An Optimization of Inventory Demand Forecasting in University Healthcare Centre
NASA Astrophysics Data System (ADS)
Bon, A. T.; Ng, T. K.
2017-01-01
Healthcare industry becomes an important field for human beings nowadays as it concerns about one’s health. With that, forecasting demand for health services is an important step in managerial decision making for all healthcare organizations. Hence, a case study was conducted in University Health Centre to collect historical demand data of Panadol 650mg for 68 months from January 2009 until August 2014. The aim of the research is to optimize the overall inventory demand through forecasting techniques. Quantitative forecasting or time series forecasting model was used in the case study to forecast future data as a function of past data. Furthermore, the data pattern needs to be identified first before applying the forecasting techniques. Trend is the data pattern and then ten forecasting techniques are applied using Risk Simulator Software. Lastly, the best forecasting techniques will be find out with the least forecasting error. Among the ten forecasting techniques include single moving average, single exponential smoothing, double moving average, double exponential smoothing, regression, Holt-Winter’s additive, Seasonal additive, Holt-Winter’s multiplicative, seasonal multiplicative and Autoregressive Integrated Moving Average (ARIMA). According to the forecasting accuracy measurement, the best forecasting technique is regression analysis.
A comparison of several techniques for imputing tree level data
David Gartner
2002-01-01
As Forest Inventory and Analysis (FIA) changes from periodic surveys to the multipanel annual survey, new analytical methods become available. The current official statistic is the moving average. One alternative is an updated moving average. Several methods of updating plot per acre volume have been discussed previously. However, these methods may not be appropriate...
Forecasting coconut production in the Philippines with ARIMA model
NASA Astrophysics Data System (ADS)
Lim, Cristina Teresa
2015-02-01
The study aimed to depict the situation of the coconut industry in the Philippines for the future years applying Autoregressive Integrated Moving Average (ARIMA) method. Data on coconut production, one of the major industrial crops of the country, for the period of 1990 to 2012 were analyzed using time-series methods. Autocorrelation (ACF) and partial autocorrelation functions (PACF) were calculated for the data. Appropriate Box-Jenkins autoregressive moving average model was fitted. Validity of the model was tested using standard statistical techniques. The forecasting power of autoregressive moving average (ARMA) model was used to forecast coconut production for the eight leading years.
Naive vs. Sophisticated Methods of Forecasting Public Library Circulations.
ERIC Educational Resources Information Center
Brooks, Terrence A.
1984-01-01
Two sophisticated--autoregressive integrated moving average (ARIMA), straight-line regression--and two naive--simple average, monthly average--forecasting techniques were used to forecast monthly circulation totals of 34 public libraries. Comparisons of forecasts and actual totals revealed that ARIMA and monthly average methods had smallest mean…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, H. M. Abdul; Ukkusuri, Satish V.
We present that EPA-MOVES (Motor Vehicle Emission Simulator) is often integrated with traffic simulators to assess emission levels of large-scale urban networks with signalized intersections. High variations in speed profiles exist in the context of congested urban networks with signalized intersections. The traditional average-speed-based emission estimation technique with EPA-MOVES provides faster execution while underestimates the emissions in most cases because of ignoring the speed variation at congested networks with signalized intersections. In contrast, the atomic second-by-second speed profile (i.e., the trajectory of each vehicle)-based technique provides accurate emissions at the cost of excessive computational power and time. We addressed thismore » issue by developing a novel method to determine the link-driving-schedules (LDSs) for the EPA-MOVES tool. Our research developed a hierarchical clustering technique with dynamic time warping similarity measures (HC-DTW) to find the LDS for EPA-MOVES that is capable of producing emission estimates better than the average-speed-based technique with execution time faster than the atomic speed profile approach. We applied the HC-DTW on a sample data from a signalized corridor and found that HC-DTW can significantly reduce computational time without compromising the accuracy. The developed technique in this research can substantially contribute to the EPA-MOVES-based emission estimation process for large-scale urban transportation network by reducing the computational time with reasonably accurate estimates. This method is highly appropriate for transportation networks with higher variation in speed such as signalized intersections. Lastly, experimental results show error difference ranging from 2% to 8% for most pollutants except PM 10.« less
Aziz, H. M. Abdul; Ukkusuri, Satish V.
2017-06-29
We present that EPA-MOVES (Motor Vehicle Emission Simulator) is often integrated with traffic simulators to assess emission levels of large-scale urban networks with signalized intersections. High variations in speed profiles exist in the context of congested urban networks with signalized intersections. The traditional average-speed-based emission estimation technique with EPA-MOVES provides faster execution while underestimates the emissions in most cases because of ignoring the speed variation at congested networks with signalized intersections. In contrast, the atomic second-by-second speed profile (i.e., the trajectory of each vehicle)-based technique provides accurate emissions at the cost of excessive computational power and time. We addressed thismore » issue by developing a novel method to determine the link-driving-schedules (LDSs) for the EPA-MOVES tool. Our research developed a hierarchical clustering technique with dynamic time warping similarity measures (HC-DTW) to find the LDS for EPA-MOVES that is capable of producing emission estimates better than the average-speed-based technique with execution time faster than the atomic speed profile approach. We applied the HC-DTW on a sample data from a signalized corridor and found that HC-DTW can significantly reduce computational time without compromising the accuracy. The developed technique in this research can substantially contribute to the EPA-MOVES-based emission estimation process for large-scale urban transportation network by reducing the computational time with reasonably accurate estimates. This method is highly appropriate for transportation networks with higher variation in speed such as signalized intersections. Lastly, experimental results show error difference ranging from 2% to 8% for most pollutants except PM 10.« less
Psychometric Evaluation of Lexical Diversity Indices: Assessing Length Effects.
Fergadiotis, Gerasimos; Wright, Heather Harris; Green, Samuel B
2015-06-01
Several novel techniques have been developed recently to assess the breadth of a speaker's vocabulary exhibited in a language sample. The specific aim of this study was to increase our understanding of the validity of the scores generated by different lexical diversity (LD) estimation techniques. Four techniques were explored: D, Maas, measure of textual lexical diversity, and moving-average type-token ratio. Four LD indices were estimated for language samples on 4 discourse tasks (procedures, eventcasts, story retell, and recounts) from 442 adults who are neurologically intact. The resulting data were analyzed using structural equation modeling. The scores for measure of textual lexical diversity and moving-average type-token ratio were stronger indicators of the LD of the language samples. The results for the other 2 techniques were consistent with the presence of method factors representing construct-irrelevant sources. These findings offer a deeper understanding of the relative validity of the 4 estimation techniques and should assist clinicians and researchers in the selection of LD measures of language samples that minimize construct-irrelevant sources.
Computational problems in autoregressive moving average (ARMA) models
NASA Technical Reports Server (NTRS)
Agarwal, G. C.; Goodarzi, S. M.; Oneill, W. D.; Gottlieb, G. L.
1981-01-01
The choice of the sampling interval and the selection of the order of the model in time series analysis are considered. Band limited (up to 15 Hz) random torque perturbations are applied to the human ankle joint. The applied torque input, the angular rotation output, and the electromyographic activity using surface electrodes from the extensor and flexor muscles of the ankle joint are recorded. Autoregressive moving average models are developed. A parameter constraining technique is applied to develop more reliable models. The asymptotic behavior of the system must be taken into account during parameter optimization to develop predictive models.
PERIODIC AUTOREGRESSIVE-MOVING AVERAGE (PARMA) MODELING WITH APPLICATIONS TO WATER RESOURCES.
Vecchia, A.V.
1985-01-01
Results involving correlation properties and parameter estimation for autogressive-moving average models with periodic parameters are presented. A multivariate representation of the PARMA model is used to derive parameter space restrictions and difference equations for the periodic autocorrelations. Close approximation to the likelihood function for Gaussian PARMA processes results in efficient maximum-likelihood estimation procedures. Terms in the Fourier expansion of the parameters are sequentially included, and a selection criterion is given for determining the optimal number of harmonics to be included. Application of the techniques is demonstrated through analysis of a monthly streamflow time series.
Considerations for monitoring raptor population trends based on counts of migrants
Titus, K.; Fuller, M.R.; Ruos, J.L.; Meyburg, B-U.; Chancellor, R.D.
1989-01-01
Various problems were identified with standardized hawk count data as annually collected at six sites. Some of the hawk lookouts increased their hours of observation from 1979-1985, thereby confounding the total counts. Data recording and missing data hamper coding of data and their use with modern analytical techniques. Coefficients of variation among years in counts averaged about 40%. The advantages and disadvantages of various analytical techniques are discussed including regression, non-parametric rank correlation trend analysis, and moving averages.
Quantifying rapid changes in cardiovascular state with a moving ensemble average.
Cieslak, Matthew; Ryan, William S; Babenko, Viktoriya; Erro, Hannah; Rathbun, Zoe M; Meiring, Wendy; Kelsey, Robert M; Blascovich, Jim; Grafton, Scott T
2018-04-01
MEAP, the moving ensemble analysis pipeline, is a new open-source tool designed to perform multisubject preprocessing and analysis of cardiovascular data, including electrocardiogram (ECG), impedance cardiogram (ICG), and continuous blood pressure (BP). In addition to traditional ensemble averaging, MEAP implements a moving ensemble averaging method that allows for the continuous estimation of indices related to cardiovascular state, including cardiac output, preejection period, heart rate variability, and total peripheral resistance, among others. Here, we define the moving ensemble technique mathematically, highlighting its differences from fixed-window ensemble averaging. We describe MEAP's interface and features for signal processing, artifact correction, and cardiovascular-based fMRI analysis. We demonstrate the accuracy of MEAP's novel B point detection algorithm on a large collection of hand-labeled ICG waveforms. As a proof of concept, two subjects completed a series of four physical and cognitive tasks (cold pressor, Valsalva maneuver, video game, random dot kinetogram) on 3 separate days while ECG, ICG, and BP were recorded. Critically, the moving ensemble method reliably captures the rapid cyclical cardiovascular changes related to the baroreflex during the Valsalva maneuver and the classic cold pressor response. Cardiovascular measures were seen to vary considerably within repetitions of the same cognitive task for each individual, suggesting that a carefully designed paradigm could be used to capture fast-acting event-related changes in cardiovascular state. © 2017 Society for Psychophysiological Research.
Books average previous decade of economic misery.
Bentley, R Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios
2014-01-01
For the 20(th) century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade.
The Spin Move: A Reliable and Cost-Effective Gowning Technique for the 21st Century.
Ochiai, Derek H; Adib, Farshad
2015-04-01
Operating room efficiency (ORE) and utilization are considered one of the most crucial components of quality improvement in every hospital. We introduced a new gowning technique that could optimize ORE. The Spin Move quickly and efficiently wraps a surgical gown around the surgeon's body. This saves the operative time expended through the traditional gowning techniques. In the Spin Move, while the surgeon is approaching the scrub nurse, he or she uses the left heel as the fulcrum. The torque, which is generated by twisting the right leg around the left leg, helps the surgeon to close the gown as quickly and safely as possible. From 2003 to 2012, the Spin Move was performed in 1,725 consecutive procedures with no complication. The estimated average time was 5.3 and 7.8 seconds for the Spin Move and traditional gowning, respectively. The estimated time saving for the senior author during this period was 71.875 minutes. Approximately 20,000 orthopaedic surgeons practice in the United States. If this technique had been used, 23,958 hours could have been saved. The money saving could have been $14,374,800.00 (23,958 hours × $600/operating room hour) during the past 10 years. The Spin Move is easy to perform and reproducible. It saves operating room time and increases ORE.
The Spin Move: A Reliable and Cost-Effective Gowning Technique for the 21st Century
Ochiai, Derek H.; Adib, Farshad
2015-01-01
Operating room efficiency (ORE) and utilization are considered one of the most crucial components of quality improvement in every hospital. We introduced a new gowning technique that could optimize ORE. The Spin Move quickly and efficiently wraps a surgical gown around the surgeon's body. This saves the operative time expended through the traditional gowning techniques. In the Spin Move, while the surgeon is approaching the scrub nurse, he or she uses the left heel as the fulcrum. The torque, which is generated by twisting the right leg around the left leg, helps the surgeon to close the gown as quickly and safely as possible. From 2003 to 2012, the Spin Move was performed in 1,725 consecutive procedures with no complication. The estimated average time was 5.3 and 7.8 seconds for the Spin Move and traditional gowning, respectively. The estimated time saving for the senior author during this period was 71.875 minutes. Approximately 20,000 orthopaedic surgeons practice in the United States. If this technique had been used, 23,958 hours could have been saved. The money saving could have been $14,374,800.00 (23,958 hours × $600/operating room hour) during the past 10 years. The Spin Move is easy to perform and reproducible. It saves operating room time and increases ORE. PMID:26052490
Maximum likelihood estimation for periodic autoregressive moving average models
Vecchia, A.V.
1985-01-01
A useful class of models for seasonal time series that cannot be filtered or standardized to achieve second-order stationarity is that of periodic autoregressive moving average (PARMA) models, which are extensions of ARMA models that allow periodic (seasonal) parameters. An approximation to the exact likelihood for Gaussian PARMA processes is developed, and a straightforward algorithm for its maximization is presented. The algorithm is tested on several periodic ARMA(1, 1) models through simulation studies and is compared to moment estimation via the seasonal Yule-Walker equations. Applicability of the technique is demonstrated through an analysis of a seasonal stream-flow series from the Rio Caroni River in Venezuela.
NASA Astrophysics Data System (ADS)
Chen, Feier; Tian, Kang; Ding, Xiaoxu; Miao, Yuqi; Lu, Chunxia
2016-11-01
Analysis of freight rate volatility characteristics attracts more attention after year 2008 due to the effect of credit crunch and slowdown in marine transportation. The multifractal detrended fluctuation analysis technique is employed to analyze the time series of Baltic Dry Bulk Freight Rate Index and the market trend of two bulk ship sizes, namely Capesize and Panamax for the period: March 1st 1999-February 26th 2015. In this paper, the degree of the multifractality with different fluctuation sizes is calculated. Besides, multifractal detrending moving average (MF-DMA) counting technique has been developed to quantify the components of multifractal spectrum with the finite-size effect taken into consideration. Numerical results show that both Capesize and Panamax freight rate index time series are of multifractal nature. The origin of multifractality for the bulk freight rate market series is found mostly due to nonlinear correlation.
Books Average Previous Decade of Economic Misery
Bentley, R. Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios
2014-01-01
For the 20th century since the Depression, we find a strong correlation between a ‘literary misery index’ derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade. PMID:24416159
NASA Astrophysics Data System (ADS)
Torteeka, Peerapong; Gao, Peng-Qi; Shen, Ming; Guo, Xiao-Zhang; Yang, Da-Tao; Yu, Huan-Huan; Zhou, Wei-Ping; Zhao, You
2017-02-01
Although tracking with a passive optical telescope is a powerful technique for space debris observation, it is limited by its sensitivity to dynamic background noise. Traditionally, in the field of astronomy, static background subtraction based on a median image technique has been used to extract moving space objects prior to the tracking operation, as this is computationally efficient. The main disadvantage of this technique is that it is not robust to variable illumination conditions. In this article, we propose an approach for tracking small and dim space debris in the context of a dynamic background via one of the optical telescopes that is part of the space surveillance network project, named the Asia-Pacific ground-based Optical Space Observation System or APOSOS. The approach combines a fuzzy running Gaussian average for robust moving-object extraction with dim-target tracking using a particle-filter-based track-before-detect method. The performance of the proposed algorithm is experimentally evaluated, and the results show that the scheme achieves a satisfactory level of accuracy for space debris tracking.
Monthly streamflow forecasting with auto-regressive integrated moving average
NASA Astrophysics Data System (ADS)
Nasir, Najah; Samsudin, Ruhaidah; Shabri, Ani
2017-09-01
Forecasting of streamflow is one of the many ways that can contribute to better decision making for water resource management. The auto-regressive integrated moving average (ARIMA) model was selected in this research for monthly streamflow forecasting with enhancement made by pre-processing the data using singular spectrum analysis (SSA). This study also proposed an extension of the SSA technique to include a step where clustering was performed on the eigenvector pairs before reconstruction of the time series. The monthly streamflow data of Sungai Muda at Jeniang, Sungai Muda at Jambatan Syed Omar and Sungai Ketil at Kuala Pegang was gathered from the Department of Irrigation and Drainage Malaysia. A ratio of 9:1 was used to divide the data into training and testing sets. The ARIMA, SSA-ARIMA and Clustered SSA-ARIMA models were all developed in R software. Results from the proposed model are then compared to a conventional auto-regressive integrated moving average model using the root-mean-square error and mean absolute error values. It was found that the proposed model can outperform the conventional model.
Limited transfer of long-term motion perceptual learning with double training.
Liang, Ju; Zhou, Yifeng; Fahle, Manfred; Liu, Zili
2015-01-01
A significant recent development in visual perceptual learning research is the double training technique. With this technique, Xiao, Zhang, Wang, Klein, Levi, and Yu (2008) have found complete transfer in tasks that had previously been shown to be stimulus specific. The significance of this finding is that this technique has since been successful in all tasks tested, including motion direction discrimination. Here, we investigated whether or not this technique could generalize to longer-term learning, using the method of constant stimuli. Our task was learning to discriminate motion directions of random dots. The second leg of training was contrast discrimination along a new average direction of the same moving dots. We found that, although exposure of moving dots along a new direction facilitated motion direction discrimination, this partial transfer was far from complete. We conclude that, although perceptual learning is transferrable under certain conditions, stimulus specificity also remains an inherent characteristic of motion perceptual learning.
mb Bias and Regional Magnitude and Yield
2008-09-01
established bias at the Nevada Test Site (NTS) relative to Semipalatinsk is well reproduced, which is important for moving forward. To avoid the...variations are averaged out. To monitor individual test sites during the testing era, test site corrections were obtained by various means, most notably...across broad areas where earthquakes occur. The station-based technique retains near- site effects that the event-based technique does not, thus, resolving
Scaling range of power laws that originate from fluctuation analysis
NASA Astrophysics Data System (ADS)
Grech, Dariusz; Mazur, Zygmunt
2013-05-01
We extend our previous study of scaling range properties performed for detrended fluctuation analysis (DFA) [Physica A0378-437110.1016/j.physa.2013.01.049 392, 2384 (2013)] to other techniques of fluctuation analysis (FA). The new technique, called modified detrended moving average analysis (MDMA), is introduced, and its scaling range properties are examined and compared with those of detrended moving average analysis (DMA) and DFA. It is shown that contrary to DFA, DMA and MDMA techniques exhibit power law dependence of the scaling range with respect to the length of the searched signal and with respect to the accuracy R2 of the fit to the considered scaling law imposed by DMA or MDMA methods. This power law dependence is satisfied for both uncorrelated and autocorrelated data. We find also a simple generalization of this power law relation for series with a different level of autocorrelations measured in terms of the Hurst exponent. Basic relations between scaling ranges for different techniques are also discussed. Our findings should be particularly useful for local FA in, e.g., econophysics, finances, or physiology, where the huge number of short time series has to be examined at once and wherever the preliminary check of the scaling range regime for each of the series separately is neither effective nor possible.
The Mathematical Analysis of Style: A Correlation-Based Approach.
ERIC Educational Resources Information Center
Oppenheim, Rosa
1988-01-01
Examines mathematical models of style analysis, focusing on the pattern in which literary characteristics occur. Describes an autoregressive integrated moving average model (ARIMA) for predicting sentence length in different works by the same author and comparable works by different authors. This technique is valuable in characterizing stylistic…
Detrending moving average algorithm for multifractals
NASA Astrophysics Data System (ADS)
Gu, Gao-Feng; Zhou, Wei-Xing
2010-07-01
The detrending moving average (DMA) algorithm is a widely used technique to quantify the long-term correlations of nonstationary time series and the long-range correlations of fractal surfaces, which contains a parameter θ determining the position of the detrending window. We develop multifractal detrending moving average (MFDMA) algorithms for the analysis of one-dimensional multifractal measures and higher-dimensional multifractals, which is a generalization of the DMA method. The performance of the one-dimensional and two-dimensional MFDMA methods is investigated using synthetic multifractal measures with analytical solutions for backward (θ=0) , centered (θ=0.5) , and forward (θ=1) detrending windows. We find that the estimated multifractal scaling exponent τ(q) and the singularity spectrum f(α) are in good agreement with the theoretical values. In addition, the backward MFDMA method has the best performance, which provides the most accurate estimates of the scaling exponents with lowest error bars, while the centered MFDMA method has the worse performance. It is found that the backward MFDMA algorithm also outperforms the multifractal detrended fluctuation analysis. The one-dimensional backward MFDMA method is applied to analyzing the time series of Shanghai Stock Exchange Composite Index and its multifractal nature is confirmed.
Alternatives to the Moving Average
Paul C. van Deusen
2001-01-01
There are many possible estimators that could be used with annual inventory data. The 5-year moving average has been selected as a default estimator to provide initial results for states having available annual inventory data. User objectives for these estimates are discussed. The characteristics of a moving average are outlined. It is shown that moving average...
NASA Astrophysics Data System (ADS)
Yi, Hou-Hui; Fan, Li-Juan; Yang, Xiao-Feng; Chen, Yan-Yan
2008-09-01
The rolling massage manipulation is a classic Chinese massage, which is expected to eliminate many diseases. Here the effect of the rolling massage on the particle moving property in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that the particle moving behaviour depends on the rolling velocity, the distance between particle position and rolling position. The average values, including particle translational velocity and angular velocity, increase as the rolling velocity increases almost linearly. The result is helpful to understand the mechanism of the massage and develop the rolling techniques.
Simulations of moving effect of coastal vegetation on tsunami damping
NASA Astrophysics Data System (ADS)
Tsai, Ching-Piao; Chen, Ying-Chi; Octaviani Sihombing, Tri; Lin, Chang
2017-05-01
A coupled wave-vegetation simulation is presented for the moving effect of the coastal vegetation on tsunami wave height damping. The problem is idealized by solitary wave propagation on a group of emergent cylinders. The numerical model is based on general Reynolds-averaged Navier-Stokes equations with renormalization group turbulent closure model by using volume of fluid technique. The general moving object (GMO) model developed in computational fluid dynamics (CFD) code Flow-3D is applied to simulate the coupled motion of vegetation with wave dynamically. The damping of wave height and the turbulent kinetic energy along moving and stationary cylinders are discussed. The simulated results show that the damping of wave height and the turbulent kinetic energy by the moving cylinders are clearly less than by the stationary cylinders. The result implies that the wave decay by the coastal vegetation may be overestimated if the vegetation was represented as stationary state.
Speckle techniques for determining stresses in moving objects
NASA Technical Reports Server (NTRS)
Murphree, E. A.; Wilson, T. F.; Ranson, W. F.; Swinson, W. F.
