Sample records for moving average model

  1. Robust Semi-Active Ride Control under Stochastic Excitation

    DTIC Science & Technology

    2014-01-01

    broad classes of time-series models which are of practical importance; the Auto-Regressive (AR) models, the Integrated (I) models, and the Moving...Average (MA) models [12]. Combinations of these models result in autoregressive moving average (ARMA) and autoregressive integrated moving average...Down Up 4) Down Down These four cases can be written in compact form as: (20) Where is the Heaviside

  2. Forecasting coconut production in the Philippines with ARIMA model

    NASA Astrophysics Data System (ADS)

    Lim, Cristina Teresa

    2015-02-01

    The study aimed to depict the situation of the coconut industry in the Philippines for the future years applying Autoregressive Integrated Moving Average (ARIMA) method. Data on coconut production, one of the major industrial crops of the country, for the period of 1990 to 2012 were analyzed using time-series methods. Autocorrelation (ACF) and partial autocorrelation functions (PACF) were calculated for the data. Appropriate Box-Jenkins autoregressive moving average model was fitted. Validity of the model was tested using standard statistical techniques. The forecasting power of autoregressive moving average (ARMA) model was used to forecast coconut production for the eight leading years.

  3. Watershed Regressions for Pesticides (WARP) for Predicting Annual Maximum and Annual Maximum Moving-Average Concentrations of Atrazine in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.

    2008-01-01

    Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.

  4. Kumaraswamy autoregressive moving average models for double bounded environmental data

    NASA Astrophysics Data System (ADS)

    Bayer, Fábio Mariano; Bayer, Débora Missio; Pumi, Guilherme

    2017-12-01

    In this paper we introduce the Kumaraswamy autoregressive moving average models (KARMA), which is a dynamic class of models for time series taking values in the double bounded interval (a,b) following the Kumaraswamy distribution. The Kumaraswamy family of distribution is widely applied in many areas, especially hydrology and related fields. Classical examples are time series representing rates and proportions observed over time. In the proposed KARMA model, the median is modeled by a dynamic structure containing autoregressive and moving average terms, time-varying regressors, unknown parameters and a link function. We introduce the new class of models and discuss conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis and forecasting. In particular, we provide closed-form expressions for the conditional score vector and conditional Fisher information matrix. An application to environmental real data is presented and discussed.

  5. The Effect on Non-Normal Distributions on the Integrated Moving Average Model of Time-Series Analysis.

    ERIC Educational Resources Information Center

    Doerann-George, Judith

    The Integrated Moving Average (IMA) model of time series, and the analysis of intervention effects based on it, assume random shocks which are normally distributed. To determine the robustness of the analysis to violations of this assumption, empirical sampling methods were employed. Samples were generated from three populations; normal,…

  6. Forecasting Instability Indicators in the Horn of Africa

    DTIC Science & Technology

    2008-03-01

    further than 2 (Makridakis, et al, 1983, 359). 2-32 Autoregressive Integrated Moving Average ( ARIMA ) Model . Similar to the ARMA model except for...stationary process. ARIMA models are described as ARIMA (p,d,q), where p is the order of the autoregressive process, d is the degree of the...differential process, and q is the order of the moving average process. The ARMA (1,1) model shown above is equivalent to an ARIMA (1,0,1) model . An ARIMA

  7. Neural net forecasting for geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Hernandez, J. V.; Tajima, T.; Horton, W.

    1993-01-01

    We use neural nets to construct nonlinear models to forecast the AL index given solar wind and interplanetary magnetic field (IMF) data. We follow two approaches: (1) the state space reconstruction approach, which is a nonlinear generalization of autoregressive-moving average models (ARMA) and (2) the nonlinear filter approach, which reduces to a moving average model (MA) in the linear limit. The database used here is that of Bargatze et al. (1985).

  8. Queues with Choice via Delay Differential Equations

    NASA Astrophysics Data System (ADS)

    Pender, Jamol; Rand, Richard H.; Wesson, Elizabeth

    Delay or queue length information has the potential to influence the decision of a customer to join a queue. Thus, it is imperative for managers of queueing systems to understand how the information that they provide will affect the performance of the system. To this end, we construct and analyze two two-dimensional deterministic fluid models that incorporate customer choice behavior based on delayed queue length information. In the first fluid model, customers join each queue according to a Multinomial Logit Model, however, the queue length information the customer receives is delayed by a constant Δ. We show that the delay can cause oscillations or asynchronous behavior in the model based on the value of Δ. In the second model, customers receive information about the queue length through a moving average of the queue length. Although it has been shown empirically that giving patients moving average information causes oscillations and asynchronous behavior to occur in U.S. hospitals, we analytically and mathematically show for the first time that the moving average fluid model can exhibit oscillations and determine their dependence on the moving average window. Thus, our analysis provides new insight on how operators of service systems should report queue length information to customers and how delayed information can produce unwanted system dynamics.

  9. The Performance of Multilevel Growth Curve Models under an Autoregressive Moving Average Process

    ERIC Educational Resources Information Center

    Murphy, Daniel L.; Pituch, Keenan A.

    2009-01-01

    The authors examined the robustness of multilevel linear growth curve modeling to misspecification of an autoregressive moving average process. As previous research has shown (J. Ferron, R. Dailey, & Q. Yi, 2002; O. Kwok, S. G. West, & S. B. Green, 2007; S. Sivo, X. Fan, & L. Witta, 2005), estimates of the fixed effects were unbiased, and Type I…

  10. Using Baidu Search Index to Predict Dengue Outbreak in China

    NASA Astrophysics Data System (ADS)

    Liu, Kangkang; Wang, Tao; Yang, Zhicong; Huang, Xiaodong; Milinovich, Gabriel J.; Lu, Yi; Jing, Qinlong; Xia, Yao; Zhao, Zhengyang; Yang, Yang; Tong, Shilu; Hu, Wenbiao; Lu, Jiahai

    2016-12-01

    This study identified the possible threshold to predict dengue fever (DF) outbreaks using Baidu Search Index (BSI). Time-series classification and regression tree models based on BSI were used to develop a predictive model for DF outbreak in Guangzhou and Zhongshan, China. In the regression tree models, the mean autochthonous DF incidence rate increased approximately 30-fold in Guangzhou when the weekly BSI for DF at the lagged moving average of 1-3 weeks was more than 382. When the weekly BSI for DF at the lagged moving average of 1-5 weeks was more than 91.8, there was approximately 9-fold increase of the mean autochthonous DF incidence rate in Zhongshan. In the classification tree models, the results showed that when the weekly BSI for DF at the lagged moving average of 1-3 weeks was more than 99.3, there was 89.28% chance of DF outbreak in Guangzhou, while, in Zhongshan, when the weekly BSI for DF at the lagged moving average of 1-5 weeks was more than 68.1, the chance of DF outbreak rose up to 100%. The study indicated that less cost internet-based surveillance systems can be the valuable complement to traditional DF surveillance in China.

  11. Forecast of Frost Days Based on Monthly Temperatures

    NASA Astrophysics Data System (ADS)

    Castellanos, M. T.; Tarquis, A. M.; Morató, M. C.; Saa-Requejo, A.

    2009-04-01

    Although frost can cause considerable crop damage and mitigation practices against forecasted frost exist, frost forecasting technologies have not changed for many years. The paper reports a new method to forecast the monthly number of frost days (FD) for several meteorological stations at Community of Madrid (Spain) based on successive application of two models. The first one is a stochastic model, autoregressive integrated moving average (ARIMA), that forecasts monthly minimum absolute temperature (tmin) and monthly average of minimum temperature (tminav) following Box-Jenkins methodology. The second model relates these monthly temperatures to minimum daily temperature distribution during one month. Three ARIMA models were identified for the time series analyzed with a stational period correspondent to one year. They present the same stational behavior (moving average differenced model) and different non-stational part: autoregressive model (Model 1), moving average differenced model (Model 2) and autoregressive and moving average model (Model 3). At the same time, the results point out that minimum daily temperature (tdmin), for the meteorological stations studied, followed a normal distribution each month with a very similar standard deviation through years. This standard deviation obtained for each station and each month could be used as a risk index for cold months. The application of Model 1 to predict minimum monthly temperatures showed the best FD forecast. This procedure provides a tool for crop managers and crop insurance companies to asses the risk of frost frequency and intensity, so that they can take steps to mitigate against frost damage and estimated the damage that frost would cost. This research was supported by Comunidad de Madrid Research Project 076/92. The cooperation of the Spanish National Meteorological Institute and the Spanish Ministerio de Agricultura, Pesca y Alimentation (MAPA) is gratefully acknowledged.

  12. Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.

    PubMed

    Biswas, Paritosh K; Islam, Md Zohorul; Debnath, Nitish C; Yamage, Mat

    2014-01-01

    The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1) is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s) as inputs did not improve the performance of any multivariable models, but relative humidity (RH) was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA) order at lag 1 month is considered.

  13. Iterative Procedures for Exact Maximum Likelihood Estimation in the First-Order Gaussian Moving Average Model

    DTIC Science & Technology

    1990-11-01

    1 = Q- 1 - 1 QlaaQ- 1.1 + a’Q-1a This is a simple case of a general formula called Woodbury’s formula by some authors; see, for example, Phadke and...1 2. The First-Order Moving Average Model ..... .................. 3. Some Approaches to the Iterative...the approximate likelihood function in some time series models. Useful suggestions have been the Cholesky decomposition of the covariance matrix and

  14. [Comparison of predictive effect between the single auto regressive integrated moving average (ARIMA) model and the ARIMA-generalized regression neural network (GRNN) combination model on the incidence of scarlet fever].

    PubMed

    Zhu, Yu; Xia, Jie-lai; Wang, Jing

    2009-09-01

    Application of the 'single auto regressive integrated moving average (ARIMA) model' and the 'ARIMA-generalized regression neural network (GRNN) combination model' in the research of the incidence of scarlet fever. Establish the auto regressive integrated moving average model based on the data of the monthly incidence on scarlet fever of one city, from 2000 to 2006. The fitting values of the ARIMA model was used as input of the GRNN, and the actual values were used as output of the GRNN. After training the GRNN, the effect of the single ARIMA model and the ARIMA-GRNN combination model was then compared. The mean error rate (MER) of the single ARIMA model and the ARIMA-GRNN combination model were 31.6%, 28.7% respectively and the determination coefficient (R(2)) of the two models were 0.801, 0.872 respectively. The fitting efficacy of the ARIMA-GRNN combination model was better than the single ARIMA, which had practical value in the research on time series data such as the incidence of scarlet fever.

  15. Computational problems in autoregressive moving average (ARMA) models

    NASA Technical Reports Server (NTRS)

    Agarwal, G. C.; Goodarzi, S. M.; Oneill, W. D.; Gottlieb, G. L.

    1981-01-01

    The choice of the sampling interval and the selection of the order of the model in time series analysis are considered. Band limited (up to 15 Hz) random torque perturbations are applied to the human ankle joint. The applied torque input, the angular rotation output, and the electromyographic activity using surface electrodes from the extensor and flexor muscles of the ankle joint are recorded. Autoregressive moving average models are developed. A parameter constraining technique is applied to develop more reliable models. The asymptotic behavior of the system must be taken into account during parameter optimization to develop predictive models.

  16. Monthly streamflow forecasting with auto-regressive integrated moving average

    NASA Astrophysics Data System (ADS)

    Nasir, Najah; Samsudin, Ruhaidah; Shabri, Ani

    2017-09-01

    Forecasting of streamflow is one of the many ways that can contribute to better decision making for water resource management. The auto-regressive integrated moving average (ARIMA) model was selected in this research for monthly streamflow forecasting with enhancement made by pre-processing the data using singular spectrum analysis (SSA). This study also proposed an extension of the SSA technique to include a step where clustering was performed on the eigenvector pairs before reconstruction of the time series. The monthly streamflow data of Sungai Muda at Jeniang, Sungai Muda at Jambatan Syed Omar and Sungai Ketil at Kuala Pegang was gathered from the Department of Irrigation and Drainage Malaysia. A ratio of 9:1 was used to divide the data into training and testing sets. The ARIMA, SSA-ARIMA and Clustered SSA-ARIMA models were all developed in R software. Results from the proposed model are then compared to a conventional auto-regressive integrated moving average model using the root-mean-square error and mean absolute error values. It was found that the proposed model can outperform the conventional model.

  17. Time series modelling of increased soil temperature anomalies during long period

    NASA Astrophysics Data System (ADS)

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  18. Maximum likelihood estimation for periodic autoregressive moving average models

    USGS Publications Warehouse

    Vecchia, A.V.

    1985-01-01

    A useful class of models for seasonal time series that cannot be filtered or standardized to achieve second-order stationarity is that of periodic autoregressive moving average (PARMA) models, which are extensions of ARMA models that allow periodic (seasonal) parameters. An approximation to the exact likelihood for Gaussian PARMA processes is developed, and a straightforward algorithm for its maximization is presented. The algorithm is tested on several periodic ARMA(1, 1) models through simulation studies and is compared to moment estimation via the seasonal Yule-Walker equations. Applicability of the technique is demonstrated through an analysis of a seasonal stream-flow series from the Rio Caroni River in Venezuela.

  19. Assessing the Efficacy of Adjustable Moving Averages Using ASEAN-5 Currencies.

    PubMed

    Chan Phooi M'ng, Jacinta; Zainudin, Rozaimah

    2016-01-01

    The objective of this research is to examine the trends in the exchange rate markets of the ASEAN-5 countries (Indonesia (IDR), Malaysia (MYR), the Philippines (PHP), Singapore (SGD), and Thailand (THB)) through the application of dynamic moving average trading systems. This research offers evidence of the usefulness of the time-varying volatility technical analysis indicator, Adjustable Moving Average (AMA') in deciphering trends in these ASEAN-5 exchange rate markets. This time-varying volatility factor, referred to as the Efficacy Ratio in this paper, is embedded in AMA'. The Efficacy Ratio adjusts the AMA' to the prevailing market conditions by avoiding whipsaws (losses due, in part, to acting on wrong trading signals, which generally occur when there is no general direction in the market) in range trading and by entering early into new trends in trend trading. The efficacy of AMA' is assessed against other popular moving-average rules. Based on the January 2005 to December 2014 dataset, our findings show that the moving averages and AMA' are superior to the passive buy-and-hold strategy. Specifically, AMA' outperforms the other models for the United States Dollar against PHP (USD/PHP) and USD/THB currency pairs. The results show that different length moving averages perform better in different periods for the five currencies. This is consistent with our hypothesis that a dynamic adjustable technical indicator is needed to cater for different periods in different markets.

  20. Beyond long memory in heart rate variability: An approach based on fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity

    NASA Astrophysics Data System (ADS)

    Leite, Argentina; Paula Rocha, Ana; Eduarda Silva, Maria

    2013-06-01

    Heart Rate Variability (HRV) series exhibit long memory and time-varying conditional variance. This work considers the Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. ARFIMA-GARCH models may be used to capture and remove long memory and estimate the conditional volatility in 24 h HRV recordings. The ARFIMA-GARCH approach is applied to fifteen long term HRV series available at Physionet, leading to the discrimination among normal individuals, heart failure patients, and patients with atrial fibrillation.

  1. PERIODIC AUTOREGRESSIVE-MOVING AVERAGE (PARMA) MODELING WITH APPLICATIONS TO WATER RESOURCES.

    USGS Publications Warehouse

    Vecchia, A.V.

    1985-01-01

    Results involving correlation properties and parameter estimation for autogressive-moving average models with periodic parameters are presented. A multivariate representation of the PARMA model is used to derive parameter space restrictions and difference equations for the periodic autocorrelations. Close approximation to the likelihood function for Gaussian PARMA processes results in efficient maximum-likelihood estimation procedures. Terms in the Fourier expansion of the parameters are sequentially included, and a selection criterion is given for determining the optimal number of harmonics to be included. Application of the techniques is demonstrated through analysis of a monthly streamflow time series.

  2. Work-related accidents among the Iranian population: a time series analysis, 2000–2011

    PubMed Central

    Karimlou, Masoud; Imani, Mehdi; Hosseini, Agha-Fatemeh; Dehnad, Afsaneh; Vahabi, Nasim; Bakhtiyari, Mahmood

    2015-01-01

    Background Work-related accidents result in human suffering and economic losses and are considered as a major health problem worldwide, especially in the economically developing world. Objectives To introduce seasonal autoregressive moving average (ARIMA) models for time series analysis of work-related accident data for workers insured by the Iranian Social Security Organization (ISSO) between 2000 and 2011. Methods In this retrospective study, all insured people experiencing at least one work-related accident during a 10-year period were included in the analyses. We used Box–Jenkins modeling to develop a time series model of the total number of accidents. Results There was an average of 1476 accidents per month (1476·05±458·77, mean±SD). The final ARIMA (p,d,q) (P,D,Q)s model for fitting to data was: ARIMA(1,1,1)×(0,1,1)12 consisting of the first ordering of the autoregressive, moving average and seasonal moving average parameters with 20·942 mean absolute percentage error (MAPE). Conclusions The final model showed that time series analysis of ARIMA models was useful for forecasting the number of work-related accidents in Iran. In addition, the forecasted number of work-related accidents for 2011 explained the stability of occurrence of these accidents in recent years, indicating a need for preventive occupational health and safety policies such as safety inspection. PMID:26119774

  3. Work-related accidents among the Iranian population: a time series analysis, 2000-2011.

    PubMed

    Karimlou, Masoud; Salehi, Masoud; Imani, Mehdi; Hosseini, Agha-Fatemeh; Dehnad, Afsaneh; Vahabi, Nasim; Bakhtiyari, Mahmood

    2015-01-01

    Work-related accidents result in human suffering and economic losses and are considered as a major health problem worldwide, especially in the economically developing world. To introduce seasonal autoregressive moving average (ARIMA) models for time series analysis of work-related accident data for workers insured by the Iranian Social Security Organization (ISSO) between 2000 and 2011. In this retrospective study, all insured people experiencing at least one work-related accident during a 10-year period were included in the analyses. We used Box-Jenkins modeling to develop a time series model of the total number of accidents. There was an average of 1476 accidents per month (1476·05±458·77, mean±SD). The final ARIMA (p,d,q) (P,D,Q)s model for fitting to data was: ARIMA(1,1,1)×(0,1,1)12 consisting of the first ordering of the autoregressive, moving average and seasonal moving average parameters with 20·942 mean absolute percentage error (MAPE). The final model showed that time series analysis of ARIMA models was useful for forecasting the number of work-related accidents in Iran. In addition, the forecasted number of work-related accidents for 2011 explained the stability of occurrence of these accidents in recent years, indicating a need for preventive occupational health and safety policies such as safety inspection.

  4. Time Series ARIMA Models of Undergraduate Grade Point Average.

    ERIC Educational Resources Information Center

    Rogers, Bruce G.

    The Auto-Regressive Integrated Moving Average (ARIMA) Models, often referred to as Box-Jenkins models, are regression methods for analyzing sequential dependent observations with large amounts of data. The Box-Jenkins approach, a three-stage procedure consisting of identification, estimation and diagnosis, was used to select the most appropriate…

  5. Assessing the Efficacy of Adjustable Moving Averages Using ASEAN-5 Currencies

    PubMed Central

    2016-01-01

    The objective of this research is to examine the trends in the exchange rate markets of the ASEAN-5 countries (Indonesia (IDR), Malaysia (MYR), the Philippines (PHP), Singapore (SGD), and Thailand (THB)) through the application of dynamic moving average trading systems. This research offers evidence of the usefulness of the time-varying volatility technical analysis indicator, Adjustable Moving Average (AMA′) in deciphering trends in these ASEAN-5 exchange rate markets. This time-varying volatility factor, referred to as the Efficacy Ratio in this paper, is embedded in AMA′. The Efficacy Ratio adjusts the AMA′ to the prevailing market conditions by avoiding whipsaws (losses due, in part, to acting on wrong trading signals, which generally occur when there is no general direction in the market) in range trading and by entering early into new trends in trend trading. The efficacy of AMA′ is assessed against other popular moving-average rules. Based on the January 2005 to December 2014 dataset, our findings show that the moving averages and AMA′ are superior to the passive buy-and-hold strategy. Specifically, AMA′ outperforms the other models for the United States Dollar against PHP (USD/PHP) and USD/THB currency pairs. The results show that different length moving averages perform better in different periods for the five currencies. This is consistent with our hypothesis that a dynamic adjustable technical indicator is needed to cater for different periods in different markets. PMID:27574972

  6. Forecasting daily meteorological time series using ARIMA and regression models

    NASA Astrophysics Data System (ADS)

    Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir

    2018-04-01

    The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.

  7. Using a traffic simulation model (VISSIM) with an emissions model (MOVES) to predict emissions from vehicles on a limited-access highway.

    PubMed

    Abou-Senna, Hatem; Radwan, Essam; Westerlund, Kurt; Cooper, C David

    2013-07-01

    The Intergovernmental Panel on Climate Change (IPCC) estimates that baseline global GHG emissions may increase 25-90% from 2000 to 2030, with carbon dioxide (CO2 emissions growing 40-110% over the same period. On-road vehicles are a major source of CO2 emissions in all the developed countries, and in many of the developing countries in the world. Similarly, several criteria air pollutants are associated with transportation, for example, carbon monoxide (CO), nitrogen oxides (NO(x)), and particulate matter (PM). Therefore, the need to accurately quantify transportation-related emissions from vehicles is essential. The new US. Environmental Protection Agency (EPA) mobile source emissions model, MOVES2010a (MOVES), can estimate vehicle emissions on a second-by-second basis, creating the opportunity to combine a microscopic traffic simulation model (such as VISSIM) with MOVES to obtain accurate results. This paper presents an examination of four different approaches to capture the environmental impacts of vehicular operations on a 10-mile stretch of Interstate 4 (I-4), an urban limited-access highway in Orlando, FL. First (at the most basic level), emissions were estimated for the entire 10-mile section "by hand" using one average traffic volume and average speed. Then three advanced levels of detail were studied using VISSIM/MOVES to analyze smaller links: average speeds and volumes (AVG), second-by-second link drive schedules (LDS), and second-by-second operating mode distributions (OPMODE). This paper analyzes how the various approaches affect predicted emissions of CO, NO(x), PM2.5, PM10, and CO2. The results demonstrate that obtaining precise and comprehensive operating mode distributions on a second-by-second basis provides more accurate emission estimates. Specifically, emission rates are highly sensitive to stop-and-go traffic and the associated driving cycles of acceleration, deceleration, and idling. Using the AVG or LDS approach may overestimate or underestimate emissions, respectively, compared to an operating mode distribution approach. Transportation agencies and researchers in the past have estimated emissions using one average speed and volume on a long stretch of roadway. With MOVES, there is an opportunity for higher precision and accuracy. Integrating a microscopic traffic simulation model (such as VISSIM) with MOVES allows one to obtain precise and accurate emissions estimates. The proposed emission rate estimation process also can be extended to gridded emissions for ozone modeling, or to localized air quality dispersion modeling, where temporal and spatial resolution of emissions is essential to predict the concentration of pollutants near roadways.

  8. An impact analysis of forecasting methods and forecasting parameters on bullwhip effect

    NASA Astrophysics Data System (ADS)

    Silitonga, R. Y. H.; Jelly, N.

    2018-04-01

    Bullwhip effect is an increase of variance of demand fluctuation from downstream to upstream of supply chain. Forecasting methods and forecasting parameters were recognized as some factors that affect bullwhip phenomena. To study these factors, we can develop simulations. There are several ways to simulate bullwhip effect in previous studies, such as mathematical equation modelling, information control modelling, computer program, and many more. In this study a spreadsheet program named Bullwhip Explorer was used to simulate bullwhip effect. Several scenarios were developed to show the change in bullwhip effect ratio because of the difference in forecasting methods and forecasting parameters. Forecasting methods used were mean demand, moving average, exponential smoothing, demand signalling, and minimum expected mean squared error. Forecasting parameters were moving average period, smoothing parameter, signalling factor, and safety stock factor. It showed that decreasing moving average period, increasing smoothing parameter, increasing signalling factor can create bigger bullwhip effect ratio. Meanwhile, safety stock factor had no impact to bullwhip effect.

  9. Sound source identification and sound radiation modeling in a moving medium using the time-domain equivalent source method.

    PubMed

    Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang

    2015-05-01

    Planar near-field acoustic holography has been successfully extended to reconstruct the sound field in a moving medium, however, the reconstructed field still contains the convection effect that might lead to the wrong identification of sound sources. In order to accurately identify sound sources in a moving medium, a time-domain equivalent source method is developed. In the method, the real source is replaced by a series of time-domain equivalent sources whose strengths are solved iteratively by utilizing the measured pressure and the known convective time-domain Green's function, and time averaging is used to reduce the instability in the iterative solving process. Since these solved equivalent source strengths are independent of the convection effect, they can be used not only to identify sound sources but also to model sound radiations in both moving and static media. Numerical simulations are performed to investigate the influence of noise on the solved equivalent source strengths and the effect of time averaging on reducing the instability, and to demonstrate the advantages of the proposed method on the source identification and sound radiation modeling.

  10. [A new kinematics method of determing elbow rotation axis and evaluation of its feasibility].

    PubMed

    Han, W; Song, J; Wang, G Z; Ding, H; Li, G S; Gong, M Q; Jiang, X Y; Wang, M Y

    2016-04-18

    To study a new positioning method of elbow external fixation rotation axis, and to evaluate its feasibility. Four normal adult volunteers and six Sawbone elbow models were brought into this experiment. The kinematic data of five elbow flexion were collected respectively by optical positioning system. The rotation axes of the elbow joints were fitted by the least square method. The kinematic data and fitting results were visually displayed. According to the fitting results, the average moving planes and rotation axes were calculated. Thus, the rotation axes of new kinematic methods were obtained. By using standard clinical methods, the entrance and exit points of rotation axes of six Sawbone elbow models were located under X-ray. And The kirschner wires were placed as the representatives of rotation axes using traditional positioning methods. Then, the entrance point deviation, the exit point deviation and the angle deviation of two kinds of located rotation axes were compared. As to the four volunteers, the indicators represented circular degree and coplanarity of elbow flexion movement trajectory of each volunteer were both about 1 mm. All the distance deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 3 mm. All the angle deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 5°. As to the six Sawbone models, the average entrance point deviations, the average exit point deviations and the average angle deviations of two different rotation axes determined by two kinds of located methods were respectively 1.697 2 mm, 1.838 3 mm and 1.321 7°. All the deviations were very small. They were all in an acceptable range of clinical practice. The values that represent circular degree and coplanarity of volunteer's elbow single curvature movement trajectory are very small. The result shows that the elbow single curvature movement can be regarded as the approximate fixed axis movement. The new method can replace the traditional method in accuracy. It can make up the deficiency of the traditional fixed axis method.

  11. [Establishing and applying of autoregressive integrated moving average model to predict the incidence rate of dysentery in Shanghai].

    PubMed

    Li, Jian; Wu, Huan-Yu; Li, Yan-Ting; Jin, Hui-Ming; Gu, Bao-Ke; Yuan, Zheng-An

    2010-01-01

    To explore the feasibility of establishing and applying of autoregressive integrated moving average (ARIMA) model to predict the incidence rate of dysentery in Shanghai, so as to provide the theoretical basis for prevention and control of dysentery. ARIMA model was established based on the monthly incidence rate of dysentery of Shanghai from 1990 to 2007. The parameters of model were estimated through unconditional least squares method, the structure was determined according to criteria of residual un-correlation and conclusion, and the model goodness-of-fit was determined through Akaike information criterion (AIC) and Schwarz Bayesian criterion (SBC). The constructed optimal model was applied to predict the incidence rate of dysentery of Shanghai in 2008 and evaluate the validity of model through comparing the difference of predicted incidence rate and actual one. The incidence rate of dysentery in 2010 was predicted by ARIMA model based on the incidence rate from January 1990 to June 2009. The model ARIMA (1, 1, 1) (0, 1, 2)(12) had a good fitness to the incidence rate with both autoregressive coefficient (AR1 = 0.443) during the past time series, moving average coefficient (MA1 = 0.806) and seasonal moving average coefficient (SMA1 = 0.543, SMA2 = 0.321) being statistically significant (P < 0.01). AIC and SBC were 2.878 and 16.131 respectively and predicting error was white noise. The mathematic function was (1-0.443B) (1-B) (1-B(12))Z(t) = (1-0.806B) (1-0.543B(12)) (1-0.321B(2) x 12) micro(t). The predicted incidence rate in 2008 was consistent with the actual one, with the relative error of 6.78%. The predicted incidence rate of dysentery in 2010 based on the incidence rate from January 1990 to June 2009 would be 9.390 per 100 thousand. ARIMA model can be used to fit the changes of incidence rate of dysentery and to forecast the future incidence rate in Shanghai. It is a predicted model of high precision for short-time forecast.

  12. In-use activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks.

    PubMed

    Sandhu, Gurdas S; Frey, H Christopher; Bartelt-Hunt, Shannon; Jones, Elizabeth

    2015-03-01

    The objectives of this study were to quantify real-world activity, fuel use, and emissions for heavy duty diesel roll-off refuse trucks; evaluate the contribution of duty cycles and emissions controls to variability in cycle average fuel use and emission rates; quantify the effect of vehicle weight on fuel use and emission rates; and compare empirical cycle average emission rates with the U.S. Environmental Protection Agency's MOVES emission factor model predictions. Measurements were made at 1 Hz on six trucks of model years 2005 to 2012, using onboard systems. The trucks traveled 870 miles, had an average speed of 16 mph, and collected 165 tons of trash. The average fuel economy was 4.4 mpg, which is approximately twice previously reported values for residential trash collection trucks. On average, 50% of time is spent idling and about 58% of emissions occur in urban areas. Newer trucks with selective catalytic reduction and diesel particulate filter had NOx and PM cycle average emission rates that were 80% lower and 95% lower, respectively, compared to older trucks without. On average, the combined can and trash weight was about 55% of chassis weight. The marginal effect of vehicle weight on fuel use and emissions is highest at low loads and decreases as load increases. Among 36 cycle average rates (6 trucks×6 cycles), MOVES-predicted values and estimates based on real-world data have similar relative trends. MOVES-predicted CO2 emissions are similar to those of the real world, while NOx and PM emissions are, on average, 43% lower and 300% higher, respectively. The real-world data presented here can be used to estimate benefits of replacing old trucks with new trucks. Further, the data can be used to improve emission inventories and model predictions. In-use measurements of the real-world activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks can be used to improve the accuracy of predictive models, such as MOVES, and emissions inventories. Further, the activity data from this study can be used to generate more representative duty cycles for more accurate chassis dynamometer testing. Comparisons of old and new model year diesel trucks are useful in analyzing the effect of fleet turnover. The analysis of effect of haul weight on fuel use can be used by fleet managers to optimize operations to reduce fuel cost.

  13. An empirical investigation on the forecasting ability of mallows model averaging in a macro economic environment

    NASA Astrophysics Data System (ADS)

    Yin, Yip Chee; Hock-Eam, Lim

    2012-09-01

    This paper investigates the forecasting ability of Mallows Model Averaging (MMA) by conducting an empirical analysis of five Asia countries, Malaysia, Thailand, Philippines, Indonesia and China's GDP growth rate. Results reveal that MMA has no noticeable differences in predictive ability compared to the general autoregressive fractional integrated moving average model (ARFIMA) and its predictive ability is sensitive to the effect of financial crisis. MMA could be an alternative forecasting method for samples without recent outliers such as financial crisis.

  14. Generalized seasonal autoregressive integrated moving average models for count data with application to malaria time series with low case numbers.

    PubMed

    Briët, Olivier J T; Amerasinghe, Priyanie H; Vounatsou, Penelope

    2013-01-01

    With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions' impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during "consolidation" and "pre-elimination" phases. Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low.

  15. Generalized Seasonal Autoregressive Integrated Moving Average Models for Count Data with Application to Malaria Time Series with Low Case Numbers

    PubMed Central

    Briët, Olivier J. T.; Amerasinghe, Priyanie H.; Vounatsou, Penelope

    2013-01-01

    Introduction With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during “consolidation” and “pre-elimination” phases. Methods Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. Results The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. Conclusions G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low. PMID:23785448

  16. Alternatives to the Moving Average

    Treesearch

    Paul C. van Deusen

    2001-01-01

    There are many possible estimators that could be used with annual inventory data. The 5-year moving average has been selected as a default estimator to provide initial results for states having available annual inventory data. User objectives for these estimates are discussed. The characteristics of a moving average are outlined. It is shown that moving average...

  17. Driving-forces model on individual behavior in scenarios considering moving threat agents

    NASA Astrophysics Data System (ADS)

    Li, Shuying; Zhuang, Jun; Shen, Shifei; Wang, Jia

    2017-09-01

    The individual behavior model is a contributory factor to improve the accuracy of agent-based simulation in different scenarios. However, few studies have considered moving threat agents, which often occur in terrorist attacks caused by attackers with close-range weapons (e.g., sword, stick). At the same time, many existing behavior models lack validation from cases or experiments. This paper builds a new individual behavior model based on seven behavioral hypotheses. The driving-forces model is an extension of the classical social force model considering scenarios including moving threat agents. An experiment was conducted to validate the key components of the model. Then the model is compared with an advanced Elliptical Specification II social force model, by calculating the fitting errors between the simulated and experimental trajectories, and being applied to simulate a specific circumstance. Our results show that the driving-forces model reduced the fitting error by an average of 33.9% and the standard deviation by an average of 44.5%, which indicates the accuracy and stability of the model in the studied situation. The new driving-forces model could be used to simulate individual behavior when analyzing the risk of specific scenarios using agent-based simulation methods, such as risk analysis of close-range terrorist attacks in public places.

  18. A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction

    NASA Astrophysics Data System (ADS)

    Danandeh Mehr, Ali; Kahya, Ercan

    2017-06-01

    Genetic programming (GP) is able to systematically explore alternative model structures of different accuracy and complexity from observed input and output data. The effectiveness of GP in hydrological system identification has been recognized in recent studies. However, selecting a parsimonious (accurate and simple) model from such alternatives still remains a question. This paper proposes a Pareto-optimal moving average multigene genetic programming (MA-MGGP) approach to develop a parsimonious model for single-station streamflow prediction. The three main components of the approach that take us from observed data to a validated model are: (1) data pre-processing, (2) system identification and (3) system simplification. The data pre-processing ingredient uses a simple moving average filter to diminish the lagged prediction effect of stand-alone data-driven models. The multigene ingredient of the model tends to identify the underlying nonlinear system with expressions simpler than classical monolithic GP and, eventually simplification component exploits Pareto front plot to select a parsimonious model through an interactive complexity-efficiency trade-off. The approach was tested using the daily streamflow records from a station on Senoz Stream, Turkey. Comparing to the efficiency results of stand-alone GP, MGGP, and conventional multi linear regression prediction models as benchmarks, the proposed Pareto-optimal MA-MGGP model put forward a parsimonious solution, which has a noteworthy importance of being applied in practice. In addition, the approach allows the user to enter human insight into the problem to examine evolved models and pick the best performing programs out for further analysis.

  19. Analysis Monthly Import of Palm Oil Products Using Box-Jenkins Model

    NASA Astrophysics Data System (ADS)

    Ahmad, Nurul F. Y.; Khalid, Kamil; Saifullah Rusiman, Mohd; Ghazali Kamardan, M.; Roslan, Rozaini; Che-Him, Norziha

    2018-04-01

    The palm oil industry has been an important component of the national economy especially the agriculture sector. The aim of this study is to identify the pattern of import of palm oil products, to model the time series using Box-Jenkins model and to forecast the monthly import of palm oil products. The method approach is included in the statistical test for verifying the equivalence model and statistical measurement of three models, namely Autoregressive (AR) model, Moving Average (MA) model and Autoregressive Moving Average (ARMA) model. The model identification of all product import palm oil is different in which the AR(1) was found to be the best model for product import palm oil while MA(3) was found to be the best model for products import palm kernel oil. For the palm kernel, MA(4) was found to be the best model. The results forecast for the next four months for products import palm oil, palm kernel oil and palm kernel showed the most significant decrease compared to the actual data.

  20. Quantified moving average strategy of crude oil futures market based on fuzzy logic rules and genetic algorithms

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojia; An, Haizhong; Wang, Lijun; Guan, Qing

    2017-09-01

    The moving average strategy is a technical indicator that can generate trading signals to assist investment. While the trading signals tell the traders timing to buy or sell, the moving average cannot tell the trading volume, which is a crucial factor for investment. This paper proposes a fuzzy moving average strategy, in which the fuzzy logic rule is used to determine the strength of trading signals, i.e., the trading volume. To compose one fuzzy logic rule, we use four types of moving averages, the length of the moving average period, the fuzzy extent, and the recommend value. Ten fuzzy logic rules form a fuzzy set, which generates a rating level that decides the trading volume. In this process, we apply genetic algorithms to identify an optimal fuzzy logic rule set and utilize crude oil futures prices from the New York Mercantile Exchange (NYMEX) as the experiment data. Each experiment is repeated for 20 times. The results show that firstly the fuzzy moving average strategy can obtain a more stable rate of return than the moving average strategies. Secondly, holding amounts series is highly sensitive to price series. Thirdly, simple moving average methods are more efficient. Lastly, the fuzzy extents of extremely low, high, and very high are more popular. These results are helpful in investment decisions.

  1. Simulations of moving effect of coastal vegetation on tsunami damping

    NASA Astrophysics Data System (ADS)

    Tsai, Ching-Piao; Chen, Ying-Chi; Octaviani Sihombing, Tri; Lin, Chang

    2017-05-01

    A coupled wave-vegetation simulation is presented for the moving effect of the coastal vegetation on tsunami wave height damping. The problem is idealized by solitary wave propagation on a group of emergent cylinders. The numerical model is based on general Reynolds-averaged Navier-Stokes equations with renormalization group turbulent closure model by using volume of fluid technique. The general moving object (GMO) model developed in computational fluid dynamics (CFD) code Flow-3D is applied to simulate the coupled motion of vegetation with wave dynamically. The damping of wave height and the turbulent kinetic energy along moving and stationary cylinders are discussed. The simulated results show that the damping of wave height and the turbulent kinetic energy by the moving cylinders are clearly less than by the stationary cylinders. The result implies that the wave decay by the coastal vegetation may be overestimated if the vegetation was represented as stationary state.

  2. Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network

    PubMed Central

    Yu, Ying; Wang, Yirui; Tang, Zheng

    2017-01-01

    With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient. PMID:28246527

  3. Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network.

    PubMed

    Yu, Ying; Wang, Yirui; Gao, Shangce; Tang, Zheng

    2017-01-01

    With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient.

  4. ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.

    PubMed

    Lee, Keunbaik; Baek, Changryong; Daniels, Michael J

    2017-11-01

    In longitudinal studies, serial dependence of repeated outcomes must be taken into account to make correct inferences on covariate effects. As such, care must be taken in modeling the covariance matrix. However, estimation of the covariance matrix is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcomes these limitations, two Cholesky decomposition approaches have been proposed: modified Cholesky decomposition for autoregressive (AR) structure and moving average Cholesky decomposition for moving average (MA) structure, respectively. However, the correlations of repeated outcomes are often not captured parsimoniously using either approach separately. In this paper, we propose a class of flexible, nonstationary, heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the covariance matrix that we denote as ARMACD. We analyze a recent lung cancer study to illustrate the power of our proposed methods.

  5. Capillary Electrophoresis Sensitivity Enhancement Based on Adaptive Moving Average Method.

    PubMed

    Drevinskas, Tomas; Telksnys, Laimutis; Maruška, Audrius; Gorbatsova, Jelena; Kaljurand, Mihkel

    2018-06-05

    In the present work, we demonstrate a novel approach to improve the sensitivity of the "out of lab" portable capillary electrophoretic measurements. Nowadays, many signal enhancement methods are (i) underused (nonoptimal), (ii) overused (distorts the data), or (iii) inapplicable in field-portable instrumentation because of a lack of computational power. The described innovative migration velocity-adaptive moving average method uses an optimal averaging window size and can be easily implemented with a microcontroller. The contactless conductivity detection was used as a model for the development of a signal processing method and the demonstration of its impact on the sensitivity. The frequency characteristics of the recorded electropherograms and peaks were clarified. Higher electrophoretic mobility analytes exhibit higher-frequency peaks, whereas lower electrophoretic mobility analytes exhibit lower-frequency peaks. On the basis of the obtained data, a migration velocity-adaptive moving average algorithm was created, adapted, and programmed into capillary electrophoresis data-processing software. Employing the developed algorithm, each data point is processed depending on a certain migration time of the analyte. Because of the implemented migration velocity-adaptive moving average method, the signal-to-noise ratio improved up to 11 times for sampling frequency of 4.6 Hz and up to 22 times for sampling frequency of 25 Hz. This paper could potentially be used as a methodological guideline for the development of new smoothing algorithms that require adaptive conditions in capillary electrophoresis and other separation methods.

  6. Models for short term malaria prediction in Sri Lanka

    PubMed Central

    Briët, Olivier JT; Vounatsou, Penelope; Gunawardena, Dissanayake M; Galappaththy, Gawrie NL; Amerasinghe, Priyanie H

    2008-01-01

    Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. Methods Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. Results The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. Conclusion Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed. PMID:18460204

  7. The Use of an Autoregressive Integrated Moving Average Model for Prediction of the Incidence of Dysentery in Jiangsu, China.

    PubMed

    Wang, Kewei; Song, Wentao; Li, Jinping; Lu, Wu; Yu, Jiangang; Han, Xiaofeng

    2016-05-01

    The aim of this study is to forecast the incidence of bacillary dysentery with a prediction model. We collected the annual and monthly laboratory data of confirmed cases from January 2004 to December 2014. In this study, we applied an autoregressive integrated moving average (ARIMA) model to forecast bacillary dysentery incidence in Jiangsu, China. The ARIMA (1, 1, 1) × (1, 1, 2)12 model fitted exactly with the number of cases during January 2004 to December 2014. The fitted model was then used to predict bacillary dysentery incidence during the period January to August 2015, and the number of cases fell within the model's CI for the predicted number of cases during January-August 2015. This study shows that the ARIMA model fits the fluctuations in bacillary dysentery frequency, and it can be used for future forecasting when applied to bacillary dysentery prevention and control. © 2016 APJPH.

  8. Forecasting Daily Patient Outflow From a Ward Having No Real-Time Clinical Data

    PubMed Central

    Tran, Truyen; Luo, Wei; Phung, Dinh; Venkatesh, Svetha

    2016-01-01

    Background: Modeling patient flow is crucial in understanding resource demand and prioritization. We study patient outflow from an open ward in an Australian hospital, where currently bed allocation is carried out by a manager relying on past experiences and looking at demand. Automatic methods that provide a reasonable estimate of total next-day discharges can aid in efficient bed management. The challenges in building such methods lie in dealing with large amounts of discharge noise introduced by the nonlinear nature of hospital procedures, and the nonavailability of real-time clinical information in wards. Objective Our study investigates different models to forecast the total number of next-day discharges from an open ward having no real-time clinical data. Methods We compared 5 popular regression algorithms to model total next-day discharges: (1) autoregressive integrated moving average (ARIMA), (2) the autoregressive moving average with exogenous variables (ARMAX), (3) k-nearest neighbor regression, (4) random forest regression, and (5) support vector regression. Although the autoregressive integrated moving average model relied on past 3-month discharges, nearest neighbor forecasting used median of similar discharges in the past in estimating next-day discharge. In addition, the ARMAX model used the day of the week and number of patients currently in ward as exogenous variables. For the random forest and support vector regression models, we designed a predictor set of 20 patient features and 88 ward-level features. Results Our data consisted of 12,141 patient visits over 1826 days. Forecasting quality was measured using mean forecast error, mean absolute error, symmetric mean absolute percentage error, and root mean square error. When compared with a moving average prediction model, all 5 models demonstrated superior performance with the random forests achieving 22.7% improvement in mean absolute error, for all days in the year 2014. Conclusions In the absence of clinical information, our study recommends using patient-level and ward-level data in predicting next-day discharges. Random forest and support vector regression models are able to use all available features from such data, resulting in superior performance over traditional autoregressive methods. An intelligent estimate of available beds in wards plays a crucial role in relieving access block in emergency departments. PMID:27444059

  9. Are Math Grades Cyclical?

    ERIC Educational Resources Information Center

    Adams, Gerald J.; Dial, Micah

    1998-01-01

    The cyclical nature of mathematics grades was studied for a cohort of elementary school students from a large metropolitan school district in Texas over six years (average cohort size of 8495). The study used an autoregressive integrated moving average (ARIMA) model. Results indicate that grades do exhibit a significant cyclical pattern. (SLD)

  10. Rate of Oviposition by Culex Quinquefasciatus in San Antonio, Texas, During Three Years

    DTIC Science & Technology

    1988-09-01

    autoregression and zero orders of integration and moving average ( ARIMA (l,O,O)). This model was chosen initially because rainfall ap- peared to...have no trend requiring integration and no obvious requirement for a moving aver- age component (i.e., no regular periodicity). This ARIMA model was...Say in both the northern and southern hem- ispheres exposes this species to a variety of climatic challenges to its survival. It is able to adjust

  11. Evaluating and improving count-based population inference: A case study from 31 years of monitoring Sandhill Cranes

    USGS Publications Warehouse

    Gerber, Brian D.; Kendall, William L.

    2017-01-01

    Monitoring animal populations can be difficult. Limited resources often force monitoring programs to rely on unadjusted or smoothed counts as an index of abundance. Smoothing counts is commonly done using a moving-average estimator to dampen sampling variation. These indices are commonly used to inform management decisions, although their reliability is often unknown. We outline a process to evaluate the biological plausibility of annual changes in population counts and indices from a typical monitoring scenario and compare results with a hierarchical Bayesian time series (HBTS) model. We evaluated spring and fall counts, fall indices, and model-based predictions for the Rocky Mountain population (RMP) of Sandhill Cranes (Antigone canadensis) by integrating juvenile recruitment, harvest, and survival into a stochastic stage-based population model. We used simulation to evaluate population indices from the HBTS model and the commonly used 3-yr moving average estimator. We found counts of the RMP to exhibit biologically unrealistic annual change, while the fall population index was largely biologically realistic. HBTS model predictions suggested that the RMP changed little over 31 yr of monitoring, but the pattern depended on assumptions about the observational process. The HBTS model fall population predictions were biologically plausible if observed crane harvest mortality was compensatory up to natural mortality, as empirical evidence suggests. Simulations indicated that the predicted mean of the HBTS model was generally a more reliable estimate of the true population than population indices derived using a moving 3-yr average estimator. Practitioners could gain considerable advantages from modeling population counts using a hierarchical Bayesian autoregressive approach. Advantages would include: (1) obtaining measures of uncertainty; (2) incorporating direct knowledge of the observational and population processes; (3) accommodating missing years of data; and (4) forecasting population size.

  12. High-Resolution Coarse-Grained Modeling Using Oriented Coarse-Grained Sites.

    PubMed

    Haxton, Thomas K

    2015-03-10

    We introduce a method to bring nearly atomistic resolution to coarse-grained models, and we apply the method to proteins. Using a small number of coarse-grained sites (about one per eight atoms) but assigning an independent three-dimensional orientation to each site, we preferentially integrate out stiff degrees of freedom (bond lengths and angles, as well as dihedral angles in rings) that are accurately approximated by their average values, while retaining soft degrees of freedom (unconstrained dihedral angles) mostly responsible for conformational variability. We demonstrate that our scheme retains nearly atomistic resolution by mapping all experimental protein configurations in the Protein Data Bank onto coarse-grained configurations and then analytically backmapping those configurations back to all-atom configurations. This roundtrip mapping throws away all information associated with the eliminated (stiff) degrees of freedom except for their average values, which we use to construct optimal backmapping functions. Despite the 4:1 reduction in the number of degrees of freedom, we find that heavy atoms move only 0.051 Å on average during the roundtrip mapping, while hydrogens move 0.179 Å on average, an unprecedented combination of efficiency and accuracy among coarse-grained protein models. We discuss the advantages of such a high-resolution model for parametrizing effective interactions and accurately calculating observables through direct or multiscale simulations.

  13. SU-F-T-497: Spatiotemporally Optimal, Personalized Prescription Scheme for Glioblastoma Patients Using the Proliferation and Invasion Glioma Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M; Rockhill, J; Phillips, M

    Purpose: To investigate a spatiotemporally optimal radiotherapy prescription scheme and its potential benefit for glioblastoma (GBM) patients using the proliferation and invasion (PI) glioma model. Methods: Standard prescription for GBM was assumed to deliver 46Gy in 23 fractions to GTV1+2cm margin and additional 14Gy in 7 fractions to GTV2+2cm margin. We simulated the tumor proliferation and invasion in 2D according to the PI glioma model with a moving velocity of 0.029(slow-move), 0.079(average-move), and 0.13(fast-move) mm/day for GTV2 with a radius of 1 and 2cm. For each tumor, the margin around GTV1 and GTV2 was varied to 0–6 cm and 1–3more » cm respectively. Total dose to GTV1 was constrained such that the equivalent uniform dose (EUD) to normal brain equals EUD with the standard prescription. A non-stationary dose policy, where the fractional dose varies, was investigated to estimate the temporal effect of the radiation dose. The efficacy of an optimal prescription scheme was evaluated by tumor cell-surviving fraction (SF), EUD, and the expected survival time. Results: Optimal prescription for the slow-move tumors was to use 3.0(small)-3.5(large) cm margins to GTV1, and 1.5cm margin to GTV2. For the average- and fast-move tumors, it was optimal to use 6.0cm margin for GTV1 suggesting that whole brain therapy is optimal, and then 1.5cm (average-move) and 1.5–3.0cm (fast-move, small-large) margins for GTV2. It was optimal to deliver the boost sequentially using a linearly decreasing fractional dose for all tumors. Optimal prescription led to 0.001–0.465% of the tumor SF resulted from using the standard prescription, and increased tumor EUD by 25.3–49.3% and the estimated survival time by 7.6–22.2 months. Conclusion: It is feasible to optimize a prescription scheme depending on the individual tumor characteristics. A personalized prescription scheme could potentially increase tumor EUD and the expected survival time significantly without increasing EUD to normal brain.« less

  14. Ambient temperature and biomarkers of heart failure: a repeated measures analysis.

    PubMed

    Wilker, Elissa H; Yeh, Gloria; Wellenius, Gregory A; Davis, Roger B; Phillips, Russell S; Mittleman, Murray A

    2012-08-01

    Extreme temperatures have been associated with hospitalization and death among individuals with heart failure, but few studies have explored the underlying mechanisms. We hypothesized that outdoor temperature in the Boston, Massachusetts, area (1- to 4-day moving averages) would be associated with higher levels of biomarkers of inflammation and myocyte injury in a repeated-measures study of individuals with stable heart failure. We analyzed data from a completed clinical trial that randomized 100 patients to 12 weeks of tai chi classes or to time-matched education control. B-type natriuretic peptide (BNP), C-reactive protein (CRP), and tumor necrosis factor (TNF) were measured at baseline, 6 weeks, and 12 weeks. Endothelin-1 was measured at baseline and 12 weeks. We used fixed effects models to evaluate associations with measures of temperature that were adjusted for time-varying covariates. Higher apparent temperature was associated with higher levels of BNP beginning with 2-day moving averages and reached statistical significance for 3- and 4-day moving averages. CRP results followed a similar pattern but were delayed by 1 day. A 5°C change in 3- and 4-day moving averages of apparent temperature was associated with 11.3% [95% confidence interval (CI): 1.1, 22.5; p = 0.03) and 11.4% (95% CI: 1.2, 22.5; p = 0.03) higher BNP. A 5°C change in the 4-day moving average of apparent temperature was associated with 21.6% (95% CI: 2.5, 44.2; p = 0.03) higher CRP. No clear associations with TNF or endothelin-1 were observed. Among patients undergoing treatment for heart failure, we observed positive associations between temperature and both BNP and CRP-predictors of heart failure prognosis and severity.

  15. Are U.S. Military Interventions Contagious over Time? Intervention Timing and Its Implications for Force Planning

    DTIC Science & Technology

    2013-01-01

    29 3.5. ARIMA Models , Temporal Clustering of Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.6...39 3.9. ARIMA Models ...variance across a distribution. Autoregressive integrated moving average ( ARIMA ) models are used with time-series data sets and are designed to capture

  16. A High Precision Prediction Model Using Hybrid Grey Dynamic Model

    ERIC Educational Resources Information Center

    Li, Guo-Dong; Yamaguchi, Daisuke; Nagai, Masatake; Masuda, Shiro

    2008-01-01

    In this paper, we propose a new prediction analysis model which combines the first order one variable Grey differential equation Model (abbreviated as GM(1,1) model) from grey system theory and time series Autoregressive Integrated Moving Average (ARIMA) model from statistics theory. We abbreviate the combined GM(1,1) ARIMA model as ARGM(1,1)…

  17. Relating Factor Models for Longitudinal Data to Quasi-Simplex and NARMA Models

    ERIC Educational Resources Information Center

    Rovine, Michael J.; Molenaar, Peter C. M.

    2005-01-01

    In this article we show the one-factor model can be rewritten as a quasi-simplex model. Using this result along with addition theorems from time series analysis, we describe a common general model, the nonstationary autoregressive moving average (NARMA) model, that includes as a special case, any latent variable model with continuous indicators…

  18. A Case Study to Improve Emergency Room Patient Flow at Womack Army Medical Center

    DTIC Science & Technology

    2009-06-01

    use just the previous month, moving average 2-month period ( MA2 ) uses the average from the previous two months, moving average 3-month period (MA3...ED prior to discharge by provider) MA2 /MA3/MA4 - moving averages of 2-4 months in length MAD - mean absolute deviation (measure of accuracy for

  19. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less

  20. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    NASA Astrophysics Data System (ADS)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  1. Comparison of two non-convex mixed-integer nonlinear programming algorithms applied to autoregressive moving average model structure and parameter estimation

    NASA Astrophysics Data System (ADS)

    Uilhoorn, F. E.

    2016-10-01

    In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.

  2. Wildfire suppression cost forecasts from the US Forest Service

    Treesearch

    Karen L. Abt; Jeffrey P. Prestemon; Krista M. Gebert

    2009-01-01

    The US Forest Service and other land-management agencies seek better tools for nticipating future expenditures for wildfire suppression. We developed regression models for forecasting US Forest Service suppression spending at 1-, 2-, and 3-year lead times. We compared these models to another readily available forecast model, the 10-year moving average model,...

  3. Simulation of Unsteady Flows Using an Unstructured Navier-Stokes Solver on Moving and Stationary Grids

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Vatsa, Veer N.; Atkins, Harold L.

    2005-01-01

    We apply an unsteady Reynolds-averaged Navier-Stokes (URANS) solver for unstructured grids to unsteady flows on moving and stationary grids. Example problems considered are relevant to active flow control and stability and control. Computational results are presented using the Spalart-Allmaras turbulence model and are compared to experimental data. The effect of grid and time-step refinement are examined.

  4. An Intelligent Decision Support System for Workforce Forecast

    DTIC Science & Technology

    2011-01-01

    ARIMA ) model to forecast the demand for construction skills in Hong Kong. This model was based...Decision Trees ARIMA Rule Based Forecasting Segmentation Forecasting Regression Analysis Simulation Modeling Input-Output Models LP and NLP Markovian...data • When results are needed as a set of easily interpretable rules 4.1.4 ARIMA Auto-regressive, integrated, moving-average ( ARIMA ) models

  5. Integrating WEPP into the WEPS infrastructure

    USDA-ARS?s Scientific Manuscript database

    The Wind Erosion Prediction System (WEPS) and the Water Erosion Prediction Project (WEPP) share a common modeling philosophy, that of moving away from primarily empirically based models based on indices or "average conditions", and toward a more process based approach which can be evaluated using ac...

  6. Model Identification of Integrated ARMA Processes

    ERIC Educational Resources Information Center

    Stadnytska, Tetiana; Braun, Simone; Werner, Joachim

    2008-01-01

    This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…

  7. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking.

    PubMed

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul

    2011-07-01

    In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of moving average tracking was up to four times higher than that of real-time tracking and approached the efficiency of no compensation for all cases. The geometric accuracy and dosimetric accuracy of the moving average algorithm was between real-time tracking and no compensation, approximately half the percentage of dosimetric points failing the gamma-test compared with no compensation.

  8. A Comparison of Alternative Approaches to the Analysis of Interrupted Time-Series.

    ERIC Educational Resources Information Center

    Harrop, John W.; Velicer, Wayne F.

    1985-01-01

    Computer generated data representative of 16 Auto Regressive Integrated Moving Averages (ARIMA) models were used to compare the results of interrupted time-series analysis using: (1) the known model identification, (2) an assumed (l,0,0) model, and (3) an assumed (3,0,0) model as an approximation to the General Transformation approach. (Author/BW)

  9. Neonatal heart rate prediction.

    PubMed

    Abdel-Rahman, Yumna; Jeremic, Aleksander; Tan, Kenneth

    2009-01-01

    Technological advances have caused a decrease in the number of infant deaths. Pre-term infants now have a substantially increased chance of survival. One of the mechanisms that is vital to saving the lives of these infants is continuous monitoring and early diagnosis. With continuous monitoring huge amounts of data are collected with so much information embedded in them. By using statistical analysis this information can be extracted and used to aid diagnosis and to understand development. In this study we have a large dataset containing over 180 pre-term infants whose heart rates were recorded over the length of their stay in the Neonatal Intensive Care Unit (NICU). We test two types of models, empirical bayesian and autoregressive moving average. We then attempt to predict future values. The autoregressive moving average model showed better results but required more computation.

  10. Development of a Robust Identifier for NPPs Transients Combining ARIMA Model and EBP Algorithm

    NASA Astrophysics Data System (ADS)

    Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.

    2014-08-01

    This study introduces a novel identification method for recognition of nuclear power plants (NPPs) transients by combining the autoregressive integrated moving-average (ARIMA) model and the neural network with error backpropagation (EBP) learning algorithm. The proposed method consists of three steps. First, an EBP based identifier is adopted to distinguish the plant normal states from the faulty ones. In the second step, ARIMA models use integrated (I) process to convert non-stationary data of the selected variables into stationary ones. Subsequently, ARIMA processes, including autoregressive (AR), moving-average (MA), or autoregressive moving-average (ARMA) are used to forecast time series of the selected plant variables. In the third step, for identification the type of transients, the forecasted time series are fed to the modular identifier which has been developed using the latest advances of EBP learning algorithm. Bushehr nuclear power plant (BNPP) transients are probed to analyze the ability of the proposed identifier. Recognition of transient is based on similarity of its statistical properties to the reference one, rather than the values of input patterns. More robustness against noisy data and improvement balance between memorization and generalization are salient advantages of the proposed identifier. Reduction of false identification, sole dependency of identification on the sign of each output signal, selection of the plant variables for transients training independent of each other, and extendibility for identification of more transients without unfavorable effects are other merits of the proposed identifier.

  11. Structural equation modeling of the inflammatory response to traffic air pollution

    PubMed Central

    Baja, Emmanuel S.; Schwartz, Joel D.; Coull, Brent A.; Wellenius, Gregory A.; Vokonas, Pantel S.; Suh, Helen H.

    2015-01-01

    Several epidemiological studies have reported conflicting results on the effect of traffic-related pollutants on markers of inflammation. In a Bayesian framework, we examined the effect of traffic pollution on inflammation using structural equation models (SEMs). We studied measurements of C-reactive protein (CRP), soluble vascular cell adhesion molecule-1 (sVCAM-1), and soluble intracellular adhesion molecule-1 (sICAM-1) for 749 elderly men from the Normative Aging Study. Using repeated measures SEMs, we fit a latent variable for traffic pollution that is reflected by levels of black carbon, carbon monoxide, nitrogen monoxide and nitrogen dioxide to estimate its effect on a latent variable for inflammation that included sICAM-1, sVCAM-1 and CRP. Exposure periods were assessed using 1-, 2-, 3-, 7-, 14- and 30-day moving averages previsit. We compared our findings using SEMs with those obtained using linear mixed models. Traffic pollution was related to increased inflammation for 3-, 7-, 14- and 30-day exposure periods. An inter-quartile range increase in traffic pollution was associated with a 2.3% (95% posterior interval (PI): 0.0–4.7%) increase in inflammation for the 3-day moving average, with the most significant association observed for the 30-day moving average (23.9%; 95% PI: 13.9–36.7%). Traffic pollution adversely impacts inflammation in the elderly. SEMs in a Bayesian framework can comprehensively incorporate multiple pollutants and health outcomes simultaneously in air pollution–cardiovascular epidemiological studies. PMID:23232970

  12. Short-term forecasts gain in accuracy. [Regression technique using ''Box-Jenkins'' analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Box-Jenkins time-series models offer accuracy for short-term forecasts that compare with large-scale macroeconomic forecasts. Utilities need to be able to forecast peak demand in order to plan their generating, transmitting, and distribution systems. This new method differs from conventional models by not assuming specific data patterns, but by fitting available data into a tentative pattern on the basis of auto-correlations. Three types of models (autoregressive, moving average, or mixed autoregressive/moving average) can be used according to which provides the most appropriate combination of autocorrelations and related derivatives. Major steps in choosing a model are identifying potential models, estimating the parametersmore » of the problem, and running a diagnostic check to see if the model fits the parameters. The Box-Jenkins technique is well suited for seasonal patterns, which makes it possible to have as short as hourly forecasts of load demand. With accuracy up to two years, the method will allow electricity price-elasticity forecasting that can be applied to facility planning and rate design. (DCK)« less

  13. Structural Equation Modeling of Multivariate Time Series

    ERIC Educational Resources Information Center

    du Toit, Stephen H. C.; Browne, Michael W.

    2007-01-01

    The covariance structure of a vector autoregressive process with moving average residuals (VARMA) is derived. It differs from other available expressions for the covariance function of a stationary VARMA process and is compatible with current structural equation methodology. Structural equation modeling programs, such as LISREL, may therefore be…

  14. ARMA-Based SEM When the Number of Time Points T Exceeds the Number of Cases N: Raw Data Maximum Likelihood.

    ERIC Educational Resources Information Center

    Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.

    2003-01-01

    Demonstrated, through simulation, that stationary autoregressive moving average (ARMA) models may be fitted readily when T>N, using normal theory raw maximum likelihood structural equation modeling. Also provides some illustrations based on real data. (SLD)

  15. The AFIS tree growth model for updating annual forest inventories in Minnesota

    Treesearch

    Margaret R. Holdaway

    2000-01-01

    As the Forest Service moves towards annual inventories, states may use model predictions of growth to update unmeasured plots. A tree growth model (AFIS) based on the scaled Weibull function and using the average-adjusted model form is presented. Annual diameter growth for four species was modeled using undisturbed plots from Minnesota's Aspen-Birch and Northern...

  16. KARMA4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Mohammad; Salloum, Maher; Lee, Jina

    2017-07-10

    KARMA4 is a C++ library for autoregressive moving average (ARMA) modeling and forecasting of time-series data while incorporating both process and observation error. KARMA4 is designed for fitting and forecasting of time-series data for predictive purposes.

  17. On the Nature of SEM Estimates of ARMA Parameters.

    ERIC Educational Resources Information Center

    Hamaker, Ellen L.; Dolan, Conor V.; Molenaar, Peter C. M.

    2002-01-01

    Reexamined the nature of structural equation modeling (SEM) estimates of autoregressive moving average (ARMA) models, replicated the simulation experiments of P. Molenaar, and examined the behavior of the log-likelihood ratio test. Simulation studies indicate that estimates of ARMA parameters observed with SEM software are identical to those…

  18. The Mathematical Analysis of Style: A Correlation-Based Approach.

    ERIC Educational Resources Information Center

    Oppenheim, Rosa

    1988-01-01

    Examines mathematical models of style analysis, focusing on the pattern in which literary characteristics occur. Describes an autoregressive integrated moving average model (ARIMA) for predicting sentence length in different works by the same author and comparable works by different authors. This technique is valuable in characterizing stylistic…

  19. Waste tyre pyrolysis: modelling of a moving bed reactor.

    PubMed

    Aylón, E; Fernández-Colino, A; Murillo, R; Grasa, G; Navarro, M V; García, T; Mastral, A M

    2010-12-01

    This paper describes the development of a new model for waste tyre pyrolysis in a moving bed reactor. This model comprises three different sub-models: a kinetic sub-model that predicts solid conversion in terms of reaction time and temperature, a heat transfer sub-model that calculates the temperature profile inside the particle and the energy flux from the surroundings to the tyre particles and, finally, a hydrodynamic model that predicts the solid flow pattern inside the reactor. These three sub-models have been integrated in order to develop a comprehensive reactor model. Experimental results were obtained in a continuous moving bed reactor and used to validate model predictions, with good approximation achieved between the experimental and simulated results. In addition, a parametric study of the model was carried out, which showed that tyre particle heating is clearly faster than average particle residence time inside the reactor. Therefore, this fast particle heating together with fast reaction kinetics enables total solid conversion to be achieved in this system in accordance with the predictive model. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Autoregressive-moving-average hidden Markov model for vision-based fall prediction-An application for walker robot.

