Box and Block Test were used to measure upper extremity function before every session. [Results] The subjects' upper extremity function improved during the intervention period. [Conclusion] Virtual reality training combined with modified constraint-induced movement is effective for upper extremity function recovery in acute stroke patients.

  5. Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling.

    PubMed

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories

    PubMed Central

    Herzfeld, David J.; Pastor, Damien; Haith, Adrian M.; Rossetti, Yves; Shadmehr, Reza; O’Shea, Jacinta

    2014-01-01

    We investigated the contributions of the cerebellum and the motor cortex (M1) to acquisition and retention of human motor memories in a force field reaching task. We found that anodal transcranial direct current stimulation (tDCS) of the cerebellum, a technique that is thought to increase neuronal excitability, increased the ability to learn from error and form an internal model of the field, while cathodal cerebellar stimulation reduced this error-dependent learning. In addition, cathodal cerebellar stimulation disrupted the ability to respond to error within a reaching movement, reducing the gain of the sensory-motor feedback loop. By contrast, anodal M1 stimulation had no significant effects on these variables. During sham stimulation, early in training the acquired motor memory exhibited rapid decay in error-clamp trials. With further training the rate of decay decreased, suggesting that with training the motor memory was transformed from a labile to a more stable state. Surprisingly, neither cerebellar nor M1 stimulation altered these decay patterns. Participants returned 24 hours later and were re-tested in error-clamp trials without stimulation. The cerebellar group that had learned the task with cathodal stimulation exhibited significantly impaired retention, and retention was not improved by M1 anodal stimulation. In summary, non-invasive cerebellar stimulation resulted in polarity-dependent up- or down-regulation of error-dependent motor learning. In addition, cathodal cerebellar stimulation during acquisition impaired the ability to retain the motor memory overnight. Thus, in the force field task we found a critical role for the cerebellum in both formation of motor memory and its retention. PMID:24816533

  7. Immediate Effects of a Single Session of Motor Skill Training on the Lumbar Movement Pattern During a Functional Activity in People With Low Back Pain: A Repeated-Measures Study.

    PubMed

    Marich, Andrej V; Lanier, Vanessa M; Salsich, Gretchen B; Lang, Catherine E; Van Dillen, Linda R

    2018-04-06

    People with low back pain (LBP) may display an altered lumbar movement pattern of early lumbar motion compared to people with healthy backs. Modifying this movement pattern during a clinical test decreases pain. It is unknown whether similar effects would be seen during a functional activity. The objective of this study is was to examine the lumbar movement patterns before and after motor skill training, effects on pain, and characteristics that influenced the ability to modify movement patterns. The design consisted of a repeated-measures study examining early-phase lumbar excursion in people with LBP during a functional activity test. Twenty-six people with chronic LBP received motor skill training, and 16 people with healthy backs were recruited as a reference standard. Twenty minutes of motor skill training to decrease early-phase lumbar excursion during the performance of a functional activity were used as a treatment intervention. Early-phase lumbar excursion was measured before and after training. Participants verbally reported increased pain, decreased pain, or no change in pain during performance of the functional activity test movement in relation to their baseline pain. The characteristics of people with LBP that influenced the ability to decrease early-phase lumbar excursion were examined. People with LBP displayed greater early-phase lumbar excursion before training than people with healthy backs (LBP: mean = 11.2°, 95% CI = 9.3°-13.1°; healthy backs: mean = 7.1°, 95% CI = 5.8°-8.4°). Following training, the LBP group showed a decrease in the amount of early-phase lumbar excursion (mean change = 4.1°, 95% CI = 2.4°-5.8°); 91% of people with LBP reported that their pain decreased from baseline following training. The longer the duration of LBP (β = - 0.22) and the more early-phase lumbar excursion before training (β = - 0.82), the greater the change in early-phase lumbar excursion following training. The long-term implications of modifying the movement pattern and whether the decrease in pain attained was clinically significant are unknown. People with LBP were able to modify their lumbar movement pattern and decrease their pain with the movement pattern within a single session of motor skill training.