1978-01-01
Laser speckle interferometry is a relatively new experimental technique which shows promise of alleviating many difficult problems in experimental mechanics. The method utilizes simple high-resolution photographs of the surface which is illuminated by coherent light. The result is a real-time or permanently stored whole-field record of interference fringes which yields a map of displacements in the object. In this thesis, the time-average theory using the Fourier transform is developed to present the application of this technique to measurement of in-plane displacement induced by the vibration of an object.
2016-11-22
Unclassified REPORT DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1...compact at all conditions tested, as indicated by the overlap of OH and CH2O distributions. 5. We developed analytical techniques for pseudo- Lagrangian ...condition in a constant density flow requires that the flow divergence is zero, ∇ · ~u = 0. Three smoothing schemes were examined, a moving average (i.e
Short-term forecasts gain in accuracy. [Regression technique using ''Box-Jenkins'' analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Box-Jenkins time-series models offer accuracy for short-term forecasts that compare with large-scale macroeconomic forecasts. Utilities need to be able to forecast peak demand in order to plan their generating, transmitting, and distribution systems. This new method differs from conventional models by not assuming specific data patterns, but by fitting available data into a tentative pattern on the basis of auto-correlations. Three types of models (autoregressive, moving average, or mixed autoregressive/moving average) can be used according to which provides the most appropriate combination of autocorrelations and related derivatives. Major steps in choosing a model are identifying potential models, estimating the parametersmore » of the problem, and running a diagnostic check to see if the model fits the parameters. The Box-Jenkins technique is well suited for seasonal patterns, which makes it possible to have as short as hourly forecasts of load demand. With accuracy up to two years, the method will allow electricity price-elasticity forecasting that can be applied to facility planning and rate design. (DCK)« less
NASA Astrophysics Data System (ADS)
Liu, Xiaojia; An, Haizhong; Wang, Lijun; Guan, Qing
2017-09-01
The moving average strategy is a technical indicator that can generate trading signals to assist investment. While the trading signals tell the traders timing to buy or sell, the moving average cannot tell the trading volume, which is a crucial factor for investment. This paper proposes a fuzzy moving average strategy, in which the fuzzy logic rule is used to determine the strength of trading signals, i.e., the trading volume. To compose one fuzzy logic rule, we use four types of moving averages, the length of the moving average period, the fuzzy extent, and the recommend value. Ten fuzzy logic rules form a fuzzy set, which generates a rating level that decides the trading volume. In this process, we apply genetic algorithms to identify an optimal fuzzy logic rule set and utilize crude oil futures prices from the New York Mercantile Exchange (NYMEX) as the experiment data. Each experiment is repeated for 20 times. The results show that firstly the fuzzy moving average strategy can obtain a more stable rate of return than the moving average strategies. Secondly, holding amounts series is highly sensitive to price series. Thirdly, simple moving average methods are more efficient. Lastly, the fuzzy extents of extremely low, high, and very high are more popular. These results are helpful in investment decisions.
Impact of the Illinois Seat Belt Use Law on Accidents, Deaths, and Injuries.
ERIC Educational Resources Information Center
Rock, Steven M.
1992-01-01
The impact of the 1985 Illinois seat belt law is explored using Box-Jenkins Auto-Regressive, Integrated Moving Averages (ARIMA) techniques and monthly accident statistical data from the state department of transportation for January-July 1990. A conservative estimate is that the law provides benefits of $15 million per month in Illinois. (SLD)
Techniques and computations for mapping plot clusters that straddle stand boundaries
Charles T. Scott; William A. Bechtold
1995-01-01
Many regional (extensive) forest surveys use clusters of subplots or prism points to reduce survey costs. Two common methods of handling clusters that straddle stand boundaries entail: (1) moving all subplots into a single forest cover type, or (2)"averaging" data across multiple conditions without regard to the boundaries. these methods result in biased...
Ro, Kyoung S; Johnson, Melvin H; Varma, Ravi M; Hashmonay, Ram A; Hunt, Patrick
2009-08-01
Improved characterization of distributed emission sources of greenhouse gases such as methane from concentrated animal feeding operations require more accurate methods. One promising method is recently used by the USEPA. It employs a vertical radial plume mapping (VRPM) algorithm using optical remote sensing techniques. We evaluated this method to estimate emission rates from simulated distributed methane sources. A scanning open-path tunable diode laser was used to collect path-integrated concentrations (PICs) along different optical paths on a vertical plane downwind of controlled methane releases. Each cycle consists of 3 ground-level PICs and 2 above ground PICs. Three- to 10-cycle moving averages were used to reconstruct mass equivalent concentration plum maps on the vertical plane. The VRPM algorithm estimated emission rates of methane along with meteorological and PIC data collected concomitantly under different atmospheric stability conditions. The derived emission rates compared well with actual released rates irrespective of atmospheric stability conditions. The maximum error was 22 percent when 3-cycle moving average PICs were used; however, it decreased to 11% when 10-cycle moving average PICs were used. Our validation results suggest that this new VRPM method may be used for improved estimations of greenhouse gas emission from a variety of agricultural sources.
The Hurst exponent in energy futures prices
NASA Astrophysics Data System (ADS)
Serletis, Apostolos; Rosenberg, Aryeh Adam
2007-07-01
This paper extends the work in Elder and Serletis [Long memory in energy futures prices, Rev. Financial Econ., forthcoming, 2007] and Serletis et al. [Detrended fluctuation analysis of the US stock market, Int. J. Bifurcation Chaos, forthcoming, 2007] by re-examining the empirical evidence for random walk type behavior in energy futures prices. In doing so, it uses daily data on energy futures traded on the New York Mercantile Exchange, over the period from July 2, 1990 to November 1, 2006, and a statistical physics approach-the ‘detrending moving average’ technique-providing a reliable framework for testing the information efficiency in financial markets as shown by Alessio et al. [Second-order moving average and scaling of stochastic time series, Eur. Phys. J. B 27 (2002) 197-200] and Carbone et al. [Time-dependent hurst exponent in financial time series. Physica A 344 (2004) 267-271; Analysis of clusters formed by the moving average of a long-range correlated time series. Phys. Rev. E 69 (2004) 026105]. The results show that energy futures returns display long memory and that the particular form of long memory is anti-persistence.
NASA Astrophysics Data System (ADS)
Yi, Hou-Hui; Yang, Xiao-Feng; Wang, Cai-Feng; Li, Hua-Bing
2009-07-01
The rolling massage is one of the most important manipulations in Chinese massage, which is expected to eliminate many diseases. Here, the effect of the rolling massage on a pair of particles moving in blood vessels under rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulated results show that the motion of each particle is considerably modified by the rolling massage, and it depends on the relative rolling velocity, the rolling depth, and the distance between particle position and rolling position. Both particles' translational average velocities increase almost linearly as the rolling velocity increases, and obey the same law. The increment of the average relative angular velocity for the leading particle is smaller than that of the trailing one. The result is helpful for understanding the mechanism of the massage and to further develop the rolling techniques.
[A peak recognition algorithm designed for chromatographic peaks of transformer oil].
Ou, Linjun; Cao, Jian
2014-09-01
In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.
ERIC Educational Resources Information Center
Pridemore, William Alex; Trahan, Adam; Chamlin, Mitchell B.
2009-01-01
There is substantial evidence of detrimental psychological sequelae following disasters, including terrorist attacks. The effect of these events on extreme responses such as suicide, however, is unclear. We tested competing hypotheses about such effects by employing autoregressive integrated moving average techniques to model the impact of…
NASA Technical Reports Server (NTRS)
Das, V. E.; Thomas, C. W.; Zivotofsky, A. Z.; Leigh, R. J.
1996-01-01
Video-based eye-tracking systems are especially suited to studying eye movements during naturally occurring activities such as locomotion, but eye velocity records suffer from broad band noise that is not amenable to conventional filtering methods. We evaluated the effectiveness of combined median and moving-average filters by comparing prefiltered and postfiltered records made synchronously with a video eye-tracker and the magnetic search coil technique, which is relatively noise free. Root-mean-square noise was reduced by half, without distorting the eye velocity signal. To illustrate the practical use of this technique, we studied normal subjects and patients with deficient labyrinthine function and compared their ability to hold gaze on a visual target that moved with their heads (cancellation of the vestibulo-ocular reflex). Patients and normal subjects performed similarly during active head rotation but, during locomotion, patients held their eyes more steadily on the visual target than did subjects.
A Case Study to Improve Emergency Room Patient Flow at Womack Army Medical Center
2009-06-01
use just the previous month, moving average 2-month period ( MA2 ) uses the average from the previous two months, moving average 3-month period (MA3...ED prior to discharge by provider) MA2 /MA3/MA4 - moving averages of 2-4 months in length MAD - mean absolute deviation (measure of accuracy for
Random Process Simulation for stochastic fatigue analysis. Ph.D. Thesis - Rice Univ., Houston, Tex.
NASA Technical Reports Server (NTRS)
Larsen, Curtis E.
1988-01-01
A simulation technique is described which directly synthesizes the extrema of a random process and is more efficient than the Gaussian simulation method. Such a technique is particularly useful in stochastic fatigue analysis because the required stress range moment E(R sup m), is a function only of the extrema of the random stress process. The family of autoregressive moving average (ARMA) models is reviewed and an autoregressive model is presented for modeling the extrema of any random process which has a unimodal power spectral density (psd). The proposed autoregressive technique is found to produce rainflow stress range moments which compare favorably with those computed by the Gaussian technique and to average 11.7 times faster than the Gaussian technique. The autoregressive technique is also adapted for processes having bimodal psd's. The adaptation involves using two autoregressive processes to simulate the extrema due to each mode and the superposition of these two extrema sequences. The proposed autoregressive superposition technique is 9 to 13 times faster than the Gaussian technique and produces comparable values for E(R sup m) for bimodal psd's having the frequency of one mode at least 2.5 times that of the other mode.
NASA Technical Reports Server (NTRS)
Laney, C. C., Jr.
1974-01-01
A microwave interferometer technique to determine the front interface velocity of a high enthalpy gas flow, is described. The system is designed to excite a standing wave in an expansion tube, and to measure the shift in this standing wave as it is moved by the test gas front. Data, in the form of a varying sinusoidal signal, is recorded on a high-speed drum camera-oscilloscope combination. Measurements of average and incremental velocities in excess of 6,000 meters per second were made.
Tropical Cyclone Activity in the North Atlantic Basin During the Weather Satellite Era, 1960-2014
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2016-01-01
This Technical Publication (TP) represents an extension of previous work concerning the tropical cyclone activity in the North Atlantic basin during the weather satellite era, 1960-2014, in particular, that of an article published in The Journal of the Alabama Academy of Science. With the launch of the TIROS-1 polar-orbiting satellite in April 1960, a new era of global weather observation and monitoring began. Prior to this, the conditions of the North Atlantic basin were determined only from ship reports, island reports, and long-range aircraft reconnaissance. Consequently, storms that formed far from land, away from shipping lanes, and beyond the reach of aircraft possibly could be missed altogether, thereby leading to an underestimate of the true number of tropical cyclones forming in the basin. Additionally, new analysis techniques have come into use which sometimes has led to the inclusion of one or more storms at the end of a nominal hurricane season that otherwise would not have been included. In this TP, examined are the yearly (or seasonal) and 10-year moving average (10-year moving average) values of the (1) first storm day (FSD), last storm day (LSD), and length of season (LOS); (2) frequencies of tropical cyclones (by class); (3) average peak 1-minute sustained wind speed (
Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul
2011-07-01
In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of moving average tracking was up to four times higher than that of real-time tracking and approached the efficiency of no compensation for all cases. The geometric accuracy and dosimetric accuracy of the moving average algorithm was between real-time tracking and no compensation, approximately half the percentage of dosimetric points failing the gamma-test compared with no compensation.
Random walk of passive tracers among randomly moving obstacles.
Gori, Matteo; Donato, Irene; Floriani, Elena; Nardecchia, Ilaria; Pettini, Marco
2016-04-14
This study is mainly motivated by the need of understanding how the diffusion behavior of a biomolecule (or even of a larger object) is affected by other moving macromolecules, organelles, and so on, inside a living cell, whence the possibility of understanding whether or not a randomly walking biomolecule is also subject to a long-range force field driving it to its target. By means of the Continuous Time Random Walk (CTRW) technique the topic of random walk in random environment is here considered in the case of a passively diffusing particle among randomly moving and interacting obstacles. The relevant physical quantity which is worked out is the diffusion coefficient of the passive tracer which is computed as a function of the average inter-obstacles distance. The results reported here suggest that if a biomolecule, let us call it a test molecule, moves towards its target in the presence of other independently interacting molecules, its motion can be considerably slowed down.
Robust Semi-Active Ride Control under Stochastic Excitation
2014-01-01
broad classes of time-series models which are of practical importance; the Auto-Regressive (AR) models, the Integrated (I) models, and the Moving...Average (MA) models [12]. Combinations of these models result in autoregressive moving average (ARMA) and autoregressive integrated moving average...Down Up 4) Down Down These four cases can be written in compact form as: (20) Where is the Heaviside
NASA Technical Reports Server (NTRS)
Triedman, J. K.; Perrott, M. H.; Cohen, R. J.; Saul, J. P.
1995-01-01
Fourier-based techniques are mathematically noncausal and are therefore limited in their application to feedback-containing systems, such as the cardiovascular system. In this study, a mathematically causal time domain technique, autoregressive moving average (ARMA) analysis, was used to parameterize the relations of respiration and arterial blood pressure to heart rate in eight humans before and during total cardiac autonomic blockade. Impulse-response curves thus generated showed the relation of respiration to heart rate to be characterized by an immediate increase in heart rate of 9.1 +/- 1.8 beats.min-1.l-1, followed by a transient mild decrease in heart rate to -1.2 +/- 0.5 beats.min-1.l-1 below baseline. The relation of blood pressure to heart rate was characterized by a slower decrease in heart rate of -0.5 +/- 0.1 beats.min-1.mmHg-1, followed by a gradual return to baseline. Both of these relations nearly disappeared after autonomic blockade, indicating autonomic mediation. Maximum values obtained from the respiration to heart rate impulse responses were also well correlated with frequency domain measures of high-frequency "vagal" heart rate control (r = 0.88). ARMA analysis may be useful as a time domain representation of autonomic heart rate control for cardiovascular modeling.
Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N
2017-09-01
In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to combine the advantages brought forward by the proposed EWMA-GLRT fault detection chart with the KPCA model. Thus, it is used to enhance fault detection of the Cad System in E. coli model through monitoring some of the key variables involved in this model such as enzymes, transport proteins, regulatory proteins, lysine, and cadaverine. The results demonstrate the effectiveness of the proposed KPCA-based EWMA-GLRT method over Q , GLRT, EWMA, Shewhart, and moving window-GLRT methods. The detection performance is assessed and evaluated in terms of FAR, missed detection rates, and average run length (ARL 1 ) values.
Clinical Study of Orthogonal-View Phase-Matched Digital Tomosynthesis for Lung Tumor Localization.
Zhang, You; Ren, Lei; Vergalasova, Irina; Yin, Fang-Fang
2017-01-01
Compared to cone-beam computed tomography, digital tomosynthesis imaging has the benefits of shorter scanning time, less imaging dose, and better mechanical clearance for tumor localization in radiation therapy. However, for lung tumors, the localization accuracy of the conventional digital tomosynthesis technique is affected by the lack of depth information and the existence of lung tumor motion. This study investigates the clinical feasibility of using an orthogonal-view phase-matched digital tomosynthesis technique to improve the accuracy of lung tumor localization. The proposed orthogonal-view phase-matched digital tomosynthesis technique benefits from 2 major features: (1) it acquires orthogonal-view projections to improve the depth information in reconstructed digital tomosynthesis images and (2) it applies respiratory phase-matching to incorporate patient motion information into the synthesized reference digital tomosynthesis sets, which helps to improve the localization accuracy of moving lung tumors. A retrospective study enrolling 14 patients was performed to evaluate the accuracy of the orthogonal-view phase-matched digital tomosynthesis technique. Phantom studies were also performed using an anthropomorphic phantom to investigate the feasibility of using intratreatment aggregated kV and beams' eye view cine MV projections for orthogonal-view phase-matched digital tomosynthesis imaging. The localization accuracy of the orthogonal-view phase-matched digital tomosynthesis technique was compared to that of the single-view digital tomosynthesis techniques and the digital tomosynthesis techniques without phase-matching. The orthogonal-view phase-matched digital tomosynthesis technique outperforms the other digital tomosynthesis techniques in tumor localization accuracy for both the patient study and the phantom study. For the patient study, the orthogonal-view phase-matched digital tomosynthesis technique localizes the tumor to an average (± standard deviation) error of 1.8 (0.7) mm for a 30° total scan angle. For the phantom study using aggregated kV-MV projections, the orthogonal-view phase-matched digital tomosynthesis localizes the tumor to an average error within 1 mm for varying magnitudes of scan angles. The pilot clinical study shows that the orthogonal-view phase-matched digital tomosynthesis technique enables fast and accurate localization of moving lung tumors.
NASA Astrophysics Data System (ADS)
Meng, Haoran; Ben-Zion, Yehuda
2018-01-01
We present a technique to detect small earthquakes not included in standard catalogues using data from a dense seismic array. The technique is illustrated with continuous waveforms recorded in a test day by 1108 vertical geophones in a tight array on the San Jacinto fault zone. Waveforms are first stacked without time-shift in nine non-overlapping subarrays to increase the signal-to-noise ratio. The nine envelope functions of the stacked records are then multiplied with each other to suppress signals associated with sources affecting only some of the nine subarrays. Running a short-term moving average/long-term moving average (STA/LTA) detection algorithm on the product leads to 723 triggers in the test day. Using a local P-wave velocity model derived for the surface layer from Betsy gunshot data, 5 s long waveforms of all sensors around each STA/LTA trigger are beamformed for various incident directions. Of the 723 triggers, 220 are found to have localized energy sources and 103 of these are confirmed as earthquakes by verifying their observation at 4 or more stations of the regional seismic network. This demonstrates the general validity of the method and allows processing further the validated events using standard techniques. The number of validated events in the test day is >5 times larger than that in the standard catalogue. Using these events as templates can lead to additional detections of many more earthquakes.
Plans, Patterns, and Move Categories Guiding a Highly Selective Search
NASA Astrophysics Data System (ADS)
Trippen, Gerhard
In this paper we present our ideas for an Arimaa-playing program (also called a bot) that uses plans and pattern matching to guide a highly selective search. We restrict move generation to moves in certain move categories to reduce the number of moves considered by the bot significantly. Arimaa is a modern board game that can be played with a standard Chess set. However, the rules of the game are not at all like those of Chess. Furthermore, Arimaa was designed to be as simple and intuitive as possible for humans, yet challenging for computers. While all established Arimaa bots use alpha-beta search with a variety of pruning techniques and other heuristics ending in an extensive positional leaf node evaluation, our new bot, Rat, starts with a positional evaluation of the current position. Based on features found in the current position - supported by pattern matching using a directed position graph - our bot Rat decides which of a given set of plans to follow. The plan then dictates what types of moves can be chosen. This is another major difference from bots that generate "all" possible moves for a particular position. Rat is only allowed to generate moves that belong to certain categories. Leaf nodes are evaluated only by a straightforward material evaluation to help avoid moves that lose material. This highly selective search looks, on average, at only 5 moves out of 5,000 to over 40,000 possible moves in a middle game position.
Relative distance between tracers as a measure of diffusivity within moving aggregates
NASA Astrophysics Data System (ADS)
Pönisch, Wolfram; Zaburdaev, Vasily
2018-02-01
Tracking of particles, be it a passive tracer or an actively moving bacterium in the growing bacterial colony, is a powerful technique to probe the physical properties of the environment of the particles. One of the most common measures of particle motion driven by fluctuations and random forces is its diffusivity, which is routinely obtained by measuring the mean squared displacement of the particles. However, often the tracer particles may be moving in a domain or an aggregate which itself experiences some regular or random motion and thus masks the diffusivity of tracers. Here we provide a method for assessing the diffusivity of tracer particles within mobile aggregates by measuring the so-called mean squared relative distance (MSRD) between two tracers. We provide analytical expressions for both the ensemble and time averaged MSRD allowing for direct identification of diffusivities from experimental data.
Park, Yoonah; Yong, Yuen Geng; Yun, Seong Hyeon; Jung, Kyung Uk; Huh, Jung Wook; Cho, Yong Beom; Kim, Hee Cheol; Lee, Woo Yong; Chun, Ho-Kyung
2015-05-01
This study aimed to compare the learning curves and early postoperative outcomes for conventional laparoscopic (CL) and single incision laparoscopic (SIL) right hemicolectomy (RHC). This retrospective study included the initial 35 cases in each group. Learning curves were evaluated by the moving average of operative time, mean operative time of every five consecutive cases, and cumulative sum (CUSUM) analysis. The learning phase was considered overcome when the moving average of operative times reached a plateau, and when the mean operative time of every five consecutive cases reached a low point and subsequently did not vary by more than 30 minutes. Six patients with missing data in the CL RHC group were excluded from the analyses. According to the mean operative time of every five consecutive cases, learning phase of SIL and CL RHC was completed between 26 and 30 cases, and 16 and 20 cases, respectively. Moving average analysis revealed that approximately 31 (SIL) and 25 (CL) cases were needed to complete the learning phase, respectively. CUSUM analysis demonstrated that 10 (SIL) and two (CL) cases were required to reach a steady state of complication-free performance, respectively. Postoperative complications rate was higher in SIL than in CL group, but the difference was not statistically significant (17.1% vs. 3.4%). The learning phase of SIL RHC is longer than that of CL RHC. Early oncological outcomes of both techniques were comparable. However, SIL RHC had a statistically insignificant higher complication rate than CL RHC during the learning phase.
Bianca Eskelson; Temesgen Hailemariam; Tara Barrett
2009-01-01
The Forest Inventory and Analysis program (FIA) of the US Forest Service conducts a nationwide annual inventory. One panel (20% or 10% of all plots in the eastern and western United States, respectively) is measured each year. The precision of the estimates for any given year from one panel is low, and the moving average (MA), which is considered to be the default...
25 CFR 700.173 - Average net earnings of business or farm.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 25 Indians 2 2011-04-01 2011-04-01 false Average net earnings of business or farm. 700.173 Section... PROCEDURES Moving and Related Expenses, Temporary Emergency Moves § 700.173 Average net earnings of business or farm. (a) Computing net earnings. For purposes of this subpart, the average annual net earnings of...
25 CFR 700.173 - Average net earnings of business or farm.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 2 2010-04-01 2010-04-01 false Average net earnings of business or farm. 700.173 Section... PROCEDURES Moving and Related Expenses, Temporary Emergency Moves § 700.173 Average net earnings of business or farm. (a) Computing net earnings. For purposes of this subpart, the average annual net earnings of...