    PubMed

    Taghvaei, Sajjad; Jahanandish, Mohammad Hasan; Kosuge, Kazuhiro

    2017-01-01

    Population aging of the societies requires providing the elderly with safe and dependable assistive technologies in daily life activities. Improving the fall detection algorithms can play a major role in achieving this goal. This article proposes a real-time fall prediction algorithm based on the acquired visual data of a user with walking assistive system from a depth sensor. In the lack of a coupled dynamic model of the human and the assistive walker a hybrid "system identification-machine learning" approach is used. An autoregressive-moving-average (ARMA) model is fitted on the time-series walking data to forecast the upcoming states, and a hidden Markov model (HMM) based classifier is built on the top of the ARMA model to predict falling in the upcoming time frames. The performance of the algorithm is evaluated through experiments with four subjects including an experienced physiotherapist while using a walker robot in five different falling scenarios; namely, fall forward, fall down, fall back, fall left, and fall right. The algorithm successfully predicts the fall with a rate of 84.72%.

  1. Predicting Rehabilitation Success Rate Trends among Ethnic Minorities Served by State Vocational Rehabilitation Agencies: A National Time Series Forecast Model Demonstration Study

    ERIC Educational Resources Information Center

    Moore, Corey L.; Wang, Ningning; Washington, Janique Tynez

    2017-01-01

    Purpose: This study assessed and demonstrated the efficacy of two select empirical forecast models (i.e., autoregressive integrated moving average [ARIMA] model vs. grey model [GM]) in accurately predicting state vocational rehabilitation agency (SVRA) rehabilitation success rate trends across six different racial and ethnic population cohorts…

  2. Modeling Geodetic Processes with Levy α-Stable Distribution and FARIMA

    NASA Astrophysics Data System (ADS)

    Montillet, Jean-Philippe; Yu, Kegen

    2015-04-01

    Over the last years the scientific community has been using the auto regressive moving average (ARMA) model in the modeling of the noise in global positioning system (GPS) time series (daily solution). This work starts with the investigation of the limit of the ARMA model which is widely used in signal processing when the measurement noise is white. Since a typical GPS time series consists of geophysical signals (e.g., seasonal signal) and stochastic processes (e.g., coloured and white noise), the ARMA model may be inappropriate. Therefore, the application of the fractional auto-regressive integrated moving average (FARIMA) model is investigated. The simulation results using simulated time series as well as real GPS time series from a few selected stations around Australia show that the FARIMA model fits the time series better than other models when the coloured noise is larger than the white noise. The second fold of this work focuses on fitting the GPS time series with the family of Levy α-stable distributions. Using this distribution, a hypothesis test is developed to eliminate effectively coarse outliers from GPS time series, achieving better performance than using the rule of thumb of n standard deviations (with n chosen empirically).

  3. Forecasting Daily Volume and Acuity of Patients in the Emergency Department.

    PubMed

    Calegari, Rafael; Fogliatto, Flavio S; Lucini, Filipe R; Neyeloff, Jeruza; Kuchenbecker, Ricardo S; Schaan, Beatriz D

    2016-01-01

    This study aimed at analyzing the performance of four forecasting models in predicting the demand for medical care in terms of daily visits in an emergency department (ED) that handles high complexity cases, testing the influence of climatic and calendrical factors on demand behavior. We tested different mathematical models to forecast ED daily visits at Hospital de Clínicas de Porto Alegre (HCPA), which is a tertiary care teaching hospital located in Southern Brazil. Model accuracy was evaluated using mean absolute percentage error (MAPE), considering forecasting horizons of 1, 7, 14, 21, and 30 days. The demand time series was stratified according to patient classification using the Manchester Triage System's (MTS) criteria. Models tested were the simple seasonal exponential smoothing (SS), seasonal multiplicative Holt-Winters (SMHW), seasonal autoregressive integrated moving average (SARIMA), and multivariate autoregressive integrated moving average (MSARIMA). Performance of models varied according to patient classification, such that SS was the best choice when all types of patients were jointly considered, and SARIMA was the most accurate for modeling demands of very urgent (VU) and urgent (U) patients. The MSARIMA models taking into account climatic factors did not improve the performance of the SARIMA models, independent of patient classification.

  4. Forecasting Daily Volume and Acuity of Patients in the Emergency Department

    PubMed Central

    Fogliatto, Flavio S.; Neyeloff, Jeruza; Kuchenbecker, Ricardo S.; Schaan, Beatriz D.

    2016-01-01

    This study aimed at analyzing the performance of four forecasting models in predicting the demand for medical care in terms of daily visits in an emergency department (ED) that handles high complexity cases, testing the influence of climatic and calendrical factors on demand behavior. We tested different mathematical models to forecast ED daily visits at Hospital de Clínicas de Porto Alegre (HCPA), which is a tertiary care teaching hospital located in Southern Brazil. Model accuracy was evaluated using mean absolute percentage error (MAPE), considering forecasting horizons of 1, 7, 14, 21, and 30 days. The demand time series was stratified according to patient classification using the Manchester Triage System's (MTS) criteria. Models tested were the simple seasonal exponential smoothing (SS), seasonal multiplicative Holt-Winters (SMHW), seasonal autoregressive integrated moving average (SARIMA), and multivariate autoregressive integrated moving average (MSARIMA). Performance of models varied according to patient classification, such that SS was the best choice when all types of patients were jointly considered, and SARIMA was the most accurate for modeling demands of very urgent (VU) and urgent (U) patients. The MSARIMA models taking into account climatic factors did not improve the performance of the SARIMA models, independent of patient classification. PMID:27725842

  5. Prognostics of slurry pumps based on a moving-average wear degradation index and a general sequential Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tse, Peter W.

    2015-05-01

    Slurry pumps are commonly used in oil-sand mining for pumping mixtures of abrasive liquids and solids. These operations cause constant wear of slurry pump impellers, which results in the breakdown of the slurry pumps. This paper develops a prognostic method for estimating remaining useful life of slurry pump impellers. First, a moving-average wear degradation index is proposed to assess the performance degradation of the slurry pump impeller. Secondly, the state space model of the proposed health index is constructed. A general sequential Monte Carlo method is employed to derive the parameters of the state space model. The remaining useful life of the slurry pump impeller is estimated by extrapolating the established state space model to a specified alert threshold. Data collected from an industrial oil sand pump were used to validate the developed method. The results show that the accuracy of the developed method improves as more data become available.

  6. A multimodel approach to interannual and seasonal prediction of Danube discharge anomalies

    NASA Astrophysics Data System (ADS)

    Rimbu, Norel; Ionita, Monica; Patrut, Simona; Dima, Mihai

    2010-05-01

    Interannual and seasonal predictability of Danube river discharge is investigated using three model types: 1) time series models 2) linear regression models of discharge with large-scale climate mode indices and 3) models based on stable teleconnections. All models are calibrated using discharge and climatic data for the period 1901-1977 and validated for the period 1978-2008 . Various time series models, like autoregressive (AR), moving average (MA), autoregressive and moving average (ARMA) or singular spectrum analysis and autoregressive moving average (SSA+ARMA) models have been calibrated and their skills evaluated. The best results were obtained using SSA+ARMA models. SSA+ARMA models proved to have the highest forecast skill also for other European rivers (Gamiz-Fortis et al. 2008). Multiple linear regression models using large-scale climatic mode indices as predictors have a higher forecast skill than the time series models. The best predictors for Danube discharge are the North Atlantic Oscillation (NAO) and the East Atlantic/Western Russia patterns during winter and spring. Other patterns, like Polar/Eurasian or Tropical Northern Hemisphere (TNH) are good predictors for summer and autumn discharge. Based on stable teleconnection approach (Ionita et al. 2008) we construct prediction models through a combination of sea surface temperature (SST), temperature (T) and precipitation (PP) from the regions where discharge and SST, T and PP variations are stable correlated. Forecast skills of these models are higher than forecast skills of the time series and multiple regression models. The models calibrated and validated in our study can be used for operational prediction of interannual and seasonal Danube discharge anomalies. References Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part I: intearannual predictability. J. Climate, 2484-2501, 2008. Gamiz-Fortis, S., D. Pozo-Vazquez, R.M. Trigo, and Y. Castro-Diez, Quantifying the predictability of winter river flow in Iberia. Part II: seasonal predictability. J. Climate, 2503-2518, 2008. Ionita, M., G. Lohmann, and N. Rimbu, Prediction of spring Elbe river discharge based on stable teleconnections with global temperature and precipitation. J. Climate. 6215-6226, 2008.

  7. Direct determination approach for the multifractal detrending moving average analysis

    NASA Astrophysics Data System (ADS)

    Xu, Hai-Chuan; Gu, Gao-Feng; Zhou, Wei-Xing

    2017-11-01

    In the canonical framework, we propose an alternative approach for the multifractal analysis based on the detrending moving average method (MF-DMA). We define a canonical measure such that the multifractal mass exponent τ (q ) is related to the partition function and the multifractal spectrum f (α ) can be directly determined. The performances of the direct determination approach and the traditional approach of the MF-DMA are compared based on three synthetic multifractal and monofractal measures generated from the one-dimensional p -model, the two-dimensional p -model, and the fractional Brownian motions. We find that both approaches have comparable performances to unveil the fractal and multifractal nature. In other words, without loss of accuracy, the multifractal spectrum f (α ) can be directly determined using the new approach with less computation cost. We also apply the new MF-DMA approach to the volatility time series of stock prices and confirm the presence of multifractality.

  8. Associations between Changes in City and Address Specific Temperature and QT Interval - The VA Normative Aging Study

    PubMed Central

    Mehta, Amar J.; Kloog, Itai; Zanobetti, Antonella; Coull, Brent A.; Sparrow, David; Vokonas, Pantel; Schwartz, Joel

    2014-01-01

    Background The underlying mechanisms of the association between ambient temperature and cardiovascular morbidity and mortality are not well understood, particularly for daily temperature variability. We evaluated if daily mean temperature and standard deviation of temperature was associated with heart rate-corrected QT interval (QTc) duration, a marker of ventricular repolarization in a prospective cohort of older men. Methods This longitudinal analysis included 487 older men participating in the VA Normative Aging Study with up to three visits between 2000–2008 (n = 743). We analyzed associations between QTc and moving averages (1–7, 14, 21, and 28 days) of the 24-hour mean and standard deviation of temperature as measured from a local weather monitor, and the 24-hour mean temperature estimated from a spatiotemporal prediction model, in time-varying linear mixed-effect regression. Effect modification by season, diabetes, coronary heart disease, obesity, and age was also evaluated. Results Higher mean temperature as measured from the local monitor, and estimated from the prediction model, was associated with longer QTc at moving averages of 21 and 28 days. Increased 24-hr standard deviation of temperature was associated with longer QTc at moving averages from 4 and up to 28 days; a 1.9°C interquartile range increase in 4-day moving average standard deviation of temperature was associated with a 2.8 msec (95%CI: 0.4, 5.2) longer QTc. Associations between 24-hr standard deviation of temperature and QTc were stronger in colder months, and in participants with diabetes and coronary heart disease. Conclusion/Significance In this sample of older men, elevated mean temperature was associated with longer QTc, and increased variability of temperature was associated with longer QTc, particularly during colder months and among individuals with diabetes and coronary heart disease. These findings may offer insight of an important underlying mechanism of temperature-related cardiovascular morbidity and mortality in an older population. PMID:25238150

  9. Rotation in the Dynamic Factor Modeling of Multivariate Stationary Time Series.

    ERIC Educational Resources Information Center

    Molenaar, Peter C. M.; Nesselroade, John R.

    2001-01-01

    Proposes a special rotation procedure for the exploratory dynamic factor model for stationary multivariate time series. The rotation procedure applies separately to each univariate component series of a q-variate latent factor series and transforms such a component, initially represented as white noise, into a univariate moving-average.…

  10. Identification of multivariable nonlinear systems in the presence of colored noises using iterative hierarchical least squares algorithm.

    PubMed

    Jafari, Masoumeh; Salimifard, Maryam; Dehghani, Maryam

    2014-07-01

    This paper presents an efficient method for identification of nonlinear Multi-Input Multi-Output (MIMO) systems in the presence of colored noises. The method studies the multivariable nonlinear Hammerstein and Wiener models, in which, the nonlinear memory-less block is approximated based on arbitrary vector-based basis functions. The linear time-invariant (LTI) block is modeled by an autoregressive moving average with exogenous (ARMAX) model which can effectively describe the moving average noises as well as the autoregressive and the exogenous dynamics. According to the multivariable nature of the system, a pseudo-linear-in-the-parameter model is obtained which includes two different kinds of unknown parameters, a vector and a matrix. Therefore, the standard least squares algorithm cannot be applied directly. To overcome this problem, a Hierarchical Least Squares Iterative (HLSI) algorithm is used to simultaneously estimate the vector and the matrix of unknown parameters as well as the noises. The efficiency of the proposed identification approaches are investigated through three nonlinear MIMO case studies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Hybrid Support Vector Regression and Autoregressive Integrated Moving Average Models Improved by Particle Swarm Optimization for Property Crime Rates Forecasting with Economic Indicators

    PubMed Central

    Alwee, Razana; Hj Shamsuddin, Siti Mariyam; Sallehuddin, Roselina

    2013-01-01

    Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models. PMID:23766729

  12. Hybrid support vector regression and autoregressive integrated moving average models improved by particle swarm optimization for property crime rates forecasting with economic indicators.

    PubMed

    Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Sallehuddin, Roselina

    2013-01-01

    Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.

  13. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network

    PubMed Central

    Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450

  14. Intelligent Soft Computing on Forex: Exchange Rates Forecasting with Hybrid Radial Basis Neural Network.

    PubMed

    Falat, Lukas; Marcek, Dusan; Durisova, Maria

    2016-01-01

    This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.

  15. Challenges of Electronic Medical Surveillance Systems

    DTIC Science & Technology

    2004-06-01

    More sophisticated approaches, such as regression models and classical autoregressive moving average ( ARIMA ) models that make estimates based on...with those predicted by a mathematical model . The primary benefit of ARIMA models is their ability to correct for local trends in the data so that...works well, for example, during a particularly severe flu season, where prolonged periods of high visit rates are adjusted to by the ARIMA model , thus

  16. Time Series Modelling of Syphilis Incidence in China from 2005 to 2012

    PubMed Central

    Zhang, Xingyu; Zhang, Tao; Pei, Jiao; Liu, Yuanyuan; Li, Xiaosong; Medrano-Gracia, Pau

    2016-01-01

    Background The infection rate of syphilis in China has increased dramatically in recent decades, becoming a serious public health concern. Early prediction of syphilis is therefore of great importance for heath planning and management. Methods In this paper, we analyzed surveillance time series data for primary, secondary, tertiary, congenital and latent syphilis in mainland China from 2005 to 2012. Seasonality and long-term trend were explored with decomposition methods. Autoregressive integrated moving average (ARIMA) was used to fit a univariate time series model of syphilis incidence. A separate multi-variable time series for each syphilis type was also tested using an autoregressive integrated moving average model with exogenous variables (ARIMAX). Results The syphilis incidence rates have increased three-fold from 2005 to 2012. All syphilis time series showed strong seasonality and increasing long-term trend. Both ARIMA and ARIMAX models fitted and estimated syphilis incidence well. All univariate time series showed highest goodness-of-fit results with the ARIMA(0,0,1)×(0,1,1) model. Conclusion Time series analysis was an effective tool for modelling the historical and future incidence of syphilis in China. The ARIMAX model showed superior performance than the ARIMA model for the modelling of syphilis incidence. Time series correlations existed between the models for primary, secondary, tertiary, congenital and latent syphilis. PMID:26901682

  17. Time Series Modelling of Syphilis Incidence in China from 2005 to 2012.

    PubMed

    Zhang, Xingyu; Zhang, Tao; Pei, Jiao; Liu, Yuanyuan; Li, Xiaosong; Medrano-Gracia, Pau

    2016-01-01

    The infection rate of syphilis in China has increased dramatically in recent decades, becoming a serious public health concern. Early prediction of syphilis is therefore of great importance for heath planning and management. In this paper, we analyzed surveillance time series data for primary, secondary, tertiary, congenital and latent syphilis in mainland China from 2005 to 2012. Seasonality and long-term trend were explored with decomposition methods. Autoregressive integrated moving average (ARIMA) was used to fit a univariate time series model of syphilis incidence. A separate multi-variable time series for each syphilis type was also tested using an autoregressive integrated moving average model with exogenous variables (ARIMAX). The syphilis incidence rates have increased three-fold from 2005 to 2012. All syphilis time series showed strong seasonality and increasing long-term trend. Both ARIMA and ARIMAX models fitted and estimated syphilis incidence well. All univariate time series showed highest goodness-of-fit results with the ARIMA(0,0,1)×(0,1,1) model. Time series analysis was an effective tool for modelling the historical and future incidence of syphilis in China. The ARIMAX model showed superior performance than the ARIMA model for the modelling of syphilis incidence. Time series correlations existed between the models for primary, secondary, tertiary, congenital and latent syphilis.

  18. An Optimization of Inventory Demand Forecasting in University Healthcare Centre

    NASA Astrophysics Data System (ADS)

    Bon, A. T.; Ng, T. K.

    2017-01-01

    Healthcare industry becomes an important field for human beings nowadays as it concerns about one’s health. With that, forecasting demand for health services is an important step in managerial decision making for all healthcare organizations. Hence, a case study was conducted in University Health Centre to collect historical demand data of Panadol 650mg for 68 months from January 2009 until August 2014. The aim of the research is to optimize the overall inventory demand through forecasting techniques. Quantitative forecasting or time series forecasting model was used in the case study to forecast future data as a function of past data. Furthermore, the data pattern needs to be identified first before applying the forecasting techniques. Trend is the data pattern and then ten forecasting techniques are applied using Risk Simulator Software. Lastly, the best forecasting techniques will be find out with the least forecasting error. Among the ten forecasting techniques include single moving average, single exponential smoothing, double moving average, double exponential smoothing, regression, Holt-Winter’s additive, Seasonal additive, Holt-Winter’s multiplicative, seasonal multiplicative and Autoregressive Integrated Moving Average (ARIMA). According to the forecasting accuracy measurement, the best forecasting technique is regression analysis.

  19. Modeling Seasonal Influenza Transmission and Its Association with Climate Factors in Thailand Using Time-Series and ARIMAX Analyses.

    PubMed

    Chadsuthi, Sudarat; Iamsirithaworn, Sopon; Triampo, Wannapong; Modchang, Charin

    2015-01-01

    Influenza is a worldwide respiratory infectious disease that easily spreads from one person to another. Previous research has found that the influenza transmission process is often associated with climate variables. In this study, we used autocorrelation and partial autocorrelation plots to determine the appropriate autoregressive integrated moving average (ARIMA) model for influenza transmission in the central and southern regions of Thailand. The relationships between reported influenza cases and the climate data, such as the amount of rainfall, average temperature, average maximum relative humidity, average minimum relative humidity, and average relative humidity, were evaluated using cross-correlation function. Based on the available data of suspected influenza cases and climate variables, the most appropriate ARIMA(X) model for each region was obtained. We found that the average temperature correlated with influenza cases in both central and southern regions, but average minimum relative humidity played an important role only in the southern region. The ARIMAX model that includes the average temperature with a 4-month lag and the minimum relative humidity with a 2-month lag is the appropriate model for the central region, whereas including the minimum relative humidity with a 4-month lag results in the best model for the southern region.

  20. Cloud motion in relation to the ambient wind field

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Scoggins, J. R.

    1975-01-01

    Trajectories of convective clouds were computed from a mathematical model and compared with trajectories observed by radar. The ambient wind field was determined from the AVE IIP data. The model includes gradient, coriolis, drag, lift, and lateral forces. The results show that rotational effects may account for large differences between the computed and observed trajectories and that convective clouds may move 10 to 20 degrees to the right or left of the average wind vector and at speeds 5 to 10 m/sec faster or slower than the average ambient wind speed.

  1. Comparison of estimators for rolling samples using Forest Inventory and Analysis data

    Treesearch

    Devin S. Johnson; Michael S. Williams; Raymond L. Czaplewski

    2003-01-01

    The performance of three classes of weighted average estimators is studied for an annual inventory design similar to the Forest Inventory and Analysis program of the United States. The first class is based on an ARIMA(0,1,1) time series model. The equal weight, simple moving average is a member of this class. The second class is based on an ARIMA(0,2,2) time series...

  2. 25 CFR 700.173 - Average net earnings of business or farm.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 2 2011-04-01 2011-04-01 false Average net earnings of business or farm. 700.173 Section... PROCEDURES Moving and Related Expenses, Temporary Emergency Moves § 700.173 Average net earnings of business or farm. (a) Computing net earnings. For purposes of this subpart, the average annual net earnings of...

  3. 25 CFR 700.173 - Average net earnings of business or farm.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 2 2010-04-01 2010-04-01 false Average net earnings of business or farm. 700.173 Section... PROCEDURES Moving and Related Expenses, Temporary Emergency Moves § 700.173 Average net earnings of business or farm. (a) Computing net earnings. For purposes of this subpart, the average annual net earnings of...

  4. The Choice of Spatial Interpolation Method Affects Research Conclusions

    NASA Astrophysics Data System (ADS)

    Eludoyin, A. O.; Ijisesan, O. S.; Eludoyin, O. M.

    2017-12-01

    Studies from developing countries using spatial interpolations in geographical information systems (GIS) are few and recent. Many of the studies have adopted interpolation procedures including kriging, moving average or Inverse Weighted Average (IDW) and nearest point without the necessary recourse to their uncertainties. This study compared the results of modelled representations of popular interpolation procedures from two commonly used GIS software (ILWIS and ArcGIS) at the Obafemi Awolowo University, Ile-Ife, Nigeria. Data used were concentrations of selected biochemical variables (BOD5, COD, SO4, NO3, pH, suspended and dissolved solids) in Ere stream at Ayepe-Olode, in the southwest Nigeria. Water samples were collected using a depth-integrated grab sampling approach at three locations (upstream, downstream and along a palm oil effluent discharge point in the stream); four stations were sited along each location (Figure 1). Data were first subjected to examination of their spatial distributions and associated variogram variables (nugget, sill and range), using the PAleontological STatistics (PAST3), before the mean values were interpolated in selected GIS software for the variables using each of kriging (simple), moving average and nearest point approaches. Further, the determined variogram variables were substituted with the default values in the selected software, and their results were compared. The study showed that the different point interpolation methods did not produce similar results. For example, whereas the values of conductivity was interpolated to vary as 120.1 - 219.5 µScm-1 with kriging interpolation, it varied as 105.6 - 220.0 µScm-1 and 135.0 - 173.9µScm-1 with nearest point and moving average interpolations, respectively (Figure 2). It also showed that whereas the computed variogram model produced the best fit lines (with least associated error value, Sserror) with Gaussian model, the Spherical model was assumed default for all the distributions in the software, such that the value of nugget was assumed as 0.00, when it was rarely so (Figure 3). The study concluded that interpolation procedures may affect decisions and conclusions on modelling inferences.

  5. Identification of moving vehicle forces on bridge structures via moving average Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Pan, Chu-Dong; Yu, Ling; Liu, Huan-Lin

    2017-08-01

    Traffic-induced moving force identification (MFI) is a typical inverse problem in the field of bridge structural health monitoring. Lots of regularization-based methods have been proposed for MFI. However, the MFI accuracy obtained from the existing methods is low when the moving forces enter into and exit a bridge deck due to low sensitivity of structural responses to the forces at these zones. To overcome this shortcoming, a novel moving average Tikhonov regularization method is proposed for MFI by combining with the moving average concepts. Firstly, the bridge-vehicle interaction moving force is assumed as a discrete finite signal with stable average value (DFS-SAV). Secondly, the reasonable signal feature of DFS-SAV is quantified and introduced for improving the penalty function (∣∣x∣∣2 2) defined in the classical Tikhonov regularization. Then, a feasible two-step strategy is proposed for selecting regularization parameter and balance coefficient defined in the improved penalty function. Finally, both numerical simulations on a simply-supported beam and laboratory experiments on a hollow tube beam are performed for assessing the accuracy and the feasibility of the proposed method. The illustrated results show that the moving forces can be accurately identified with a strong robustness. Some related issues, such as selection of moving window length, effect of different penalty functions, and effect of different car speeds, are discussed as well.

  6. Effect of parameters in moving average method for event detection enhancement using phase sensitive OTDR

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Seok; Naeem, Khurram; Jeon, Min Yong; Kwon, Il-bum

    2017-04-01

    We analyze the relations of parameters in moving average method to enhance the event detectability of phase sensitive optical time domain reflectometer (OTDR). If the external events have unique frequency of vibration, then the control parameters of moving average method should be optimized in order to detect these events efficiently. A phase sensitive OTDR was implemented by a pulsed light source, which is composed of a laser diode, a semiconductor optical amplifier, an erbium-doped fiber amplifier, a fiber Bragg grating filter, and a light receiving part, which has a photo-detector and high speed data acquisition system. The moving average method is operated with the control parameters: total number of raw traces, M, number of averaged traces, N, and step size of moving, n. The raw traces are obtained by the phase sensitive OTDR with sound signals generated by a speaker. Using these trace data, the relation of the control parameters is analyzed. In the result, if the event signal has one frequency, then the optimal values of N, n are existed to detect the event efficiently.

  7. Distractor interference during smooth pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R; Kerzel, Dirk

    2006-10-01

    When 2 targets for pursuit eye movements move in different directions, the eye velocity follows the vector average (S. G. Lisberger & V. P. Ferrera, 1997). The present study investigates the mechanisms of target selection when observers are instructed to follow a predefined horizontal target and to ignore a moving distractor stimulus. Results show that at 140 ms after distractor onset, horizontal eye velocity is decreased by about 25%. Vertical eye velocity increases or decreases by 1 degrees /s in the direction opposite from the distractor. This deviation varies in size with distractor direction, velocity, and contrast. The effect was present during the initiation and steady-state tracking phase of pursuit but only when the observer had prior information about target motion. Neither vector averaging nor winner-take-all models could predict the response to a moving to-be-ignored distractor during steady-state tracking of a predefined target. The contributions of perceptual mislocalization and spatial attention to the vertical deviation in pursuit are discussed. Copyright 2006 APA.

  8. Time series analysis of collective motions in proteins

    NASA Astrophysics Data System (ADS)

    Alakent, Burak; Doruker, Pemra; ćamurdan, Mehmet C.

    2004-01-01

    The dynamics of α-amylase inhibitor tendamistat around its native state is investigated using time series analysis of the principal components of the Cα atomic displacements obtained from molecular dynamics trajectories. Collective motion along a principal component is modeled as a homogeneous nonstationary process, which is the result of the damped oscillations in local minima superimposed on a random walk. The motion in local minima is described by a stationary autoregressive moving average model, consisting of the frequency, damping factor, moving average parameters and random shock terms. Frequencies for the first 50 principal components are found to be in the 3-25 cm-1 range, which are well correlated with the principal component indices and also with atomistic normal mode analysis results. Damping factors, though their correlation is less pronounced, decrease as principal component indices increase, indicating that low frequency motions are less affected by friction. The existence of a positive moving average parameter indicates that the stochastic force term is likely to disturb the mode in opposite directions for two successive sampling times, showing the modes tendency to stay close to minimum. All these four parameters affect the mean square fluctuations of a principal mode within a single minimum. The inter-minima transitions are described by a random walk model, which is driven by a random shock term considerably smaller than that for the intra-minimum motion. The principal modes are classified into three subspaces based on their dynamics: essential, semiconstrained, and constrained, at least in partial consistency with previous studies. The Gaussian-type distributions of the intermediate modes, called "semiconstrained" modes, are explained by asserting that this random walk behavior is not completely free but between energy barriers.

  9. Short-Term Exposure to Air Pollution and Biomarkers of Oxidative Stress: The Framingham Heart Study.

    PubMed

    Li, Wenyuan; Wilker, Elissa H; Dorans, Kirsten S; Rice, Mary B; Schwartz, Joel; Coull, Brent A; Koutrakis, Petros; Gold, Diane R; Keaney, John F; Lin, Honghuang; Vasan, Ramachandran S; Benjamin, Emelia J; Mittleman, Murray A

    2016-04-28

    Short-term exposure to elevated air pollution has been associated with higher risk of acute cardiovascular diseases, with systemic oxidative stress induced by air pollution hypothesized as an important underlying mechanism. However, few community-based studies have assessed this association. Two thousand thirty-five Framingham Offspring Cohort participants living within 50 km of the Harvard Boston Supersite who were not current smokers were included. We assessed circulating biomarkers of oxidative stress including blood myeloperoxidase at the seventh examination (1998-2001) and urinary creatinine-indexed 8-epi-prostaglandin F2α (8-epi-PGF2α) at the seventh and eighth (2005-2008) examinations. We measured fine particulate matter (PM2.5), black carbon, sulfate, nitrogen oxides, and ozone at the Supersite and calculated 1-, 2-, 3-, 5-, and 7-day moving averages of each pollutant. Measured myeloperoxidase and 8-epi-PGF2α were loge transformed. We used linear regression models and linear mixed-effects models with random intercepts for myeloperoxidase and indexed 8-epi-PGF2α, respectively. Models were adjusted for demographic variables, individual- and area-level measures of socioeconomic position, clinical and lifestyle factors, weather, and temporal trend. We found positive associations of PM2.5 and black carbon with myeloperoxidase across multiple moving averages. Additionally, 2- to 7-day moving averages of PM2.5 and sulfate were consistently positively associated with 8-epi-PGF2α. Stronger positive associations of black carbon and sulfate with myeloperoxidase were observed among participants with diabetes than in those without. Our community-based investigation supports an association of select markers of ambient air pollution with circulating biomarkers of oxidative stress. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  10. Two-dimensional Lagrangian simulation of suspended sediment

    USGS Publications Warehouse

    Schoellhamer, David H.

    1988-01-01

    A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.

  11. Modeling of Density-Dependent Flow based on the Thermodynamically Constrained Averaging Theory

    NASA Astrophysics Data System (ADS)

    Weigand, T. M.; Schultz, P. B.; Kelley, C. T.; Miller, C. T.; Gray, W. G.

    2016-12-01

    The thermodynamically constrained averaging theory (TCAT) has been used to formulate general classes of porous medium models, including new models for density-dependent flow. The TCAT approach provides advantages that include a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; explicit inclusion of factors such as a diffusion that arises from gradients associated with pressure and activity and the ability to describe both high and low concentration displacement. The TCAT model is presented and closure relations for the TCAT model are postulated based on microscale averages and a parameter estimation is performed on a subset of the experimental data. Due to the sharpness of the fronts, an adaptive moving mesh technique was used to ensure grid independent solutions within the run time constraints. The optimized parameters are then used for forward simulations and compared to the set of experimental data not used for the parameter estimation.

  12. Smoothing strategies combined with ARIMA and neural networks to improve the forecasting of traffic accidents.

    PubMed

    Barba, Lida; Rodríguez, Nibaldo; Montt, Cecilia

    2014-01-01

    Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0:26%, followed by MA-ARIMA with a MAPE of 1:12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15:51%.

  13. Weather explains high annual variation in butterfly dispersal

    PubMed Central

    Rytteri, Susu; Heikkinen, Risto K.; Heliölä, Janne; von Bagh, Peter

    2016-01-01

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark–release–recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79–91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. PMID:27440662

  14. Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults.

    PubMed

    Pun, Vivian C; Kazemiparkouhi, Fatemeh; Manjourides, Justin; Suh, Helen H

    2017-10-15

    The impact of chronic exposure to fine particulate matter (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5)) on respiratory disease and lung cancer mortality is poorly understood. In a cohort of 18.9 million Medicare beneficiaries (4.2 million deaths) living across the conterminous United States between 2000 and 2008, we examined the association between chronic PM2.5 exposure and cause-specific mortality. We evaluated confounding through adjustment for neighborhood behavioral covariates and decomposition of PM2.5 into 2 spatiotemporal scales. We found significantly positive associations of 12-month moving average PM2.5 exposures (per 10-μg/m3 increase) with respiratory, chronic obstructive pulmonary disease, and pneumonia mortality, with risk ratios ranging from 1.10 to 1.24. We also found significant PM2.5-associated elevated risks for cardiovascular and lung cancer mortality. Risk ratios generally increased with longer moving averages; for example, an elevation in 60-month moving average PM2.5 exposures was linked to 1.33 times the lung cancer mortality risk (95% confidence interval: 1.24, 1.40), as compared with 1.13 (95% confidence interval: 1.11, 1.15) for 12-month moving average exposures. Observed associations were robust in multivariable models, although evidence of unmeasured confounding remained. In this large cohort of US elderly, we provide important new evidence that long-term PM2.5 exposure is significantly related to increased mortality from respiratory disease, lung cancer, and cardiovascular disease. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Effect of air pollution on pediatric respiratory emergency room visits and hospital admissions.

    PubMed

    Farhat, S C L; Paulo, R L P; Shimoda, T M; Conceição, G M S; Lin, C A; Braga, A L F; Warth, M P N; Saldiva, P H N

    2005-02-01

    In order to assess the effect of air pollution on pediatric respiratory morbidity, we carried out a time series study using daily levels of PM10, SO2, NO2, ozone, and CO and daily numbers of pediatric respiratory emergency room visits and hospital admissions at the Children's Institute of the University of Sao Paulo Medical School, from August 1996 to August 1997. In this period there were 43,635 hospital emergency room visits, 4534 of which were due to lower respiratory tract disease. The total number of hospital admissions was 6785, 1021 of which were due to lower respiratory tract infectious and/or obstructive diseases. The three health end-points under investigation were the daily number of emergency room visits due to lower respiratory tract diseases, hospital admissions due to pneumonia, and hospital admissions due to asthma or bronchiolitis. Generalized additive Poisson regression models were fitted, controlling for smooth functions of time, temperature and humidity, and an indicator of weekdays. NO2 was positively associated with all outcomes. Interquartile range increases (65.04 microg/m3) in NO2 moving averages were associated with an 18.4% increase (95% confidence interval, 95% CI = 12.5-24.3) in emergency room visits due to lower respiratory tract diseases (4-day moving average), a 17.6% increase (95% CI = 3.3-32.7) in hospital admissions due to pneumonia or bronchopneumonia (3-day moving average), and a 31.4% increase (95% CI = 7.2-55.7) in hospital admissions due to asthma or bronchiolitis (2-day moving average). The study showed that air pollution considerably affects children's respiratory morbidity, deserving attention from the health authorities.

  16. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model.

    PubMed

    Mao, Qiang; Zhang, Kai; Yan, Wu; Cheng, Chaonan

    2018-05-02

    The aims of this study were to develop a forecasting model for the incidence of tuberculosis (TB) and analyze the seasonality of infections in China; and to provide a useful tool for formulating intervention programs and allocating medical resources. Data for the monthly incidence of TB from January 2004 to December 2015 were obtained from the National Scientific Data Sharing Platform for Population and Health (China). The Box-Jenkins method was applied to fit a seasonal auto-regressive integrated moving average (SARIMA) model to forecast the incidence of TB over the subsequent six months. During the study period of 144 months, 12,321,559 TB cases were reported in China, with an average monthly incidence of 6.4426 per 100,000 of the population. The monthly incidence of TB showed a clear 12-month cycle, and a seasonality with two peaks occurring in January and March and a trough in December. The best-fit model was SARIMA (1,0,0)(0,1,1) 12 , which demonstrated adequate information extraction (white noise test, p>0.05). Based on the analysis, the incidence of TB from January to June 2016 were 6.6335, 4.7208, 5.8193, 5.5474, 5.2202 and 4.9156 per 100,000 of the population, respectively. According to the seasonal pattern of TB incidence in China, the SARIMA model was proposed as a useful tool for monitoring epidemics. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Energy Forecasting Models Within the Department of the Navy.

    DTIC Science & Technology

    1982-06-01

    standing the climatic conditions responsible for the results. Both models have particular advantages in parti- cular applications and will be examined...and moving average processes. A similar notation for a model with seasonality . .- considerations will be ARIMA (p d j)(P Q) 3=12, where the upper...AD-A12l 950 ENERGY FORECASTING MODELS WITHIN THE DEPARTMENT OF THE 1/4 NAYY(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA L &I BUTTOIPH JUN 82

  18. Weather variability and the incidence of cryptosporidiosis: comparison of time series poisson regression and SARIMA models.

    PubMed

    Hu, Wenbiao; Tong, Shilu; Mengersen, Kerrie; Connell, Des

    2007-09-01

    Few studies have examined the relationship between weather variables and cryptosporidiosis in Australia. This paper examines the potential impact of weather variability on the transmission of cryptosporidiosis and explores the possibility of developing an empirical forecast system. Data on weather variables, notified cryptosporidiosis cases, and population size in Brisbane were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics for the period of January 1, 1996-December 31, 2004, respectively. Time series Poisson regression and seasonal auto-regression integrated moving average (SARIMA) models were performed to examine the potential impact of weather variability on the transmission of cryptosporidiosis. Both the time series Poisson regression and SARIMA models show that seasonal and monthly maximum temperature at a prior moving average of 1 and 3 months were significantly associated with cryptosporidiosis disease. It suggests that there may be 50 more cases a year for an increase of 1 degrees C maximum temperature on average in Brisbane. Model assessments indicated that the SARIMA model had better predictive ability than the Poisson regression model (SARIMA: root mean square error (RMSE): 0.40, Akaike information criterion (AIC): -12.53; Poisson regression: RMSE: 0.54, AIC: -2.84). Furthermore, the analysis of residuals shows that the time series Poisson regression appeared to violate a modeling assumption, in that residual autocorrelation persisted. The results of this study suggest that weather variability (particularly maximum temperature) may have played a significant role in the transmission of cryptosporidiosis. A SARIMA model may be a better predictive model than a Poisson regression model in the assessment of the relationship between weather variability and the incidence of cryptosporidiosis.

  19. Timescale Halo: Average-Speed Targets Elicit More Positive and Less Negative Attributions than Slow or Fast Targets

    PubMed Central

    Hernandez, Ivan; Preston, Jesse Lee; Hepler, Justin

    2014-01-01

    Research on the timescale bias has found that observers perceive more capacity for mind in targets moving at an average speed, relative to slow or fast moving targets. The present research revisited the timescale bias as a type of halo effect, where normal-speed people elicit positive evaluations and abnormal-speed (slow and fast) people elicit negative evaluations. In two studies, participants viewed videos of people walking at a slow, average, or fast speed. We find evidence for a timescale halo effect: people walking at an average-speed were attributed more positive mental traits, but fewer negative mental traits, relative to slow or fast moving people. These effects held across both cognitive and emotional dimensions of mind and were mediated by overall positive/negative ratings of the person. These results suggest that, rather than eliciting greater perceptions of general mind, the timescale bias may reflect a generalized positivity toward average speed people relative to slow or fast moving people. PMID:24421882

  20. Compatible estimators of the components of change for a rotating panel forest inventory design

    Treesearch

    Francis A. Roesch

    2007-01-01

    This article presents two approaches for estimating the components of forest change utilizing data from a rotating panel sample design. One approach uses a variant of the exponentially weighted moving average estimator and the other approach uses mixed estimation. Three general transition models were each combined with a single compatibility model for the mixed...

  1. Effect of Changes in Living Conditions on Well-Being: A Prospective Top-Down Bottom-Up Model

    ERIC Educational Resources Information Center

    Nakazato, Naoki; Schimmack, Ulrich; Oishi, Shigehiro

    2011-01-01

    Using the German Socio-Economic Panel, we examined life-satisfaction and housing satisfaction before and after moving (N = 3,658 participants from 2,162 households) with univariate and bivariate two-intercept two-slope latent growth models. The main findings were (a) a strong and persistent increase in average levels of housing satisfaction, (b)…

  2. Numerical modeling of a point-source image under relative motion of radiation receiver and atmosphere

    NASA Astrophysics Data System (ADS)

    Kucherov, A. N.; Makashev, N. K.; Ustinov, E. V.

    1994-02-01

    A procedure is proposed for numerical modeling of instantaneous and averaged (over various time intervals) distant-point-source images perturbed by a turbulent atmosphere that moves relative to the radiation receiver. Examples of image calculations under conditions of the significant effect of atmospheric turbulence in an approximation of geometrical optics are presented and analyzed.

  3. Fast Algorithms for Mining Co-evolving Time Series

    DTIC Science & Technology

    2011-09-01

    Keogh et al., 2001, 2004] and (b) forecasting, like an autoregressive integrated moving average model ( ARIMA ) and related meth- ods [Box et al., 1994...computing hardware? We develop models to mine time series with missing values, to extract compact representation from time sequences, to segment the...sequences, and to do forecasting. For large scale data, we propose algorithms for learning time series models , in particular, including Linear Dynamical

  4. Road traffic accidents prediction modelling: An analysis of Anambra State, Nigeria.

    PubMed

    Ihueze, Chukwutoo C; Onwurah, Uchendu O

    2018-03-01

    One of the major problems in the world today is the rate of road traffic crashes and deaths on our roads. Majority of these deaths occur in low-and-middle income countries including Nigeria. This study analyzed road traffic crashes in Anambra State, Nigeria with the intention of developing accurate predictive models for forecasting crash frequency in the State using autoregressive integrated moving average (ARIMA) and autoregressive integrated moving average with explanatory variables (ARIMAX) modelling techniques. The result showed that ARIMAX model outperformed the ARIMA (1,1,1) model generated when their performances were compared using the lower Bayesian information criterion, mean absolute percentage error, root mean square error; and higher coefficient of determination (R-Squared) as accuracy measures. The findings of this study reveal that incorporating human, vehicle and environmental related factors in time series analysis of crash dataset produces a more robust predictive model than solely using aggregated crash count. This study contributes to the body of knowledge on road traffic safety and provides an approach to forecasting using many human, vehicle and environmental factors. The recommendations made in this study if applied will help in reducing the number of road traffic crashes in Nigeria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ultra-Short-Term Wind Power Prediction Using a Hybrid Model

    NASA Astrophysics Data System (ADS)

    Mohammed, E.; Wang, S.; Yu, J.

    2017-05-01

    This paper aims to develop and apply a hybrid model of two data analytical methods, multiple linear regressions and least square (MLR&LS), for ultra-short-term wind power prediction (WPP), for example taking, Northeast China electricity demand. The data was obtained from the historical records of wind power from an offshore region, and from a wind farm of the wind power plant in the areas. The WPP achieved in two stages: first, the ratios of wind power were forecasted using the proposed hybrid method, and then the transformation of these ratios of wind power to obtain forecasted values. The hybrid model combines the persistence methods, MLR and LS. The proposed method included two prediction types, multi-point prediction and single-point prediction. WPP is tested by applying different models such as autoregressive moving average (ARMA), autoregressive integrated moving average (ARIMA) and artificial neural network (ANN). By comparing results of the above models, the validity of the proposed hybrid model is confirmed in terms of error and correlation coefficient. Comparison of results confirmed that the proposed method works effectively. Additional, forecasting errors were also computed and compared, to improve understanding of how to depict highly variable WPP and the correlations between actual and predicted wind power.

  6. Long-Term Prediction of Emergency Department Revenue and Visitor Volume Using Autoregressive Integrated Moving Average Model

    PubMed Central

    Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi

    2011-01-01

    This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume. PMID:22203886

  7. Long-term prediction of emergency department revenue and visitor volume using autoregressive integrated moving average model.

    PubMed

    Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi

    2011-01-01

    This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.

  8. Use of the temporal median and trimmed mean mitigates effects of respiratory motion in multiple-acquisition abdominal diffusion imaging

    NASA Astrophysics Data System (ADS)

    Jerome, N. P.; Orton, M. R.; d'Arcy, J. A.; Feiweier, T.; Tunariu, N.; Koh, D.-M.; Leach, M. O.; Collins, D. J.

    2015-01-01

    Respiratory motion commonly confounds abdominal diffusion-weighted magnetic resonance imaging, where averaging of successive samples at different parts of the respiratory cycle, performed in the scanner, manifests the motion as blurring of tissue boundaries and structural features and can introduce bias into calculated diffusion metrics. Storing multiple averages separately allows processing using metrics other than the mean; in this prospective volunteer study, median and trimmed mean values of signal intensity for each voxel over repeated averages and diffusion-weighting directions are shown to give images with sharper tissue boundaries and structural features for moving tissues, while not compromising non-moving structures. Expert visual scoring of derived diffusion maps is significantly higher for the median than for the mean, with modest improvement from the trimmed mean. Diffusion metrics derived from mono- and bi-exponential diffusion models are comparable for non-moving structures, demonstrating a lack of introduced bias from using the median. The use of the median is a simple and computationally inexpensive alternative to complex and expensive registration algorithms, requiring only additional data storage (and no additional scanning time) while returning visually superior images that will facilitate the appropriate placement of regions-of-interest when analysing abdominal diffusion-weighted magnetic resonance images, for assessment of disease characteristics and treatment response.

  9. Use of the temporal median and trimmed mean mitigates effects of respiratory motion in multiple-acquisition abdominal diffusion imaging.

    PubMed

    Jerome, N P; Orton, M R; d'Arcy, J A; Feiweier, T; Tunariu, N; Koh, D-M; Leach, M O; Collins, D J

    2015-01-21

    Respiratory motion commonly confounds abdominal diffusion-weighted magnetic resonance imaging, where averaging of successive samples at different parts of the respiratory cycle, performed in the scanner, manifests the motion as blurring of tissue boundaries and structural features and can introduce bias into calculated diffusion metrics. Storing multiple averages separately allows processing using metrics other than the mean; in this prospective volunteer study, median and trimmed mean values of signal intensity for each voxel over repeated averages and diffusion-weighting directions are shown to give images with sharper tissue boundaries and structural features for moving tissues, while not compromising non-moving structures. Expert visual scoring of derived diffusion maps is significantly higher for the median than for the mean, with modest improvement from the trimmed mean. Diffusion metrics derived from mono- and bi-exponential diffusion models are comparable for non-moving structures, demonstrating a lack of introduced bias from using the median. The use of the median is a simple and computationally inexpensive alternative to complex and expensive registration algorithms, requiring only additional data storage (and no additional scanning time) while returning visually superior images that will facilitate the appropriate placement of regions-of-interest when analysing abdominal diffusion-weighted magnetic resonance images, for assessment of disease characteristics and treatment response.

  10. Examination of the Armagh Observatory Annual Mean Temperature Record, 1844-2004

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2006-01-01

    The long-term annual mean temperature record (1844-2004) of the Armagh Observatory (Armagh, Northern Ireland, United Kingdom) is examined for evidence of systematic variation, in particular, as related to solar/geomagnetic forcing and secular variation. Indeed, both are apparent in the temperature record. Moving averages for 10 years of temperature are found to highly correlate against both 10-year moving averages of the aa-geomagnetic index and sunspot number, having correlation coefficients of approx. 0.7, inferring that nearly half the variance in the 10-year moving average of temperature can be explained by solar/geomagnetic forcing. The residuals appear episodic in nature, with cooling seen in the 1880s and again near 1980. Seven of the last 10 years of the temperature record has exceeded 10 C, unprecedented in the overall record. Variation of sunspot cyclic averages and 2-cycle moving averages of temperature strongly associate with similar averages for the solar/geomagnetic cycle, with the residuals displaying an apparent 9-cycle variation and a steep rise in temperature associated with cycle 23. Hale cycle averages of temperature for even-odd pairs of sunspot cycles correlate against similar averages for the solar/geomagnetic cycle and, especially, against the length of the Hale cycle. Indications are that annual mean temperature will likely exceed 10 C over the next decade.

  11. Use of Time-Series, ARIMA Designs to Assess Program Efficacy.

    ERIC Educational Resources Information Center

    Braden, Jeffery P.; And Others

    1990-01-01

    Illustrates use of time-series designs for determining efficacy of interventions with fictitious data describing drug-abuse prevention program. Discusses problems and procedures associated with time-series data analysis using Auto Regressive Integrated Moving Averages (ARIMA) models. Example illustrates application of ARIMA analysis for…

  12. A freely-moving monkey treadmill model.

    PubMed

    Foster, Justin D; Nuyujukian, Paul; Freifeld, Oren; Gao, Hua; Walker, Ross; I Ryu, Stephen; H Meng, Teresa; Murmann, Boris; J Black, Michael; Shenoy, Krishna V

    2014-08-01

    Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the flexibility and utility of this new monkey model, including the first recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average firing rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at different speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic motor neuroscience and for the successful translation of BMIs to people with paralysis.

  13. Characteristic Variability Timescales in the Gamma-ray Power Spectra of Blazars

    NASA Astrophysics Data System (ADS)

    Ryan, James Lee; Siemiginowska, Aneta; Sobolewska, Malgorzata; Grindlay, Jonathan E.

    2018-01-01

    We study the gamma-ray variability of 13 bright blazars observed with the Fermi Large Area Telescope in the 0.2-300 MeV band over 7.8 years.We find that continuous-time autoregressive moving average (CARMA) models provide adequate fits to the blazar light curves, and using the models we constrain the power spectral density (PSD) of each source.We also perform simulations to test the ability of CARMA modeling to recover the PSDs of artificial light curves with our data quality.Seven sources show evidence for a low-frequency break at an average timescale of ~1 year, with five of these sources showing evidence for an additional high-frequency break at an average timescale of ~7 days.We compare our results to previous studies, and discuss the possible physical interpretations of our results.

  14. [Model of multiple seasonal autoregressive integrated moving average model and its application in prediction of the hand-foot-mouth disease incidence in Changsha].

    PubMed

    Tan, Ting; Chen, Lizhang; Liu, Fuqiang

    2014-11-01

    To establish multiple seasonal autoregressive integrated moving average model (ARIMA) according to the hand-foot-mouth disease incidence in Changsha, and to explore the feasibility of the multiple seasonal ARIMA in predicting the hand-foot-mouth disease incidence. EVIEWS 6.0 was used to establish multiple seasonal ARIMA according to the hand-foot- mouth disease incidence from May 2008 to August 2013 in Changsha, and the data of the hand- foot-mouth disease incidence from September 2013 to February 2014 were served as the examined samples of the multiple seasonal ARIMA, then the errors were compared between the forecasted incidence and the real value. Finally, the incidence of hand-foot-mouth disease from March 2014 to August 2014 was predicted by the model. After the data sequence was handled by smooth sequence, model identification and model diagnosis, the multiple seasonal ARIMA (1, 0, 1)×(0, 1, 1)12 was established. The R2 value of the model fitting degree was 0.81, the root mean square prediction error was 8.29 and the mean absolute error was 5.83. The multiple seasonal ARIMA is a good prediction model, and the fitting degree is good. It can provide reference for the prevention and control work in hand-foot-mouth disease.

  15. Experimental comparisons of hypothesis test and moving average based combustion phase controllers.

    PubMed

    Gao, Jinwu; Wu, Yuhu; Shen, Tielong

    2016-11-01

    For engine control, combustion phase is the most effective and direct parameter to improve fuel efficiency. In this paper, the statistical control strategy based on hypothesis test criterion is discussed. Taking location of peak pressure (LPP) as combustion phase indicator, the statistical model of LPP is first proposed, and then the controller design method is discussed on the basis of both Z and T tests. For comparison, moving average based control strategy is also presented and implemented in this study. The experiments on a spark ignition gasoline engine at various operating conditions show that the hypothesis test based controller is able to regulate LPP close to set point while maintaining the rapid transient response, and the variance of LPP is also well constrained. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Moving toward climate-informed agricultural decision support - can we use PRISM data for more than just monthly averages?

    USDA-ARS?s Scientific Manuscript database

    Decision support systems/models for agriculture are varied in target application and complexity, ranging from simple worksheets to near real-time forecast systems requiring significant computational and manpower resources. Until recently, most such decision support systems have been constructed with...

  17. Moving Average Models with Bivariate Exponential and Geometric Distributions.

    DTIC Science & Technology

    1985-03-01

    ordinary time series and of point processes. Developments in Statistics, Vol. 1, P.R. Krishnaiah , ed. Academic Press, New York. [9] Esary, J.D. and...valued and discrete - valued time series with ARMA correlation structure. Multivariate Analysis V, P.R. Krishnaiah , ed. North-Holland. 151-166. [28

  18. A MOVING AVERAGE BAYESIAN MODEL FOR SPATIAL SURFACE AND COVERAGE PREDICTION FROM ENVIRONMENTAL POINT-SOURCE DATA

    EPA Science Inventory

    This paper addresses the general problem of estimating at arbitrary locations the value of an unobserved quantity that varies over space, such as ozone concentration in air or nitrate concentrations in surface groundwater, on the basis of approximate measurements of the quantity ...

  19. A Computer Program for the Generation of ARIMA Data

    ERIC Educational Resources Information Center

    Green, Samuel B.; Noles, Keith O.

    1977-01-01

    The autoregressive integrated moving averages model (ARIMA) has been applied to time series data in psychological and educational research. A program is described that generates ARIMA data of a known order. The program enables researchers to explore statistical properties of ARIMA data and simulate systems producing time dependent observations.…

  20. Average pollutant concentration in soil profile simulated with Convective-Dispersive Equation. Model and Manual

    USDA-ARS?s Scientific Manuscript database

    Different parts of soil solution move with different velocities, and therefore chemicals are leached gradually from soil with infiltrating water. Solute dispersivity is the soil parameter characterizing this phenomenon. To characterize the dispersivity of soil profile at field scale, it is desirable...

  1. Modeling the effects of high-G stress on pilots in a tracking task

    NASA Technical Reports Server (NTRS)

    Korn, J.; Kleinman, D. L.

    1978-01-01

    Air-to-air tracking experiments were conducted at the Aerospace Medical Research Laboratories using both fixed and moving base dynamic environment simulators. The obtained data, which includes longitudinal error of a simulated air-to-air tracking task as well as other auxiliary variables, was analyzed using an ensemble averaging method. In conjunction with these experiments, the optimal control model is applied to model a human operator under high-G stress.

  2. Unsteady Airfoil Flow Solutions on Moving Zonal Grids

    DTIC Science & Technology

    1992-12-17

    for the angle-of-attack of 15.5’, the comparisons diverge. This happens because of the different turbulence models used . At this angle- of attack, the...downstream in the wake . This vortex shedding phenomenon alters the chordwise pressure distribution on the upper surface of the airfoil resulting in higher...in- terest, turbulence modeling is used . Turbulence models are implemented with the time-averaged forms of the Navier-Stokes equations. Two widely

  3. Perceptions and Efficacy of Flight Operational Quality Assurance (FOQA) Programs Among Small-scale Operators

    DTIC Science & Technology

    2012-01-01

    regressive Integrated Moving Average ( ARIMA ) model for the data, eliminating the need to identify an appropriate model through trial and error alone...06 .11 13.67 16 .62 16 .14 .11 8.06 16 .95 * Based on the asymptotic chi-square approximation. 8 In general, ARIMA models address three...performance standards and measurement processes and a prevailing climate of organizational trust were important factors. Unfortunately, uneven

  4. Near Real-Time Event Detection & Prediction Using Intelligent Software Agents

    DTIC Science & Technology

    2006-03-01

    value was 0.06743. Multiple autoregressive integrated moving average ( ARIMA ) models were then build to see if the raw data, differenced data, or...slight improvement. The best adjusted r^2 value was found to be 0.1814. Successful results were not expected from linear or ARIMA -based modelling ...appear, 2005. [63] Mora-Lopez, L., Mora, J., Morales-Bueno, R., et al. Modelling time series of climatic parameters with probabilistic finite

  5. Nonlinear ARMA models for the D(st) index and their physical interpretation

    NASA Technical Reports Server (NTRS)

    Vassiliadis, D.; Klimas, A. J.; Baker, D. N.

    1996-01-01

    Time series models successfully reproduce or predict geomagnetic activity indices from solar wind parameters. A method is presented that converts a type of nonlinear filter, the nonlinear Autoregressive Moving Average (ARMA) model to the nonlinear damped oscillator physical model. The oscillator parameters, the growth and decay, the oscillation frequencies and the coupling strength to the input are derived from the filter coefficients. Mathematical methods are derived to obtain unique and consistent filter coefficients while keeping the prediction error low. These methods are applied to an oscillator model for the Dst geomagnetic index driven by the solar wind input. A data set is examined in two ways: the model parameters are calculated as averages over short time intervals, and a nonlinear ARMA model is calculated and the model parameters are derived as a function of the phase space.

  6. Time series models on analysing mortality rates and acute childhood lymphoid leukaemia.

    PubMed

    Kis, Maria

    2005-01-01

    In this paper we demonstrate applying time series models on medical research. The Hungarian mortality rates were analysed by autoregressive integrated moving average models and seasonal time series models examined the data of acute childhood lymphoid leukaemia.The mortality data may be analysed by time series methods such as autoregressive integrated moving average (ARIMA) modelling. This method is demonstrated by two examples: analysis of the mortality rates of ischemic heart diseases and analysis of the mortality rates of cancer of digestive system. Mathematical expressions are given for the results of analysis. The relationships between time series of mortality rates were studied with ARIMA models. Calculations of confidence intervals for autoregressive parameters by tree methods: standard normal distribution as estimation and estimation of the White's theory and the continuous time case estimation. Analysing the confidence intervals of the first order autoregressive parameters we may conclude that the confidence intervals were much smaller than other estimations by applying the continuous time estimation model.We present a new approach to analysing the occurrence of acute childhood lymphoid leukaemia. We decompose time series into components. The periodicity of acute childhood lymphoid leukaemia in Hungary was examined using seasonal decomposition time series method. The cyclic trend of the dates of diagnosis revealed that a higher percent of the peaks fell within the winter months than in the other seasons. This proves the seasonal occurrence of the childhood leukaemia in Hungary.

  7. Move-by-move dynamics of the advantage in chess matches reveals population-level learning of the game.

    PubMed

    Ribeiro, Haroldo V; Mendes, Renio S; Lenzi, Ervin K; del Castillo-Mussot, Marcelo; Amaral, Luís A N

    2013-01-01

    The complexity of chess matches has attracted broad interest since its invention. This complexity and the availability of large number of recorded matches make chess an ideal model systems for the study of population-level learning of a complex system. We systematically investigate the move-by-move dynamics of the white player's advantage from over seventy thousand high level chess matches spanning over 150 years. We find that the average advantage of the white player is positive and that it has been increasing over time. Currently, the average advantage of the white player is 0.17 pawns but it is exponentially approaching a value of 0.23 pawns with a characteristic time scale of 67 years. We also study the diffusion of the move dependence of the white player's advantage and find that it is non-Gaussian, has long-ranged anti-correlations and that after an initial period with no diffusion it becomes super-diffusive. We find that the duration of the non-diffusive period, corresponding to the opening stage of a match, is increasing in length and exponentially approaching a value of 15.6 moves with a characteristic time scale of 130 years. We interpret these two trends as a resulting from learning of the features of the game. Additionally, we find that the exponent [Formula: see text] characterizing the super-diffusive regime is increasing toward a value of 1.9, close to the ballistic regime. We suggest that this trend is due to the increased broadening of the range of abilities of chess players participating in major tournaments.

  8. Move-by-Move Dynamics of the Advantage in Chess Matches Reveals Population-Level Learning of the Game

    PubMed Central

    Ribeiro, Haroldo V.; Mendes, Renio S.; Lenzi, Ervin K.; del Castillo-Mussot, Marcelo; Amaral, Luís A. N.

    2013-01-01

    The complexity of chess matches has attracted broad interest since its invention. This complexity and the availability of large number of recorded matches make chess an ideal model systems for the study of population-level learning of a complex system. We systematically investigate the move-by-move dynamics of the white player’s advantage from over seventy thousand high level chess matches spanning over 150 years. We find that the average advantage of the white player is positive and that it has been increasing over time. Currently, the average advantage of the white player is 0.17 pawns but it is exponentially approaching a value of 0.23 pawns with a characteristic time scale of 67 years. We also study the diffusion of the move dependence of the white player’s advantage and find that it is non-Gaussian, has long-ranged anti-correlations and that after an initial period with no diffusion it becomes super-diffusive. We find that the duration of the non-diffusive period, corresponding to the opening stage of a match, is increasing in length and exponentially approaching a value of 15.6 moves with a characteristic time scale of 130 years. We interpret these two trends as a resulting from learning of the features of the game. Additionally, we find that the exponent characterizing the super-diffusive regime is increasing toward a value of 1.9, close to the ballistic regime. We suggest that this trend is due to the increased broadening of the range of abilities of chess players participating in major tournaments. PMID:23382876

  9. Cause Resolving of Typhoon Precipitation Using Principle Component Analysis under Complex Interactive Effect of Terrain, Monsoon and Typhoon Vortex

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Hsu, N. S.

    2015-12-01

    This study develops a novel methodology to resolve the cause of typhoon-induced precipitation using principle component analysis (PCA) and to develop a long lead-time precipitation prediction model. The discovered spatial and temporal features of rainfall are utilized to develop a state-of-the-art descriptive statistical model which can be used to predict long lead-time precipitation during typhoons. The time series of 12-hour precipitation from different types of invasive moving track of typhoons are respectively precede the signal analytical process to qualify the causes of rainfall and to quantify affected degree of each induced cause. The causes include: (1) interaction between typhoon rain band and terrain; (2) co-movement effect induced by typhoon wind field with monsoon; (3) pressure gradient; (4) wind velocity; (5) temperature environment; (6) characteristic distance between typhoon center and surface target station; (7) distance between grade 7 storm radius and surface target station; and (8) relative humidity. The results obtained from PCA can detect the hidden pattern of the eight causes in space and time and can understand the future trends and changes of precipitation. This study applies the developed methodology in Taiwan Island which is constituted by complex diverse terrain formation and height. Results show that: (1) for the typhoon moving toward the direction of 245° to 330°, Causes (1), (2) and (6) are the primary ones to generate rainfall; and (2) for the direction of 330° to 380°, Causes (1), (4) and (6) are the primary ones. Besides, the developed precipitation prediction model by using PCA with the distributed moving track approach (PCA-DMT) is 32% more accurate by that of PCA without distributed moving track approach, and the former model can effectively achieve long lead-time precipitation prediction with an average predicted error of 13% within average 48 hours of forecasted lead-time.

  10. THE VELOCITY DISTRIBUTION OF NEARBY STARS FROM HIPPARCOS DATA. II. THE NATURE OF THE LOW-VELOCITY MOVING GROUPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovy, Jo; Hogg, David W., E-mail: jo.bovy@nyu.ed

    2010-07-10

    The velocity distribution of nearby stars ({approx}<100 pc) contains many overdensities or 'moving groups', clumps of comoving stars, that are inconsistent with the standard assumption of an axisymmetric, time-independent, and steady-state Galaxy. We study the age and metallicity properties of the low-velocity moving groups based on the reconstruction of the local velocity distribution in Paper I of this series. We perform stringent, conservative hypothesis testing to establish for each of these moving groups whether it could conceivably consist of a coeval population of stars. We conclude that they do not: the moving groups are neither trivially associated with their eponymousmore » open clusters nor with any other inhomogeneous star formation event. Concerning a possible dynamical origin of the moving groups, we test whether any of the moving groups has a higher or lower metallicity than the background population of thin disk stars, as would generically be the case if the moving groups are associated with resonances of the bar or spiral structure. We find clear evidence that the Hyades moving group has higher than average metallicity and weak evidence that the Sirius moving group has lower than average metallicity, which could indicate that these two groups are related to the inner Lindblad resonance of the spiral structure. Further, we find weak evidence that the Hercules moving group has higher than average metallicity, as would be the case if it is associated with the bar's outer Lindblad resonance. The Pleiades moving group shows no clear metallicity anomaly, arguing against a common dynamical origin for the Hyades and Pleiades groups. Overall, however, the moving groups are barely distinguishable from the background population of stars, raising the likelihood that the moving groups are associated with transient perturbations.« less

  11. Improved Statistical Fault Detection Technique and Application to Biological Phenomena Modeled by S-Systems.

    PubMed

    Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N

    2017-09-01

    In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to combine the advantages brought forward by the proposed EWMA-GLRT fault detection chart with the KPCA model. Thus, it is used to enhance fault detection of the Cad System in E. coli model through monitoring some of the key variables involved in this model such as enzymes, transport proteins, regulatory proteins, lysine, and cadaverine. The results demonstrate the effectiveness of the proposed KPCA-based EWMA-GLRT method over Q , GLRT, EWMA, Shewhart, and moving window-GLRT methods. The detection performance is assessed and evaluated in terms of FAR, missed detection rates, and average run length (ARL 1 ) values.

  12. Weather explains high annual variation in butterfly dispersal.

    PubMed

    Kuussaari, Mikko; Rytteri, Susu; Heikkinen, Risto K; Heliölä, Janne; von Bagh, Peter

    2016-07-27

    Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark-release-recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79-91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. © 2016 The Author(s).