  8. Influence of gravity compensation training on synergistic movement patterns of the upper extremity after stroke, a pilot study

    PubMed Central

    2012-01-01

    Background The majority of stroke patients have to cope with impaired arm function. Gravity compensation of the arm instantaneously affects abnormal synergistic movement patterns. The goal of the present study is to examine whether gravity compensated training improves unsupported arm function. Methods Seven chronic stroke patients received 18 half-hour sessions of gravity compensated reach training, in a period of six weeks. During training a motivating computer game was played. Before and after training arm function was assessed with the Fugl-Meyer assessment and a standardized, unsupported circle drawing task. Synergistic movement patterns were identified based on concurrent changes in shoulder elevation and elbow flexion/extension angles. Results Median increase of Fugl-Meyer scores was 3 points after training. The training led to significantly increased work area of the hemiparetic arm, as indicated by the normalized circle area. Roundness of the drawn circles and the occurrence of synergistic movement patterns remained similar after the training. Conclusions A decreased strength of involuntary coupling might contribute to the increased arm function after training. More research is needed to study working mechanisms involved in post stroke rehabilitation training. The used training setup is simple and affordable and is therefore suitable to use in clinical settings. PMID:22824488

  9. Research on artistic gymnastics training guidance model

    NASA Astrophysics Data System (ADS)

    Luo, Lin; Sun, Xianzhong

    2017-04-01

    Rhythmic gymnastics training guidance model, taking into consideration the features of artistic gymnastics training, is put forward to help gymnasts identify their deficiencies and unskilled technical movements and improve their training effects. The model is built on the foundation of both physical quality indicator model and artistic gymnastics training indicator model. Physical quality indicator model composed of bodily factor, flexibility-strength factor and speed-dexterity factor delivers an objective evaluation with reference to basic sport testing data. Training indicator model, based on physical fitness indicator, helps analyze the technical movements, through which the impact from each bodily factor on technical movements is revealed. AG training guidance model, in further combination with actual training data and in comparison with the data shown in the training indicator model, helps identify the problems in trainings, and thus improve the training effect. These three models when in combined use and in comparison with historical model data can check and verify the improvement in training effect over a certain period of time.

  10. Children with Down Syndrome: Discovering the Joy of Movement

    ERIC Educational Resources Information Center

    Jobling, Anne; Virji-Babul, Nazin; Nichols, Doug

    2006-01-01

    Learning to move and moving to learn are vital aspects of every child's growth and development. Physical therapists and educators have consistently advocated the importance of being involved in a range of movement activities and games. Movement can provide an avenue for learning and interaction with others and can be linked to language and…

  11. Examining Culturally Structured Learning Environments with Different Types of Music-Linked Movement Opportunity

    ERIC Educational Resources Information Center

    Cole, Juanita M.; Boykin, A. Wade

    2008-01-01

    This study describes two experiments that extended earlier work on the Afrocultural theme Movement Expression. The impact of various learning conditions characterized by different types of music-linked movement on story recall performance was examined. African American children were randomly assigned to a learning condition, presented a story, and…

  12. Complicated Simplicity: Moral Identity Formation and Social Movement Learning in the Voluntary Simplicity Movement

    ERIC Educational Resources Information Center

    Sandlin, Jennifer A.; Walther, Carol S.

    2009-01-01

    This article examines the learning occurring within the voluntary simplicity social movement, focusing specifically on the learning and development of identity via "moral agency" in those individuals who embrace and practice voluntary simplicity. Four key findings are discussed. First, simplifiers craft new identities in a consumption-driven world…

  13. Movement Issues Identified in Movement ABC2 Checklist Parent Ratings for Students with Persisting Dysgraphia, Dyslexia, and OWL LD and Typical Literacy Learners

    ERIC Educational Resources Information Center

    Nielsen, Kathleen; Henderson, Sheila; Barnett, Anna L.; Abbott, Robert D.; Berninger, Virginia

    2018-01-01

    Movement, which draws on motor skills and executive functions for managing them, plays an important role in literacy learning (e.g., movement of mouth during oral reading and movement of hand and fingers during writing); but relatively little research has focused on movement skills in students with specific learning disabilities as the current…

  14. The Antigonish Movement: An Historical Sketch.

    ERIC Educational Resources Information Center

    Crane, John M.