NASA Astrophysics Data System (ADS)
Pan, Chu-Dong; Yu, Ling; Liu, Huan-Lin
2017-08-01
Traffic-induced moving force identification (MFI) is a typical inverse problem in the field of bridge structural health monitoring. Lots of regularization-based methods have been proposed for MFI. However, the MFI accuracy obtained from the existing methods is low when the moving forces enter into and exit a bridge deck due to low sensitivity of structural responses to the forces at these zones. To overcome this shortcoming, a novel moving average Tikhonov regularization method is proposed for MFI by combining with the moving average concepts. Firstly, the bridge-vehicle interaction moving force is assumed as a discrete finite signal with stable average value (DFS-SAV). Secondly, the reasonable signal feature of DFS-SAV is quantified and introduced for improving the penalty function (∣∣x∣∣2 2) defined in the classical Tikhonov regularization. Then, a feasible two-step strategy is proposed for selecting regularization parameter and balance coefficient defined in the improved penalty function. Finally, both numerical simulations on a simply-supported beam and laboratory experiments on a hollow tube beam are performed for assessing the accuracy and the feasibility of the proposed method. The illustrated results show that the moving forces can be accurately identified with a strong robustness. Some related issues, such as selection of moving window length, effect of different penalty functions, and effect of different car speeds, are discussed as well.
Assessing the Efficacy of Adjustable Moving Averages Using ASEAN-5 Currencies.
Chan Phooi M'ng, Jacinta; Zainudin, Rozaimah
2016-01-01
The objective of this research is to examine the trends in the exchange rate markets of the ASEAN-5 countries (Indonesia (IDR), Malaysia (MYR), the Philippines (PHP), Singapore (SGD), and Thailand (THB)) through the application of dynamic moving average trading systems. This research offers evidence of the usefulness of the time-varying volatility technical analysis indicator, Adjustable Moving Average (AMA') in deciphering trends in these ASEAN-5 exchange rate markets. This time-varying volatility factor, referred to as the Efficacy Ratio in this paper, is embedded in AMA'. The Efficacy Ratio adjusts the AMA' to the prevailing market conditions by avoiding whipsaws (losses due, in part, to acting on wrong trading signals, which generally occur when there is no general direction in the market) in range trading and by entering early into new trends in trend trading. The efficacy of AMA' is assessed against other popular moving-average rules. Based on the January 2005 to December 2014 dataset, our findings show that the moving averages and AMA' are superior to the passive buy-and-hold strategy. Specifically, AMA' outperforms the other models for the United States Dollar against PHP (USD/PHP) and USD/THB currency pairs. The results show that different length moving averages perform better in different periods for the five currencies. This is consistent with our hypothesis that a dynamic adjustable technical indicator is needed to cater for different periods in different markets.
NASA Astrophysics Data System (ADS)
Kwon, Yong-Seok; Naeem, Khurram; Jeon, Min Yong; Kwon, Il-bum
2017-04-01
We analyze the relations of parameters in moving average method to enhance the event detectability of phase sensitive optical time domain reflectometer (OTDR). If the external events have unique frequency of vibration, then the control parameters of moving average method should be optimized in order to detect these events efficiently. A phase sensitive OTDR was implemented by a pulsed light source, which is composed of a laser diode, a semiconductor optical amplifier, an erbium-doped fiber amplifier, a fiber Bragg grating filter, and a light receiving part, which has a photo-detector and high speed data acquisition system. The moving average method is operated with the control parameters: total number of raw traces, M, number of averaged traces, N, and step size of moving, n. The raw traces are obtained by the phase sensitive OTDR with sound signals generated by a speaker. Using these trace data, the relation of the control parameters is analyzed. In the result, if the event signal has one frequency, then the optimal values of N, n are existed to detect the event efficiently.
NASA Astrophysics Data System (ADS)
Meintz, Andrew Lee
This dissertation offers a description of the development of a fuel cell plug-in hybrid electric vehicle focusing on the propulsion architecture selection, propulsion system control, and high-level energy management. Two energy management techniques have been developed and implemented for real-time control of the vehicle. The first method is a heuristic method that relies on a short-term moving average of the vehicle power requirements. The second method utilizes an affine function of the short-term and long-term moving average vehicle power requirements. The development process of these methods has required the creation of a vehicle simulator capable of estimating the effect of changes to the energy management control techniques on the overall vehicle energy efficiency. Furthermore, the simulator has allowed for the refinement of the energy management methods and for the stability of the method to be analyzed prior to on-road testing. This simulator has been verified through on-road testing of a constructed prototype vehicle under both highway and city driving schedules for each energy management method. The results of the finalized vehicle control strategies are compared with the simulator predictions and an assessment of the effectiveness of both strategies is discussed. The methods have been evaluated for energy consumption in the form of both hydrogen fuel and stored electricity from grid charging.
Moving Target Techniques: Cyber Resilience throught Randomization, Diversity, and Dynamism
2017-03-03
Moving Target Techniques: Cyber Resilience through Randomization, Diversity, and Dynamism Hamed Okhravi and Howard Shrobe Overview: The static...nature of computer systems makes them vulnerable to cyber attacks. Consider a situation where an attacker wants to compromise a remote system running... cyber resilience that attempts to rebalance the cyber landscape is known as cyber moving target (MT) (or just moving target) techniques. Moving target
Park, Yoonah; Yong, Yuen Geng; Jung, Kyung Uk; Huh, Jung Wook; Cho, Yong Beom; Kim, Hee Cheol; Lee, Woo Yong; Chun, Ho-Kyung
2015-01-01
Purpose This study aimed to compare the learning curves and early postoperative outcomes for conventional laparoscopic (CL) and single incision laparoscopic (SIL) right hemicolectomy (RHC). Methods This retrospective study included the initial 35 cases in each group. Learning curves were evaluated by the moving average of operative time, mean operative time of every five consecutive cases, and cumulative sum (CUSUM) analysis. The learning phase was considered overcome when the moving average of operative times reached a plateau, and when the mean operative time of every five consecutive cases reached a low point and subsequently did not vary by more than 30 minutes. Results Six patients with missing data in the CL RHC group were excluded from the analyses. According to the mean operative time of every five consecutive cases, learning phase of SIL and CL RHC was completed between 26 and 30 cases, and 16 and 20 cases, respectively. Moving average analysis revealed that approximately 31 (SIL) and 25 (CL) cases were needed to complete the learning phase, respectively. CUSUM analysis demonstrated that 10 (SIL) and two (CL) cases were required to reach a steady state of complication-free performance, respectively. Postoperative complications rate was higher in SIL than in CL group, but the difference was not statistically significant (17.1% vs. 3.4%). Conclusion The learning phase of SIL RHC is longer than that of CL RHC. Early oncological outcomes of both techniques were comparable. However, SIL RHC had a statistically insignificant higher complication rate than CL RHC during the learning phase. PMID:25960990
Model-checking techniques based on cumulative residuals.
Lin, D Y; Wei, L J; Ying, Z
2002-03-01
Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided.
Assessing the Efficacy of Adjustable Moving Averages Using ASEAN-5 Currencies
2016-01-01
The objective of this research is to examine the trends in the exchange rate markets of the ASEAN-5 countries (Indonesia (IDR), Malaysia (MYR), the Philippines (PHP), Singapore (SGD), and Thailand (THB)) through the application of dynamic moving average trading systems. This research offers evidence of the usefulness of the time-varying volatility technical analysis indicator, Adjustable Moving Average (AMA′) in deciphering trends in these ASEAN-5 exchange rate markets. This time-varying volatility factor, referred to as the Efficacy Ratio in this paper, is embedded in AMA′. The Efficacy Ratio adjusts the AMA′ to the prevailing market conditions by avoiding whipsaws (losses due, in part, to acting on wrong trading signals, which generally occur when there is no general direction in the market) in range trading and by entering early into new trends in trend trading. The efficacy of AMA′ is assessed against other popular moving-average rules. Based on the January 2005 to December 2014 dataset, our findings show that the moving averages and AMA′ are superior to the passive buy-and-hold strategy. Specifically, AMA′ outperforms the other models for the United States Dollar against PHP (USD/PHP) and USD/THB currency pairs. The results show that different length moving averages perform better in different periods for the five currencies. This is consistent with our hypothesis that a dynamic adjustable technical indicator is needed to cater for different periods in different markets. PMID:27574972
Hernandez, Ivan; Preston, Jesse Lee; Hepler, Justin
2014-01-01
Research on the timescale bias has found that observers perceive more capacity for mind in targets moving at an average speed, relative to slow or fast moving targets. The present research revisited the timescale bias as a type of halo effect, where normal-speed people elicit positive evaluations and abnormal-speed (slow and fast) people elicit negative evaluations. In two studies, participants viewed videos of people walking at a slow, average, or fast speed. We find evidence for a timescale halo effect: people walking at an average-speed were attributed more positive mental traits, but fewer negative mental traits, relative to slow or fast moving people. These effects held across both cognitive and emotional dimensions of mind and were mediated by overall positive/negative ratings of the person. These results suggest that, rather than eliciting greater perceptions of general mind, the timescale bias may reflect a generalized positivity toward average speed people relative to slow or fast moving people. PMID:24421882
Two-zone elastic-plastic single shock waves in solids.
Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T
2011-09-23
By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.
1987-06-01
number of series among the 63 which were identified as a particular ARIMA form and were "best" modeled by a particular technique. Figure 1 illustrates a...th time from xe’s. The integrbted autoregressive - moving average model , denoted by ARIMA (p,d,q) is a result of combining d-th differencing process...Experiments, (4) Data Analysis and Modeling , (5) Theory and Probablistic Inference, (6) Fuzzy Statistics, (7) Forecasting and Prediction, (8) Small Sample
Examination of the Armagh Observatory Annual Mean Temperature Record, 1844-2004
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2006-01-01
The long-term annual mean temperature record (1844-2004) of the Armagh Observatory (Armagh, Northern Ireland, United Kingdom) is examined for evidence of systematic variation, in particular, as related to solar/geomagnetic forcing and secular variation. Indeed, both are apparent in the temperature record. Moving averages for 10 years of temperature are found to highly correlate against both 10-year moving averages of the aa-geomagnetic index and sunspot number, having correlation coefficients of approx. 0.7, inferring that nearly half the variance in the 10-year moving average of temperature can be explained by solar/geomagnetic forcing. The residuals appear episodic in nature, with cooling seen in the 1880s and again near 1980. Seven of the last 10 years of the temperature record has exceeded 10 C, unprecedented in the overall record. Variation of sunspot cyclic averages and 2-cycle moving averages of temperature strongly associate with similar averages for the solar/geomagnetic cycle, with the residuals displaying an apparent 9-cycle variation and a steep rise in temperature associated with cycle 23. Hale cycle averages of temperature for even-odd pairs of sunspot cycles correlate against similar averages for the solar/geomagnetic cycle and, especially, against the length of the Hale cycle. Indications are that annual mean temperature will likely exceed 10 C over the next decade.
Joint level-set and spatio-temporal motion detection for cell segmentation.
Boukari, Fatima; Makrogiannis, Sokratis
2016-08-10
Cell segmentation is a critical step for quantification and monitoring of cell cycle progression, cell migration, and growth control to investigate cellular immune response, embryonic development, tumorigenesis, and drug effects on live cells in time-lapse microscopy images. In this study, we propose a joint spatio-temporal diffusion and region-based level-set optimization approach for moving cell segmentation. Moving regions are initially detected in each set of three consecutive sequence images by numerically solving a system of coupled spatio-temporal partial differential equations. In order to standardize intensities of each frame, we apply a histogram transformation approach to match the pixel intensities of each processed frame with an intensity distribution model learned from all frames of the sequence during the training stage. After the spatio-temporal diffusion stage is completed, we compute the edge map by nonparametric density estimation using Parzen kernels. This process is followed by watershed-based segmentation and moving cell detection. We use this result as an initial level-set function to evolve the cell boundaries, refine the delineation, and optimize the final segmentation result. We applied this method to several datasets of fluorescence microscopy images with varying levels of difficulty with respect to cell density, resolution, contrast, and signal-to-noise ratio. We compared the results with those produced by Chan and Vese segmentation, a temporally linked level-set technique, and nonlinear diffusion-based segmentation. We validated all segmentation techniques against reference masks provided by the international Cell Tracking Challenge consortium. The proposed approach delineated cells with an average Dice similarity coefficient of 89 % over a variety of simulated and real fluorescent image sequences. It yielded average improvements of 11 % in segmentation accuracy compared to both strictly spatial and temporally linked Chan-Vese techniques, and 4 % compared to the nonlinear spatio-temporal diffusion method. Despite the wide variation in cell shape, density, mitotic events, and image quality among the datasets, our proposed method produced promising segmentation results. These results indicate the efficiency and robustness of this method especially for mitotic events and low SNR imaging, enabling the application of subsequent quantification tasks.
NASA Technical Reports Server (NTRS)
Pina, J. F.; House, F. B.
1976-01-01
A scheme was developed which divides the earth-atmosphere system into 2060 elemental areas. The regions previously described are defined in terms of these elemental areas which are fixed in size and position as the satellite moves. One method, termed the instantaneous technique, yields values of the radiant emittance (We) and the radiant reflectance (Wr) which the regions have during the time interval of a single satellite pass. The number of observations matches the number of regions under study and a unique solution is obtained using matrix inversion. The other method (termed the best fit technique), yields time averages of We and Wr for large time intervals (e.g., months, seasons). The number of observations in this technique is much greater than the number of regions considered, and an approximate solution is obtained by the method of least squares.
Automatic retinal blood flow calculation using spectral domain optical coherence tomography
NASA Astrophysics Data System (ADS)
Wehbe, Hassan; Ruggeri, Marco; Jiao, Shuliang; Gregori, Giovanni; Puliafito, Carmen A.
2008-02-01
Optical Doppler tomography (ODT) is a branch of optical coherence tomography (OCT) that can measure the speed of a blood flow by measuring the Doppler shift impinged on the probing sample light by the moving blood cells. However, the measured speed of blood flow is a function of the Doppler angle, which needs to be determined in order to calculate the absolute velocity of the blood flow inside a vessel. We developed a technique that can extract the Doppler angle from the 3D data measured with spectral-domain OCT, which needs to extract the lateral and depth coordinates of a vessel in each measured ODT and OCT image. The lateral coordinates and the diameter of a blood vessel were first extracted in each OCT structural image by using the technique of blood vessel shadowgram, a technique first developed by us for enhancing the retinal blood vessel contrast in the en face view of the 3D OCT. The depth coordinate of a vessel was then determined by using a circular averaging filter moving in the depth direction along the axis passing through the vessel center in the ODT image. The Doppler angle was then calculated from the extracted coordinates of the blood vessel. The technique was applied in blood flow measurements in retinal blood vessels, which has potential impact on the study and diagnosis of blinding diseases like glaucoma and diabetic retinopathy.
Modeling of Density-Dependent Flow based on the Thermodynamically Constrained Averaging Theory
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Schultz, P. B.; Kelley, C. T.; Miller, C. T.; Gray, W. G.
2016-12-01
The thermodynamically constrained averaging theory (TCAT) has been used to formulate general classes of porous medium models, including new models for density-dependent flow. The TCAT approach provides advantages that include a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; explicit inclusion of factors such as a diffusion that arises from gradients associated with pressure and activity and the ability to describe both high and low concentration displacement. The TCAT model is presented and closure relations for the TCAT model are postulated based on microscale averages and a parameter estimation is performed on a subset of the experimental data. Due to the sharpness of the fronts, an adaptive moving mesh technique was used to ensure grid independent solutions within the run time constraints. The optimized parameters are then used for forward simulations and compared to the set of experimental data not used for the parameter estimation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovy, Jo; Hogg, David W., E-mail: jo.bovy@nyu.ed
2010-07-10
The velocity distribution of nearby stars ({approx}<100 pc) contains many overdensities or 'moving groups', clumps of comoving stars, that are inconsistent with the standard assumption of an axisymmetric, time-independent, and steady-state Galaxy. We study the age and metallicity properties of the low-velocity moving groups based on the reconstruction of the local velocity distribution in Paper I of this series. We perform stringent, conservative hypothesis testing to establish for each of these moving groups whether it could conceivably consist of a coeval population of stars. We conclude that they do not: the moving groups are neither trivially associated with their eponymousmore » open clusters nor with any other inhomogeneous star formation event. Concerning a possible dynamical origin of the moving groups, we test whether any of the moving groups has a higher or lower metallicity than the background population of thin disk stars, as would generically be the case if the moving groups are associated with resonances of the bar or spiral structure. We find clear evidence that the Hyades moving group has higher than average metallicity and weak evidence that the Sirius moving group has lower than average metallicity, which could indicate that these two groups are related to the inner Lindblad resonance of the spiral structure. Further, we find weak evidence that the Hercules moving group has higher than average metallicity, as would be the case if it is associated with the bar's outer Lindblad resonance. The Pleiades moving group shows no clear metallicity anomaly, arguing against a common dynamical origin for the Hyades and Pleiades groups. Overall, however, the moving groups are barely distinguishable from the background population of stars, raising the likelihood that the moving groups are associated with transient perturbations.« less
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2008-01-01
For 1996 .2006 (cycle 23), 12-month moving averages of the aa geomagnetic index strongly correlate (r = 0.92) with 12-month moving averages of solar wind speed, and 12-month moving averages of the number of coronal mass ejections (CMEs) (halo and partial halo events) strongly correlate (r = 0.87) with 12-month moving averages of sunspot number. In particular, the minimum (15.8, September/October 1997) and maximum (38.0, August 2003) values of the aa geomagnetic index occur simultaneously with the minimum (376 km/s) and maximum (547 km/s) solar wind speeds, both being strongly correlated with the following recurrent component (due to high-speed streams). The large peak of aa geomagnetic activity in cycle 23, the largest on record, spans the interval late 2002 to mid 2004 and is associated with a decreased number of halo and partial halo CMEs, whereas the smaller secondary peak of early 2005 seems to be associated with a slight rebound in the number of halo and partial halo CMEs. Based on the observed aaM during the declining portion of cycle 23, RM for cycle 24 is predicted to be larger than average, being about 168+/-60 (the 90% prediction interval), whereas based on the expected aam for cycle 24 (greater than or equal to 14.6), RM for cycle 24 should measure greater than or equal to 118+/-30, yielding an overlap of about 128+/-20.
Liu, Jiakai; Tan, Chin Hon; Badrick, Tony; Loh, Tze Ping
2018-02-01
An increase in analytical imprecision (expressed as CV a ) can introduce additional variability (i.e. noise) to the patient results, which poses a challenge to the optimal management of patients. Relatively little work has been done to address the need for continuous monitoring of analytical imprecision. Through numerical simulations, we describe the use of moving standard deviation (movSD) and a recently described moving sum of outlier (movSO) patient results as means for detecting increased analytical imprecision, and compare their performances against internal quality control (QC) and the average of normal (AoN) approaches. The power of detecting an increase in CV a is suboptimal under routine internal QC procedures. The AoN technique almost always had the highest average number of patient results affected before error detection (ANPed), indicating that it had generally the worst capability for detecting an increased CV a . On the other hand, the movSD and movSO approaches were able to detect an increased CV a at significantly lower ANPed, particularly for measurands that displayed a relatively small ratio of biological variation to CV a. CONCLUSION: The movSD and movSO approaches are effective in detecting an increase in CV a for high-risk measurands with small biological variation. Their performance is relatively poor when the biological variation is large. However, the clinical risks of an increase in analytical imprecision is attenuated for these measurands as an increased analytical imprecision will only add marginally to the total variation and less likely to impact on the clinical care. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Quantitative determination of engine water ingestion
NASA Technical Reports Server (NTRS)
Parikh, P.; Hernan, M.; Sarohia, V.
1986-01-01
A nonintrusive optical technique is described for determination of liquid mass flux in a droplet laden airstream. The techniques were developed for quantitative determination of engine water ingestion resulting from heavy rain or wheel spray. Independent measurements of the liquid water content (LWC) of the droplet laden airstream and of the droplet velocities were made at the stimulated nacelle inlet plane for the liquid mass flux determination. The LWC was measured by illuminating and photographing the droplets contained within a thin slice of the flow field by means of a sheet of light from a pulsed laser. A fluorescent dye introduced in the water enchanced the droplet image definition. The droplet velocities were determined from double exposed photographs of the moving droplet field. The technique was initially applied to a steady spray generated in a wind tunnel. It was found that although the spray was initially steady, the aerodynamic breakup process was inherently unsteady. This resulted in a wide variation of the instantaneous LWC of the droplet laden airstream. The standard deviation of ten separate LWC measurements was 31% of the average. However, the liquid mass flux calculated from the average LWC and droplet velocities came within 10% of the known water ingestion rate.
Marcek, Dusan; Durisova, Maria
2016-01-01
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process. PMID:26977450
Falat, Lukas; Marcek, Dusan; Durisova, Maria
2016-01-01
This paper deals with application of quantitative soft computing prediction models into financial area as reliable and accurate prediction models can be very helpful in management decision-making process. The authors suggest a new hybrid neural network which is a combination of the standard RBF neural network, a genetic algorithm, and a moving average. The moving average is supposed to enhance the outputs of the network using the error part of the original neural network. Authors test the suggested model on high-frequency time series data of USD/CAD and examine the ability to forecast exchange rate values for the horizon of one day. To determine the forecasting efficiency, they perform a comparative statistical out-of-sample analysis of the tested model with autoregressive models and the standard neural network. They also incorporate genetic algorithm as an optimizing technique for adapting parameters of ANN which is then compared with standard backpropagation and backpropagation combined with K-means clustering algorithm. Finally, the authors find out that their suggested hybrid neural network is able to produce more accurate forecasts than the standard models and can be helpful in eliminating the risk of making the bad decision in decision-making process.
Acceleration and Velocity Sensing from Measured Strain
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truax, Roger
2016-01-01
A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.
A novel Kalman filter based video image processing scheme for two-photon fluorescence microscopy
NASA Astrophysics Data System (ADS)
Sun, Wenqing; Huang, Xia; Li, Chunqiang; Xiao, Chuan; Qian, Wei
2016-03-01
Two-photon fluorescence microscopy (TPFM) is a perfect optical imaging equipment to monitor the interaction between fast moving viruses and hosts. However, due to strong unavoidable background noises from the culture, videos obtained by this technique are too noisy to elaborate this fast infection process without video image processing. In this study, we developed a novel scheme to eliminate background noises, recover background bacteria images and improve video qualities. In our scheme, we modified and implemented the following methods for both host and virus videos: correlation method, round identification method, tree-structured nonlinear filters, Kalman filters, and cell tracking method. After these procedures, most of noises were eliminated and host images were recovered with their moving directions and speed highlighted in the videos. From the analysis of the processed videos, 93% bacteria and 98% viruses were correctly detected in each frame on average.
Annual forest inventory estimates based on the moving average
Francis A. Roesch; James R. Steinman; Michael T. Thompson
2002-01-01
Three interpretations of the simple moving average estimator, as applied to the USDA Forest Service's annual forest inventory design, are presented. A corresponding approach to composite estimation over arbitrarily defined land areas and time intervals is given for each interpretation, under the assumption that the investigator is armed with only the spatial/...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
...: Centers for Medicare & Medicaid Services (CMS), HHS. ACTION: Proposed rule. SUMMARY: This proposed rule..., especially the teaching status adjustment factor. Therefore, we implemented a 3-year moving average approach... moving average to calculate the facility-level adjustment factors. For FY 2011, we issued a notice to...