  13. Developing a Markov Model for Forecasting End Strength of Selected Marine Corps Reserve (SMCR) Officers

    DTIC Science & Technology

    2013-03-01

    moving average ( ARIMA ) model because the data is not a times series. The best a manpower planner can do at this point is to make an educated assumption...MARKOV MODEL FOR FORECASTING END STRENGTH OF SELECTED MARINE CORPS RESERVE (SMCR) OFFICERS by Anthony D. Licari March 2013 Thesis Advisor...March 2013 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE DEVELOPING A MARKOV MODEL FOR FORECASTING END STRENGTH OF

  14. Genetically Engineered, Live Attenuated Vaccines Protect Nonhuman Primates Against Aerosol Challenge with a Virulent IE Strain of Venezuelan Equine Encephalitis Virus

    DTIC Science & Technology

    2005-01-21

    integrated moving average ( ARIMA ) model [15,19]. Fore- casted values for the postexposure time periods were based on the training model extrapolated...Smith JF. Genetically engineered, live attenuated vaccines or Venezuelan equine encephalitis: testing in animal models . Vaccine 2003;21(25–26):3854–62...encephalitis: testing in animal models . Vaccine 2003;21(25-26):3854-62] and IE strains of VEE viruses. 15. SUBJECT TERMS Venezuelan equine

  15. Smoothing Strategies Combined with ARIMA and Neural Networks to Improve the Forecasting of Traffic Accidents

    PubMed Central

    Rodríguez, Nibaldo

    2014-01-01

    Two smoothing strategies combined with autoregressive integrated moving average (ARIMA) and autoregressive neural networks (ANNs) models to improve the forecasting of time series are presented. The strategy of forecasting is implemented using two stages. In the first stage the time series is smoothed using either, 3-point moving average smoothing, or singular value Decomposition of the Hankel matrix (HSVD). In the second stage, an ARIMA model and two ANNs for one-step-ahead time series forecasting are used. The coefficients of the first ANN are estimated through the particle swarm optimization (PSO) learning algorithm, while the coefficients of the second ANN are estimated with the resilient backpropagation (RPROP) learning algorithm. The proposed models are evaluated using a weekly time series of traffic accidents of Valparaíso, Chilean region, from 2003 to 2012. The best result is given by the combination HSVD-ARIMA, with a MAPE of 0 : 26%, followed by MA-ARIMA with a MAPE of 1 : 12%; the worst result is given by the MA-ANN based on PSO with a MAPE of 15 : 51%. PMID:25243200

  16. On the Relationship between Solar Wind Speed, Earthward-Directed Coronal Mass Ejections, Geomagnetic Activity, and the Sunspot Cycle Using 12-Month Moving Averages

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2008-01-01

    For 1996 .2006 (cycle 23), 12-month moving averages of the aa geomagnetic index strongly correlate (r = 0.92) with 12-month moving averages of solar wind speed, and 12-month moving averages of the number of coronal mass ejections (CMEs) (halo and partial halo events) strongly correlate (r = 0.87) with 12-month moving averages of sunspot number. In particular, the minimum (15.8, September/October 1997) and maximum (38.0, August 2003) values of the aa geomagnetic index occur simultaneously with the minimum (376 km/s) and maximum (547 km/s) solar wind speeds, both being strongly correlated with the following recurrent component (due to high-speed streams). The large peak of aa geomagnetic activity in cycle 23, the largest on record, spans the interval late 2002 to mid 2004 and is associated with a decreased number of halo and partial halo CMEs, whereas the smaller secondary peak of early 2005 seems to be associated with a slight rebound in the number of halo and partial halo CMEs. Based on the observed aaM during the declining portion of cycle 23, RM for cycle 24 is predicted to be larger than average, being about 168+/-60 (the 90% prediction interval), whereas based on the expected aam for cycle 24 (greater than or equal to 14.6), RM for cycle 24 should measure greater than or equal to 118+/-30, yielding an overlap of about 128+/-20.

  17. An emission processing system for air quality modelling in the Mexico City metropolitan area: Evaluation and comparison of the MOBILE6.2-Mexico and MOVES-Mexico traffic emissions.

    PubMed

    Guevara, M; Tena, C; Soret, A; Serradell, K; Guzmán, D; Retama, A; Camacho, P; Jaimes-Palomera, M; Mediavilla, A

    2017-04-15

    This article describes the High-Elective Resolution Modelling Emission System for Mexico (HERMES-Mex) model, an emission processing tool developed to transform the official Mexico City Metropolitan Area (MCMA) emission inventory into hourly, gridded (up to 1km 2 ) and speciated emissions used to drive mesoscale air quality simulations with the Community Multi-scale Air Quality (CMAQ) model. The methods and ancillary information used for the spatial and temporal disaggregation and speciation of the emissions are presented and discussed. The resulting emission system is evaluated, and a case study on CO, NO 2 , O 3 , VOC and PM 2.5 concentrations is conducted to demonstrate its applicability. Moreover, resulting traffic emissions from the Mobile Source Emission Factor Model for Mexico (MOBILE6.2-Mexico) and the MOtor Vehicle Emission Simulator for Mexico (MOVES-Mexico) models are integrated in the tool to assess and compare their performance. NO x and VOC total emissions modelled are reduced by 37% and 26% in the MCMA when replacing MOBILE6.2-Mexico for MOVES-Mexico traffic emissions. In terms of air quality, the system composed by the Weather Research and Forecasting model (WRF) coupled with the HERMES-Mex and CMAQ models properly reproduces the pollutant levels and patterns measured in the MCMA. The system's performance clearly improves in urban stations with a strong influence of traffic sources when applying MOVES-Mexico emissions. Despite reducing estimations of modelled precursor emissions, O 3 peak averages are increased in the MCMA core urban area (up to 30ppb) when using MOVES-Mexico mobile emissions due to its VOC-limited regime, while concentrations in the surrounding suburban/rural areas decrease or increase depending on the meteorological conditions of the day. The results obtained suggest that the HERMES-Mex model can be used to provide model-ready emissions for air quality modelling in the MCMA. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Granger causality for state-space models

    NASA Astrophysics Data System (ADS)

    Barnett, Lionel; Seth, Anil K.

    2015-04-01

    Granger causality has long been a prominent method for inferring causal interactions between stochastic variables for a broad range of complex physical systems. However, it has been recognized that a moving average (MA) component in the data presents a serious confound to Granger causal analysis, as routinely performed via autoregressive (AR) modeling. We solve this problem by demonstrating that Granger causality may be calculated simply and efficiently from the parameters of a state-space (SS) model. Since SS models are equivalent to autoregressive moving average models, Granger causality estimated in this fashion is not degraded by the presence of a MA component. This is of particular significance when the data has been filtered, downsampled, observed with noise, or is a subprocess of a higher dimensional process, since all of these operations—commonplace in application domains as diverse as climate science, econometrics, and the neurosciences—induce a MA component. We show how Granger causality, conditional and unconditional, in both time and frequency domains, may be calculated directly from SS model parameters via solution of a discrete algebraic Riccati equation. Numerical simulations demonstrate that Granger causality estimators thus derived have greater statistical power and smaller bias than AR estimators. We also discuss how the SS approach facilitates relaxation of the assumptions of linearity, stationarity, and homoscedasticity underlying current AR methods, thus opening up potentially significant new areas of research in Granger causal analysis.

  19. Middle and long-term prediction of UT1-UTC based on combination of Gray Model and Autoregressive Integrated Moving Average

    NASA Astrophysics Data System (ADS)

    Jia, Song; Xu, Tian-he; Sun, Zhang-zhen; Li, Jia-jing

    2017-02-01

    UT1-UTC is an important part of the Earth Orientation Parameters (EOP). The high-precision predictions of UT1-UTC play a key role in practical applications of deep space exploration, spacecraft tracking and satellite navigation and positioning. In this paper, a new prediction method with combination of Gray Model (GM(1, 1)) and Autoregressive Integrated Moving Average (ARIMA) is developed. The main idea is as following. Firstly, the UT1-UTC data are preprocessed by removing the leap second and Earth's zonal harmonic tidal to get UT1R-TAI data. Periodic terms are estimated and removed by the least square to get UT2R-TAI. Then the linear terms of UT2R-TAI data are modeled by the GM(1, 1), and the residual terms are modeled by the ARIMA. Finally, the UT2R-TAI prediction can be performed based on the combined model of GM(1, 1) and ARIMA, and the UT1-UTC predictions are obtained by adding the corresponding periodic terms, leap second correction and the Earth's zonal harmonic tidal correction. The results show that the proposed model can be used to predict UT1-UTC effectively with higher middle and long-term (from 32 to 360 days) accuracy than those of LS + AR, LS + MAR and WLS + MAR.

  20. Quantifying the European Strategic Airlift Gap

    DTIC Science & Technology

    2013-06-01

    Lindstrom , 2007: 41). There is a reason a vast majority of freight is moved via sea and/or land world-wide. Even with relatively slow average speeds of...Some areas of operation are land locked, severely hampering the relevance of sealift ( Lindstrom , 2007: 41). Operations in Kosovo and Afghanistan...Manufacturer Lockheed Martin Quantity in NATO Nations B model: Greece (5), Romania (4) and Turkey (6); E model: Canada (10), Poland (5), Turkey

  1. Central Procurement Workload Projection Model

    DTIC Science & Technology

    1981-02-01

    generated by the P&P Directorates such as procurement actions (PA’s) are pursued. Specifi- cally, Box-Jenkins Autoregressive Integrated Moving Average...Breakout of PA’s to over and under $10,000 23 IV. FINDINGS AND RECOMMENDATIONS 24 A. General 24 B. Findings 24 C. Recommendations 25...the model will predict the actual values and hence the error will be zero . Therefore, after forecasting 3 quarters into the future no error

  2. Large signal-to-noise ratio quantification in MLE for ARARMAX models

    NASA Astrophysics Data System (ADS)

    Zou, Yiqun; Tang, Xiafei

    2014-06-01

    It has been shown that closed-loop linear system identification by indirect method can be generally transferred to open-loop ARARMAX (AutoRegressive AutoRegressive Moving Average with eXogenous input) estimation. For such models, the gradient-related optimisation with large enough signal-to-noise ratio (SNR) can avoid the potential local convergence in maximum likelihood estimation. To ease the application of this condition, the threshold SNR needs to be quantified. In this paper, we build the amplitude coefficient which is an equivalence to the SNR and prove the finiteness of the threshold amplitude coefficient within the stability region. The quantification of threshold is achieved by the minimisation of an elaborately designed multi-variable cost function which unifies all the restrictions on the amplitude coefficient. The corresponding algorithm based on two sets of physically realisable system input-output data details the minimisation and also points out how to use the gradient-related method to estimate ARARMAX parameters when local minimum is present as the SNR is small. Then, the algorithm is tested on a theoretical AutoRegressive Moving Average with eXogenous input model for the derivation of the threshold and a gas turbine engine real system for model identification, respectively. Finally, the graphical validation of threshold on a two-dimensional plot is discussed.

  3. [The trial of business data analysis at the Department of Radiology by constructing the auto-regressive integrated moving-average (ARIMA) model].

    PubMed

    Tani, Yuji; Ogasawara, Katsuhiko

    2012-01-01

    This study aimed to contribute to the management of a healthcare organization by providing management information using time-series analysis of business data accumulated in the hospital information system, which has not been utilized thus far. In this study, we examined the performance of the prediction method using the auto-regressive integrated moving-average (ARIMA) model, using the business data obtained at the Radiology Department. We made the model using the data used for analysis, which was the number of radiological examinations in the past 9 years, and we predicted the number of radiological examinations in the last 1 year. Then, we compared the actual value with the forecast value. We were able to establish that the performance prediction method was simple and cost-effective by using free software. In addition, we were able to build the simple model by pre-processing the removal of trend components using the data. The difference between predicted values and actual values was 10%; however, it was more important to understand the chronological change rather than the individual time-series values. Furthermore, our method was highly versatile and adaptable compared to the general time-series data. Therefore, different healthcare organizations can use our method for the analysis and forecasting of their business data.

  4. Using Fit Indexes to Select a Covariance Model for Longitudinal Data

    ERIC Educational Resources Information Center

    Liu, Siwei; Rovine, Michael J.; Molenaar, Peter C. M.

    2012-01-01

    This study investigated the performance of fit indexes in selecting a covariance structure for longitudinal data. Data were simulated to follow a compound symmetry, first-order autoregressive, first-order moving average, or random-coefficients covariance structure. We examined the ability of the likelihood ratio test (LRT), root mean square error…

  5. Effects of Forecasts on the Revisions of Concurrent Seasonally Adjusted Data Using the X-11 Seasonal Adjustment Procedure.

    ERIC Educational Resources Information Center

    Bobbitt, Larry; Otto, Mark

    Three Autoregressive Integrated Moving Averages (ARIMA) forecast procedures for Census Bureau X-11 concurrent seasonal adjustment were empirically tested. Forty time series from three Census Bureau economic divisions (business, construction, and industry) were analyzed. Forecasts were obtained from fitted seasonal ARIMA models augmented with…

  6. Three Least-Squares Minimization Approaches to Interpret Gravity Data Due to Dipping Faults

    NASA Astrophysics Data System (ADS)

    Abdelrahman, E. M.; Essa, K. S.

    2015-02-01

    We have developed three different least-squares minimization approaches to determine, successively, the depth, dip angle, and amplitude coefficient related to the thickness and density contrast of a buried dipping fault from first moving average residual gravity anomalies. By defining the zero-anomaly distance and the anomaly value at the origin of the moving average residual profile, the problem of depth determination is transformed into a constrained nonlinear gravity inversion. After estimating the depth of the fault, the dip angle is estimated by solving a nonlinear inverse problem. Finally, after estimating the depth and dip angle, the amplitude coefficient is determined using a linear equation. This method can be applied to residuals as well as to measured gravity data because it uses the moving average residual gravity anomalies to estimate the model parameters of the faulted structure. The proposed method was tested on noise-corrupted synthetic and real gravity data. In the case of the synthetic data, good results are obtained when errors are given in the zero-anomaly distance and the anomaly value at the origin, and even when the origin is determined approximately. In the case of practical data (Bouguer anomaly over Gazal fault, south Aswan, Egypt), the fault parameters obtained are in good agreement with the actual ones and with those given in the published literature.

  7. Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models.

    PubMed

    Baquero, Oswaldo Santos; Santana, Lidia Maria Reis; Chiaravalloti-Neto, Francisco

    2018-01-01

    Globally, the number of dengue cases has been on the increase since 1990 and this trend has also been found in Brazil and its most populated city-São Paulo. Surveillance systems based on predictions allow for timely decision making processes, and in turn, timely and efficient interventions to reduce the burden of the disease. We conducted a comparative study of dengue predictions in São Paulo city to test the performance of trained seasonal autoregressive integrated moving average models, generalized additive models and artificial neural networks. We also used a naïve model as a benchmark. A generalized additive model with lags of the number of cases and meteorological variables had the best performance, predicted epidemics of unprecedented magnitude and its performance was 3.16 times higher than the benchmark and 1.47 higher that the next best performing model. The predictive models captured the seasonal patterns but differed in their capacity to anticipate large epidemics and all outperformed the benchmark. In addition to be able to predict epidemics of unprecedented magnitude, the best model had computational advantages, since its training and tuning was straightforward and required seconds or at most few minutes. These are desired characteristics to provide timely results for decision makers. However, it should be noted that predictions are made just one month ahead and this is a limitation that future studies could try to reduce.

  8. Turbulent motion of mass flows. Mathematical modeling

    NASA Astrophysics Data System (ADS)

    Eglit, Margarita; Yakubenko, Alexander; Yakubenko, Tatiana

    2016-04-01

    New mathematical models for unsteady turbulent mass flows, e.g., dense snow avalanches and landslides, are presented. Such models are important since most of large scale flows are turbulent. In addition to turbulence, the two other important points are taken into account: the entrainment of the underlying material by the flow and the nonlinear rheology of moving material. The majority of existing models are based on the depth-averaged equations and the turbulent character of the flow is accounted by inclusion of drag proportional to the velocity squared. In this paper full (not depth-averaged) equations are used. It is assumed that basal entrainment takes place if the bed friction equals the shear strength of the underlying layer (Issler D, M. Pastor Peréz. 2011). The turbulent characteristics of the flow are calculated using a three-parameter differential model (Lushchik et al., 1978). The rheological properties of moving material are modeled by one of the three types of equations: 1) Newtonian fluid with high viscosity, 2) power-law fluid and 3) Bingham fluid. Unsteady turbulent flows down long homogeneous slope are considered. The flow dynamical parameters and entrainment rate behavior in time as well as their dependence on properties of moving and underlying materials are studied numerically. REFERENCES M.E. Eglit and A.E. Yakubenko, 2014. Numerical modeling of slope flows entraining bottom material. Cold Reg. Sci. Technol., 108, 139-148 Margarita E. Eglit and Alexander E. Yakubenko, 2016. The effect of bed material entrainment and non-Newtonian rheology on dynamics of turbulent slope flows. Fluid Dynamics, 51(3) Issler D, M. Pastor Peréz. 2011. Interplay of entrainment and rheology in snow avalanches; a numerical study. Annals of Glaciology, 52(58), 143-147 Lushchik, V.G., Paveliev, A.A. , and Yakubenko, A.E., 1978. Three-parameter model of shear turbulence. Fluid Dynamics, 13, (3), 350-362

  9. Compression of head-related transfer function using autoregressive-moving-average models and Legendre polynomials.

    PubMed

    Shekarchi, Sayedali; Hallam, John; Christensen-Dalsgaard, Jakob

    2013-11-01

    Head-related transfer functions (HRTFs) are generally large datasets, which can be an important constraint for embedded real-time applications. A method is proposed here to reduce redundancy and compress the datasets. In this method, HRTFs are first compressed by conversion into autoregressive-moving-average (ARMA) filters whose coefficients are calculated using Prony's method. Such filters are specified by a few coefficients which can generate the full head-related impulse responses (HRIRs). Next, Legendre polynomials (LPs) are used to compress the ARMA filter coefficients. LPs are derived on the sphere and form an orthonormal basis set for spherical functions. Higher-order LPs capture increasingly fine spatial details. The number of LPs needed to represent an HRTF, therefore, is indicative of its spatial complexity. The results indicate that compression ratios can exceed 98% while maintaining a spectral error of less than 4 dB in the recovered HRTFs.

  10. Optimized nested Markov chain Monte Carlo sampling: theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coe, Joshua D; Shaw, M Sam; Sewell, Thomas D

    2009-01-01

    Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples ofmore » the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.« less

  11. Modified Exponential Weighted Moving Average (EWMA) Control Chart on Autocorrelation Data

    NASA Astrophysics Data System (ADS)

    Herdiani, Erna Tri; Fandrilla, Geysa; Sunusi, Nurtiti

    2018-03-01

    In general, observations of the statistical process control are assumed to be mutually independence. However, this assumption is often violated in practice. Consequently, statistical process controls were developed for interrelated processes, including Shewhart, Cumulative Sum (CUSUM), and exponentially weighted moving average (EWMA) control charts in the data that were autocorrelation. One researcher stated that this chart is not suitable if the same control limits are used in the case of independent variables. For this reason, it is necessary to apply the time series model in building the control chart. A classical control chart for independent variables is usually applied to residual processes. This procedure is permitted provided that residuals are independent. In 1978, Shewhart modification for the autoregressive process was introduced by using the distance between the sample mean and the target value compared to the standard deviation of the autocorrelation process. In this paper we will examine the mean of EWMA for autocorrelation process derived from Montgomery and Patel. Performance to be investigated was investigated by examining Average Run Length (ARL) based on the Markov Chain Method.

  12. Geophysical Factor Resolving of Rainfall Mechanism for Super Typhoons by Using Multiple Spatiotemporal Components Analysis

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Lin; Hsu, Nien-Sheng

    2016-04-01

    This study develops a novel methodology to resolve the geophysical cause of typhoon-induced rainfall considering diverse dynamic co-evolution at multiple spatiotemporal components. The multi-order hidden patterns of complex hydrological process in chaos are detected to understand the fundamental laws of rainfall mechanism. The discovered spatiotemporal features are utilized to develop a state-of-the-art descriptive statistical model for mechanism validation, modeling and further prediction during typhoons. The time series of hourly typhoon precipitation from different types of moving track, atmospheric field and landforms are respectively precede the signal analytical process to qualify each type of rainfall cause and to quantify the corresponding affected degree based on the measured geophysical atmospheric-hydrological variables. This study applies the developed methodology in Taiwan Island which is constituted by complex diverse landform formation. The identified driving-causes include: (1) cloud height to ground surface; (2) co-movement effect induced by typhoon wind field with monsoon; (3) stem capacity; (4) interaction between typhoon rain band and terrain; (5) structural intensity variance of typhoon; and (6) integrated cloudy density of rain band. Results show that: (1) for the central maximum wind speed exceeding 51 m/sec, Causes (1) and (3) are the primary ones to generate rainfall; (2) for the typhoon moving toward the direction of 155° to 175°, Cause (2) is the primary one; (3) for the direction of 90° to 155°, Cause (4) is the primary one; (4) for the typhoon passing through mountain chain which above 3500 m, Cause (5) is the primary one; and (5) for the moving speed lower than 18 km/hr, Cause (6) is the primary one. Besides, the multiple geophysical component-based precipitation modeling can achieve 81% of average accuracy and 0.732 of average correlation coefficient (CC) within average 46 hours of duration, that improve their predictability.

  13. Flow separation in a computational oscillating vocal fold model

    NASA Astrophysics Data System (ADS)

    Alipour, Fariborz; Scherer, Ronald C.

    2004-09-01

    A finite-volume computational model that solves the time-dependent glottal airflow within a forced-oscillation model of the glottis was employed to study glottal flow separation. Tracheal input velocity was independently controlled with a sinusoidally varying parabolic velocity profile. Control parameters included flow rate (Reynolds number), oscillation frequency and amplitude of the vocal folds, and the phase difference between the superior and inferior glottal margins. Results for static divergent glottal shapes suggest that velocity increase caused glottal separation to move downstream, but reduction in velocity increase and velocity decrease moved the separation upstream. At the fixed frequency, an increase of amplitude of the glottal walls moved the separation further downstream during glottal closing. Increase of Reynolds number caused the flow separation to move upstream in the glottis. The flow separation cross-sectional ratio ranged from approximately 1.1 to 1.9 (average of 1.47) for the divergent shapes. Results suggest that there may be a strong interaction of rate of change of airflow, inertia, and wall movement. Flow separation appeared to be ``delayed'' during the vibratory cycle, leading to movement of the separation point upstream of the glottal end only after a significant divergent angle was reached, and to persist upstream into the convergent phase of the cycle.

  14. Demand forecasting of electricity in Indonesia with limited historical data

    NASA Astrophysics Data System (ADS)

    Dwi Kartikasari, Mujiati; Rohmad Prayogi, Arif

    2018-03-01

    Demand forecasting of electricity is an important activity for electrical agents to know the description of electricity demand in future. Prediction of demand electricity can be done using time series models. In this paper, double moving average model, Holt’s exponential smoothing model, and grey model GM(1,1) are used to predict electricity demand in Indonesia under the condition of limited historical data. The result shows that grey model GM(1,1) has the smallest value of MAE (mean absolute error), MSE (mean squared error), and MAPE (mean absolute percentage error).

  15. Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model

    NASA Astrophysics Data System (ADS)

    Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; Chang, Ping

    2017-10-01

    We alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ˜8-50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the global average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.

  16. Proceedings of the Conference on the Design of Experiments in Army Research Development and Testing (32nd)

    DTIC Science & Technology

    1987-06-01

    number of series among the 63 which were identified as a particular ARIMA form and were "best" modeled by a particular technique. Figure 1 illustrates a...th time from xe’s. The integrbted autoregressive - moving average model , denoted by ARIMA (p,d,q) is a result of combining d-th differencing process...Experiments, (4) Data Analysis and Modeling , (5) Theory and Probablistic Inference, (6) Fuzzy Statistics, (7) Forecasting and Prediction, (8) Small Sample

  17. A freely-moving monkey treadmill model

    NASA Astrophysics Data System (ADS)

    Foster, Justin D.; Nuyujukian, Paul; Freifeld, Oren; Gao, Hua; Walker, Ross; Ryu, Stephen I.; Meng, Teresa H.; Murmann, Boris; Black, Michael J.; Shenoy, Krishna V.

    2014-08-01

    Objective. Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. Approach. We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the flexibility and utility of this new monkey model, including the first recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. Main results. Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average firing rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at different speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. Significance. Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic motor neuroscience and for the successful translation of BMIs to people with paralysis.

  18. Incorporating pushing in exclusion-process models of cell migration.

    PubMed

    Yates, Christian A; Parker, Andrew; Baker, Ruth E

    2015-05-01

    The macroscale movement behavior of a wide range of isolated migrating cells has been well characterized experimentally. Recently, attention has turned to understanding the behavior of cells in crowded environments. In such scenarios it is possible for cells to interact, inducing neighboring cells to move in order to make room for their own movements or progeny. Although the behavior of interacting cells has been modeled extensively through volume-exclusion processes, few models, thus far, have explicitly accounted for the ability of cells to actively displace each other in order to create space for themselves. In this work we consider both on- and off-lattice volume-exclusion position-jump processes in which cells are explicitly allowed to induce movements in their near neighbors in order to create space for themselves to move or proliferate into. We refer to this behavior as pushing. From these simple individual-level representations we derive continuum partial differential equations for the average occupancy of the domain. We find that, for limited amounts of pushing, comparison between the averaged individual-level simulations and the population-level model is nearly as good as in the scenario without pushing. Interestingly, we find that, in the on-lattice case, the diffusion coefficient of the population-level model is increased by pushing, whereas, for the particular off-lattice model that we investigate, the diffusion coefficient is reduced. We conclude, therefore, that it is important to consider carefully the appropriate individual-level model to use when representing complex cell-cell interactions such as pushing.

  19. Mixed Estimation for a Forest Survey Sample Design

    Treesearch

    Francis A. Roesch

    1999-01-01

    Three methods of estimating the current state of forest attributes over small areas for the USDA Forest Service Southern Research Station's annual forest sampling design are compared. The three methods were (I) simple moving average, (II) single imputation of plot data that had been updated by externally developed models, and (III) local application of a global...

  20. Annual forest inventory estimates based on the moving average

    Treesearch

    Francis A. Roesch; James R. Steinman; Michael T. Thompson

    2002-01-01

    Three interpretations of the simple moving average estimator, as applied to the USDA Forest Service's annual forest inventory design, are presented. A corresponding approach to composite estimation over arbitrarily defined land areas and time intervals is given for each interpretation, under the assumption that the investigator is armed with only the spatial/...

  1. 78 FR 26879 - Medicare Program; Inpatient Rehabilitation Facility Prospective Payment System for Federal Fiscal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ...: Centers for Medicare & Medicaid Services (CMS), HHS. ACTION: Proposed rule. SUMMARY: This proposed rule..., especially the teaching status adjustment factor. Therefore, we implemented a 3-year moving average approach... moving average to calculate the facility-level adjustment factors. For FY 2011, we issued a notice to...

  2. Changes in healthcare use among individuals who move into public housing: a population-based investigation.

    PubMed

    Hinds, Aynslie M; Bechtel, Brian; Distasio, Jino; Roos, Leslie L; Lix, Lisa M

    2018-06-05

    Residence in public housing, a subsidized and managed government program, may affect health and healthcare utilization. We compared healthcare use in the year before individuals moved into public housing with usage during their first year of tenancy. We also described trends in use. We used linked population-based administrative data housed in the Population Research Data Repository at the Manitoba Centre for Health Policy. The cohort consisted of individuals who moved into public housing in 2009 and 2010. We counted the number of hospitalizations, general practitioner (GP) visits, specialist visits, emergency department visits, and prescriptions drugs dispensed in the twelve 30-day intervals (i.e., months) immediately preceding and following the public housing move-in date. Generalized linear models with generalized estimating equations tested for a period (pre/post-move-in) by month interaction. Odds ratios (ORs), incident rate ratios (IRRs), and means are reported along with 95% confidence intervals (95% CIs). The cohort included 1942 individuals; the majority were female (73.4%) who lived in low income areas and received government assistance (68.1%). On average, the cohort had more than four health conditions. Over the 24 30-day intervals, the percentage of the cohort that visited a GP, specialist, and an emergency department ranged between 37.0% and 43.0%, 10.0% and 14.0%, and 6.0% and 10.0%, respectively, while the percentage of the cohort hospitalized ranged from 1.0% to 5.0%. Generally, these percentages were highest in the few months before the move-in date and lowest in the few months after the move-in date. The period by month interaction was statistically significant for hospitalizations, GP visits, and prescription drug use. The average change in the odds, rate, or mean was smaller in the post-move-in period than in the pre-move-in period. Use of some healthcare services declined after people moved into public housing; however, the decrease was only observed in the first few months and utilization rebounded. Knowledge of healthcare trends before individuals move in are informative for ensuring the appropriate supports are available to new public housing residents. Further study is needed to determine if decreased healthcare utilization following a move is attributable to decreased access.

  3. Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China

    PubMed Central

    Liang, Hao; Gao, Lian; Liang, Bingyu; Huang, Jiegang; Zang, Ning; Liao, Yanyan; Yu, Jun; Lai, Jingzhen; Qin, Fengxiang; Su, Jinming; Ye, Li; Chen, Hui

    2016-01-01

    Background Hepatitis is a serious public health problem with increasing cases and property damage in Heng County. It is necessary to develop a model to predict the hepatitis epidemic that could be useful for preventing this disease. Methods The autoregressive integrated moving average (ARIMA) model and the generalized regression neural network (GRNN) model were used to fit the incidence data from the Heng County CDC (Center for Disease Control and Prevention) from January 2005 to December 2012. Then, the ARIMA-GRNN hybrid model was developed. The incidence data from January 2013 to December 2013 were used to validate the models. Several parameters, including mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE) and mean square error (MSE), were used to compare the performance among the three models. Results The morbidity of hepatitis from Jan 2005 to Dec 2012 has seasonal variation and slightly rising trend. The ARIMA(0,1,2)(1,1,1)12 model was the most appropriate one with the residual test showing a white noise sequence. The smoothing factor of the basic GRNN model and the combined model was 1.8 and 0.07, respectively. The four parameters of the hybrid model were lower than those of the two single models in the validation. The parameters values of the GRNN model were the lowest in the fitting of the three models. Conclusions The hybrid ARIMA-GRNN model showed better hepatitis incidence forecasting in Heng County than the single ARIMA model and the basic GRNN model. It is a potential decision-supportive tool for controlling hepatitis in Heng County. PMID:27258555

  4. Correcting for day of the week and public holiday effects: improving a national daily syndromic surveillance service for detecting public health threats.

    PubMed

    Buckingham-Jeffery, Elizabeth; Morbey, Roger; House, Thomas; Elliot, Alex J; Harcourt, Sally; Smith, Gillian E

    2017-05-19

    As service provision and patient behaviour varies by day, healthcare data used for public health surveillance can exhibit large day of the week effects. These regular effects are further complicated by the impact of public holidays. Real-time syndromic surveillance requires the daily analysis of a range of healthcare data sources, including family doctor consultations (called general practitioners, or GPs, in the UK). Failure to adjust for such reporting biases during analysis of syndromic GP surveillance data could lead to misinterpretations including false alarms or delays in the detection of outbreaks. The simplest smoothing method to remove a day of the week effect from daily time series data is a 7-day moving average. Public Health England developed the working day moving average in an attempt also to remove public holiday effects from daily GP data. However, neither of these methods adequately account for the combination of day of the week and public holiday effects. The extended working day moving average was developed. This is a further data-driven method for adding a smooth trend curve to a time series graph of daily healthcare data, that aims to take both public holiday and day of the week effects into account. It is based on the assumption that the number of people seeking healthcare services is a combination of illness levels/severity and the ability or desire of patients to seek healthcare each day. The extended working day moving average was compared to the seven-day and working day moving averages through application to data from two syndromic indicators from the GP in-hours syndromic surveillance system managed by Public Health England. The extended working day moving average successfully smoothed the syndromic healthcare data by taking into account the combined day of the week and public holiday effects. In comparison, the seven-day and working day moving averages were unable to account for all these effects, which led to misleading smoothing curves. The results from this study make it possible to identify trends and unusual activity in syndromic surveillance data from GP services in real-time independently of the effects caused by day of the week and public holidays, thereby improving the public health action resulting from the analysis of these data.

  5. Moving in the Right Direction: Helping Children Cope with a Relocation

    ERIC Educational Resources Information Center

    Kruse, Tricia

    2012-01-01

    According to national figures, 37.1 million people moved in 2009 (U.S. Census Bureau, 2010). In fact, the average American will move 11.7 times in their lifetime. Why are Americans moving so much? There are a variety of reasons. Regardless of the reason, moving is a common experience for children. If one looks at the developmental characteristics…

  6. Passenger Flow Forecasting Research for Airport Terminal Based on SARIMA Time Series Model

    NASA Astrophysics Data System (ADS)

    Li, Ziyu; Bi, Jun; Li, Zhiyin

    2017-12-01

    Based on the data of practical operating of Kunming Changshui International Airport during2016, this paper proposes Seasonal Autoregressive Integrated Moving Average (SARIMA) model to predict the passenger flow. This article not only considers the non-stationary and autocorrelation of the sequence, but also considers the daily periodicity of the sequence. The prediction results can accurately describe the change trend of airport passenger flow and provide scientific decision support for the optimal allocation of airport resources and optimization of departure process. The result shows that this model is applicable to the short-term prediction of airport terminal departure passenger traffic and the average error ranges from 1% to 3%. The difference between the predicted and the true values of passenger traffic flow is quite small, which indicates that the model has fairly good passenger traffic flow prediction ability.

  7. Experiment and modeling of paired effect on evacuation from a three-dimensional space

    NASA Astrophysics Data System (ADS)

    Jun, Hu; Huijun, Sun; Juan, Wei; Xiaodan, Chen; Lei, You; Musong, Gu

    2014-10-01

    A novel three-dimensional cellular automata evacuation model was proposed based on stairs factor for paired effect and variety velocities in pedestrian evacuation. In the model pedestrians' moving probability of target position at the next moment was defined based on distance profit and repulsive force profit, and evacuation strategy was elaborated in detail through analyzing variety velocities and repulsive phenomenon in moving process. At last, experiments with the simulation platform were conducted to study the relationships of evacuation time, average velocity and pedestrian velocity. The results showed that when the ratio of single pedestrian was higher in the system, the shortest route strategy was good for improving evacuation efficiency; in turn, if ratio of paired pedestrians was higher, it is good for improving evacuation efficiency to adopt strategy that avoided conflicts, and priority should be given to scattered evacuation.

  8. Weather variability, tides, and Barmah Forest virus disease in the Gladstone region, Australia.

    PubMed

    Naish, Suchithra; Hu, Wenbiao; Nicholls, Neville; Mackenzie, John S; McMichael, Anthony J; Dale, Pat; Tong, Shilu

    2006-05-01

    In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (b=0.15, p-value<0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (b=-1.03, p-value=0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.

  9. A stochastic approach to noise modeling for barometric altimeters.

    PubMed

    Sabatini, Angelo Maria; Genovese, Vincenzo

    2013-11-18

    The question whether barometric altimeters can be applied to accurately track human motions is still debated, since their measurement performance are rather poor due to either coarse resolution or drifting behavior problems. As a step toward accurate short-time tracking of changes in height (up to few minutes), we develop a stochastic model that attempts to capture some statistical properties of the barometric altimeter noise. The barometric altimeter noise is decomposed in three components with different physical origin and properties: a deterministic time-varying mean, mainly correlated with global environment changes, and a first-order Gauss-Markov (GM) random process, mainly accounting for short-term, local environment changes, the effects of which are prominent, respectively, for long-time and short-time motion tracking; an uncorrelated random process, mainly due to wideband electronic noise, including quantization noise. Autoregressive-moving average (ARMA) system identification techniques are used to capture the correlation structure of the piecewise stationary GM component, and to estimate its standard deviation, together with the standard deviation of the uncorrelated component. M-point moving average filters used alone or in combination with whitening filters learnt from ARMA model parameters are further tested in few dynamic motion experiments and discussed for their capability of short-time tracking small-amplitude, low-frequency motions.

  10. Simultaneous Estimation of Electromechanical Modes and Forced Oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follum, Jim; Pierre, John W.; Martin, Russell

    Over the past several years, great strides have been made in the effort to monitor the small-signal stability of power systems. These efforts focus on estimating electromechanical modes, which are a property of the system that dictate how generators in different parts of the system exchange energy. Though the algorithms designed for this task are powerful and important for reliable operation of the power system, they are susceptible to severe bias when forced oscillations are present in the system. Forced oscillations are fundamentally different from electromechanical oscillations in that they are the result of a rogue input to the system,more » rather than a property of the system itself. To address the presence of forced oscillations, the frequently used AutoRegressive Moving Average (ARMA) model is adapted to include sinusoidal inputs, resulting in the AutoRegressive Moving Average plus Sinusoid (ARMA+S) model. From this model, a new Two-Stage Least Squares algorithm is derived to incorporate the forced oscillations, thereby enabling the simultaneous estimation of the electromechanical modes and the amplitude and phase of the forced oscillations. The method is validated using simulated power system data as well as data obtained from the western North American power system (wNAPS) and Eastern Interconnection (EI).« less

  11. Integration of social information by human groups

    PubMed Central

    Granovskiy, Boris; Gold, Jason M.; Sumpter, David; Goldstone, Robert L.

    2015-01-01

    We consider a situation in which individuals search for accurate decisions without direct feedback on their accuracy but with information about the decisions made by peers in their group. The “wisdom of crowds” hypothesis states that the average judgment of many individuals can give a good estimate of, for example, the outcomes of sporting events and the answers to trivia questions. Two conditions for the application of wisdom of crowds are that estimates should be independent and unbiased. Here, we study how individuals integrate social information when answering trivia questions with answers that range between 0 and 100% (e.g., ‘What percentage of Americans are left-handed?’). We find that, consistent with the wisdom of crowds hypothesis, average performance improves with group size. However, individuals show a consistent bias to produce estimates that are insufficiently extreme. We find that social information provides significant, albeit small, improvement to group performance. Outliers with answers far from the correct answer move towards the position of the group mean. Given that these outliers also tend to be nearer to 50% than do the answers of other group members, this move creates group polarization away from 50%. By looking at individual performance over different questions we find that some people are more likely to be affected by social influence than others. There is also evidence that people differ in their competence in answering questions, but lack of competence is not significantly correlated with willingness to change guesses. We develop a mathematical model based on these results that postulates a cognitive process in which people first decide whether to take into account peer guesses, and if so, to move in the direction of these guesses. The size of the move is proportional to the distance between their own guess and the average guess of the group. This model closely approximates the distribution of guess movements and shows how outlying incorrect opinions can be systematically removed from a group resulting, in some situations, in improved group performance. However, improvement is only predicted for cases in which the initial guesses of individuals in the group are biased. PMID:26189568

  12. Integration of Social Information by Human Groups.

    PubMed

    Granovskiy, Boris; Gold, Jason M; Sumpter, David J T; Goldstone, Robert L

    2015-07-01

    We consider a situation in which individuals search for accurate decisions without direct feedback on their accuracy, but with information about the decisions made by peers in their group. The "wisdom of crowds" hypothesis states that the average judgment of many individuals can give a good estimate of, for example, the outcomes of sporting events and the answers to trivia questions. Two conditions for the application of wisdom of crowds are that estimates should be independent and unbiased. Here, we study how individuals integrate social information when answering trivia questions with answers that range between 0% and 100% (e.g., "What percentage of Americans are left-handed?"). We find that, consistent with the wisdom of crowds hypothesis, average performance improves with group size. However, individuals show a consistent bias to produce estimates that are insufficiently extreme. We find that social information provides significant, albeit small, improvement to group performance. Outliers with answers far from the correct answer move toward the position of the group mean. Given that these outliers also tend to be nearer to 50% than do the answers of other group members, this move creates group polarization away from 50%. By looking at individual performance over different questions we find that some people are more likely to be affected by social influence than others. There is also evidence that people differ in their competence in answering questions, but lack of competence is not significantly correlated with willingness to change guesses. We develop a mathematical model based on these results that postulates a cognitive process in which people first decide whether to take into account peer guesses, and if so, to move in the direction of these guesses. The size of the move is proportional to the distance between their own guess and the average guess of the group. This model closely approximates the distribution of guess movements and shows how outlying incorrect opinions can be systematically removed from a group resulting, in some situations, in improved group performance. However, improvement is only predicted for cases in which the initial guesses of individuals in the group are biased. Copyright © 2015 Cognitive Science Society, Inc.

  13. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station

    NASA Astrophysics Data System (ADS)

    Sivavaraprasad, G.; Venkata Ratnam, D.

    2017-07-01

    Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.

  14. A comparison of several techniques for imputing tree level data

    Treesearch

    David Gartner

    2002-01-01

    As Forest Inventory and Analysis (FIA) changes from periodic surveys to the multipanel annual survey, new analytical methods become available. The current official statistic is the moving average. One alternative is an updated moving average. Several methods of updating plot per acre volume have been discussed previously. However, these methods may not be appropriate...

  15. Identification of coffee bean varieties using hyperspectral imaging: influence of preprocessing methods and pixel-wise spectra analysis.

    PubMed

    Zhang, Chu; Liu, Fei; He, Yong

    2018-02-01

    Hyperspectral imaging was used to identify and to visualize the coffee bean varieties. Spectral preprocessing of pixel-wise spectra was conducted by different methods, including moving average smoothing (MA), wavelet transform (WT) and empirical mode decomposition (EMD). Meanwhile, spatial preprocessing of the gray-scale image at each wavelength was conducted by median filter (MF). Support vector machine (SVM) models using full sample average spectra and pixel-wise spectra, and the selected optimal wavelengths by second derivative spectra all achieved classification accuracy over 80%. Primarily, the SVM models using pixel-wise spectra were used to predict the sample average spectra, and these models obtained over 80% of the classification accuracy. Secondly, the SVM models using sample average spectra were used to predict pixel-wise spectra, but achieved with lower than 50% of classification accuracy. The results indicated that WT and EMD were suitable for pixel-wise spectra preprocessing. The use of pixel-wise spectra could extend the calibration set, and resulted in the good prediction results for pixel-wise spectra and sample average spectra. The overall results indicated the effectiveness of using spectral preprocessing and the adoption of pixel-wise spectra. The results provided an alternative way of data processing for applications of hyperspectral imaging in food industry.

  16. Atmospheric mold spore counts in relation to meteorological parameters

    NASA Astrophysics Data System (ADS)

    Katial, R. K.; Zhang, Yiming; Jones, Richard H.; Dyer, Philip D.

    Fungal spore counts of Cladosporium, Alternaria, and Epicoccum were studied during 8 years in Denver, Colorado. Fungal spore counts were obtained daily during the pollinating season by a Rotorod sampler. Weather data were obtained from the National Climatic Data Center. Daily averages of temperature, relative humidity, daily precipitation, barometric pressure, and wind speed were studied. A time series analysis was performed on the data to mathematically model the spore counts in relation to weather parameters. Using SAS PROC ARIMA software, a regression analysis was performed, regressing the spore counts on the weather variables assuming an autoregressive moving average (ARMA) error structure. Cladosporium was found to be positively correlated (P<0.02) with average daily temperature, relative humidity, and negatively correlated with precipitation. Alternaria and Epicoccum did not show increased predictability with weather variables. A mathematical model was derived for Cladosporium spore counts using the annual seasonal cycle and significant weather variables. The model for Alternaria and Epicoccum incorporated the annual seasonal cycle. Fungal spore counts can be modeled by time series analysis and related to meteorological parameters controlling for seasonallity; this modeling can provide estimates of exposure to fungal aeroallergens.

  17. Relationship research between meteorological disasters and stock markets based on a multifractal detrending moving average algorithm

    NASA Astrophysics Data System (ADS)

    Li, Qingchen; Cao, Guangxi; Xu, Wei

    2018-01-01

    Based on a multifractal detrending moving average algorithm (MFDMA), this study uses the fractionally autoregressive integrated moving average process (ARFIMA) to demonstrate the effectiveness of MFDMA in the detection of auto-correlation at different sample lengths and to simulate some artificial time series with the same length as the actual sample interval. We analyze the effect of predictable and unpredictable meteorological disasters on the US and Chinese stock markets and the degree of long memory in different sectors. Furthermore, we conduct a preliminary investigation to determine whether the fluctuations of financial markets caused by meteorological disasters are derived from the normal evolution of the financial system itself or not. We also propose several reasonable recommendations.

  18. Numerical investigation of hydrodynamic flow over an AUV moving in the water-surface vicinity considering the laminar-turbulent transition

    NASA Astrophysics Data System (ADS)

    Salari, Mahmoud; Rava, Amin

    2017-09-01

    Nowadays, Autonomous Underwater Vehicles (AUVs) are frequently used for exploring the oceans. The hydrodynamics of AUVs moving in the vicinity of the water surface are significantly different at higher depths. In this paper, the hydrodynamic coefficients of an AUV in non-dimensional depths of 0.75, 1, 1.5, 2, and 4D are obtained for movement close to the free-surface. Reynolds Averaged Navier Stokes Equations (RANS) are discretized using the finite volume approach and the water-surface effects modeled using the Volume of Fraction (VOF) method. As the operating speeds of AUVs are usually low, the boundary layer over them is not fully laminar or fully turbulent, so the effect of boundary layer transition from laminar to turbulent flow was considered in the simulations. Two different turbulence/transition models were used: 1) a full-turbulence model, the k-ɛ model, and 2) a turbulence/transition model, Menter's Transition-SST model. The results show that the Menter's Transition-SST model has a better consistency with experimental results. In addition, the wave-making effects of these bodies are studied at different immersion depths in the sea-surface vicinity or at finite depths. It is observed that the relevant pitch moments and lift coefficients are non-zero for these axi-symmetric bodies when they move close to the sea-surface. This is not expected for greater depths.

  19. Fate of microplastics and mesoplastics carried by surface currents and wind waves: A numerical model approach in the Sea of Japan.

    PubMed

    Iwasaki, Shinsuke; Isobe, Atsuhiko; Kako, Shin'ichiro; Uchida, Keiichi; Tokai, Tadashi

    2017-08-15

    A numerical model was established to reproduce the oceanic transport processes of microplastics and mesoplastics in the Sea of Japan. A particle tracking model, where surface ocean currents were given by a combination of a reanalysis ocean current product and Stokes drift computed separately by a wave model, simulated particle movement. The model results corresponded with the field survey. Modeled results indicated the micro- and mesoplastics are moved northeastward by the Tsushima Current. Subsequently, Stokes drift selectively moves mesoplastics during winter toward the Japanese coast, resulting in increased contributions of mesoplastics south of 39°N. Additionally, Stokes drift also transports micro- and mesoplastics out to the sea area south of the subpolar front where the northeastward Tsushima Current carries them into the open ocean via the Tsugaru and Soya straits. Average transit time of modeled particles in the Sea of Japan is drastically reduced when including Stokes drift in the model. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. REVIEW ARTICLE: Hither and yon: a review of bi-directional microtubule-based transport

    NASA Astrophysics Data System (ADS)

    Gross, Steven P.

    2004-06-01

    Active transport is critical for cellular organization and function, and impaired transport has been linked to diseases such as neuronal degeneration. Much long distance transport in cells uses opposite polarity molecular motors of the kinesin and dynein families to move cargos along microtubules. It is increasingly clear that many cargos are moved by both sets of motors, and frequently reverse course. This review compares this bi-directional transport to the more well studied uni-directional transport. It discusses some bi-directionally moving cargos, and critically evaluates three different physical models for how such transport might occur. It then considers the evidence for the number of active motors per cargo, and how the net or average direction of transport might be controlled. The likelihood of a complex linking the activities of kinesin and dynein is also discussed. The paper concludes by reviewing elements of apparent universality between different bi-directionally moving cargos and by briefly considering possible reasons for the existence of bi-directional transport.

  1. Stochastic modelling of the monthly average maximum and minimum temperature patterns in India 1981-2015

    NASA Astrophysics Data System (ADS)

    Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.

    2018-04-01

    The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.

  2. Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach

    NASA Astrophysics Data System (ADS)

    Moeeni, Hamid; Bonakdari, Hossein; Ebtehaj, Isa

    2017-03-01

    Forecasting reservoir inflow is one of the most important components of water resources and hydroelectric systems operation management. Seasonal autoregressive integrated moving average (SARIMA) models have been frequently used for predicting river flow. SARIMA models are linear and do not consider the random component of statistical data. To overcome this shortcoming, monthly inflow is predicted in this study based on a combination of seasonal autoregressive integrated moving average (SARIMA) and gene expression programming (GEP) models, which is a new hybrid method (SARIMA-GEP). To this end, a four-step process is employed. First, the monthly inflow datasets are pre-processed. Second, the datasets are modelled linearly with SARIMA and in the third stage, the non-linearity of residual series caused by linear modelling is evaluated. After confirming the non-linearity, the residuals are modelled in the fourth step using a gene expression programming (GEP) method. The proposed hybrid model is employed to predict the monthly inflow to the Jamishan Dam in west Iran. Thirty years' worth of site measurements of monthly reservoir dam inflow with extreme seasonal variations are used. The results of this hybrid model (SARIMA-GEP) are compared with SARIMA, GEP, artificial neural network (ANN) and SARIMA-ANN models. The results indicate that the SARIMA-GEP model ( R 2=78.8, VAF =78.8, RMSE =0.89, MAPE =43.4, CRM =0.053) outperforms SARIMA and GEP and SARIMA-ANN ( R 2=68.3, VAF =66.4, RMSE =1.12, MAPE =56.6, CRM =0.032) displays better performance than the SARIMA and ANN models. A comparison of the two hybrid models indicates the superiority of SARIMA-GEP over the SARIMA-ANN model.

  3. Forecasting mortality of road traffic injuries in China using seasonal autoregressive integrated moving average model.

    PubMed

    Zhang, Xujun; Pang, Yuanyuan; Cui, Mengjing; Stallones, Lorann; Xiang, Huiyun

    2015-02-01

    Road traffic injuries have become a major public health problem in China. This study aimed to develop statistical models for predicting road traffic deaths and to analyze seasonality of deaths in China. A seasonal autoregressive integrated moving average (SARIMA) model was used to fit the data from 2000 to 2011. Akaike Information Criterion, Bayesian Information Criterion, and mean absolute percentage error were used to evaluate the constructed models. Autocorrelation function and partial autocorrelation function of residuals and Ljung-Box test were used to compare the goodness-of-fit between the different models. The SARIMA model was used to forecast monthly road traffic deaths in 2012. The seasonal pattern of road traffic mortality data was statistically significant in China. SARIMA (1, 1, 1) (0, 1, 1)12 model was the best fitting model among various candidate models; the Akaike Information Criterion, Bayesian Information Criterion, and mean absolute percentage error were -483.679, -475.053, and 4.937, respectively. Goodness-of-fit testing showed nonautocorrelations in the residuals of the model (Ljung-Box test, Q = 4.86, P = .993). The fitted deaths using the SARIMA (1, 1, 1) (0, 1, 1)12 model for years 2000 to 2011 closely followed the observed number of road traffic deaths for the same years. The predicted and observed deaths were also very close for 2012. This study suggests that accurate forecasting of road traffic death incidence is possible using SARIMA model. The SARIMA model applied to historical road traffic deaths data could provide important evidence of burden of road traffic injuries in China. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Stochastic Flow Cascades

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo I.; Shlesinger, Michael F.

    2012-01-01

    We introduce and explore a Stochastic Flow Cascade (SFC) model: A general statistical model for the unidirectional flow through a tandem array of heterogeneous filters. Examples include the flow of: (i) liquid through heterogeneous porous layers; (ii) shocks through tandem shot noise systems; (iii) signals through tandem communication filters. The SFC model combines together the Langevin equation, convolution filters and moving averages, and Poissonian randomizations. A comprehensive analysis of the SFC model is carried out, yielding closed-form results. Lévy laws are shown to universally emerge from the SFC model, and characterize both heavy tailed retention times (Noah effect) and long-ranged correlations (Joseph effect).

  5. No Evidence of Suicide Increase Following Terrorist Attacks in the United States: An Interrupted Time-Series Analysis of September 11 and Oklahoma City

    ERIC Educational Resources Information Center

    Pridemore, William Alex; Trahan, Adam; Chamlin, Mitchell B.

    2009-01-01

    There is substantial evidence of detrimental psychological sequelae following disasters, including terrorist attacks. The effect of these events on extreme responses such as suicide, however, is unclear. We tested competing hypotheses about such effects by employing autoregressive integrated moving average techniques to model the impact of…

  6. The Press Relations of a Local School District: An Analysis of the Emergence of School Issues.

    ERIC Educational Resources Information Center

    Morris, Jon R.; Guenter, Cornelius

    Press coverage of a suburban midwest school district is analyzed as a set of time series of observations including the amount and quality of coverage. Possible shifts in these series because of the emergence of controversial issues are analyzed statistically using the Integrated Moving Average Time Series Model. Evidence of significant shifts in…

  7. Defense Applications of Signal Processing

    DTIC Science & Technology

    1999-08-27

    class of multiscale autoregressive moving average (MARMA) processes. These are generalisations of ARMA models in time series analysis , and they contain...including the two theoretical sinusoidal components. Analysis of the amplitude and frequency time series provided some novel insight into the real...communication channels, underwater acoustic signals, radar systems , economic time series and biomedical signals [7]. The alpha stable (aS) distribution has

  8. NARMAX model identification of a palm oil biodiesel engine using multi-objective optimization differential evolution

    NASA Astrophysics Data System (ADS)

    Mansor, Zakwan; Zakaria, Mohd Zakimi; Nor, Azuwir Mohd; Saad, Mohd Sazli; Ahmad, Robiah; Jamaluddin, Hishamuddin

    2017-09-01

    This paper presents the black-box modelling of palm oil biodiesel engine (POB) using multi-objective optimization differential evolution (MOODE) algorithm. Two objective functions are considered in the algorithm for optimization; minimizing the number of term of a model structure and minimizing the mean square error between actual and predicted outputs. The mathematical model used in this study to represent the POB system is nonlinear auto-regressive moving average with exogenous input (NARMAX) model. Finally, model validity tests are applied in order to validate the possible models that was obtained from MOODE algorithm and lead to select an optimal model.

  9. Quantifying rapid changes in cardiovascular state with a moving ensemble average.

    PubMed

    Cieslak, Matthew; Ryan, William S; Babenko, Viktoriya; Erro, Hannah; Rathbun, Zoe M; Meiring, Wendy; Kelsey, Robert M; Blascovich, Jim; Grafton, Scott T

    2018-04-01

    MEAP, the moving ensemble analysis pipeline, is a new open-source tool designed to perform multisubject preprocessing and analysis of cardiovascular data, including electrocardiogram (ECG), impedance cardiogram (ICG), and continuous blood pressure (BP). In addition to traditional ensemble averaging, MEAP implements a moving ensemble averaging method that allows for the continuous estimation of indices related to cardiovascular state, including cardiac output, preejection period, heart rate variability, and total peripheral resistance, among others. Here, we define the moving ensemble technique mathematically, highlighting its differences from fixed-window ensemble averaging. We describe MEAP's interface and features for signal processing, artifact correction, and cardiovascular-based fMRI analysis. We demonstrate the accuracy of MEAP's novel B point detection algorithm on a large collection of hand-labeled ICG waveforms. As a proof of concept, two subjects completed a series of four physical and cognitive tasks (cold pressor, Valsalva maneuver, video game, random dot kinetogram) on 3 separate days while ECG, ICG, and BP were recorded. Critically, the moving ensemble method reliably captures the rapid cyclical cardiovascular changes related to the baroreflex during the Valsalva maneuver and the classic cold pressor response. Cardiovascular measures were seen to vary considerably within repetitions of the same cognitive task for each individual, suggesting that a carefully designed paradigm could be used to capture fast-acting event-related changes in cardiovascular state. © 2017 Society for Psychophysiological Research.

  10. Effects of improved spatial and temporal modeling of on-road vehicle emissions.

    PubMed

    Lindhjem, Christian E; Pollack, Alison K; DenBleyker, Allison; Shaw, Stephanie L

    2012-04-01

    Numerous emission and air quality modeling studies have suggested the need to accurately characterize the spatial and temporal variations in on-road vehicle emissions. The purpose of this study was to quantify the impact that using detailed traffic activity data has on emission estimates used to model air quality impacts. The on-road vehicle emissions are estimated by multiplying the vehicle miles traveled (VMT) by the fleet-average emission factors determined by road link and hour of day. Changes in the fraction of VMT from heavy-duty diesel vehicles (HDDVs) can have a significant impact on estimated fleet-average emissions because the emission factors for HDDV nitrogen oxides (NOx) and particulate matter (PM) are much higher than those for light-duty gas vehicles (LDGVs). Through detailed road link-level on-road vehicle emission modeling, this work investigated two scenarios for better characterizing mobile source emissions: (1) improved spatial and temporal variation of vehicle type fractions, and (2) use of Motor Vehicle Emission Simulator (MOVES2010) instead of MOBILE6 exhaust emission factors. Emissions were estimated for the Detroit and Atlanta metropolitan areas for summer and winter episodes. The VMT mix scenario demonstrated the importance of better characterizing HDDV activity by time of day, day of week, and road type. More HDDV activity occurs on restricted access road types on weekdays and at nonpeak times, compared to light-duty vehicles, resulting in 5-15% higher NOx and PM emission rates during the weekdays and 15-40% lower rates on weekend days. Use of MOVES2010 exhaust emission factors resulted in increases of more than 50% in NOx and PM for both HDDVs and LDGVs, relative to MOBILE6. Because LDGV PM emissions have been shown to increase with lower temperatures, the most dramatic increase from MOBILE6 to MOVES2010 emission rates occurred for PM2.5 from LDGVs that increased 500% during colder wintertime conditions found in Detroit, the northernmost city modeled.

  11. Comparison between wavelet transform and moving average as filter method of MODIS imagery to recognize paddy cropping pattern in West Java

    NASA Astrophysics Data System (ADS)

    Dwi Nugroho, Kreshna; Pebrianto, Singgih; Arif Fatoni, Muhammad; Fatikhunnada, Alvin; Liyantono; Setiawan, Yudi

    2017-01-01

    Information on the area and spatial distribution of paddy field are needed to support sustainable agricultural and food security program. Mapping or distribution of cropping pattern paddy field is important to obtain sustainability paddy field area. It can be done by direct observation and remote sensing method. This paper discusses remote sensing for paddy field monitoring based on MODIS time series data. In time series MODIS data, difficult to direct classified of data, because of temporal noise. Therefore wavelet transform and moving average are needed as filter methods. The Objective of this study is to recognize paddy cropping pattern with wavelet transform and moving average in West Java using MODIS imagery (MOD13Q1) from 2001 to 2015 then compared between both of methods. The result showed the spatial distribution almost have the same cropping pattern. The accuracy of wavelet transform (75.5%) is higher than moving average (70.5%). Both methods showed that the majority of the cropping pattern in West Java have pattern paddy-fallow-paddy-fallow with various time planting. The difference of the planting schedule was occurs caused by the availability of irrigation water.

  12. Tree-ring-based estimates of long-term seasonal precipitation in the Souris River Region of Saskatchewan, North Dakota and Manitoba

    USGS Publications Warehouse

    Ryberg, Karen R.; Vecchia, Aldo V.; Akyüz, F. Adnan; Lin, Wei

    2016-01-01

    Historically unprecedented flooding occurred in the Souris River Basin of Saskatchewan, North Dakota and Manitoba in 2011, during a longer term period of wet conditions in the basin. In order to develop a model of future flows, there is a need to evaluate effects of past multidecadal climate variability and/or possible climate change on precipitation. In this study, tree-ring chronologies and historical precipitation data in a four-degree buffer around the Souris River Basin were analyzed to develop regression models that can be used for predicting long-term variations of precipitation. To focus on longer term variability, 12-year moving average precipitation was modeled in five subregions (determined through cluster analysis of measures of precipitation) of the study area over three seasons (November–February, March–June and July–October). The models used multiresolution decomposition (an additive decomposition based on powers of two using a discrete wavelet transform) of tree-ring chronologies from Canada and the US and seasonal 12-year moving average precipitation based on Adjusted and Homogenized Canadian Climate Data and US Historical Climatology Network data. Results show that precipitation varies on long-term (multidecadal) time scales of 16, 32 and 64 years. Past extended pluvial and drought events, which can vary greatly with season and subregion, were highlighted by the models. Results suggest that the recent wet period may be a part of natural variability on a very long time scale.

  13. Application of seasonal auto-regressive integrated moving average model in forecasting the incidence of hand-foot-mouth disease in Wuhan, China.

    PubMed

    Peng, Ying; Yu, Bin; Wang, Peng; Kong, De-Guang; Chen, Bang-Hua; Yang, Xiao-Bing

    2017-12-01

    Outbreaks of hand-foot-mouth disease (HFMD) have occurred many times and caused serious health burden in China since 2008. Application of modern information technology to prediction and early response can be helpful for efficient HFMD prevention and control. A seasonal auto-regressive integrated moving average (ARIMA) model for time series analysis was designed in this study. Eighty-four-month (from January 2009 to December 2015) retrospective data obtained from the Chinese Information System for Disease Prevention and Control were subjected to ARIMA modeling. The coefficient of determination (R 2 ), normalized Bayesian Information Criterion (BIC) and Q-test P value were used to evaluate the goodness-of-fit of constructed models. Subsequently, the best-fitted ARIMA model was applied to predict the expected incidence of HFMD from January 2016 to December 2016. The best-fitted seasonal ARIMA model was identified as (1,0,1)(0,1,1) 12 , with the largest coefficient of determination (R 2 =0.743) and lowest normalized BIC (BIC=3.645) value. The residuals of the model also showed non-significant autocorrelations (P Box-Ljung (Q) =0.299). The predictions by the optimum ARIMA model adequately captured the pattern in the data and exhibited two peaks of activity over the forecast interval, including a major peak during April to June, and again a light peak for September to November. The ARIMA model proposed in this study can forecast HFMD incidence trend effectively, which could provide useful support for future HFMD prevention and control in the study area. Besides, further observations should be added continually into the modeling data set, and parameters of the models should be adjusted accordingly.

  14. Psychometric Evaluation of Lexical Diversity Indices: Assessing Length Effects.

    PubMed

    Fergadiotis, Gerasimos; Wright, Heather Harris; Green, Samuel B

    2015-06-01

    Several novel techniques have been developed recently to assess the breadth of a speaker's vocabulary exhibited in a language sample. The specific aim of this study was to increase our understanding of the validity of the scores generated by different lexical diversity (LD) estimation techniques. Four techniques were explored: D, Maas, measure of textual lexical diversity, and moving-average type-token ratio. Four LD indices were estimated for language samples on 4 discourse tasks (procedures, eventcasts, story retell, and recounts) from 442 adults who are neurologically intact. The resulting data were analyzed using structural equation modeling. The scores for measure of textual lexical diversity and moving-average type-token ratio were stronger indicators of the LD of the language samples. The results for the other 2 techniques were consistent with the presence of method factors representing construct-irrelevant sources. These findings offer a deeper understanding of the relative validity of the 4 estimation techniques and should assist clinicians and researchers in the selection of LD measures of language samples that minimize construct-irrelevant sources.

  15. Hydromagnetic couple-stress nanofluid flow over a moving convective wall: OHAM analysis

    NASA Astrophysics Data System (ADS)

    Awais, M.; Saleem, S.; Hayat, T.; Irum, S.

    2016-12-01

    This communication presents the magnetohydrodynamics (MHD) flow of a couple-stress nanofluid over a convective moving wall. The flow dynamics are analyzed in the boundary layer region. Convective cooling phenomenon combined with thermophoresis and Brownian motion effects has been discussed. Similarity transforms are utilized to convert the system of partial differential equations into coupled non-linear ordinary differential equation. Optimal homotopy analysis method (OHAM) is utilized and the concept of minimization is employed by defining the average squared residual errors. Effects of couple-stress parameter, convective cooling process parameter and energy enhancement parameters are displayed via graphs and discussed in detail. Various tables are also constructed to present the error analysis and a comparison of obtained results with the already published data. Stream lines are plotted showing a difference of Newtonian fluid model and couplestress fluid model.

  16. On the statistical and transport properties of a non-dissipative Fermi-Ulam model

    NASA Astrophysics Data System (ADS)

    Livorati, André L. P.; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2015-10-01

    The transport and diffusion properties for the velocity of a Fermi-Ulam model were characterized using the decay rate of the survival probability. The system consists of an ensemble of non-interacting particles confined to move along and experience elastic collisions with two infinitely heavy walls. One is fixed, working as a returning mechanism of the colliding particles, while the other one moves periodically in time. The diffusion equation is solved, and the diffusion coefficient is numerically estimated by means of the averaged square velocity. Our results show remarkably good agreement of the theory and simulation for the chaotic sea below the first elliptic island in the phase space. From the decay rates of the survival probability, we obtained transport properties that can be extended to other nonlinear mappings, as well to billiard problems.

  17. Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.

    Here, we alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the globalmore » average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.« less

  18. Climate Impacts of CALIPSO-Guided Corrections to Black Carbon Aerosol Vertical Distributions in a Global Climate Model

    DOE PAGES

    Kovilakam, Mahesh; Mahajan, Salil; Saravanan, R.; ...