    1983-01-01

    The Antigonish Movement used lifelong education to overcome educational and economic inequities. Begun in Canada's Maritime Provinces, the movement anticipated many of the principles of lifelong learning, adult learning, and Paolo Freire. (SK)

  15. Motor Training in Degenerative Spinocerebellar Disease: Ataxia-Specific Improvements by Intensive Physiotherapy and Exergames

    PubMed Central

    2014-01-01

    The cerebellum is essentially involved in movement control and plays a critical role in motor learning. It has remained controversial whether patients with degenerative cerebellar disease benefit from high-intensity coordinative training. Moreover, it remains unclear by which training methods and mechanisms these patients might improve their motor performance. Here, we review evidence from different high-intensity training studies in patients with degenerative spinocerebellar disease. These studies demonstrate that high-intensity coordinative training might lead to a significant benefit in patients with degenerative ataxia. This training might be based either on physiotherapy or on whole-body controlled videogames (“exergames”). The benefit shown in these studies is equal to regaining one or more years of natural disease progression. In addition, first case studies indicate that even subjects with advanced neurodegeneration might benefit from such training programs. For both types of training, the observed clinical improvements are paralleled by recoveries in ataxia-specific dysfunctions (e.g., multijoint coordination and dynamic stability). Importantly, for both types of training, the retention of the effects seems to depend on the frequency and continuity of training. Based on these studies, we here present preliminary recommendations for clinical practice, and articulate open questions that might guide future studies on neurorehabilitation in degenerative spinocerebellar disease. PMID:24877117

  16. Effects of movement imitation training in Parkinson's disease: A virtual reality pilot study.

    PubMed

    Robles-García, Verónica; Corral-Bergantiños, Yoanna; Espinosa, Nelson; García-Sancho, Carlos; Sanmartín, Gabriel; Flores, Julián; Cudeiro, Javier; Arias, Pablo

    2016-05-01

    Hypometria is a clinical motor sign in Parkinson's disease. Its origin likely emerges from basal ganglia dysfunction, leading to an impaired control of inhibitory intracortical motor circuits. Some neurorehabilitation approaches include movement imitation training; besides the effects of motor practice, there might be a benefit due to observation and imitation of un-altered movement patterns. In this sense, virtual reality facilitates the process by customizing motor-patterns to be observed and imitated. To evaluate the effect of a motor-imitation therapy focused on hypometria in Parkinson's disease using virtual reality. We carried out a randomized controlled pilot-study. Sixteen patients were randomly assigned in experimental and control groups. Groups underwent 4-weeks of training based on finger-tapping with the dominant hand, in which imitation was the differential factor (only the experimental group imitated). We evaluated self-paced movement features and cortico-spinal excitability (recruitment curves and silent periods in both hemispheres) before, immediately after, and two weeks after the training period. Movement amplitude increased significantly after the therapy in the experimental group for the trained and un-trained hands. Motor thresholds and silent periods evaluated with transcranial magnetic stimulation were differently modified by training in the two groups; although the changes in the input-output recruitment were similar. This pilot study suggests that movement imitation therapy enhances the effect of motor practice in patients with Parkinson's disease; imitation-training might be helpful for reducing hypometria in these patients. These results must be clarified in future larger trials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Dissecting the mechanisms of squirrel monkey (Saimiri boliviensis) social learning

    PubMed Central

    Holmes, AN; Williams, LE; Brosnan, SF

    2013-01-01

    Although the social learning abilities of monkeys have been well documented, this research has only focused on a few species. Furthermore, of those that also incorporated dissections of social learning mechanisms, the majority studied either capuchins (Cebus apella) or marmosets (Callithrix jacchus). To gain a broader understanding of how monkeys gain new skills, we tested squirrel monkeys (Saimiri boliviensis) which have never been studied in tests of social learning mechanisms. To determine whether S. boliviensis can socially learn, we ran “open diffusion” tests with monkeys housed in two social groups (N = 23). Over the course of 10 20-min sessions, the monkeys in each group observed a trained group member retrieving a mealworm from a bidirectional task (the “Slide-box”). Two thirds (67%) of these monkeys both learned how to operate the Slide-box and they also moved the door significantly more times in the direction modeled by the trained demonstrator than the alternative direction. To tease apart the underlying social learning mechanisms we ran a series of three control conditions with 35 squirrel monkeys that had no previous experience with the Slide-box. The first replicated the experimental open diffusion sessions but without the inclusion of a trained model, the second was a no-information control with dyads of monkeys, and the third was a ‘ghost’ display shown to individual monkeys. The first two controls tested for the importance of social support (mere presence effect) and the ghost display showed the affordances of the task to the monkeys. The monkeys showed a certain level of success in the group control (54% of subjects solved the task on one or more occasions) and paired controls (28% were successful) but none were successful in the ghost control. We propose that the squirrel monkeys’ learning, observed in the experimental open diffusion tests, can be best described by a combination of social learning mechanisms in concert; in this case, those mechanisms are most likely object movement reenactment and social facilitation. We discuss the interplay of these mechanisms and how they related to learning shown by other primate species. PMID:23638347

  18. Restoration of Central Programmed Movement Pattern by Temporal Electrical Stimulation-Assisted Training in Patients with Spinal Cerebellar Atrophy.