NASA Technical Reports Server (NTRS)
Crawford, Daniel J.; Burdette, Daniel W.; Capron, William R.
1993-01-01
The methodology and techniques used to collect and analyze look-point position data from a real-time ATC display-format comparison experiment are documented. That study compared the delivery precision and controller workload of three final approach spacing aid display formats. Using an oculometer, controller lookpoint position data were collected, associated with gaze objects (e.g., moving aircraft) on the ATC display, and analyzed to determine eye-scan behavior. The equipment involved and algorithms for saving, synchronizing with the ATC simulation output, and filtering the data are described. Target (gaze object) and cross-check scanning identification algorithms are also presented. Data tables are provided of total dwell times, average dwell times, and cross-check scans. Flow charts, block diagrams, file record descriptors, and source code are included. The techniques and data presented are intended to benefit researchers in other studies that incorporate non-stationary gaze objects and oculometer equipment.
Using the Modified Precursor Method to Estimate the Size of Cycle 24
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2008-01-01
Modified geomagnetic precursor techniques for predicting the size of the following sunspot cycle are developed, where these techniques use the 12-month moving averages of the number of disturbed days (when Ap greater than or equals 25), the Ap index, the aa index, and the aaI index at about 4 yr during the declining portion of the preceding sunspot cycle. For cycle 24, these techniques suggest that its RM will measure about 130 +/- 14, a value outside the consensus prediction interval of the low prediction (90 +/- 10) given by the NOAA Solar Cycle 24 Prediction Panel. Furthermore, cycle 24 is predicted to be a fast-rising cycle (ASC = 44 +/- 5 months), peaking before April 2012, presuming the official start of cycle 24 in March 2008. Also discussed are the variation of solar cycle lengths and Hale cycle effects, as related to cycles 23 and 24.
Advanced Multispectral Scanner (AMS) study. [aircraft remote sensing
NASA Technical Reports Server (NTRS)
1978-01-01
The status of aircraft multispectral scanner technology was accessed in order to develop preliminary design specifications for an advanced instrument to be used for remote sensing data collection by aircraft in the 1980 time frame. The system designed provides a no-moving parts multispectral scanning capability through the exploitation of linear array charge coupled device technology and advanced electronic signal processing techniques. Major advantages include: 10:1 V/H rate capability; 120 deg FOV at V/H = 0.25 rad/sec; 1 to 2 rad resolution; high sensitivity; large dynamic range capability; geometric fidelity; roll compensation; modularity; long life; and 24 channel data acquisition capability. The field flattening techniques of the optical design allow wide field view to be achieved at fast f/nos for both the long and short wavelength regions. The digital signal averaging technique permits maximization of signal to noise performance over the entire V/H rate range.
NASA Astrophysics Data System (ADS)
Pfister, T.; Günther, P.; Nöthen, M.; Czarske, J.
2010-02-01
Both in production engineering and process control, multidirectional displacements, deformations and vibrations of moving or rotating components have to be measured dynamically, contactlessly and with high precision. Optical sensors would be predestined for this task, but their measurement rate is often fundamentally limited. Furthermore, almost all conventional sensors measure only one measurand, i.e. either out-of-plane or in-plane distance or velocity. To solve this problem, we present a novel phase coded heterodyne laser Doppler distance sensor (PH-LDDS), which is able to determine out-of-plane (axial) position and in-plane (lateral) velocity of rough solid-state objects simultaneously and independently with a single sensor. Due to the applied heterodyne technique, stationary or purely axially moving objects can also be measured. In addition, it is shown theoretically as well as experimentally that this sensor offers concurrently high temporal resolution and high position resolution since its position uncertainty is in principle independent of the lateral object velocity in contrast to conventional distance sensors. This is a unique feature of the PH-LDDS enabling precise and dynamic position and shape measurements also of fast moving objects. With an optimized sensor setup, an average position resolution of 240 nm was obtained.
Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.
2008-01-01
Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.
A recursive technique for adaptive vector quantization
NASA Technical Reports Server (NTRS)
Lindsay, Robert A.
1989-01-01
Vector Quantization (VQ) is fast becoming an accepted, if not preferred method for image compression. The VQ performs well when compressing all types of imagery including Video, Electro-Optical (EO), Infrared (IR), Synthetic Aperture Radar (SAR), Multi-Spectral (MS), and digital map data. The only requirement is to change the codebook to switch the compressor from one image sensor to another. There are several approaches for designing codebooks for a vector quantizer. Adaptive Vector Quantization is a procedure that simultaneously designs codebooks as the data is being encoded or quantized. This is done by computing the centroid as a recursive moving average where the centroids move after every vector is encoded. When computing the centroid of a fixed set of vectors the resultant centroid is identical to the previous centroid calculation. This method of centroid calculation can be easily combined with VQ encoding techniques. The defined quantizer changes after every encoded vector by recursively updating the centroid of minimum distance which is the selected by the encoder. Since the quantizer is changing definition or states after every encoded vector, the decoder must now receive updates to the codebook. This is done as side information by multiplexing bits into the compressed source data.
Buckingham-Jeffery, Elizabeth; Morbey, Roger; House, Thomas; Elliot, Alex J; Harcourt, Sally; Smith, Gillian E
2017-05-19
As service provision and patient behaviour varies by day, healthcare data used for public health surveillance can exhibit large day of the week effects. These regular effects are further complicated by the impact of public holidays. Real-time syndromic surveillance requires the daily analysis of a range of healthcare data sources, including family doctor consultations (called general practitioners, or GPs, in the UK). Failure to adjust for such reporting biases during analysis of syndromic GP surveillance data could lead to misinterpretations including false alarms or delays in the detection of outbreaks. The simplest smoothing method to remove a day of the week effect from daily time series data is a 7-day moving average. Public Health England developed the working day moving average in an attempt also to remove public holiday effects from daily GP data. However, neither of these methods adequately account for the combination of day of the week and public holiday effects. The extended working day moving average was developed. This is a further data-driven method for adding a smooth trend curve to a time series graph of daily healthcare data, that aims to take both public holiday and day of the week effects into account. It is based on the assumption that the number of people seeking healthcare services is a combination of illness levels/severity and the ability or desire of patients to seek healthcare each day. The extended working day moving average was compared to the seven-day and working day moving averages through application to data from two syndromic indicators from the GP in-hours syndromic surveillance system managed by Public Health England. The extended working day moving average successfully smoothed the syndromic healthcare data by taking into account the combined day of the week and public holiday effects. In comparison, the seven-day and working day moving averages were unable to account for all these effects, which led to misleading smoothing curves. The results from this study make it possible to identify trends and unusual activity in syndromic surveillance data from GP services in real-time independently of the effects caused by day of the week and public holidays, thereby improving the public health action resulting from the analysis of these data.
Moving in the Right Direction: Helping Children Cope with a Relocation
ERIC Educational Resources Information Center
Kruse, Tricia
2012-01-01
According to national figures, 37.1 million people moved in 2009 (U.S. Census Bureau, 2010). In fact, the average American will move 11.7 times in their lifetime. Why are Americans moving so much? There are a variety of reasons. Regardless of the reason, moving is a common experience for children. If one looks at the developmental characteristics…
ERIC Educational Resources Information Center
Doerann-George, Judith
The Integrated Moving Average (IMA) model of time series, and the analysis of intervention effects based on it, assume random shocks which are normally distributed. To determine the robustness of the analysis to violations of this assumption, empirical sampling methods were employed. Samples were generated from three populations; normal,…
NASA Astrophysics Data System (ADS)
Li, Qingchen; Cao, Guangxi; Xu, Wei
2018-01-01
Based on a multifractal detrending moving average algorithm (MFDMA), this study uses the fractionally autoregressive integrated moving average process (ARFIMA) to demonstrate the effectiveness of MFDMA in the detection of auto-correlation at different sample lengths and to simulate some artificial time series with the same length as the actual sample interval. We analyze the effect of predictable and unpredictable meteorological disasters on the US and Chinese stock markets and the degree of long memory in different sectors. Furthermore, we conduct a preliminary investigation to determine whether the fluctuations of financial markets caused by meteorological disasters are derived from the normal evolution of the financial system itself or not. We also propose several reasonable recommendations.
Power strain imaging based on vibro-elastography techniques
NASA Astrophysics Data System (ADS)
Wen, Xu; Salcudean, S. E.
2007-03-01
This paper describes a new ultrasound elastography technique, power strain imaging, based on vibro-elastography (VE) techniques. With this method, tissue is compressed by a vibrating actuator driven by low-pass or band-pass filtered white noise, typically in the 0-20 Hz range. Tissue displacements at different spatial locations are estimated by correlation-based approaches on the raw ultrasound radio frequency signals and recorded in time sequences. The power spectra of these time sequences are computed by Fourier spectral analysis techniques. As the average of the power spectrum is proportional to the squared amplitude of the tissue motion, the square root of the average power over the range of excitation frequencies is used as a measure of the tissue displacement. Then tissue strain is determined by the least squares estimation of the gradient of the displacement field. The computation of the power spectra of the time sequences can be implemented efficiently by using Welch's periodogram method with moving windows or with accumulative windows with a forgetting factor. Compared to the transfer function estimation originally used in VE, the computation of cross spectral densities is not needed, which saves both the memory and computational times. Phantom experiments demonstrate that the proposed method produces stable and operator-independent strain images with high signal-to-noise ratio in real time. This approach has been also tested on a few patient data of the prostate region, and the results are encouraging.
Positron emission particle tracking and its application to granular media
NASA Astrophysics Data System (ADS)
Parker, D. J.
2017-05-01
Positron emission particle tracking (PEPT) is a technique for tracking a single radioactively labelled particle. Accurate 3D tracking is possible even when the particle is moving at high speed inside a dense opaque system. In many cases, tracking a single particle within a granular system provides sufficient information to determine the time-averaged behaviour of the entire granular system. After a general introduction, this paper describes the detector systems (PET scanners and positron cameras) used to record PEPT data, the techniques used to label particles, and the algorithms used to process the data. This paper concentrates on the use of PEPT for studying granular systems: the focus is mainly on work at Birmingham, but reference is also made to work from other centres, and options for wider diversification are suggested.
A fast infrared scanning technique for nondestructive testing
NASA Astrophysics Data System (ADS)
Hartikainen, Jari
1989-04-01
A simple and fast thermal NDT measurement system is described and its usefulness is demonstrated using a honeycomb structure as a test sample. The sample is heated with a hot air jet and the surface temperature differences due to subsurface defects are detected with a single HgCdTe detector. An image of the sample is formed by scanning over the sample surface with a deflection mirror in the y direction while moving the sample in the x direction. The measurement time is typically 6 s per image and several images are averaged to improve signal to noise ratio. The main advantages of this system compared to conventional infrared camera techniques are considerably reduced cost and the ease with which the system can be modified to various applications.
Sitepu, Monika S; Kaewkungwal, Jaranit; Luplerdlop, Nathanej; Soonthornworasiri, Ngamphol; Silawan, Tassanee; Poungsombat, Supawadee; Lawpoolsri, Saranath
2013-03-01
This study aimed to describe the temporal patterns of dengue transmission in Jakarta from 2001 to 2010, using data from the national surveillance system. The Box-Jenkins forecasting technique was used to develop a seasonal autoregressive integrated moving average (SARIMA) model for the study period and subsequently applied to forecast DHF incidence in 2011 in Jakarta Utara, Jakarta Pusat, Jakarta Barat, and the municipalities of Jakarta Province. Dengue incidence in 2011, based on the forecasting model was predicted to increase from the previous year.
Modeling and simulation of dust behaviors behind a moving vehicle
NASA Astrophysics Data System (ADS)
Wang, Jingfang
Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust behaviors. In addition, I introduce a temporal smoothing technique to eliminate the jagged effect caused by large simulation time. Several algorithms are used to speed up the simulation. For example, pre-calculated tables and display lists are created to replace some of the most commonly used functions, scripts and processes. The performance study shows that both time and space costs of the algorithms are linear in the number of particles in the system. On a Silicon Graphics Octane, three vehicles with 20,000 particles run at 6-8 frames per second on average. This speed does not include the extra calculations of convergence of the numerical integration for fluid dynamics which usually takes about 4-5 minutes to achieve steady state.
Road traffic accidents prediction modelling: An analysis of Anambra State, Nigeria.
Ihueze, Chukwutoo C; Onwurah, Uchendu O
2018-03-01
One of the major problems in the world today is the rate of road traffic crashes and deaths on our roads. Majority of these deaths occur in low-and-middle income countries including Nigeria. This study analyzed road traffic crashes in Anambra State, Nigeria with the intention of developing accurate predictive models for forecasting crash frequency in the State using autoregressive integrated moving average (ARIMA) and autoregressive integrated moving average with explanatory variables (ARIMAX) modelling techniques. The result showed that ARIMAX model outperformed the ARIMA (1,1,1) model generated when their performances were compared using the lower Bayesian information criterion, mean absolute percentage error, root mean square error; and higher coefficient of determination (R-Squared) as accuracy measures. The findings of this study reveal that incorporating human, vehicle and environmental related factors in time series analysis of crash dataset produces a more robust predictive model than solely using aggregated crash count. This study contributes to the body of knowledge on road traffic safety and provides an approach to forecasting using many human, vehicle and environmental factors. The recommendations made in this study if applied will help in reducing the number of road traffic crashes in Nigeria. Copyright © 2017 Elsevier Ltd. All rights reserved.
A stochastic approach to noise modeling for barometric altimeters.
Sabatini, Angelo Maria; Genovese, Vincenzo
2013-11-18
The question whether barometric altimeters can be applied to accurately track human motions is still debated, since their measurement performance are rather poor due to either coarse resolution or drifting behavior problems. As a step toward accurate short-time tracking of changes in height (up to few minutes), we develop a stochastic model that attempts to capture some statistical properties of the barometric altimeter noise. The barometric altimeter noise is decomposed in three components with different physical origin and properties: a deterministic time-varying mean, mainly correlated with global environment changes, and a first-order Gauss-Markov (GM) random process, mainly accounting for short-term, local environment changes, the effects of which are prominent, respectively, for long-time and short-time motion tracking; an uncorrelated random process, mainly due to wideband electronic noise, including quantization noise. Autoregressive-moving average (ARMA) system identification techniques are used to capture the correlation structure of the piecewise stationary GM component, and to estimate its standard deviation, together with the standard deviation of the uncorrelated component. M-point moving average filters used alone or in combination with whitening filters learnt from ARMA model parameters are further tested in few dynamic motion experiments and discussed for their capability of short-time tracking small-amplitude, low-frequency motions.
The Performance of Multilevel Growth Curve Models under an Autoregressive Moving Average Process
ERIC Educational Resources Information Center
Murphy, Daniel L.; Pituch, Keenan A.
2009-01-01
The authors examined the robustness of multilevel linear growth curve modeling to misspecification of an autoregressive moving average process. As previous research has shown (J. Ferron, R. Dailey, & Q. Yi, 2002; O. Kwok, S. G. West, & S. B. Green, 2007; S. Sivo, X. Fan, & L. Witta, 2005), estimates of the fixed effects were unbiased, and Type I…
Using Baidu Search Index to Predict Dengue Outbreak in China
NASA Astrophysics Data System (ADS)
Liu, Kangkang; Wang, Tao; Yang, Zhicong; Huang, Xiaodong; Milinovich, Gabriel J.; Lu, Yi; Jing, Qinlong; Xia, Yao; Zhao, Zhengyang; Yang, Yang; Tong, Shilu; Hu, Wenbiao; Lu, Jiahai
2016-12-01
This study identified the possible threshold to predict dengue fever (DF) outbreaks using Baidu Search Index (BSI). Time-series classification and regression tree models based on BSI were used to develop a predictive model for DF outbreak in Guangzhou and Zhongshan, China. In the regression tree models, the mean autochthonous DF incidence rate increased approximately 30-fold in Guangzhou when the weekly BSI for DF at the lagged moving average of 1-3 weeks was more than 382. When the weekly BSI for DF at the lagged moving average of 1-5 weeks was more than 91.8, there was approximately 9-fold increase of the mean autochthonous DF incidence rate in Zhongshan. In the classification tree models, the results showed that when the weekly BSI for DF at the lagged moving average of 1-3 weeks was more than 99.3, there was 89.28% chance of DF outbreak in Guangzhou, while, in Zhongshan, when the weekly BSI for DF at the lagged moving average of 1-5 weeks was more than 68.1, the chance of DF outbreak rose up to 100%. The study indicated that less cost internet-based surveillance systems can be the valuable complement to traditional DF surveillance in China.
NASA Astrophysics Data System (ADS)
Dwi Nugroho, Kreshna; Pebrianto, Singgih; Arif Fatoni, Muhammad; Fatikhunnada, Alvin; Liyantono; Setiawan, Yudi
2017-01-01
Information on the area and spatial distribution of paddy field are needed to support sustainable agricultural and food security program. Mapping or distribution of cropping pattern paddy field is important to obtain sustainability paddy field area. It can be done by direct observation and remote sensing method. This paper discusses remote sensing for paddy field monitoring based on MODIS time series data. In time series MODIS data, difficult to direct classified of data, because of temporal noise. Therefore wavelet transform and moving average are needed as filter methods. The Objective of this study is to recognize paddy cropping pattern with wavelet transform and moving average in West Java using MODIS imagery (MOD13Q1) from 2001 to 2015 then compared between both of methods. The result showed the spatial distribution almost have the same cropping pattern. The accuracy of wavelet transform (75.5%) is higher than moving average (70.5%). Both methods showed that the majority of the cropping pattern in West Java have pattern paddy-fallow-paddy-fallow with various time planting. The difference of the planting schedule was occurs caused by the availability of irrigation water.
Capillary Electrophoresis Sensitivity Enhancement Based on Adaptive Moving Average Method.
Drevinskas, Tomas; Telksnys, Laimutis; Maruška, Audrius; Gorbatsova, Jelena; Kaljurand, Mihkel
2018-06-05
In the present work, we demonstrate a novel approach to improve the sensitivity of the "out of lab" portable capillary electrophoretic measurements. Nowadays, many signal enhancement methods are (i) underused (nonoptimal), (ii) overused (distorts the data), or (iii) inapplicable in field-portable instrumentation because of a lack of computational power. The described innovative migration velocity-adaptive moving average method uses an optimal averaging window size and can be easily implemented with a microcontroller. The contactless conductivity detection was used as a model for the development of a signal processing method and the demonstration of its impact on the sensitivity. The frequency characteristics of the recorded electropherograms and peaks were clarified. Higher electrophoretic mobility analytes exhibit higher-frequency peaks, whereas lower electrophoretic mobility analytes exhibit lower-frequency peaks. On the basis of the obtained data, a migration velocity-adaptive moving average algorithm was created, adapted, and programmed into capillary electrophoresis data-processing software. Employing the developed algorithm, each data point is processed depending on a certain migration time of the analyte. Because of the implemented migration velocity-adaptive moving average method, the signal-to-noise ratio improved up to 11 times for sampling frequency of 4.6 Hz and up to 22 times for sampling frequency of 25 Hz. This paper could potentially be used as a methodological guideline for the development of new smoothing algorithms that require adaptive conditions in capillary electrophoresis and other separation methods.
Lian, Yanyun; Song, Zhijian
2014-01-01
Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning, treatment planning, monitoring of therapy. However, manual tumor segmentation commonly used in clinic is time-consuming and challenging, and none of the existed automated methods are highly robust, reliable and efficient in clinic application. An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results. Based on the symmetry of human brain, we employed sliding-window technique and correlation coefficient to locate the tumor position. At first, the image to be segmented was normalized, rotated, denoised, and bisected. Subsequently, through vertical and horizontal sliding-windows technique in turn, that is, two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image, along with calculating of correlation coefficient of two windows, two windows with minimal correlation coefficient were obtained, and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor. At last, the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length, and threshold segmentation and morphological operations were used to acquire the final tumor region. The method was evaluated on 3D FSPGR brain MR images of 10 patients. As a result, the average ratio of correct location was 93.4% for 575 slices containing tumor, the average Dice similarity coefficient was 0.77 for one scan, and the average time spent on one scan was 40 seconds. An fully automated, simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use. Correlation coefficient is a new and effective feature for tumor location.
Maetz, B; Bodin, F; Abbou, R; Wilk, A; Bruant-Rodier, C
2013-12-01
Following the upsurge in cases of morbid obesity and bariatric surgery, there is after massive weight loss effects of the thorax in man such as pseudogynecomastia extremely poorly tolerated by patients. Treatment aims to correct the excess skin while optimizing the location and quality of scars. Turning our back on techniques derived from mammoplasty, we go into these major forms for mastectomy with grafting the areolo-mammelonar plate and resulting scar in L extended if needed until the axilla. From 2005 to 2011, we performed 12 mastectomies after massive weight loss (45 kg on average). Patients aged 19 to 64 had an average BMI of 29.2. In five patients, we had started the move by liposuction (190 cc average per side). The mastectomy was performed by placing the scar at the lower edge of the pectoralis major. The areolas previously harvested were placed on the axis of the graft within two to three centimeters above the scar. All patients were reviewed and evaluated in consultation questionnaire with an average follow up of 2 years (6 months-5 years). The average volume of resection was 560 g per side (55 g-2500 g), operative time 155 minutes. Complications consisted of hematoma requiring surgical revision and delayed wound healing in three over 1 month with partial areola necrosis. The overall patient satisfaction was excellent with no secondary correction request. In the major pseudogynecomastia, the option is taken immediately for a mastectomy technique which scar is located at the basis of the thorax and may include an axillary extension in L. It effectively corrects the large cutaneous and fat surplus and restores in one time a flat male chest. Satisfaction is high and patients are no more ashamed to expose their chest. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
An improved moving average technical trading rule
NASA Astrophysics Data System (ADS)
Papailias, Fotis; Thomakos, Dimitrios D.
2015-06-01
This paper proposes a modified version of the widely used price and moving average cross-over trading strategies. The suggested approach (presented in its 'long only' version) is a combination of cross-over 'buy' signals and a dynamic threshold value which acts as a dynamic trailing stop. The trading behaviour and performance from this modified strategy are different from the standard approach with results showing that, on average, the proposed modification increases the cumulative return and the Sharpe ratio of the investor while exhibiting smaller maximum drawdown and smaller drawdown duration than the standard strategy.
Ambient temperature and biomarkers of heart failure: a repeated measures analysis.