    2017-09-13

    Here, we alleviate the bias in the tropospheric vertical distribution of black carbon aerosols (BC) in the Community Atmosphere Model (CAM4) using the Cloud-Aerosol and Infrared Pathfinder Satellite Observations (CALIPSO)-derived vertical profiles. A suite of sensitivity experiments are conducted with 1x, 5x, and 10x the present-day model estimated BC concentration climatology, with (corrected, CC) and without (uncorrected, UC) CALIPSO-corrected BC vertical distribution. The globally averaged top of the atmosphere radiative flux perturbation of CC experiments is ~8–50% smaller compared to uncorrected (UC) BC experiments largely due to an increase in low-level clouds. The global average surface temperature increases, the globalmore » average precipitation decreases, and the ITCZ moves northward with the increase in BC radiative forcing, irrespective of the vertical distribution of BC. Further, tropical expansion metrics for the poleward extent of the Northern Hemisphere Hadley cell (HC) indicate that simulated HC expansion is not sensitive to existing model biases in BC vertical distribution.« less

  19. Nonparametric Transfer Function Models

    PubMed Central

    Liu, Jun M.; Chen, Rong; Yao, Qiwei

    2009-01-01

    In this paper a class of nonparametric transfer function models is proposed to model nonlinear relationships between ‘input’ and ‘output’ time series. The transfer function is smooth with unknown functional forms, and the noise is assumed to be a stationary autoregressive-moving average (ARMA) process. The nonparametric transfer function is estimated jointly with the ARMA parameters. By modeling the correlation in the noise, the transfer function can be estimated more efficiently. The parsimonious ARMA structure improves the estimation efficiency in finite samples. The asymptotic properties of the estimators are investigated. The finite-sample properties are illustrated through simulations and one empirical example. PMID:20628584

  20. An improved moving average technical trading rule

    NASA Astrophysics Data System (ADS)

    Papailias, Fotis; Thomakos, Dimitrios D.

    2015-06-01

    This paper proposes a modified version of the widely used price and moving average cross-over trading strategies. The suggested approach (presented in its 'long only' version) is a combination of cross-over 'buy' signals and a dynamic threshold value which acts as a dynamic trailing stop. The trading behaviour and performance from this modified strategy are different from the standard approach with results showing that, on average, the proposed modification increases the cumulative return and the Sharpe ratio of the investor while exhibiting smaller maximum drawdown and smaller drawdown duration than the standard strategy.

  1. Studies in astronomical time series analysis. I - Modeling random processes in the time domain

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1981-01-01

    Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.

  2. Low-Rank Matrix Recovery Approach for Clutter Rejection in Real-Time IR-UWB Radar-Based Moving Target Detection

    PubMed Central

    Sabushimike, Donatien; Na, Seung You; Kim, Jin Young; Bui, Ngoc Nam; Seo, Kyung Sik; Kim, Gil Gyeom

    2016-01-01

    The detection of a moving target using an IR-UWB Radar involves the core task of separating the waves reflected by the static background and by the moving target. This paper investigates the capacity of the low-rank and sparse matrix decomposition approach to separate the background and the foreground in the trend of UWB Radar-based moving target detection. Robust PCA models are criticized for being batched-data-oriented, which makes them inconvenient in realistic environments where frames need to be processed as they are recorded in real time. In this paper, a novel method based on overlapping-windows processing is proposed to cope with online processing. The method consists of processing a small batch of frames which will be continually updated without changing its size as new frames are captured. We prove that RPCA (via its Inexact Augmented Lagrange Multiplier (IALM) model) can successfully separate the two subspaces, which enhances the accuracy of target detection. The overlapping-windows processing method converges on the optimal solution with its batch counterpart (i.e., processing batched data with RPCA), and both methods prove the robustness and efficiency of the RPCA over the classic PCA and the commonly used exponential averaging method. PMID:27598159

  3. Short-Term Exposure to Ambient Air Pollution and Biomarkers of Systemic Inflammation: The Framingham Heart Study.

    PubMed

    Li, Wenyuan; Dorans, Kirsten S; Wilker, Elissa H; Rice, Mary B; Ljungman, Petter L; Schwartz, Joel D; Coull, Brent A; Koutrakis, Petros; Gold, Diane R; Keaney, John F; Vasan, Ramachandran S; Benjamin, Emelia J; Mittleman, Murray A

    2017-09-01

    The objective of this study is to examine associations between short-term exposure to ambient air pollution and circulating biomarkers of systemic inflammation in participants from the Framingham Offspring and Third Generation cohorts in the greater Boston area. We included 3996 noncurrent smoking participants (mean age, 53.6 years; 54% women) who lived within 50 km from a central air pollution monitoring site in Boston, MA, and calculated the 1- to 7-day moving averages of fine particulate matter (diameter<2.5 µm), black carbon, sulfate, nitrogen oxides, and ozone before the examination visits. We used linear mixed effects models for C-reactive protein and tumor necrosis factor receptor 2, which were measured up to twice for each participant; we used linear regression models for interleukin-6, fibrinogen, and tumor necrosis factor α, which were measured once. We adjusted for demographics, socioeconomic position, lifestyle, time, and weather. The 3- to 7-day moving averages of fine particulate matter (diameter<2.5 µm) and sulfate were positively associated with C-reactive protein concentrations. A 5 µg/m 3 higher 5-day moving average fine particulate matter (diameter<2.5 µm) was associated with 4.2% (95% confidence interval: 0.8, 7.6) higher circulating C-reactive protein. Positive associations were also observed for nitrogen oxides with interleukin-6 and for black carbon, sulfate, and ozone with tumor necrosis factor receptor 2. However, black carbon, sulfate, and nitrogen oxides were negatively associated with fibrinogen, and sulfate was negatively associated with tumor necrosis factor α. Higher short-term exposure to relatively low levels of ambient air pollution was associated with higher levels of C-reactive protein, interleukin-6, and tumor necrosis factor receptor 2 but not fibrinogen or tumor necrosis factor α in individuals residing in the greater Boston area. © 2017 American Heart Association, Inc.

  4. Computational Fluid Dynamics Investigation of Human Aspiration in Low Velocity Air: Orientation Effects on Nose-Breathing Simulations

    PubMed Central

    Anderson, Kimberly R.; Anthony, T. Renée

    2014-01-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1–0.4 m s−1). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111

  5. A computationally fast, reduced model for simulating landslide dynamics and tsunamis generated by landslides in natural terrains

    NASA Astrophysics Data System (ADS)

    Mohammed, F.

    2016-12-01

    Landslide hazards such as fast-moving debris flows, slow-moving landslides, and other mass flows cause numerous fatalities, injuries, and damage. Landslide occurrences in fjords, bays, and lakes can additionally generate tsunamis with locally extremely high wave heights and runups. Two-dimensional depth-averaged models can successfully simulate the entire lifecycle of the three-dimensional landslide dynamics and tsunami propagation efficiently and accurately with the appropriate assumptions. Landslide rheology is defined using viscous fluids, visco-plastic fluids, and granular material to account for the possible landslide source materials. Saturated and unsaturated rheologies are further included to simulate debris flow, debris avalanches, mudflows, and rockslides respectively. The models are obtained by reducing the fully three-dimensional Navier-Stokes equations with the internal rheological definition of the landslide material, the water body, and appropriate scaling assumptions to obtain the depth-averaged two-dimensional models. The landslide and tsunami models are coupled to include the interaction between the landslide and the water body for tsunami generation. The reduced models are solved numerically with a fast semi-implicit finite-volume, shock-capturing based algorithm. The well-balanced, positivity preserving algorithm accurately accounts for wet-dry interface transition for the landslide runout, landslide-water body interface, and the tsunami wave flooding on land. The models are implemented as a General-Purpose computing on Graphics Processing Unit-based (GPGPU) suite of models, either coupled or run independently within the suite. The GPGPU implementation provides up to 1000 times speedup over a CPU-based serial computation. This enables simulations of multiple scenarios of hazard realizations that provides a basis for a probabilistic hazard assessment. The models have been successfully validated against experiments, past studies, and field data for landslides and tsunamis.

  6. Application of a new hybrid model with seasonal auto-regressive integrated moving average (ARIMA) and nonlinear auto-regressive neural network (NARNN) in forecasting incidence cases of HFMD in Shenzhen, China.

    PubMed

    Yu, Lijing; Zhou, Lingling; Tan, Li; Jiang, Hongbo; Wang, Ying; Wei, Sheng; Nie, Shaofa

    2014-01-01

    Outbreaks of hand-foot-mouth disease (HFMD) have been reported for many times in Asia during the last decades. This emerging disease has drawn worldwide attention and vigilance. Nowadays, the prevention and control of HFMD has become an imperative issue in China. Early detection and response will be helpful before it happening, using modern information technology during the epidemic. In this paper, a hybrid model combining seasonal auto-regressive integrated moving average (ARIMA) model and nonlinear auto-regressive neural network (NARNN) is proposed to predict the expected incidence cases from December 2012 to May 2013, using the retrospective observations obtained from China Information System for Disease Control and Prevention from January 2008 to November 2012. The best-fitted hybrid model was combined with seasonal ARIMA [Formula: see text] and NARNN with 15 hidden units and 5 delays. The hybrid model makes the good forecasting performance and estimates the expected incidence cases from December 2012 to May 2013, which are respectively -965.03, -1879.58, 4138.26, 1858.17, 4061.86 and 6163.16 with an obviously increasing trend. The model proposed in this paper can predict the incidence trend of HFMD effectively, which could be helpful to policy makers. The usefulness of expected cases of HFMD perform not only in detecting outbreaks or providing probability statements, but also in providing decision makers with a probable trend of the variability of future observations that contains both historical and recent information.

  7. Forecasting and prediction of scorpion sting cases in Biskra province, Algeria, using a seasonal autoregressive integrated moving average model.

    PubMed

    Selmane, Schehrazad; L'Hadj, Mohamed

    2016-01-01

    The aims of this study were to highlight some epidemiological aspects of scorpion envenomations, to analyse and interpret the available data for Biskra province, Algeria, and to develop a forecasting model for scorpion sting cases in Biskra province, which records the highest number of scorpion stings in Algeria. In addition to analysing the epidemiological profile of scorpion stings that occurred throughout the year 2013, we used the Box-Jenkins approach to fit a seasonal autoregressive integrated moving average (SARIMA) model to the monthly recorded scorpion sting cases in Biskra from 2000 to 2012. The epidemiological analysis revealed that scorpion stings were reported continuously throughout the year, with peaks in the summer months. The most affected age group was 15 to 49 years old, with a male predominance. The most prone human body areas were the upper and lower limbs. The majority of cases (95.9%) were classified as mild envenomations. The time series analysis showed that a (5,1,0)×(0,1,1) 12 SARIMA model offered the best fit to the scorpion sting surveillance data. This model was used to predict scorpion sting cases for the year 2013, and the fitted data showed considerable agreement with the actual data. SARIMA models are useful for monitoring scorpion sting cases, and provide an estimate of the variability to be expected in future scorpion sting cases. This knowledge is helpful in predicting whether an unusual situation is developing or not, and could therefore assist decision-makers in strengthening the province's prevention and control measures and in initiating rapid response measures.

  8. Understanding the past to interpret the future: Comparison of simulated groundwater recharge in the upper Colorado River basin (USA) using observed and general-circulation-model historical climate data

    USGS Publications Warehouse

    Tillman, Fred D.; Gangopadhyay, Subhrendu; Pruitt, Tom

    2017-01-01

    In evaluating potential impacts of climate change on water resources, water managers seek to understand how future conditions may differ from the recent past. Studies of climate impacts on groundwater recharge often compare simulated recharge from future and historical time periods on an average monthly or overall average annual basis, or compare average recharge from future decades to that from a single recent decade. Baseline historical recharge estimates, which are compared with future conditions, are often from simulations using observed historical climate data. Comparison of average monthly results, average annual results, or even averaging over selected historical decades, may mask the true variability in historical results and lead to misinterpretation of future conditions. Comparison of future recharge results simulated using general circulation model (GCM) climate data to recharge results simulated using actual historical climate data may also result in an incomplete understanding of the likelihood of future changes. In this study, groundwater recharge is estimated in the upper Colorado River basin, USA, using a distributed-parameter soil-water balance groundwater recharge model for the period 1951–2010. Recharge simulations are performed using precipitation, maximum temperature, and minimum temperature data from observed climate data and from 97 CMIP5 (Coupled Model Intercomparison Project, phase 5) projections. Results indicate that average monthly and average annual simulated recharge are similar using observed and GCM climate data. However, 10-year moving-average recharge results show substantial differences between observed and simulated climate data, particularly during period 1970–2000, with much greater variability seen for results using observed climate data.

  9. [Application of multiple seasonal autoregressive integrated moving average model in predicting the mumps incidence].

    PubMed

    Hui, Shisheng; Chen, Lizhang; Liu, Fuqiang; Ouyang, Yanhao

    2015-12-01

    To establish multiple seasonal autoregressive integrated moving average model(ARIMA) according to mumps disease incidence in Hunan province, and to predict the mumps incidence from May 2015 to April 2016 in Hunan province by the model. The data were downloaded from "Disease Surveillance Information Reporting Management System" in China Information System for Disease Control and Prevention. The monthly incidence of mumps in Hunan province was collected from January 2004 to April 2015 according to the onset date, including clinical diagnosis and laboratory confirmed cases. The predictive analysis method was the ARIMA model in SPSS 18.0 software, the ARIMA model was established on the monthly incidence of mumps from January 2004 to April 2014, and the date from May 2014 to April 2015 was used as the testing sample, Box-Ljung Q test was used to test the residual of the selected model. Finally, the monthly incidence of mumps from May 2015 to April 2016 was predicted by the model. The peak months of the mumps incidence were May to July every year, and the secondary peak months were November to January of the following year, during January 2004 to April 2014 in Hunan province. After the data sequence was handled by smooth sequence, model identification, establishment and diagnosis, the ARIMA(2,1,1) × (0,1,1)(12) was established, Box-Ljung Q test found, Q=8.40, P=0.868, the residual sequence was white noise, the established model to the data information extraction was complete, the model was reasonable. The R(2) value of the model fitting degree was 0.871, and the value of BIC was -1.646, while the average absolute error of the predicted value and the actual value was 0.025/100 000, the average relative error was 13.004%. The relative error of the model for the prediction of the mumps incidence in Hunan province was small, and the predicting results were reliable. Using the ARIMA(2,1,1) ×(0,1,1)(12) model to predict the mumps incidence from April 2016 to May 2015 in Hunan province, the peak months of the mumps incidence were May to July, and the secondary peak months were November to January of the following year, the incidence of the peak month was close to the same period. The ARIMA(2,1,1)×(0,1,1)(12) model is well fitted the trend of the mumps disease incidence in Hunan province, it has some practical value for the prevention and control of the disease.

  10. A 12-Year Analysis of Nonbattle Injury Among US Service Members Deployed to Iraq and Afghanistan.

    PubMed

    Le, Tuan D; Gurney, Jennifer M; Nnamani, Nina S; Gross, Kirby R; Chung, Kevin K; Stockinger, Zsolt T; Nessen, Shawn C; Pusateri, Anthony E; Akers, Kevin S

    2018-05-30

    Nonbattle injury (NBI) among deployed US service members increases the burden on medical systems and results in high rates of attrition, affecting the available force. The possible causes and trends of NBI in the Iraq and Afghanistan wars have, to date, not been comprehensively described. To describe NBI among service members deployed to Iraq and Afghanistan, quantify absolute numbers of NBIs and proportion of NBIs within the Department of Defense Trauma Registry, and document the characteristics of this injury category. In this retrospective cohort study, data from the Department of Defense Trauma Registry on 29 958 service members injured in Iraq and Afghanistan from January 1, 2003, through December 31, 2014, were obtained. Injury incidence, patterns, and severity were characterized by battle injury and NBI. Trends in NBI were modeled using time series analysis with autoregressive integrated moving average and the weighted moving average method. Statistical analysis was performed from January 1, 2003, to December 31, 2014. Primary outcomes were proportion of NBIs and the changes in NBI over time. Among 29 958 casualties (battle injury and NBI) analyzed, 29 003 were in men and 955 were in women; the median age at injury was 24 years (interquartile range, 21-29 years). Nonbattle injury caused 34.1% of total casualties (n = 10 203) and 11.5% of all deaths (206 of 1788). Rates of NBI were higher among women than among men (63.2% [604 of 955] vs 33.1% [9599 of 29 003]; P < .001) and in Operation New Dawn (71.0% [298 of 420]) and Operation Iraqi Freedom (36.3% [6655 of 18 334]) compared with Operation Enduring Freedom (29.0% [3250 of 11 204]) (P < .001). A higher proportion of NBIs occurred in members of the Air Force (66.3% [539 of 810]) and Navy (48.3% [394 of 815]) than in members of the Army (34.7% [7680 of 22 154]) and Marine Corps (25.7% [1584 of 6169]) (P < .001). Leading mechanisms of NBI included falls (2178 [21.3%]), motor vehicle crashes (1921 [18.8%]), machinery or equipment accidents (1283 [12.6%]), blunt objects (1107 [10.8%]), gunshot wounds (728 [7.1%]), and sports (697 [6.8%]), causing predominantly blunt trauma (7080 [69.4%]). The trend in proportion of NBIs did not decrease over time, remaining at approximately 35% (by weighted moving average) after 2006 and approximately 39% by autoregressive integrated moving average. Assuming stable battlefield conditions, the autoregressive integrated moving average model estimated that the proportion of NBIs from 2015 to 2022 would be approximately 41.0% (95% CI, 37.8%-44.3%). In this study, approximately one-third of injuries during the Iraq and Afghanistan wars resulted from NBI, and the proportion of NBIs was steady for 12 years. Understanding the possible causes of NBI during military operations may be useful to target protective measures and safety interventions, thereby conserving fighting strength on the battlefield.

  11. SM91: Observations of interchange between acceleration and thermalization processes in auroral electrons

    NASA Technical Reports Server (NTRS)

    Pongratz, M.

    1972-01-01

    Results from a Nike-Tomahawk sounding rocket flight launched from Fort Churchill are presented. The rocket was launched into a breakup aurora at magnetic local midnight on 21 March 1968. The rocket was instrumented to measure electrons with an electrostatic analyzer electron spectrometer which made 29 measurements in the energy interval 0.5 KeV to 30 KeV. Complete energy spectra were obtained at a rate of 10/sec. Pitch angle information is presented via 3 computed average per rocket spin. The dumped electron average corresponds to averages over electrons moving nearly parallel to the B vector. The mirroring electron average corresponds to averages over electrons moving nearly perpendicular to the B vector. The average was also computed over the entire downward hemisphere (the precipitated electron average). The observations were obtained in an altitude range of 10 km at 230 km altitude.

  12. Weather Variability, Tides, and Barmah Forest Virus Disease in the Gladstone Region, Australia

    PubMed Central

    Naish, Suchithra; Hu, Wenbiao; Nicholls, Neville; Mackenzie, John S.; McMichael, Anthony J.; Dale, Pat; Tong, Shilu

    2006-01-01

    In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention. PMID:16675420

  13. Intimate partner violence in Madrid: a time series analysis (2008-2016).

    PubMed

    Sanz-Barbero, Belén; Linares, Cristina; Vives-Cases, Carmen; González, José Luis; López-Ossorio, Juan José; Díaz, Julio

    2018-06-02

    This study analyzes whether there are time patterns in different intimate partner violence (IPV) indicators and aims to obtain models that can predict the behavior of these time series. Univariate autoregressive moving average models were used to analyze the time series corresponding to the number of daily calls to the 016 telephone IPV helpline and the number of daily police reports filed in the Community of Madrid during the period 2008-2015. Predictions were made for both dependent variables for 2016. The daily number of calls to the 016 telephone IPV helpline decreased during January 2008-April 2012 and increased during April 2012-December 2015. No statistically significant change was observed in the trend of the number of daily IPV police reports. The number of IPV police reports filed increased on weekends and on Christmas holidays. The number of calls to the 016 IPV help line increased on Mondays. Using data from 2008 to 2015, the univariate autoregressive moving average models predicted 64.2% of calls to the 016 telephone IPV helpline and 73.2% of police reports filed during 2016 in the Community of Madrid. Our results suggest the need for an increase in police and judicial resources on nonwork days. Also, the 016 telephone IPV helpline should be especially active on work days. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Characteristic correlation study of UV disinfection performance for ballast water treatment

    NASA Astrophysics Data System (ADS)

    Ba, Te; Li, Hongying; Osman, Hafiiz; Kang, Chang-Wei

    2016-11-01

    Characteristic correlation between ultraviolet disinfection performance and operating parameters, including ultraviolet transmittance (UVT), lamp power and water flow rate, was studied by numerical and experimental methods. A three-stage model was developed to simulate the fluid flow, UV radiation and the trajectories of microorganisms. Navier-Stokes equation with k-epsilon turbulence was solved to model the fluid flow, while discrete ordinates (DO) radiation model and discrete phase model (DPM) were used to introduce UV radiation and microorganisms trajectories into the model, respectively. The UV dose statistical distribution for the microorganisms was found to move to higher value with the increase of UVT and lamp power, but moves to lower value when the water flow rate increases. Further investigation shows that the fluence rate increases exponentially with UVT but linearly with the lamp power. The average and minimum resident time decreases linearly with the water flow rate while the maximum resident time decrease rapidly in a certain range. The current study can be used as a digital design and performance evaluation tool of the UV reactor for ballast water treatment.

  15. Model-based design of an intermittent simulated moving bed process for recovering lactic acid from ternary mixture.

    PubMed

    Song, Mingkai; Cui, Linlin; Kuang, Han; Zhou, Jingwei; Yang, Pengpeng; Zhuang, Wei; Chen, Yong; Liu, Dong; Zhu, Chenjie; Chen, Xiaochun; Ying, Hanjie; Wu, Jinglan

    2018-08-10

    An intermittent simulated moving bed (3F-ISMB) operation scheme, the extension of the 3W-ISMB to the non-linear adsorption region, has been introduced for separation of glucose, lactic acid and acetic acid ternary-mixture. This work focuses on exploring the feasibility of the proposed process theoretically and experimentally. Firstly, the real 3F-ISMB model coupled with the transport dispersive model (TDM) and the Modified-Langmuir isotherm was established to build up the separation parameter plane. Subsequently, three operating conditions were selected from the plane to run the 3F-ISMB unit. The experimental results were used to verify the model. Afterwards, the influences of the various flow rates on the separation performances were investigated systematically by means of the validated 3F-ISMB model. The intermittent-retained component lactic acid was finally obtained with the purity of 98.5%, recovery of 95.5% and the average concentration of 38 g/L. The proposed 3F-ISMB process can efficiently separate the mixture with low selectivity into three fractions. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Model-checking techniques based on cumulative residuals.

    PubMed

    Lin, D Y; Wei, L J; Ying, Z

    2002-03-01

    Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided.

  17. MARD—A moving average rose diagram application for the geosciences

    NASA Astrophysics Data System (ADS)

    Munro, Mark A.; Blenkinsop, Thomas G.

    2012-12-01

    MARD 1.0 is a computer program for generating smoothed rose diagrams by using a moving average, which is designed for use across the wide range of disciplines encompassed within the Earth Sciences. Available in MATLAB®, Microsoft® Excel and GNU Octave formats, the program is fully compatible with both Microsoft® Windows and Macintosh operating systems. Each version has been implemented in a user-friendly way that requires no prior experience in programming with the software. MARD conducts a moving average smoothing, a form of signal processing low-pass filter, upon the raw circular data according to a set of pre-defined conditions selected by the user. This form of signal processing filter smoothes the angular dataset, emphasising significant circular trends whilst reducing background noise. Customisable parameters include whether the data is uni- or bi-directional, the angular range (or aperture) over which the data is averaged, and whether an unweighted or weighted moving average is to be applied. In addition to the uni- and bi-directional options, the MATLAB® and Octave versions also possess a function for plotting 2-dimensional dips/pitches in a single, lower, hemisphere. The rose diagrams from each version are exportable as one of a selection of common graphical formats. Frequently employed statistical measures that determine the vector mean, mean resultant (or length), circular standard deviation and circular variance are also included. MARD's scope is demonstrated via its application to a variety of datasets within the Earth Sciences.

  18. An improved portmanteau test for autocorrelated errors in interrupted time-series regression models.

    PubMed

    Huitema, Bradley E; McKean, Joseph W

    2007-08-01

    A new portmanteau test for autocorrelation among the errors of interrupted time-series regression models is proposed. Simulation results demonstrate that the inferential properties of the proposed Q(H-M) test statistic are considerably more satisfactory than those of the well known Ljung-Box test and moderately better than those of the Box-Pierce test. These conclusions generally hold for a wide variety of autoregressive (AR), moving averages (MA), and ARMA error processes that are associated with time-series regression models of the form described in Huitema and McKean (2000a, 2000b).

  19. Temporal patterns and a disease forecasting model of dengue hemorrhagic fever in Jakarta based on 10 years of surveillance data.

    PubMed

    Sitepu, Monika S; Kaewkungwal, Jaranit; Luplerdlop, Nathanej; Soonthornworasiri, Ngamphol; Silawan, Tassanee; Poungsombat, Supawadee; Lawpoolsri, Saranath

    2013-03-01

    This study aimed to describe the temporal patterns of dengue transmission in Jakarta from 2001 to 2010, using data from the national surveillance system. The Box-Jenkins forecasting technique was used to develop a seasonal autoregressive integrated moving average (SARIMA) model for the study period and subsequently applied to forecast DHF incidence in 2011 in Jakarta Utara, Jakarta Pusat, Jakarta Barat, and the municipalities of Jakarta Province. Dengue incidence in 2011, based on the forecasting model was predicted to increase from the previous year.

  20. Prediction of South China sea level using seasonal ARIMA models

    NASA Astrophysics Data System (ADS)

    Fernandez, Flerida Regine; Po, Rodolfo; Montero, Neil; Addawe, Rizavel

    2017-11-01

    Accelerating sea level rise is an indicator of global warming and poses a threat to low-lying places and coastal countries. This study aims to fit a Seasonal Autoregressive Integrated Moving Average (SARIMA) model to the time series obtained from the TOPEX and Jason series of satellite radar altimetries of the South China Sea from the year 2008 to 2015. With altimetric measurements taken in a 10-day repeat cycle, monthly averages of the satellite altimetry measurements were taken to compose the data set used in the study. SARIMA models were then tried and fitted to the time series in order to find the best-fit model. Results show that the SARIMA(1,0,0)(0,1,1)12 model best fits the time series and was used to forecast the values for January 2016 to December 2016. The 12-month forecast using SARIMA(1,0,0)(0,1,1)12 shows that the sea level gradually increases from January to September 2016, and decreases until December 2016.

  1. MO-FG-CAMPUS-TeP3-01: A Model of Baseline Shift to Improve Robustness of Proton Therapy Treatments of Moving Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souris, K; Barragan Montero, A; Di Perri, D

    Purpose: The shift in mean position of a moving tumor also known as “baseline shift”, has been modeled, in order to automatically generate uncertainty scenarios for the assessment and robust optimization of proton therapy treatments in lung cancer. Methods: An average CT scan and a Mid-Position CT scan (MidPCT) of the patient at the planning time are first generated from a 4D-CT data. The mean position of the tumor along the breathing cycle is represented by the GTV contour in the MidPCT. Several studies reported both systematic and random variations of the mean tumor position from fraction to fraction. Ourmore » model can simulate this baseline shift by generating a local deformation field that moves the tumor on all phases of the 4D-CT, without creating any non-physical artifact. The deformation field is comprised of normal and tangential components with respect to the lung wall in order to allow the tumor to slip within the lung instead of deforming the lung surface. The deformation field is eventually smoothed in order to enforce its continuity. Two 4D-CT series acquired at 1 week of interval were used to validate the model. Results: Based on the first 4D-CT set, the model was able to generate a third 4D-CT that reproduced the 5.8 mm baseline-shift measured in the second 4D-CT. Water equivalent thickness (WET) of the voxels have been computed for the 3 average CTs. The root mean square deviation of the WET in the GTV is 0.34 mm between week 1 and week 2, and 0.08 mm between the simulated data and week 2. Conclusion: Our model can be used to automatically generate uncertainty scenarios for robustness analysis of a proton therapy plan. The generated scenarios can also feed a TPS equipped with a robust optimizer. Kevin Souris, Ana Barragan, and Dario Di Perri are financially supported by Televie Grants from F.R.S.-FNRS.« less

  2. Stochastic approaches for time series forecasting of boron: a case study of Western Turkey.

    PubMed

    Durdu, Omer Faruk

    2010-10-01

    In the present study, a seasonal and non-seasonal prediction of boron concentrations time series data for the period of 1996-2004 from Büyük Menderes river in western Turkey are addressed by means of linear stochastic models. The methodology presented here is to develop adequate linear stochastic models known as autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to predict boron content in the Büyük Menderes catchment. Initially, the Box-Whisker plots and Kendall's tau test are used to identify the trends during the study period. The measurements locations do not show significant overall trend in boron concentrations, though marginal increasing and decreasing trends are observed for certain periods at some locations. ARIMA modeling approach involves the following three steps: model identification, parameter estimation, and diagnostic checking. In the model identification step, considering the autocorrelation function (ACF) and partial autocorrelation function (PACF) results of boron data series, different ARIMA models are identified. The model gives the minimum Akaike information criterion (AIC) is selected as the best-fit model. The parameter estimation step indicates that the estimated model parameters are significantly different from zero. The diagnostic check step is applied to the residuals of the selected ARIMA models and the results indicate that the residuals are independent, normally distributed, and homoscadastic. For the model validation purposes, the predicted results using the best ARIMA models are compared to the observed data. The predicted data show reasonably good agreement with the actual data. The comparison of the mean and variance of 3-year (2002-2004) observed data vs predicted data from the selected best models show that the boron model from ARIMA modeling approaches could be used in a safe manner since the predicted values from these models preserve the basic statistics of observed data in terms of mean. The ARIMA modeling approach is recommended for predicting boron concentration series of a river.

  3. An autoregressive integrated moving average model for short-term prediction of hepatitis C virus seropositivity among male volunteer blood donors in Karachi, Pakistan

    PubMed Central

    Akhtar, Saeed; Rozi, Shafquat

    2009-01-01

    AIM: To identify the stochastic autoregressive integrated moving average (ARIMA) model for short term forecasting of hepatitis C virus (HCV) seropositivity among volunteer blood donors in Karachi, Pakistan. METHODS: Ninety-six months (1998-2005) data on HCV seropositive cases (1000-1 × month-1) among male volunteer blood donors tested at four major blood banks in Karachi, Pakistan were subjected to ARIMA modeling. Subsequently, a fitted ARIMA model was used to forecast HCV seropositive donors for 91-96 mo to contrast with observed series of the same months. To assess the forecast accuracy, the mean absolute error rate (%) between the observed and predicted HCV seroprevalence was calculated. Finally, a fitted ARIMA model was used for short-term forecasts beyond the observed series. RESULTS: The goodness-of-fit test of the optimum ARIMA (2,1,7) model showed non-significant autocorrelations in the residuals of the model. The forecasts by ARIMA for 91-96 mo closely followed the pattern of observed series for the same months, with mean monthly absolute forecast errors (%) over 6 mo of 6.5%. The short-term forecasts beyond the observed series adequately captured the pattern in the data and showed increasing tendency of HCV seropositivity with a mean ± SD HCV seroprevalence (1000-1 × month-1) of 24.3 ± 1.4 over the forecast interval. CONCLUSION: To curtail HCV spread, public health authorities need to educate communities and health care providers about HCV transmission routes based on known HCV epidemiology in Pakistan and its neighboring countries. Future research may focus on factors associated with hyperendemic levels of HCV infection. PMID:19340903

  4. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: a case study in endemic districts of Bhutan.

    PubMed

    Wangdi, Kinley; Singhasivanon, Pratap; Silawan, Tassanee; Lawpoolsri, Saranath; White, Nicholas J; Kaewkungwal, Jaranit

    2010-09-03

    Malaria still remains a public health problem in some districts of Bhutan despite marked reduction of cases in last few years. To strengthen the country's prevention and control measures, this study was carried out to develop forecasting and prediction models of malaria incidence in the endemic districts of Bhutan using time series and ARIMAX. This study was carried out retrospectively using the monthly reported malaria cases from the health centres to Vector-borne Disease Control Programme (VDCP) and the meteorological data from Meteorological Unit, Department of Energy, Ministry of Economic Affairs. Time series analysis was performed on monthly malaria cases, from 1994 to 2008, in seven malaria endemic districts. The time series models derived from a multiplicative seasonal autoregressive integrated moving average (ARIMA) was deployed to identify the best model using data from 1994 to 2006. The best-fit model was selected for each individual district and for the overall endemic area was developed and the monthly cases from January to December 2009 and 2010 were forecasted. In developing the prediction model, the monthly reported malaria cases and the meteorological factors from 1996 to 2008 of the seven districts were analysed. The method of ARIMAX modelling was employed to determine predictors of malaria of the subsequent month. It was found that the ARIMA (p, d, q) (P, D, Q)s model (p and P representing the auto regressive and seasonal autoregressive; d and D representing the non-seasonal differences and seasonal differencing; and q and Q the moving average parameters and seasonal moving average parameters, respectively and s representing the length of the seasonal period) for the overall endemic districts was (2,1,1)(0,1,1)12; the modelling data from each district revealed two most common ARIMA models including (2,1,1)(0,1,1)12 and (1,1,1)(0,1,1)12. The forecasted monthly malaria cases from January to December 2009 and 2010 varied from 15 to 82 cases in 2009 and 67 to 149 cases in 2010, where population in 2009 was 285,375 and the expected population of 2010 to be 289,085. The ARIMAX model of monthly cases and climatic factors showed considerable variations among the different districts. In general, the mean maximum temperature lagged at one month was a strong positive predictor of an increased malaria cases for four districts. The monthly number of cases of the previous month was also a significant predictor in one district, whereas no variable could predict malaria cases for two districts. The ARIMA models of time-series analysis were useful in forecasting the number of cases in the endemic areas of Bhutan. There was no consistency in the predictors of malaria cases when using ARIMAX model with selected lag times and climatic predictors. The ARIMA forecasting models could be employed for planning and managing malaria prevention and control programme in Bhutan.

  5. Adult survival of Black-legged Kittiwakes Rissa tridactyla in a Pacific colony

    USGS Publications Warehouse

    Hatch, Scott A.; Roberts, Bay D.; Fadely, Brian S.

    1993-01-01

    Breeding Black-legged Kittiwakes Rissa tridactyla survived at a mean annual rate of 0.926 in four years at a colony in Alaska. Survival rates observed in sexed males (0.930) and females (0.937) did not differ significantly. The rate of return among nonbreeding Kittiwakes (0.839) was lower than that of known breeders, presumably because more nonbreeders moved away from the study plots where they were marked. Individual nonbreeders frequented sites up to 5 km apart on the same island, while a few established breeders moved up to 2.5 km between years. Mate retention in breeding Kittiwakes averaged 69% in three years. Among pairs that split, the cause of changing mates was about equally divided between death (46%) and divorce (54%). Average adult life expectancy was estimated at 13.0 years. Combined with annual productivity averaging 0.17 chick per nest, the observed survival was insufficient for maintaining population size. Rather, an irregular decline observed in the study colony since 1981 is consistent with the model of a closed population with little or no recruitment. Compared to their Atlantic counterparts, Pacific Kittiwakes have low productivity and high survival. The question arises whether differences reflect phenotypic plasticity or genetically determined variation in population parameters.

  6. The application of time series models to cloud field morphology analysis

    NASA Technical Reports Server (NTRS)

    Chin, Roland T.; Jau, Jack Y. C.; Weinman, James A.

    1987-01-01

    A modeling method for the quantitative description of remotely sensed cloud field images is presented. A two-dimensional texture modeling scheme based on one-dimensional time series procedures is adopted for this purpose. The time series procedure used is the seasonal autoregressive, moving average (ARMA) process in Box and Jenkins. Cloud field properties such as directionality, clustering and cloud coverage can be retrieved by this method. It has been demonstrated that a cloud field image can be quantitatively defined by a small set of parameters and synthesized surrogates can be reconstructed from these model parameters. This method enables cloud climatology to be studied quantitatively.

  7. Parameter prediction based on Improved Process neural network and ARMA error compensation in Evaporation Process

    NASA Astrophysics Data System (ADS)

    Qian, Xiaoshan

    2018-01-01

    The traditional model of evaporation process parameters have continuity and cumulative characteristics of the prediction error larger issues, based on the basis of the process proposed an adaptive particle swarm neural network forecasting method parameters established on the autoregressive moving average (ARMA) error correction procedure compensated prediction model to predict the results of the neural network to improve prediction accuracy. Taking a alumina plant evaporation process to analyze production data validation, and compared with the traditional model, the new model prediction accuracy greatly improved, can be used to predict the dynamic process of evaporation of sodium aluminate solution components.

  8. Short-term electric power demand forecasting based on economic-electricity transmission model

    NASA Astrophysics Data System (ADS)

    Li, Wenfeng; Bai, Hongkun; Liu, Wei; Liu, Yongmin; Wang, Yubin Mao; Wang, Jiangbo; He, Dandan

    2018-04-01

    Short-term electricity demand forecasting is the basic work to ensure safe operation of the power system. In this paper, a practical economic electricity transmission model (EETM) is built. With the intelligent adaptive modeling capabilities of Prognoz Platform 7.2, the econometric model consists of three industrial added value and income levels is firstly built, the electricity demand transmission model is also built. By multiple regression, moving averages and seasonal decomposition, the problem of multiple correlations between variables is effectively overcome in EETM. The validity of EETM is proved by comparison with the actual value of Henan Province. Finally, EETM model is used to forecast the electricity consumption of the 1-4 quarter of 2018.

  9. Real time detection of farm-level swine mycobacteriosis outbreak using time series modeling of the number of condemned intestines in abattoirs.

    PubMed

    Adachi, Yasumoto; Makita, Kohei

    2015-09-01

    Mycobacteriosis in swine is a common zoonosis found in abattoirs during meat inspections, and the veterinary authority is expected to inform the producer for corrective actions when an outbreak is detected. The expected value of the number of condemned carcasses due to mycobacteriosis therefore would be a useful threshold to detect an outbreak, and the present study aims to develop such an expected value through time series modeling. The model was developed using eight years of inspection data (2003 to 2010) obtained at 2 abattoirs of the Higashi-Mokoto Meat Inspection Center, Japan. The resulting model was validated by comparing the predicted time-dependent values for the subsequent 2 years with the actual data for 2 years between 2011 and 2012. For the modeling, at first, periodicities were checked using Fast Fourier Transformation, and the ensemble average profiles for weekly periodicities were calculated. An Auto-Regressive Integrated Moving Average (ARIMA) model was fitted to the residual of the ensemble average on the basis of minimum Akaike's information criterion (AIC). The sum of the ARIMA model and the weekly ensemble average was regarded as the time-dependent expected value. During 2011 and 2012, the number of whole or partial condemned carcasses exceeded the 95% confidence interval of the predicted values 20 times. All of these events were associated with the slaughtering of pigs from three producers with the highest rate of condemnation due to mycobacteriosis.

  10. Statistical description of turbulent transport for flux driven toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Imadera, K.; Kishimoto, Y.; Li, J. Q.; Nordman, H.

    2017-06-01

    A novel methodology to analyze non-Gaussian probability distribution functions (PDFs) of intermittent turbulent transport in global full-f gyrokinetic simulations is presented. In this work, the auto-regressive integrated moving average (ARIMA) model is applied to time series data of intermittent turbulent heat transport to separate noise and oscillatory trends, allowing for the extraction of non-Gaussian features of the PDFs. It was shown that non-Gaussian tails of the PDFs from first principles based gyrokinetic simulations agree with an analytical estimation based on a two fluid model.

  11. Naive vs. Sophisticated Methods of Forecasting Public Library Circulations.

    ERIC Educational Resources Information Center

    Brooks, Terrence A.

    1984-01-01

    Two sophisticated--autoregressive integrated moving average (ARIMA), straight-line regression--and two naive--simple average, monthly average--forecasting techniques were used to forecast monthly circulation totals of 34 public libraries. Comparisons of forecasts and actual totals revealed that ARIMA and monthly average methods had smallest mean…

  12. Earthquakes Magnitude Predication Using Artificial Neural Network in Northern Red Sea Area

    NASA Astrophysics Data System (ADS)

    Alarifi, A. S.; Alarifi, N. S.

    2009-12-01

    Earthquakes are natural hazards that do not happen very often, however they may cause huge losses in life and property. Early preparation for these hazards is a key factor to reduce their damage and consequence. Since early ages, people tried to predicate earthquakes using simple observations such as strange or a typical animal behavior. In this paper, we study data collected from existing earthquake catalogue to give better forecasting for future earthquakes. The 16000 events cover a time span of 1970 to 2009, the magnitude range from greater than 0 to less than 7.2 while the depth range from greater than 0 to less than 100km. We propose a new artificial intelligent predication system based on artificial neural network, which can be used to predicate the magnitude of future earthquakes in northern Red Sea area including the Sinai Peninsula, the Gulf of Aqaba, and the Gulf of Suez. We propose a feed forward new neural network model with multi-hidden layers to predicate earthquakes occurrences and magnitudes in northern Red Sea area. Although there are similar model that have been published before in different areas, to our best knowledge this is the first neural network model to predicate earthquake in northern Red Sea area. Furthermore, we present other forecasting methods such as moving average over different interval, normally distributed random predicator, and uniformly distributed random predicator. In addition, we present different statistical methods and data fitting such as linear, quadratic, and cubic regression. We present a details performance analyses of the proposed methods for different evaluation metrics. The results show that neural network model provides higher forecast accuracy than other proposed methods. The results show that neural network achieves an average absolute error of 2.6% while an average absolute error of 3.8%, 7.3% and 6.17% for moving average, linear regression and cubic regression, respectively. In this work, we show an analysis of earthquakes data in northern Red Sea area for different statistics parameters such as correlation, mean, standard deviation, and other. This analysis is to provide a deep understand of the Seismicity of the area, and existing patterns.

  13. Adaptive Anchoring Model: How Static and Dynamic Presentations of Time Series Influence Judgments and Predictions.

    PubMed

    Kusev, Petko; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Juliusson, Asgeir; Chater, Nick

    2018-01-01

    When attempting to predict future events, people commonly rely on historical data. One psychological characteristic of judgmental forecasting of time series, established by research, is that when people make forecasts from series, they tend to underestimate future values for upward trends and overestimate them for downward ones, so-called trend-damping (modeled by anchoring on, and insufficient adjustment from, the average of recent time series values). Events in a time series can be experienced sequentially (dynamic mode), or they can also be retrospectively viewed simultaneously (static mode), not experienced individually in real time. In one experiment, we studied the influence of presentation mode (dynamic and static) on two sorts of judgment: (a) predictions of the next event (forecast) and (b) estimation of the average value of all the events in the presented series (average estimation). Participants' responses in dynamic mode were anchored on more recent events than in static mode for all types of judgment but with different consequences; hence, dynamic presentation improved prediction accuracy, but not estimation. These results are not anticipated by existing theoretical accounts; we develop and present an agent-based model-the adaptive anchoring model (ADAM)-to account for the difference between processing sequences of dynamically and statically presented stimuli (visually presented data). ADAM captures how variation in presentation mode produces variation in responses (and the accuracy of these responses) in both forecasting and judgment tasks. ADAM's model predictions for the forecasting and judgment tasks fit better with the response data than a linear-regression time series model. Moreover, ADAM outperformed autoregressive-integrated-moving-average (ARIMA) and exponential-smoothing models, while neither of these models accounts for people's responses on the average estimation task. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.

  14. A distributed lag approach to fitting non-linear dose-response models in particulate matter air pollution time series investigations.

    PubMed

    Roberts, Steven; Martin, Michael A

    2007-06-01

    The majority of studies that have investigated the relationship between particulate matter (PM) air pollution and mortality have assumed a linear dose-response relationship and have used either a single-day's PM or a 2- or 3-day moving average of PM as the measure of PM exposure. Both of these modeling choices have come under scrutiny in the literature, the linear assumption because it does not allow for non-linearities in the dose-response relationship, and the use of the single- or multi-day moving average PM measure because it does not allow for differential PM-mortality effects spread over time. These two problems have been dealt with on a piecemeal basis with non-linear dose-response models used in some studies and distributed lag models (DLMs) used in others. In this paper, we propose a method for investigating the shape of the PM-mortality dose-response relationship that combines a non-linear dose-response model with a DLM. This combined model will be shown to produce satisfactory estimates of the PM-mortality dose-response relationship in situations where non-linear dose response models and DLMs alone do not; that is, the combined model did not systemically underestimate or overestimate the effect of PM on mortality. The combined model is applied to ten cities in the US and a pooled dose-response model formed. When fitted with a change-point value of 60 microg/m(3), the pooled model provides evidence for a positive association between PM and mortality. The combined model produced larger estimates for the effect of PM on mortality than when using a non-linear dose-response model or a DLM in isolation. For the combined model, the estimated percentage increase in mortality for PM concentrations of 25 and 75 microg/m(3) were 3.3% and 5.4%, respectively. In contrast, the corresponding values from a DLM used in isolation were 1.2% and 3.5%, respectively.

  15. Analysing the accuracy of machine learning techniques to develop an integrated influent time series model: case study of a sewage treatment plant, Malaysia.

    PubMed

    Ansari, Mozafar; Othman, Faridah; Abunama, Taher; El-Shafie, Ahmed

    2018-04-01

    The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R 2 ) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.

  16. Parameter interdependence and uncertainty induced by lumping in a hydrologic model

    NASA Astrophysics Data System (ADS)

    Gallagher, Mark R.; Doherty, John

    2007-05-01

    Throughout the world, watershed modeling is undertaken using lumped parameter hydrologic models that represent real-world processes in a manner that is at once abstract, but nevertheless relies on algorithms that reflect real-world processes and parameters that reflect real-world hydraulic properties. In most cases, values are assigned to the parameters of such models through calibration against flows at watershed outlets. One criterion by which the utility of the model and the success of the calibration process are judged is that realistic values are assigned to parameters through this process. This study employs regularization theory to examine the relationship between lumped parameters and corresponding real-world hydraulic properties. It demonstrates that any kind of parameter lumping or averaging can induce a substantial amount of "structural noise," which devices such as Box-Cox transformation of flows and autoregressive moving average (ARMA) modeling of residuals are unlikely to render homoscedastic and uncorrelated. Furthermore, values estimated for lumped parameters are unlikely to represent average values of the hydraulic properties after which they are named and are often contaminated to a greater or lesser degree by the values of hydraulic properties which they do not purport to represent at all. As a result, the question of how rigidly they should be bounded during the parameter estimation process is still an open one.

  17. The specific absorption rate of tissues in rats exposed to electromagnetic plane waves in the frequency range of 0.05-5 GHz and SARwb in free-moving rats.

    PubMed

    Chen, Bingxin; Wang, Jiamin; Qi, Hongxin; Zhang, Jie; Chen, Shude; Wang, Xianghui

    2017-03-01

    As electromagnetic exposure experiments can only be performed on small animals, usually rats, research on the characteristics of specific absorption rate (SAR) distribution in the rat has received increasing interest. A series of calculations, which simulated the SAR in a male rat anatomical model exposed to electromagnetic plane waves ranging from 0.05 to 5 GHz with different incidence and polarization, were conducted. The whole-body-averaged SAR (SARwb) and the tissue-averaged SAR (SARavg) in 20 major tissues were determined. Results revealed that incidence has great impact on SAR in the rat at higher frequencies owing to the skin effect and the effect on SARavg in tissues is much more apparent than that on SARwb; while polarization plays an important role under lower frequencies. Not only the incidence, but also the polarization in the rat keeps changing when the rat is in free movement. Thus, this article discussed a convenient way to obtain relatively accurate SARwb in a free-moving rat.

  18. Real-time mid-infrared imaging of living microorganisms.

    PubMed

    Haase, Katharina; Kröger-Lui, Niels; Pucci, Annemarie; Schönhals, Arthur; Petrich, Wolfgang

    2016-01-01

    The speed and efficiency of quantum cascade laser-based mid-infrared microspectroscopy are demonstrated using two different model organisms as examples. For the slowly moving Amoeba proteus, a quantum cascade laser is tuned over the wavelength range of 7.6 µm to 8.6 µm (wavenumbers 1320 cm(-1) and 1160 cm(-1) , respectively). The recording of a hyperspectral image takes 11.3 s whereby an average signal-to-noise ratio of 29 is achieved. The limits of time resolution are tested by imaging the fast moving Caenorhabditis elegans at a discrete wavenumber of 1265 cm(-1) . Mid-infrared imaging is performed with the 640 × 480 pixel video graphics array (VGA) standard and at a full-frame time resolution of 0.02 s (i.e. well above the most common frame rate standards). An average signal-to-noise ratio of 16 is obtained. To the best of our knowledge, these findings constitute the first mid-infrared imaging of living organisms at VGA standard and video frame rate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Forecasting and prediction of scorpion sting cases in Biskra province, Algeria, using a seasonal autoregressive integrated moving average model

    PubMed Central

    2016-01-01

    OBJECTIVES The aims of this study were to highlight some epidemiological aspects of scorpion envenomations, to analyse and interpret the available data for Biskra province, Algeria, and to develop a forecasting model for scorpion sting cases in Biskra province, which records the highest number of scorpion stings in Algeria. METHODS In addition to analysing the epidemiological profile of scorpion stings that occurred throughout the year 2013, we used the Box-Jenkins approach to fit a seasonal autoregressive integrated moving average (SARIMA) model to the monthly recorded scorpion sting cases in Biskra from 2000 to 2012. RESULTS The epidemiological analysis revealed that scorpion stings were reported continuously throughout the year, with peaks in the summer months. The most affected age group was 15 to 49 years old, with a male predominance. The most prone human body areas were the upper and lower limbs. The majority of cases (95.9%) were classified as mild envenomations. The time series analysis showed that a (5,1,0)×(0,1,1)12 SARIMA model offered the best fit to the scorpion sting surveillance data. This model was used to predict scorpion sting cases for the year 2013, and the fitted data showed considerable agreement with the actual data. CONCLUSIONS SARIMA models are useful for monitoring scorpion sting cases, and provide an estimate of the variability to be expected in future scorpion sting cases. This knowledge is helpful in predicting whether an unusual situation is developing or not, and could therefore assist decision-makers in strengthening the province’s prevention and control measures and in initiating rapid response measures. PMID:27866407

  20. Decadal Trends of Atlantic Basin Tropical Cyclones (1950-1999)

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2001-01-01

    Ten-year moving averages of the seasonal rates for 'named storms,' tropical storms, hurricanes, and major (or intense) hurricanes in the Atlantic basin suggest that the present epoch is one of enhanced activity, marked by seasonal rates typically equal to or above respective long-term median rates. As an example, the 10-year moving average of the seasonal rates for named storms is now higher than for any previous year over the past 50 years, measuring 10.65 in 1994, or 2.65 units higher than its median rate of 8. Also, the 10-year moving average for tropical storms has more than doubled, from 2.15 in 1955 to 4.60 in 1992, with 16 of the past 20 years having a seasonal rate of three or more (the median rate). For hurricanes and major hurricanes, their respective 10-year moving averages turned upward, rising above long-term median rates (5.5 and 2, respectively) in 1992, a response to the abrupt increase in seasonal rates that occurred in 1995. Taken together, the outlook for future hurricane seasons is for all categories of Atlantic basin tropical cyclones to have seasonal rates at levels equal to or above long-term median rates, especially during non-El Nino-related seasons. Only during El Nino-related seasons does it appear likely that seasonal rates might be slightly diminished.

  1. Odor-conditioned rheotaxis of the sea lamprey: modeling, analysis and validation

    USGS Publications Warehouse

    Choi, Jongeun; Jean, Soo; Johnson, Nicholas S.; Brant, Cory O.; Li, Weiming

    2013-01-01

    Mechanisms for orienting toward and locating an odor source are sought in both biology and engineering. Chemical ecology studies have demonstrated that adult female sea lamprey show rheotaxis in response to a male pheromone with dichotomous outcomes: sexually mature females locate the source of the pheromone whereas immature females swim by the source and continue moving upstream. Here we introduce a simple switching mechanism modeled after odor-conditioned rheotaxis for the sea lamprey as they search for the source of a pheromone in a one-dimensional riverine environment. In this strategy, the females move upstream only if they detect that the pheromone concentration is higher than a threshold value and drifts down (by turning off control action to save energy) otherwise. In addition, we propose various uncertainty models such as measurement noise, actuator disturbance, and a probabilistic model of a concentration field in turbulent flow. Based on the proposed model with uncertainties, a convergence analysis showed that with this simplistic switching mechanism, the lamprey converges to the source location on average in spite of all such uncertainties. Furthermore, a slightly modified model and its extensive simulation results explain the behaviors of immature female lamprey near the source location.

  2. Modeling peripheral vision for moving target search and detection.

    PubMed

    Yang, Ji Hyun; Huston, Jesse; Day, Michael; Balogh, Imre

    2012-06-01

    Most target search and detection models focus on foveal vision. In reality, peripheral vision plays a significant role, especially in detecting moving objects. There were 23 subjects who participated in experiments simulating target detection tasks in urban and rural environments while their gaze parameters were tracked. Button responses associated with foveal object and peripheral object (PO) detection and recognition were recorded. In an urban scenario, pedestrians appearing in the periphery holding guns were threats and pedestrians with empty hands were non-threats. In a rural scenario, non-U.S. unmanned aerial vehicles (UAVs) were considered threats and U.S. UAVs non-threats. On average, subjects missed detecting 2.48 POs among 50 POs in the urban scenario and 5.39 POs in the rural scenario. Both saccade reaction time and button reaction time can be predicted by peripheral angle and entrance speed of POs. Fast moving objects were detected faster than slower objects and POs appearing at wider angles took longer to detect than those closer to the gaze center. A second-order mixed-effect model was applied to provide each subject's prediction model for peripheral target detection performance as a function of eccentricity angle and speed. About half the subjects used active search patterns while the other half used passive search patterns. An interactive 3-D visualization tool was developed to provide a representation of macro-scale head and gaze movement in the search and target detection task. An experimentally validated stochastic model of peripheral vision in realistic target detection scenarios was developed.

  3. Acute effects of PM2.5 on lung function parameters in schoolchildren in Nanjing, China: a panel study.

    PubMed

    Xu, Dandan; Zhang, Yi; Zhou, Lian; Li, Tiantian

    2018-03-17

    The association between exposure to ambient particulate matter (PM) and reduced lung function parameters has been reported in many works. However, few studies have been conducted in developing countries with high levels of air pollution like China, and little attention has been paid to the acute effects of short-term exposure to air pollution on lung function. The study design consisted of a panel comprising 86 children from the same school in Nanjing, China. Four measurements of lung function were performed. A mixed-effects regression model with study participant as a random effect was used to investigate the relationship between PM 2.5 and lung function. An increase in the current day, 1-day and 2-day moving average PM 2.5 concentration was associated with decreases in lung function indicators. The greatest effect of PM 2.5 on lung function was detected at 1-day moving average PM 2.5 exposure. An increase of 10 μg/m 3 in the 1-day moving average PM 2.5 concentration was associated with a 23.22 mL decrease (95% CI: 13.19, 33.25) in Forced Vital Capacity (FVC), a 18.93 mL decrease (95% CI: 9.34, 28.52) in 1-s Forced Expiratory Volume (FEV 1 ), a 29.38 mL/s decrease (95% CI: -0.40, 59.15) in Peak Expiratory Flow (PEF), and a 27.21 mL/s decrease (95% CI: 8.38, 46.04) in forced expiratory flow 25-75% (FEF 25-75% ). The effects of PM 2.5 on lung function had significant lag effects. After an air pollution event, the health effects last for several days and we still need to pay attention to health protection.

  4. Permeation of limonene through disposable nitrile gloves using a dextrous robot hand

    PubMed Central

    Banaee, Sean; S Que Hee, Shane

    2017-01-01

    Objectives: The purpose of this study was to investigate the permeation of the low-volatile solvent limonene through different disposable, unlined, unsupported, nitrile exam whole gloves (blue, purple, sterling, and lavender, from Kimberly-Clark). Methods: This study utilized a moving and static dextrous robot hand as part of a novel dynamic permeation system that allowed sampling at specific times. Quantitation of limonene in samples was based on capillary gas chromatography-mass spectrometry and the internal standard method (4-bromophenol). Results: The average post-permeation thicknesses (before reconditioning) for all gloves for both the moving and static hand were more than 10% of the pre-permeation ones (P≤0.05), although this was not so on reconditioning. The standardized breakthrough times and steady-state permeation periods were similar for the blue, purple, and sterling gloves. Both methods had similar sensitivity. The lavender glove showed a higher permeation rate (0.490±0.031 μg/cm2/min) for the moving robotic hand compared to the non-moving hand (P≤0.05), this being ascribed to a thickness threshold. Conclusions: Permeation parameters for the static and dynamic robot hand models indicate that both methods have similar sensitivity in detecting the analyte during permeation and the blue, purple, and sterling gloves behave similarly during the permeation process whether moving or non-moving. PMID:28111415

  5. Two models for identification and predicting behaviour of an induction motor system

    NASA Astrophysics Data System (ADS)

    Kuo, Chien-Hsun

    2018-01-01

    System identification or modelling is the process of building mathematical models of dynamical systems based on the available input and output data from the systems. This paper introduces system identification by using ARX (Auto Regressive with eXogeneous input) and ARMAX (Auto Regressive Moving Average with eXogeneous input) models. Through the identified system model, the predicted output could be compared with the measured one to help prevent the motor faults from developing into a catastrophic machine failure and avoid unnecessary costs and delays caused by the need to carry out unscheduled repairs. The induction motor system is illustrated as an example. Numerical and experimental results are shown for the identified induction motor system.

  6. Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers.

    PubMed

    Ohta, Aaron T; Garcia, Maurice; Valley, Justin K; Banie, Lia; Hsu, Hsan-Yin; Jamshidi, Arash; Neale, Steven L; Lue, Tom; Wu, Ming C

    2010-12-07

    Optoelectronic tweezers was used to manipulate human spermatozoa to determine whether their response to OET predicts sperm viability among non-motile sperm. We review the electro-physical basis for how live and dead human spermatozoa respond to OET. The maximal velocity that non-motile spermatozoa could be induced to move by attraction or repulsion to a moving OET field was measured. Viable sperm are attracted to OET fields and can be induced to move at an average maximal velocity of 8.8 ± 4.2 µm s(-1), while non-viable sperm are repelled to OET, and are induced to move at an average maximal velocity of -0.8 ± 1.0 µm s(-1). Manipulation of the sperm using OET does not appear to result in increased DNA fragmentation, making this a potential method by which to identify viable non-motile sperm for assisted reproductive technologies.

  7. Transport of the moving barrier driven by chiral active particles

    NASA Astrophysics Data System (ADS)

    Liao, Jing-jing; Huang, Xiao-qun; Ai, Bao-quan

    2018-03-01

    Transport of a moving V-shaped barrier exposed to a bath of chiral active particles is investigated in a two-dimensional channel. Due to the chirality of active particles and the transversal asymmetry of the barrier position, active particles can power and steer the directed transport of the barrier in the longitudinal direction. The transport of the barrier is determined by the chirality of active particles. The moving barrier and active particles move in the opposite directions. The average velocity of the barrier is much larger than that of active particles. There exist optimal parameters (the chirality, the self-propulsion speed, the packing fraction, and the channel width) at which the average velocity of the barrier takes its maximal value. In particular, tailoring the geometry of the barrier and the active concentration provides novel strategies to control the transport properties of micro-objects or cargoes in an active medium.

  8. Focus on Teacher Salaries: An Update on Average Salaries and Recent Legislative Actions in the SREB States.

    ERIC Educational Resources Information Center

    Gaines, Gale F.

    Focused state efforts have helped teacher salaries in Southern Regional Education Board (SREB) states move toward the national average. Preliminary 2000-01 estimates put SREB's average teacher salary at its highest point in 22 years compared to the national average. The SREB average teacher salary is approximately 90 percent of the national…

  9. Ozone and its projection in regard to climate change

    NASA Astrophysics Data System (ADS)

    Melkonyan, Ani; Wagner, Patrick

    2013-03-01

    In this paper, the dependence of ozone-forming potential on temperature was analysed based on data from two stations (with an industrial and rural background, respectively) in North Rhine-Westphalia, Germany, for the period of 1983-2007. After examining the interrelations between ozone, NOx and temperature, a projection of the days with ozone exceedance (over a limit value of a daily maximum 8-h average ≥ 120 μg m-3 for 25 days per year averaged for 3 years) in terms of global climate change was made using probability theory and an autoregression integrated moving average (ARIMA) model. The results show that with a temperature increase of 3 K, the frequency of days when ozone exceeds its limit value will increase by 135% at the industrial station and by 87% at the rural background station.

  10. Statistical process control of mortality series in the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database: implications of the data generating process.

    PubMed

    Moran, John L; Solomon, Patricia J

    2013-05-24

    Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health care and public health surveillance. SPC methods assume independent observations and process autocorrelation has been associated with increase in false alarm frequency. Monthly mean raw mortality (at hospital discharge) time series, 1995-2009, at the individual Intensive Care unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database. Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function displays and classical series decomposition and (ii) "in-control" status was sought using risk-adjusted (RA) exponentially weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient (intercept as ICU site and slope as APACHE III score) logistic regression model, generating an expected mortality series. Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology: autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) models, the latter addressing volatility of the series variance. The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was 14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lag40 and 35% had autocorrelation through to lag40; and of 36 sites with continuous data for ≥ 72 months, all demonstrated marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model. The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation, seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA control limits. A time series approach using residual control charts resolved these issues.

  11. Associations between daily outpatient visits for respiratory diseases and ambient fine particulate matter and ozone levels in Shanghai, China.

    PubMed

    Wang, Yiyi; Zu, Yaqun; Huang, Lin; Zhang, Hongliang; Wang, Changhui; Hu, Jianlin

    2018-09-01

    Air pollution in China has been very serious during the recent decades. However, few studies have investigated the effects of short-term exposure to PM 2.5 and O 3 on daily outpatient visits for respiratory diseases. We examined the effects of PM 2.5 and O 3 on the daily outpatient visits for respiratory diseases, explored the sensitivities of different population subgroups and analyzed the relative risk (RR) of PM 2.5 and O 3 in different seasons in Shanghai during 2013-2016. The generalized linear model (GLM) was applied to analyze the exposure-response relationship between air pollutants (daily average PM 2.5 and daily maximum 8-h average O 3 ), and daily outpatient visits due to respiratory diseases. The sensitivities of males and females at the ages of 15-60 yr-old and 60+ yr-old to the pollutants were also studied for the whole year and for the cold and warm months, respectively. Finally, the results of the single-day lagged model were compared with that of the moving average lag model. At lag 0 day, the RR of respiratory outpatients increased by 0.37% with a 10 μg/m 3 increase in PM 2.5 . Exposure to PM 2.5 (RR, 1.0047, 95% CI, 1.0032-1.0062) was more sensitive for females than for males (RR, 1.0025, 95% CI, 1.0008-1.0041), and was more sensitive for the 15-60 yr-old (RR, 1.0041, 95% CI, 1.0027-1.0055) than the 60+ yr-old age group (RR, 1.0031, 95% CI, 1.0014-1.0049). O 3 was not significantly associated with respiratory outpatient visits during the warm periods, but was negatively associated during the cold periods. PM 2.5 was more significantly in the cold periods than that in the warm periods. The results indicated that control of PM 2.5 , compared to O 3 , in the cold periods would be more beneficial to the respiratory health in Shanghai. In addition, the single-day lagged model underestimated the relationship between PM 2.5 and O 3 and outpatient visits for respiratory diseases compared to the moving average lag model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Forecasting of Water Consumptions Expenditure Using Holt-Winter’s and ARIMA

    NASA Astrophysics Data System (ADS)

    Razali, S. N. A. M.; Rusiman, M. S.; Zawawi, N. I.; Arbin, N.

    2018-04-01

    This study is carried out to forecast water consumption expenditure of Malaysian university specifically at University Tun Hussein Onn Malaysia (UTHM). The proposed Holt-Winter’s and Auto-Regressive Integrated Moving Average (ARIMA) models were applied to forecast the water consumption expenditure in Ringgit Malaysia from year 2006 until year 2014. The two models were compared and performance measurement of the Mean Absolute Percentage Error (MAPE) and Mean Absolute Deviation (MAD) were used. It is found that ARIMA model showed better results regarding the accuracy of forecast with lower values of MAPE and MAD. Analysis showed that ARIMA (2,1,4) model provided a reasonable forecasting tool for university campus water usage.

  13. Improved continuum lowering calculations in screened hydrogenic model with l-splitting for high energy density systems

    NASA Astrophysics Data System (ADS)

    Ali, Amjad; Shabbir Naz, G.; Saleem Shahzad, M.; Kouser, R.; Aman-ur-Rehman; Nasim, M. H.

    2018-03-01

    The energy states of the bound electrons in high energy density systems (HEDS) are significantly affected due to the electric field of the neighboring ions. Due to this effect bound electrons require less energy to get themselves free and move into the continuum. This phenomenon of reduction in potential is termed as ionization potential depression (IPD) or the continuum lowering (CL). The foremost parameter to depict this change is the average charge state, therefore accurate modeling for CL is imperative in modeling atomic data for computation of radiative and thermodynamic properties of HEDS. In this paper, we present an improved model of CL in the screened hydrogenic model with l-splitting (SHML) proposed by G. Faussurier and C. Blancard, P. Renaudin [High Energy Density Physics 4 (2008) 114] and its effect on average charge state. We propose the level charge dependent calculation of CL potential energy and inclusion of exchange and correlation energy in SHML. By doing this, we made our model more relevant to HEDS and free from CL empirical parameter to the plasma environment. We have implemented both original and modified model of SHML in our code named OPASH and benchmark our results with experiments and other state-of-the-art simulation codes. We compared our results of average charge state for Carbon, Beryllium, Aluminum, Iron and Germanium against published literature and found a very reasonable agreement between them.