    PubMed

    Huang, Ying-Zu; Chang, Yao-Shun; Hsu, Miao-Ju; Wong, Alice M K; Chang, Ya-Ju

    2015-01-01

    Disrupted triphasic electromyography (EMG) patterns of agonist and antagonist muscle pairs during fast goal-directed movements have been found in patients with hypermetria. Since peripheral electrical stimulation (ES) and motor training may modulate motor cortical excitability through plasticity mechanisms, we aimed to investigate whether temporal ES-assisted movement training could influence premovement cortical excitability and alleviate hypermetria in patients with spinal cerebellar ataxia (SCA). The EMG of the agonist extensor carpi radialis muscle and antagonist flexor carpi radialis muscle, premovement motor evoked potentials (MEPs) of the flexor carpi radialis muscle, and the constant and variable errors of movements were assessed before and after 4 weeks of ES-assisted fast goal-directed wrist extension training in the training group and of general health education in the control group. After training, the premovement MEPs of the antagonist muscle were facilitated at 50 ms before the onset of movement. In addition, the EMG onset latency of the antagonist muscle shifted earlier and the constant error decreased significantly. In summary, temporal ES-assisted training alleviated hypermetria by restoring antagonist premovement and temporal triphasic EMG patterns in SCA patients. This technique may be applied to treat hypermetria in cerebellar disorders. (This trial is registered with NCT01983670.).

  19. Anodal Transcranial Direct Current Stimulation Does Not Facilitate Dynamic Balance Task Learning in Healthy Old Adults

    PubMed Central

    Kaminski, Elisabeth; Hoff, Maike; Rjosk, Viola; Steele, Christopher J.; Gundlach, Christopher; Sehm, Bernhard; Villringer, Arno; Ragert, Patrick

    2017-01-01

    Older adults frequently experience a decrease in balance control that leads to increased numbers of falls, injuries and hospitalization. Therefore, evaluating older adults’ ability to maintain balance and examining new approaches to counteract age-related decline in balance control is of great importance for fall prevention and healthy aging. Non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) have been shown to beneficially influence motor behavior and motor learning. In the present study, we investigated the influence of tDCS applied over the leg area of the primary motor cortex (M1) on balance task learning of healthy elderly in a dynamic balance task (DBT). In total, 30 older adults were enrolled in a cross-sectional, randomized design including two consecutive DBT training sessions. Only during the first DBT session, either 20 min of anodal tDCS (a-tDCS) or sham tDCS (s-tDCS) were applied and learning improvement was compared between the two groups. Our data showed that both groups successfully learned to perform the DBT on both training sessions. Interestingly, between-group analyses revealed no difference between the a-tDCS and the s-tDCS group regarding their level of task learning. These results indicate that the concurrent application of tDCS over M1 leg area did not elicit DBT learning enhancement in our study cohort. However, a regression analysis revealed that DBT performance can be predicted by the kinematic profile of the movement, a finding that may provide new insights for individualized approaches of treating balance and gait disorders. PMID:28197085

  20. Performing a reaching task with one arm while adapting to a visuomotor rotation with the other can lead to complete transfer of motor learning across the arms

    PubMed Central

    Lei, Yuming; Binder, Jeffrey R.