Wilker, Elissa H; Yeh, Gloria; Wellenius, Gregory A; Davis, Roger B; Phillips, Russell S; Mittleman, Murray A
2012-08-01
Extreme temperatures have been associated with hospitalization and death among individuals with heart failure, but few studies have explored the underlying mechanisms. We hypothesized that outdoor temperature in the Boston, Massachusetts, area (1- to 4-day moving averages) would be associated with higher levels of biomarkers of inflammation and myocyte injury in a repeated-measures study of individuals with stable heart failure. We analyzed data from a completed clinical trial that randomized 100 patients to 12 weeks of tai chi classes or to time-matched education control. B-type natriuretic peptide (BNP), C-reactive protein (CRP), and tumor necrosis factor (TNF) were measured at baseline, 6 weeks, and 12 weeks. Endothelin-1 was measured at baseline and 12 weeks. We used fixed effects models to evaluate associations with measures of temperature that were adjusted for time-varying covariates. Higher apparent temperature was associated with higher levels of BNP beginning with 2-day moving averages and reached statistical significance for 3- and 4-day moving averages. CRP results followed a similar pattern but were delayed by 1 day. A 5°C change in 3- and 4-day moving averages of apparent temperature was associated with 11.3% [95% confidence interval (CI): 1.1, 22.5; p = 0.03) and 11.4% (95% CI: 1.2, 22.5; p = 0.03) higher BNP. A 5°C change in the 4-day moving average of apparent temperature was associated with 21.6% (95% CI: 2.5, 44.2; p = 0.03) higher CRP. No clear associations with TNF or endothelin-1 were observed. Among patients undergoing treatment for heart failure, we observed positive associations between temperature and both BNP and CRP-predictors of heart failure prognosis and severity.
Pridemore, William Alex; Trahan, Adam; Chamlin, Mitchell B
2009-12-01
There is substantial evidence of detrimental psychological sequelae following disasters, including terrorist attacks. The effect of these events on extreme responses such as suicide, however, is unclear. We tested competing hypotheses about such effects by employing autoregressive integrated moving average techniques to model the impact of September 11 and the Oklahoma City bombing on monthly suicide counts at the local, state, and national level. Unlike prior studies that provided conflicting evidence, rigorous time series techniques revealed no support for an increase or decrease in suicides following these events. We conclude that while terrorist attacks produce subsequent psychological morbidity and may affect self and collective efficacy well beyond their immediate impact, these effects are not strong enough to influence levels of suicide mortality.
NASA Astrophysics Data System (ADS)
Singh, Navneet K.; Singh, Asheesh K.; Tripathy, Manoj
2012-05-01
For power industries electricity load forecast plays an important role for real-time control, security, optimal unit commitment, economic scheduling, maintenance, energy management, and plant structure planning
NASA Technical Reports Server (NTRS)
Pongratz, M.
1972-01-01
Results from a Nike-Tomahawk sounding rocket flight launched from Fort Churchill are presented. The rocket was launched into a breakup aurora at magnetic local midnight on 21 March 1968. The rocket was instrumented to measure electrons with an electrostatic analyzer electron spectrometer which made 29 measurements in the energy interval 0.5 KeV to 30 KeV. Complete energy spectra were obtained at a rate of 10/sec. Pitch angle information is presented via 3 computed average per rocket spin. The dumped electron average corresponds to averages over electrons moving nearly parallel to the B vector. The mirroring electron average corresponds to averages over electrons moving nearly perpendicular to the B vector. The average was also computed over the entire downward hemisphere (the precipitated electron average). The observations were obtained in an altitude range of 10 km at 230 km altitude.
Using dynamic interferometric synthetic aperature radar (InSAR) to image fast-moving surface waves
Vincent, Paul
2005-06-28
A new differential technique and system for imaging dynamic (fast moving) surface waves using Dynamic Interferometric Synthetic Aperture Radar (InSAR) is introduced. This differential technique and system can sample the fast-moving surface displacement waves from a plurality of moving platform positions in either a repeat-pass single-antenna or a single-pass mode having a single-antenna dual-phase receiver or having dual physically separate antennas, and reconstruct a plurality of phase differentials from a plurality of platform positions to produce a series of desired interferometric images of the fast moving waves.
Computational aeroelasticity using a pressure-based solver
NASA Astrophysics Data System (ADS)
Kamakoti, Ramji
A computational methodology for performing fluid-structure interaction computations for three-dimensional elastic wing geometries is presented. The flow solver used is based on an unsteady Reynolds-Averaged Navier-Stokes (RANS) model. A well validated k-ε turbulence model with wall function treatment for near wall region was used to perform turbulent flow calculations. Relative merits of alternative flow solvers were investigated. The predictor-corrector-based Pressure Implicit Splitting of Operators (PISO) algorithm was found to be computationally economic for unsteady flow computations. Wing structure was modeled using Bernoulli-Euler beam theory. A fully implicit time-marching scheme (using the Newmark integration method) was used to integrate the equations of motion for structure. Bilinear interpolation and linear extrapolation techniques were used to transfer necessary information between fluid and structure solvers. Geometry deformation was accounted for by using a moving boundary module. The moving grid capability was based on a master/slave concept and transfinite interpolation techniques. Since computations were performed on a moving mesh system, the geometric conservation law must be preserved. This is achieved by appropriately evaluating the Jacobian values associated with each cell. Accurate computation of contravariant velocities for unsteady flows using the momentum interpolation method on collocated, curvilinear grids was also addressed. Flutter computations were performed for the AGARD 445.6 wing at subsonic, transonic and supersonic Mach numbers. Unsteady computations were performed at various dynamic pressures to predict the flutter boundary. Results showed favorable agreement of experiment and previous numerical results. The computational methodology exhibited capabilities to predict both qualitative and quantitative features of aeroelasticity.
Kumaraswamy autoregressive moving average models for double bounded environmental data
NASA Astrophysics Data System (ADS)
Bayer, Fábio Mariano; Bayer, Débora Missio; Pumi, Guilherme
2017-12-01
In this paper we introduce the Kumaraswamy autoregressive moving average models (KARMA), which is a dynamic class of models for time series taking values in the double bounded interval (a,b) following the Kumaraswamy distribution. The Kumaraswamy family of distribution is widely applied in many areas, especially hydrology and related fields. Classical examples are time series representing rates and proportions observed over time. In the proposed KARMA model, the median is modeled by a dynamic structure containing autoregressive and moving average terms, time-varying regressors, unknown parameters and a link function. We introduce the new class of models and discuss conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis and forecasting. In particular, we provide closed-form expressions for the conditional score vector and conditional Fisher information matrix. An application to environmental real data is presented and discussed.
NASA Astrophysics Data System (ADS)
Lahmiri, Salim
2016-02-01
Multiresolution analysis techniques including continuous wavelet transform, empirical mode decomposition, and variational mode decomposition are tested in the context of interest rate next-day variation prediction. In particular, multiresolution analysis techniques are used to decompose interest rate actual variation and feedforward neural network for training and prediction. Particle swarm optimization technique is adopted to optimize its initial weights. For comparison purpose, autoregressive moving average model, random walk process and the naive model are used as main reference models. In order to show the feasibility of the presented hybrid models that combine multiresolution analysis techniques and feedforward neural network optimized by particle swarm optimization, we used a set of six illustrative interest rates; including Moody's seasoned Aaa corporate bond yield, Moody's seasoned Baa corporate bond yield, 3-Month, 6-Month and 1-Year treasury bills, and effective federal fund rate. The forecasting results show that all multiresolution-based prediction systems outperform the conventional reference models on the criteria of mean absolute error, mean absolute deviation, and root mean-squared error. Therefore, it is advantageous to adopt hybrid multiresolution techniques and soft computing models to forecast interest rate daily variations as they provide good forecasting performance.
NASA Astrophysics Data System (ADS)
Funamizu, Hideki; Onodera, Yusei; Aizu, Yoshihisa
2018-05-01
In this study, we report color quality improvement of reconstructed images in color digital holography using the speckle method and the spectral estimation. In this technique, an object is illuminated by a speckle field and then an object wave is produced, while a plane wave is used as a reference wave. For three wavelengths, the interference patterns of two coherent waves are recorded as digital holograms on an image sensor. Speckle fields are changed by moving a ground glass plate in an in-plane direction, and a number of holograms are acquired to average the reconstructed images. After the averaging process of images reconstructed from multiple holograms, we use the Wiener estimation method for obtaining spectral transmittance curves in reconstructed images. The color reproducibility in this method is demonstrated and evaluated using a Macbeth color chart film and staining cells of onion.
Wang, Yiwen; Wang, Fang; Xu, Kai; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang
2015-05-01
Reinforcement learning (RL)-based brain machine interfaces (BMIs) enable the user to learn from the environment through interactions to complete the task without desired signals, which is promising for clinical applications. Previous studies exploited Q-learning techniques to discriminate neural states into simple directional actions providing the trial initial timing. However, the movements in BMI applications can be quite complicated, and the action timing explicitly shows the intention when to move. The rich actions and the corresponding neural states form a large state-action space, imposing generalization difficulty on Q-learning. In this paper, we propose to adopt attention-gated reinforcement learning (AGREL) as a new learning scheme for BMIs to adaptively decode high-dimensional neural activities into seven distinct movements (directional moves, holdings and resting) due to the efficient weight-updating. We apply AGREL on neural data recorded from M1 of a monkey to directly predict a seven-action set in a time sequence to reconstruct the trajectory of a center-out task. Compared to Q-learning techniques, AGREL could improve the target acquisition rate to 90.16% in average with faster convergence and more stability to follow neural activity over multiple days, indicating the potential to achieve better online decoding performance for more complicated BMI tasks.
Neural net forecasting for geomagnetic activity
NASA Technical Reports Server (NTRS)
Hernandez, J. V.; Tajima, T.; Horton, W.
1993-01-01
We use neural nets to construct nonlinear models to forecast the AL index given solar wind and interplanetary magnetic field (IMF) data. We follow two approaches: (1) the state space reconstruction approach, which is a nonlinear generalization of autoregressive-moving average models (ARMA) and (2) the nonlinear filter approach, which reduces to a moving average model (MA) in the linear limit. The database used here is that of Bargatze et al. (1985).
Queues with Choice via Delay Differential Equations
NASA Astrophysics Data System (ADS)
Pender, Jamol; Rand, Richard H.; Wesson, Elizabeth
Delay or queue length information has the potential to influence the decision of a customer to join a queue. Thus, it is imperative for managers of queueing systems to understand how the information that they provide will affect the performance of the system. To this end, we construct and analyze two two-dimensional deterministic fluid models that incorporate customer choice behavior based on delayed queue length information. In the first fluid model, customers join each queue according to a Multinomial Logit Model, however, the queue length information the customer receives is delayed by a constant Δ. We show that the delay can cause oscillations or asynchronous behavior in the model based on the value of Δ. In the second model, customers receive information about the queue length through a moving average of the queue length. Although it has been shown empirically that giving patients moving average information causes oscillations and asynchronous behavior to occur in U.S. hospitals, we analytically and mathematically show for the first time that the moving average fluid model can exhibit oscillations and determine their dependence on the moving average window. Thus, our analysis provides new insight on how operators of service systems should report queue length information to customers and how delayed information can produce unwanted system dynamics.
Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.
Biswas, Paritosh K; Islam, Md Zohorul; Debnath, Nitish C; Yamage, Mat
2014-01-01
The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1) is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s) as inputs did not improve the performance of any multivariable models, but relative humidity (RH) was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA) order at lag 1 month is considered.
Towards an optimal flow: Density-of-states-informed replica-exchange simulations
Vogel, Thomas; Perez, Danny
2015-11-05
Here we learn that replica exchange (RE) is one of the most popular enhanced-sampling simulations technique in use today. Despite widespread successes, RE simulations can sometimes fail to converge in practical amounts of time, e.g., when sampling around phase transitions, or when a few hard-to-find configurations dominate the statistical averages. We introduce a generalized RE scheme, density-of-states-informed RE, that addresses some of these challenges. The key feature of our approach is to inform the simulation with readily available, but commonly unused, information on the density of states of the system as the RE simulation proceeds. This enables two improvements, namely,more » the introduction of resampling moves that actively move the system towards equilibrium and the continual adaptation of the optimal temperature set. As a consequence of these two innovations, we show that the configuration flow in temperature space is optimized and that the overall convergence of RE simulations can be dramatically accelerated.« less
Monitoring Poisson observations using combined applications of Shewhart and EWMA charts
NASA Astrophysics Data System (ADS)
Abujiya, Mu'azu Ramat
2017-11-01
The Shewhart and exponentially weighted moving average (EWMA) charts for nonconformities are the most widely used procedures of choice for monitoring Poisson observations in modern industries. Individually, the Shewhart EWMA charts are only sensitive to large and small shifts, respectively. To enhance the detection abilities of the two schemes in monitoring all kinds of shifts in Poisson count data, this study examines the performance of combined applications of the Shewhart, and EWMA Poisson control charts. Furthermore, the study proposes modifications based on well-structured statistical data collection technique, ranked set sampling (RSS), to detect shifts in the mean of a Poisson process more quickly. The relative performance of the proposed Shewhart-EWMA Poisson location charts is evaluated in terms of the average run length (ARL), standard deviation of the run length (SDRL), median run length (MRL), average ratio ARL (ARARL), average extra quadratic loss (AEQL) and performance comparison index (PCI). Consequently, all the new Poisson control charts based on RSS method are generally more superior than most of the existing schemes for monitoring Poisson processes. The use of these combined Shewhart-EWMA Poisson charts is illustrated with an example to demonstrate the practical implementation of the design procedure.
MARD—A moving average rose diagram application for the geosciences
NASA Astrophysics Data System (ADS)
Munro, Mark A.; Blenkinsop, Thomas G.
2012-12-01
MARD 1.0 is a computer program for generating smoothed rose diagrams by using a moving average, which is designed for use across the wide range of disciplines encompassed within the Earth Sciences. Available in MATLAB®, Microsoft® Excel and GNU Octave formats, the program is fully compatible with both Microsoft® Windows and Macintosh operating systems. Each version has been implemented in a user-friendly way that requires no prior experience in programming with the software. MARD conducts a moving average smoothing, a form of signal processing low-pass filter, upon the raw circular data according to a set of pre-defined conditions selected by the user. This form of signal processing filter smoothes the angular dataset, emphasising significant circular trends whilst reducing background noise. Customisable parameters include whether the data is uni- or bi-directional, the angular range (or aperture) over which the data is averaged, and whether an unweighted or weighted moving average is to be applied. In addition to the uni- and bi-directional options, the MATLAB® and Octave versions also possess a function for plotting 2-dimensional dips/pitches in a single, lower, hemisphere. The rose diagrams from each version are exportable as one of a selection of common graphical formats. Frequently employed statistical measures that determine the vector mean, mean resultant (or length), circular standard deviation and circular variance are also included. MARD's scope is demonstrated via its application to a variety of datasets within the Earth Sciences.
[Application of bilateral direct anterior approach total hip arthroplasty: a report of 22 cases].
Tang, J; Lv, M; Zhou, Y X; Zhang, J
2017-04-18
To analyze the operation technique and the methods to avoid early complications on the learning curve for bilateral direct anterior approach (DAA) total hip arthroplasty (THA). We retrospectively studied a series of continued cases with bilateral avascular necrosis of the femoral head (AVN) or degenerative dysplastic hip and rheumatoid arthritis that were treated by DAA THA in Beijing Jishuitan Hospital. A total of 22 patients with 44 hips were analyzed from June 2014 to August 2016 in this study. There were 17 males and 5 females, and the median age was 48 years (range: 34-67 years). All the surgery was done by DAA method by two senior surgeons. The clinic characters, early surgery treatment results and complications were analyzed. We used the cementless stems in all the cases. The average operating time was (167±23) min; the average blood loss was (775±300) mL;the blood transfusion was in average (327±341) mL; the wound drainage in average was (111±73) mL. Most of the patients could move out of the bed by themselves on the first day after operation, 5 patients could walk without crutches on the first operating day, and 13 patients could squat on the third days after operation. The patients were discharged averagely 4 days after operation. We followed up all the patients for averagely 16 months (range: 8-24 months). There was no loosening or failure case in the latest follow up. In the study, 2 patients had great trochanter fracture, 2 patients had thigh pain, 4 patients had lateral femoral cutaneous nerve palsy, and 3 patients had muscle damage. The Harris scores were improved from 29±8 preoperatively to 90±3 postoperatively (P<0.01). The DAA THA can achieve faster recovery and flexible hip joint after operation. However it is a kind of surgery with high technique demanding. Carefully selected patients, and skilled technique, can help the surgeon avoid the early complications. It is associated with high complication rate in the learning curve for bilateral DAA THA.
Lee, Ho; Fahimian, Benjamin P; Xing, Lei
2017-03-21
This paper proposes a binary moving-blocker (BMB)-based technique for scatter correction in cone-beam computed tomography (CBCT). In concept, a beam blocker consisting of lead strips, mounted in front of the x-ray tube, moves rapidly in and out of the beam during a single gantry rotation. The projections are acquired in alternating phases of blocked and unblocked cone beams, where the blocked phase results in a stripe pattern in the width direction. To derive the scatter map from the blocked projections, 1D B-Spline interpolation/extrapolation is applied by using the detected information in the shaded regions. The scatter map of the unblocked projections is corrected by averaging two scatter maps that correspond to their adjacent blocked projections. The scatter-corrected projections are obtained by subtracting the corresponding scatter maps from the projection data and are utilized to generate the CBCT image by a compressed-sensing (CS)-based iterative reconstruction algorithm. Catphan504 and pelvis phantoms were used to evaluate the method's performance. The proposed BMB-based technique provided an effective method to enhance the image quality by suppressing scatter-induced artifacts, such as ring artifacts around the bowtie area. Compared to CBCT without a blocker, the spatial nonuniformity was reduced from 9.1% to 3.1%. The root-mean-square error of the CT numbers in the regions of interest (ROIs) was reduced from 30.2 HU to 3.8 HU. In addition to high resolution, comparable to that of the benchmark image, the CS-based reconstruction also led to a better contrast-to-noise ratio in seven ROIs. The proposed technique enables complete scatter-corrected CBCT imaging with width-truncated projections and allows reducing the acquisition time to approximately half. This work may have significant implications for image-guided or adaptive radiation therapy, where CBCT is often used.
NASA Astrophysics Data System (ADS)
Lee, Ho; Fahimian, Benjamin P.; Xing, Lei
2017-03-01
This paper proposes a binary moving-blocker (BMB)-based technique for scatter correction in cone-beam computed tomography (CBCT). In concept, a beam blocker consisting of lead strips, mounted in front of the x-ray tube, moves rapidly in and out of the beam during a single gantry rotation. The projections are acquired in alternating phases of blocked and unblocked cone beams, where the blocked phase results in a stripe pattern in the width direction. To derive the scatter map from the blocked projections, 1D B-Spline interpolation/extrapolation is applied by using the detected information in the shaded regions. The scatter map of the unblocked projections is corrected by averaging two scatter maps that correspond to their adjacent blocked projections. The scatter-corrected projections are obtained by subtracting the corresponding scatter maps from the projection data and are utilized to generate the CBCT image by a compressed-sensing (CS)-based iterative reconstruction algorithm. Catphan504 and pelvis phantoms were used to evaluate the method’s performance. The proposed BMB-based technique provided an effective method to enhance the image quality by suppressing scatter-induced artifacts, such as ring artifacts around the bowtie area. Compared to CBCT without a blocker, the spatial nonuniformity was reduced from 9.1% to 3.1%. The root-mean-square error of the CT numbers in the regions of interest (ROIs) was reduced from 30.2 HU to 3.8 HU. In addition to high resolution, comparable to that of the benchmark image, the CS-based reconstruction also led to a better contrast-to-noise ratio in seven ROIs. The proposed technique enables complete scatter-corrected CBCT imaging with width-truncated projections and allows reducing the acquisition time to approximately half. This work may have significant implications for image-guided or adaptive radiation therapy, where CBCT is often used.
Payami, Haydeh; Kay, Denise M; Zabetian, Cyrus P; Schellenberg, Gerard D; Factor, Stewart A; McCulloch, Colin C
2010-01-01
Age-related variation in marker frequency can be a confounder in association studies, leading to both false-positive and false-negative findings and subsequently to inconsistent reproducibility. We have developed a simple method, based on a novel extension of moving average plots (MAP), which allows investigators to inspect the frequency data for hidden age-related variations. MAP uses the standard case-control association data and generates a birds-eye view of the frequency distributions across the age spectrum; a picture in which one can see if, how, and when the marker frequencies in cases differ from that in controls. The marker can be specified as an allele, genotype, haplotype, or environmental factor; and age can be age-at-onset, age when subject was last known to be unaffected, or duration of exposure. Signature patterns that emerge can help distinguish true disease associations from spurious associations due to age effects, age-varying associations from associations that are uniform across all ages, and associations with risk from associations with age-at-onset. Utility of MAP is illustrated by application to genetic and epidemiological association data for Alzheimer's and Parkinson's disease. MAP is intended as a descriptive method, to complement standard statistical techniques. Although originally developed for age patterns, MAP is equally useful for visualizing any quantitative trait.
NASA Technical Reports Server (NTRS)
Edwards, M. H.; Arvidson, R. E.; Guinness, E. A.
1984-01-01
The problem of displaying information on the seafloor morphology is attacked by utilizing digital image processing techniques to generate images for Seabeam data covering three young seamounts on the eastern flank of the East Pacific Rise. Errors in locations between crossing tracks are corrected by interactively identifying features and translating tracks relative to a control track. Spatial interpolation techniques using moving averages are used to interpolate between gridded depth values to produce images in shaded relief and color-coded forms. The digitally processed images clarify the structural control on seamount growth and clearly show the lateral extent of volcanic materials, including the distribution and fault control of subsidiary volcanic constructional features. The image presentations also clearly show artifacts related to both residual navigational errors and to depth or location differences that depend on ship heading relative to slope orientation in regions with steep slopes.
Evaluation of harmonic direction-finding systems for detecting locomotor activity
Boyarski, V.L.; Rodda, G.H.; Savidge, J.A.
2007-01-01
We conducted a physical simulation experiment to test the efficacy of harmonic direction finding for remotely detecting locomotor activity in animals. The ability to remotely detect movement helps to avoid disturbing natural movement behavior. Remote detection implies that the observer can sense only a change in signal bearing. In our simulated movements, small changes in bearing (<5.7??) were routinely undetectable. Detectability improved progressively with the size of the simulated animal movement. The average (??SD) of reflector tag movements correctly detected for 5 observers was 93.9 ?? 12.8% when the tag was moved ???11.5??; most observers correctly detected tag movements ???20.1??. Given our data, one can assess whether the technique will be effective for detecting movements at an observation distance appropriate for the study organism. We recommend that both habitat and behavior of the organism be taken into consideration when contemplating use of this technique for detecting locomotion.