  14. Mechanistic approach to generalized technical analysis of share prices and stock market indices

    NASA Astrophysics Data System (ADS)

    Ausloos, M.; Ivanova, K.

    2002-05-01

    Classical technical analysis methods of stock evolution are recalled, i.e. the notion of moving averages and momentum indicators. The moving averages lead to define death and gold crosses, resistance and support lines. Momentum indicators lead the price trend, thus give signals before the price trend turns over. The classical technical analysis investment strategy is thereby sketched. Next, we present a generalization of these tricks drawing on physical principles, i.e. taking into account not only the price of a stock but also the volume of transactions. The latter becomes a time dependent generalized mass. The notion of pressure, acceleration and force are deduced. A generalized (kinetic) energy is easily defined. It is understood that the momentum indicators take into account the sign of the fluctuations, while the energy is geared toward the absolute value of the fluctuations. They have different patterns which are checked by searching for the crossing points of their respective moving averages. The case of IBM evolution over 1990-2000 is used for illustrations.

  15. Analyzing the Implications of Climate Data on Plant Hardiness Zones for Green Infrastructure Planning: Case Study of Knoxville, Tennessee and Surrounding Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylvester, Linda M.; Omitaomu, Olufemi A.; Parish, Esther S.

    Downscaled climate data for Knoxville, Tennessee and the surrounding region were used to investigate future changing Plant Hardiness Zones due to climate change. The methodology used is the same as the US Department of Agriculture (USDA), well-known for their creation of the standard Plant Hardiness Zone map used by gardeners and planners. USDA data were calculated from observed daily data for 1976–2005. The modeled climate data for the past is daily data from 1980-2005 and the future data is projected for 2025–2050. The average of all the modeled annual extreme minimums for each time period of interest was calculated. Eachmore » 1 km raster cell was placed into zone categories based on temperature, using the same criteria and categories of the USDA. The individual models vary between suggesting little change to the Plant Hardiness Zones to suggesting Knoxville moves into the next two Hardiness Zones. But overall, the models suggest moving into the next warmer Zone. USDA currently has the Knoxville area categorized as Zone 7a. None of the Zones calculated from the climate data models placed Knoxville in Zone 7a for the similar time period. The models placed Knoxville in a cooler Hardiness Zone and projected the area to increase to Zone 7. The modeled temperature data appears to be slightly cooler than the actual temperature data and this may explain the zone discrepancy. However, overall Knoxville is projected to increase to the next warmer Zone. As the modeled data has Knoxville, overall, moving from Zone 6 to Zone 7, it can be inferred that Knoxville, Tennessee may increase from their current Zone 7 to Zone 8.« less

  16. Tracking Electroencephalographic Changes Using Distributions of Linear Models: Application to Propofol-Based Depth of Anesthesia Monitoring.

    PubMed

    Kuhlmann, Levin; Manton, Jonathan H; Heyse, Bjorn; Vereecke, Hugo E M; Lipping, Tarmo; Struys, Michel M R F; Liley, David T J

    2017-04-01

    Tracking brain states with electrophysiological measurements often relies on short-term averages of extracted features and this may not adequately capture the variability of brain dynamics. The objective is to assess the hypotheses that this can be overcome by tracking distributions of linear models using anesthesia data, and that anesthetic brain state tracking performance of linear models is comparable to that of a high performing depth of anesthesia monitoring feature. Individuals' brain states are classified by comparing the distribution of linear (auto-regressive moving average-ARMA) model parameters estimated from electroencephalographic (EEG) data obtained with a sliding window to distributions of linear model parameters for each brain state. The method is applied to frontal EEG data from 15 subjects undergoing propofol anesthesia and classified by the observers assessment of alertness/sedation (OAA/S) scale. Classification of the OAA/S score was performed using distributions of either ARMA parameters or the benchmark feature, Higuchi fractal dimension. The highest average testing sensitivity of 59% (chance sensitivity: 17%) was found for ARMA (2,1) models and Higuchi fractal dimension achieved 52%, however, no statistical difference was observed. For the same ARMA case, there was no statistical difference if medians are used instead of distributions (sensitivity: 56%). The model-based distribution approach is not necessarily more effective than a median/short-term average approach, however, it performs well compared with a distribution approach based on a high performing anesthesia monitoring measure. These techniques hold potential for anesthesia monitoring and may be generally applicable for tracking brain states.

  17. Do alcohol excise taxes affect traffic accidents? Evidence from Estonia.

    PubMed

    Saar, Indrek

    2015-01-01

    This article examines the association between alcohol excise tax rates and alcohol-related traffic accidents in Estonia. Monthly time series of traffic accidents involving drunken motor vehicle drivers from 1998 through 2013 were regressed on real average alcohol excise tax rates while controlling for changes in economic conditions and the traffic environment. Specifically, regression models with autoregressive integrated moving average (ARIMA) errors were estimated in order to deal with serial correlation in residuals. Counterfactual models were also estimated in order to check the robustness of the results, using the level of non-alcohol-related traffic accidents as a dependent variable. A statistically significant (P <.01) strong negative relationship between the real average alcohol excise tax rate and alcohol-related traffic accidents was disclosed under alternative model specifications. For instance, the regression model with ARIMA (0, 1, 1)(0, 1, 1) errors revealed that a 1-unit increase in the tax rate is associated with a 1.6% decrease in the level of accidents per 100,000 population involving drunk motor vehicle drivers. No similar association was found in the cases of counterfactual models for non-alcohol-related traffic accidents. This article indicates that the level of alcohol-related traffic accidents in Estonia has been affected by changes in real average alcohol excise taxes during the period 1998-2013. Therefore, in addition to other measures, the use of alcohol taxation is warranted as a policy instrument in tackling alcohol-related traffic accidents.

  18. SU-C-209-02: 3D Fluoroscopic Image Generation From Patient-Specific 4DCBCT-Based Motion Models Derived From Clinical Patient Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhou, S; Cai, W; Hurwitz, M

    Purpose: We develop a method to generate time varying volumetric images (3D fluoroscopic images) using patient-specific motion models derived from four-dimensional cone-beam CT (4DCBCT). Methods: Motion models are derived by selecting one 4DCBCT phase as a reference image, and registering the remaining images to it. Principal component analysis (PCA) is performed on the resultant displacement vector fields (DVFs) to create a reduced set of PCA eigenvectors that capture the majority of respiratory motion. 3D fluoroscopic images are generated by optimizing the weights of the PCA eigenvectors iteratively through comparison of measured cone-beam projections and simulated projections generated from the motionmore » model. This method was applied to images from five lung-cancer patients. The spatial accuracy of this method is evaluated by comparing landmark positions in the 3D fluoroscopic images to manually defined ground truth positions in the patient cone-beam projections. Results: 4DCBCT motion models were shown to accurately generate 3D fluoroscopic images when the patient cone-beam projections contained clearly visible structures moving with respiration (e.g., the diaphragm). When no moving anatomical structure was clearly visible in the projections, the 3D fluoroscopic images generated did not capture breathing deformations, and reverted to the reference image. For the subset of 3D fluoroscopic images generated from projections with visibly moving anatomy, the average tumor localization error and the 95th percentile were 1.6 mm and 3.1 mm respectively. Conclusion: This study showed that 4DCBCT-based 3D fluoroscopic images can accurately capture respiratory deformations in a patient dataset, so long as the cone-beam projections used contain visible structures that move with respiration. For clinical implementation of 3D fluoroscopic imaging for treatment verification, an imaging field of view (FOV) that contains visible structures moving with respiration should be selected. If no other appropriate structures are visible, the images should include the diaphragm. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc, Palo Alto, CA.« less

  19. The impact of using weight estimated from mammographic images vs. self-reported weight on breast cancer risk calculation

    NASA Astrophysics Data System (ADS)

    Nair, Kalyani P.; Harkness, Elaine F.; Gadde, Soujanye; Lim, Yit Y.; Maxwell, Anthony J.; Moschidis, Emmanouil; Foden, Philip; Cuzick, Jack; Brentnall, Adam; Evans, D. Gareth; Howell, Anthony; Astley, Susan M.

    2017-03-01

    Personalised breast screening requires assessment of individual risk of breast cancer, of which one contributory factor is weight. Self-reported weight has been used for this purpose, but may be unreliable. We explore the use of volume of fat in the breast, measured from digital mammograms. Volumetric breast density measurements were used to determine the volume of fat in the breasts of 40,431 women taking part in the Predicting Risk Of Cancer At Screening (PROCAS) study. Tyrer-Cuzick risk using self-reported weight was calculated for each woman. Weight was also estimated from the relationship between self-reported weight and breast fat volume in the cohort, and used to re-calculate Tyrer-Cuzick risk. Women were assigned to risk categories according to 10 year risk (below average <2%, average 2-3.49%, above average 3.5-4.99%, moderate 5-7.99%, high >=8%) and the original and re-calculated Tyrer-Cuzick risks were compared. Of the 716 women diagnosed with breast cancer during the study, 15 (2.1%) moved into a lower risk category, and 37 (5.2%) moved into a higher category when using weight estimated from breast fat volume. Of the 39,715 women without a cancer diagnosis, 1009 (2.5%) moved into a lower risk category, and 1721 (4.3%) into a higher risk category. The majority of changes were between below average and average risk categories (38.5% of those with a cancer diagnosis, and 34.6% of those without). No individual moved more than one risk group. Automated breast fat measures may provide a suitable alternative to self-reported weight for risk assessment in personalized screening.

  20. Estimating hydraulic properties using a moving-model approach and multiple aquifer tests

    USGS Publications Warehouse

    Halford, K.J.; Yobbi, D.

    2006-01-01

    A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously. Copyright ?? 2005 National Ground Water Association.

  1. Estimating hydraulic properties using a moving-model approach and multiple aquifer tests.

    PubMed

    Halford, Keith J; Yobbi, Dann

    2006-01-01

    A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously.

  2. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: A case study in endemic districts of Bhutan

    PubMed Central

    2010-01-01

    Background Malaria still remains a public health problem in some districts of Bhutan despite marked reduction of cases in last few years. To strengthen the country's prevention and control measures, this study was carried out to develop forecasting and prediction models of malaria incidence in the endemic districts of Bhutan using time series and ARIMAX. Methods This study was carried out retrospectively using the monthly reported malaria cases from the health centres to Vector-borne Disease Control Programme (VDCP) and the meteorological data from Meteorological Unit, Department of Energy, Ministry of Economic Affairs. Time series analysis was performed on monthly malaria cases, from 1994 to 2008, in seven malaria endemic districts. The time series models derived from a multiplicative seasonal autoregressive integrated moving average (ARIMA) was deployed to identify the best model using data from 1994 to 2006. The best-fit model was selected for each individual district and for the overall endemic area was developed and the monthly cases from January to December 2009 and 2010 were forecasted. In developing the prediction model, the monthly reported malaria cases and the meteorological factors from 1996 to 2008 of the seven districts were analysed. The method of ARIMAX modelling was employed to determine predictors of malaria of the subsequent month. Results It was found that the ARIMA (p, d, q) (P, D, Q)s model (p and P representing the auto regressive and seasonal autoregressive; d and D representing the non-seasonal differences and seasonal differencing; and q and Q the moving average parameters and seasonal moving average parameters, respectively and s representing the length of the seasonal period) for the overall endemic districts was (2,1,1)(0,1,1)12; the modelling data from each district revealed two most common ARIMA models including (2,1,1)(0,1,1)12 and (1,1,1)(0,1,1)12. The forecasted monthly malaria cases from January to December 2009 and 2010 varied from 15 to 82 cases in 2009 and 67 to 149 cases in 2010, where population in 2009 was 285,375 and the expected population of 2010 to be 289,085. The ARIMAX model of monthly cases and climatic factors showed considerable variations among the different districts. In general, the mean maximum temperature lagged at one month was a strong positive predictor of an increased malaria cases for four districts. The monthly number of cases of the previous month was also a significant predictor in one district, whereas no variable could predict malaria cases for two districts. Conclusions The ARIMA models of time-series analysis were useful in forecasting the number of cases in the endemic areas of Bhutan. There was no consistency in the predictors of malaria cases when using ARIMAX model with selected lag times and climatic predictors. The ARIMA forecasting models could be employed for planning and managing malaria prevention and control programme in Bhutan. PMID:20813066

  3. Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter

    PubMed Central

    Huang, Lei

    2015-01-01

    To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying estimators of observation noise are used to achieve the estimated mean and variance of the observation noise. Using the robust Kalman filtering, the ARMA model parameters are estimated accurately. The developed ARMA modeling method has the advantages of a rapid convergence and high accuracy. Thus, the required sample size is reduced. It can be applied to modeling applications for gyro random noise in which a fast and accurate ARMA modeling method is required. PMID:26437409

  4. [Application of ARIMA model on prediction of malaria incidence].

    PubMed

    Jing, Xia; Hua-Xun, Zhang; Wen, Lin; Su-Jian, Pei; Ling-Cong, Sun; Xiao-Rong, Dong; Mu-Min, Cao; Dong-Ni, Wu; Shunxiang, Cai

    2016-01-29

    To predict the incidence of local malaria of Hubei Province applying the Autoregressive Integrated Moving Average model (ARIMA). SPSS 13.0 software was applied to construct the ARIMA model based on the monthly local malaria incidence in Hubei Province from 2004 to 2009. The local malaria incidence data of 2010 were used for model validation and evaluation. The model of ARIMA (1, 1, 1) (1, 1, 0) 12 was tested as relatively the best optimal with the AIC of 76.085 and SBC of 84.395. All the actual incidence data were in the range of 95% CI of predicted value of the model. The prediction effect of the model was acceptable. The ARIMA model could effectively fit and predict the incidence of local malaria of Hubei Province.

  5. On-line algorithms for forecasting hourly loads of an electric utility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vemuri, S.; Huang, W.L.; Nelson, D.J.

    A method that lends itself to on-line forecasting of hourly electric loads is presented, and the results of its use are compared to models developed using the Box-Jenkins method. The method consits of processing the historical hourly loads with a sequential least-squares estimator to identify a finite-order autoregressive model which, in turn, is used to obtain a parsimonious autoregressive-moving average model. The method presented has several advantages in comparison with the Box-Jenkins method including much-less human intervention, improved model identification, and better results. The method is also more robust in that greater confidence can be placed in the accuracy ofmore » models based upon the various measures available at the identification stage.« less

  6. Dynamics of actin-based movement by Rickettsia rickettsii in vero cells.

    PubMed

    Heinzen, R A; Grieshaber, S S; Van Kirk, L S; Devin, C J

    1999-08-01

    Actin-based motility (ABM) is a virulence mechanism exploited by invasive bacterial pathogens in the genera Listeria, Shigella, and Rickettsia. Due to experimental constraints imposed by the lack of genetic tools and their obligate intracellular nature, little is known about rickettsial ABM relative to Listeria and Shigella ABM systems. In this study, we directly compared the dynamics and behavior of ABM of Rickettsia rickettsii and Listeria monocytogenes. A time-lapse video of moving intracellular bacteria was obtained by laser-scanning confocal microscopy of infected Vero cells synthesizing beta-actin coupled to green fluorescent protein (GFP). Analysis of time-lapse images demonstrated that R. rickettsii organisms move through the cell cytoplasm at an average rate of 4.8 +/- 0.6 micrometer/min (mean +/- standard deviation). This speed was 2.5 times slower than that of L. monocytogenes, which moved at an average rate of 12.0 +/- 3.1 micrometers/min. Although rickettsiae moved more slowly, the actin filaments comprising the actin comet tail were significantly more stable, with an average half-life approximately three times that of L. monocytogenes (100.6 +/- 19.2 s versus 33.0 +/- 7.6 s, respectively). The actin tail associated with intracytoplasmic rickettsiae remained stationary in the cytoplasm as the organism moved forward. In contrast, actin tails of rickettsiae trapped within the nucleus displayed dramatic movements. The observed phenotypic differences between the ABM of Listeria and Rickettsia may indicate fundamental differences in the mechanisms of actin recruitment and polymerization.

  7. Books average previous decade of economic misery.

    PubMed

    Bentley, R Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios

    2014-01-01

    For the 20(th) century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade.

  8. Time-series modeling and prediction of global monthly absolute temperature for environmental decision making

    NASA Astrophysics Data System (ADS)

    Ye, Liming; Yang, Guixia; Van Ranst, Eric; Tang, Huajun

    2013-03-01

    A generalized, structural, time series modeling framework was developed to analyze the monthly records of absolute surface temperature, one of the most important environmental parameters, using a deterministicstochastic combined (DSC) approach. Although the development of the framework was based on the characterization of the variation patterns of a global dataset, the methodology could be applied to any monthly absolute temperature record. Deterministic processes were used to characterize the variation patterns of the global trend and the cyclic oscillations of the temperature signal, involving polynomial functions and the Fourier method, respectively, while stochastic processes were employed to account for any remaining patterns in the temperature signal, involving seasonal autoregressive integrated moving average (SARIMA) models. A prediction of the monthly global surface temperature during the second decade of the 21st century using the DSC model shows that the global temperature will likely continue to rise at twice the average rate of the past 150 years. The evaluation of prediction accuracy shows that DSC models perform systematically well against selected models of other authors, suggesting that DSC models, when coupled with other ecoenvironmental models, can be used as a supplemental tool for short-term (˜10-year) environmental planning and decision making.

  9. A univariate model of river water nitrate time series

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Burt, T. P.

    1999-01-01

    Four time series were taken from three catchments in the North and South of England. The sites chosen included two in predominantly agricultural catchments, one at the tidal limit and one downstream of a sewage treatment works. A time series model was constructed for each of these series as a means of decomposing the elements controlling river water nitrate concentrations and to assess whether this approach could provide a simple management tool for protecting water abstractions. Autoregressive (AR) modelling of the detrended and deseasoned time series showed a "memory effect". This memory effect expressed itself as an increase in the winter-summer difference in nitrate levels that was dependent upon the nitrate concentration 12 or 6 months previously. Autoregressive moving average (ARMA) modelling showed that one of the series contained seasonal, non-stationary elements that appeared as an increasing trend in the winter-summer difference. The ARMA model was used to predict nitrate levels and predictions were tested against data held back from the model construction process - predictions gave average percentage errors of less than 10%. Empirical modelling can therefore provide a simple, efficient method for constructing management models for downstream water abstraction.

  10. Numerical Investigation of a Model Scramjet Combustor Using DDES

    NASA Astrophysics Data System (ADS)

    Shin, Junsu; Sung, Hong-Gye

    2017-04-01

    Non-reactive flows moving through a model scramjet were investigated using a delayed detached eddy simulation (DDES), which is a hybrid scheme combining Reynolds averaged Navier-Stokes scheme and a large eddy simulation. The three dimensional Navier-Stokes equations were solved numerically on a structural grid using finite volume methods. An in-house was developed. This code used a monotonic upstream-centered scheme for conservation laws (MUSCL) with an advection upstream splitting method by pressure weight function (AUSMPW+) for space. In addition, a 4th order Runge-Kutta scheme was used with preconditioning for time integration. The geometries and boundary conditions of a scramjet combustor operated by DLR, a German aerospace center, were considered. The profiles of the lower wall pressure and axial velocity obtained from a time-averaged solution were compared with experimental results. Also, the mixing efficiency and total pressure recovery factor were provided in order to inspect the performance of the combustor.

  11. Solar corona electron density distribution

    NASA Astrophysics Data System (ADS)

    Esposito, P. B.; Edenhofer, P.; Lueneburg, E.

    1980-07-01

    The paper discusses the three and one-half months of single-frequency time delay data which were acquired from the Helios 2 spacecraft around the time of its solar occultation. The excess time delay due to integrated effect of free electrons along the signal's ray path could be separated and modeled following the determination of the spacecraft trajectory. An average solar corona and equatorial electron density profile during solar minimum were deduced from the time delay measurements acquired within 5-60 solar radii of the sun. As a point of reference at 10 solar radii from the sun, an average electron density was 4500 el/cu cm. However, an asymmetry was found in the electron density as the ray path moved from the west to east solar limb. This may be related to the fact that during entry into occultation the heliographic latitude of the ray path was about 6 deg, while during exit it was 7 deg. The Helios density model is compared with similar models deduced from different experimental techniques.

  12. Associations of long-term fine particulate matter exposure with prevalent hypertension and increased blood pressure in older Americans.

    PubMed

    Honda, Trenton; Pun, Vivian C; Manjourides, Justin; Suh, Helen

    2018-07-01

    Hypertension is a highly prevalent cardiovascular risk factor. It is possible that air pollution, also an established cardiovascular risk factor, may contribute to cardiovascular disease through increasing blood pressure. Previous studies evaluating associations between air pollution and blood pressure have had mixed results. We examined the association between long-term (one-year moving average) air pollutant exposures, prevalent hypertension and blood pressure in 4121 older Americans (57+ years) enrolled in the National Social Life, Health, and Aging Project. We estimated exposures to PM 2.5 using spatio-temporal models and used logistic regression accounting for repeated measures to evaluate the association between long-term average PM 2.5 and prevalence odds of hypertension. We additionally used linear regression to evaluate the associations between air pollutants and systolic, diastolic, mean arterial, and pulse pressures. Health effect models were adjusted for a number of demographic, health and socioeconomic covariates. An inter-quartile range (3.91 μg/m 3 ) increase in the one-year moving average of PM 2.5 was associated with increased: Odds of prevalent hypertension (POR 1.24, 95% CI: 1.11, 1.38), systolic blood pressure (0.93 mm Hg, 95% CI: 0.05, 1.80) and pulse pressure (0.89 mm Hg, 95% CI: 0.21, 1.58). Dose-response relationships were also observed. PM 2.5 was associated with increased odds of prevalent hypertension, and increased systolic pressure and pulse pressure in a cohort of older Americans. These findings add to the growing evidence that air pollution may be an important risk factor for hypertension and perturbations in blood pressure. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Hybrid Stochastic Forecasting Model for Management of Large Open Water Reservoir with Storage Function

    NASA Astrophysics Data System (ADS)

    Kozel, Tomas; Stary, Milos

    2017-12-01

    The main advantage of stochastic forecasting is fan of possible value whose deterministic method of forecasting could not give us. Future development of random process is described better by stochastic then deterministic forecasting. Discharge in measurement profile could be categorized as random process. Content of article is construction and application of forecasting model for managed large open water reservoir with supply function. Model is based on neural networks (NS) and zone models, which forecasting values of average monthly flow from inputs values of average monthly flow, learned neural network and random numbers. Part of data was sorted to one moving zone. The zone is created around last measurement average monthly flow. Matrix of correlation was assembled only from data belonging to zone. The model was compiled for forecast of 1 to 12 month with using backward month flows (NS inputs) from 2 to 11 months for model construction. Data was got ridded of asymmetry with help of Box-Cox rule (Box, Cox, 1964), value r was found by optimization. In next step were data transform to standard normal distribution. The data were with monthly step and forecast is not recurring. 90 years long real flow series was used for compile of the model. First 75 years were used for calibration of model (matrix input-output relationship), last 15 years were used only for validation. Outputs of model were compared with real flow series. For comparison between real flow series (100% successfully of forecast) and forecasts, was used application to management of artificially made reservoir. Course of water reservoir management using Genetic algorithm (GE) + real flow series was compared with Fuzzy model (Fuzzy) + forecast made by Moving zone model. During evaluation process was founding the best size of zone. Results show that the highest number of input did not give the best results and ideal size of zone is in interval from 25 to 35, when course of management was almost same for all numbers from interval. Resulted course of management was compared with course, which was obtained from using GE + real flow series. Comparing results showed that fuzzy model with forecasted values has been able to manage main malfunction and artificially disorders made by model were founded essential, after values of water volume during management were evaluated. Forecasting model in combination with fuzzy model provide very good results in management of water reservoir with storage function and can be recommended for this purpose.

  14. Up-down Asymmetries in Speed Perception

    NASA Technical Reports Server (NTRS)

    Thompson, Peter; Stone, Leland S.

    1997-01-01

    We compared speed matches for pairs of stimuli that moved in opposite directions (upward and downward). Stimuli were elliptical patches (2 deg horizontally by 1 deg vertically) of horizontal sinusoidal gratings of spatial. frequency 2 cycles/deg. Two sequential 380 msec reveal presentations were compared. One of each pair of gratings (the standard) moved at 4 Hz (2 deg/sec), the other (the test) moved at a rate determined by a simple up-down staircase. The point of subjectively equal speed was calculated from the average of the last eight reversals. The task was to fixate a central point and to determine which one of the pair appeared to move faster. Eight of 10 observers perceived the upward drifting grating as moving faster than a grating moving downward but otherwise identical. on average (N = 10), when the standard moved downward, it was matched by a test moving upward at 94.7+/-1.7(SE)% of the standard speed, and when the standard moved upward it was matched by a test moving downward at 105.1+/-2.3(SE)% of the standard speed. Extending this paradigm over a range of spatial (1.5 to 13.5 c/d) and temporal (1.5 to 13.5 Hz) frequencies, preliminary results (N = 4) suggest that, under the conditions of our experiment, upward matter is seen as faster than downward for speeds greater than approx.1 deg/sec, but the effect appears to reverse at speeds below approx.1 deg/sec with downward motion perceived as faster. Given that an up-down asymmetry has been observed for the optokinetic response, both perceptual and oculomotor contributions to this phenomenon deserve exploration.

  15. [Prediction of schistosomiasis infection rates of population based on ARIMA-NARNN model].

    PubMed

    Ke-Wei, Wang; Yu, Wu; Jin-Ping, Li; Yu-Yu, Jiang

    2016-07-12

    To explore the effect of the autoregressive integrated moving average model-nonlinear auto-regressive neural network (ARIMA-NARNN) model on predicting schistosomiasis infection rates of population. The ARIMA model, NARNN model and ARIMA-NARNN model were established based on monthly schistosomiasis infection rates from January 2005 to February 2015 in Jiangsu Province, China. The fitting and prediction performances of the three models were compared. Compared to the ARIMA model and NARNN model, the mean square error (MSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) of the ARIMA-NARNN model were the least with the values of 0.011 1, 0.090 0 and 0.282 4, respectively. The ARIMA-NARNN model could effectively fit and predict schistosomiasis infection rates of population, which might have a great application value for the prevention and control of schistosomiasis.

  16. Acoustic Gravity Waves in the Ionosphere and Thermosphere During the 2017 Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Lin, C. Y. T.; Deng, Y.

    2017-12-01

    During the 2017 solar eclipse, as the sudden cavity of solar radiation created by the lunar shadow moves across the United States on August 21, 2017, decreases in local IT temperature and density are expected. The average velocity of the total solar eclipse across the United States is 700 m/s. The forefront and wake of the lunar shadow are expected to induce acoustic gravity waves according to previous studies of atmosphere waves induced by traveling wave packets moving at different velocities. Meanwhile, moving toward the cross-track direction of the obscuration footprint, weaker transitions will likely create mesoscale to large-scale traveling disturbances. We will use the Global Ionosphere Thermosphere Model, a global circulation model solving for non-hydrostatic equations, with high-resolution settings to investigate the IT responses related to the acoustic-gravity wave perturbations during the 2017 solar eclipse. The simulation will be performed with a sub-degree resolution in longitude and latitude for 3 hours when the atmosphere of the North America sector is mostly obscured. The observable differences between the eclipsed and non-eclipsed scenarios will be examined in detail and be interpreted as consequences from the solar eclipse. We will investigate the evolution of waves during the event and establish a theoretical baseline for further comparisons with observations.

  17. Detached eddy simulation for turbulent fluid-structure interaction of moving bodies using the constraint-based immersed boundary method

    NASA Astrophysics Data System (ADS)

    Nangia, Nishant; Bhalla, Amneet P. S.; Griffith, Boyce E.; Patankar, Neelesh A.

    2016-11-01

    Flows over bodies of industrial importance often contain both an attached boundary layer region near the structure and a region of massively separated flow near its trailing edge. When simulating these flows with turbulence modeling, the Reynolds-averaged Navier-Stokes (RANS) approach is more efficient in the former, whereas large-eddy simulation (LES) is more accurate in the latter. Detached-eddy simulation (DES), based on the Spalart-Allmaras model, is a hybrid method that switches from RANS mode of solution in attached boundary layers to LES in detached flow regions. Simulations of turbulent flows over moving structures on a body-fitted mesh incur an enormous remeshing cost every time step. The constraint-based immersed boundary (cIB) method eliminates this operation by placing the structure on a Cartesian mesh and enforcing a rigidity constraint as an additional forcing in the Navier-Stokes momentum equation. We outline the formulation and development of a parallel DES-cIB method using adaptive mesh refinement. We show preliminary validation results for flows past stationary bodies with both attached and separated boundary layers along with results for turbulent flows past moving bodies. This work is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1324585.

  18. Tropical Cyclone Activity in the North Atlantic Basin During the Weather Satellite Era, 1960-2014

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2016-01-01

    This Technical Publication (TP) represents an extension of previous work concerning the tropical cyclone activity in the North Atlantic basin during the weather satellite era, 1960-2014, in particular, that of an article published in The Journal of the Alabama Academy of Science. With the launch of the TIROS-1 polar-orbiting satellite in April 1960, a new era of global weather observation and monitoring began. Prior to this, the conditions of the North Atlantic basin were determined only from ship reports, island reports, and long-range aircraft reconnaissance. Consequently, storms that formed far from land, away from shipping lanes, and beyond the reach of aircraft possibly could be missed altogether, thereby leading to an underestimate of the true number of tropical cyclones forming in the basin. Additionally, new analysis techniques have come into use which sometimes has led to the inclusion of one or more storms at the end of a nominal hurricane season that otherwise would not have been included. In this TP, examined are the yearly (or seasonal) and 10-year moving average (10-year moving average) values of the (1) first storm day (FSD), last storm day (LSD), and length of season (LOS); (2) frequencies of tropical cyclones (by class); (3) average peak 1-minute sustained wind speed () and average lowest pressure (); (4) average genesis location in terms of north latitudinal () and west longitudinal () positions; (5) sum and average power dissipation index (); (6) sum and average accumulated cyclone energy (); (7) sum and average number of storm days (); (8) sum of the number of hurricane days (NHD) and number of major hurricane days (NMHD); (9) net tropical cyclone activity index (NTCA); (10) largest individual storm (LIS) PWS, LP, PDI, ACE, NSD, NHD, NMHD; and (11) number of category 4 and 5 hurricanes (N4/5). Also examined are the December-May (D-M) and June-November (J-N) averages and 10-year moving average values of several climatic factors, including the (1) oceanic Nino index (); (2) Atlantic multi-decadal oscillation () index; (3) Atlantic meridional mode () index; (4) global land-ocean temperature index (); and (5) quasi-biennial oscillation () index. Lastly, the associational aspects (using both linear and nonparametric statistical tests) between selected tropical cyclone parameters and the climatic factors are examined based on their 10-year moving average trend values.

  19. Source apportionment of speciated PM10 in the United Kingdom in 2008: Episodes and annual averages

    NASA Astrophysics Data System (ADS)

    Redington, A. L.; Witham, C. S.; Hort, M. C.

    2016-11-01

    The Lagrangian atmospheric dispersion model NAME (Numerical Atmospheric-dispersion Modelling Environment), has been used to simulate the formation and transport of PM10 over North-West Europe in 2008. The model has been evaluated against UK measurement data and been shown to adequately represent the observed PM10 at rural and urban sites on a daily basis. The Lagrangian nature of the model allows information on the origin of pollutants (and hence their secondary products) to be retained to allow attribution of pollutants at receptor sites back to their sources. This source apportionment technique has been employed to determine whether the different components of the modelled PM10 have originated from UK, shipping, European (excluding the UK) or background sources. For the first time this has been done to evaluate the composition during periods of elevated PM10 as well as the annual average composition. The episode data were determined by selecting the model data for each hour when the corresponding measurement data was >50 μg/m3. All the modelled sites show an increase in European pollution contribution and a decrease in the background contribution in the episode case compared to the annual average. The European contribution is greatest in southern and eastern parts of the UK and decreases moving northwards and westwards. Analysis of the speciated attribution data over the selected sites reveals that for 2008, as an annual average, the top three contributors to total PM10 are UK primary PM10 (17-25%), UK origin nitrate aerosol (18-21%) and background PM10 (11-16%). Under episode conditions the top three contributors to modelled PM10 are UK origin nitrate aerosol (12-33%), European origin nitrate aerosol (11-19%) and UK primary PM10 (12-18%).

  20. National evaluation of obesity screening and treatment among veterans with and without mental health disorders.

    PubMed

    Littman, Alyson J; Damschroder, Laura J; Verchinina, Lilia; Lai, Zongshan; Kim, Hyungjin Myra; Hoerster, Katherine D; Klingaman, Elizabeth A; Goldberg, Richard W; Owen, Richard R; Goodrich, David E

    2015-01-01

    The objective was to determine whether obesity screening and weight management program participation and outcomes are equitable for individuals with serious mental illness (SMI) and depressive disorder (DD) compared to those without SMI/DD in Veterans Health Administration (VHA), the largest integrated US health system, which requires obesity screening and offers weight management to all in need. We used chart-reviewed, clinical and administrative VHA data from fiscal years 2010-2012 to estimate obesity screening and participation in the VHA's weight management program (MOVE!) across groups. Six- and 12-month weight changes in MOVE! participants were estimated using linear mixed models adjusted for confounders. Compared to individuals without SMI/DD, individuals with SMI or DD were less frequently screened for obesity (94%-94.7% vs. 95.7%) but had greater participation in MOVE! (10.1%-10.4% vs. 7.4%). MOVE! participants with SMI or DD lost approximately 1 lb less at 6 months. At 12 months, average weight loss for individuals with SMI or neither SMI/DD was comparable (-3.5 and -3.3 lb, respectively), but individuals with DD lost less weight (mean=-2.7 lb). Disparities in obesity screening and treatment outcomes across mental health diagnosis groups were modest. However, participation in MOVE! was low for every group, which limits population impact. Published by Elsevier Inc.

  1. Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan

    PubMed Central

    Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju

    2016-01-01

    This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (−) and one month ago (−)), and average relative humidity (current and 9 months ago (−)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future. PMID:26848675

  2. On nonstationarity and antipersistency in global temperature series

    NASA Astrophysics Data System (ADS)

    KäRner, O.

    2002-10-01

    Statistical analysis is carried out for satellite-based global daily tropospheric and stratospheric temperature anomaly and solar irradiance data sets. Behavior of the series appears to be nonstationary with stationary daily increments. Estimating long-range dependence between the increments reveals a remarkable difference between the two temperature series. Global average tropospheric temperature anomaly behaves similarly to the solar irradiance anomaly. Their daily increments show antipersistency for scales longer than 2 months. The property points at a cumulative negative feedback in the Earth climate system governing the tropospheric variability during the last 22 years. The result emphasizes a dominating role of the solar irradiance variability in variations of the tropospheric temperature and gives no support to the theory of anthropogenic climate change. The global average stratospheric temperature anomaly proceeds like a 1-dim random walk at least up to 11 years, allowing good presentation by means of the autoregressive integrated moving average (ARIMA) models for monthly series.

  3. Impacts of Climatic Variability on Vibrio parahaemolyticus Outbreaks in Taiwan.

    PubMed

    Hsiao, Hsin-I; Jan, Man-Ser; Chi, Hui-Ju

    2016-02-03

    This study aimed to investigate and quantify the relationship between climate variation and incidence of Vibrio parahaemolyticus in Taiwan. Specifically, seasonal autoregressive integrated moving average (ARIMA) models (including autoregression, seasonality, and a lag-time effect) were employed to predict the role of climatic factors (including temperature, rainfall, relative humidity, ocean temperature and ocean salinity) on the incidence of V. parahaemolyticus in Taiwan between 2000 and 2011. The results indicated that average temperature (+), ocean temperature (+), ocean salinity of 6 months ago (+), maximum daily rainfall (current (-) and one month ago (-)), and average relative humidity (current and 9 months ago (-)) had significant impacts on the incidence of V. parahaemolyticus. Our findings offer a novel view of the quantitative relationship between climate change and food poisoning by V. parahaemolyticus in Taiwan. An early warning system based on climate change information for the disease control management is required in future.

  4. Successful technical trading agents using genetic programming.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othling, Andrew S.; Kelly, John A.; Pryor, Richard J.

    2004-10-01

    Genetic programming (GP) has proved to be a highly versatile and useful tool for identifying relationships in data for which a more precise theoretical construct is unavailable. In this project, we use a GP search to develop trading strategies for agent based economic models. These strategies use stock prices and technical indicators, such as the moving average convergence/divergence and various exponentially weighted moving averages, to generate buy and sell signals. We analyze the effect of complexity constraints on the strategies as well as the relative performance of various indicators. We also present innovations in the classical genetic programming algorithm thatmore » appear to improve convergence for this problem. Technical strategies developed by our GP algorithm can be used to control the behavior of agents in economic simulation packages, such as ASPEN-D, adding variety to the current market fundamentals approach. The exploitation of arbitrage opportunities by technical analysts may help increase the efficiency of the simulated stock market, as it does in the real world. By improving the behavior of simulated stock markets, we can better estimate the effects of shocks to the economy due to terrorism or natural disasters.« less

  5. Repeated bubble breakup and coalescence in perturbed Hele-Shaw channels

    NASA Astrophysics Data System (ADS)

    Thompson, Alice; Franco-Gomez, Andres; Hazel, Andrew; Juel, Anne

    2017-11-01

    The introduction of an axially-uniform, centred constriction in a Hele-Shaw channel leads to multiple propagation modes for both air fingers and bubbles, including symmetric and asymmetric steadily propagating modes along with oscillations. These multiple modes correspond to a non-trivial bifurcation structure, and relate to the plethora of steadily propagating bubbles and fingers which exist in the Saffman-Taylor system. In both experiments and depth-averaged computations, a very small centred occlusion can be enough to trigger bubble breakup, with a single large centred bubble splitting into two smaller bubbles which propagate along each side of the channel. We present numerical simulations for the depth-averaged model, implementing geometric criteria for pinchoff and coalescence in order to track the bubble before and beyond breakup. We find that the two-bubble state is itself unstable, with finger competition causing one bubble to move ahead; the trailing bubble then moves across the channel to merge with the leading bubble. However, the story is not always so simple, enabling complicated cascades of splitting and merging bubbles. We compare the general dynamical behaviour, basins of attraction, and the details of merging and splitting, to experimental observations.

  6. Singularity analysis based on wavelet transform of fractal measures for identifying geochemical anomaly in mineral exploration

    NASA Astrophysics Data System (ADS)

    Chen, Guoxiong; Cheng, Qiuming

    2016-02-01

    Multi-resolution and scale-invariance have been increasingly recognized as two closely related intrinsic properties endowed in geofields such as geochemical and geophysical anomalies, and they are commonly investigated by using multiscale- and scaling-analysis methods. In this paper, the wavelet-based multiscale decomposition (WMD) method was proposed to investigate the multiscale natures of geochemical pattern from large scale to small scale. In the light of the wavelet transformation of fractal measures, we demonstrated that the wavelet approximation operator provides a generalization of box-counting method for scaling analysis of geochemical patterns. Specifically, the approximation coefficient acts as the generalized density-value in density-area fractal modeling of singular geochemical distributions. Accordingly, we presented a novel local singularity analysis (LSA) using the WMD algorithm which extends the conventional moving averaging to a kernel-based operator for implementing LSA. Finally, the novel LSA was validated using a case study dealing with geochemical data (Fe2O3) in stream sediments for mineral exploration in Inner Mongolia, China. In comparison with the LSA implemented using the moving averaging method the novel LSA using WMD identified improved weak geochemical anomalies associated with mineralization in covered area.

  7. Short-Term Mortality Rates during a Decade of Improved Air Quality in Erfurt, Germany

    PubMed Central

    Breitner, Susanne; Stölzel, Matthias; Cyrys, Josef; Pitz, Mike; Wölke, Gabriele; Kreyling, Wolfgang; Küchenhoff, Helmut; Heinrich, Joachim; Wichmann, H.-Erich; Peters, Annette

    2009-01-01

    Background Numerous studies have shown associations between ambient air pollution and daily mortality. Objectives Our goal was to investigate the association of ambient air pollution and daily mortality in Erfurt, Germany, over a 10.5-year period after the German unification, when air quality improved. Methods We obtained daily mortality counts and data on mass concentrations of particulate matter (PM) < 10 μm in aerodynamic diameter (PM10), gaseous pollutants, and meteorology in Erfurt between October 1991 and March 2002. We obtained ultrafine particle number concentrations (UFP) and mass concentrations of PM < 2.5 μm in aerodynamic diameter (PM2.5) from September 1995 to March 2002. We analyzed the data using semiparametric Poisson regression models adjusting for trend, seasonality, influenza epidemics, day of the week, and meteorology. We evaluated cumulative associations between air pollution and mortality using polynomial distributed lag (PDL) models and multiday moving averages of air pollutants. We evaluated changes in the associations over time in time-varying coefficient models. Results Air pollution concentrations decreased over the study period. Cumulative exposure to UFP was associated with increased mortality. An interquartile range (IQR) increase in the 15-day cumulative mean UFP of 7,649 cm−3 was associated with a relative risk (RR) of 1.060 [95% confidence interval (CI), 1.008–1.114] for PDL models and an RR/IQR of 1.055 (95% CI, 1.011–1.101) for moving averages. RRs decreased from the mid-1990s to the late 1990s. Conclusion Results indicate an elevated mortality risk from short-term exposure to UFP. They further suggest that RRs for short-term associations of air pollution decreased as pollution control measures were implemented in Eastern Germany. PMID:19337521

  8. Conventional and advanced time series estimation: application to the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database, 1993-2006.

    PubMed

    Moran, John L; Solomon, Patricia J

    2011-02-01

    Time series analysis has seen limited application in the biomedical Literature. The utility of conventional and advanced time series estimators was explored for intensive care unit (ICU) outcome series. Monthly mean time series, 1993-2006, for hospital mortality, severity-of-illness score (APACHE III), ventilation fraction and patient type (medical and surgical), were generated from the Australia and New Zealand Intensive Care Society adult patient database. Analyses encompassed geographical seasonal mortality patterns, series structural time changes, mortality series volatility using autoregressive moving average and Generalized Autoregressive Conditional Heteroscedasticity models in which predicted variances are updated adaptively, and bivariate and multivariate (vector error correction models) cointegrating relationships between series. The mortality series exhibited marked seasonality, declining mortality trend and substantial autocorrelation beyond 24 lags. Mortality increased in winter months (July-August); the medical series featured annual cycling, whereas the surgical demonstrated long and short (3-4 months) cycling. Series structural breaks were apparent in January 1995 and December 2002. The covariance stationary first-differenced mortality series was consistent with a seasonal autoregressive moving average process; the observed conditional-variance volatility (1993-1995) and residual Autoregressive Conditional Heteroscedasticity effects entailed a Generalized Autoregressive Conditional Heteroscedasticity model, preferred by information criterion and mean model forecast performance. Bivariate cointegration, indicating long-term equilibrium relationships, was established between mortality and severity-of-illness scores at the database level and for categories of ICUs. Multivariate cointegration was demonstrated for {log APACHE III score, log ICU length of stay, ICU mortality and ventilation fraction}. A system approach to understanding series time-dependence may be established using conventional and advanced econometric time series estimators. © 2010 Blackwell Publishing Ltd.

  9. Circadian Rhythms in Plants, Insects and Mammals Exposed to ELF Magnetic and/or Electric Fields and Currents

    DTIC Science & Technology

    1975-08-28

    favorable to the model. Parameter estimates from this fitting process, carried out in the nature of a "moving-average" throughout the cntilre serces of...34OWOLS Pl %%t4)1 uSSvMS~ USA NIWW 162-7-020 r,.6/WEfg 4/R:0 GAUSS.8:O.5 GAUSS.C:I.O GAUSS.D:2.0 GAtJ$ 360 :24 i ONCHRNHEC SCHOUL if .) 75.2 40.0 20

  10. Steady motion of a rowing boat

    NASA Astrophysics Data System (ADS)

    Dosaev, Marat Z.; Klimina, Liubov A.

    2018-05-01

    A boat with a crank rowing mechanism is considered. The boat is equipped with two rowing oars positioned symmetrically about the symmetry axis of the shell. Oars move synchronously. With the use of numerical-analytical methods it is shown that the dependence of the average speed of the boat on the magnitude of the engine torque at stationary modes of motion is close to the square root function with a certain factor depending on the model parameters. This result agrees with the results of the experiments.

  11. A Spatial Correlation Model of Permeability on the Columbia River Plateau

    NASA Astrophysics Data System (ADS)

    Jayne, R., Jr.; Pollyea, R. M.

    2017-12-01

    This study presents a spatial correlation model of regional scale permeability variability within the Columbia River Basalt Group (CRBG). The data were compiled from the literature, and include 893 aquifer test results from 598 individual wells. In order to quantify the spatial variation of permeability within the CRBG, three experimental variograms (two horizontal and one vertical) are calculated and then fit with a linear combination of mathematical models. The horizontal variograms show there is a 4.5:1 anisotropy ratio for the permeability correlation structure with a long-range correlation of 35 km at N40°E. The km-scale range of these variograms suggests that there is regional control on permeability within the CRBG. One plausible control on the permeability distribution is that rapid crustal loading during CRBG emplacement ( 80% over 1M years) resulted in an isostatic response where the Columbia Plateau had previously undergone subsidence. To support this hypothesis, we calculate a 200 m moving average of all permeability values with depth. This calculation shows that permeability generally follows a systematic decay until 1,100 m depth, beyond which the 200 m moving average permeability increases 3 orders of magnitude. Since basalt fracture networks govern permeability on Columbia River Plateau, this observation is consistent with basal flexure causing tensile stress that counteract lithostatic loading, thus maintaining higher than expected permeability at depth within the Columbia River Basalt Group. These results may have important implications for regional CRBG groundwater management, as well as engineered reservoirs for carbon capture and sequestration and nuclear waste storage.

  12. Kinesin-microtubule interactions during gliding assays under magnetic force

    NASA Astrophysics Data System (ADS)

    Fallesen, Todd L.

    Conventional kinesin is a motor protein capable of converting the chemical energy of ATP into mechanical work. In the cell, this is used to actively transport vesicles through the intracellular matrix. The relationship between the velocity of a single kinesin, as it works against an increasing opposing load, has been well studied. The relationship between the velocity of a cargo being moved by multiple kinesin motors against an opposing load has not been established. A major difficulty in determining the force-velocity relationship for multiple motors is determining the number of motors that are moving a cargo against an opposing load. Here I report on a novel method for detaching microtubules bound to a superparamagnetic bead from kinesin anchor points in an upside down gliding assay using a uniform magnetic field perpendicular to the direction of microtubule travel. The anchor points are presumably kinesin motors bound to the surface which microtubules are gliding over. Determining the distance between anchor points, d, allows the calculation of the average number of kinesins, n, that are moving a microtubule. It is possible to calculate the fraction of motors able to move microtubules as well, which is determined to be ˜ 5%. Using a uniform magnetic field parallel to the direction of microtubule travel, it is possible to impart a uniform magnetic field on a microtubule bound to a superparamagnetic bead. We are able to decrease the average velocity of microtubules driven by multiple kinesin motors moving against an opposing force. Using the average number of kinesins on a microtubule, we estimate that there are an average 2-7 kinesins acting against the opposing force. By fitting Gaussians to the smoothed distributions of microtubule velocities acting against an opposing force, multiple velocities are seen, presumably for n, n-1, n-2, etc motors acting together. When these velocities are scaled for the average number of motors on a microtubule, the force-velocity relationship for multiple motors follows the same trend as for one motor, supporting the hypothesis that multiple motors share the load.

  13. Modeling methodology for MLS range navigation system errors using flight test data

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.

    1982-01-01

    Flight test data was used to develop a methodology for modeling MLS range navigation system errors. The data used corresponded to the constant velocity and glideslope approach segment of a helicopter landing trajectory. The MLS range measurement was assumed to consist of low frequency and random high frequency components. The random high frequency component was extracted from the MLS range measurements. This was done by appropriate filtering of the range residual generated from a linearization of the range profile for the final approach segment. This range navigation system error was then modeled as an autoregressive moving average (ARMA) process. Maximum likelihood techniques were used to identify the parameters of the ARMA process.

  14. Graph-based structural change detection for rotating machinery monitoring

    NASA Astrophysics Data System (ADS)

    Lu, Guoliang; Liu, Jie; Yan, Peng

    2018-01-01

    Detection of structural changes is critically important in operational monitoring of a rotating machine. This paper presents a novel framework for this purpose, where a graph model for data modeling is adopted to represent/capture statistical dynamics in machine operations. Meanwhile we develop a numerical method for computing temporal anomalies in the constructed graphs. The martingale-test method is employed for the change detection when making decisions on possible structural changes, where excellent performance is demonstrated outperforming exciting results such as the autoregressive-integrated-moving average (ARIMA) model. Comprehensive experimental results indicate good potentials of the proposed algorithm in various engineering applications. This work is an extension of a recent result (Lu et al., 2017).

  15. Intake flow modeling in a four stroke diesel using KIVA3

    NASA Technical Reports Server (NTRS)

    Hessel, R. P.; Rutland, C. J.

    1993-01-01

    Intake flow for a dual intake valved diesel engine is modeled using moving valves and realistic geometries. The objectives are to obtain accurate initial conditions for combustion calculations and to provide a tool for studying intake processes. Global simulation parameters are compared with experimental results and show good agreement. The intake process shows a 30 percent difference in mass flows and average swirl in opposite directions across the two intake valves. The effect of the intake process on the flow field at the end of compression is examined. Modeling the intake flow results in swirl and turbulence characteristics that are quite different from those obtained by conventional methods in which compression stroke initial conditions are assumed.

  16. Class III correction using an inter-arch spring-loaded module

    PubMed Central

    2014-01-01

    Background A retrospective study was conducted to determine the cephalometric changes in a group of Class III patients treated with the inter-arch spring-loaded module (CS2000®, Dynaflex, St. Ann, MO, USA). Methods Thirty Caucasian patients (15 males, 15 females) with an average pre-treatment age of 9.6 years were treated consecutively with this appliance and compared with a control group of subjects from the Bolton-Brush Study who were matched in age, gender, and craniofacial morphology to the treatment group. Lateral cephalograms were taken before treatment and after removal of the CS2000® appliance. The treatment effects of the CS2000® appliance were calculated by subtracting the changes due to growth (control group) from the treatment changes. Results All patients were improved to a Class I dental arch relationship with a positive overjet. Significant sagittal, vertical, and angular changes were found between the pre- and post-treatment radiographs. With an average treatment time of 1.3 years, the maxillary base moved forward by 0.8 mm, while the mandibular base moved backward by 2.8 mm together with improvements in the ANB and Wits measurements. The maxillary incisor moved forward by 1.3 mm and the mandibular incisor moved forward by 1.0 mm. The maxillary molar moved forward by 1.0 mm while the mandibular molar moved backward by 0.6 mm. The average overjet correction was 3.9 mm and 92% of the correction was due to skeletal contribution and 8% was due to dental contribution. The average molar correction was 5.2 mm and 69% of the correction was due to skeletal contribution and 31% was due to dental contribution. Conclusions Mild to moderate Class III malocclusion can be corrected using the inter-arch spring-loaded appliance with minimal patient compliance. The overjet correction was contributed by forward movement of the maxilla, backward and downward movement of the mandible, and proclination of the maxillary incisors. The molar relationship was corrected by mesialization of the maxillary molars, distalization of the mandibular molars together with a rotation of the occlusal plane. PMID:24934153

  17. Nonlinear System Identification for Aeroelastic Systems with Application to Experimental Data

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  18. Forecasting of global solar radiation using anfis and armax techniques

    NASA Astrophysics Data System (ADS)

    Muhammad, Auwal; Gaya, M. S.; Aliyu, Rakiya; Aliyu Abdulkadir, Rabi'u.; Dauda Umar, Ibrahim; Aminu Yusuf, Lukuman; Umar Ali, Mudassir; Khairi, M. T. M.

    2018-01-01

    Procurement of measuring device, maintenance cost coupled with calibration of the instrument contributed to the difficulty in forecasting of global solar radiation in underdeveloped countries. Most of the available regressional and mathematical models do not capture well the behavior of the global solar radiation. This paper presents the comparison of Adaptive Neuro Fuzzy Inference System (ANFIS) and Autoregressive Moving Average with eXogenous term (ARMAX) in forecasting global solar radiation. Full-Scale (experimental) data of Nigerian metrological agency, Sultan Abubakar III international airport Sokoto was used to validate the models. The simulation results demonstrated that the ANFIS model having achieved MAPE of 5.34% outperformed the ARMAX model. The ANFIS could be a valuable tool for forecasting the global solar radiation.

  19. Performance of univariate forecasting on seasonal diseases: the case of tuberculosis.

    PubMed

    Permanasari, Adhistya Erna; Rambli, Dayang Rohaya Awang; Dominic, P Dhanapal Durai

    2011-01-01

    The annual disease incident worldwide is desirable to be predicted for taking appropriate policy to prevent disease outbreak. This chapter considers the performance of different forecasting method to predict the future number of disease incidence, especially for seasonal disease. Six forecasting methods, namely linear regression, moving average, decomposition, Holt-Winter's, ARIMA, and artificial neural network (ANN), were used for disease forecasting on tuberculosis monthly data. The model derived met the requirement of time series with seasonality pattern and downward trend. The forecasting performance was compared using similar error measure in the base of the last 5 years forecast result. The findings indicate that ARIMA model was the most appropriate model since it obtained the less relatively error than the other model.

  20. Books Average Previous Decade of Economic Misery

    PubMed Central

    Bentley, R. Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios

    2014-01-01

    For the 20th century since the Depression, we find a strong correlation between a ‘literary misery index’ derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade. PMID:24416159

  1. Studies on the dynamic stability of an axially moving nanobeam based on the nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Shen, Huoming; Zhang, Bo; Liu, Juan

    2018-06-01

    In this paper, we studied the parametric resonance issue of an axially moving viscoelastic nanobeam with varying velocity. Based on the nonlocal strain gradient theory, we established the transversal vibration equation of the axially moving nanobeam and the corresponding boundary condition. By applying the average method, we obtained a set of self-governing ordinary differential equations when the excitation frequency of the moving parameters is twice the intrinsic frequency or near the sum of certain second-order intrinsic frequencies. On the plane of parametric excitation frequency and excitation amplitude, we can obtain the instability region generated by the resonance, and through numerical simulation, we analyze the influence of the scale effect and system parameters on the instability region. The results indicate that the viscoelastic damping decreases the resonance instability region, and the average velocity and stiffness make the instability region move to the left- and right-hand sides. Meanwhile, the scale effect of the system is obvious. The nonlocal parameter exhibits not only the stiffness softening effect but also the damping weakening effect, while the material characteristic length parameter exhibits the stiffness hardening effect and damping reinforcement effect.

  2. Nodding motions of accretion rings and disks - A short-term period in SS 433

    NASA Technical Reports Server (NTRS)

    Katz, J. I.; Anderson, S. F.; Grandi, S. A.; Margon, B.

    1982-01-01

    It is pointed out that accretion disks and rings in mass transfer binaries have been observed spectroscopically and calculated theoretically for many years. The present investigation is partly based on the availability of several years of spectroscopic observations of the Doppler shifts of the moving lines in SS433. A formalism is presented to compute frequencies and amplitudes of short-term 'nodding' motions in precessing accretion disks in close binary systems. This formalism is applied to an analysis of the moving-line Doppler shifts in SS433. The 35d X-ray cycle of Hercules X-1 is also discussed. In the considered model, the companion star exerts a gravitational torque on the disk rim. Averaged over the binary orbit, this yields a steady torque which results in the mean driven counterprecession of the disk.

  3. TERMA Framework for Biomedical Signal Analysis: An Economic-Inspired Approach.

    PubMed

    Elgendi, Mohamed

    2016-11-02

    Biomedical signals contain features that represent physiological events, and each of these events has peaks. The analysis of biomedical signals for monitoring or diagnosing diseases requires the detection of these peaks, making event detection a crucial step in biomedical signal processing. Many researchers have difficulty detecting these peaks to investigate, interpret and analyze their corresponding events. To date, there is no generic framework that captures these events in a robust, efficient and consistent manner. A new method referred to for the first time as two event-related moving averages ("TERMA") involves event-related moving averages and detects events in biomedical signals. The TERMA framework is flexible and universal and consists of six independent LEGO building bricks to achieve high accuracy detection of biomedical events. Results recommend that the window sizes for the two moving averages ( W 1 and W 2 ) have to follow the inequality ( 8 × W 1 ) ≥ W 2 ≥ ( 2 × W 1 ) . Moreover, TERMA is a simple yet efficient event detector that is suitable for wearable devices, point-of-care devices, fitness trackers and smart watches, compared to more complex machine learning solutions.

  4. Seasonal trend analysis and ARIMA modeling of relative humidity and wind speed time series around Yamula Dam

    NASA Astrophysics Data System (ADS)

    Eymen, Abdurrahman; Köylü, Ümran

    2018-02-01

    Local climate change is determined by analysis of long-term recorded meteorological data. In the statistical analysis of the meteorological data, the Mann-Kendall rank test, which is one of the non-parametrical tests, has been used; on the other hand, for determining the power of the trend, Theil-Sen method has been used on the data obtained from 16 meteorological stations. The stations cover the provinces of Kayseri, Sivas, Yozgat, and Nevşehir in the Central Anatolia region of Turkey. Changes in land-use affect local climate. Dams are structures that cause major changes on the land. Yamula Dam is located 25 km northwest of Kayseri. The dam has huge water body which is approximately 85 km2. The mentioned tests have been used for detecting the presence of any positive or negative trend in meteorological data. The meteorological data in relation to the seasonal average, maximum, and minimum values of the relative humidity and seasonal average wind speed have been organized as time series and the tests have been conducted accordingly. As a result of these tests, the following have been identified: increase was observed in minimum relative humidity values in the spring, summer, and autumn seasons. As for the seasonal average wind speed, decrease was detected for nine stations in all seasons, whereas increase was observed in four stations. After the trend analysis, pre-dam mean relative humidity time series were modeled with Autoregressive Integrated Moving Averages (ARIMA) model which is statistical modeling tool. Post-dam relative humidity values were predicted by ARIMA models.

  5. A strategy to decide whether to move the last case of the day in an operating room to another empty operating room to decrease overtime labor costs.

    PubMed

    Dexter, F

    2000-10-01

    We examined how to program an operating room (OR) information system to assist the OR manager in deciding whether to move the last case of the day in one OR to another OR that is empty to decrease overtime labor costs. We first developed a statistical strategy to predict whether moving the case would decrease overtime labor costs for first shift nurses and anesthesia providers. The strategy was based on using historical case duration data stored in a surgical services information system. Second, we estimated the incremental overtime labor costs achieved if our strategy was used for moving cases versus movement of cases by an OR manager who knew in advance exactly how long each case would last. We found that if our strategy was used to decide whether to move cases, then depending on parameter values, only 2.0 to 4.3 more min of overtime would be required per case than if the OR manager had perfect retrospective knowledge of case durations. The use of other information technologies to assist in the decision of whether to move a case, such as real-time patient tracking information systems, closed-circuit cameras, or graphical airport-style displays can, on average, reduce overtime by no more than only 2 to 4 min per case that can be moved. The use of other information technologies to assist in the decision of whether to move a case, such as real-time patient tracking information systems, closed-circuit cameras, or graphical airport-style displays, can, on average, reduce overtime by no more than only 2 to 4 min per case that can be moved.

  6. Peak Running Intensity of International Rugby: Implications for Training Prescription.

    PubMed

    Delaney, Jace A; Thornton, Heidi R; Pryor, John F; Stewart, Andrew M; Dascombe, Ben J; Duthie, Grant M

    2017-09-01

    To quantify the duration and position-specific peak running intensities of international rugby union for the prescription and monitoring of specific training methodologies. Global positioning systems (GPS) were used to assess the activity profile of 67 elite-level rugby union players from 2 nations across 33 international matches. A moving-average approach was used to identify the peak relative distance (m/min), average acceleration/deceleration (AveAcc; m/s 2 ), and average metabolic power (P met ) for a range of durations (1-10 min). Differences between positions and durations were described using a magnitude-based network. Peak running intensity increased as the length of the moving average decreased. There were likely small to moderate increases in relative distance and AveAcc for outside backs, halfbacks, and loose forwards compared with the tight 5 group across all moving-average durations (effect size [ES] = 0.27-1.00). P met demands were at least likely greater for outside backs and halfbacks than for the tight 5 (ES = 0.86-0.99). Halfbacks demonstrated the greatest relative distance and P met outputs but were similar to outside backs and loose forwards in AveAcc demands. The current study has presented a framework to describe the peak running intensities achieved during international rugby competition by position, which are considerably higher than previously reported whole-period averages. These data provide further knowledge of the peak activity profiles of international rugby competition, and this information can be used to assist coaches and practitioners in adequately preparing athletes for the most demanding periods of play.

  7. Solute transport and storage mechanisms in wetlands of the Everglades, south Florida

    USGS Publications Warehouse

    Harvey, Judson W.; Saiers, James E.; Newlin, Jessica T.

    2005-01-01

    Solute transport and storage processes in wetlands play an important role in biogeochemical cycling and in wetland water quality functions. In the wetlands of the Everglades, there are few data or guidelines to characterize transport through the heterogeneous flow environment. Our goal was to conduct a tracer study to help quantify solute exchange between the relatively fast flowing water in the open part of the water column and much more slowly moving water in thick floating vegetation and in the pore water of the underlying peat. We performed a tracer experiment that consisted of a constant‐rate injection of a sodium bromide (NaBr) solution for 22 hours into a 3 m wide, open‐ended flume channel in Everglades National Park. Arrival of the bromide tracer was monitored at an array of surface water and subsurface samplers for 48 hours at a distance of 6.8 m downstream of the injection. A one‐dimensional transport model was used in combination with an optimization code to identify the values of transport parameters that best explained the tracer observations. Parameters included dimensions and mass transfer coefficients describing exchange with both short (hours) and longer (tens of hours) storage zones as well as the average rates of advection and longitudinal dispersion in the open part of the water column (referred to as the “main flow zone”). Comparison with a more detailed set of tracer measurements tested how well the model's storage zones approximated the average characteristics of tracer movement into and out of the layer of thick floating vegetation and the pore water in the underlying peat. The rate at which the relatively fast moving water in the open water column was exchanged with slowly moving water in the layer of floating vegetation and in sediment pore water amounted to 50 and 3% h−1, respectively. Storage processes decreased the depth‐averaged velocity of surface water by 50% relative to the water velocity in the open part of the water column. As a result, flow measurements made with other methods that only work in the open part of the water column (e.g., acoustic Doppler) would have overestimated the true depth‐averaged velocity by a factor of 2. We hypothesize that solute exchange and storage in zones of floating vegetation and peat pore water increase contact time of solutes with biogeochemically active surfaces in this heterogeneous wetland environment.

  8. Studies in astronomical time series analysis: Modeling random processes in the time domain

    NASA Technical Reports Server (NTRS)

    Scargle, J. D.

    1979-01-01

    Random process models phased in the time domain are used to analyze astrophysical time series data produced by random processes. A moving average (MA) model represents the data as a sequence of pulses occurring randomly in time, with random amplitudes. An autoregressive (AR) model represents the correlations in the process in terms of a linear function of past values. The best AR model is determined from sampled data and transformed to an MA for interpretation. The randomness of the pulse amplitudes is maximized by a FORTRAN algorithm which is relatively stable numerically. Results of test cases are given to study the effects of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the optical light curve of the quasar 3C 273 is given.

  9. Modelling and Closed-Loop System Identification of a Quadrotor-Based Aerial Manipulator

    NASA Astrophysics Data System (ADS)

    Dube, Chioniso; Pedro, Jimoh O.

    2018-05-01

    This paper presents the modelling and system identification of a quadrotor-based aerial manipulator. The aerial manipulator model is first derived analytically using the Newton-Euler formulation for the quadrotor and Recursive Newton-Euler formulation for the manipulator. The aerial manipulator is then simulated with the quadrotor under Proportional Derivative (PD) control, with the manipulator in motion. The simulation data is then used for system identification of the aerial manipulator. Auto Regressive with eXogenous inputs (ARX) models are obtained from the system identification for linear accelerations \\ddot{X} and \\ddot{Y} and yaw angular acceleration \\ddot{\\psi }. For linear acceleration \\ddot{Z}, and pitch and roll angular accelerations \\ddot{θ } and \\ddot{φ }, Auto Regressive Moving Average with eXogenous inputs (ARMAX) models are identified.

  10. A Comparison of Forecast Error Generators for Modeling Wind and Load Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ning; Diao, Ruisheng; Hafen, Ryan P.