    2015-01-01

    The extent to which motor learning is generalized across the limbs is typically very limited. Here, we investigated how two motor learning hypotheses could be used to enhance the extent of interlimb transfer. According to one hypothesis, we predicted that reinforcement of successful actions by providing binary error feedback regarding task success or failure, in addition to terminal error feedback, during initial training would increase the extent of interlimb transfer following visuomotor adaptation (experiment 1). According to the other hypothesis, we predicted that performing a reaching task repeatedly with one arm without providing performance feedback (which prevented learning the task with this arm), while concurrently adapting to a visuomotor rotation with the other arm, would increase the extent of transfer (experiment 2). Results indicate that providing binary error feedback, compared with continuous visual feedback that provided movement direction and amplitude information, had no influence on the extent of transfer. In contrast, repeatedly performing (but not learning) a specific task with one arm while visuomotor adaptation occurred with the other arm led to nearly complete transfer. This suggests that the absence of motor instances associated with specific effectors and task conditions is the major reason for limited interlimb transfer and that reinforcement of successful actions during initial training is not beneficial for interlimb transfer. These findings indicate crucial contributions of effector- and task-specific motor instances, which are thought to underlie (a type of) model-free learning, to optimal motor learning and interlimb transfer. PMID:25632082

  1. Anodal Transcranial Direct Current Stimulation Does Not Facilitate Dynamic Balance Task Learning in Healthy Old Adults.

    PubMed

    Kaminski, Elisabeth; Hoff, Maike; Rjosk, Viola; Steele, Christopher J; Gundlach, Christopher; Sehm, Bernhard; Villringer, Arno; Ragert, Patrick

    2017-01-01

    Older adults frequently experience a decrease in balance control that leads to increased numbers of falls, injuries and hospitalization. Therefore, evaluating older adults' ability to maintain balance and examining new approaches to counteract age-related decline in balance control is of great importance for fall prevention and healthy aging. Non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) have been shown to beneficially influence motor behavior and motor learning. In the present study, we investigated the influence of tDCS applied over the leg area of the primary motor cortex (M1) on balance task learning of healthy elderly in a dynamic balance task (DBT). In total, 30 older adults were enrolled in a cross-sectional, randomized design including two consecutive DBT training sessions. Only during the first DBT session, either 20 min of anodal tDCS (a-tDCS) or sham tDCS (s-tDCS) were applied and learning improvement was compared between the two groups. Our data showed that both groups successfully learned to perform the DBT on both training sessions. Interestingly, between-group analyses revealed no difference between the a-tDCS and the s-tDCS group regarding their level of task learning. These results indicate that the concurrent application of tDCS over M1 leg area did not elicit DBT learning enhancement in our study cohort. However, a regression analysis revealed that DBT performance can be predicted by the kinematic profile of the movement, a finding that may provide new insights for individualized approaches of treating balance and gait disorders.

  2. Locomotor Dysfunction after Spaceflight: Characterization and Countermeasure Development

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Cohen, H. S.; Peters, B. T.; Miller, C. A.; Brady, R.; Bloomberg, Jacob J.

    2007-01-01

    Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a novel sensorimotor environment (Roller et al., 2001; Cohen et al. 2005). Importantly, this increased adaptability is retained even one month after completion of the training period. Our laboratory is currently developing adaptive generalization training procedures and the associated flight hardware to implement such a training program, using variations of visual flow, subject loading, and treadmill speed; during regular in-flight treadmill operations.

  3. Forelimb training drives transient map reorganization in ipsilateral motor cortex

    PubMed Central

    Pruitt, David T.; Schmid, Ariel N.; Danaphongse, Tanya T.; Flanagan, Kate E.; Morrison, Robert A.; Kilgard, Michael P.; Rennaker, Robert L.; Hays, Seth A.

    2016-01-01

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. PMID:27392641

  4. Forelimb training drives transient map reorganization in ipsilateral motor cortex.

    PubMed

    Pruitt, David T; Schmid, Ariel N; Danaphongse, Tanya T; Flanagan, Kate E; Morrison, Robert A; Kilgard, Michael P; Rennaker, Robert L; Hays, Seth A

    2016-10-15

    Skilled motor training results in reorganization of contralateral motor cortex movement representations. The ipsilateral motor cortex is believed to play a role in skilled motor control, but little is known about how training influences reorganization of ipsilateral motor representations of the trained limb. To determine whether training results in reorganization of ipsilateral motor cortex maps, rats were trained to perform the isometric pull task, an automated motor task that requires skilled forelimb use. After either 3 or 6 months of training, intracortical microstimulation (ICMS) mapping was performed to document motor representations of the trained forelimb in the hemisphere ipsilateral to that limb. Motor training for 3 months resulted in a robust expansion of right forelimb representation in the right motor cortex, demonstrating that skilled motor training drives map plasticity ipsilateral to the trained limb. After 6 months of training, the right forelimb representation in the right motor cortex was significantly smaller than the representation observed in rats trained for 3 months and similar to untrained controls, consistent with a normalization of motor cortex maps. Forelimb map area was not correlated with performance on the trained task, suggesting that task performance is maintained despite normalization of cortical maps. This study provides new insights into how the ipsilateral cortex changes in response to skilled learning and may inform rehabilitative strategies to enhance cortical plasticity to support recovery after brain injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Preschool Individualized Movement Experiences.