Alaulamie, Arwa A; Baral, Susil; Johnson, Samuel C; Richardson, Hugh H
2017-01-01
An optical nanothermometer technique based on laser trapping, moving and targeted attaching an erbium oxide nanoparticle cluster is developed to measure the local temperature. The authors apply this new nanoscale temperature measuring technique (limited by the size of the nanoparticles) to measure the temperature of vapor nucleation in water. Vapor nucleation is observed after superheating water above the boiling point for degassed and nondegassed water. The average nucleation temperature for water without gas is 560 K but this temperature is lowered by 100 K when gas is introduced into the water. The authors are able to measure the temperature inside the bubble during bubble formation and find that the temperature inside the bubble spikes to over 1000 K because the heat source (optically-heated nanorods) is no longer connected to liquid water and heat dissipation is greatly reduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Qiongge; Chan, Maria F
2017-01-01
Over half of cancer patients receive radiotherapy (RT) as partial or full cancer treatment. Daily quality assurance (QA) of RT in cancer treatment closely monitors the performance of the medical linear accelerator (Linac) and is critical for continuous improvement of patient safety and quality of care. Cumulative longitudinal QA measurements are valuable for understanding the behavior of the Linac and allow physicists to identify trends in the output and take preventive actions. In this study, artificial neural networks (ANNs) and autoregressive moving average (ARMA) time-series prediction modeling techniques were both applied to 5-year daily Linac QA data. Verification tests and other evaluations were then performed for all models. Preliminary results showed that ANN time-series predictive modeling has more advantages over ARMA techniques for accurate and effective applicability in the dosimetry and QA field. © 2016 New York Academy of Sciences.
Wavelet regression model in forecasting crude oil price
NASA Astrophysics Data System (ADS)
Hamid, Mohd Helmie; Shabri, Ani
2017-05-01
This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.
Artificially intelligent recognition of Arabic speaker using voice print-based local features
NASA Astrophysics Data System (ADS)
Mahmood, Awais; Alsulaiman, Mansour; Muhammad, Ghulam; Akram, Sheeraz
2016-11-01
Local features for any pattern recognition system are based on the information extracted locally. In this paper, a local feature extraction technique was developed. This feature was extracted in the time-frequency plain by taking the moving average on the diagonal directions of the time-frequency plane. This feature captured the time-frequency events producing a unique pattern for each speaker that can be viewed as a voice print of the speaker. Hence, we referred to this technique as voice print-based local feature. The proposed feature was compared to other features including mel-frequency cepstral coefficient (MFCC) for speaker recognition using two different databases. One of the databases used in the comparison is a subset of an LDC database that consisted of two short sentences uttered by 182 speakers. The proposed feature attained 98.35% recognition rate compared to 96.7% for MFCC using the LDC subset.
Are pound and euro the same currency?
NASA Astrophysics Data System (ADS)
Matsushita, Raul; Gleria, Iram; Figueiredo, Annibal; da Silva, Sergio
2007-08-01
Based on long-range dependence, some analysts claim that the exchange rate time series of the pound sterling and of an artificially extended euro have been locked together for years despite daily changes [M. Ausloos, K. Ivanova, Physica A 286 (2000) 353; K. Ivanova, M. Ausloos, False EUR exchange rates vs DKK, CHF, JPY and USD. What is a strong currency? in: H. Takayasu (Ed.), Empirical Sciences in Financial Fluctuations: The Advent of Econophysics, Springer-Verlag, Berlin, 2002, pp. 62 76]. They conclude that pound and euro are in practice the same currency. We assess the long-range dependence over time through Hurst exponents of pound dollar and extended euro dollar exchange rates employing three alternative techniques, namely rescaled range analysis, detrended fluctuation analysis, and detrended moving average. We find the result above (which is based on detrended fluctuation analysis) not to be robust to the changing techniques and parameterizing.
1990-11-01
1 = Q- 1 - 1 QlaaQ- 1.1 + a’Q-1a This is a simple case of a general formula called Woodbury’s formula by some authors; see, for example, Phadke and...1 2. The First-Order Moving Average Model ..... .................. 3. Some Approaches to the Iterative...the approximate likelihood function in some time series models. Useful suggestions have been the Cholesky decomposition of the covariance matrix and
Forecasting Instability Indicators in the Horn of Africa
2008-03-01
further than 2 (Makridakis, et al, 1983, 359). 2-32 Autoregressive Integrated Moving Average ( ARIMA ) Model . Similar to the ARMA model except for...stationary process. ARIMA models are described as ARIMA (p,d,q), where p is the order of the autoregressive process, d is the degree of the...differential process, and q is the order of the moving average process. The ARMA (1,1) model shown above is equivalent to an ARIMA (1,0,1) model . An ARIMA
Decadal Trends of Atlantic Basin Tropical Cyclones (1950-1999)
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2001-01-01
Ten-year moving averages of the seasonal rates for 'named storms,' tropical storms, hurricanes, and major (or intense) hurricanes in the Atlantic basin suggest that the present epoch is one of enhanced activity, marked by seasonal rates typically equal to or above respective long-term median rates. As an example, the 10-year moving average of the seasonal rates for named storms is now higher than for any previous year over the past 50 years, measuring 10.65 in 1994, or 2.65 units higher than its median rate of 8. Also, the 10-year moving average for tropical storms has more than doubled, from 2.15 in 1955 to 4.60 in 1992, with 16 of the past 20 years having a seasonal rate of three or more (the median rate). For hurricanes and major hurricanes, their respective 10-year moving averages turned upward, rising above long-term median rates (5.5 and 2, respectively) in 1992, a response to the abrupt increase in seasonal rates that occurred in 1995. Taken together, the outlook for future hurricane seasons is for all categories of Atlantic basin tropical cyclones to have seasonal rates at levels equal to or above long-term median rates, especially during non-El Nino-related seasons. Only during El Nino-related seasons does it appear likely that seasonal rates might be slightly diminished.
Collell, Guillem; Prelec, Drazen; Patil, Kaustubh R
2018-01-31
Class imbalance presents a major hurdle in the application of classification methods. A commonly taken approach is to learn ensembles of classifiers using rebalanced data. Examples include bootstrap averaging (bagging) combined with either undersampling or oversampling of the minority class examples. However, rebalancing methods entail asymmetric changes to the examples of different classes, which in turn can introduce their own biases. Furthermore, these methods often require specifying the performance measure of interest a priori, i.e., before learning. An alternative is to employ the threshold moving technique, which applies a threshold to the continuous output of a model, offering the possibility to adapt to a performance measure a posteriori , i.e., a plug-in method. Surprisingly, little attention has been paid to this combination of a bagging ensemble and threshold-moving. In this paper, we study this combination and demonstrate its competitiveness. Contrary to the other resampling methods, we preserve the natural class distribution of the data resulting in well-calibrated posterior probabilities. Additionally, we extend the proposed method to handle multiclass data. We validated our method on binary and multiclass benchmark data sets by using both, decision trees and neural networks as base classifiers. We perform analyses that provide insights into the proposed method.
Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers.
Ohta, Aaron T; Garcia, Maurice; Valley, Justin K; Banie, Lia; Hsu, Hsan-Yin; Jamshidi, Arash; Neale, Steven L; Lue, Tom; Wu, Ming C
2010-12-07
Optoelectronic tweezers was used to manipulate human spermatozoa to determine whether their response to OET predicts sperm viability among non-motile sperm. We review the electro-physical basis for how live and dead human spermatozoa respond to OET. The maximal velocity that non-motile spermatozoa could be induced to move by attraction or repulsion to a moving OET field was measured. Viable sperm are attracted to OET fields and can be induced to move at an average maximal velocity of 8.8 ± 4.2 µm s(-1), while non-viable sperm are repelled to OET, and are induced to move at an average maximal velocity of -0.8 ± 1.0 µm s(-1). Manipulation of the sperm using OET does not appear to result in increased DNA fragmentation, making this a potential method by which to identify viable non-motile sperm for assisted reproductive technologies.
Transport of the moving barrier driven by chiral active particles
NASA Astrophysics Data System (ADS)
Liao, Jing-jing; Huang, Xiao-qun; Ai, Bao-quan
2018-03-01
Transport of a moving V-shaped barrier exposed to a bath of chiral active particles is investigated in a two-dimensional channel. Due to the chirality of active particles and the transversal asymmetry of the barrier position, active particles can power and steer the directed transport of the barrier in the longitudinal direction. The transport of the barrier is determined by the chirality of active particles. The moving barrier and active particles move in the opposite directions. The average velocity of the barrier is much larger than that of active particles. There exist optimal parameters (the chirality, the self-propulsion speed, the packing fraction, and the channel width) at which the average velocity of the barrier takes its maximal value. In particular, tailoring the geometry of the barrier and the active concentration provides novel strategies to control the transport properties of micro-objects or cargoes in an active medium.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1989-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of partial differential equation solutions in the least squares norm.
Optimal moving grids for time-dependent partial differential equations
NASA Technical Reports Server (NTRS)
Wathen, A. J.
1992-01-01
Various adaptive moving grid techniques for the numerical solution of time-dependent partial differential equations were proposed. The precise criterion for grid motion varies, but most techniques will attempt to give grids on which the solution of the partial differential equation can be well represented. Moving grids are investigated on which the solutions of the linear heat conduction and viscous Burgers' equation in one space dimension are optimally approximated. Precisely, the results of numerical calculations of optimal moving grids for piecewise linear finite element approximation of PDE solutions in the least-squares norm are reported.
[A new kinematics method of determing elbow rotation axis and evaluation of its feasibility].
Han, W; Song, J; Wang, G Z; Ding, H; Li, G S; Gong, M Q; Jiang, X Y; Wang, M Y
2016-04-18
To study a new positioning method of elbow external fixation rotation axis, and to evaluate its feasibility. Four normal adult volunteers and six Sawbone elbow models were brought into this experiment. The kinematic data of five elbow flexion were collected respectively by optical positioning system. The rotation axes of the elbow joints were fitted by the least square method. The kinematic data and fitting results were visually displayed. According to the fitting results, the average moving planes and rotation axes were calculated. Thus, the rotation axes of new kinematic methods were obtained. By using standard clinical methods, the entrance and exit points of rotation axes of six Sawbone elbow models were located under X-ray. And The kirschner wires were placed as the representatives of rotation axes using traditional positioning methods. Then, the entrance point deviation, the exit point deviation and the angle deviation of two kinds of located rotation axes were compared. As to the four volunteers, the indicators represented circular degree and coplanarity of elbow flexion movement trajectory of each volunteer were both about 1 mm. All the distance deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 3 mm. All the angle deviations of the moving axes to the average moving rotation axes of the five volunteers were less than 5°. As to the six Sawbone models, the average entrance point deviations, the average exit point deviations and the average angle deviations of two different rotation axes determined by two kinds of located methods were respectively 1.697 2 mm, 1.838 3 mm and 1.321 7°. All the deviations were very small. They were all in an acceptable range of clinical practice. The values that represent circular degree and coplanarity of volunteer's elbow single curvature movement trajectory are very small. The result shows that the elbow single curvature movement can be regarded as the approximate fixed axis movement. The new method can replace the traditional method in accuracy. It can make up the deficiency of the traditional fixed axis method.
Modeling methodology for MLS range navigation system errors using flight test data
NASA Technical Reports Server (NTRS)
Karmali, M. S.; Phatak, A. V.
1982-01-01
Flight test data was used to develop a methodology for modeling MLS range navigation system errors. The data used corresponded to the constant velocity and glideslope approach segment of a helicopter landing trajectory. The MLS range measurement was assumed to consist of low frequency and random high frequency components. The random high frequency component was extracted from the MLS range measurements. This was done by appropriate filtering of the range residual generated from a linearization of the range profile for the final approach segment. This range navigation system error was then modeled as an autoregressive moving average (ARMA) process. Maximum likelihood techniques were used to identify the parameters of the ARMA process.
ERIC Educational Resources Information Center
Gaines, Gale F.
Focused state efforts have helped teacher salaries in Southern Regional Education Board (SREB) states move toward the national average. Preliminary 2000-01 estimates put SREB's average teacher salary at its highest point in 22 years compared to the national average. The SREB average teacher salary is approximately 90 percent of the national…
Mechanistic approach to generalized technical analysis of share prices and stock market indices
NASA Astrophysics Data System (ADS)
Ausloos, M.; Ivanova, K.
2002-05-01
Classical technical analysis methods of stock evolution are recalled, i.e. the notion of moving averages and momentum indicators. The moving averages lead to define death and gold crosses, resistance and support lines. Momentum indicators lead the price trend, thus give signals before the price trend turns over. The classical technical analysis investment strategy is thereby sketched. Next, we present a generalization of these tricks drawing on physical principles, i.e. taking into account not only the price of a stock but also the volume of transactions. The latter becomes a time dependent generalized mass. The notion of pressure, acceleration and force are deduced. A generalized (kinetic) energy is easily defined. It is understood that the momentum indicators take into account the sign of the fluctuations, while the energy is geared toward the absolute value of the fluctuations. They have different patterns which are checked by searching for the crossing points of their respective moving averages. The case of IBM evolution over 1990-2000 is used for illustrations.
An impact analysis of forecasting methods and forecasting parameters on bullwhip effect
NASA Astrophysics Data System (ADS)
Silitonga, R. Y. H.; Jelly, N.
2018-04-01
Bullwhip effect is an increase of variance of demand fluctuation from downstream to upstream of supply chain. Forecasting methods and forecasting parameters were recognized as some factors that affect bullwhip phenomena. To study these factors, we can develop simulations. There are several ways to simulate bullwhip effect in previous studies, such as mathematical equation modelling, information control modelling, computer program, and many more. In this study a spreadsheet program named Bullwhip Explorer was used to simulate bullwhip effect. Several scenarios were developed to show the change in bullwhip effect ratio because of the difference in forecasting methods and forecasting parameters. Forecasting methods used were mean demand, moving average, exponential smoothing, demand signalling, and minimum expected mean squared error. Forecasting parameters were moving average period, smoothing parameter, signalling factor, and safety stock factor. It showed that decreasing moving average period, increasing smoothing parameter, increasing signalling factor can create bigger bullwhip effect ratio. Meanwhile, safety stock factor had no impact to bullwhip effect.
Huang, J Q; Liu, S Y; Jiang, J H
2016-06-18
To evaluate the influence of Tweed-Merrifield technique in correction of severe bimaxillary protrusion adult patients on the measurement of the dental and skeletal changes after orthodontic treatment by Johnston analysis and the regular cephalomatric analysis. Twelve adolescent patients with severe bimaxillary protrusion were included in this self-control retrospective study. Lateral cephalometric radiographs were taken before and after treatments. All the radiographs were traced and analyzed by the method of Johnston analysis. Other measurements were evaluated using a series of 13 linear and angular measurements including SNA, SNB, ANB, U1-SN, U1-NA, U1/NA, L1-NB, U1/NB, L1/MP, U1-L1, (U1+L1)/2-AB, MP/SN and MP/FH from regular cephalomatric analysis. These measurements were also applied to compare the differences between pre- and post-treatments, which clarify the dental and skeletal changes by Johnston analysis. The effect of orthodontic correction was determined using the non-parameters test. The maxillary moved backforward by 1.3 mm according to the stable skull base, while the mandible moved forward by 2.12 mm. The relative position between the maxillary and mandible (ABCH) changed 3.42 mm. The upper and lower incisors retracted significantly. The upper and lower molars moved slightly forward and the relative positions of upper and lower molars and anterior teeth after treatment were 3.44 mm and 4.23 mm respectively. After treatment, the parameters of ANB, U1-NA, U1/NA, U1-SN, L1-NB, L1/NB and L1-M were reduced by -(1.98±1.55)°(P=0.012), - (5.08±4.6) mm (P=0.002), -(11.79±1.21)°(P=0.004), -(13.55±6.32)°(P=0.047), -(3.17±3.07) mm (P=0.010), -(6.84±2.55)°(P=0.038) and -(4.13±2.24)°(P=0.048) on average, whose changes had the statistically significant effects. Tweed-Merrifield technique (directional force technique) can stabilize anchorage molar, retract anterior teeth and significantly improve the hard and soft tissue profile for patients with bimaxillary protrusion, and make a good vertical control which means this technique is applicable to the patients who need strong anchorage. Even for the severe bimaxillary protrusion adult patients, the Tweed-Merrifield technique can control the anchoragewell and make the profiles improved greatly.
Advanced analysis technique for the evaluation of linear alternators and linear motors
NASA Technical Reports Server (NTRS)
Holliday, Jeffrey C.
1995-01-01
A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.
3D shape measurement of moving object with FFT-based spatial matching
NASA Astrophysics Data System (ADS)
Guo, Qinghua; Ruan, Yuxi; Xi, Jiangtao; Song, Limei; Zhu, Xinjun; Yu, Yanguang; Tong, Jun
2018-03-01
This work presents a new technique for 3D shape measurement of moving object in translational motion, which finds applications in online inspection, quality control, etc. A low-complexity 1D fast Fourier transform (FFT)-based spatial matching approach is devised to obtain accurate object displacement estimates, and it is combined with single shot fringe pattern prolometry (FPP) techniques to achieve high measurement performance with multiple captured images through coherent combining. The proposed technique overcomes some limitations of existing ones. Specifically, the placement of marks on object surface and synchronization between projector and camera are not needed, the velocity of the moving object is not required to be constant, and there is no restriction on the movement trajectory. Both simulation and experimental results demonstrate the effectiveness of the proposed technique.
NASA Astrophysics Data System (ADS)
Nair, Kalyani P.; Harkness, Elaine F.; Gadde, Soujanye; Lim, Yit Y.; Maxwell, Anthony J.; Moschidis, Emmanouil; Foden, Philip; Cuzick, Jack; Brentnall, Adam; Evans, D. Gareth; Howell, Anthony; Astley, Susan M.
2017-03-01
Personalised breast screening requires assessment of individual risk of breast cancer, of which one contributory factor is weight. Self-reported weight has been used for this purpose, but may be unreliable. We explore the use of volume of fat in the breast, measured from digital mammograms. Volumetric breast density measurements were used to determine the volume of fat in the breasts of 40,431 women taking part in the Predicting Risk Of Cancer At Screening (PROCAS) study. Tyrer-Cuzick risk using self-reported weight was calculated for each woman. Weight was also estimated from the relationship between self-reported weight and breast fat volume in the cohort, and used to re-calculate Tyrer-Cuzick risk. Women were assigned to risk categories according to 10 year risk (below average <2%, average 2-3.49%, above average 3.5-4.99%, moderate 5-7.99%, high >=8%) and the original and re-calculated Tyrer-Cuzick risks were compared. Of the 716 women diagnosed with breast cancer during the study, 15 (2.1%) moved into a lower risk category, and 37 (5.2%) moved into a higher category when using weight estimated from breast fat volume. Of the 39,715 women without a cancer diagnosis, 1009 (2.5%) moved into a lower risk category, and 1721 (4.3%) into a higher risk category. The majority of changes were between below average and average risk categories (38.5% of those with a cancer diagnosis, and 34.6% of those without). No individual moved more than one risk group. Automated breast fat measures may provide a suitable alternative to self-reported weight for risk assessment in personalized screening.
Forecast of Frost Days Based on Monthly Temperatures
NASA Astrophysics Data System (ADS)
Castellanos, M. T.; Tarquis, A. M.; Morató, M. C.; Saa-Requejo, A.
2009-04-01
Although frost can cause considerable crop damage and mitigation practices against forecasted frost exist, frost forecasting technologies have not changed for many years. The paper reports a new method to forecast the monthly number of frost days (FD) for several meteorological stations at Community of Madrid (Spain) based on successive application of two models. The first one is a stochastic model, autoregressive integrated moving average (ARIMA), that forecasts monthly minimum absolute temperature (tmin) and monthly average of minimum temperature (tminav) following Box-Jenkins methodology. The second model relates these monthly temperatures to minimum daily temperature distribution during one month. Three ARIMA models were identified for the time series analyzed with a stational period correspondent to one year. They present the same stational behavior (moving average differenced model) and different non-stational part: autoregressive model (Model 1), moving average differenced model (Model 2) and autoregressive and moving average model (Model 3). At the same time, the results point out that minimum daily temperature (tdmin), for the meteorological stations studied, followed a normal distribution each month with a very similar standard deviation through years. This standard deviation obtained for each station and each month could be used as a risk index for cold months. The application of Model 1 to predict minimum monthly temperatures showed the best FD forecast. This procedure provides a tool for crop managers and crop insurance companies to asses the risk of frost frequency and intensity, so that they can take steps to mitigate against frost damage and estimated the damage that frost would cost. This research was supported by Comunidad de Madrid Research Project 076/92. The cooperation of the Spanish National Meteorological Institute and the Spanish Ministerio de Agricultura, Pesca y Alimentation (MAPA) is gratefully acknowledged.
Comparing methods for modelling spreading cell fronts.
Markham, Deborah C; Simpson, Matthew J; Maini, Philip K; Gaffney, Eamonn A; Baker, Ruth E
2014-07-21
Spreading cell fronts play an essential role in many physiological processes. Classically, models of this process are based on the Fisher-Kolmogorov equation; however, such continuum representations are not always suitable as they do not explicitly represent behaviour at the level of individual cells. Additionally, many models examine only the large time asymptotic behaviour, where a travelling wave front with a constant speed has been established. Many experiments, such as a scratch assay, never display this asymptotic behaviour, and in these cases the transient behaviour must be taken into account. We examine the transient and the asymptotic behaviour of moving cell fronts using techniques that go beyond the continuum approximation via a volume-excluding birth-migration process on a regular one-dimensional lattice. We approximate the averaged discrete results using three methods: (i) mean-field, (ii) pair-wise, and (iii) one-hole approximations. We discuss the performance of these methods, in comparison to the averaged discrete results, for a range of parameter space, examining both the transient and asymptotic behaviours. The one-hole approximation, based on techniques from statistical physics, is not capable of predicting transient behaviour but provides excellent agreement with the asymptotic behaviour of the averaged discrete results, provided that cells are proliferating fast enough relative to their rate of migration. The mean-field and pair-wise approximations give indistinguishable asymptotic results, which agree with the averaged discrete results when cells are migrating much more rapidly than they are proliferating. The pair-wise approximation performs better in the transient region than does the mean-field, despite having the same asymptotic behaviour. Our results show that each approximation only works in specific situations, thus we must be careful to use a suitable approximation for a given system, otherwise inaccurate predictions could be made. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Zhi-Sai; Liu, Li; Zhou, Si-Da; Yu, Lei; Naets, Frank; Heylen, Ward; Desmet, Wim
2018-01-01
The problem of parametric output-only identification of time-varying structures in a recursive manner is considered. A kernelized time-dependent autoregressive moving average (TARMA) model is proposed by expanding the time-varying model parameters onto the basis set of kernel functions in a reproducing kernel Hilbert space. An exponentially weighted kernel recursive extended least squares TARMA identification scheme is proposed, and a sliding-window technique is subsequently applied to fix the computational complexity for each consecutive update, allowing the method to operate online in time-varying environments. The proposed sliding-window exponentially weighted kernel recursive extended least squares TARMA method is employed for the identification of a laboratory time-varying structure consisting of a simply supported beam and a moving mass sliding on it. The proposed method is comparatively assessed against an existing recursive pseudo-linear regression TARMA method via Monte Carlo experiments and shown to be capable of accurately tracking the time-varying dynamics. Furthermore, the comparisons demonstrate the superior achievable accuracy, lower computational complexity and enhanced online identification capability of the proposed kernel recursive extended least squares TARMA approach.