    2013-12-18

    This paper presents four algorithms to generate random forecast error time series, including a truncated-normal distribution model, a state-space based Markov model, a seasonal autoregressive moving average (ARMA) model, and a stochastic-optimization based model. The error time series are used to create real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast time series that statistically match historically observed forecasting data sets, used for variable generation integration studies. A comparison is made using historical DA load forecast and actual load values to generate new sets of DA forecasts with similar stoical forecast error characteristics. This paper discusses and comparesmore » the capabilities of each algorithm to preserve the characteristics of the historical forecast data sets.« less

  11. Strategy and your stronger hand.

    PubMed

    Moore, Geoffrey A

    2005-12-01

    There are two kinds of businesses in the world, says the author. Knowing what they are--and which one your company is--will guide you to the right strategic moves. One kind includes businesses that compete on a complex-systems model. These companies have large enterprises as their primary customers. They seek to grow a customer base in the thousands, with no more than a handful of transactions per customer per year (indeed, in some years there may be none), and the average price per transaction ranges from six to seven figures. In this model, 1,000 enterprises each paying dollar 1 million per year would generate dollar 1 billion in annual revenue. The other kind of business competes on a volume-operations model. Here, vendors seek to acquire millions of customers, with tens or even hundreds of transactions per customer per year, at an average price of relatively few dollars per transaction. Under this model, it would take 10 million customers each spending dollar 8 per month to generate nearly dollar 1 billion in revenue. An examination of both models shows that they could not be further apart in their approach to every step along the classic value chain. The problem, though, is that companies in one camp often attempt to create new value by venturing into the other. In doing so, they fail to realize how their managerial habits have been shaped by the model they've grown up with. By analogy, they have a "handedness"--the equivalent of a person's right- or left-hand dominance--that makes them as adroit in one mode as they are awkward in the other. Unless you are in an industry whose structure forces you to attempt ambidexterity (in which case, special efforts are required to manage the inevitable dropped balls), you'll be far more successful making moves that favor your stronger hand.

  12. Moving vehicles segmentation based on Gaussian motion model

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Fang, Xiang Z.; Lin, Wei Y.

    2005-07-01

    Moving objects segmentation is a challenge in computer vision. This paper focuses on the segmentation of moving vehicles in dynamic scene. We analyses the psychology of human vision and present a framework for segmenting moving vehicles in the highway. The proposed framework consists of two parts. Firstly, we propose an adaptive background update method in which the background is updated according to the change of illumination conditions and thus can adapt to the change of illumination sensitively. Secondly, we construct a Gaussian motion model to segment moving vehicles, in which the motion vectors of the moving pixels are modeled as a Gaussian model and an on-line EM algorithm is used to update the model. The Gaussian distribution of the adaptive model is elevated to determine which moving vectors result from moving vehicles and which from other moving objects such as waving trees. Finally, the pixels with motion vector result from the moving vehicles are segmented. Experimental results of several typical scenes show that the proposed model can detect the moving vehicles correctly and is immune from influence of the moving objects caused by the waving trees and the vibration of camera.

  13. Essays in the California electricity reserves markets

    NASA Astrophysics Data System (ADS)

    Metaxoglou, Konstantinos

    This dissertation examines inefficiencies in the California electricity reserves markets. In Chapter 1, I use the information released during the investigation of the state's electricity crisis of 2000 and 2001 by the Federal Energy Regulatory Commission to diagnose allocative inefficiencies. Building upon the work of Wolak (2000), I calculate a lower bound for the sellers' price-cost margins using the inverse elasticities of their residual demand curves. The downward bias in my estimates stems from the fact that I don't account for the hierarchical substitutability of the reserve types. The margins averaged at least 20 percent for the two highest quality types of reserves, regulation and spinning, generating millions of dollars in transfers to a handful of sellers. I provide evidence that the deviations from marginal cost pricing were due to the markets' high concentration and a principal-agent relationship that emerged from their design. In Chapter 2, I document systematic differences between the markets' day- and hour-ahead prices. I use a high-dimensional vector moving average model to estimate the premia and conduct correct inferences. To obtain exact maximum likelihood estimates of the model, I employ the EM algorithm that I develop in Chapter 3. I uncover significant day-ahead premia, which I attribute to market design characteristics too. On the demand side, the market design established a principal-agent relationship between the markets' buyers (principal) and their supervisory authority (agent). The agent had very limited incentives to shift reserve purchases to the lower priced hour-ahead markets. On the supply side, the market design raised substantial entry barriers by precluding purely speculative trading and by introducing a complicated code of conduct that induced uncertainty about which actions were subject to regulatory scrutiny. In Chapter 3, I introduce a state-space representation for vector autoregressive moving average models that enables exact maximum likelihood estimation using the EM algorithm. Moreover, my algorithm uses only analytical expressions; it requires the Kalman filter and a fixed-interval smoother in the E step and least squares-type regression in the M step. In contrast, existing maximum likelihood estimation methods require numerical differentiation, both for univariate and multivariate models.

  14. Modelling space of spread Dengue Hemorrhagic Fever (DHF) in Central Java use spatial durbin model

    NASA Astrophysics Data System (ADS)

    Ispriyanti, Dwi; Prahutama, Alan; Taryono, Arkadina PN

    2018-05-01

    Dengue Hemorrhagic Fever is one of the major public health problems in Indonesia. From year to year, DHF causes Extraordinary Event in most parts of Indonesia, especially Central Java. Central Java consists of 35 districts or cities where each region is close to each other. Spatial regression is an analysis that suspects the influence of independent variables on the dependent variables with the influences of the region inside. In spatial regression modeling, there are spatial autoregressive model (SAR), spatial error model (SEM) and spatial autoregressive moving average (SARMA). Spatial Durbin model is the development of SAR where the dependent and independent variable have spatial influence. In this research dependent variable used is number of DHF sufferers. The independent variables observed are population density, number of hospitals, residents and health centers, and mean years of schooling. From the multiple regression model test, the variables that significantly affect the spread of DHF disease are the population and mean years of schooling. By using queen contiguity and rook contiguity, the best model produced is the SDM model with queen contiguity because it has the smallest AIC value of 494,12. Factors that generally affect the spread of DHF in Central Java Province are the number of population and the average length of school.

  15. Moving Beyond ERP Components: A Selective Review of Approaches to Integrate EEG and Behavior

    PubMed Central

    Bridwell, David A.; Cavanagh, James F.; Collins, Anne G. E.; Nunez, Michael D.; Srinivasan, Ramesh; Stober, Sebastian; Calhoun, Vince D.

    2018-01-01

    Relationships between neuroimaging measures and behavior provide important clues about brain function and cognition in healthy and clinical populations. While electroencephalography (EEG) provides a portable, low cost measure of brain dynamics, it has been somewhat underrepresented in the emerging field of model-based inference. We seek to address this gap in this article by highlighting the utility of linking EEG and behavior, with an emphasis on approaches for EEG analysis that move beyond focusing on peaks or “components” derived from averaging EEG responses across trials and subjects (generating the event-related potential, ERP). First, we review methods for deriving features from EEG in order to enhance the signal within single-trials. These methods include filtering based on user-defined features (i.e., frequency decomposition, time-frequency decomposition), filtering based on data-driven properties (i.e., blind source separation, BSS), and generating more abstract representations of data (e.g., using deep learning). We then review cognitive models which extract latent variables from experimental tasks, including the drift diffusion model (DDM) and reinforcement learning (RL) approaches. Next, we discuss ways to access associations among these measures, including statistical models, data-driven joint models and cognitive joint modeling using hierarchical Bayesian models (HBMs). We think that these methodological tools are likely to contribute to theoretical advancements, and will help inform our understandings of brain dynamics that contribute to moment-to-moment cognitive function. PMID:29632480

  16. Using autoregressive integrated moving average (ARIMA) models to predict and monitor the number of beds occupied during a SARS outbreak in a tertiary hospital in Singapore.

    PubMed

    Earnest, Arul; Chen, Mark I; Ng, Donald; Sin, Leo Yee

    2005-05-11

    The main objective of this study is to apply autoregressive integrated moving average (ARIMA) models to make real-time predictions on the number of beds occupied in Tan Tock Seng Hospital, during the recent SARS outbreak. This is a retrospective study design. Hospital admission and occupancy data for isolation beds was collected from Tan Tock Seng hospital for the period 14th March 2003 to 31st May 2003. The main outcome measure was daily number of isolation beds occupied by SARS patients. Among the covariates considered were daily number of people screened, daily number of people admitted (including observation, suspect and probable cases) and days from the most recent significant event discovery. We utilized the following strategy for the analysis. Firstly, we split the outbreak data into two. Data from 14th March to 21st April 2003 was used for model development. We used structural ARIMA models in an attempt to model the number of beds occupied. Estimation is via the maximum likelihood method using the Kalman filter. For the ARIMA model parameters, we considered the simplest parsimonious lowest order model. We found that the ARIMA (1,0,3) model was able to describe and predict the number of beds occupied during the SARS outbreak well. The mean absolute percentage error (MAPE) for the training set and validation set were 5.7% and 8.6% respectively, which we found was reasonable for use in the hospital setting. Furthermore, the model also provided three-day forecasts of the number of beds required. Total number of admissions and probable cases admitted on the previous day were also found to be independent prognostic factors of bed occupancy. ARIMA models provide useful tools for administrators and clinicians in planning for real-time bed capacity during an outbreak of an infectious disease such as SARS. The model could well be used in planning for bed-capacity during outbreaks of other infectious diseases as well.

  17. Effect of contrast on human speed perception

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Thompson, Peter

    1992-01-01

    This study is part of an ongoing collaborative research effort between the Life Science and Human Factors Divisions at NASA ARC to measure the accuracy of human motion perception in order to predict potential errors in human perception/performance and to facilitate the design of display systems that minimize the effects of such deficits. The study describes how contrast manipulations can produce significant errors in human speed perception. Specifically, when two simultaneously presented parallel gratings are moving at the same speed within stationary windows, the lower-contrast grating appears to move more slowly. This contrast-induced misperception of relative speed is evident across a wide range of contrasts (2.5-50 percent) and does not appear to saturate (e.g., a 50 percent contrast grating appears slower than a 70 percent contrast grating moving at the same speed). The misperception is large: a 70 percent contrast grating must, on average, be slowed by 35 percent to match a 10 percent contrast grating moving at 2 deg/sec (N = 6). Furthermore, it is largely independent of the absolute contrast level and is a quasilinear function of log contrast ratio. A preliminary parametric study shows that, although spatial frequency has little effect, the relative orientation of the two gratings is important. Finally, the effect depends on the temporal presentation of the stimuli: the effects of contrast on perceived speed appears lessened when the stimuli to be matched are presented sequentially. These data constrain both physiological models of visual cortex and models of human performance. We conclude that viewing conditions that effect contrast, such as fog, may cause significant errors in speed judgments.

  18. Modeling and simulation of dust behaviors behind a moving vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Jingfang

    Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust behaviors. In addition, I introduce a temporal smoothing technique to eliminate the jagged effect caused by large simulation time. Several algorithms are used to speed up the simulation. For example, pre-calculated tables and display lists are created to replace some of the most commonly used functions, scripts and processes. The performance study shows that both time and space costs of the algorithms are linear in the number of particles in the system. On a Silicon Graphics Octane, three vehicles with 20,000 particles run at 6-8 frames per second on average. This speed does not include the extra calculations of convergence of the numerical integration for fluid dynamics which usually takes about 4-5 minutes to achieve steady state.

  19. Statistical process control of mortality series in the Australian and New Zealand Intensive Care Society (ANZICS) adult patient database: implications of the data generating process

    PubMed Central

    2013-01-01

    Background Statistical process control (SPC), an industrial sphere initiative, has recently been applied in health care and public health surveillance. SPC methods assume independent observations and process autocorrelation has been associated with increase in false alarm frequency. Methods Monthly mean raw mortality (at hospital discharge) time series, 1995–2009, at the individual Intensive Care unit (ICU) level, were generated from the Australia and New Zealand Intensive Care Society adult patient database. Evidence for series (i) autocorrelation and seasonality was demonstrated using (partial)-autocorrelation ((P)ACF) function displays and classical series decomposition and (ii) “in-control” status was sought using risk-adjusted (RA) exponentially weighted moving average (EWMA) control limits (3 sigma). Risk adjustment was achieved using a random coefficient (intercept as ICU site and slope as APACHE III score) logistic regression model, generating an expected mortality series. Application of time-series to an exemplar complete ICU series (1995-(end)2009) was via Box-Jenkins methodology: autoregressive moving average (ARMA) and (G)ARCH ((Generalised) Autoregressive Conditional Heteroscedasticity) models, the latter addressing volatility of the series variance. Results The overall data set, 1995-2009, consisted of 491324 records from 137 ICU sites; average raw mortality was 14.07%; average(SD) raw and expected mortalities ranged from 0.012(0.113) and 0.013(0.045) to 0.296(0.457) and 0.278(0.247) respectively. For the raw mortality series: 71 sites had continuous data for assessment up to or beyond lag40 and 35% had autocorrelation through to lag40; and of 36 sites with continuous data for ≥ 72 months, all demonstrated marked seasonality. Similar numbers and percentages were seen with the expected series. Out-of-control signalling was evident for the raw mortality series with respect to RA-EWMA control limits; a seasonal ARMA model, with GARCH effects, displayed white-noise residuals which were in-control with respect to EWMA control limits and one-step prediction error limits (3SE). The expected series was modelled with a multiplicative seasonal autoregressive model. Conclusions The data generating process of monthly raw mortality series at the ICU level displayed autocorrelation, seasonality and volatility. False-positive signalling of the raw mortality series was evident with respect to RA-EWMA control limits. A time series approach using residual control charts resolved these issues. PMID:23705957

  20. Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots

    NASA Technical Reports Server (NTRS)

    Yoder, T. L.; Zheng, H. Q.; Todd, P.; Staehelin, L. A.

    2001-01-01

    Quantitative analysis of statolith sedimentation behavior was accomplished using videomicroscopy of living columella cells of corn (Zea mays) roots, which displayed no systematic cytoplasmic streaming. Following 90 degrees rotation of the root, the statoliths moved downward along the distal wall and then spread out along the bottom with an average velocity of 1.7 microm min(-1). When statolith trajectories traversed the complete width or length of the cell, they initially moved horizontally toward channel-initiation sites and then moved vertically through the channels to the lower side of the reoriented cell where they again dispersed. These statoliths exhibited a significantly lower average velocity than those sedimenting on distal-to-side trajectories. In addition, although statoliths undergoing distal-to-side sedimentation began at their highest velocity and slowed monotonically as they approached the lower cell membrane, statoliths crossing the cell's central region remained slow initially and accelerated to maximum speed once they reached a channel. The statoliths accelerated sooner, and the channeling effect was less pronounced in roots treated with cytochalasin D. Parallel ultrastructural studies of high-pressure frozen-freeze-substituted columella cells suggest that the low-resistance statolith pathway in the cell periphery corresponds to the sharp interface between the endoplasmic reticulum (ER)-rich cortical and the ER-devoid central region of these cells. The central region is also shown to contain an actin-based cytoskeletal network in which the individual, straight, actin-like filaments are randomly distributed. To explain these findings as well as the results of physical simulation experiments, we have formulated a new, tensegrity-based model of gravity sensing in columella cells. This model envisages the cytoplasm as pervaded by an actin-based cytoskeletal network that is denser in the ER-devoid central region than in the ER-rich cell cortex and is linked to stretch receptors in the plasma membrane. Sedimenting statoliths are postulated to produce a directional signal by locally disrupting the network and thereby altering the balance of forces acting on the receptors in different plasma membrane regions.

  1. Amyloplast Sedimentation Dynamics in Maize Columella Cells Support a New Model for the Gravity-Sensing Apparatus of Roots1

    PubMed Central

    Yoder, Thomas L.; Zheng, Hui-qiong; Todd, Paul; Staehelin, L. Andrew

    2001-01-01

    Quantitative analysis of statolith sedimentation behavior was accomplished using videomicroscopy of living columella cells of corn (Zea mays) roots, which displayed no systematic cytoplasmic streaming. Following 90° rotation of the root, the statoliths moved downward along the distal wall and then spread out along the bottom with an average velocity of 1.7 μm min−1. When statolith trajectories traversed the complete width or length of the cell, they initially moved horizontally toward channel-initiation sites and then moved vertically through the channels to the lower side of the reoriented cell where they again dispersed. These statoliths exhibited a significantly lower average velocity than those sedimenting on distal-to-side trajectories. In addition, although statoliths undergoing distal-to-side sedimentation began at their highest velocity and slowed monotonically as they approached the lower cell membrane, statoliths crossing the cell's central region remained slow initially and accelerated to maximum speed once they reached a channel. The statoliths accelerated sooner, and the channeling effect was less pronounced in roots treated with cytochalasin D. Parallel ultrastructural studies of high-pressure frozen-freeze-substituted columella cells suggest that the low-resistance statolith pathway in the cell periphery corresponds to the sharp interface between the endoplasmic reticulum (ER)-rich cortical and the ER-devoid central region of these cells. The central region is also shown to contain an actin-based cytoskeletal network in which the individual, straight, actin-like filaments are randomly distributed. To explain these findings as well as the results of physical simulation experiments, we have formulated a new, tensegrity-based model of gravity sensing in columella cells. This model envisages the cytoplasm as pervaded by an actin-based cytoskeletal network that is denser in the ER-devoid central region than in the ER-rich cell cortex and is linked to stretch receptors in the plasma membrane. Sedimenting statoliths are postulated to produce a directional signal by locally disrupting the network and thereby altering the balance of forces acting on the receptors in different plasma membrane regions. PMID:11161060

  2. Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots.

    PubMed

    Yoder, T L; Zheng, H Q; Todd, P; Staehelin, L A

    2001-02-01

    Quantitative analysis of statolith sedimentation behavior was accomplished using videomicroscopy of living columella cells of corn (Zea mays) roots, which displayed no systematic cytoplasmic streaming. Following 90 degrees rotation of the root, the statoliths moved downward along the distal wall and then spread out along the bottom with an average velocity of 1.7 microm min(-1). When statolith trajectories traversed the complete width or length of the cell, they initially moved horizontally toward channel-initiation sites and then moved vertically through the channels to the lower side of the reoriented cell where they again dispersed. These statoliths exhibited a significantly lower average velocity than those sedimenting on distal-to-side trajectories. In addition, although statoliths undergoing distal-to-side sedimentation began at their highest velocity and slowed monotonically as they approached the lower cell membrane, statoliths crossing the cell's central region remained slow initially and accelerated to maximum speed once they reached a channel. The statoliths accelerated sooner, and the channeling effect was less pronounced in roots treated with cytochalasin D. Parallel ultrastructural studies of high-pressure frozen-freeze-substituted columella cells suggest that the low-resistance statolith pathway in the cell periphery corresponds to the sharp interface between the endoplasmic reticulum (ER)-rich cortical and the ER-devoid central region of these cells. The central region is also shown to contain an actin-based cytoskeletal network in which the individual, straight, actin-like filaments are randomly distributed. To explain these findings as well as the results of physical simulation experiments, we have formulated a new, tensegrity-based model of gravity sensing in columella cells. This model envisages the cytoplasm as pervaded by an actin-based cytoskeletal network that is denser in the ER-devoid central region than in the ER-rich cell cortex and is linked to stretch receptors in the plasma membrane. Sedimenting statoliths are postulated to produce a directional signal by locally disrupting the network and thereby altering the balance of forces acting on the receptors in different plasma membrane regions.

  3. Active and passive transport of cargo in a corrugated channel: A lattice model study

    NASA Astrophysics Data System (ADS)

    Dey, Supravat; Ching, Kevin; Das, Moumita

    2018-04-01

    Inside cells, cargos such as vesicles and organelles are transported by molecular motors to their correct locations via active motion on cytoskeletal tracks and passive, Brownian diffusion. During the transportation of cargos, motor-cargo complexes (MCCs) navigate the confining and crowded environment of the cytoskeletal network and other macromolecules. Motivated by this, we study a minimal two-state model of motor-driven cargo transport in confinement and predict transport properties that can be tested in experiments. We assume that the motion of the MCC is directly affected by the entropic barrier due to confinement if it is in the passive, unbound state but not in the active, bound state where it moves with a constant bound velocity. We construct a lattice model based on a Fokker Planck description of the two-state system, study it using a kinetic Monte Carlo method and compare our numerical results with analytical expressions for a mean field limit. We find that the effect of confinement strongly depends on the bound velocity and the binding kinetics of the MCC. Confinement effectively reduces the effective diffusivity and average velocity, except when it results in an enhanced average binding rate and thereby leads to a larger average velocity than when unconfined.

  4. Global plate motion frames: Toward a unified model

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond H.; Müller, R. Dietmar; van der Voo, Rob; Steinberger, Bernhard; Gaina, Carmen

    2008-09-01

    Plate tectonics constitutes our primary framework for understanding how the Earth works over geological timescales. High-resolution mapping of relative plate motions based on marine geophysical data has followed the discovery of geomagnetic reversals, mid-ocean ridges, transform faults, and seafloor spreading, cementing the plate tectonic paradigm. However, so-called "absolute plate motions," describing how the fragments of the outer shell of the Earth have moved relative to a reference system such as the Earth's mantle, are still poorly understood. Accurate absolute plate motion models are essential surface boundary conditions for mantle convection models as well as for understanding past ocean circulation and climate as continent-ocean distributions change with time. A fundamental problem with deciphering absolute plate motions is that the Earth's rotation axis and the averaged magnetic dipole axis are not necessarily fixed to the mantle reference system. Absolute plate motion models based on volcanic hot spot tracks are largely confined to the last 130 Ma and ideally would require knowledge about the motions within the convecting mantle. In contrast, models based on paleomagnetic data reflect plate motion relative to the magnetic dipole axis for most of Earth's history but cannot provide paleolongitudes because of the axial symmetry of the Earth's magnetic dipole field. We analyze four different reference frames (paleomagnetic, African fixed hot spot, African moving hot spot, and global moving hot spot), discuss their uncertainties, and develop a unifying approach for connecting a hot spot track system and a paleomagnetic absolute plate reference system into a "hybrid" model for the time period from the assembly of Pangea (˜320 Ma) to the present. For the last 100 Ma we use a moving hot spot reference frame that takes mantle convection into account, and we connect this to a pre-100 Ma global paleomagnetic frame adjusted 5° in longitude to smooth the reference frame transition. Using plate driving force arguments and the mapping of reconstructed large igneous provinces to core-mantle boundary topography, we argue that continental paleolongitudes can be constrained with reasonable confidence.

  5. Ground target geolocation based on digital elevation model for airborne wide-area reconnaissance system

    NASA Astrophysics Data System (ADS)

    Qiao, Chuan; Ding, Yalin; Xu, Yongsen; Xiu, Jihong

    2018-01-01

    To obtain the geographical position of the ground target accurately, a geolocation algorithm based on the digital elevation model (DEM) is developed for an airborne wide-area reconnaissance system. According to the platform position and attitude information measured by the airborne position and orientation system and the gimbal angles information from the encoder, the line-of-sight pointing vector in the Earth-centered Earth-fixed coordinate frame is solved by the homogeneous coordinate transformation. The target longitude and latitude can be solved with the elliptical Earth model and the global DEM. The influences of the systematic error and measurement error on ground target geolocation calculation accuracy are analyzed by the Monte Carlo method. The simulation results show that this algorithm can improve the geolocation accuracy of ground target in rough terrain area obviously. The geolocation accuracy of moving ground target can be improved by moving average filtering (MAF). The validity of the geolocation algorithm is verified by the flight test in which the plane flies at a geodetic height of 15,000 m and the outer gimbal angle is <47°. The geolocation root mean square error of the target trajectory is <45 and <7 m after MAF.

  6. Collective cell migration without proliferation: density determines cell velocity and wave velocity

    NASA Astrophysics Data System (ADS)

    Tlili, Sham; Gauquelin, Estelle; Li, Brigitte; Cardoso, Olivier; Ladoux, Benoît; Delanoë-Ayari, Hélène; Graner, François

    2018-05-01

    Collective cell migration contributes to embryogenesis, wound healing and tumour metastasis. Cell monolayer migration experiments help in understanding what determines the movement of cells far from the leading edge. Inhibiting cell proliferation limits cell density increase and prevents jamming; we observe long-duration migration and quantify space-time characteristics of the velocity profile over large length scales and time scales. Velocity waves propagate backwards and their frequency depends only on cell density at the moving front. Both cell average velocity and wave velocity increase linearly with the cell effective radius regardless of the distance to the front. Inhibiting lamellipodia decreases cell velocity while waves either disappear or have a lower frequency. Our model combines conservation laws, monolayer mechanical properties and a phenomenological coupling between strain and polarity: advancing cells pull on their followers, which then become polarized. With reasonable values of parameters, this model agrees with several of our experimental observations. Together, our experiments and model disantangle the respective contributions of active velocity and of proliferation in monolayer migration, explain how cells maintain their polarity far from the moving front, and highlight the importance of strain-polarity coupling and density in long-range information propagation.

  7. Distractor Interference during Smooth Pursuit Eye Movements

    ERIC Educational Resources Information Center

    Spering, Miriam; Gegenfurtner, Karl R.; Kerzel, Dirk

    2006-01-01

    When 2 targets for pursuit eye movements move in different directions, the eye velocity follows the vector average (S. G. Lisberger & V. P. Ferrera, 1997). The present study investigates the mechanisms of target selection when observers are instructed to follow a predefined horizontal target and to ignore a moving distractor stimulus. Results show…

  8. Alteration of Box-Jenkins methodology by implementing genetic algorithm method

    NASA Astrophysics Data System (ADS)

    Ismail, Zuhaimy; Maarof, Mohd Zulariffin Md; Fadzli, Mohammad

    2015-02-01

    A time series is a set of values sequentially observed through time. The Box-Jenkins methodology is a systematic method of identifying, fitting, checking and using integrated autoregressive moving average time series model for forecasting. Box-Jenkins method is an appropriate for a medium to a long length (at least 50) time series data observation. When modeling a medium to a long length (at least 50), the difficulty arose in choosing the accurate order of model identification level and to discover the right parameter estimation. This presents the development of Genetic Algorithm heuristic method in solving the identification and estimation models problems in Box-Jenkins. Data on International Tourist arrivals to Malaysia were used to illustrate the effectiveness of this proposed method. The forecast results that generated from this proposed model outperformed single traditional Box-Jenkins model.

  9. Influence of tyre-road contact model on vehicle vibration response

    NASA Astrophysics Data System (ADS)

    Múčka, Peter; Gagnon, Louis

    2015-09-01

    The influence of the tyre-road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre-road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre-road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.

  10. Dog days of summer: Influences on decision of wolves to move pups

    USGS Publications Warehouse

    Ausband, David E.; Mitchell, Michael S.; Bassing, Sarah B.; Nordhagen, Matthew; Smith, Douglas W.; Stahler, Daniel R.

    2016-01-01

    For animals that forage widely, protecting young from predation can span relatively long time periods due to the inability of young to travel with and be protected by their parents. Moving relatively immobile young to improve access to important resources, limit detection of concentrated scent by predators, and decrease infestations by ectoparasites can be advantageous. Moving young, however, can also expose them to increased mortality risks (e.g., accidents, getting lost, predation). For group-living animals that live in variable environments and care for young over extended time periods, the influence of biotic factors (e.g., group size, predation risk) and abiotic factors (e.g., temperature and precipitation) on the decision to move young is unknown. We used data from 25 satellite-collared wolves ( Canis lupus ) in Idaho, Montana, and Yellowstone National Park to evaluate how these factors could influence the decision to move pups during the pup-rearing season. We hypothesized that litter size, the number of adults in a group, and perceived predation risk would positively affect the number of times gray wolves moved pups. We further hypothesized that wolves would move their pups more often when it was hot and dry to ensure sufficient access to water. Contrary to our hypothesis, monthly temperature above the 30-year average was negatively related to the number of times wolves moved their pups. Monthly precipitation above the 30-year average, however, was positively related to the amount of time wolves spent at pup-rearing sites after leaving the natal den. We found little relationship between risk of predation (by grizzly bears, humans, or conspecifics) or group and litter sizes and number of times wolves moved their pups. Our findings suggest that abiotic factors most strongly influence the decision of wolves to move pups, although responses to unpredictable biotic events (e.g., a predator encountering pups) cannot be ruled out.

  11. Motion tracing system for ultrasound guided HIFU

    NASA Astrophysics Data System (ADS)

    Xiao, Xu; Jiang, Tingyi; Corner, George; Huang, Zhihong

    2017-03-01

    One main limitation in HIFU treatment is the abdominal movement in liver and kidney caused by respiration. The study has set up a tracking model which mainly compromises of a target carrying box and a motion driving balloon. A real-time B-mode ultrasound guidance method suitable for tracking of the abdominal organ motion in 2D was established and tested. For the setup, the phantoms mimicking moving organs are carefully prepared with agar surrounding round-shaped egg-white as the target of focused ultrasound ablation. Physiological phantoms and animal tissues are driven moving reciprocally along the main axial direction of the ultrasound image probe with slightly motion perpendicular to the axial direction. The moving speed and range could be adjusted by controlling the inflation and deflation speed and amount of the balloon driven by a medical ventilator. A 6-DOF robotic arm was used to position the focused ultrasound transducer. The overall system was trying to estimate to simulate the actual movement caused by human respiration. HIFU ablation experiments using phantoms and animal organs were conducted to test the tracking effect. Ultrasound strain elastography was used to post estimate the efficiency of the tracking algorithms and system. In moving state, the axial size of the lesion (perpendicular to the movement direction) are averagely 4mm, which is one third larger than the lesion got when the target was not moving. This presents the possibility of developing a low-cost real-time method of tracking organ motion during HIFU treatment in liver or kidney.

  12. ARIMA representation for daily solar irradiance and surface air temperature time series

    NASA Astrophysics Data System (ADS)

    Kärner, Olavi

    2009-06-01

    Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.

  13. Parameter estimation of an ARMA model for river flow forecasting using goal programming

    NASA Astrophysics Data System (ADS)

    Mohammadi, Kourosh; Eslami, H. R.; Kahawita, Rene

    2006-11-01

    SummaryRiver flow forecasting constitutes one of the most important applications in hydrology. Several methods have been developed for this purpose and one of the most famous techniques is the Auto regressive moving average (ARMA) model. In the research reported here, the goal was to minimize the error for a specific season of the year as well as for the complete series. Goal programming (GP) was used to estimate the ARMA model parameters. Shaloo Bridge station on the Karun River with 68 years of observed stream flow data was selected to evaluate the performance of the proposed method. The results when compared with the usual method of maximum likelihood estimation were favorable with respect to the new proposed algorithm.

  14. VizieR Online Data Catalog: HARPS timeseries data for HD41248 (Jenkins+, 2014)

    NASA Astrophysics Data System (ADS)

    Jenkins, J. S.; Tuomi, M.

    2017-05-01

    We modeled the HARPS radial velocities of HD 42148 by adopting the analysis techniques and the statistical model applied in Tuomi et al. (2014, arXiv:1405.2016). This model contains Keplerian signals, a linear trend, a moving average component with exponential smoothing, and linear correlations with activity indices, namely, BIS, FWHM, and chromospheric activity S index. We applied our statistical model outlined above to the full data set of radial velocities for HD 41248, combining the previously published data in Jenkins et al. (2013ApJ...771...41J) with the newly published data in Santos et al. (2014, J/A+A/566/A35), giving rise to a total time series of 223 HARPS (Mayor et al. 2003Msngr.114...20M) velocities. (1 data file).

  15. Parametric output-only identification of time-varying structures using a kernel recursive extended least squares TARMA approach

    NASA Astrophysics Data System (ADS)

    Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim

    2018-01-01

    The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.

  16. Multiview point clouds denoising based on interference elimination

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Wu, Qian; Wang, Le; Jiang, Huanyu

    2018-03-01

    Newly emerging low-cost depth sensors offer huge potentials for three-dimensional (3-D) modeling, but existing high noise restricts these sensors from obtaining accurate results. Thus, we proposed a method for denoising registered multiview point clouds with high noise to solve that problem. The proposed method is aimed at fully using redundant information to eliminate the interferences among point clouds of different views based on an iterative procedure. In each iteration, noisy points are either deleted or moved to their weighted average targets in accordance with two cases. Simulated data and practical data captured by a Kinect v2 sensor were tested in experiments qualitatively and quantitatively. Results showed that the proposed method can effectively reduce noise and recover local features from highly noisy multiview point clouds with good robustness, compared to truncated signed distance function and moving least squares (MLS). Moreover, the resulting low-noise point clouds can be further smoothed by the MLS to achieve improved results. This study provides the feasibility of obtaining fine 3-D models with high-noise devices, especially for depth sensors, such as Kinect.

  17. Flagellar flows around bacterial swarms

    NASA Astrophysics Data System (ADS)

    Dauparas, Justas; Lauga, Eric

    2016-08-01

    Flagellated bacteria on nutrient-rich substrates can differentiate into a swarming state and move in dense swarms across surfaces. A recent experiment measured the flow in the fluid around an Escherichia coli swarm [Wu, Hosu, and Berg, Proc. Natl. Acad. Sci. USA 108, 4147 (2011)], 10.1073/pnas.1016693108. A systematic chiral flow was observed in the clockwise direction (when viewed from above) ahead of the swarm with flow speeds of about 10 μ m /s , about 3 times greater than the radial velocity at the edge of the swarm. The working hypothesis is that this flow is due to the action of cells stalled at the edge of a colony that extend their flagellar filaments outward, moving fluid over the virgin agar. In this work we quantitatively test this hypothesis. We first build an analytical model of the flow induced by a single flagellum in a thin film and then use the model, and its extension to multiple flagella, to compare with experimental measurements. The results we obtain are in agreement with the flagellar hypothesis. The model provides further quantitative insight into the flagella orientations and their spatial distributions as well as the tangential speed profile. In particular, the model suggests that flagella are on average pointing radially out of the swarm and are not wrapped tangentially.

  18. ARMA models for earthquake ground motions. Seismic safety margins research program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.

    1981-02-01

    Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulatingmore » earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.« less

  19. Gesture Based Control and EMG Decomposition

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Chang, Mindy H.; Knuth, Kevin H.

    2005-01-01

    This paper presents two probabilistic developments for use with Electromyograms (EMG). First described is a new-electric interface for virtual device control based on gesture recognition. The second development is a Bayesian method for decomposing EMG into individual motor unit action potentials. This more complex technique will then allow for higher resolution in separating muscle groups for gesture recognition. All examples presented rely upon sampling EMG data from a subject's forearm. The gesture based recognition uses pattern recognition software that has been trained to identify gestures from among a given set of gestures. The pattern recognition software consists of hidden Markov models which are used to recognize the gestures as they are being performed in real-time from moving averages of EMG. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard. Moving averages of EMG do not provide easy distinction between fine muscle groups. To better distinguish between different fine motor skill muscle groups we present a Bayesian algorithm to separate surface EMG into representative motor unit action potentials. The algorithm is based upon differential Variable Component Analysis (dVCA) [l], [2] which was originally developed for Electroencephalograms. The algorithm uses a simple forward model representing a mixture of motor unit action potentials as seen across multiple channels. The parameters of this model are iteratively optimized for each component. Results are presented on both synthetic and experimental EMG data. The synthetic case has additive white noise and is compared with known components. The experimental EMG data was obtained using a custom linear electrode array designed for this study.

  20. Acceleration and Velocity Sensing from Measured Strain

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi; Truax, Roger

    2016-01-01

    A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.

  1. Unsteady Aerodynamic Force Sensing from Strain Data

    NASA Technical Reports Server (NTRS)

    Pak, Chan-Gi

    2017-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm.

  2. Mallard brood movements, wetland use, and duckling survival during and following a prairie drought

    USGS Publications Warehouse

    Krapu, G.L.; Pietz, P.J.; Brandt, D.A.; Cox, R.R.

    2006-01-01

    We used radiotelemetry to study mallard (Anas platyrhynchos) brood movements, wetland use, and duckling survival during a major drought (1988-1992) and during the first 2 years of the subsequent wet period (1993-1994) at 4 51-km2 sites in prairie pothole landscapes in eastern North Dakota, USA. About two-thirds of 69 radiomarked mallard broods initiated moves from the nest to water before noon, and all left the nest during daylight. On average, broods used fewer wetlands, but moved greater distances during the dry period than the wet period. Broods of all ages were more likely to make inter-wetland moves during the wet period and probabilities of inter-wetland moves decreased as duckling age increased, especially during the dry period. Brood use of seasonal wetlands nearly doubled from 22% to 43% and use of semi-permanent wetlands declined from 73% to 50% from the dry to the wet period. Eighty-one of 150 radiomarked ducklings died during 1,604 exposure days. We evaluated survival models containing variables related to water conditions, weather, duckling age, and hatch date. Model-averaged risk ratios indicated that, on any given date, radiomarked ducklings were 1.5 (95% CI = 0.8-2.8) times more likely to die when the percentage of seasonal basins containing water (WETSEAS) was ???18% than when WETSEAS was >40%. An interaction between duckling age and occurrence of rain on the current or 2 previous days indicated that rain effects were pronounced when ducklings were 0-7 days old but negligible when they were 8-30 days old. The TMIN (mean daily minimum temperature on the current and 2 previous days) effects generally were consistent between duckling age classes, and the risk of duckling death increased 9.3% for each 1??C decrease in TMIN across both age classes. Overall, the 30-day survival rate of ducklings equipped with radiotransmitters was about 0.23 lower than the survival rate of those without radiotransmitiers. Unmarked ducklings were 7.6 (95% CI = 2.7-21.3) times more likely to die on any given day when WETSEAS was ???18% than when WETSEAS was >40%. Higher duckling survival and increased use of seasonal wetlands during the wet period suggest that mallard production will benefit from programs that conserve and restore seasonal wetland habitat. Given adverse effects of low temperatures on duckling survival, managers may want to include this stochastic variable in models used to predict annual production of mallards in the Prairie Pothole Region.

  3. Distributed parameter system coupled ARMA expansion identification and adaptive parallel IIR filtering - A unified problem statement. [Auto Regressive Moving-Average

    NASA Technical Reports Server (NTRS)

    Johnson, C. R., Jr.; Balas, M. J.

    1980-01-01

    A novel interconnection of distributed parameter system (DPS) identification and adaptive filtering is presented, which culminates in a common statement of coupled autoregressive, moving-average expansion or parallel infinite impulse response configuration adaptive parameterization. The common restricted complexity filter objectives are seen as similar to the reduced-order requirements of the DPS expansion description. The interconnection presents the possibility of an exchange of problem formulations and solution approaches not yet easily addressed in the common finite dimensional lumped-parameter system context. It is concluded that the shared problems raised are nevertheless many and difficult.

  4. A fixed-memory moving, expanding window for obtaining scatter corrections in X-ray CT and other stochastic averages

    NASA Astrophysics Data System (ADS)

    Levine, Zachary H.; Pintar, Adam L.

    2015-11-01

    A simple algorithm for averaging a stochastic sequence of 1D arrays in a moving, expanding window is provided. The samples are grouped in bins which increase exponentially in size so that a constant fraction of the samples is retained at any point in the sequence. The algorithm is shown to have particular relevance for a class of Monte Carlo sampling problems which includes one characteristic of iterative reconstruction in computed tomography. The code is available in the CPC program library in both Fortran 95 and C and is also available in R through CRAN.

  5. Detrending moving average algorithm for multifractals

    NASA Astrophysics Data System (ADS)

    Gu, Gao-Feng; Zhou, Wei-Xing

    2010-07-01

    The detrending moving average (DMA) algorithm is a widely used technique to quantify the long-term correlations of nonstationary time series and the long-range correlations of fractal surfaces, which contains a parameter θ determining the position of the detrending window. We develop multifractal detrending moving average (MFDMA) algorithms for the analysis of one-dimensional multifractal measures and higher-dimensional multifractals, which is a generalization of the DMA method. The performance of the one-dimensional and two-dimensional MFDMA methods is investigated using synthetic multifractal measures with analytical solutions for backward (θ=0) , centered (θ=0.5) , and forward (θ=1) detrending windows. We find that the estimated multifractal scaling exponent τ(q) and the singularity spectrum f(α) are in good agreement with the theoretical values. In addition, the backward MFDMA method has the best performance, which provides the most accurate estimates of the scaling exponents with lowest error bars, while the centered MFDMA method has the worse performance. It is found that the backward MFDMA algorithm also outperforms the multifractal detrended fluctuation analysis. The one-dimensional backward MFDMA method is applied to analyzing the time series of Shanghai Stock Exchange Composite Index and its multifractal nature is confirmed.

  6. TERMA Framework for Biomedical Signal Analysis: An Economic-Inspired Approach

    PubMed Central

    Elgendi, Mohamed

    2016-01-01

    Biomedical signals contain features that represent physiological events, and each of these events has peaks. The analysis of biomedical signals for monitoring or diagnosing diseases requires the detection of these peaks, making event detection a crucial step in biomedical signal processing. Many researchers have difficulty detecting these peaks to investigate, interpret and analyze their corresponding events. To date, there is no generic framework that captures these events in a robust, efficient and consistent manner. A new method referred to for the first time as two event-related moving averages (“TERMA”) involves event-related moving averages and detects events in biomedical signals. The TERMA framework is flexible and universal and consists of six independent LEGO building bricks to achieve high accuracy detection of biomedical events. Results recommend that the window sizes for the two moving averages (W1 and W2) have to follow the inequality (8×W1)≥W2≥(2×W1). Moreover, TERMA is a simple yet efficient event detector that is suitable for wearable devices, point-of-care devices, fitness trackers and smart watches, compared to more complex machine learning solutions. PMID:27827852

  7. PRP: peripheral routing protocol for WSN realistic marginal mobility model

    NASA Astrophysics Data System (ADS)

    Tudorache, I. G.; Popescu, A. M.; Kemp, A. H.

    2017-02-01

    This article proposes a new routing protocol called Peripheral Routing Protocol (PRP) for the scenario where the mobile destination (D) moves at the wireless sensor network (WSN) periphery for gathering data. From a connectivity point of view, when D follows the marginal mobility model (MMM), the WSN becomes a hybrid network: a sparse network, because of the interrupted connectivity between D and the rest of the nodes and a well-connected network, because of the connectivity between all the other nodes of the WSN except D. It will be proven through MATLAB simulations that, for a military application scenario where D's connectivity to the WSN varies between 10% and 95%, compared with the 100% case, PRP outperforms routing protocols recommended for Mobile Ad-hoc Networks (MANET) in three ways: it maintains an average Packet Delivery Ratio (PDR) over 90%, a below 10% and 5% increase for the Average End to End Delay (AETED) and energy per transmitted packet.

  8. Tidally induced residual current over the Malin Sea continental slope

    NASA Astrophysics Data System (ADS)

    Stashchuk, Nataliya; Vlasenko, Vasiliy; Hosegood, Phil; Nimmo-Smith, W. Alex M.

    2017-05-01

    Tidally induced residual currents generated over shelf-slope topography are investigated analytically and numerically using the Massachusetts Institute of Technology general circulation model. Observational support for the presence of such a slope current was recorded over the Malin Sea continental slope during the 88-th cruise of the RRS ;James Cook; in July 2013. A simple analytical formula developed here in the framework of time-averaged shallow water equations has been validated against a fully nonlinear nonhydrostatic numerical solution. A good agreement between analytical and numerical solutions is found for a wide range of input parameters of the tidal flow and bottom topography. In application to the Malin Shelf area both the numerical model and analytical solution predicted a northward moving current confined to the slope with its core located above the 400 m isobath and with vertically averaged maximum velocities up to 8 cm s-1, which is consistent with the in-situ data recorded at three moorings and along cross-slope transects.

  9. Heterogeneous CPU-GPU moving targets detection for UAV video

    NASA Astrophysics Data System (ADS)

    Li, Maowen; Tang, Linbo; Han, Yuqi; Yu, Chunlei; Zhang, Chao; Fu, Huiquan

    2017-07-01

    Moving targets detection is gaining popularity in civilian and military applications. On some monitoring platform of motion detection, some low-resolution stationary cameras are replaced by moving HD camera based on UAVs. The pixels of moving targets in the HD Video taken by UAV are always in a minority, and the background of the frame is usually moving because of the motion of UAVs. The high computational cost of the algorithm prevents running it at higher resolutions the pixels of frame. Hence, to solve the problem of moving targets detection based UAVs video, we propose a heterogeneous CPU-GPU moving target detection algorithm for UAV video. More specifically, we use background registration to eliminate the impact of the moving background and frame difference to detect small moving targets. In order to achieve the effect of real-time processing, we design the solution of heterogeneous CPU-GPU framework for our method. The experimental results show that our method can detect the main moving targets from the HD video taken by UAV, and the average process time is 52.16ms per frame which is fast enough to solve the problem.

  10. Industrial Based Migration in India. A Case Study of Dumdum "Dunlop Industrial Zone"

    NASA Astrophysics Data System (ADS)

    Das, Biplab; Bandyopadhyay, Aditya; Sen, Jayashree

    2012-10-01

    Migration is a very important part in our present society. Basically Millions of people moved during the industrial revolution. Some simply moved from a village to a town in the hope of finding work whilst others moved from one country to another in search of a better way of life. The main reason for moving home during the 19th century was to find work. On one hand this involved migration from the countryside to the growing industrial cities, on the other it involved rates of migration, emigration, and the social changes that were drastically affecting factors such as marriage,birth and death rates. These social changes taking place as a result of capitalism had far ranging affects, such as lowering the average age of marriage and increasing the size of the average family.Migration was not just people moving out of the country, it also invloved a lot of people moving into Britain. In the 1840's Ireland suffered a terrible famine. Faced with a massive cost of feeding the starving population many local landowners paid for labourers to emigrate.There was a shift away from agriculturally based rural dwelling towards urban habitation to meet the mass demand for labour that new industry required. There became great regional differences in population levels and in the structure of their demography. This was due to rates of migration, emigration, and the social changes that were drastically affecting factors such as marriage, birth and death rates. These social changes taking place as a result of capitalism had far ranging affects, such as lowering the average age of marriage and increasing the size of the average family. There is n serious disagreement as to the extent of the population changes that occurred but one key question that always arouses debate is that of whether an expanding population resulted in economic growth or vice versa, i.e. was industrialization a catalyst for population growth? A clear answer is difficult to decipher as the two variables are so closely and fundamentally interlinked, but it seems that both factors provided impetus for each otherís take off. If anything, population and economic growth were complimentary towards one another rather than simply being causative factors.

  11. El Niño-Southern Oscillation, local weather and occurrences of dengue virus serotypes

    NASA Astrophysics Data System (ADS)

    Huang, Xiaodong; Clements, Archie C. A.; Williams, Gail; Devine, Gregor; Tong, Shilu; Hu, Wenbiao

    2015-11-01

    Severe dengue fever is usually associated with secondary infection by a dengue virus (DENV) serotype (1 to 4) that is different to the serotype of the primary infection. Dengue outbreaks only occur following importations of DENV in Cairns, Australia. However, the majority of imported cases do not result in autochthonous transmission in Cairns. Although DENV transmission is strongly associated with the El Niño-Southern Oscillation (ENSO) climate cycle and local weather conditions, the frequency and potential risk factors of infections with the different DENV serotypes, including whether or not they differ, is unknown. This study used a classification tree model to identify the hierarchical interactions between Southern Oscillation Index (SOI), local weather factors, the presence of imported serotypes and the occurrence of the four autochthonous DENV serotypes from January 2000-December 2009 in Cairns. We found that the 12-week moving average of SOI and the 2-week moving average of maximum temperature were the most important factors influencing the variation in the weekly occurrence of the four DENV serotypes, the likelihoods of the occurrence of the four DENV serotypes may be unequal under the same environmental conditions, and occurrence may be influenced by changes in global and local environmental conditions in Cairns.

  12. The Association between Air Pollution and Outpatient and Inpatient Visits in Shenzhen, China

    PubMed Central

    Liu, Yachuan; Chen, Shanen; Xu, Jian; Liu, Xiaojian; Wu, Yongsheng; Zhou, Lin; Cheng, Jinquan; Ma, Hanwu; Zheng, Jing; Lin, Denan; Zhang, Li; Chen, Lili

    2018-01-01

    Nowadays, air pollution is a severe environmental problem in China. To investigate the effects of ambient air pollution on health, a time series analysis of daily outpatient and inpatient visits in 2015 were conducted in Shenzhen (China). Generalized additive model was employed to analyze associations between six air pollutants (namely SO2, CO, NO2, O3, PM10, and PM2.5) and daily outpatient and inpatient visits after adjusting confounding meteorological factors, time and day of the week effects. Significant associations between air pollutants and two types of hospital visits were observed. The estimated increase in overall outpatient visits associated with each 10 µg/m3 increase in air pollutant concentration ranged from 0.48% (O3 at lag 2) to 11.48% (SO2 with 2-day moving average); for overall inpatient visits ranged from 0.73% (O3 at lag 7) to 17.13% (SO2 with 8-day moving average). Our results also suggested a heterogeneity of the health effects across different outcomes and in different populations. The findings in present study indicate that even in Shenzhen, a less polluted area in China, significant associations exist between air pollution and daily number of overall outpatient and inpatient visits. PMID:29360738

  13. Respiratory sinus arrhythmia: time domain characterization using autoregressive moving average analysis

    NASA Technical Reports Server (NTRS)

    Triedman, J. K.; Perrott, M. H.; Cohen, R. J.; Saul, J. P.

    1995-01-01

    Fourier-based techniques are mathematically noncausal and are therefore limited in their application to feedback-containing systems, such as the cardiovascular system. In this study, a mathematically causal time domain technique, autoregressive moving average (ARMA) analysis, was used to parameterize the relations of respiration and arterial blood pressure to heart rate in eight humans before and during total cardiac autonomic blockade. Impulse-response curves thus generated showed the relation of respiration to heart rate to be characterized by an immediate increase in heart rate of 9.1 +/- 1.8 beats.min-1.l-1, followed by a transient mild decrease in heart rate to -1.2 +/- 0.5 beats.min-1.l-1 below baseline. The relation of blood pressure to heart rate was characterized by a slower decrease in heart rate of -0.5 +/- 0.1 beats.min-1.mmHg-1, followed by a gradual return to baseline. Both of these relations nearly disappeared after autonomic blockade, indicating autonomic mediation. Maximum values obtained from the respiration to heart rate impulse responses were also well correlated with frequency domain measures of high-frequency "vagal" heart rate control (r = 0.88). ARMA analysis may be useful as a time domain representation of autonomic heart rate control for cardiovascular modeling.

  14. Fission yield calculation using toy model based on Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Jubaidah, Kurniadi, Rizal

    2015-09-01

    Toy model is a new approximation in predicting fission yield distribution. Toy model assumes nucleus as an elastic toy consist of marbles. The number of marbles represents the number of nucleons, A. This toy nucleus is able to imitate the real nucleus properties. In this research, the toy nucleons are only influenced by central force. A heavy toy nucleus induced by a toy nucleon will be split into two fragments. These two fission fragments are called fission yield. In this research, energy entanglement is neglected. Fission process in toy model is illustrated by two Gaussian curves intersecting each other. There are five Gaussian parameters used in this research. They are scission point of the two curves (Rc), mean of left curve (μL) and mean of right curve (μR), deviation of left curve (σL) and deviation of right curve (σR). The fission yields distribution is analyses based on Monte Carlo simulation. The result shows that variation in σ or µ can significanly move the average frequency of asymmetry fission yields. This also varies the range of fission yields distribution probability. In addition, variation in iteration coefficient only change the frequency of fission yields. Monte Carlo simulation for fission yield calculation using toy model successfully indicates the same tendency with experiment results, where average of light fission yield is in the range of 90

  15. Optimization of seasonal ARIMA models using differential evolution - simulated annealing (DESA) algorithm in forecasting dengue cases in Baguio City

    NASA Astrophysics Data System (ADS)

    Addawe, Rizavel C.; Addawe, Joel M.; Magadia, Joselito C.

    2016-10-01

    Accurate forecasting of dengue cases would significantly improve epidemic prevention and control capabilities. This paper attempts to provide useful models in forecasting dengue epidemic specific to the young and adult population of Baguio City. To capture the seasonal variations in dengue incidence, this paper develops a robust modeling approach to identify and estimate seasonal autoregressive integrated moving average (SARIMA) models in the presence of additive outliers. Since the least squares estimators are not robust in the presence of outliers, we suggest a robust estimation based on winsorized and reweighted least squares estimators. A hybrid algorithm, Differential Evolution - Simulated Annealing (DESA), is used to identify and estimate the parameters of the optimal SARIMA model. The method is applied to the monthly reported dengue cases in Baguio City, Philippines.

  16. Nonparametric autocovariance estimation from censored time series by Gaussian imputation.

    PubMed

    Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K

    2009-02-01

    One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.

  17. Wavelet regression model in forecasting crude oil price

    NASA Astrophysics Data System (ADS)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  18. Developing a predictive tropospheric ozone model for Tabriz

    NASA Astrophysics Data System (ADS)

    Khatibi, Rahman; Naghipour, Leila; Ghorbani, Mohammad A.; Smith, Michael S.; Karimi, Vahid; Farhoudi, Reza; Delafrouz, Hadi; Arvanaghi, Hadi

    2013-04-01

    Predictive ozone models are becoming indispensable tools by providing a capability for pollution alerts to serve people who are vulnerable to the risks. We have developed a tropospheric ozone prediction capability for Tabriz, Iran, by using the following five modeling strategies: three regression-type methods: Multiple Linear Regression (MLR), Artificial Neural Networks (ANNs), and Gene Expression Programming (GEP); and two auto-regression-type models: Nonlinear Local Prediction (NLP) to implement chaos theory and Auto-Regressive Integrated Moving Average (ARIMA) models. The regression-type modeling strategies explain the data in terms of: temperature, solar radiation, dew point temperature, and wind speed, by regressing present ozone values to their past values. The ozone time series are available at various time intervals, including hourly intervals, from August 2010 to March 2011. The results for MLR, ANN and GEP models are not overly good but those produced by NLP and ARIMA are promising for the establishing a forecasting capability.

  19. The Micromechanics of the Moving Contact Line

    NASA Technical Reports Server (NTRS)

    Han, Minsub; Lichter, Seth; Lin, Chih-Yu; Perng, Yeong-Yan

    1996-01-01

    The proposed research is divided into three components concerned with molecular structure, molecular orientation, and continuum averages of discrete systems. In the experimental program, we propose exploring how changes in interfacial molecular structure generate contact line motion. Rather than rely on the electrostatic and electrokinetic fields arising from the molecules themselves, we augment their interactions by an imposed field at the solid/liquid interface. By controling the field, we can manipulate the molecular structure at the solid/liquid interface. In response to controlled changes in molecular structure, we observe the resultant contact line motion. In the analytical portion of the proposed research we seek to formulate a system of equations governing fluid motion which accounts for the orientation of fluid molecules. In preliminary work, we have focused on describing how molecular orientation affects the forces generated at the moving contact line. Ideally, as assumed above, the discrete behavior of molecules can be averaged into a continuum theory. In the numerical portion of the proposed research, we inquire whether the contact line region is, in fact, large enough to possess a well-defined average. Additionally, we ask what types of behavior distinguish discrete systems from continuum systems. Might the smallness of the contact line region, in itself, lead to behavior different from that in the bulk? Taken together, our proposed research seeks to identify and accurately account for some of the molecular dynamics of the moving contact line, and attempts to formulate a description from which one can compute the forces at the moving contact line.

  20. Hybrid empirical mode decomposition- ARIMA for forecasting exchange rates

    NASA Astrophysics Data System (ADS)

    Abadan, Siti Sarah; Shabri, Ani; Ismail, Shuhaida

    2015-02-01

    This paper studied the forecasting of monthly Malaysian Ringgit (MYR)/ United State Dollar (USD) exchange rates using the hybrid of two methods which are the empirical model decomposition (EMD) and the autoregressive integrated moving average (ARIMA). MYR is pegged to USD during the Asian financial crisis causing the exchange rates are fixed to 3.800 from 2nd of September 1998 until 21st of July 2005. Thus, the chosen data in this paper is the post-July 2005 data, starting from August 2005 to July 2010. The comparative study using root mean square error (RMSE) and mean absolute error (MAE) showed that the EMD-ARIMA outperformed the single-ARIMA and the random walk benchmark model.

  1. Node-based measures of connectivity in genetic networks.

    PubMed

    Koen, Erin L; Bowman, Jeff; Wilson, Paul J

    2016-01-01

    At-site environmental conditions can have strong influences on genetic connectivity, and in particular on the immigration and settlement phases of dispersal. However, at-site processes are rarely explored in landscape genetic analyses. Networks can facilitate the study of at-site processes, where network nodes are used to model site-level effects. We used simulated genetic networks to compare and contrast the performance of 7 node-based (as opposed to edge-based) genetic connectivity metrics. We simulated increasing node connectivity by varying migration in two ways: we increased the number of migrants moving between a focal node and a set number of recipient nodes, and we increased the number of recipient nodes receiving a set number of migrants. We found that two metrics in particular, the average edge weight and the average inverse edge weight, varied linearly with simulated connectivity. Conversely, node degree was not a good measure of connectivity. We demonstrated the use of average inverse edge weight to describe the influence of at-site habitat characteristics on genetic connectivity of 653 American martens (Martes americana) in Ontario, Canada. We found that highly connected nodes had high habitat quality for marten (deep snow and high proportions of coniferous and mature forest) and were farther from the range edge. We recommend the use of node-based genetic connectivity metrics, in particular, average edge weight or average inverse edge weight, to model the influences of at-site habitat conditions on the immigration and settlement phases of dispersal. © 2015 John Wiley & Sons Ltd.

  2. Computational aeroelasticity using a pressure-based solver

    NASA Astrophysics Data System (ADS)

    Kamakoti, Ramji

    A computational methodology for performing fluid-structure interaction computations for three-dimensional elastic wing geometries is presented. The flow solver used is based on an unsteady Reynolds-Averaged Navier-Stokes (RANS) model. A well validated k-ε turbulence model with wall function treatment for near wall region was used to perform turbulent flow calculations. Relative merits of alternative flow solvers were investigated. The predictor-corrector-based Pressure Implicit Splitting of Operators (PISO) algorithm was found to be computationally economic for unsteady flow computations. Wing structure was modeled using Bernoulli-Euler beam theory. A fully implicit time-marching scheme (using the Newmark integration method) was used to integrate the equations of motion for structure. Bilinear interpolation and linear extrapolation techniques were used to transfer necessary information between fluid and structure solvers. Geometry deformation was accounted for by using a moving boundary module. The moving grid capability was based on a master/slave concept and transfinite interpolation techniques. Since computations were performed on a moving mesh system, the geometric conservation law must be preserved. This is achieved by appropriately evaluating the Jacobian values associated with each cell. Accurate computation of contravariant velocities for unsteady flows using the momentum interpolation method on collocated, curvilinear grids was also addressed. Flutter computations were performed for the AGARD 445.6 wing at subsonic, transonic and supersonic Mach numbers. Unsteady computations were performed at various dynamic pressures to predict the flutter boundary. Results showed favorable agreement of experiment and previous numerical results. The computational methodology exhibited capabilities to predict both qualitative and quantitative features of aeroelasticity.

  3. Use of spatiotemporal characteristics of ambient PM2.5 in rural South India to infer local versus regional contributions.

    PubMed

    Kumar, M Kishore; Sreekanth, V; Salmon, Maëlle; Tonne, Cathryn; Marshall, Julian D

    2018-08-01

    This study uses spatiotemporal patterns in ambient concentrations to infer the contribution of regional versus local sources. We collected 12 months of monitoring data for outdoor fine particulate matter (PM 2.5 ) in rural southern India. Rural India includes more than one-tenth of the global population and annually accounts for around half a million air pollution deaths, yet little is known about the relative contribution of local sources to outdoor air pollution. We measured 1-min averaged outdoor PM 2.5 concentrations during June 2015-May 2016 in three villages, which varied in population size, socioeconomic status, and type and usage of domestic fuel. The daily geometric-mean PM 2.5 concentration was ∼30 μg m -3 (geometric standard deviation: ∼1.5). Concentrations exceeded the Indian National Ambient Air Quality standards (60 μg m -3 ) during 2-5% of observation days. Average concentrations were ∼25 μg m -3 higher during winter than during monsoon and ∼8 μg m -3 higher during morning hours than the diurnal average. A moving average subtraction method based on 1-min average PM 2.5 concentrations indicated that local contributions (e.g., nearby biomass combustion, brick kilns) were greater in the most populated village, and that overall the majority of ambient PM 2.5 in our study was regional, implying that local air pollution control strategies alone may have limited influence on local ambient concentrations. We compared the relatively new moving average subtraction method against a more established approach. Both methods broadly agree on the relative contribution of local sources across the three sites. The moving average subtraction method has broad applicability across locations. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Predicting the outbreak of hand, foot, and mouth disease in Nanjing, China: a time-series model based on weather variability

    NASA Astrophysics Data System (ADS)

    Liu, Sijun; Chen, Jiaping; Wang, Jianming; Wu, Zhuchao; Wu, Weihua; Xu, Zhiwei; Hu, Wenbiao; Xu, Fei; Tong, Shilu; Shen, Hongbing

    2017-10-01

    Hand, foot, and mouth disease (HFMD) is a significant public health issue in China and an accurate prediction of epidemic can improve the effectiveness of HFMD control. This study aims to develop a weather-based forecasting model for HFMD using the information on climatic variables and HFMD surveillance in Nanjing, China. Daily data on HFMD cases and meteorological variables between 2010 and 2015 were acquired from the Nanjing Center for Disease Control and Prevention, and China Meteorological Data Sharing Service System, respectively. A multivariate seasonal autoregressive integrated moving average (SARIMA) model was developed and validated by dividing HFMD infection data into two datasets: the data from 2010 to 2013 were used to construct a model and those from 2014 to 2015 were used to validate it. Moreover, we used weekly prediction for the data between 1 January 2014 and 31 December 2015 and leave-1-week-out prediction was used to validate the performance of model prediction. SARIMA (2,0,0)52 associated with the average temperature at lag of 1 week appeared to be the best model (R 2 = 0.936, BIC = 8.465), which also showed non-significant autocorrelations in the residuals of the model. In the validation of the constructed model, the predicted values matched the observed values reasonably well between 2014 and 2015. There was a high agreement rate between the predicted values and the observed values (sensitivity 80%, specificity 96.63%). This study suggests that the SARIMA model with average temperature could be used as an important tool for early detection and prediction of HFMD outbreaks in Nanjing, China.

  5. Analyzing the prices of the most expensive sheet iron all over the world: Modeling, prediction and regime change

    NASA Astrophysics Data System (ADS)

    Song, Fu-Tie; Zhou, Wei-Xing

    2010-09-01

    The private car license plates issued in Shanghai are bestowed the title of “the most expensive sheet iron all over the world”, more expensive than gold. A citizen has to bid in a monthly auction to obtain a license plate for his new private car. We perform statistical analysis to investigate the influence of the minimal price Pmin of the bidding winners, the quota N of private car license plates, the number N of bidders, as well as two external shocks including the legality debate of the auction in 2004 and the auction regime reform in January 2008 on the average price P of all bidding winners. It is found that the legality debate of the auction had marginal transient impact on the average price in a short time period. In contrast, the change of the auction rules has significant permanent influence on the average price, which reduces the price by about 3020 yuan Renminbi. It means that the average price exhibits nonlinear behaviors with a regime change. The evolution of the average price is independent of the number N of bidders in both regimes. In the early regime before January 2008, the average price P was influenced only by the minimal price Pmin in the preceding month with a positive correlation. In the current regime since January 2008, the average price is positively correlated with the minimal price and the quota in the preceding month and negatively correlated with the quota in the same month. We test the predictive power of the two models using 2-year and 3-year moving windows and find that the latter outperforms the former. It seems that the auction market becomes more efficient after the auction reform since the prediction error increases.

  6. Suspended Sediment Moves 10 km Before Entering Storage: Re-Interpreting a 20th Century Industrial Mercury Release as a Tracer Experiment, South River, Virginia

    NASA Astrophysics Data System (ADS)

    Pizzuto, J. E.

    2014-12-01

    Recent analyses suggest that the velocity of downstream transport of suspended sediment (averaged over long timescales that include periods of transport and storage in alluvial deposits) can be represented as the ratio Ls/T, where Ls is a distance particles move before entering storage and T is the waiting time particles spend in storage before being remobilized. Sediment budget analyses suggest that Ls is 1-100 km in the mid-Atlantic region, while T may be ~103 years, such that particles move 3-5 orders of magnitude slower than the water in the channel. Given the well-known inaccuracy of sediment budgets, independent verification from a tracer study would be desirable. Here, an historic industrial release of mercury is interpreted as a decadal sediment tracer experiment, releasing sediment particles "tagged" with mercury that are deposited on floodplains. As expected, floodplain mercury inventories decrease exponentially downstream, with a characteristic decay length of 10 km (95% confidence interval: 5-25 km) that defines the distance suspended particles typically move downstream before entering storage. Floodplain mercury inventories are not significantly different above and below three colonial age mill dams (present at the time of mercury release but now breached), suggesting that these results reflect ongoing processes. Suspended sediment routing models that neglect long-term storage, and the watershed management plans based on them, may need revision.