    ERIC Educational Resources Information Center

    Van Oteghen, Sharon; Jacobson, Phyllis A.

    1981-01-01

    Learning, beginning in infancy, depends chiefly upon the nature and quality of movement experiences. Since 50 percent of a child's potential for learning is developed by age five, it is essential that movement programs be devised for children of preschool age. Movement programs must be geared to the individual child's developmental level. (JN)

  6. Short- and long-term effects of synchronized metronome training in children with hemiplegic cerebral palsy: a two case study.

    PubMed

    Johansson, Anna-Maria; Domellöf, Erik; Rönnqvist, Louise

    2012-01-01

    Children with cerebral palsy (CP) require individualized long-term management to maintain and improve motor functions. The objective of this study was to explore potential effects of synchronized metronome training (SMT) on movement kinematics in two children diagnosed with spastic hemiplegic CP (HCP). Both children underwent 4-weeks/12 sessions of SMT by means of the Interactive Metronome (IM). Optoelectronic registrations of goal-directed uni- and bimanual upper-limb movements were made at three occasions; pre-training, post completed training and at 6-months post completed training. Significant changes in kinematic outcomes following IM training were found for both cases. Findings included smoother and shorter movement trajectories in the bimanual condition, especially for the affected side. In the unimanual condition, Case I also showed increased smoothness of the non-affected side. The observed short- and long-term effects on the spatio-temporal organization of upper-limb movements need to be corroborated and extended by further case-control studies.

  7. The Binding of Learning to Action in Motor Adaptation

    PubMed Central

    Gonzalez Castro, Luis Nicolas; Monsen, Craig Bryant; Smith, Maurice A.

    2011-01-01

    In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion experienced on that same trial. The formation of this association means that future movements planned to resemble the motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned ‘credit’ for motor errors because, in a computational sense, the maximal adaptive response would be associated with the condition credited with the error. We studied this process by examining the patterns of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and they suggest ways to optimize their use. PMID:21731476

  8. Early intensive postural and movement training advances head control in very young infants.

    PubMed

    Lee, Hui-Min; Galloway, James Cole

    2012-07-01

    Daily experiences are thought to play an important role in motor development during infancy. There are limited studies on the effect of postural and movement experiences on head control. The purpose of this study was to quantify the effects of postural and movement experiences on head control through a comprehensive set of measurements beginning when infants were 1 month old. This was a prospective, longitudinal, 2-cohort study. Twenty-two full-term infants who were healthy were randomly assigned to either a training group or a control group. Infants were observed every other week from 1 to 4 months of age. Head control was assessed using a standardized developmental assessment tool, the Test of Infant Motor Performance (TIMP), as well as behavioral coding and kinematics of infants' head postures and movements in a supported sitting position. Caregivers performed at least 20 minutes of daily postural and movement activities (training group), or social interaction (control group) for 4 weeks. The training group had higher TIMP scores on head control-related items during the training period and after training stopped compared with the control group. Starting from the during training phase, the training group infants had their heads in a vertical and midline position longer compared with the control group infants. After training stopped, the training group infants actively moved their heads forward more often and for larger distances. The experiences outside daily training were not monitored, and the results may be specific to the experimental setup for infants with typical development. Young infants are able to take advantage of postural and movement experiences to rapidly advance their head control as early as 4 to 6 weeks of postnatal life. Infant positioning, caregiver handling, and caregiver-infant interactions were likely contributing factors. This database of comprehensive measures may be useful in future trials focused on head control in infants with special needs.

  9. Retention of movement pattern changes after a lower extremity injury prevention program is affected by program duration.