Solar corona electron density distribution
NASA Astrophysics Data System (ADS)
Esposito, P. B.; Edenhofer, P.; Lueneburg, E.
1980-07-01
The paper discusses the three and one-half months of single-frequency time delay data which were acquired from the Helios 2 spacecraft around the time of its solar occultation. The excess time delay due to integrated effect of free electrons along the signal's ray path could be separated and modeled following the determination of the spacecraft trajectory. An average solar corona and equatorial electron density profile during solar minimum were deduced from the time delay measurements acquired within 5-60 solar radii of the sun. As a point of reference at 10 solar radii from the sun, an average electron density was 4500 el/cu cm. However, an asymmetry was found in the electron density as the ray path moved from the west to east solar limb. This may be related to the fact that during entry into occultation the heliographic latitude of the ray path was about 6 deg, while during exit it was 7 deg. The Helios density model is compared with similar models deduced from different experimental techniques.
NASA Astrophysics Data System (ADS)
Shiri, Jalal; Kisi, Ozgur; Yoon, Heesung; Lee, Kang-Kun; Hossein Nazemi, Amir
2013-07-01
The knowledge of groundwater table fluctuations is important in agricultural lands as well as in the studies related to groundwater utilization and management levels. This paper investigates the abilities of Gene Expression Programming (GEP), Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Networks (ANN) and Support Vector Machine (SVM) techniques for groundwater level forecasting in following day up to 7-day prediction intervals. Several input combinations comprising water table level, rainfall and evapotranspiration values from Hongcheon Well station (South Korea), covering a period of eight years (2001-2008) were used to develop and test the applied models. The data from the first six years were used for developing (training) the applied models and the last two years data were reserved for testing. A comparison was also made between the forecasts provided by these models and the Auto-Regressive Moving Average (ARMA) technique. Based on the comparisons, it was found that the GEP models could be employed successfully in forecasting water table level fluctuations up to 7 days beyond data records.
NASA Technical Reports Server (NTRS)
Bentley, P. B.
1975-01-01
The measurement of the volume flow-rate of blood in an artery or vein requires both an estimate of the flow velocity and its spatial distribution and the corresponding cross-sectional area. Transcutaneous measurements of these parameters can be performed using ultrasonic techniques that are analogous to the measurement of moving objects by use of a radar. Modern digital data recording and preprocessing methods were applied to the measurement of blood-flow velocity by means of the CW Doppler ultrasonic technique. Only the average flow velocity was measured and no distribution or size information was obtained. Evaluations of current flowmeter design and performance, ultrasonic transducer fabrication methods, and other related items are given. The main thrust was the development of effective data-handling and processing methods by application of modern digital techniques. The evaluation resulted in useful improvements in both the flowmeter instrumentation and the ultrasonic transducers. Effective digital processing algorithms that provided enhanced blood-flow measurement accuracy and sensitivity were developed. Block diagrams illustrative of the equipment setup are included.
Dynamics of actin-based movement by Rickettsia rickettsii in vero cells.
Heinzen, R A; Grieshaber, S S; Van Kirk, L S; Devin, C J
1999-08-01
Actin-based motility (ABM) is a virulence mechanism exploited by invasive bacterial pathogens in the genera Listeria, Shigella, and Rickettsia. Due to experimental constraints imposed by the lack of genetic tools and their obligate intracellular nature, little is known about rickettsial ABM relative to Listeria and Shigella ABM systems. In this study, we directly compared the dynamics and behavior of ABM of Rickettsia rickettsii and Listeria monocytogenes. A time-lapse video of moving intracellular bacteria was obtained by laser-scanning confocal microscopy of infected Vero cells synthesizing beta-actin coupled to green fluorescent protein (GFP). Analysis of time-lapse images demonstrated that R. rickettsii organisms move through the cell cytoplasm at an average rate of 4.8 +/- 0.6 micrometer/min (mean +/- standard deviation). This speed was 2.5 times slower than that of L. monocytogenes, which moved at an average rate of 12.0 +/- 3.1 micrometers/min. Although rickettsiae moved more slowly, the actin filaments comprising the actin comet tail were significantly more stable, with an average half-life approximately three times that of L. monocytogenes (100.6 +/- 19.2 s versus 33.0 +/- 7.6 s, respectively). The actin tail associated with intracytoplasmic rickettsiae remained stationary in the cytoplasm as the organism moved forward. In contrast, actin tails of rickettsiae trapped within the nucleus displayed dramatic movements. The observed phenotypic differences between the ABM of Listeria and Rickettsia may indicate fundamental differences in the mechanisms of actin recruitment and polymerization.
Lv, Houning; Zhao, Ningning; Zheng, Zhongqing; Wang, Tao; Yang, Fang; Jiang, Xihui; Lin, Lin; Sun, Chao; Wang, Bangmao
2017-05-01
Peroral endoscopic myotomy (POEM) has emerged as an advanced technique for the treatment of achalasia, and defining the learning curve is mandatory. From August 2011 to June 2014, two operators in our institution (A&B) carried out POEM on 35 and 33 consecutive patients, respectively. Moving average and cumulative sum (CUSUM) methods were used to analyze the POEM learning curve for corrected operative time (cOT), referring to duration of per centimeter myotomy. Additionally, perioperative outcomes were compared among distinct learning curve phases. Using the moving average method, cOT reached a plateau at the 29th case and at the 24th case for operators A and B, respectively. CUSUM analysis identified three phases: initial learning period (Phase 1), efficiency period (Phase 2) and mastery period (Phase 3). The relatively smooth state in the CUSUM graph occurred at the 26th case and at the 24th case for operators A and B, respectively. Mean cOT of distinct phases for operator A were 8.32, 5.20 and 3.97 min, whereas they were 5.99, 3.06 and 3.75 min for operator B, respectively. Eckardt score and lower esophageal sphincter pressure significantly decreased during the 1-year follow-up period. Data were comparable regarding patient characteristics and perioperative outcomes. This single-center study demonstrated that expert endoscopists with experience in esophageal endoscopic submucosal dissection reached a plateau in learning of POEM after approximately 25 cases. © 2016 Japan Gastroenterological Endoscopy Society.
Up-down Asymmetries in Speed Perception
NASA Technical Reports Server (NTRS)
Thompson, Peter; Stone, Leland S.
1997-01-01
We compared speed matches for pairs of stimuli that moved in opposite directions (upward and downward). Stimuli were elliptical patches (2 deg horizontally by 1 deg vertically) of horizontal sinusoidal gratings of spatial. frequency 2 cycles/deg. Two sequential 380 msec reveal presentations were compared. One of each pair of gratings (the standard) moved at 4 Hz (2 deg/sec), the other (the test) moved at a rate determined by a simple up-down staircase. The point of subjectively equal speed was calculated from the average of the last eight reversals. The task was to fixate a central point and to determine which one of the pair appeared to move faster. Eight of 10 observers perceived the upward drifting grating as moving faster than a grating moving downward but otherwise identical. on average (N = 10), when the standard moved downward, it was matched by a test moving upward at 94.7+/-1.7(SE)% of the standard speed, and when the standard moved upward it was matched by a test moving downward at 105.1+/-2.3(SE)% of the standard speed. Extending this paradigm over a range of spatial (1.5 to 13.5 c/d) and temporal (1.5 to 13.5 Hz) frequencies, preliminary results (N = 4) suggest that, under the conditions of our experiment, upward matter is seen as faster than downward for speeds greater than approx.1 deg/sec, but the effect appears to reverse at speeds below approx.1 deg/sec with downward motion perceived as faster. Given that an up-down asymmetry has been observed for the optokinetic response, both perceptual and oculomotor contributions to this phenomenon deserve exploration.
NASA Astrophysics Data System (ADS)
Lee, Zoe; Baas, Andreas
2013-04-01
It is widely recognised that boundary layer turbulence plays an important role in sediment transport dynamics in aeolian environments. Improvements in the design and affordability of ultrasonic anemometers have provided significant contributions to studies of aeolian turbulence, by facilitating high frequency monitoring of three dimensional wind velocities. Consequently, research has moved beyond studies of mean airflow properties, to investigations into quasi-instantaneous turbulent fluctuations at high spatio-temporal scales. To fully understand, how temporal fluctuations in shear stress drive wind erosivity and sediment transport, research into the best practice for calculating shear stress is necessary. This paper builds upon work published by Lee and Baas (2012) on the influence of streamline correction techniques on Reynolds shear stress, by investigating the time-averaging interval used in the calculation. Concerns relating to the selection of appropriate averaging intervals for turbulence research, where the data are typically non-stationary at all timescales, are well documented in the literature (e.g. Treviño and Andreas, 2000). For example, Finnigan et al. (2003) found that underestimating the required averaging interval can lead to a reduction in the calculated momentum flux, as contributions from turbulent eddies longer than the averaging interval are lost. To avoid the risk of underestimating fluxes, researchers have typically used the total measurement duration as a single averaging period. For non-stationary data, however, using the whole measurement run as a single block average is inadequate for defining turbulent fluctuations. The data presented in this paper were collected in a field study of boundary layer turbulence conducted at Tramore beach near Rosapenna, County Donegal, Ireland. High-frequency (50 Hz) 3D wind velocity measurements were collected using ultrasonic anemometry at thirteen different heights between 0.11 and 1.62 metres above the bed. A technique for determining time-averaging intervals for a series of anemometers stacked in a close vertical array is presented. A minimum timescale is identified using spectral analysis to determine the inertial sub-range, where energy is neither produced nor dissipated but passed down to increasingly smaller scales. An autocorrelation function is then used to derive a scaling pattern between anemometer heights, which defines a series of averaging intervals of increasing length with height above the surface. Results demonstrate the effect of different averaging intervals on the calculation of Reynolds shear stress and highlight the inadequacy of using the total measurement duration as a single block average. Lee, Z. S. & Baas, A. C. W. (2012). Streamline correction for the analysis of boundary layer turbulence. Geomorphology, 171-172, 69-82. Treviño, G. and Andreas, E.L., 2000. Averaging Intervals For Spectral Analysis Of Nonstationary Turbulence. Boundary-Layer Meteorology, 95(2): 231-247. Finnigan, J.J., Clement, R., Malhi, Y., Leuning, R. and Cleugh, H.A., 2003. Re-evaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation. Boundary-Layer Meteorology, 107(1): 1-48.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, B; Xu, H; Mutaf, Y
2015-06-15
Purpose: Enable a scanning field total body irradiation (TBI) technique, using dynamic arcs, which is biologically equivalent to a moving couch TBI. Methods: Patient is treated slightly above the floor and the treatment field scans across the patient by a moving gantry. MLC positions change during gantry motion to keep same field opening at the level of the treatment plane (170 cm). This is done to mimic the same geometry as the moving couch TBI technique which has been used in our institution for over 10 years. The dose rate and the gantry speed are determined considering a constant speedmore » of the moving field, variations in SSD and slanted depths resulting from oblique gantry angles. An Eclipse (Varian) planning system is commissioned to accommodate the extended SSD. The dosimetric foundations of the technique have been thoroughly investigated using phantom measurements. Results: Dose uniformity better than 2% across 180 cm length at 10cm depth is achieved by moving the gantry from −55 to +55 deg. Treatment range can be extended by increasing gantry range. No device such as a gravity-oriented compensator is needed to achieve a uniform dose. It is feasible to modify the dose distribution by adjusting the dose rate at each gantry angle to compensate for body thickness differences. Total treatment time for 2 Gy AP/PA fields is 40–50 minutes excluding patient set up time, at the machine dose rate of 100 MU/min. Conclusion: This novel yet transportable moving field technique enables TBI treatment in a small treatment room with less program development preparation than other techniques. Treatment length can be extended per need, and. MLC-based thickness compensation and partial lung blocking are also possible.« less
[Usage survey of care equipment in care service facilities for the elderly].
Iwakiri, Kazuyuki; Takahashi, Masaya; Sotoyama, Midori; Hirata, Mamoru; Hisanaga, Naomi
2007-01-01
Musculoskeletal disorders(MSD)have been increasing recently among care workers. Since providing care workers with appropriate equipment is effective for preventing MSD, we conducted a questionnaire survey in two nursing homes and a healthcare facility for the elderly to clarify equipment usage, problems and points for improvement. A total of 81 care workers(average age 32.2 yr; 63 females, 18 males)participated in the survey. The average number of residents and the average resident's care level were 70.0 and 3.6, respectively. Wheelchair and height adjustable beds were fully available and always used in all facilities. Portable lifts, ceiling lifts and transfer boards were, however, few in all 3 facilities and the proportion of use was 14.8%, 16.0%, and 23.5%, respectively. Participants reported that it is time consuming to move residents from place to place with lifts and there is a danger of dropping a resident. Although approximately 90% of care workers had received education and training on care techniques, the workload on the low back was found to be great. Therefore, we thought that care workers must consistently use care equipment. To achieve such increased usage, we must improve the usability of the equipment.
Kinesin-microtubule interactions during gliding assays under magnetic force
NASA Astrophysics Data System (ADS)
Fallesen, Todd L.
Conventional kinesin is a motor protein capable of converting the chemical energy of ATP into mechanical work. In the cell, this is used to actively transport vesicles through the intracellular matrix. The relationship between the velocity of a single kinesin, as it works against an increasing opposing load, has been well studied. The relationship between the velocity of a cargo being moved by multiple kinesin motors against an opposing load has not been established. A major difficulty in determining the force-velocity relationship for multiple motors is determining the number of motors that are moving a cargo against an opposing load. Here I report on a novel method for detaching microtubules bound to a superparamagnetic bead from kinesin anchor points in an upside down gliding assay using a uniform magnetic field perpendicular to the direction of microtubule travel. The anchor points are presumably kinesin motors bound to the surface which microtubules are gliding over. Determining the distance between anchor points, d, allows the calculation of the average number of kinesins, n, that are moving a microtubule. It is possible to calculate the fraction of motors able to move microtubules as well, which is determined to be ˜ 5%. Using a uniform magnetic field parallel to the direction of microtubule travel, it is possible to impart a uniform magnetic field on a microtubule bound to a superparamagnetic bead. We are able to decrease the average velocity of microtubules driven by multiple kinesin motors moving against an opposing force. Using the average number of kinesins on a microtubule, we estimate that there are an average 2-7 kinesins acting against the opposing force. By fitting Gaussians to the smoothed distributions of microtubule velocities acting against an opposing force, multiple velocities are seen, presumably for n, n-1, n-2, etc motors acting together. When these velocities are scaled for the average number of motors on a microtubule, the force-velocity relationship for multiple motors follows the same trend as for one motor, supporting the hypothesis that multiple motors share the load.
Class III correction using an inter-arch spring-loaded module
2014-01-01
Background A retrospective study was conducted to determine the cephalometric changes in a group of Class III patients treated with the inter-arch spring-loaded module (CS2000®, Dynaflex, St. Ann, MO, USA). Methods Thirty Caucasian patients (15 males, 15 females) with an average pre-treatment age of 9.6 years were treated consecutively with this appliance and compared with a control group of subjects from the Bolton-Brush Study who were matched in age, gender, and craniofacial morphology to the treatment group. Lateral cephalograms were taken before treatment and after removal of the CS2000® appliance. The treatment effects of the CS2000® appliance were calculated by subtracting the changes due to growth (control group) from the treatment changes. Results All patients were improved to a Class I dental arch relationship with a positive overjet. Significant sagittal, vertical, and angular changes were found between the pre- and post-treatment radiographs. With an average treatment time of 1.3 years, the maxillary base moved forward by 0.8 mm, while the mandibular base moved backward by 2.8 mm together with improvements in the ANB and Wits measurements. The maxillary incisor moved forward by 1.3 mm and the mandibular incisor moved forward by 1.0 mm. The maxillary molar moved forward by 1.0 mm while the mandibular molar moved backward by 0.6 mm. The average overjet correction was 3.9 mm and 92% of the correction was due to skeletal contribution and 8% was due to dental contribution. The average molar correction was 5.2 mm and 69% of the correction was due to skeletal contribution and 31% was due to dental contribution. Conclusions Mild to moderate Class III malocclusion can be corrected using the inter-arch spring-loaded appliance with minimal patient compliance. The overjet correction was contributed by forward movement of the maxilla, backward and downward movement of the mandible, and proclination of the maxillary incisors. The molar relationship was corrected by mesialization of the maxillary molars, distalization of the mandibular molars together with a rotation of the occlusal plane. PMID:24934153
NASA Astrophysics Data System (ADS)
Wang, Jing; Shen, Huoming; Zhang, Bo; Liu, Juan
2018-06-01
In this paper, we studied the parametric resonance issue of an axially moving viscoelastic nanobeam with varying velocity. Based on the nonlocal strain gradient theory, we established the transversal vibration equation of the axially moving nanobeam and the corresponding boundary condition. By applying the average method, we obtained a set of self-governing ordinary differential equations when the excitation frequency of the moving parameters is twice the intrinsic frequency or near the sum of certain second-order intrinsic frequencies. On the plane of parametric excitation frequency and excitation amplitude, we can obtain the instability region generated by the resonance, and through numerical simulation, we analyze the influence of the scale effect and system parameters on the instability region. The results indicate that the viscoelastic damping decreases the resonance instability region, and the average velocity and stiffness make the instability region move to the left- and right-hand sides. Meanwhile, the scale effect of the system is obvious. The nonlocal parameter exhibits not only the stiffness softening effect but also the damping weakening effect, while the material characteristic length parameter exhibits the stiffness hardening effect and damping reinforcement effect.
Two-dimensional convolute integers for analytical instrumentation
NASA Technical Reports Server (NTRS)
Edwards, T. R.
1982-01-01
As new analytical instruments and techniques emerge with increased dimensionality, a corresponding need is seen for data processing logic which can appropriately address the data. Two-dimensional measurements reveal enhanced unknown mixture analysis capability as a result of the greater spectral information content over two one-dimensional methods taken separately. It is noted that two-dimensional convolute integers are merely an extension of the work by Savitzky and Golay (1964). It is shown that these low-pass, high-pass and band-pass digital filters are truly two-dimensional and that they can be applied in a manner identical with their one-dimensional counterpart, that is, a weighted nearest-neighbor, moving average with zero phase shifting, convoluted integer (universal number) weighting coefficients.
Forecasting of global solar radiation using anfis and armax techniques
NASA Astrophysics Data System (ADS)
Muhammad, Auwal; Gaya, M. S.; Aliyu, Rakiya; Aliyu Abdulkadir, Rabi'u.; Dauda Umar, Ibrahim; Aminu Yusuf, Lukuman; Umar Ali, Mudassir; Khairi, M. T. M.
2018-01-01
Procurement of measuring device, maintenance cost coupled with calibration of the instrument contributed to the difficulty in forecasting of global solar radiation in underdeveloped countries. Most of the available regressional and mathematical models do not capture well the behavior of the global solar radiation. This paper presents the comparison of Adaptive Neuro Fuzzy Inference System (ANFIS) and Autoregressive Moving Average with eXogenous term (ARMAX) in forecasting global solar radiation. Full-Scale (experimental) data of Nigerian metrological agency, Sultan Abubakar III international airport Sokoto was used to validate the models. The simulation results demonstrated that the ANFIS model having achieved MAPE of 5.34% outperformed the ARMAX model. The ANFIS could be a valuable tool for forecasting the global solar radiation.
System for monitoring an industrial process and determining sensor status
Gross, K.C.; Hoyer, K.K.; Humenik, K.E.
1995-10-17
A method and system for monitoring an industrial process and a sensor are disclosed. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.
System for monitoring an industrial process and determining sensor status
Gross, K.C.; Hoyer, K.K.; Humenik, K.E.
1997-05-13
A method and system are disclosed for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.
System for monitoring an industrial process and determining sensor status
Gross, Kenneth C.; Hoyer, Kristin K.; Humenik, Keith E.
1995-01-01
A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.
System for monitoring an industrial process and determining sensor status
Gross, Kenneth C.; Hoyer, Kristin K.; Humenik, Keith E.
1997-01-01
A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.
Parameter estimation of an ARMA model for river flow forecasting using goal programming
NASA Astrophysics Data System (ADS)
Mohammadi, Kourosh; Eslami, H. R.; Kahawita, Rene
2006-11-01
SummaryRiver flow forecasting constitutes one of the most important applications in hydrology. Several methods have been developed for this purpose and one of the most famous techniques is the Auto regressive moving average (ARMA) model. In the research reported here, the goal was to minimize the error for a specific season of the year as well as for the complete series. Goal programming (GP) was used to estimate the ARMA model parameters. Shaloo Bridge station on the Karun River with 68 years of observed stream flow data was selected to evaluate the performance of the proposed method. The results when compared with the usual method of maximum likelihood estimation were favorable with respect to the new proposed algorithm.
NASA Astrophysics Data System (ADS)
Hilbich, D.; Rahbar, A.; Khosla, A.; Gray, B. L.
2012-10-01
We present the initial experimental results for manipulating micro-robots featuring permanent magnetic polymer magnets for guided wireless endoscopy applications. The magnetic polymers are fabricated by doping polydimethylsiloxane (PDMS) with permanent isotropic rare earth magnetic powder (MQFP 12-5) with an average particle size of 6 μm. The prepared magnetic nanocomposite polymer (M-NCP) is patterned in the desired shape against a plexiglass mold via soft lithography techniques. It is observed that the fabricated micro-robot magnets have a magnetic field strength of 50 mT and can easily be actuated by applying a field of 8.3 mT (field measured at the capsule's position) and moved at a rate of 5 inches/second.
ECG artifact cancellation in surface EMG signals by fractional order calculus application.
Miljković, Nadica; Popović, Nenad; Djordjević, Olivera; Konstantinović, Ljubica; Šekara, Tomislav B
2017-03-01
New aspects for automatic electrocardiography artifact removal from surface electromyography signals by application of fractional order calculus in combination with linear and nonlinear moving window filters are explored. Surface electromyography recordings of skeletal trunk muscles are commonly contaminated with spike shaped artifacts. This artifact originates from electrical heart activity, recorded by electrocardiography, commonly present in the surface electromyography signals recorded in heart proximity. For appropriate assessment of neuromuscular changes by means of surface electromyography, application of a proper filtering technique of electrocardiography artifact is crucial. A novel method for automatic artifact cancellation in surface electromyography signals by applying fractional order calculus and nonlinear median filter is introduced. The proposed method is compared with the linear moving average filter, with and without prior application of fractional order calculus. 3D graphs for assessment of window lengths of the filters, crest factors, root mean square differences, and fractional calculus orders (called WFC and WRC graphs) have been introduced. For an appropriate quantitative filtering evaluation, the synthetic electrocardiography signal and analogous semi-synthetic dataset have been generated. The examples of noise removal in 10 able-bodied subjects and in one patient with muscle dystrophy are presented for qualitative analysis. The crest factors, correlation coefficients, and root mean square differences of the recorded and semi-synthetic electromyography datasets showed that the most successful method was the median filter in combination with fractional order calculus of the order 0.9. Statistically more significant (p < 0.001) ECG peak reduction was obtained by the median filter application compared to the moving average filter in the cases of low level amplitude of muscle contraction compared to ECG spikes. The presented results suggest that the novel method combining a median filter and fractional order calculus can be used for automatic filtering of electrocardiography artifacts in the surface electromyography signal envelopes recorded in trunk muscles. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Time series modelling of increased soil temperature anomalies during long period
NASA Astrophysics Data System (ADS)
Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar
2015-10-01
Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.