  7. A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows

    NASA Astrophysics Data System (ADS)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-09-01

    A Cartesian grid-based sharp interface method is presented for viscous simulations of shocked particle-laden flows. The moving solid-fluid interfaces are represented using level sets. A moving least-squares reconstruction is developed to apply the no-slip boundary condition at solid-fluid interfaces and to supply viscous stresses to the fluid. The algorithms developed in this paper are benchmarked against similarity solutions for the boundary layer over a fixed flat plate and against numerical solutions for moving interface problems such as shock-induced lift-off of a cylinder in a channel. The framework is extended to 3D and applied to calculate low Reynolds number steady supersonic flow over a sphere. Viscous simulation of the interaction of a particle cloud with an incident planar shock is demonstrated; the average drag on the particles and the vorticity field in the cloud are compared to the inviscid case to elucidate the effects of viscosity on momentum transfer between the particle and fluid phases. The methods developed will be useful for obtaining accurate momentum and heat transfer closure models for macro-scale shocked particulate flow applications such as blast waves and dust explosions.

  8. Intermittent Demand Forecasting in a Tertiary Pediatric Intensive Care Unit.

    PubMed

    Cheng, Chen-Yang; Chiang, Kuo-Liang; Chen, Meng-Yin

    2016-10-01

    Forecasts of the demand for medical supplies both directly and indirectly affect the operating costs and the quality of the care provided by health care institutions. Specifically, overestimating demand induces an inventory surplus, whereas underestimating demand possibly compromises patient safety. Uncertainty in forecasting the consumption of medical supplies generates intermittent demand events. The intermittent demand patterns for medical supplies are generally classified as lumpy, erratic, smooth, and slow-moving demand. This study was conducted with the purpose of advancing a tertiary pediatric intensive care unit's efforts to achieve a high level of accuracy in its forecasting of the demand for medical supplies. On this point, several demand forecasting methods were compared in terms of the forecast accuracy of each. The results confirm that applying Croston's method combined with a single exponential smoothing method yields the most accurate results for forecasting lumpy, erratic, and slow-moving demand, whereas the Simple Moving Average (SMA) method is the most suitable for forecasting smooth demand. In addition, when the classification of demand consumption patterns were combined with the demand forecasting models, the forecasting errors were minimized, indicating that this classification framework can play a role in improving patient safety and reducing inventory management costs in health care institutions.

  9. Documentation of a spreadsheet for time-series analysis and drawdown estimation

    USGS Publications Warehouse

    Halford, Keith J.

    2006-01-01

    Drawdowns during aquifer tests can be obscured by barometric pressure changes, earth tides, regional pumping, and recharge events in the water-level record. These stresses can create water-level fluctuations that should be removed from observed water levels prior to estimating drawdowns. Simple models have been developed for estimating unpumped water levels during aquifer tests that are referred to as synthetic water levels. These models sum multiple time series such as barometric pressure, tidal potential, and background water levels to simulate non-pumping water levels. The amplitude and phase of each time series are adjusted so that synthetic water levels match measured water levels during periods unaffected by an aquifer test. Differences between synthetic and measured water levels are minimized with a sum-of-squares objective function. Root-mean-square errors during fitting and prediction periods were compared multiple times at four geographically diverse sites. Prediction error equaled fitting error when fitting periods were greater than or equal to four times prediction periods. The proposed drawdown estimation approach has been implemented in a spreadsheet application. Measured time series are independent so that collection frequencies can differ and sampling times can be asynchronous. Time series can be viewed selectively and magnified easily. Fitting and prediction periods can be defined graphically or entered directly. Synthetic water levels for each observation well are created with earth tides, measured time series, moving averages of time series, and differences between measured and moving averages of time series. Selected series and fitting parameters for synthetic water levels are stored and drawdowns are estimated for prediction periods. Drawdowns can be viewed independently and adjusted visually if an anomaly skews initial drawdowns away from 0. The number of observations in a drawdown time series can be reduced by averaging across user-defined periods. Raw or reduced drawdown estimates can be copied from the spreadsheet application or written to tab-delimited ASCII files.

  10. $1.8 Million and counting: how volatile agent education has decreased our spending $1000 per day.

    PubMed

    Miller, Scott A; Aschenbrenner, Carol A; Traunero, Justin R; Bauman, Loren A; Lobell, Samuel S; Kelly, Jeffrey S; Reynolds, John E

    2016-12-01

    Volatile anesthetic agents comprise a substantial portion of every hospital's pharmacy budget. Challenged with an initiative to lower anesthetic drug expenditures, we developed an education-based intervention focused on reducing volatile anesthetic costs while preserving access to all available volatile anesthetics. When postintervention evaluation demonstrated a dramatic year-over-year reduction in volatile agent acquisition costs, we undertook a retrospective analysis of volatile anesthetic purchasing data using time series analysis to determine the impact of our educational initiative. We obtained detailed volatile anesthetic purchasing data from the Central Supply of Wake Forest Baptist Health from 2007 to 2014 and integrated these data with the time course of our educational intervention. Aggregate volatile anesthetic purchasing data were analyzed for 7 consecutive fiscal years. The educational initiative emphasized tissue partition coefficients of volatile anesthetics in adipose tissue and muscle and their impact on case management. We used an interrupted time series analysis of monthly cost per unit data using autoregressive integrated moving average modeling, with the monthly cost per unit being the amount spent per bottle of anesthetic agent per month. The cost per unit decreased significantly after the intervention (t=-6.73, P<.001). The autoregressive integrated moving average model predicted that the average cost per unit decreased $48 after the intervention, with 95% confidence interval of $34 to $62. As evident from the data, the purchasing of desflurane and sevoflurane decreased, whereas that of isoflurane increased. An educational initiative focused solely on the selection of volatile anesthetic agent per case significantly reduced volatile anesthetic expense at a tertiary medical center. This approach appears promising for application in other hospitals in the rapidly evolving, value-added health care environment. We were able to accomplish this with instruction on tissue partition coefficients and each agent's individual cost per MAC-hour delivered. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Effects of weather anomalies on the intellectual performance: Chess mistakes of the world top-ranked players

    NASA Astrophysics Data System (ADS)

    Mika, J.; Verőci, Zs.; Fülöp, A.; Hirsch, T.; Dúll, A.

    2009-04-01

    Weather disturbances like fronts, influence human biorhythm, our biological balance becomes manipulated, and adaptation mechanisms are impaired. Our working hypothesis is that even the best chess players of the world are not exceptions from this rule. As their movements on the chess board, as well as the best possible ones, if they missed to make, are already assessed by computers objectively, we can use this game as a model of intellectual performance. By the date of the Abstract edition, 580 wrong chess moves were selected with the threshold of over 1/3 peasant to be lost. I.e. this is the minimum difference between the assessment of the positions after the best possible and the really performed move. (Obviously, all moves both sides in ca. the same number of games were checked, i.e. over 35,000 moves were assessed.) For assessing the moves, the most popular database is MegaDatabase 2006 (ChessBase- Hamburg), Chess Informant Expert from Chess Informant Beograd and the program ChessBase 9.0 together with the engines Fritz 10, Rybka 2.3, Junior 10. First of all the World Chess Champions, Karpov, Kasparov, Kramnik and Anand were examined played in the traditional big chess tournaments, category 19th and more (average rating more the 2701 Elo-points). We further selected the games by the top-ranked players of the world between 2005 and 2008. This selection is explained by the likely fact that they make the less wrong moves for simply the lack of chess understanding, moreover, as full professionals, they allow the minimum of non-weather disturbing circumstances (e.g. imperfect sleeping before the game, etc.). Their moves were selected as (i) very wrong move with more than 3.0 differences, (i.e. unforced loss of a knight, or a bishop, (ii) very weak move with an assessment of 1.0-3.0, (i.e. unforced loss between one peasant and one bishop/knight) and (iii) weak move with less than 1.0 assessment of the passed chance, or unforced loss of less than one peasant. These new data on mental behavior are statistically compared to a common set of diurnal meteorological parameters, including various near-surface and lower troposphere temperature values, sea-level pressures, relative topographies, precipitation amount and existence (duration) and wind speed. The data and the aerologic fields are retrieved from the ECMWF ERA-40 (until 2002) and ECMWF operational analysis (after 2002) for the date and site of the individual mistakes. According to our preliminary results, the wrong moves fall to the lower or higher than average parts of the diurnal mean temperature distribution. Even if we should be careful because of the well known bi-modal distribution of the temperature (if not performing any seasonal correction), but, even after considering these differences the best players make more frequent mistakes in case of higher or lower than normal temperature situations. Another preliminary experience is that decreasing tendency of the RT850/500 hPa relative topography also indicates increase of wrong and very wrong moves. After performing this analysis, the result will be compared to the better known empirical paradigms of medical meteorology and experimental psychology.

  12. Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Epstein, R.

    1997-09-01

    In inertial confinement fusion (ICF) experiments, irradiation uniformity is improved by passing laser beams through distributed phase plates (DPPs), which produce focused intensity profiles with well-controlled, reproducible envelopes modulated by fine random speckle. [C. B. Burckhardt, Appl. Opt. {bold 9}, 695 (1970); Y. Kato and K. Mima, Appl. Phys. B {bold 29}, 186 (1982); Y. Kato {ital et al.}, Phys. Rev. Lett. {bold 53}, 1057 (1984); Laboratory for Laser Energetics LLE Review 33, NTIS Document No. DOE/DP/40200-65, 1987 (unpublished), p. 1; Laboratory for Laser Energetics LLE Review 63, NTIS Document No. DOE/SF/19460-91, 1995 (unpublished), p. 1.] A uniformly ablating plasmamore » atmosphere acts to reduce the contribution of the speckle to the time-averaged irradiation nonuniformity by causing the intensity distribution to move relative to the absorption layer of the plasma. This occurs most directly as the absorption layer in the plasma moves with the ablation-driven flow, but it is shown that the effect of the accumulating ablated plasma on the phase of the laser light also makes a quantitatively significant contribution. Analytical results are obtained using the paraxial approximation applied to the beam propagation, and a simple statistical model is assumed for the properties of DPPs. The reduction in the time-averaged spatial spectrum of the speckle due to these effects is shown to be quantitatively significant within time intervals characteristic of atmospheric hydrodynamics under typical ICF irradiation intensities. {copyright} {ital 1997 American Institute of Physics.}« less

  13. Alcohol and liver cirrhosis mortality in the United States: comparison of methods for the analyses of time-series panel data models.

    PubMed

    Ye, Yu; Kerr, William C

    2011-01-01

    To explore various model specifications in estimating relationships between liver cirrhosis mortality rates and per capita alcohol consumption in aggregate-level cross-section time-series data. Using a series of liver cirrhosis mortality rates from 1950 to 2002 for 47 U.S. states, the effects of alcohol consumption were estimated from pooled autoregressive integrated moving average (ARIMA) models and 4 types of panel data models: generalized estimating equation, generalized least square, fixed effect, and multilevel models. Various specifications of error term structure under each type of model were also examined. Different approaches controlling for time trends and for using concurrent or accumulated consumption as predictors were also evaluated. When cirrhosis mortality was predicted by total alcohol, highly consistent estimates were found between ARIMA and panel data analyses, with an average overall effect of 0.07 to 0.09. Less consistent estimates were derived using spirits, beer, and wine consumption as predictors. When multiple geographic time series are combined as panel data, none of existent models could accommodate all sources of heterogeneity such that any type of panel model must employ some form of generalization. Different types of panel data models should thus be estimated to examine the robustness of findings. We also suggest cautious interpretation when beverage-specific volumes are used as predictors. Copyright © 2010 by the Research Society on Alcoholism.

  14. Noise is the new signal: Moving beyond zeroth-order geomorphology (Invited)

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.

    2010-12-01

    The last several decades have witnessed a rapid growth in our understanding of landscape evolution, led by the development of geomorphic transport laws - time- and space-averaged equations relating mass flux to some physical process(es). In statistical mechanics this approach is called mean field theory (MFT), in which complex many-body interactions are replaced with an external field that represents the average effect of those interactions. Because MFT neglects all fluctuations around the mean, it has been described as a zeroth-order fluctuation model. The mean field approach to geomorphology has enabled the development of landscape evolution models, and led to a fundamental understanding of many landform patterns. Recent research, however, has highlighted two limitations of MFT: (1) The integral (averaging) time and space scales in geomorphic systems are sometimes poorly defined and often quite large, placing the mean field approximation on uncertain footing, and; (2) In systems exhibiting fractal behavior, an integral scale does not exist - e.g., properties like mass flux are scale-dependent. In both cases, fluctuations in sediment transport are non-negligible over the scales of interest. In this talk I will synthesize recent experimental and theoretical work that confronts these limitations. Discrete element models of fluid and grain interactions show promise for elucidating transport mechanics and pattern-forming instabilities, but require detailed knowledge of micro-scale processes and are computationally expensive. An alternative approach is to begin with a reasonable MFT, and then add higher-order terms that capture the statistical dynamics of fluctuations. In either case, moving beyond zeroth-order geomorphology requires a careful examination of the origins and structure of transport “noise”. I will attempt to show how studying the signal in noise can both reveal interesting new physics, and also help to formalize the applicability of geomorphic transport laws. Flooding on an experimental alluvial fan. Intensity is related to the cumulative amount of time flow has visited an area of the fan over the experiment. Dark areas represent an emergent channel network resulting from stochastic migration of river channels.

  15. Evidence of redshifts in the average solar line profiles of C IV and Si IV from OSO-8 observations

    NASA Technical Reports Server (NTRS)

    Roussel-Dupre, D.; Shine, R. A.

    1982-01-01

    Line profiles of C IV and Si V obtained by the Colorado spectrometer on OSO-8 are presented. It is shown that the mean profiles are redshifted with a magnitude varying from 6-20 km/s, and with a mean of 12 km/s. An apparent average downflow of material in the 50,000-100,000 K temperature range is measured. The redshifts are observed in the line center positions of spatially and temporally averaged profiles and are measured either relative to chromospheric Si I lines or from a comparison of sun center and limb profiles. The observations of 6-20 km/s redshifts place constraints on the mechanisms that dominate EUV line emission since it requires a strong weighting of the emission in regions of downward moving material, and since there is little evidence for corresponding upward moving materials in these lines.

  16. Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model

    PubMed Central

    Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun

    2014-01-01

    Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models. PMID:25431586

  17. Energy consumption model on WiMAX subscriber station

    NASA Astrophysics Data System (ADS)

    Mubarakah, N.; Suherman; Al-Hakim, M. Y.; Warman, E.

    2018-02-01

    Mobile communication technologies move toward miniaturization. Mobile device’s energy source relies on its battery endurance. The smaller the mobile device, it is expected the slower the battery drains. Energy consumption reduction in mobile devices has been of interest of researcher. In order to optimize energy consumption, its usage should be predictable. This paper proposes a model of predicted energy amount consumed by the WiMAX subscriber station by using regression analysis of active WiMAX states and their durations. The proposed model was assessed by using NS-2 simulation for more than a hundred thousand of recorded energy consumptions data in every WiMAX states. The assessment show a small average deviation between predicted and measured energy consumptions, about 0.18% for training data and 0.187% and 0.191% for test data.

  18. Traffic dynamics of carnival processions

    NASA Astrophysics Data System (ADS)

    Polichronidis, Petros; Wegerle, Dominik; Dieper, Alexander; Schreckenberg, Michael

    2018-03-01

    The traffic dynamics of processions are described in this study. GPS data from participating groups in the Cologne Rose Monday processions 2014–2017 are used to analyze the kinematic characteristics. The preparation of the measured data requires an adjustment by a specially adapted algorithm for the map matching method. A higher average velocity is observed for the last participant, the Carnival Prince, than for the leading participant of the parade. Based on the results of the data analysis, for the first time a model can be established for defilading parade groups as a modified Nagel-Schreckenberg model. This model can reproduce the observed characteristics in simulations. They can be explained partly by the constantly moving vehicle driving ahead of the parade leaving the pathway and partly due to a spatial contraction of the parade during the procession.

  19. A New Trend-Following Indicator: Using SSA to Design Trading Rules

    NASA Astrophysics Data System (ADS)

    Leles, Michel Carlo Rodrigues; Mozelli, Leonardo Amaral; Guimarães, Homero Nogueira

    Singular Spectrum Analysis (SSA) is a non-parametric approach that can be used to decompose a time-series as trends, oscillations and noise. Trend-following strategies rely on the principle that financial markets move in trends for an extended period of time. Moving Averages (MAs) are the standard indicator to design such strategies. In this study, SSA is used as an alternative method to enhance trend resolution in comparison with the traditional MA. New trading rules using SSA as indicator are proposed. This paper shows that for the Down Jones Industrial Average (DJIA) and Shangai Securities Composite Index (SSCI) time-series the SSA trading rules provided, in general, better results in comparison to MA trading rules.

  20. Ecology of West Nile virus across four European countries: empirical modelling of the Culex pipiens abundance dynamics as a function of weather.

    PubMed

    Groen, Thomas A; L'Ambert, Gregory; Bellini, Romeo; Chaskopoulou, Alexandra; Petric, Dusan; Zgomba, Marija; Marrama, Laurence; Bicout, Dominique J

    2017-10-26

    Culex pipiens is the major vector of West Nile virus in Europe, and is causing frequent outbreaks throughout the southern part of the continent. Proper empirical modelling of the population dynamics of this species can help in understanding West Nile virus epidemiology, optimizing vector surveillance and mosquito control efforts. But modelling results may differ from place to place. In this study we look at which type of models and weather variables can be consistently used across different locations. Weekly mosquito trap collections from eight functional units located in France, Greece, Italy and Serbia for several years were combined. Additionally, rainfall, relative humidity and temperature were recorded. Correlations between lagged weather conditions and Cx. pipiens dynamics were analysed. Also seasonal autoregressive integrated moving-average (SARIMA) models were fitted to describe the temporal dynamics of Cx. pipiens and to check whether the weather variables could improve these models. Correlations were strongest between mean temperatures at short time lags, followed by relative humidity, most likely due to collinearity. Precipitation alone had weak correlations and inconsistent patterns across sites. SARIMA models could also make reasonable predictions, especially when longer time series of Cx. pipiens observations are available. Average temperature was a consistently good predictor across sites. When only short time series (~ < 4 years) of observations are available, average temperature can therefore be used to model Cx. pipiens dynamics. When longer time series (~ > 4 years) are available, SARIMAs can provide better statistical descriptions of Cx. pipiens dynamics, without the need for further weather variables. This suggests that density dependence is also an important determinant of Cx. pipiens dynamics.

  1. Genetic Analysis of Milk Yield in First-Lactation Holstein Friesian in Ethiopia: A Lactation Average vs Random Regression Test-Day Model Analysis

    PubMed Central

    Meseret, S.; Tamir, B.; Gebreyohannes, G.; Lidauer, M.; Negussie, E.

    2015-01-01

    The development of effective genetic evaluations and selection of sires requires accurate estimates of genetic parameters for all economically important traits in the breeding goal. The main objective of this study was to assess the relative performance of the traditional lactation average model (LAM) against the random regression test-day model (RRM) in the estimation of genetic parameters and prediction of breeding values for Holstein Friesian herds in Ethiopia. The data used consisted of 6,500 test-day (TD) records from 800 first-lactation Holstein Friesian cows that calved between 1997 and 2013. Co-variance components were estimated using the average information restricted maximum likelihood method under single trait animal model. The estimate of heritability for first-lactation milk yield was 0.30 from LAM whilst estimates from the RRM model ranged from 0.17 to 0.29 for the different stages of lactation. Genetic correlations between different TDs in first-lactation Holstein Friesian ranged from 0.37 to 0.99. The observed genetic correlation was less than unity between milk yields at different TDs, which indicated that the assumption of LAM may not be optimal for accurate evaluation of the genetic merit of animals. A close look at estimated breeding values from both models showed that RRM had higher standard deviation compared to LAM indicating that the TD model makes efficient utilization of TD information. Correlations of breeding values between models ranged from 0.90 to 0.96 for different group of sires and cows and marked re-rankings were observed in top sires and cows in moving from the traditional LAM to RRM evaluations. PMID:26194217

  2. The Influence of Sleep Disordered Breathing on Weight Loss in a National Weight Management Program.

    PubMed

    Janney, Carol A; Kilbourne, Amy M; Germain, Anne; Lai, Zongshan; Hoerster, Katherine D; Goodrich, David E; Klingaman, Elizabeth A; Verchinina, Lilia; Richardson, Caroline R

    2016-01-01

    To investigate the influence of sleep disordered breathing (SDB) on weight loss in overweight/obese veterans enrolled in MOVE!, a nationally implemented behavioral weight management program delivered by the National Veterans Health Administration health system. This observational study evaluated weight loss by SDB status in overweight/obese veterans enrolled in MOVE! from May 2008-February 2012 who had at least two MOVE! visits, baseline weight, and at least one follow-up weight (n = 84,770). SDB was defined by International Classification of Diseases, Ninth Revision, Clinical Modification codes. Primary outcome was weight change (lb) from MOVE! enrollment to 6- and 12-mo assessments. Weight change over time was modeled with repeated-measures analyses. SDB was diagnosed in one-third of the cohort (n = 28,269). At baseline, veterans with SDB weighed 29 [48] lb more than those without SDB (P < 0.001). On average, veterans attended eight MOVE! visits. Weight loss patterns over time were statistically different between veterans with and without SDB (P < 0.001); veterans with SDB lost less weight (-2.5 [0.1] lb) compared to those without SDB (-3.3 [0.1] lb; P = 0.001) at 6 months. At 12 mo, veterans with SDB continued to lose weight whereas veterans without SDB started to re-gain weight. Veterans with sleep disordered breathing (SDB) had significantly less weight loss over time than veterans without SDB. SDB should be considered in the development and implementation of weight loss programs due to its high prevalence and negative effect on health. © 2016 Associated Professional Sleep Societies, LLC.

  3. Lateral Information Processing by Spiking Neurons: A Theoretical Model of the Neural Correlate of Consciousness

    PubMed Central

    Ebner, Marc; Hameroff, Stuart

    2011-01-01

    Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on “autopilot”). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the “conscious pilot”) suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious “auto-pilot” cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways “gap junctions” in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain. PMID:22046178

  4. Spectroscopic monitoring of SS 433: A search for long-term variations of kinematic model parameters

    NASA Astrophysics Data System (ADS)

    Davydov, V. V.; Esipov, V. F.; Cherepashchuk, A. M.

    2008-06-01

    Between 1994 and 2006, we obtained uniform spectroscopic observations of SS 433 in the region of H α. We determined Doppler shifts of the moving emission lines, H α + and H α -, and studied various irregularities in the profiles for the moving emission lines. The total number of Doppler shifts measured in these 13 years is 488 for H α - and 389 for H α +. We have also used published data to study possible long-term variations of the SS 433 system, based on 755 Doppler shifts for H α - and 630 for H α + obtained over 28 years. We have derived improved kinematic model parameters for the precessing relativistic jets of S S 433 using five-and eight-parameter models. On average, the precession period was stable during the 28 years of observations (60 precession cycles), at 162.250d ± 0.003d. Phase jumps of the precession period and random variations of its length with amplitudes of ≈6% and ≈1%, respectively, were observed, but no secular changes in the precession period were detected. The nutation period, P nut = 6.2876d ± 0.00035d, and its phase were stable during 28 years (more than 1600 nutation cycles). We find no secular variations of the nutation cycle. The ejection speed of the relativistic jets, v, was, on average, constant during the 28 years, β = v/c = 0.2561 ± 0.0157. No secular variation of β is detected. In general, S S 433 demonstrates remarkably stable long-term characteristics of its precession and nutation, as well as of the central “engine” near the relativistic object that collimates the plasma in the jets and accelerates it to v = 0.2561 c. Our results support a model with a “slaved” accretion disk in S S 433, which follows the precession of the optical star’s rotation axis.

  5. Lateral information processing by spiking neurons: a theoretical model of the neural correlate of consciousness.

    PubMed

    Ebner, Marc; Hameroff, Stuart

    2011-01-01

    Cognitive brain functions, for example, sensory perception, motor control and learning, are understood as computation by axonal-dendritic chemical synapses in networks of integrate-and-fire neurons. Cognitive brain functions may occur either consciously or nonconsciously (on "autopilot"). Conscious cognition is marked by gamma synchrony EEG, mediated largely by dendritic-dendritic gap junctions, sideways connections in input/integration layers. Gap-junction-connected neurons define a sub-network within a larger neural network. A theoretical model (the "conscious pilot") suggests that as gap junctions open and close, a gamma-synchronized subnetwork, or zone moves through the brain as an executive agent, converting nonconscious "auto-pilot" cognition to consciousness, and enhancing computation by coherent processing and collective integration. In this study we implemented sideways "gap junctions" in a single-layer artificial neural network to perform figure/ground separation. The set of neurons connected through gap junctions form a reconfigurable resistive grid or sub-network zone. In the model, outgoing spikes are temporally integrated and spatially averaged using the fixed resistive grid set up by neurons of similar function which are connected through gap-junctions. This spatial average, essentially a feedback signal from the neuron's output, determines whether particular gap junctions between neurons will open or close. Neurons connected through open gap junctions synchronize their output spikes. We have tested our gap-junction-defined sub-network in a one-layer neural network on artificial retinal inputs using real-world images. Our system is able to perform figure/ground separation where the laterally connected sub-network of neurons represents a perceived object. Even though we only show results for visual stimuli, our approach should generalize to other modalities. The system demonstrates a moving sub-network zone of synchrony, within which the contents of perception are represented and contained. This mobile zone can be viewed as a model of the neural correlate of consciousness in the brain.

  6. [Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the Hun-Taizi River Basin, Northeast China].

    PubMed

    Feng, Xue; Cai, Yan-Cong; Guan, De-Xin; Jin, Chang-Jie; Wang, An-Zhi; Wu, Jia-Bing; Yuan, Feng-Hui

    2014-10-01

    Based on the meteorological and hydrological data from 1970 to 2006, the advection-aridity (AA) model with calibrated parameters was used to calculate evapotranspiration in the Hun-Taizi River Basin in Northeast China. The original parameter of the AA model was tuned according to the water balance method and then four subbasins were selected to validate. Spatiotemporal variation characteristics of evapotranspiration and related affecting factors were analyzed using the methods of linear trend analysis, moving average, kriging interpolation and sensitivity analysis. The results showed that the empirical parameter value of 0.75 of AA model was suitable for the Hun-Taizi River Basin with an error of 11.4%. In the Hun-Taizi River Basin, the average annual actual evapotranspiration was 347.4 mm, which had a slightly upward trend with a rate of 1.58 mm · (10 a(-1)), but did not change significantly. It also indicated that the annual actual evapotranspiration presented a single-peaked pattern and its peak value occurred in July; the evapotranspiration in summer was higher than in spring and autumn, and it was the smallest in winter. The annual average evapotranspiration showed a decreasing trend from the northwest to the southeast in the Hun-Taizi River Basin from 1970 to 2006 with minor differences. Net radiation was largely responsible for the change of actual evapotranspiration in the Hun-Taizi River Basin.

  7. Intonation and dialog context as constraints for speech recognition.

    PubMed

    Taylor, P; King, S; Isard, S; Wright, H

    1998-01-01

    This paper describes a way of using intonation and dialog context to improve the performance of an automatic speech recognition (ASR) system. Our experiments were run on the DCIEM Maptask corpus, a corpus of spontaneous task-oriented dialog speech. This corpus has been tagged according to a dialog analysis scheme that assigns each utterance to one of 12 "move types," such as "acknowledge," "query-yes/no" or "instruct." Most ASR systems use a bigram language model to constrain the possible sequences of words that might be recognized. Here we use a separate bigram language model for each move type. We show that when the "correct" move-specific language model is used for each utterance in the test set, the word error rate of the recognizer drops. Of course when the recognizer is run on previously unseen data, it cannot know in advance what move type the speaker has just produced. To determine the move type we use an intonation model combined with a dialog model that puts constraints on possible sequences of move types, as well as the speech recognizer likelihoods for the different move-specific models. In the full recognition system, the combination of automatic move type recognition with the move specific language models reduces the overall word error rate by a small but significant amount when compared with a baseline system that does not take intonation or dialog acts into account. Interestingly, the word error improvement is restricted to "initiating" move types, where word recognition is important. In "response" move types, where the important information is conveyed by the move type itself--for example, positive versus negative response--there is no word error improvement, but recognition of the response types themselves is good. The paper discusses the intonation model, the language models, and the dialog model in detail and describes the architecture in which they are combined.

  8. Introduction to MOVES2010, October 2010 Webinar Slides

    EPA Pesticide Factsheets

    This presentation provides a general overview of MOVES (MOtor Vehicle Emission Simulator) for non-modelers who need to understand the transition from MOBILE to MOVES, and background information on MOVES for modelers.

  9. MOVES regional level sensitivity analysis

    DOT National Transportation Integrated Search

    2012-01-01

    The MOVES Regional Level Sensitivity Analysis was conducted to increase understanding of the operations of the MOVES Model in regional emissions analysis and to highlight the following: : the relative sensitivity of selected MOVES Model input paramet...

  10. Increased performance in the short-term water demand forecasting through the use of a parallel adaptive weighting strategy

    NASA Astrophysics Data System (ADS)

    Sardinha-Lourenço, A.; Andrade-Campos, A.; Antunes, A.; Oliveira, M. S.

    2018-03-01

    Recent research on water demand short-term forecasting has shown that models using univariate time series based on historical data are useful and can be combined with other prediction methods to reduce errors. The behavior of water demands in drinking water distribution networks focuses on their repetitive nature and, under meteorological conditions and similar consumers, allows the development of a heuristic forecast model that, in turn, combined with other autoregressive models, can provide reliable forecasts. In this study, a parallel adaptive weighting strategy of water consumption forecast for the next 24-48 h, using univariate time series of potable water consumption, is proposed. Two Portuguese potable water distribution networks are used as case studies where the only input data are the consumption of water and the national calendar. For the development of the strategy, the Autoregressive Integrated Moving Average (ARIMA) method and a short-term forecast heuristic algorithm are used. Simulations with the model showed that, when using a parallel adaptive weighting strategy, the prediction error can be reduced by 15.96% and the average error by 9.20%. This reduction is important in the control and management of water supply systems. The proposed methodology can be extended to other forecast methods, especially when it comes to the availability of multiple forecast models.

  11. Studies in astronomical time series analysis. IV - Modeling chaotic and random processes with linear filters

    NASA Technical Reports Server (NTRS)

    Scargle, Jeffrey D.

    1990-01-01

    While chaos arises only in nonlinear systems, standard linear time series models are nevertheless useful for analyzing data from chaotic processes. This paper introduces such a model, the chaotic moving average. This time-domain model is based on the theorem that any chaotic process can be represented as the convolution of a linear filter with an uncorrelated process called the chaotic innovation. A technique, minimum phase-volume deconvolution, is introduced to estimate the filter and innovation. The algorithm measures the quality of a model using the volume covered by the phase-portrait of the innovation process. Experiments on synthetic data demonstrate that the algorithm accurately recovers the parameters of simple chaotic processes. Though tailored for chaos, the algorithm can detect both chaos and randomness, distinguish them from each other, and separate them if both are present. It can also recover nonminimum-delay pulse shapes in non-Gaussian processes, both random and chaotic.

  12. A novel hybrid ensemble learning paradigm for tourism forecasting

    NASA Astrophysics Data System (ADS)

    Shabri, Ani

    2015-02-01

    In this paper, a hybrid forecasting model based on Empirical Mode Decomposition (EMD) and Group Method of Data Handling (GMDH) is proposed to forecast tourism demand. This methodology first decomposes the original visitor arrival series into several Intrinsic Model Function (IMFs) components and one residual component by EMD technique. Then, IMFs components and the residual components is forecasted respectively using GMDH model whose input variables are selected by using Partial Autocorrelation Function (PACF). The final forecasted result for tourism series is produced by aggregating all the forecasted results. For evaluating the performance of the proposed EMD-GMDH methodologies, the monthly data of tourist arrivals from Singapore to Malaysia are used as an illustrative example. Empirical results show that the proposed EMD-GMDH model outperforms the EMD-ARIMA as well as the GMDH and ARIMA (Autoregressive Integrated Moving Average) models without time series decomposition.

  13. A travel time forecasting model based on change-point detection method

    NASA Astrophysics Data System (ADS)

    LI, Shupeng; GUANG, Xiaoping; QIAN, Yongsheng; ZENG, Junwei

    2017-06-01

    Travel time parameters obtained from road traffic sensors data play an important role in traffic management practice. A travel time forecasting model is proposed for urban road traffic sensors data based on the method of change-point detection in this paper. The first-order differential operation is used for preprocessing over the actual loop data; a change-point detection algorithm is designed to classify the sequence of large number of travel time data items into several patterns; then a travel time forecasting model is established based on autoregressive integrated moving average (ARIMA) model. By computer simulation, different control parameters are chosen for adaptive change point search for travel time series, which is divided into several sections of similar state.Then linear weight function is used to fit travel time sequence and to forecast travel time. The results show that the model has high accuracy in travel time forecasting.

  14. Multiscale volatility duration characteristics on financial multi-continuum percolation dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Min; Wang, Jun

    A random stock price model based on the multi-continuum percolation system is developed to investigate the nonlinear dynamics of stock price volatility duration, in an attempt to explain various statistical facts found in financial data, and have a deeper understanding of mechanisms in the financial market. The continuum percolation system is usually referred to be a random coverage process or a Boolean model, it is a member of a class of statistical physics systems. In this paper, the multi-continuum percolation (with different values of radius) is employed to model and reproduce the dispersal of information among the investors. To testify the rationality of the proposed model, the nonlinear analyses of return volatility duration series are preformed by multifractal detrending moving average analysis and Zipf analysis. The comparison empirical results indicate the similar nonlinear behaviors for the proposed model and the actual Chinese stock market.

  15. The change of sleeping and lying posture of Japanese black cows after moving into new environment.

    PubMed

    Fukasawa, Michiru; Komatsu, Tokushi; Higashiyama, Yumi

    2018-04-25

    The environmental change is one of the stressful events in livestock production. Change in environment disturbed cow behavior and cows needed several days to reach stable behavioral pattern, especially sleeping posture (SP) and lying posture (LP) have been used as an indicator for relax and well-acclimated to its environment. The aim of this study examines how long does Japanese black cow required for stabilization of SP and LP after moving into new environment. Seven pregnant Japanese black cows were used. Cows were moved into new tie-stall shed and measured sleeping and lying posture 17 times during 35 experimental days. Both SP and LP were detected by accelerometer fixed on middle occipital and hip-cross, respectively. Daily total time, frequency, and average bout of both SP and LP were calculated. Daily SP time was the shortest on day 1, and increased to the highest on day3. It decreased until day 9, after that stabilized about 65 min /day till the end of experiment. The longest average SP bout was shown on day 1, and it decreased to stabilize till day 7. Daily LP time was changed as same manner as daily SP time. The average SP bout showed the longest on day 1, and it decreased to stable level till day 7. On the other hand, the average LP bout showed the shortest on day1, and it was increased to stable level till on day 7. These results showed that pregnant Japanese black cows needed 1 week to stabilize their SP. However, there were different change pattern between the average SP and LP bout, even though the change pattern of daily SP and LP time were similar.

  16. Neighborhood Walkability and Body Mass Index Trajectories: Longitudinal Study of Canadians.

    PubMed

    Wasfi, Rania A; Dasgupta, Kaberi; Orpana, Heather; Ross, Nancy A

    2016-05-01

    To assess the impact of neighborhood walkability on body mass index (BMI) trajectories of urban Canadians. Data are from Canada's National Population Health Survey (n = 2935; biannual assessments 1994-2006). We measured walkability with the Walk Score. We modeled body mass index (BMI, defined as weight in kilograms divided by the square of height in meters [kg/m(2)]) trajectories as a function of Walk Score and sociodemographic and behavioral covariates with growth curve models and fixed-effects regression models. In men, BMI increased annually by an average of 0.13 kg/m(2) (95% confidence interval [CI] = 0.11, 0.14) over the 12 years of follow-up. Moving to a high-walkable neighborhood (2 or more Walk Score quartiles higher) decreased BMI trajectories for men by approximately 1 kg/m(2) (95% CI = -1.16, -0.17). Moving to a low-walkable neighborhood increased BMI for men by approximately 0.45 kg/m(2) (95% CI = 0.01, 0.89). There was no detectable influence of neighborhood walkability on body weight for women. Our study of a large sample of urban Canadians followed for 12 years confirms that neighborhood walkability influences BMI trajectories for men, and may be influential in curtailing male age-related weight gain.

  17. Food Environment and Weight Change: Does Residential Mobility Matter?

    PubMed Central

    Laraia, Barbara A.; Downing, Janelle M.; Zhang, Y. Tara; Dow, William H.; Kelly, Maggi; Blanchard, Samuel D.; Adler, Nancy; Schillinger, Dean; Moffet, Howard; Warton, E. Margaret; Karter, Andrew J.

    2017-01-01

    Abstract Associations between neighborhood food environment and adult body mass index (BMI; weight (kg)/height (m)2) derived using cross-sectional or longitudinal random-effects models may be biased due to unmeasured confounding and measurement and methodological limitations. In this study, we assessed the within-individual association between change in food environment from 2006 to 2011 and change in BMI among adults with type 2 diabetes using clinical data from the Kaiser Permanente Diabetes Registry collected from 2007 to 2011. Healthy food environment was measured using the kernel density of healthful food venues. Fixed-effects models with a 1-year-lagged BMI were estimated. Separate models were fitted for persons who moved and those who did not. Sensitivity analysis using different lag times and kernel density bandwidths were tested to establish the consistency of findings. On average, patients lost 1 pound (0.45 kg) for each standard-deviation improvement in their food environment. This relationship held for persons who remained in the same location throughout the 5-year study period but not among persons who moved. Proximity to food venues that promote nutritious foods alone may not translate into clinically meaningful diet-related health changes. Community-level policies for improving the food environment need multifaceted strategies to invoke clinically meaningful change in BMI among adult patients with diabetes. PMID:28387785

  18. Measurement of greenhouse gas emissions from agricultural sites using open-path optical remote sensing method.

    PubMed

    Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick

    2009-08-01

    Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.

  19. A novel algorithm for Bluetooth ECG.

    PubMed

    Pandya, Utpal T; Desai, Uday B

    2012-11-01

    In wireless transmission of ECG, data latency will be significant when battery power level and data transmission distance are not maintained. In applications like home monitoring or personalized care, to overcome the joint effect of previous issues of wireless transmission and other ECG measurement noises, a novel filtering strategy is required. Here, a novel algorithm, identified as peak rejection adaptive sampling modified moving average (PRASMMA) algorithm for wireless ECG is introduced. This algorithm first removes error in bit pattern of received data if occurred in wireless transmission and then removes baseline drift. Afterward, a modified moving average is implemented except in the region of each QRS complexes. The algorithm also sets its filtering parameters according to different sampling rate selected for acquisition of signals. To demonstrate the work, a prototyped Bluetooth-based ECG module is used to capture ECG with different sampling rate and in different position of patient. This module transmits ECG wirelessly to Bluetooth-enabled devices where the PRASMMA algorithm is applied on captured ECG. The performance of PRASMMA algorithm is compared with moving average and S-Golay algorithms visually as well as numerically. The results show that the PRASMMA algorithm can significantly improve the ECG reconstruction by efficiently removing the noise and its use can be extended to any parameters where peaks are importance for diagnostic purpose.

  20. Enhancement of the Comb Filtering Selectivity Using Iterative Moving Average for Periodic Waveform and Harmonic Elimination

    PubMed Central

    Wu, Yan; Aarts, Ronald M.

    2018-01-01

    A recurring problem regarding the use of conventional comb filter approaches for elimination of periodic waveforms is the degree of selectivity achieved by the filtering process. Some applications, such as the gradient artefact correction in EEG recordings during coregistered EEG-fMRI, require a highly selective comb filtering that provides effective attenuation in the stopbands and gain close to unity in the pass-bands. In this paper, we present a novel comb filtering implementation whereby the iterative filtering application of FIR moving average-based approaches is exploited in order to enhance the comb filtering selectivity. Our results indicate that the proposed approach can be used to effectively approximate the FIR moving average filter characteristics to those of an ideal filter. A cascaded implementation using the proposed approach shows to further increase the attenuation in the filter stopbands. Moreover, broadening of the bandwidth of the comb filtering stopbands around −3 dB according to the fundamental frequency of the stopband can be achieved by the novel method, which constitutes an important characteristic to account for broadening of the harmonic gradient artefact spectral lines. In parallel, the proposed filtering implementation can also be used to design a novel notch filtering approach with enhanced selectivity as well. PMID:29599955

  1. Leg kinematics and muscle activity during treadmill running in the cockroach, Blaberus discoidalis: I. Slow running.

    PubMed

    Watson, J T; Ritzmann, R E

    1998-01-01

    We have combined high-speed video motion analysis of leg movements with electromyogram (EMG) recordings from leg muscles in cockroaches running on a treadmill. The mesothoracic (T2) and metathoracic (T3) legs have different kinematics. While in each leg the coxa-femur (CF) joint moves in unison with the femurtibia (FT) joint, the relative joint excursions differ between T2 and T3 legs. In T3 legs, the two joints move through approximately the same excursion. In T2 legs, the FT joint moves through a narrower range of angles than the CF joint. In spite of these differences in motion, no differences between the T2 and T3 legs were seen in timing or qualitative patterns of depressor coxa and extensor tibia activity. The average firing frequencies of slow depressor coxa (Ds) and slow extensor tibia (SETi) motor neurons are directly proportional to the average angular velocity of their joints during stance. The average Ds and SETi firing frequency appears to be modulated on a cycle-by-cycle basis to control running speed and orientation. In contrast, while the frequency variations within Ds and SETi bursts were consistent across cycles, the variations within each burst did not parallel variations in the velocity of the relevant joints.

  2. A hybrid least squares support vector machines and GMDH approach for river flow forecasting

    NASA Astrophysics Data System (ADS)

    Samsudin, R.; Saad, P.; Shabri, A.

    2010-06-01

    This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.

  3. FARMWORKERS, A REPRINT FROM THE 1966 MANPOWER REPORT.

    ERIC Educational Resources Information Center

    Manpower Administration (DOL), Washington, DC.

    ALTHOUGH THE AVERAGE STANDARD OF LIVING OF FARM PEOPLE HAS BEEN RISING STEADILY, THEY CONTINUE TO FACE SEVERE PROBLEMS OF UNDEREMPLOYMENT AND POVERTY. THE AVERAGE PER CAPITA INCOME OF FARM RESIDENTS IS LESS THAN TWO-THIRDS THAT OF THE NONFARM POPULATION. MILLIONS HAVE MOVED TO CITIES, LEAVING STAGNATING RURAL COMMUNITIES, AND INCREASING THE CITY…

  4. Severe Weather Guide - Mediterranean Ports. 7. Marseille

    DTIC Science & Technology

    1988-03-01

    the afternoon. Upper—level westerlies and the associated storm track is moved northward during summer, so extratropical cyclones and associated...autumn as the extratropical storm track moves southward. Precipitation amount is the highest of the year, with an average of 3 inches (76 mm) for the...18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Storm haven Mediterranean meteorology Marseille port

  5. Polymer Coatings Degradation Properties

    DTIC Science & Technology

    1985-02-01

    undertaken 124). The Box-Jenkins approach first evaluates the partial auto -correlation function and determines the order of the moving average memory function...78 - Tables 15 and 16 show the resalit- f- a, the partial auto correlation plots. Second order moving .-. "ra ;;th -he appropriate lags were...coated films. Kaempf, Guenter; Papenroth, Wolfgang; Kunststoffe Date: 1982 Volume: 72 Number:7 Pages: 424-429 Parameters influencing the accelerated

  6. Multifractal detrending moving-average cross-correlation analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi-Qiang; Zhou, Wei-Xing

    2011-07-01

    There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross correlations. The multifractal detrended cross-correlation analysis (MFDCCA) approaches can be used to quantify such cross correlations, such as the MFDCCA based on the detrended fluctuation analysis (MFXDFA) method. We develop in this work a class of MFDCCA algorithms based on the detrending moving-average analysis, called MFXDMA. The performances of the proposed MFXDMA algorithms are compared with the MFXDFA method by extensive numerical experiments on pairs of time series generated from bivariate fractional Brownian motions, two-component autoregressive fractionally integrated moving-average processes, and binomial measures, which have theoretical expressions of the multifractal nature. In all cases, the scaling exponents hxy extracted from the MFXDMA and MFXDFA algorithms are very close to the theoretical values. For bivariate fractional Brownian motions, the scaling exponent of the cross correlation is independent of the cross-correlation coefficient between two time series, and the MFXDFA and centered MFXDMA algorithms have comparative performances, which outperform the forward and backward MFXDMA algorithms. For two-component autoregressive fractionally integrated moving-average processes, we also find that the MFXDFA and centered MFXDMA algorithms have comparative performances, while the forward and backward MFXDMA algorithms perform slightly worse. For binomial measures, the forward MFXDMA algorithm exhibits the best performance, the centered MFXDMA algorithms performs worst, and the backward MFXDMA algorithm outperforms the MFXDFA algorithm when the moment order q<0 and underperforms when q>0. We apply these algorithms to the return time series of two stock market indexes and to their volatilities. For the returns, the centered MFXDMA algorithm gives the best estimates of hxy(q) since its hxy(2) is closest to 0.5, as expected, and the MFXDFA algorithm has the second best performance. For the volatilities, the forward and backward MFXDMA algorithms give similar results, while the centered MFXDMA and the MFXDFA algorithms fail to extract rational multifractal nature.

  7. Traffic-Related Air Pollution, Blood Pressure, and Adaptive Response of Mitochondrial Abundance.

    PubMed

    Zhong, Jia; Cayir, Akin; Trevisi, Letizia; Sanchez-Guerra, Marco; Lin, Xinyi; Peng, Cheng; Bind, Marie-Abèle; Prada, Diddier; Laue, Hannah; Brennan, Kasey J M; Dereix, Alexandra; Sparrow, David; Vokonas, Pantel; Schwartz, Joel; Baccarelli, Andrea A

    2016-01-26

    Exposure to black carbon (BC), a tracer of vehicular-traffic pollution, is associated with increased blood pressure (BP). Identifying biological factors that attenuate BC effects on BP can inform prevention. We evaluated the role of mitochondrial abundance, an adaptive mechanism compensating for cellular-redox imbalance, in the BC-BP relationship. At ≥ 1 visits among 675 older men from the Normative Aging Study (observations=1252), we assessed daily BP and ambient BC levels from a stationary monitor. To determine blood mitochondrial abundance, we used whole blood to analyze mitochondrial-to-nuclear DNA ratio (mtDNA/nDNA) using quantitative polymerase chain reaction. Every standard deviation increase in the 28-day BC moving average was associated with 1.97 mm Hg (95% confidence interval [CI], 1.23-2.72; P<0.0001) and 3.46 mm Hg (95% CI, 2.06-4.87; P<0.0001) higher diastolic and systolic BP, respectively. Positive BC-BP associations existed throughout all time windows. BC moving averages (5-day to 28-day) were associated with increased mtDNA/nDNA; every standard deviation increase in 28-day BC moving average was associated with 0.12 standard deviation (95% CI, 0.03-0.20; P=0.007) higher mtDNA/nDNA. High mtDNA/nDNA significantly attenuated the BC-systolic BP association throughout all time windows. The estimated effect of 28-day BC moving average on systolic BP was 1.95-fold larger for individuals at the lowest mtDNA/nDNA quartile midpoint (4.68 mm Hg; 95% CI, 3.03-6.33; P<0.0001), in comparison with the top quartile midpoint (2.40 mm Hg; 95% CI, 0.81-3.99; P=0.003). In older adults, short-term to moderate-term ambient BC levels were associated with increased BP and blood mitochondrial abundance. Our findings indicate that increased blood mitochondrial abundance is a compensatory response and attenuates the cardiac effects of BC. © 2015 American Heart Association, Inc.

  8. How directional mobility affects coexistence in rock-paper-scissors models

    NASA Astrophysics Data System (ADS)

    Avelino, P. P.; Bazeia, D.; Losano, L.; Menezes, J.; de Oliveira, B. F.; Santos, M. A.

    2018-03-01

    This work deals with a system of three distinct species that changes in time under the presence of mobility, selection, and reproduction, as in the popular rock-paper-scissors game. The novelty of the current study is the modification of the mobility rule to the case of directional mobility, in which the species move following the direction associated to a larger (averaged) number density of selection targets in the surrounding neighborhood. Directional mobility can be used to simulate eyes that see or a nose that smells, and we show how it may contribute to reduce the probability of coexistence.

  9. How directional mobility affects coexistence in rock-paper-scissors models.

    PubMed

    Avelino, P P; Bazeia, D; Losano, L; Menezes, J; de Oliveira, B F; Santos, M A

    2018-03-01

    This work deals with a system of three distinct species that changes in time under the presence of mobility, selection, and reproduction, as in the popular rock-paper-scissors game. The novelty of the current study is the modification of the mobility rule to the case of directional mobility, in which the species move following the direction associated to a larger (averaged) number density of selection targets in the surrounding neighborhood. Directional mobility can be used to simulate eyes that see or a nose that smells, and we show how it may contribute to reduce the probability of coexistence.

  10. Temporal and long-term trend analysis of class C notifiable diseases in China from 2009 to 2014

    PubMed Central

    Zhang, Xingyu; Hou, Fengsu; Qiao, Zhijiao; Li, Xiaosong; Zhou, Lijun; Liu, Yuanyuan; Zhang, Tao

    2016-01-01

    Objectives Time series models are effective tools for disease forecasting. This study aims to explore the time series behaviour of 11 notifiable diseases in China and to predict their incidence through effective models. Settings and participants The Chinese Ministry of Health started to publish class C notifiable diseases in 2009. The monthly reported case time series of 11 infectious diseases from the surveillance system between 2009 and 2014 was collected. Methods We performed a descriptive and a time series study using the surveillance data. Decomposition methods were used to explore (1) their seasonality expressed in the form of seasonal indices and (2) their long-term trend in the form of a linear regression model. Autoregressive integrated moving average (ARIMA) models have been established for each disease. Results The number of cases and deaths caused by hand, foot and mouth disease ranks number 1 among the detected diseases. It occurred most often in May and July and increased, on average, by 0.14126/100 000 per month. The remaining incidence models show good fit except the influenza and hydatid disease models. Both the hydatid disease and influenza series become white noise after differencing, so no available ARIMA model can be fitted for these two diseases. Conclusion Time series analysis of effective surveillance time series is useful for better understanding the occurrence of the 11 types of infectious disease. PMID:27797981

  11. Forecast of severe fever with thrombocytopenia syndrome incidence with meteorological factors.

    PubMed

    Sun, Ji-Min; Lu, Liang; Liu, Ke-Ke; Yang, Jun; Wu, Hai-Xia; Liu, Qi-Yong

    2018-06-01

    Severe fever with thrombocytopenia syndrome (SFTS) is emerging and some studies reported that SFTS incidence was associated with meteorological factors, while no report on SFTS forecast models was reported up to date. In this study, we constructed and compared three forecast models using autoregressive integrated moving average (ARIMA) model, negative binomial regression model (NBM), and quasi-Poisson generalized additive model (GAM). The dataset from 2011 to 2015 were used for model construction and the dataset in 2016 were used for external validity assessment. All the three models fitted the SFTS cases reasonably well during the training process and forecast process, while the NBM model forecasted better than other two models. Moreover, we demonstrated that temperature and relative humidity played key roles in explaining the temporal dynamics of SFTS occurrence. Our study contributes to better understanding of SFTS dynamics and provides predictive tools for the control and prevention of SFTS. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Predicting long-term catchment nutrient export: the use of nonlinear time series models

    NASA Astrophysics Data System (ADS)

    Valent, Peter; Howden, Nicholas J. K.; Szolgay, Jan; Komornikova, Magda

    2010-05-01

    After the Second World War the nitrate concentrations in European water bodies changed significantly as the result of increased nitrogen fertilizer use and changes in land use. However, in the last decades, as a consequence of the implementation of nitrate-reducing measures in Europe, the nitrate concentrations in water bodies slowly decrease. This causes that the mean and variance of the observed time series also changes with time (nonstationarity and heteroscedascity). In order to detect changes and properly describe the behaviour of such time series by time series analysis, linear models (such as autoregressive (AR), moving average (MA) and autoregressive moving average models (ARMA)), are no more suitable. Time series with sudden changes in statistical characteristics can cause various problems in the calibration of traditional water quality models and thus give biased predictions. Proper statistical analysis of these non-stationary and heteroscedastic time series with the aim of detecting and subsequently explaining the variations in their statistical characteristics requires the use of nonlinear time series models. This information can be then used to improve the model building and calibration of conceptual water quality model or to select right calibration periods in order to produce reliable predictions. The objective of this contribution is to analyze two long time series of nitrate concentrations of the rivers Ouse and Stour with advanced nonlinear statistical modelling techniques and compare their performance with traditional linear models of the ARMA class in order to identify changes in the time series characteristics. The time series were analysed with nonlinear models with multiple regimes represented by self-exciting threshold autoregressive (SETAR) and Markov-switching models (MSW). The analysis showed that, based on the value of residual sum of squares (RSS) in both datasets, SETAR and MSW models described the time-series better than models of the ARMA class. In most cases the relative improvement of SETAR models against AR models of first order was low ranging between 1% and 4% with the exception of the three-regime model for the River Stour time-series where the improvement was 48.9%. In comparison, the relative improvement of MSW models was between 44.6% and 52.5 for two-regime and from 60.4% to 75% for three-regime models. However, the visual assessment of models plotted against original datasets showed that despite a high value of RSS, some ARMA models could describe the analyzed time-series better than AR, MA and SETAR models with lower values of RSS. In both datasets MSW models provided a very good visual fit describing most of the extreme values.

  13. Relevance analysis and short-term prediction of PM2.5 concentrations in Beijing based on multi-source data

    NASA Astrophysics Data System (ADS)

    Ni, X. Y.; Huang, H.; Du, W. P.

    2017-02-01

    The PM2.5 problem is proving to be a major public crisis and is of great public-concern requiring an urgent response. Information about, and prediction of PM2.5 from the perspective of atmospheric dynamic theory is still limited due to the complexity of the formation and development of PM2.5. In this paper, we attempted to realize the relevance analysis and short-term prediction of PM2.5 concentrations in Beijing, China, using multi-source data mining. A correlation analysis model of PM2.5 to physical data (meteorological data, including regional average rainfall, daily mean temperature, average relative humidity, average wind speed, maximum wind speed, and other pollutant concentration data, including CO, NO2, SO2, PM10) and social media data (microblog data) was proposed, based on the Multivariate Statistical Analysis method. The study found that during these factors, the value of average wind speed, the concentrations of CO, NO2, PM10, and the daily number of microblog entries with key words 'Beijing; Air pollution' show high mathematical correlation with PM2.5 concentrations. The correlation analysis was further studied based on a big data's machine learning model- Back Propagation Neural Network (hereinafter referred to as BPNN) model. It was found that the BPNN method performs better in correlation mining. Finally, an Autoregressive Integrated Moving Average (hereinafter referred to as ARIMA) Time Series model was applied in this paper to explore the prediction of PM2.5 in the short-term time series. The predicted results were in good agreement with the observed data. This study is useful for helping realize real-time monitoring, analysis and pre-warning of PM2.5 and it also helps to broaden the application of big data and the multi-source data mining methods.

  14. Molecular dynamics simulation on the elastoplastic properties of copper nanowire under torsion

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Ying; Yang, Zailin; Zhang, Guowei; Wang, Xizhi; Liu, Jin

    2018-02-01

    Influences of different factors on the torsion properties of single crystal copper nanowire are studied by molecular dynamics method. The length, torsional rate, and temperature of the nanowire are discussed at the elastic-plastic critical point. According to the average potential energy curve and shear stress curve, the elastic-plastic critical angle is determined. Also, the dislocation at elastoplastic critical points is analyzed. The simulation results show that the single crystal copper nanowire can be strengthened by lengthening the model, decreasing the torsional rate, and lowering the temperature. Moreover, atoms move violently and dislocation is more likely to occur with a higher temperature. This work mainly describes the mechanical behavior of the model under different states.

  15. Neural network versus classical time series forecasting models

    NASA Astrophysics Data System (ADS)

    Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam

    2017-05-01

    Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.

  16. Computational Characterization of Type I collagen-based Extra-cellular Matrix

    NASA Astrophysics Data System (ADS)

    Liang, Long; Jones, Christopher Allen Rucksack; Lin, Daniel; Jiao, Yang; Sun, Bo

    2015-03-01

    A model of extracellular matrix (ECM) of collagen fibers has been built, in which cells could communicate with distant partners via fiber-mediated long-range-transmitted stress states. The ECM is modeled as a spring-like fiber network derived from skeletonized confocal microscopy data. Different local and global perturbations have been performed on the network, each followed by an optimized global Monte-Carlo (MC) energy minimization leading to the deformed network in response to the perturbations. In the optimization, a highly efficient local energy update procedure is employed and force-directed MC moves are used, which results in a convergence to the energy minimum state 20 times faster than the commonly used random displacement trial moves in MC. Further analysis and visualization of the distribution and correlation of the resulting force network reveal that local perturbations can give rise to global impacts: the force chains formed with a linear extent much further than the characteristic length scale associated with the perturbation sites and average fiber length. This behavior provides a strong evidence for our hypothesis of fiber-mediated long-range force transmission in ECM networks and the resulting long-range cell-cell mechanical signaling. ASU Seed Grant.

  17. Using optical tweezers to relate the chemical and mechanical cross-bridge cycles.

    PubMed

    Steffen, Walter; Sleep, John

    2004-12-29

    In most current models of muscle contraction there are two translational steps, the working stroke, whereby an attached myosin cross-bridge moves relative to the actin filament, and the repriming step, in which the cross-bridge returns to its original orientation. The development of single molecule methods has allowed a more detailed investigation of the relationship of these mechanical steps to the underlying biochemistry. In the normal adenosine triphosphate cycle, myosin.adenosine diphosphate.phosphate (M.ADP.Pi) binds to actin and moves it by ca. 5 nm on average before the formation of the end product, the rigor actomyosin state. All the other product-like intermediate states tested were found to give no net movement indicating that M.ADP.Pi alone binds in a pre-force state. Myosin states with bound, unhydrolysed nucleoside triphosphates also give no net movement, indicating that these must also bind in a post-force conformation and that the repriming, post- to pre-transition during the forward cycle must take place while the myosin is dissociated from actin. These observations fit in well with the structural model in which the working stroke is aligned to the opening of the switch 2 element of the ATPase site.

  18. The Onset Time of the Ownership Sensation in the Moving Rubber Hand Illusion.

    PubMed

    Kalckert, Andreas; Ehrsson, H H

    2017-01-01

    The rubber hand illusion (RHI) is a perceptual illusion whereby a model hand is perceived as part of one's own body. This illusion has been extensively studied, but little is known about the temporal evolution of this perceptual phenomenon, i.e., how long it takes until participants start to experience ownership over the model hand. In the present study, we investigated a version of the rubber hand experiment based on finger movements and measured the average onset time in active and passive movement conditions. This comparison enabled us to further explore the possible role of intentions and motor control processes that are only present in the active movement condition. The results from a large group of healthy participants ( n = 117) showed that the illusion of ownership took approximately 23 s to emerge (active: 22.8; passive: 23.2). The 90th percentile occurs in both conditions within approximately 50 s (active: 50; passive: 50.6); therefore, most participants experience the illusion within the first minute. We found indirect evidence of a facilitatory effect of active movements compared to passive movements, and we discuss these results in the context of our current understanding of the processes underlying the moving RHI.

  19. Measuring global monopole velocities, one by one

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Eiguren, Asier; Urrestilla, Jon; Achúcarro, Ana, E-mail: asier.lopez@ehu.eus, E-mail: jon.urrestilla@ehu.eus, E-mail: achucar@lorentz.leidenuniv.nl

    We present an estimation of the average velocity of a network of global monopoles in a cosmological setting using large numerical simulations. In order to obtain the value of the velocity, we improve some already known methods, and present a new one. This new method estimates individual global monopole velocities in a network, by means of detecting each monopole position in the lattice and following the path described by each one of them. Using our new estimate we can settle an open question previously posed in the literature: velocity-dependent one-scale (VOS) models for global monopoles predict two branches of scalingmore » solutions, one with monopoles moving at subluminal speeds and one with monopoles moving at luminal speeds. Previous attempts to estimate monopole velocities had large uncertainties and were not able to settle that question. Our simulations find no evidence of a luminal branch. We also estimate the values of the parameters of the VOS model. With our new method we can also study the microphysics of the complicated dynamics of individual monopoles. Finally we use our large simulation volume to compare the results from the different estimator methods, as well as to asses the validity of the numerical approximations made.« less

  20. Random Process Simulation for stochastic fatigue analysis. Ph.D. Thesis - Rice Univ., Houston, Tex.

    NASA Technical Reports Server (NTRS)

    Larsen, Curtis E.

    1988-01-01

    A simulation technique is described which directly synthesizes the extrema of a random process and is more efficient than the Gaussian simulation method. Such a technique is particularly useful in stochastic fatigue analysis because the required stress range moment E(R sup m), is a function only of the extrema of the random stress process. The family of autoregressive moving average (ARMA) models is reviewed and an autoregressive model is presented for modeling the extrema of any random process which has a unimodal power spectral density (psd). The proposed autoregressive technique is found to produce rainflow stress range moments which compare favorably with those computed by the Gaussian technique and to average 11.7 times faster than the Gaussian technique. The autoregressive technique is also adapted for processes having bimodal psd's. The adaptation involves using two autoregressive processes to simulate the extrema due to each mode and the superposition of these two extrema sequences. The proposed autoregressive superposition technique is 9 to 13 times faster than the Gaussian technique and produces comparable values for E(R sup m) for bimodal psd's having the frequency of one mode at least 2.5 times that of the other mode.

  1. Expressive body movement responses to music are coherent, consistent, and low dimensional.

    PubMed

    Amelynck, Denis; Maes, Pieter-Jan; Martens, Jean Pierre; Leman, Marc

    2014-12-01

    Embodied music cognition stresses the role of the human body as mediator for the encoding and decoding of musical expression. In this paper, we set up a low dimensional functional model that accounts for 70% of the variability in the expressive body movement responses to music. With the functional principal component analysis, we modeled individual body movements as a linear combination of a group average and a number of eigenfunctions. The group average and the eigenfunctions are common to all subjects and make up what we call the commonalities. An individual performance is then characterized by a set of scores (the individualities), one score per eigenfunction. The model is based on experimental data which finds high levels of coherence/consistency between participants when grouped according to musical education. This shows an ontogenetic effect. Participants without formal musical education focus on the torso for the expression of basic musical structure (tempo). Musically trained participants decode additional structural elements in the music and focus on body parts having more degrees of freedom (such as the hands). Our results confirm earlier studies that different body parts move differently along with the music.

  2. Variability of runoff-based drought conditions in the conterminous United States

    USGS Publications Warehouse

    McCabe, Gregory J.; Wolock, David M.; Austin, Samuel H.

    2017-01-01

    In this study, a monthly water-balance model is used to simulate monthly runoff for 2109 hydrologic units (HUs) in the conterminous United States (CONUS) for water-years 1901 through 2014. The monthly runoff time series for each HU were smoothed with a 3-month moving average, and then the 3-month moving-average runoff values were converted to percentiles. For each HU, a drought was considered to occur when the HU runoff percentile dropped to the 20th percentile or lower. A drought was considered to end when the HU runoff percentile exceeded the 20th percentile. After identifying drought events for each HU, the frequency and length of drought events were examined. Results indicated that (1) the longest mean drought lengths occur in the eastern CONUS and parts of the Rocky Mountain region and the northwestern CONUS, (2) the frequency of drought is highest in the southwestern and central CONUS, and lowest in the eastern CONUS, the Rocky Mountain region, and the northwestern CONUS, (3) droughts have occurred during all months of the year and there does not appear to be a seasonal pattern to drought occurrence, (4) the variability of precipitation appears to have been the principal climatic factor determining drought, and (5) for most of the CONUS, drought frequency appears to have decreased during the 1901 through 2014 period.

  3. Ducted-Fan Engine Acoustic Predictions using a Navier-Stokes Code

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Biedron, R. T.; Farassat, F.; Spence, P. L.

    1998-01-01

    A Navier-Stokes computer code is used to predict one of the ducted-fan engine acoustic modes that results from rotor-wake/stator-blade interaction. A patched sliding-zone interface is employed to pass information between the moving rotor row and the stationary stator row. The code produces averaged aerodynamic results downstream of the rotor that agree well with a widely used average-passage code. The acoustic mode of interest is generated successfully by the code and is propagated well upstream of the rotor; temporal and spatial numerical resolution are fine enough such that attenuation of the signal is small. Two acoustic codes are used to find the far-field noise. Near-field propagation is computed by using Eversman's wave envelope code, which is based on a finite-element model. Propagation to the far field is accomplished by using the Kirchhoff formula for moving surfaces with the results of the wave envelope code as input data. Comparison of measured and computed far-field noise levels show fair agreement in the range of directivity angles where the peak radiation lobes from the inlet are observed. Although only a single acoustic mode is targeted in this study, the main conclusion is a proof-of-concept: Navier-Stokes codes can be used both to generate and propagate rotor/stator acoustic modes forward through an engine, where the results can be coupled to other far-field noise prediction codes.