    PubMed

    Padua, Darin A; DiStefano, Lindsay J; Marshall, Stephen W; Beutler, Anthony I; de la Motte, Sarah J; DiStefano, Michael J

    2012-02-01

    Changes in movement patterns have been repeatedly observed immediately after completing a lower extremity injury prevention program. However, it is not known if movement pattern changes are maintained after discontinuing the training program. The ability to maintain movement pattern changes after training has ceased may be influenced by the program's duration. The authors hypothesized that among individuals who completed either a 3-month or 9-month training program and who demonstrated immediate movement pattern changes, only those who completed the 9-month training program would maintain movement pattern changes after a 3-month period of no longer performing the exercises. Cohort study; Level of evidence, 2. A total of 140 youth soccer athletes from 15 separate teams volunteered to participate. Athletes' movement patterns were assessed using the Landing Error Scoring System (LESS) at pretest, posttest, and 3 months after ceasing the program (retention test). Eighty-four of the original 140 participants demonstrated improvements in their LESS scores between pretest and posttest (change in LESS score >0) and were included in the final analyses for this study (n = 84; 20 boys and 64 girls; mean age, 14 ± 2 years; age range, 11-17 years). Teams performed 3-month (short-duration group) and 9-month (extended-duration group) injury prevention programs. The exercises performed were identical for both groups. Teams performed the programs as part of their normal warm-up routine. Although both groups improved their total LESS scores from pretest to posttest, only the extended-duration training group retained their improvements 3 months after ceasing the injury prevention program (F(2,137) = 3.38; P = .04). Results suggest that training duration may be an important factor to consider when designing injury prevention programs that facilitate long-term changes in movement control.

  10. Effect of movement velocity during resistance training on muscle-specific hypertrophy: A systematic review.

    PubMed

    Hackett, Daniel A; Davies, Timothy B; Orr, Rhonda; Kuang, Kenny; Halaki, Mark

    2018-05-01

    Currently, it is unclear whether manipulation of movement velocity during resistance exercise has an effect on hypertrophy of specific muscles. The purpose of this systematic review of literature was to investigate the effect of movement velocity during resistance training on muscle hypertrophy. Five electronic databases were searched using terms related to movement velocity and resistance training. Inclusion criteria were randomised and non-randomised comparative studies; published in English; included healthy adults; used dynamic resistance exercise interventions directly comparing fast training to slower movement velocity training; matched in prescribed intensity and volume; duration ≥4 weeks; and measured muscle hypertrophy. A total of six studies were included involving 119 untrained participants. Hypertrophy of the quadriceps was examined in five studies and of the biceps brachii in two studies. Three studies found significantly greater increases in hypertrophy of the quadriceps for moderate-slow compared to fast training. For the remaining studies examining the quadriceps, significant within-group increase in hypertrophy was found for only moderate-slow training in one study and for only fast training in the other study. The two studies that examined hypertrophy of the biceps brachii found greater increases for fast compared to moderate-slow training. Caution is required when interpreting the findings from this review due to the low number of studies, hence insufficient data. Future longitudinal randomised controlled studies in cohorts of healthy adults are required to confirm and extend our findings.

  11. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system

    PubMed Central

    Thaut, Michael H.; McIntosh, Gerald C.; Hoemberg, Volker

    2015-01-01

    Entrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy. PMID:25774137

  12. Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system.

    PubMed

    Thaut, Michael H; McIntosh, Gerald C; Hoemberg, Volker

    2014-01-01

    Entrainment is defined by a temporal locking process in which one system's motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy.

  13. Time Independent Functional task Training: a case study on the effect of inter-joint coordination driven haptic guidance in stroke therapy.

    PubMed

    Brokaw, Elizabeth B; Murray, Theresa M; Nef, Tobias; Lum, Peter S; Brokaw, Elizabeth B; Nichols, Diane; Holley, Rahsaan J

    2011-01-01

    After a stroke abnormal joint coordination of the arm may limit functional movement and recovery. To aid in training inter-joint movement coordination a haptic guidance method for functional driven rehabilitation after stroke called Time Independent Functional Training (TIFT) has been developed for the ARMin III robot. The mode helps retraining inter-joint coordination during functional movements, such as putting an object on a shelf, pouring from a pitcher, and sorting objects into bins. A single chronic stroke subject was tested for validation of the modality. The subject was given 1.5 hrs of robotic therapy twice a week for 4 weeks. The therapy and the results of training the single stroke subject are discussed. The subject showed a decrease in training joint error for the sorting task across training sessions and increased self-selected movement time in training. In kinematic reaching analysis the subject showed improvements in range of motion and joint coordination in a reaching task, as well as improvements in supination-pronation range of motion at the wrist. © 2011 IEEE

  14. Learning Disabilities

    MedlinePlus

    ... language, do mathematical calculations, coordinate movements, or direct attention. Although learning disabilities occur in very young children, ... language, do mathematical calculations, coordinate movements, or direct attention. Although learning disabilities occur in very young children, ...

  15. Movement Actors in the Education Bureaucracy: The Figured World of Activity Based Learning in Tamil Nadu

    ERIC Educational Resources Information Center

    Niesz, Tricia; Krishnamurthy, Ramchandar

    2014-01-01

    Tamil Nadu has gained international recognition for reforming its government school classrooms into active, child-centered learning environments. Our exploration of the history of the Activity Based Learning movement suggests that this reform was achieved by social movement actors serving in and through the state's administration. Participants in…

  16. Secondary-Task Effects on Learning with Multimedia: An Investigation through Eye-Movement Analysis

    ERIC Educational Resources Information Center

    Acarturk, Cengiz; Ozcelik, Erol

    2017-01-01

    This study investigates secondary-task interference on eye movements through learning with multimedia. We focus on the relationship between the influence of the secondary task on the eye movements of learners, and the learning outcomes as measured by retention, matching, and transfer. Half of the participants performed a spatial tapping task while…

  17. Theorising Education and Learning in Social Movements: Environmental Justice Campaigns in Scotland and India

    ERIC Educational Resources Information Center

    Scandrett, Eurig; Crowther, Jim; Hemmi, Akiko; Mukherjee, Suroopa; Shah, Dharmesh; Sen, Tarunima

    2010-01-01

    There is a need for a theoretical understanding of education and learning in social movements which takes into consideration the diverse ways in which learning occurs as well as the social, economic and ecological conditions in which movements emerge. These material conditions set opportunities and constraints for the generation and distribution…

  18. Effects of 8 Weeks’ Specific Physical Training on the Rotator Cuff Muscle Strength and Technique of Javelin Throwers

    PubMed Central

    Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon

    2014-01-01

    [Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers. PMID:25364111

  19. Effects of 8 weeks' specific physical training on the rotator cuff muscle strength and technique of javelin throwers.

    PubMed

    Kim, Hyeyoung; Lee, Youngsun; Shin, Insik; Kim, Kitae; Moon, Jeheon

    2014-10-01

    [Purpose] For maximum efficiency and to prevent injury during javelin throwing, it is critical to maintain muscle balance and coordination of the rotator cuff and the glenohumeral joint. In this study, we investigated the change in the rotator cuff muscle strength, throw distance and technique of javelin throwers after they had performed a specific physical training that combined elements of weight training, function movement screen training, and core training. [Subjects] Ten javelin throwers participated in this study: six university athletes in the experimental group and four national-level athletes in the control group. [Methods] The experimental group performed 8 weeks of the specific physical training. To evaluate the effects of the training, measurements were performed before and after the training for the experimental group. Measurements comprised anthropometry, isokinetic muscle strength measurements, the function movement screen test, and movement analysis. [Results] After the specific physical training, the function movement screen score and external and internal rotator muscle strength showed statistically significant increases. Among kinematic factors, only pull distance showed improvement after training. [Conclusion] Eight weeks of specific physical training for dynamic stabilizer muscles enhanced the rotator cuff muscle strength, core stability, throw distance, and flexibility of javelin throwers. These results suggest that specific physical training can be useful for preventing shoulder injuries and improving the performance for javelin throwers.

  20. The core competency movement in marriage and family therapy: key considerations from other disciplines.

    PubMed

    Miller, John K; Todahl, Jeff L; Platt, Jason J

    2010-01-01

    There is a growing movement to define competency within the field of marriage and family therapy (MFT), particularly with respect to the training of practitioners and the evaluation of clinical practice. Efforts to define competency, however, transcend the practice of MFT and much can be learned from the experiences of other disciplines. Professions such as education, law, and medicine have made strides toward addressing the complex issue of competency standards in their respective fields. This article describes some ways in which the issue of competency has been approached in other professions, as well as some common dilemmas posed by adopting a competency-based orientation, to shed light on the process of defining competency in MFT. Moreover, this article identifies some of the more useful conceptualizations, modes of pedagogy, and evaluative practices found in other professions.

Top