  4. Modeling the Effect of Summertime Heating on Urban Runoff Temperature

    NASA Astrophysics Data System (ADS)

    Thompson, A. M.; Gemechu, A. L.; Norman, J. M.; Roa-Espinosa, A.

    2007-12-01

    Urban impervious surfaces absorb and store thermal energy, particularly during warm summer months. During a rainfall/runoff event, thermal energy is transferred from the impervious surface to the runoff, causing it to become warmer. As this higher temperature runoff enters receiving waters, it can be harmful to coldwater habitat. A simple model has been developed for the net energy flux at the impervious surfaces of urban areas to account for the heat transferred to runoff. Runoff temperature is determined as a function of the physical characteristics of the impervious areas, the weather, and the heat transfer between the moving film of runoff and the heated impervious surfaces that commonly exist in urban areas. Runoff from pervious surfaces was predicted using the Green- Ampt Mein-Larson infiltration excess method. Theoretical results were compared to experimental results obtained from a plot-scale field study conducted at the University of Wisconsin's West Madison Agricultural Research Station. Surface temperatures and runoff temperatures from asphalt and sod plots were measured throughout 15 rainfall simulations under various climatic conditions during the summers of 2004 and 2005. Average asphalt runoff temperatures ranged from 23.2°C to 37.1°C. Predicted asphalt runoff temperatures were in close agreement with measured values for most of the simulations (average RMSE = 4.0°C). Average pervious runoff temperatures ranged from 19.7° to 29.9°C and were closely approximated by the rainfall temperature (RMSE = 2.8°C). Predicted combined asphalt and sod runoff temperatures using a flow-weighted average were in close agreement with observed values (average RMSE = 3.5°C).

  5. Comparative Sediment Transport Between Exposed and Reef Protected Beaches Under Different Hurricane Conditions

    NASA Astrophysics Data System (ADS)

    Miret, D.; Enriquez, C.; Marino-Tapia, I.

    2016-12-01

    Many world coast regions are subjected to tropical cyclone activity, which can cause major damage to beaches and infrastructure on sediment dominated coasts. The Caribbean Sea has on average 4 hurricanes per year, some of them have caused major damage to coastal cities in the past 25 years. For example, Wilma, a major hurricane that hit SE Mexico in October 2005 generated strong erosion at an exposed beach (Cancun), while beach accretion was observed 28 km south at a fringing reef protected beach (Puerto Morelos). Hurricanes with similar intensity and trajectory but different moving speeds have been reported to cause a different morphological response. The present study analyses the morphodynamic response to the hydrodynamic conditions of exposed and reef protected beaches, generated by hurricanes with similar intensities but different trajectories and moving speeds. A non-stationary Delft3D Wave model is used to generate large scale wind swell conditions and local sea wind states and coupled with Delft3D Flow model to study the connection between the continental shelf and surf zones exchanges. The model is validated with hydrodynamic data gathered during Wilma, and morphological conditions measured before and after the event. Preliminary results show that erosion appears at the exposed beach and a predominant exchange between north and south dominates the shelf sediment transport (figure 1). Onshore driven flows over the reef crest input sediment in the reef protected beach. It is expected that for a same track but faster moving speed, southward sediment transport will have less time to develop and accretion at the reef protected site would be less evident or inexistent. The study can be used as a prediction tool for shelf scale sediment transport exchange driven by hurricanes.

  6. Impact on house staff evaluation scores when changing from a Dreyfus- to a Milestone-based evaluation model: one internal medicine residency program's findings.

    PubMed

    Friedman, Karen A; Balwan, Sandy; Cacace, Frank; Katona, Kyle; Sunday, Suzanne; Chaudhry, Saima

    2014-01-01

    As graduate medical education (GME) moves into the Next Accreditation System (NAS), programs must take a critical look at their current models of evaluation and assess how well they align with reporting outcomes. Our objective was to assess the impact on house staff evaluation scores when transitioning from a Dreyfus-based model of evaluation to a Milestone-based model of evaluation. Milestones are a key component of the NAS. We analyzed all end of rotation evaluations of house staff completed by faculty for academic years 2010-2011 (pre-Dreyfus model) and 2011-2012 (post-Milestone model) in one large university-based internal medicine residency training program. Main measures included change in PGY-level average score; slope, range, and separation of average scores across all six Accreditation Council for Graduate Medical Education (ACGME) competencies. Transitioning from a Dreyfus-based model to a Milestone-based model resulted in a larger separation in the scores between our three post-graduate year classes, a steeper progression of scores in the PGY-1 class, a wider use of the 5-point scale on our global end of rotation evaluation form, and a downward shift in the PGY-1 scores and an upward shift in the PGY-3 scores. For faculty trained in both models of assessment, the Milestone-based model had greater discriminatory ability as evidenced by the larger separation in the scores for all the classes, in particular the PGY-1 class.

  7. A short-term ensemble wind speed forecasting system for wind power applications

    NASA Astrophysics Data System (ADS)

    Baidya Roy, S.; Traiteur, J. J.; Callicutt, D.; Smith, M.

    2011-12-01

    This study develops an adaptive, blended forecasting system to provide accurate wind speed forecasts 1 hour ahead of time for wind power applications. The system consists of an ensemble of 21 forecasts with different configurations of the Weather Research and Forecasting Single Column Model (WRFSCM) and a persistence model. The ensemble is calibrated against observations for a 2 month period (June-July, 2008) at a potential wind farm site in Illinois using the Bayesian Model Averaging (BMA) technique. The forecasting system is evaluated against observations for August 2008 at the same site. The calibrated ensemble forecasts significantly outperform the forecasts from the uncalibrated ensemble while significantly reducing forecast uncertainty under all environmental stability conditions. The system also generates significantly better forecasts than persistence, autoregressive (AR) and autoregressive moving average (ARMA) models during the morning transition and the diurnal convective regimes. This forecasting system is computationally more efficient than traditional numerical weather prediction models and can generate a calibrated forecast, including model runs and calibration, in approximately 1 minute. Currently, hour-ahead wind speed forecasts are almost exclusively produced using statistical models. However, numerical models have several distinct advantages over statistical models including the potential to provide turbulence forecasts. Hence, there is an urgent need to explore the role of numerical models in short-term wind speed forecasting. This work is a step in that direction and is likely to trigger a debate within the wind speed forecasting community.

  8. The Healthy LifeWorks Project: a pilot study of the economic analysis of a comprehensive workplace wellness program in a Canadian government department.

    PubMed

    Makrides, Lydia; Smith, Steven; Allt, Jane; Farquharson, Jane; Szpilfogel, Claudine; Curwin, Sandra; Veinot, Paula; Wang, Feifei; Edington, Dee

    2011-07-01

    To examine the relationship between health risks and absenteeism and drug costs vis-a-vis comprehensive workplace wellness. Eleven health risks, and change in drug claims, short-term and general illness calculated across four risk change groups. Wellness score examined using Wilcoxon test and regression model for cost change. The results showed 31% at risk; 9 of 11 risks associated with higher drug costs. Employees moving from low to high risk showed highest relative increase (81%) in drug costs; moving from high to low had lowest (24%). Low-high had highest increase in absenteeism costs (160%). With each risk increase, absenteeism costs increased by $CDN248 per year (P < 0.05) with average decrease of 0.07 risk factors and savings $CDN6979 per year. Both high-risk reduction and low-risk maintenance are important to contain drug costs. Only low-risk maintenance also avoids absenteeism costs associated with high risks.

  9. Software simulations of the detection of rapidly moving asteroids by a charge-coupled device

    NASA Astrophysics Data System (ADS)

    McMillan, R. S.; Stoll, C. P.

    1982-10-01

    A rendezvous of an unmanned probe to an earth-approaching asteroid has been given a high priority in the planning of interplanetary missions for the 1990s. Even without a space mission, much could be learned about the history of asteroids and comet nuclei if more information were available concerning asteroids with orbits which cross or approach the orbit of earth. It is estimated that the total number of earth-crossers accessible to ground-based survey telescopes should be approximately 1000. However, in connection with the small size and rapid angular motion expected of many of these objects an average of only one object is discovered per year. Attention is given to the development of the software necessary to distinguish such rapidly moving asteroids from stars and noise in continuously scanned CCD exposures of the night sky. Model and input parameters are considered along with detector sensitivity, aspects of minimum detectable displacement, and the point-spread function of the CCD.

  10. Food price seasonality in Africa: Measurement and extent.

    PubMed

    Gilbert, Christopher L; Christiaensen, Luc; Kaminski, Jonathan

    2017-02-01

    Everyone knows about seasonality. But what exactly do we know? This study systematically measures seasonal price gaps at 193 markets for 13 food commodities in seven African countries. It shows that the commonly used dummy variable or moving average deviation methods to estimate the seasonal gap can yield substantial upward bias. This can be partially circumvented using trigonometric and sawtooth models, which are more parsimonious. Among staple crops, seasonality is highest for maize (33 percent on average) and lowest for rice (16½ percent). This is two and a half to three times larger than in the international reference markets. Seasonality varies substantially across market places but maize is the only crop in which there are important systematic country effects. Malawi, where maize is the main staple, emerges as exhibiting the most acute seasonal differences. Reaching the Sustainable Development Goal of Zero Hunger requires renewed policy attention to seasonality in food prices and consumption.

  11. Development of S-ARIMA Model for Forecasting Demand in a Beverage Supply Chain

    NASA Astrophysics Data System (ADS)

    Mircetic, Dejan; Nikolicic, Svetlana; Maslaric, Marinko; Ralevic, Nebojsa; Debelic, Borna

    2016-11-01

    Demand forecasting is one of the key activities in planning the freight flows in supply chains, and accordingly it is essential for planning and scheduling of logistic activities within observed supply chain. Accurate demand forecasting models directly influence the decrease of logistics costs, since they provide an assessment of customer demand. Customer demand is a key component for planning all logistic processes in supply chain, and therefore determining levels of customer demand is of great interest for supply chain managers. In this paper we deal with exactly this kind of problem, and we develop the seasonal Autoregressive IntegratedMoving Average (SARIMA) model for forecasting demand patterns of a major product of an observed beverage company. The model is easy to understand, flexible to use and appropriate for assisting the expert in decision making process about consumer demand in particular periods.

  12. Forecasting daily lake levels using artificial intelligence approaches

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Shiri, Jalal; Nikoofar, Bagher

    2012-04-01

    Accurate prediction of lake-level variations is important for planning, design, construction, and operation of lakeshore structures and also in the management of freshwater lakes for water supply purposes. In the present paper, three artificial intelligence approaches, namely artificial neural networks (ANNs), adaptive-neuro-fuzzy inference system (ANFIS), and gene expression programming (GEP), were applied to forecast daily lake-level variations up to 3-day ahead time intervals. The measurements at the Lake Iznik in Western Turkey, for the period of January 1961-December 1982, were used for training, testing, and validating the employed models. The results obtained by the GEP approach indicated that it performs better than ANFIS and ANNs in predicting lake-level variations. A comparison was also made between these artificial intelligence approaches and convenient autoregressive moving average (ARMA) models, which demonstrated the superiority of GEP, ANFIS, and ANN models over ARMA models.

  13. Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study.

    PubMed

    Li, Qiongge; Chan, Maria F

    2017-01-01

    Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field. © 2016 New York Academy of Sciences.

  14. Joint Seasonal ARMA Approach for Modeling of Load Forecast Errors in Planning Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hafen, Ryan P.; Samaan, Nader A.; Makarov, Yuri V.

    2014-04-14

    To make informed and robust decisions in the probabilistic power system operation and planning process, it is critical to conduct multiple simulations of the generated combinations of wind and load parameters and their forecast errors to handle the variability and uncertainty of these time series. In order for the simulation results to be trustworthy, the simulated series must preserve the salient statistical characteristics of the real series. In this paper, we analyze day-ahead load forecast error data from multiple balancing authority locations and characterize statistical properties such as mean, standard deviation, autocorrelation, correlation between series, time-of-day bias, and time-of-day autocorrelation.more » We then construct and validate a seasonal autoregressive moving average (ARMA) model to model these characteristics, and use the model to jointly simulate day-ahead load forecast error series for all BAs.« less

  15. When push comes to shove: Exclusion processes with nonlocal consequences

    NASA Astrophysics Data System (ADS)

    Almet, Axel A.; Pan, Michael; Hughes, Barry D.; Landman, Kerry A.

    2015-11-01

    Stochastic agent-based models are useful for modelling collective movement of biological cells. Lattice-based random walk models of interacting agents where each site can be occupied by at most one agent are called simple exclusion processes. An alternative motility mechanism to simple exclusion is formulated, in which agents are granted more freedom to move under the compromise that interactions are no longer necessarily local. This mechanism is termed shoving. A nonlinear diffusion equation is derived for a single population of shoving agents using mean-field continuum approximations. A continuum model is also derived for a multispecies problem with interacting subpopulations, which either obey the shoving rules or the simple exclusion rules. Numerical solutions of the derived partial differential equations compare well with averaged simulation results for both the single species and multispecies processes in two dimensions, while some issues arise in one dimension for the multispecies case.

  16. Tracking Movements of Individual Anoplophora glabripennis (Coleoptera: Cerambycidae) Adults: Application of Harmonic Radar

    Treesearch

    David W. Williams; Guohong Li; Ruitong Gao

    2004-01-01

    Movements of 55 Anoplophora glabripennis (Motschulsky) adults were monitored on 200 willow trees, Salix babylonica L., at a site appx. 80 km southeast of Beijing, China, for 9-14 d in an individual mark-recapture study using harmonic radar. The average movement distance was appx. 14 m, with many beetles not moving at all and others moving >90 m. The rate of movement...

  17. Lifetime maps for orbits around Callisto using a double-averaged model

    NASA Astrophysics Data System (ADS)

    Cardoso dos Santos, Josué; Carvalho, Jean P. S.; Prado, Antônio F. B. A.; Vilhena de Moraes, Rodolpho

    2017-12-01

    The present paper studies the lifetime of orbits around a moon that is in orbit around its mother planet. In the context of the inner restricted three-body problem, the dynamical model considered in the present study uses the double-averaged dynamics of a spacecraft moving around a moon under the gravitational pulling of a disturbing third body in an elliptical orbit. The non-uniform distribution of the mass of the moon is also considered. Applications are performed using numerical experiments for the Callisto-spacecraft-Jupiter system, and lifetime maps for different values of the eccentricity of the disturbing body (Jupiter) are presented, in order to investigate the role of this parameter in these maps. The idea is to simulate a system with the same physical parameters as the Jupiter-Callisto system, but with larger eccentricities. These maps are also useful for validation and improvements in the results available in the literature, such as to find conditions to extend the available time for a massless orbiting body to be in highly inclined orbits under gravitational disturbances coming from the other bodies of the system.

  18. Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Chengshan

    2017-12-01

    Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM) above a cylindrical high temperature superconductor (HTS) moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC), however, the lateral stiffness in field cooling (FC) and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.

  19. Beyond Horse Race Comparisons of National Performance Averages: Math Performance Variation within and between Classrooms in 38 Countries

    ERIC Educational Resources Information Center

    Huang, Min-Hsiung

    2009-01-01

    Reports of international studies of student achievement often receive public attention worldwide. However, this attention overly focuses on the national rankings of average student performance. To move beyond the simplistic comparison of national mean scores, this study investigates (a) country differences in the measures of variability as well as…

  20. Time-dependent Tonks-Langmuir model is unstable

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.; Baalrud, S. D.

    2017-11-01

    We investigate a time-dependent extension of the Tonks-Langmuir model for a one-dimensional plasma discharge with collisionless kinetic ions and Boltzmann electrons. Ions are created uniformly throughout the volume and flow from the center of the discharge to the boundary wall due to a self-consistent, zero-order electric field. Solving this model using a particle-in-cell simulation, we observe coherent low-frequency, long-wavelength unstable ion waves which move toward the boundary with a speed below both the ion acoustic speed and the average ion velocity. The maximum amplitude of the wave potential fluctuations peaks at ≈0.09 Te near the wall, where Te is the electron temperature in electron volts. Using linear kinetic theory, we identify this instability as slow ion-acoustic wave modes which are destabilized by the zero-order electric field.

  1. Thermal signature identification system (TheSIS): a spread spectrum temperature cycling method

    NASA Astrophysics Data System (ADS)

    Merritt, Scott

    2015-03-01

    NASA GSFC's Thermal Signature Identification System (TheSIS) 1) measures the high order dynamic responses of optoelectronic components to direct sequence spread-spectrum temperature cycling, 2) estimates the parameters of multiple autoregressive moving average (ARMA) or other models the of the responses, 3) and selects the most appropriate model using the Akaike Information Criterion (AIC). Using the AIC-tested model and parameter vectors from TheSIS, one can 1) select high-performing components on a multivariate basis, i.e., with multivariate Figures of Merit (FOMs), 2) detect subtle reversible shifts in performance, and 3) investigate irreversible changes in component or subsystem performance, e.g. aging. We show examples of the TheSIS methodology for passive and active components and systems, e.g. fiber Bragg gratings (FBGs) and DFB lasers with coupled temperature control loops, respectively.

  2. Electron Flux Models for Different Energies at Geostationary Orbit

    NASA Technical Reports Server (NTRS)

    Boynton, R. J.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Billings, S. A.; Ganushkina, N.

    2016-01-01

    Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low-energy electrons measured by GOES (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, and 350-600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.

  3. RADON CONCENTRATION TIME SERIES MODELING AND APPLICATION DISCUSSION.

    PubMed

    Stránský, V; Thinová, L

    2017-11-01

    In the year 2010 a continual radon measurement was established at Mladeč Caves in the Czech Republic using a continual radon monitor RADIM3A. In order to model radon time series in the years 2010-15, the Box-Jenkins Methodology, often used in econometrics, was applied. Because of the behavior of radon concentrations (RCs), a seasonal integrated, autoregressive moving averages model with exogenous variables (SARIMAX) has been chosen to model the measured time series. This model uses the time series seasonality, previously acquired values and delayed atmospheric parameters, to forecast RC. The developed model for RC time series is called regARIMA(5,1,3). Model residuals could be retrospectively compared with seismic evidence of local or global earthquakes, which occurred during the RCs measurement. This technique enables us to asses if continuously measured RC could serve an earthquake precursor. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Hydrogen sulfide and particle matter levels associated with increased dispensing of anti-asthma drugs in Iceland's capital.

    PubMed

    Carlsen, Hanne Krage; Zoëga, Helga; Valdimarsdóttir, Unnur; Gíslason, Thórarinn; Hrafnkelsson, Birgir

    2012-02-01

    Air pollutants in Iceland's capital area include hydrogen sulfide (H2S) emissions from geothermal power plants, particle pollution (PM10) and traffic-related pollutants. Respiratory health effects of exposure to PM and traffic pollutants are well documented, yet this is one of the first studies to investigate short-term health effects of ambient H2S exposure. The aim of this study was to investigate the associations between daily ambient levels of H2S, PM10, nitrogen dioxide (NO2) and ozone (O3), and the use of drugs for obstructive pulmonary diseases in adults in Iceland's capital area. The study period was 8 March 2006 to 31 December 2009. We used log-linear Poisson generalized additive regression models with cubic splines to estimate relative risks of individually dispensed drugs by air pollution levels. A three-day moving average of the exposure variables gave the best fit to the data. Final models included significant covariates adjusting for climate and influenza epidemics, as well as time-dependent variables. The three-day moving average of H2S and PM10 levels were positively associated with the number of individuals who were dispensed drugs at lag 3-5, corresponding to a 2.0% (95% confidence interval [CI] 0.4, 3.6) and 0.9% (95% CI 0.1, 1.8) per 10 μg/m3 pollutant concentration increase, respectively. Our findings indicated that intermittent increases in levels of particle matter from traffic and natural sources and ambient H2S levels were weakly associated with increased dispensing of drugs for obstructive pulmonary disease in Iceland's capital area. These weak associations could be confounded by unevaluated variables hence further studies are needed. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. A novel approach to estimate emissions from large transportation networks: Hierarchical clustering-based link-driving-schedules for EPA-MOVES using dynamic time warping measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, H. M. Abdul; Ukkusuri, Satish V.

    We present that EPA-MOVES (Motor Vehicle Emission Simulator) is often integrated with traffic simulators to assess emission levels of large-scale urban networks with signalized intersections. High variations in speed profiles exist in the context of congested urban networks with signalized intersections. The traditional average-speed-based emission estimation technique with EPA-MOVES provides faster execution while underestimates the emissions in most cases because of ignoring the speed variation at congested networks with signalized intersections. In contrast, the atomic second-by-second speed profile (i.e., the trajectory of each vehicle)-based technique provides accurate emissions at the cost of excessive computational power and time. We addressed thismore » issue by developing a novel method to determine the link-driving-schedules (LDSs) for the EPA-MOVES tool. Our research developed a hierarchical clustering technique with dynamic time warping similarity measures (HC-DTW) to find the LDS for EPA-MOVES that is capable of producing emission estimates better than the average-speed-based technique with execution time faster than the atomic speed profile approach. We applied the HC-DTW on a sample data from a signalized corridor and found that HC-DTW can significantly reduce computational time without compromising the accuracy. The developed technique in this research can substantially contribute to the EPA-MOVES-based emission estimation process for large-scale urban transportation network by reducing the computational time with reasonably accurate estimates. This method is highly appropriate for transportation networks with higher variation in speed such as signalized intersections. Lastly, experimental results show error difference ranging from 2% to 8% for most pollutants except PM 10.« less

  6. A novel approach to estimate emissions from large transportation networks: Hierarchical clustering-based link-driving-schedules for EPA-MOVES using dynamic time warping measures

    DOE PAGES

    Aziz, H. M. Abdul; Ukkusuri, Satish V.

    2017-06-29

    We present that EPA-MOVES (Motor Vehicle Emission Simulator) is often integrated with traffic simulators to assess emission levels of large-scale urban networks with signalized intersections. High variations in speed profiles exist in the context of congested urban networks with signalized intersections. The traditional average-speed-based emission estimation technique with EPA-MOVES provides faster execution while underestimates the emissions in most cases because of ignoring the speed variation at congested networks with signalized intersections. In contrast, the atomic second-by-second speed profile (i.e., the trajectory of each vehicle)-based technique provides accurate emissions at the cost of excessive computational power and time. We addressed thismore » issue by developing a novel method to determine the link-driving-schedules (LDSs) for the EPA-MOVES tool. Our research developed a hierarchical clustering technique with dynamic time warping similarity measures (HC-DTW) to find the LDS for EPA-MOVES that is capable of producing emission estimates better than the average-speed-based technique with execution time faster than the atomic speed profile approach. We applied the HC-DTW on a sample data from a signalized corridor and found that HC-DTW can significantly reduce computational time without compromising the accuracy. The developed technique in this research can substantially contribute to the EPA-MOVES-based emission estimation process for large-scale urban transportation network by reducing the computational time with reasonably accurate estimates. This method is highly appropriate for transportation networks with higher variation in speed such as signalized intersections. Lastly, experimental results show error difference ranging from 2% to 8% for most pollutants except PM 10.« less

  7. Switching moving boundary models for two-phase flow evaporators and condensers

    NASA Astrophysics Data System (ADS)

    Bonilla, Javier; Dormido, Sebastián; Cellier, François E.

    2015-03-01

    The moving boundary method is an appealing approach for the design, testing and validation of advanced control schemes for evaporators and condensers. When it comes to advanced control strategies, not only accurate but fast dynamic models are required. Moving boundary models are fast low-order dynamic models, and they can describe the dynamic behavior with high accuracy. This paper presents a mathematical formulation based on physical principles for two-phase flow moving boundary evaporator and condenser models which support dynamic switching between all possible flow configurations. The models were implemented in a library using the equation-based object-oriented Modelica language. Several integrity tests in steady-state and transient predictions together with stability tests verified the models. Experimental data from a direct steam generation parabolic-trough solar thermal power plant is used to validate and compare the developed moving boundary models against finite volume models.

  8. A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data.

    PubMed

    Collell, Guillem; Prelec, Drazen; Patil, Kaustubh R

    2018-01-31

    Class imbalance presents a major hurdle in the application of classification methods. A commonly taken approach is to learn ensembles of classifiers using rebalanced data. Examples include bootstrap averaging (bagging) combined with either undersampling or oversampling of the minority class examples. However, rebalancing methods entail asymmetric changes to the examples of different classes, which in turn can introduce their own biases. Furthermore, these methods often require specifying the performance measure of interest a priori, i.e., before learning. An alternative is to employ the threshold moving technique, which applies a threshold to the continuous output of a model, offering the possibility to adapt to a performance measure a posteriori , i.e., a plug-in method. Surprisingly, little attention has been paid to this combination of a bagging ensemble and threshold-moving. In this paper, we study this combination and demonstrate its competitiveness. Contrary to the other resampling methods, we preserve the natural class distribution of the data resulting in well-calibrated posterior probabilities. Additionally, we extend the proposed method to handle multiclass data. We validated our method on binary and multiclass benchmark data sets by using both, decision trees and neural networks as base classifiers. We perform analyses that provide insights into the proposed method.

  9. Continuous Force Decoding from Local Field Potentials of the Primary Motor Cortex in Freely Moving Rats.

    PubMed

    Khorasani, Abed; Heydari Beni, Nargess; Shalchyan, Vahid; Daliri, Mohammad Reza

    2016-10-21

    Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor cortex can be used as a high informative input for decoding of motor functions. Recent studies show that different kinematic parameters such as position and velocity can be inferred from multiple LFP signals as precisely as spiking activities, however, continuous decoding of the force magnitude from the LFP signals in freely moving animals has remained an open problem. Here, we trained three rats to press a force sensor for getting a drop of water as a reward. A 16-channel micro-wire array was implanted in the primary motor cortex of each trained rat, and obtained LFP signals were used for decoding of the continuous values recorded by the force sensor. Average coefficient of correlation and the coefficient of determination between decoded and actual force signals were r = 0.66 and R 2  = 0.42, respectively. We found that LFP signal on gamma frequency bands (30-120 Hz) had the most contribution in the trained decoding model. This study suggests the feasibility of using low number of LFP channels for the continuous force decoding in freely moving animals resembling BMI systems in real life applications.

  10. The forward undulatory locomotion of Ceanorhabditis elegans in viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Shen, Amy; Ulrich, Xialing

    2013-11-01

    Caenorhabditis elegans is a soil dwelling roundworm that has served as model organisms for studying a multitude of biological and engineering phenomena. We study the undulatory locomotion of nematode in viscoelastic fluids with zero-shear viscosity varying from 0.03-75 Pa .s and relaxation times ranging from 0-350 s. We observe that the averaged normalized wavelength of swimming worm is essentially the same as that in Newtonian fluids. The undulatory frequency f shows the same reduction rate with respect to zero-shear viscosity in viscoelastic fluids as that found in the Newtonian fluids, meaning that the undulatory frequency is mainly controlled by the fluid viscosity. However, the moving speed Vm of the worm shows more distinct dependence on the elasticity of the fluid and exhibits a 4% drop with each 10-fold increase of the Deborah number De, a dimensionless number characterizing the elasticity of a fluid. To estimate the swimming efficiency coefficient and the ratio K =CN /CL of resistive coefficients of the worm in various viscoelastic fluids, we show that whereas it would take the worm around 7 periods to move a body length in a Newtonian fluid, it would take 27 periods to move a body length in a highly viscoelastic fluid.

  11. Particulate matter speciation profiles for light-duty gasoline vehicles in the United States.

    PubMed

    Sonntag, Darrell B; Baldauf, Richard W; Yanca, Catherine A; Fulper, Carl R

    2014-05-01

    Representative profiles for particulate matter particles less than or equal to 2.5 microm (PM2.5) are developed from the Kansas City Light-Duty Vehicle Emissions Study for use in the US. Environmental Protection Agency (EPA) vehicle emission model, the Motor Vehicle Emission Simulator (MOVES), and for inclusion in the EPA SPECIATE database for speciation profiles. The profiles are compatible with the inputs of current photochemical air quality models, including the Community Multiscale Air Quality Aerosol Module Version 6 (AE6). The composition of light-duty gasoline PM2.5 emissions differs significantly between cold start and hot stabilized running emissions, and between older and newer vehicles, reflecting both impacts of aging/deterioration and changes in vehicle technology. Fleet-average PM2.5 profiles are estimated for cold start and hot stabilized running emission processes. Fleet-average profiles are calculated to include emissions from deteriorated high-emitting vehicles that are expected to continue to contribute disproportionately to the fleet-wide PM2.5 emissions into the future. The profiles are calculated using a weighted average of the PM2.5 composition according to the contribution of PM2.5 emissions from each class of vehicles in the on-road gasoline fleet in the Kansas City Metropolitan Statistical Area. The paper introduces methods to exclude insignificant measurements, correct for organic carbon positive artifact, and control for contamination from the testing infrastructure in developing speciation profiles. The uncertainty of the PM2.5 species fraction in each profile is quantified using sampling survey analysis methods. The primary use of the profiles is to develop PM2.5 emissions inventories for the United States, but the profiles may also be used in source apportionment, atmospheric modeling, and exposure assessment, and as a basis for light-duty gasoline emission profiles for countries with limited data. PM2.5 speciation profiles were developed from a large sample of light-duty gasoline vehicles tested in the Kansas City area. Separate PM2.5 profiles represent cold start and hot stabilized running emission processes to distinguish important differences in chemical composition. Statistical analysis was used to construct profiles that represent PM2.5 emissions from the U.S. vehicle fleet based on vehicles tested from the 2005 calendar year Kansas City metropolitan area. The profiles have been incorporated into the EPA MOVES emissions model, as well as the EPA SPECIATE database, to improve emission inventories and provide the PM2.5 chemical characterization needed by CMAQv5.0 for atmospheric chemistry modeling.

  12. Accounting for seasonal patterns in syndromic surveillance data for outbreak detection.

    PubMed

    Burr, Tom; Graves, Todd; Klamann, Richard; Michalak, Sarah; Picard, Richard; Hengartner, Nicolas

    2006-12-04

    Syndromic surveillance (SS) can potentially contribute to outbreak detection capability by providing timely, novel data sources. One SS challenge is that some syndrome counts vary with season in a manner that is not identical from year to year. Our goal is to evaluate the impact of inconsistent seasonal effects on performance assessments (false and true positive rates) in the context of detecting anomalous counts in data that exhibit seasonal variation. To evaluate the impact of inconsistent seasonal effects, we injected synthetic outbreaks into real data and into data simulated from each of two models fit to the same real data. Using real respiratory syndrome counts collected in an emergency department from 2/1/94-5/31/03, we varied the length of training data from one to eight years, applied a sequential test to the forecast errors arising from each of eight forecasting methods, and evaluated their detection probabilities (DP) on the basis of 1000 injected synthetic outbreaks. We did the same for each of two corresponding simulated data sets. The less realistic, nonhierarchical model's simulated data set assumed that "one season fits all," meaning that each year's seasonal peak has the same onset, duration, and magnitude. The more realistic simulated data set used a hierarchical model to capture violation of the "one season fits all" assumption. This experiment demonstrated optimistic bias in DP estimates for some of the methods when data simulated from the nonhierarchical model was used for DP estimation, thus suggesting that at least for some real data sets and methods, it is not adequate to assume that "one season fits all." For the data we analyze, the "one season fits all " assumption is violated, and DP performance claims based on simulated data that assume "one season fits all," for the forecast methods considered, except for moving average methods, tend to be optimistic. Moving average methods based on relatively short amounts of training data are competitive on all three data sets, but are particularly competitive on the real data and on data from the hierarchical model, which are the two data sets that violate the "one season fits all" assumption.

  13. Vertical dynamics of a single-span beam subjected to moving mass-suspended payload system with variable speeds

    NASA Astrophysics Data System (ADS)

    He, Wei

    2018-03-01

    This paper presents the vertical dynamics of a simply supported Euler-Bernoulli beam subjected to a moving mass-suspended payload system of variable velocities. A planar theoretical model of the moving mass-suspended payload system of variable speeds is developed based on several assumptions: the rope is massless and rigid, and its length keeps constant; the stiffness of the gantry beam is much greater than the supporting beam, and the gantry beam can be treated as a mass particle traveling along the supporting beam; the supporting beam is assumed as a simply supported Bernoulli-Euler beam. The model can be degenerated to consider two classical cases-the moving mass case and the moving payload case. The proposed model is verified using both numerical and experimental methods. To further investigate the effect of possible influential factors, numerical examples are conducted covering a range of parameters, such as variable speeds (acceleration or deceleration), mass ratios of the payload to the total moving load, and the pendulum lengths. The effect of beam flexibility on swing response of the payload is also investigated. It is shown that the effect of a variable speed is significant for the deflections of the beam. The accelerating movement tends to induce larger beam deflections, while the decelerating movement smaller ones. For accelerating or decelerating movements, the moving mass model may underestimate the deflections of the beam compared with the presented model; while for uniform motion, both the moving mass model and the moving mass-payload model lead to same beam responses. Furthermore, it is observed that the swing response of the payload is not sensitive to the stiffness of the beam for operational cases of a moving crane, thus a simple moving payload model can be employed in the swing control of the payload.

  14. A monitoring tool for performance improvement in plastic surgery at the individual level.

    PubMed

    Maruthappu, Mahiben; Duclos, Antoine; Orgill, Dennis; Carty, Matthew J

    2013-05-01

    The assessment of performance in surgery is expanding significantly. Application of relevant frameworks to plastic surgery, however, has been limited. In this article, the authors present two robust graphic tools commonly used in other industries that may serve to monitor individual surgeon operative time while factoring in patient- and surgeon-specific elements. The authors reviewed performance data from all bilateral reduction mammaplasties performed at their institution by eight surgeons between 1995 and 2010. Operative time was used as a proxy for performance. Cumulative sum charts and exponentially weighted moving average charts were generated using a train-test analytic approach, and used to monitor surgical performance. Charts mapped crude, patient case-mix-adjusted, and case-mix and surgical-experience-adjusted performance. Operative time was found to decline from 182 minutes to 118 minutes with surgical experience (p < 0.001). Cumulative sum and exponentially weighted moving average charts were generated using 1995 to 2007 data (1053 procedures) and tested on 2008 to 2010 data (246 procedures). The sensitivity and accuracy of these charts were significantly improved by adjustment for case mix and surgeon experience. The consideration of patient- and surgeon-specific factors is essential for correct interpretation of performance in plastic surgery at the individual surgeon level. Cumulative sum and exponentially weighted moving average charts represent accurate methods of monitoring operative time to control and potentially improve surgeon performance over the course of a career.

  15. Optimization and validation of moving average quality control procedures using bias detection curves and moving average validation charts.

    PubMed

    van Rossum, Huub H; Kemperman, Hans

    2017-02-01

    To date, no practical tools are available to obtain optimal settings for moving average (MA) as a continuous analytical quality control instrument. Also, there is no knowledge of the true bias detection properties of applied MA. We describe the use of bias detection curves for MA optimization and MA validation charts for validation of MA. MA optimization was performed on a data set of previously obtained consecutive assay results. Bias introduction and MA bias detection were simulated for multiple MA procedures (combination of truncation limits, calculation algorithms and control limits) and performed for various biases. Bias detection curves were generated by plotting the median number of test results needed for bias detection against the simulated introduced bias. In MA validation charts the minimum, median, and maximum numbers of assay results required for MA bias detection are shown for various bias. Their use was demonstrated for sodium, potassium, and albumin. Bias detection curves allowed optimization of MA settings by graphical comparison of bias detection properties of multiple MA. The optimal MA was selected based on the bias detection characteristics obtained. MA validation charts were generated for selected optimal MA and provided insight into the range of results required for MA bias detection. Bias detection curves and MA validation charts are useful tools for optimization and validation of MA procedures.

  16. An Estimation of the Likelihood of Significant Eruptions During 2000-2009 Using Poisson Statistics on Two-Point Moving Averages of the Volcanic Time Series

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2001-01-01

    Since 1750, the number of cataclysmic volcanic eruptions (volcanic explosivity index (VEI)>=4) per decade spans 2-11, with 96 percent located in the tropics and extra-tropical Northern Hemisphere. A two-point moving average of the volcanic time series has higher values since the 1860's than before, being 8.00 in the 1910's (the highest value) and 6.50 in the 1980's, the highest since the 1910's peak. Because of the usual behavior of the first difference of the two-point moving averages, one infers that its value for the 1990's will measure approximately 6.50 +/- 1, implying that approximately 7 +/- 4 cataclysmic volcanic eruptions should be expected during the present decade (2000-2009). Because cataclysmic volcanic eruptions (especially those having VEI>=5) nearly always have been associated with short-term episodes of global cooling, the occurrence of even one might confuse our ability to assess the effects of global warming. Poisson probability distributions reveal that the probability of one or more events with a VEI>=4 within the next ten years is >99 percent. It is approximately 49 percent for an event with a VEI>=5, and 18 percent for an event with a VEI>=6. Hence, the likelihood that a climatically significant volcanic eruption will occur within the next ten years appears reasonably high.

  17. MOVES-Matrix and distributed computing for microscale line source dispersion analysis.

    PubMed

    Liu, Haobing; Xu, Xiaodan; Rodgers, Michael O; Xu, Yanzhi Ann; Guensler, Randall L

    2017-07-01

    MOVES and AERMOD are the U.S. Environmental Protection Agency's recommended models for use in project-level transportation conformity and hot-spot analysis. However, the structure and algorithms involved in running MOVES make analyses cumbersome and time-consuming. Likewise, the modeling setup process, including extensive data requirements and required input formats, in AERMOD lead to a high potential for analysis error in dispersion modeling. This study presents a distributed computing method for line source dispersion modeling that integrates MOVES-Matrix, a high-performance emission modeling tool, with the microscale dispersion models CALINE4 and AERMOD. MOVES-Matrix was prepared by iteratively running MOVES across all possible iterations of vehicle source-type, fuel, operating conditions, and environmental parameters to create a huge multi-dimensional emission rate lookup matrix. AERMOD and CALINE4 are connected with MOVES-Matrix in a distributed computing cluster using a series of Python scripts. This streamlined system built on MOVES-Matrix generates exactly the same emission rates and concentration results as using MOVES with AERMOD and CALINE4, but the approach is more than 200 times faster than using the MOVES graphical user interface. Because AERMOD requires detailed meteorological input, which is difficult to obtain, this study also recommends using CALINE4 as a screening tool for identifying the potential area that may exceed air quality standards before using AERMOD (and identifying areas that are exceedingly unlikely to exceed air quality standards). CALINE4 worst case method yields consistently higher concentration results than AERMOD for all comparisons in this paper, as expected given the nature of the meteorological data employed. The paper demonstrates a distributed computing method for line source dispersion modeling that integrates MOVES-Matrix with the CALINE4 and AERMOD. This streamlined system generates exactly the same emission rates and concentration results as traditional way to use MOVES with AERMOD and CALINE4, which are regulatory models approved by the U.S. EPA for conformity analysis, but the approach is more than 200 times faster than implementing the MOVES model. We highlighted the potentially significant benefit of using CALINE4 as screening tool for identifying potential area that may exceeds air quality standards before using AERMOD, which requires much more meteorology input than CALINE4.

  18. Inter-comparison of time series models of lake levels predicted by several modeling strategies

    NASA Astrophysics Data System (ADS)

    Khatibi, R.; Ghorbani, M. A.; Naghipour, L.; Jothiprakash, V.; Fathima, T. A.; Fazelifard, M. H.

    2014-04-01

    Five modeling strategies are employed to analyze water level time series of six lakes with different physical characteristics such as shape, size, altitude and range of variations. The models comprise chaos theory, Auto-Regressive Integrated Moving Average (ARIMA) - treated for seasonality and hence SARIMA, Artificial Neural Networks (ANN), Gene Expression Programming (GEP) and Multiple Linear Regression (MLR). Each is formulated on a different premise with different underlying assumptions. Chaos theory is elaborated in a greater detail as it is customary to identify the existence of chaotic signals by a number of techniques (e.g. average mutual information and false nearest neighbors) and future values are predicted using the Nonlinear Local Prediction (NLP) technique. This paper takes a critical view of past inter-comparison studies seeking a superior performance, against which it is reported that (i) the performances of all five modeling strategies vary from good to poor, hampering the recommendation of a clear-cut predictive model; (ii) the performances of the datasets of two cases are consistently better with all five modeling strategies; (iii) in other cases, their performances are poor but the results can still be fit-for-purpose; (iv) the simultaneous good performances of NLP and SARIMA pull their underlying assumptions to different ends, which cannot be reconciled. A number of arguments are presented including the culture of pluralism, according to which the various modeling strategies facilitate an insight into the data from different vantages.

  19. Forecasting daily patient volumes in the emergency department.

    PubMed

    Jones, Spencer S; Thomas, Alun; Evans, R Scott; Welch, Shari J; Haug, Peter J; Snow, Gregory L

    2008-02-01

    Shifts in the supply of and demand for emergency department (ED) resources make the efficient allocation of ED resources increasingly important. Forecasting is a vital activity that guides decision-making in many areas of economic, industrial, and scientific planning, but has gained little traction in the health care industry. There are few studies that explore the use of forecasting methods to predict patient volumes in the ED. The goals of this study are to explore and evaluate the use of several statistical forecasting methods to predict daily ED patient volumes at three diverse hospital EDs and to compare the accuracy of these methods to the accuracy of a previously proposed forecasting method. Daily patient arrivals at three hospital EDs were collected for the period January 1, 2005, through March 31, 2007. The authors evaluated the use of seasonal autoregressive integrated moving average, time series regression, exponential smoothing, and artificial neural network models to forecast daily patient volumes at each facility. Forecasts were made for horizons ranging from 1 to 30 days in advance. The forecast accuracy achieved by the various forecasting methods was compared to the forecast accuracy achieved when using a benchmark forecasting method already available in the emergency medicine literature. All time series methods considered in this analysis provided improved in-sample model goodness of fit. However, post-sample analysis revealed that time series regression models that augment linear regression models by accounting for serial autocorrelation offered only small improvements in terms of post-sample forecast accuracy, relative to multiple linear regression models, while seasonal autoregressive integrated moving average, exponential smoothing, and artificial neural network forecasting models did not provide consistently accurate forecasts of daily ED volumes. This study confirms the widely held belief that daily demand for ED services is characterized by seasonal and weekly patterns. The authors compared several time series forecasting methods to a benchmark multiple linear regression model. The results suggest that the existing methodology proposed in the literature, multiple linear regression based on calendar variables, is a reasonable approach to forecasting daily patient volumes in the ED. However, the authors conclude that regression-based models that incorporate calendar variables, account for site-specific special-day effects, and allow for residual autocorrelation provide a more appropriate, informative, and consistently accurate approach to forecasting daily ED patient volumes.

  20. A New Navigation Satellite Clock Bias Prediction Method Based on Modified Clock-bias Quadratic Polynomial Model

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Lu, Z. P.; Sun, D. S.; Wang, N.

    2016-01-01

    In order to better express the characteristics of satellite clock bias (SCB) and improve SCB prediction precision, this paper proposed a new SCB prediction model which can take physical characteristics of space-borne atomic clock, the cyclic variation, and random part of SCB into consideration. First, the new model employs a quadratic polynomial model with periodic items to fit and extract the trend term and cyclic term of SCB; then based on the characteristics of fitting residuals, a time series ARIMA ~(Auto-Regressive Integrated Moving Average) model is used to model the residuals; eventually, the results from the two models are combined to obtain final SCB prediction values. At last, this paper uses precise SCB data from IGS (International GNSS Service) to conduct prediction tests, and the results show that the proposed model is effective and has better prediction performance compared with the quadratic polynomial model, grey model, and ARIMA model. In addition, the new method can also overcome the insufficiency of the ARIMA model in model recognition and order determination.

  1. The Hurst exponent in energy futures prices

    NASA Astrophysics Data System (ADS)

    Serletis, Apostolos; Rosenberg, Aryeh Adam

    2007-07-01

    This paper extends the work in Elder and Serletis [Long memory in energy futures prices, Rev. Financial Econ., forthcoming, 2007] and Serletis et al. [Detrended fluctuation analysis of the US stock market, Int. J. Bifurcation Chaos, forthcoming, 2007] by re-examining the empirical evidence for random walk type behavior in energy futures prices. In doing so, it uses daily data on energy futures traded on the New York Mercantile Exchange, over the period from July 2, 1990 to November 1, 2006, and a statistical physics approach-the ‘detrending moving average’ technique-providing a reliable framework for testing the information efficiency in financial markets as shown by Alessio et al. [Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B 27 (2002) 197-200] and Carbone et al. [Time-dependent hurst exponent in financial time series. Physica A 344 (2004) 267-271; Analysis of clusters formed by the moving average of a long-range correlated time series. Phys. Rev. E 69 (2004) 026105]. The results show that energy futures returns display long memory and that the particular form of long memory is anti-persistence.

  2. Behavior and Frequency Analysis of Aurelia aurita by Using in situ Target Strength at a Port in Southwestern Korea

    NASA Astrophysics Data System (ADS)

    Yoon, Eun-A.; Hwang, Doo-Jin; Chae, Jinho; Yoon, Won Duk; Lee, Kyounghoon

    2018-03-01

    This study was carried out to determine the in situ target strength and behavioral characteristics of moon jellyfish ( Aurelia aurita) using two frequencies (38 and 120 kHz) that present a 2- frequency-difference method for distinguishing A. aurita from other marine planktonic organisms. The average TS was shown as -71.9 -67.9 dB at 38 kHz and -75.5 -66.0 dB at 120 kHz and the average ΔMVBS120-38 kHz was similar at -1.5 3.5 dB. The TS values varied in a range of about 14 dB from -83.3 and -69.0 dB depending on the pulsation of A. aurita. The species moved in a range of -0.1 1.0 m and they mostly moved horizontally with moving speeds of 0.3 0.6 m·s-1. The TS and behavioral characteristics of A. aurita can distinguish the species from others. The acoustic technology can also contribute to understanding the distribution and abundance of the species.

  3. Environmental Assessment: Installation Development at Sheppard Air Force Base, Texas

    DTIC Science & Technology

    2007-05-01

    column, or in topographic depressions. Water is then utilized by plants and is respired, or it moves slowly into groundwater and/or eventually to surface...water bodies where it slowly moves through the hydrologic cycle. Removal of vegetation decreases infiltration into the soil column and thereby...School District JP-4 jet propulsion fuel 4 kts knots Ldn Day- Night Average Sound Level Leq equivalent noise level Lmax maximum sound level lb pound

  4. Short-term forecasting of emergency inpatient flow.

    PubMed

    Abraham, Gad; Byrnes, Graham B; Bain, Christopher A

    2009-05-01

    Hospital managers have to manage resources effectively, while maintaining a high quality of care. For hospitals where admissions from the emergency department to the wards represent a large proportion of admissions, the ability to forecast these admissions and the resultant ward occupancy is especially useful for resource planning purposes. Since emergency admissions often compete with planned elective admissions, modeling emergency demand may result in improved elective planning as well. We compare several models for forecasting daily emergency inpatient admissions and occupancy. The models are applied to three years of daily data. By measuring their mean square error in a cross-validation framework, we find that emergency admissions are largely random, and hence, unpredictable, whereas emergency occupancy can be forecasted using a model combining regression and autoregressive integrated moving average (ARIMA) model, or a seasonal ARIMA model, for up to one week ahead. Faced with variable admissions and occupancy, hospitals must prepare a reserve capacity of beds and staff. Our approach allows estimation of the required reserve capacity.

  5. Deep learning architecture for air quality predictions.

    PubMed

    Li, Xiang; Peng, Ling; Hu, Yuan; Shao, Jing; Chi, Tianhe

    2016-11-01

    With the rapid development of urbanization and industrialization, many developing countries are suffering from heavy air pollution. Governments and citizens have expressed increasing concern regarding air pollution because it affects human health and sustainable development worldwide. Current air quality prediction methods mainly use shallow models; however, these methods produce unsatisfactory results, which inspired us to investigate methods of predicting air quality based on deep architecture models. In this paper, a novel spatiotemporal deep learning (STDL)-based air quality prediction method that inherently considers spatial and temporal correlations is proposed. A stacked autoencoder (SAE) model is used to extract inherent air quality features, and it is trained in a greedy layer-wise manner. Compared with traditional time series prediction models, our model can predict the air quality of all stations simultaneously and shows the temporal stability in all seasons. Moreover, a comparison with the spatiotemporal artificial neural network (STANN), auto regression moving average (ARMA), and support vector regression (SVR) models demonstrates that the proposed method of performing air quality predictions has a superior performance.

  6. Comparing methods for modelling spreading cell fronts.

    PubMed

    Markham, Deborah C; Simpson, Matthew J; Maini, Philip K; Gaffney, Eamonn A; Baker, Ruth E

    2014-07-21

    Spreading cell fronts play an essential role in many physiological processes. Classically, models of this process are based on the Fisher-Kolmogorov equation; however, such continuum representations are not always suitable as they do not explicitly represent behaviour at the level of individual cells. Additionally, many models examine only the large time asymptotic behaviour, where a travelling wave front with a constant speed has been established. Many experiments, such as a scratch assay, never display this asymptotic behaviour, and in these cases the transient behaviour must be taken into account. We examine the transient and the asymptotic behaviour of moving cell fronts using techniques that go beyond the continuum approximation via a volume-excluding birth-migration process on a regular one-dimensional lattice. We approximate the averaged discrete results using three methods: (i) mean-field, (ii) pair-wise, and (iii) one-hole approximations. We discuss the performance of these methods, in comparison to the averaged discrete results, for a range of parameter space, examining both the transient and asymptotic behaviours. The one-hole approximation, based on techniques from statistical physics, is not capable of predicting transient behaviour but provides excellent agreement with the asymptotic behaviour of the averaged discrete results, provided that cells are proliferating fast enough relative to their rate of migration. The mean-field and pair-wise approximations give indistinguishable asymptotic results, which agree with the averaged discrete results when cells are migrating much more rapidly than they are proliferating. The pair-wise approximation performs better in the transient region than does the mean-field, despite having the same asymptotic behaviour. Our results show that each approximation only works in specific situations, thus we must be careful to use a suitable approximation for a given system, otherwise inaccurate predictions could be made. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Wind power application research on the fusion of the determination and ensemble prediction

    NASA Astrophysics Data System (ADS)

    Lan, Shi; Lina, Xu; Yuzhu, Hao

    2017-07-01

    The fused product of wind speed for the wind farm is designed through the use of wind speed products of ensemble prediction from the European Centre for Medium-Range Weather Forecasts (ECMWF) and professional numerical model products on wind power based on Mesoscale Model5 (MM5) and Beijing Rapid Update Cycle (BJ-RUC), which are suitable for short-term wind power forecasting and electric dispatch. The single-valued forecast is formed by calculating the different ensemble statistics of the Bayesian probabilistic forecasting representing the uncertainty of ECMWF ensemble prediction. Using autoregressive integrated moving average (ARIMA) model to improve the time resolution of the single-valued forecast, and based on the Bayesian model averaging (BMA) and the deterministic numerical model prediction, the optimal wind speed forecasting curve and the confidence interval are provided. The result shows that the fusion forecast has made obvious improvement to the accuracy relative to the existing numerical forecasting products. Compared with the 0-24 h existing deterministic forecast in the validation period, the mean absolute error (MAE) is decreased by 24.3 % and the correlation coefficient (R) is increased by 12.5 %. In comparison with the ECMWF ensemble forecast, the MAE is reduced by 11.7 %, and R is increased 14.5 %. Additionally, MAE did not increase with the prolongation of the forecast ahead.

  8. Forecasting malaria in a highly endemic country using environmental and clinical predictors.

    PubMed

    Zinszer, Kate; Kigozi, Ruth; Charland, Katia; Dorsey, Grant; Brewer, Timothy F; Brownstein, John S; Kamya, Moses R; Buckeridge, David L

    2015-06-18

    Malaria thrives in poor tropical and subtropical countries where local resources are limited. Accurate disease forecasts can provide public and clinical health services with the information needed to implement targeted approaches for malaria control that make effective use of limited resources. The objective of this study was to determine the relevance of environmental and clinical predictors of malaria across different settings in Uganda. Forecasting models were based on health facility data collected by the Uganda Malaria Surveillance Project and satellite-derived rainfall, temperature, and vegetation estimates from 2006 to 2013. Facility-specific forecasting models of confirmed malaria were developed using multivariate autoregressive integrated moving average models and produced weekly forecast horizons over a 52-week forecasting period. The model with the most accurate forecasts varied by site and by forecast horizon. Clinical predictors were retained in the models with the highest predictive power for all facility sites. The average error over the 52 forecasting horizons ranged from 26 to 128% whereas the cumulative burden forecast error ranged from 2 to 22%. Clinical data, such as drug treatment, could be used to improve the accuracy of malaria predictions in endemic settings when coupled with environmental predictors. Further exploration of malaria forecasting is necessary to improve its accuracy and value in practice, including examining other environmental and intervention predictors, including insecticide-treated nets.

  9. Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Weijie; Dang, Yaoguo; Gu, Rongbao

    2013-03-01

    We apply the multifractal detrending moving average (MFDMA) to investigate and compare the efficiency and multifractality of 5-min high-frequency China Securities Index 300 (CSI 300). The results show that the CSI 300 market becomes closer to weak-form efficiency after the introduction of CSI 300 future. We find that the CSI 300 is featured by multifractality and there are less complexity and risk after the CSI 300 index future was introduced. With the shuffling, surrogating and removing extreme values procedures, we unveil that extreme events and fat-distribution are the main origin of multifractality. Besides, we discuss the knotting phenomena in multifractality, and find that the scaling range and the irregular fluctuations for large scales in the Fq(s) vs s plot can cause a knot.

  10. Gauging the Nearness and Size of Cycle Maximum

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.; Hathaway, David H.

    2003-01-01

    A simple method for monitoring the nearness and size of conventional cycle maximum for an ongoing sunspot cycle is examined. The method uses the observed maximum daily value and the maximum monthly mean value of international sunspot number and the maximum value of the 2-mo moving average of monthly mean sunspot number to effect the estimation. For cycle 23, a maximum daily value of 246, a maximum monthly mean of 170.1, and a maximum 2-mo moving average of 148.9 were each observed in July 2000. Taken together, these values strongly suggest that conventional maximum amplitude for cycle 23 would be approx. 124.5, occurring near July 2002 +/-5 mo, very close to the now well-established conventional maximum amplitude and occurrence date for cycle 23-120.8 in April 2000.

  11. An algorithm for testing the efficient market hypothesis.

    PubMed

    Boboc, Ioana-Andreea; Dinică, Mihai-Cristian

    2013-01-01

    The objective of this research is to examine the efficiency of EUR/USD market through the application of a trading system. The system uses a genetic algorithm based on technical analysis indicators such as Exponential Moving Average (EMA), Moving Average Convergence Divergence (MACD), Relative Strength Index (RSI) and Filter that gives buying and selling recommendations to investors. The algorithm optimizes the strategies by dynamically searching for parameters that improve profitability in the training period. The best sets of rules are then applied on the testing period. The results show inconsistency in finding a set of trading rules that performs well in both periods. Strategies that achieve very good returns in the training period show difficulty in returning positive results in the testing period, this being consistent with the efficient market hypothesis (EMH).

  12. An Algorithm for Testing the Efficient Market Hypothesis

    PubMed Central

    Boboc, Ioana-Andreea; Dinică, Mihai-Cristian

    2013-01-01

    The objective of this research is to examine the efficiency of EUR/USD market through the application of a trading system. The system uses a genetic algorithm based on technical analysis indicators such as Exponential Moving Average (EMA), Moving Average Convergence Divergence (MACD), Relative Strength Index (RSI) and Filter that gives buying and selling recommendations to investors. The algorithm optimizes the strategies by dynamically searching for parameters that improve profitability in the training period. The best sets of rules are then applied on the testing period. The results show inconsistency in finding a set of trading rules that performs well in both periods. Strategies that achieve very good returns in the training period show difficulty in returning positive results in the testing period, this being consistent with the efficient market hypothesis (EMH). PMID:24205148

  13. Air quality at night markets in Taiwan.

    PubMed

    Zhao, Ping; Lin, Chi-Chi

    2010-03-01

    In Taiwan, there are more than 300 night markets and they have attracted more and more visitors in recent years. Air quality in night markets has become a public concern. To characterize the current air quality in night markets, four major night markets in Kaohsiung were selected for this study. The results of this study showed that the mean carbon dioxide (CO2) concentrations at fixed and moving sites in night markets ranged from 326 to 427 parts per million (ppm) during non-open hours and from 433 to 916 ppm during open hours. The average carbon monoxide (CO) concentrations at fixed and moving sites in night markets ranged from 0.2 to 2.8 ppm during non-open hours and from 2.1 to 14.1 ppm during open hours. The average 1-hr levels of particulate matter with aerodynamic diameters less than 10 microm (PM10) and less than 2.5 microm (PM2.5) at fixed and moving sites in night markets were high, ranging from 186 to 451 microg/m3 and from 175 to 418 microg/m3, respectively. The levels of PM2.5 accounted for 80-97% of their respective PM10 concentrations. The average formaldehyde (HCHO) concentrations at fixed and moving sites in night markets ranged from 0 to 0.05 ppm during non-open hours and from 0.02 to 0.27 ppm during open hours. The average concentration of individual polycyclic aromatic hydrocarbons (PAHs) was found in the range of 0.09 x 10(4) to 1.8 x 10(4) ng/m3. The total identified PAHs (TIPs) ranged from 7.8 x 10(1) to 20 x 10(1) ng/m3 during non-open hours and from 1.5 x 10(4) to 4.0 x 10(4) ng/m3 during open hours. Of the total analyzed PAHs, the low-molecular-weight PAHs (two to three rings) were the dominant species, corresponding to an average of 97% during non-open hours and 88% during open hours, whereas high-molecular-weight PAHs (four to six rings) represented 3 and 12% of the total detected PAHs in the gas phase during non-open and open hours, respectively.

  14. Geohydrology and simulation of ground-water flow in the aquifer system near Calvert City, Kentucky

    USGS Publications Warehouse

    Starn, J.J.; Arihood, L.D.; Rose, M.F.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Kentucky Natural Resources and Environmental Protection Cabinet, constructed a two-dimensional, steady-state ground-water-flow model to estimate hydraulic properties, contributing areas to discharge boundaries, and the average linear velocity at selected locations in an aquifer system near Calvert City, Ky. Nonlinear regression was used to estimate values of model parameters and the reliability of the parameter estimates. The regression minimizes the weighted difference between observed and calculated hydraulic heads and rates of flow. The calibrated model generally was better than alternative models considered, and although adding transmissive faults in the bedrock produced a slightly better model, fault transmissivity was not estimated reliably. The average transmissivity of the aquifer was 20,000 feet squared per day. Recharge to two outcrop areas, the McNairy Formation of Cretaceous age and the alluvium of Quaternary age, were 0.00269 feet per day (11.8 inches per year) and 0.000484 feet per day (2.1 inches per year), respectively. Contributing areas to wells at the Calvert City Water Company in 1992 did not include the Calvert City Industrial Complex. Since completing the fieldwork for this study in 1992, the Calvert City Water Company discontinued use of their wells and began withdrawing water from new wells that were located 4.5 miles east-southeast of the previous location; the contributing area moved farther from the industrial complex. The extent of the alluvium contributing water to wells was limited by the overlying lacustrine deposits. The average linear ground-water velocity at the industrial complex ranged from 0.90 feet per day to 4.47 feet per day with a mean of 1.98 feet per day.

  15. Geological evidence for the geographical pattern of mantle return flow and the driving mechanism of plate tectonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, W.

    1982-08-10

    Tectonic features at the earth's surface can be used to test models for mantle return flow and to determine the geographic pattern of this flow. A model with shallow return and deep continental roots places the strongest constraints on the geographical pattern of return flow and predicts recognizable surface manifestations. Because of the progressive shrinkage of the Pacific (averaging 0.5 km/sup 2//yr over the last 180 m.y.) this model predicts upper mantle outflow through the three gaps in the chain of continents rimming the Pacific (Carribbean, Drake Passage, Australian-Antartic gap). In this model, upper mantle return flow streams originating atmore » the western Pacific trenches and at the Java Trench meet south of Australia, filling in behind this rapidly northward-moving continent and provding an explanation for the negative bathymetric and gravity anomalies of the 'Australian-Antarctic-Discordance'. The long-continued tectonic movements toward the east that characterize the Caribbean and the eastenmost Scotia Sea may be produced by viscous coupling to the predicted Pacific outflow through the gaps, and the Caribbean floor slopes in the predicted direction. If mantle outflow does not pass through the gaps in the Pacific perimeter, it must pass beneath three seismic zones (Central America, Lesser Antiles, Scotia Sea); none of these seismic zones shows foci below 200 km. Mantle material flowing through the Caribbean and Drake Passage gaps would supply the Mid-Atlantic Ridge, while the Java Trench supplies the Indian Ocean ridges, so that deep-mantle upwellings need not be centered under spreading ridges and therefore are not required to move laterally to follow ridge migrations. The analysis up to this point suggests that upper mantle return flow is a response to the motion of the continents. The second part of the paper suggest driving mechanism for the plate tectonic process which may explain why the continents move.« less

  16. Moving object detection using dynamic motion modelling from UAV aerial images.

    PubMed

    Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid

    2014-01-01

    Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.

  17. Using Hidden Markov Models to characterise intermittent social behaviour in fish shoals

    NASA Astrophysics Data System (ADS)

    Bode, Nikolai W. F.; Seitz, Michael J.

    2018-02-01

    The movement of animals in groups is widespread in nature. Understanding this phenomenon presents an important problem in ecology with many applications that range from conservation to robotics. Underlying all group movements are interactions between individual animals and it is therefore crucial to understand the mechanisms of this social behaviour. To date, despite promising methodological developments, there are few applications to data of practical statistical techniques that inferentially investigate the extent and nature of social interactions in group movement. We address this gap by demonstrating the usefulness of a Hidden Markov Model approach to characterise individual-level social movement in published trajectory data on three-spined stickleback shoals ( Gasterosteus aculeatus) and novel data on guppy shoals ( Poecilia reticulata). With these models, we formally test for speed-mediated social interactions and verify that they are present. We further characterise this inferred social behaviour and find that despite the substantial shoal-level differences in movement dynamics between species, it is qualitatively similar in guppies and sticklebacks. It is intermittent, occurring in varying numbers of individuals at different time points. The speeds of interacting fish follow a bimodal distribution, indicating that they are either stationary or move at a preferred mean speed, and social fish with more social neighbours move at higher speeds, on average. Our findings and methodology present steps towards characterising social behaviour in animal groups.

  18. Neighborhood Walkability and Body Mass Index Trajectories: Longitudinal Study of Canadians

    PubMed Central

    Dasgupta, Kaberi; Orpana, Heather; Ross, Nancy A.

    2016-01-01

    Objectives. To assess the impact of neighborhood walkability on body mass index (BMI) trajectories of urban Canadians. Methods. Data are from Canada’s National Population Health Survey (n = 2935; biannual assessments 1994–2006). We measured walkability with the Walk Score. We modeled body mass index (BMI, defined as weight in kilograms divided by the square of height in meters [kg/m2]) trajectories as a function of Walk Score and sociodemographic and behavioral covariates with growth curve models and fixed-effects regression models. Results. In men, BMI increased annually by an average of 0.13 kg/m2 (95% confidence interval [CI] = 0.11, 0.14) over the 12 years of follow-up. Moving to a high-walkable neighborhood (2 or more Walk Score quartiles higher) decreased BMI trajectories for men by approximately 1 kg/m2 (95% CI = −1.16, −0.17). Moving to a low-walkable neighborhood increased BMI for men by approximately 0.45 kg/m2 (95% CI = 0.01, 0.89). There was no detectable influence of neighborhood walkability on body weight for women. Conclusions. Our study of a large sample of urban Canadians followed for 12 years confirms that neighborhood walkability influences BMI trajectories for men, and may be influential in curtailing male age-related weight gain. PMID:26985612

  19. MOVES sensitivity study

    DOT National Transportation Integrated Search

    2012-01-01

    Purpose: : To determine ranking of important parameters and the overall sensitivity to values of variables in MOVES : To allow a greater understanding of the MOVES modeling process for users : Continued support by FHWA to transportation modeling comm...

  20. Sequence Determines Degree of Knottedness in a Coarse-Grained Protein Model

    NASA Astrophysics Data System (ADS)

    Wüst, Thomas; Reith, Daniel; Virnau, Peter

    2015-01-01

    Knots are abundant in globular homopolymers but rare in globular proteins. To shed new light on this long-standing conundrum, we study the influence of sequence on the formation of knots in proteins under native conditions within the framework of the hydrophobic-polar lattice protein model. By employing large-scale Wang-Landau simulations combined with suitable Monte Carlo trial moves we show that even though knots are still abundant on average, sequence introduces large variability in the degree of self-entanglements. Moreover, we are able to design sequences which are either almost always or almost never knotted. Our findings serve as proof of concept that the introduction of just one additional degree of freedom per monomer (in our case sequence) facilitates evolution towards a protein universe in which knots are rare.

Top