TERMA Framework for Biomedical Signal Analysis: An Economic-Inspired Approach.
Elgendi, Mohamed
2016-11-02
Biomedical signals contain features that represent physiological events, and each of these events has peaks. The analysis of biomedical signals for monitoring or diagnosing diseases requires the detection of these peaks, making event detection a crucial step in biomedical signal processing. Many researchers have difficulty detecting these peaks to investigate, interpret and analyze their corresponding events. To date, there is no generic framework that captures these events in a robust, efficient and consistent manner. A new method referred to for the first time as two event-related moving averages ("TERMA") involves event-related moving averages and detects events in biomedical signals. The TERMA framework is flexible and universal and consists of six independent LEGO building bricks to achieve high accuracy detection of biomedical events. Results recommend that the window sizes for the two moving averages ( W 1 and W 2 ) have to follow the inequality ( 8 × W 1 ) ≥ W 2 ≥ ( 2 × W 1 ) . Moreover, TERMA is a simple yet efficient event detector that is suitable for wearable devices, point-of-care devices, fitness trackers and smart watches, compared to more complex machine learning solutions.
Dexter, F
2000-10-01
We examined how to program an operating room (OR) information system to assist the OR manager in deciding whether to move the last case of the day in one OR to another OR that is empty to decrease overtime labor costs. We first developed a statistical strategy to predict whether moving the case would decrease overtime labor costs for first shift nurses and anesthesia providers. The strategy was based on using historical case duration data stored in a surgical services information system. Second, we estimated the incremental overtime labor costs achieved if our strategy was used for moving cases versus movement of cases by an OR manager who knew in advance exactly how long each case would last. We found that if our strategy was used to decide whether to move cases, then depending on parameter values, only 2.0 to 4.3 more min of overtime would be required per case than if the OR manager had perfect retrospective knowledge of case durations. The use of other information technologies to assist in the decision of whether to move a case, such as real-time patient tracking information systems, closed-circuit cameras, or graphical airport-style displays can, on average, reduce overtime by no more than only 2 to 4 min per case that can be moved. The use of other information technologies to assist in the decision of whether to move a case, such as real-time patient tracking information systems, closed-circuit cameras, or graphical airport-style displays, can, on average, reduce overtime by no more than only 2 to 4 min per case that can be moved.
Peak Running Intensity of International Rugby: Implications for Training Prescription.
Delaney, Jace A; Thornton, Heidi R; Pryor, John F; Stewart, Andrew M; Dascombe, Ben J; Duthie, Grant M
2017-09-01
To quantify the duration and position-specific peak running intensities of international rugby union for the prescription and monitoring of specific training methodologies. Global positioning systems (GPS) were used to assess the activity profile of 67 elite-level rugby union players from 2 nations across 33 international matches. A moving-average approach was used to identify the peak relative distance (m/min), average acceleration/deceleration (AveAcc; m/s 2 ), and average metabolic power (P met ) for a range of durations (1-10 min). Differences between positions and durations were described using a magnitude-based network. Peak running intensity increased as the length of the moving average decreased. There were likely small to moderate increases in relative distance and AveAcc for outside backs, halfbacks, and loose forwards compared with the tight 5 group across all moving-average durations (effect size [ES] = 0.27-1.00). P met demands were at least likely greater for outside backs and halfbacks than for the tight 5 (ES = 0.86-0.99). Halfbacks demonstrated the greatest relative distance and P met outputs but were similar to outside backs and loose forwards in AveAcc demands. The current study has presented a framework to describe the peak running intensities achieved during international rugby competition by position, which are considerably higher than previously reported whole-period averages. These data provide further knowledge of the peak activity profiles of international rugby competition, and this information can be used to assist coaches and practitioners in adequately preparing athletes for the most demanding periods of play.
Forecasting conditional climate-change using a hybrid approach
Esfahani, Akbar Akbari; Friedel, Michael J.
2014-01-01
A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.
The AAPM/RSNA physics tutorial for residents: digital fluoroscopy.
Pooley, R A; McKinney, J M; Miller, D A
2001-01-01
A digital fluoroscopy system is most commonly configured as a conventional fluoroscopy system (tube, table, image intensifier, video system) in which the analog video signal is converted to and stored as digital data. Other methods of acquiring the digital data (eg, digital or charge-coupled device video and flat-panel detectors) will become more prevalent in the future. Fundamental concepts related to digital imaging in general include binary numbers, pixels, and gray levels. Digital image data allow the convenient use of several image processing techniques including last image hold, gray-scale processing, temporal frame averaging, and edge enhancement. Real-time subtraction of digital fluoroscopic images after injection of contrast material has led to widespread use of digital subtraction angiography (DSA). Additional image processing techniques used with DSA include road mapping, image fade, mask pixel shift, frame summation, and vessel size measurement. Peripheral angiography performed with an automatic moving table allows imaging of the peripheral vasculature with a single contrast material injection.
Paquet-Mercier, F; Parvinzadeh Gashti, M; Bellavance, J; Taghavi, S M; Greener, J
2016-11-29
Continuous, non-intrusive measurements of time-varying viscosity of Pseudomonas sp. biofilms are made using a microfluidic method that combines video tracking with a semi-empirical viscous flow model. The approach uses measured velocity and height of tracked biofilm segments, which move under the constant laminar flow of a nutrient solution. Following a low viscosity growth stage, rapid thickening was observed. During this stage, viscosity increased by over an order of magnitude in less than ten hours. The technique was also demonstrated as a promising platform for parallel experiments by subjecting multiple biofilm-laden microchannels to nutrient solutions containing NaCl in the range of 0 to 34 mM. Preliminary data suggest a strong relationship between ionic strength and biofilm properties, such as average viscosity and rapid thickening onset time. The technique opens the way for a combinatorial approach to study the response of biofilm viscosity under well-controlled physical, chemical and biological growth conditions.
NASA Astrophysics Data System (ADS)
Leite, Argentina; Paula Rocha, Ana; Eduarda Silva, Maria
2013-06-01
Heart Rate Variability (HRV) series exhibit long memory and time-varying conditional variance. This work considers the Fractionally Integrated AutoRegressive Moving Average (ARFIMA) models with Generalized AutoRegressive Conditional Heteroscedastic (GARCH) errors. ARFIMA-GARCH models may be used to capture and remove long memory and estimate the conditional volatility in 24 h HRV recordings. The ARFIMA-GARCH approach is applied to fifteen long term HRV series available at Physionet, leading to the discrimination among normal individuals, heart failure patients, and patients with atrial fibrillation.
NASA Astrophysics Data System (ADS)
Mittelstaedt, Eric; Davaille, Anne; van Keken, Peter E.; Gracias, Nuno; Escartin, Javier
2010-10-01
Diffuse flow velocimetry (DFV) is introduced as a new, noninvasive, optical technique for measuring the velocity of diffuse hydrothermal flow. The technique uses images of a motionless, random medium (e.g., rocks) obtained through the lens of a moving refraction index anomaly (e.g., a hot upwelling). The method works in two stages. First, the changes in apparent background deformation are calculated using particle image velocimetry (PIV). The deformation vectors are determined by a cross correlation of pixel intensities across consecutive images. Second, the 2-D velocity field is calculated by cross correlating the deformation vectors between consecutive PIV calculations. The accuracy of the method is tested with laboratory and numerical experiments of a laminar, axisymmetric plume in fluids with both constant and temperature-dependent viscosity. Results show that average RMS errors are ˜5%-7% and are most accurate in regions of pervasive apparent background deformation which is commonly encountered in regions of diffuse hydrothermal flow. The method is applied to a 25 s video sequence of diffuse flow from a small fracture captured during the Bathyluck'09 cruise to the Lucky Strike hydrothermal field (September 2009). The velocities of the ˜10°C-15°C effluent reach ˜5.5 cm/s, in strong agreement with previous measurements of diffuse flow. DFV is found to be most accurate for approximately 2-D flows where background objects have a small spatial scale, such as sand or gravel.
Behavior Knowledge Space-Based Fusion for Copy-Move Forgery Detection.
Ferreira, Anselmo; Felipussi, Siovani C; Alfaro, Carlos; Fonseca, Pablo; Vargas-Munoz, John E; Dos Santos, Jefersson A; Rocha, Anderson
2016-07-20
The detection of copy-move image tampering is of paramount importance nowadays, mainly due to its potential use for misleading the opinion forming process of the general public. In this paper, we go beyond traditional forgery detectors and aim at combining different properties of copy-move detection approaches by modeling the problem on a multiscale behavior knowledge space, which encodes the output combinations of different techniques as a priori probabilities considering multiple scales of the training data. Afterwards, the conditional probabilities missing entries are properly estimated through generative models applied on the existing training data. Finally, we propose different techniques that exploit the multi-directionality of the data to generate the final outcome detection map in a machine learning decision-making fashion. Experimental results on complex datasets, comparing the proposed techniques with a gamut of copy-move detection approaches and other fusion methodologies in the literature show the effectiveness of the proposed method and its suitability for real-world applications.
NASA Astrophysics Data System (ADS)
Cheng, David; Yoshinaka, Akio; Wu, Lawrence
2018-05-01
A magnetic braking and sensing technique developed as a potential alternative to assist with the non-contact deceleration and detection of explosively dispersed non-magnetic metallic particles is discussed. In order to verify the feasibility of such a technique and gain an understanding of how the underlying forces scale with particle size and velocity, a study was conducted whereby an aluminum particle moving along a spatially varying but time-invariant magnetic field was modeled and the corresponding experiment performed.
Optimization technique for problems with an inequality constraint
NASA Technical Reports Server (NTRS)
Russell, K. J.
1972-01-01
General technique uses a modified version of an existing technique termed the pattern search technique. New procedure called the parallel move strategy permits pattern search technique to be used with problems involving a constraint.
ERIC Educational Resources Information Center
Birmingham, Elina; Meixner, Tamara; Iarocci, Grace; Kanan, Christopher; Smilek, Daniel; Tanaka, James W.
2013-01-01
The strategies children employ to selectively attend to different parts of the face may reflect important developmental changes in facial emotion recognition. Using the Moving Window Technique (MWT), children aged 5-12 years and adults ("N" = 129) explored faces with a mouse-controlled window in an emotion recognition task. An…
Fedy, Bradley C.; Aldridge, Cameron L.; Doherty, Kevin E.; O'Donnell, Michael S.; Beck, Jeffrey L.; Bedrosian, Bryan; Holloran, Matthew J.; Johnson, Gregory D.; Kaczor, Nicholas W.; Kirol, Christopher P.; Mandich, Cheryl A.; Marshall, David; McKee, Gwyn; Olson, Chad; Swanson, Christopher C.; Walker, Brett L.
2012-01-01
Animals can require different habitat types throughout their annual cycles. When considering habitat prioritization, we need to explicitly consider habitat requirements throughout the annual cycle, particularly for species of conservation concern. Understanding annual habitat requirements begins with quantifying how far individuals move across landscapes between key life stages to access required habitats. We quantified individual interseasonal movements for greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) using radio-telemetry spanning the majority of the species distribution in Wyoming. Sage-grouse are currently a candidate for listing under the United States Endangered Species Act and Wyoming is predicted to remain a stronghold for the species. Sage-grouse use distinct seasonal habitats throughout their annual cycle for breeding, brood rearing, and wintering. Average movement distances in Wyoming from nest sites to summer-late brood-rearing locations were 8.1 km (SE = 0.3 km; n = 828 individuals) and the average subsequent distances moved from summer sites to winter locations were 17.3 km (SE = 0.5 km; n = 607 individuals). Average nest-to-winter movements were 14.4 km (SE = 0.6 km; n = 434 individuals). We documented remarkable variation in the extent of movement distances both within and among sites across Wyoming, with some individuals remaining year-round in the same vicinity and others moving over 50 km between life stages. Our results suggest defining any of our populations as migratory or non-migratory is innappropriate as individual strategies vary widely. We compared movement distances of birds marked using Global Positioning System (GPS) and very high frequency (VHF) radio marking techniques and found no evidence that the heavier GPS radios limited movement. Furthermore, we examined the capacity of the sage-grouse core regions concept to capture seasonal locations. As expected, we found the core regions approach, which was developed based on lek data, was generally better at capturing the nesting locations than summer or winter locations. However, across Wyoming the sage-grouse breeding core regions still contained a relatively high percentage of summer and winter locations and seem to be a reasonable surrogate for non-breeding habitat when no other information exists. We suggest that conservation efforts for greater sage-grouse implicitly incorporate seasonal habitat needs because of high variation in the amount of overlap among breeding core regions and non-breeding habitat.
Distractor Interference during Smooth Pursuit Eye Movements
ERIC Educational Resources Information Center
Spering, Miriam; Gegenfurtner, Karl R.; Kerzel, Dirk
2006-01-01
When 2 targets for pursuit eye movements move in different directions, the eye velocity follows the vector average (S. G. Lisberger & V. P. Ferrera, 1997). The present study investigates the mechanisms of target selection when observers are instructed to follow a predefined horizontal target and to ignore a moving distractor stimulus. Results show…
Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang
2015-05-01
Planar near-field acoustic holography has been successfully extended to reconstruct the sound field in a moving medium, however, the reconstructed field still contains the convection effect that might lead to the wrong identification of sound sources. In order to accurately identify sound sources in a moving medium, a time-domain equivalent source method is developed. In the method, the real source is replaced by a series of time-domain equivalent sources whose strengths are solved iteratively by utilizing the measured pressure and the known convective time-domain Green's function, and time averaging is used to reduce the instability in the iterative solving process. Since these solved equivalent source strengths are independent of the convection effect, they can be used not only to identify sound sources but also to model sound radiations in both moving and static media. Numerical simulations are performed to investigate the influence of noise on the solved equivalent source strengths and the effect of time averaging on reducing the instability, and to demonstrate the advantages of the proposed method on the source identification and sound radiation modeling.
In-use activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks.
Sandhu, Gurdas S; Frey, H Christopher; Bartelt-Hunt, Shannon; Jones, Elizabeth
2015-03-01
The objectives of this study were to quantify real-world activity, fuel use, and emissions for heavy duty diesel roll-off refuse trucks; evaluate the contribution of duty cycles and emissions controls to variability in cycle average fuel use and emission rates; quantify the effect of vehicle weight on fuel use and emission rates; and compare empirical cycle average emission rates with the U.S. Environmental Protection Agency's MOVES emission factor model predictions. Measurements were made at 1 Hz on six trucks of model years 2005 to 2012, using onboard systems. The trucks traveled 870 miles, had an average speed of 16 mph, and collected 165 tons of trash. The average fuel economy was 4.4 mpg, which is approximately twice previously reported values for residential trash collection trucks. On average, 50% of time is spent idling and about 58% of emissions occur in urban areas. Newer trucks with selective catalytic reduction and diesel particulate filter had NOx and PM cycle average emission rates that were 80% lower and 95% lower, respectively, compared to older trucks without. On average, the combined can and trash weight was about 55% of chassis weight. The marginal effect of vehicle weight on fuel use and emissions is highest at low loads and decreases as load increases. Among 36 cycle average rates (6 trucks×6 cycles), MOVES-predicted values and estimates based on real-world data have similar relative trends. MOVES-predicted CO2 emissions are similar to those of the real world, while NOx and PM emissions are, on average, 43% lower and 300% higher, respectively. The real-world data presented here can be used to estimate benefits of replacing old trucks with new trucks. Further, the data can be used to improve emission inventories and model predictions. In-use measurements of the real-world activity, fuel use, and emissions of heavy-duty diesel roll-off refuse trucks can be used to improve the accuracy of predictive models, such as MOVES, and emissions inventories. Further, the activity data from this study can be used to generate more representative duty cycles for more accurate chassis dynamometer testing. Comparisons of old and new model year diesel trucks are useful in analyzing the effect of fleet turnover. The analysis of effect of haul weight on fuel use can be used by fleet managers to optimize operations to reduce fuel cost.
Long-Term PM2.5 Exposure and Respiratory, Cancer, and Cardiovascular Mortality in Older US Adults.
Pun, Vivian C; Kazemiparkouhi, Fatemeh; Manjourides, Justin; Suh, Helen H
2017-10-15
The impact of chronic exposure to fine particulate matter (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5)) on respiratory disease and lung cancer mortality is poorly understood. In a cohort of 18.9 million Medicare beneficiaries (4.2 million deaths) living across the conterminous United States between 2000 and 2008, we examined the association between chronic PM2.5 exposure and cause-specific mortality. We evaluated confounding through adjustment for neighborhood behavioral covariates and decomposition of PM2.5 into 2 spatiotemporal scales. We found significantly positive associations of 12-month moving average PM2.5 exposures (per 10-μg/m3 increase) with respiratory, chronic obstructive pulmonary disease, and pneumonia mortality, with risk ratios ranging from 1.10 to 1.24. We also found significant PM2.5-associated elevated risks for cardiovascular and lung cancer mortality. Risk ratios generally increased with longer moving averages; for example, an elevation in 60-month moving average PM2.5 exposures was linked to 1.33 times the lung cancer mortality risk (95% confidence interval: 1.24, 1.40), as compared with 1.13 (95% confidence interval: 1.11, 1.15) for 12-month moving average exposures. Observed associations were robust in multivariable models, although evidence of unmeasured confounding remained. In this large cohort of US elderly, we provide important new evidence that long-term PM2.5 exposure is significantly related to increased mortality from respiratory disease, lung cancer, and cardiovascular disease. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Effect of air pollution on pediatric respiratory emergency room visits and hospital admissions.
Farhat, S C L; Paulo, R L P; Shimoda, T M; Conceição, G M S; Lin, C A; Braga, A L F; Warth, M P N; Saldiva, P H N
2005-02-01
In order to assess the effect of air pollution on pediatric respiratory morbidity, we carried out a time series study using daily levels of PM10, SO2, NO2, ozone, and CO and daily numbers of pediatric respiratory emergency room visits and hospital admissions at the Children's Institute of the University of Sao Paulo Medical School, from August 1996 to August 1997. In this period there were 43,635 hospital emergency room visits, 4534 of which were due to lower respiratory tract disease. The total number of hospital admissions was 6785, 1021 of which were due to lower respiratory tract infectious and/or obstructive diseases. The three health end-points under investigation were the daily number of emergency room visits due to lower respiratory tract diseases, hospital admissions due to pneumonia, and hospital admissions due to asthma or bronchiolitis. Generalized additive Poisson regression models were fitted, controlling for smooth functions of time, temperature and humidity, and an indicator of weekdays. NO2 was positively associated with all outcomes. Interquartile range increases (65.04 microg/m3) in NO2 moving averages were associated with an 18.4% increase (95% confidence interval, 95% CI = 12.5-24.3) in emergency room visits due to lower respiratory tract diseases (4-day moving average), a 17.6% increase (95% CI = 3.3-32.7) in hospital admissions due to pneumonia or bronchopneumonia (3-day moving average), and a 31.4% increase (95% CI = 7.2-55.7) in hospital admissions due to asthma or bronchiolitis (2-day moving average). The study showed that air pollution considerably affects children's respiratory morbidity, deserving attention from the health authorities.
Khedr, Maan; El-Sheimy, Nasser
2017-01-01
The growing market of smart devices make them appealing for various applications. Motion tracking can be achieved using such devices, and is important for various applications such as navigation, search and rescue, health monitoring, and quality of life-style assessment. Step detection is a crucial task that affects the accuracy and quality of such applications. In this paper, a new step detection technique is proposed, which can be used for step counting and activity monitoring for health applications as well as part of a Pedestrian Dead Reckoning (PDR) system. Inertial and Magnetic sensors measurements are analyzed and fused for detecting steps under varying step modes and device pose combinations using a free-moving handheld device (smartphone). Unlike most of the state of the art research in the field, the proposed technique does not require a classifier, and adaptively tunes the filters and thresholds used without the need for presets while accomplishing the task in a real-time operation manner. Testing shows that the proposed technique successfully detects steps under varying motion speeds and device use cases with an average performance of 99.6%, and outperforms some of the state of the art techniques that rely on classifiers and commercial wristband products. PMID:29117143
Dog days of summer: Influences on decision of wolves to move pups
Ausband, David E.; Mitchell, Michael S.; Bassing, Sarah B.; Nordhagen, Matthew; Smith, Douglas W.; Stahler, Daniel R.
2016-01-01
For animals that forage widely, protecting young from predation can span relatively long time periods due to the inability of young to travel with and be protected by their parents. Moving relatively immobile young to improve access to important resources, limit detection of concentrated scent by predators, and decrease infestations by ectoparasites can be advantageous. Moving young, however, can also expose them to increased mortality risks (e.g., accidents, getting lost, predation). For group-living animals that live in variable environments and care for young over extended time periods, the influence of biotic factors (e.g., group size, predation risk) and abiotic factors (e.g., temperature and precipitation) on the decision to move young is unknown. We used data from 25 satellite-collared wolves ( Canis lupus ) in Idaho, Montana, and Yellowstone National Park to evaluate how these factors could influence the decision to move pups during the pup-rearing season. We hypothesized that litter size, the number of adults in a group, and perceived predation risk would positively affect the number of times gray wolves moved pups. We further hypothesized that wolves would move their pups more often when it was hot and dry to ensure sufficient access to water. Contrary to our hypothesis, monthly temperature above the 30-year average was negatively related to the number of times wolves moved their pups. Monthly precipitation above the 30-year average, however, was positively related to the amount of time wolves spent at pup-rearing sites after leaving the natal den. We found little relationship between risk of predation (by grizzly bears, humans, or conspecifics) or group and litter sizes and number of times wolves moved their pups. Our findings suggest that abiotic factors most strongly influence the decision of wolves to move pups, although responses to unpredictable biotic events (e.g., a predator encountering pups) cannot be ruled out.
Verrier, Richard L.; Klingenheben, Thomas; Malik, Marek; El-Sherif, Nabil; Exner, Derek V.; Hohnloser, Stefan H.; Ikeda, Takanori; Martínez, Juan Pablo; Narayan, Sanjiv M.; Nieminen, Tuomo; Rosenbaum, David S.
2014-01-01
This consensus guideline was prepared on behalf of the International Society for Holter and Noninvasive Electrocardiology and is cosponsored by the Japanese Circulation Society, the Computers in Cardiology Working Group on e-Cardiology of the European Society of Cardiology, and the European Cardiac Arrhythmia Society. It discusses the electrocardiographic phenomenon of T-wave alternans (TWA) (i.e., a beat-to-beat alternation in the morphology and amplitude of the ST- segment or T-wave). This statement focuses on its physiological basis and measurement technologies and its clinical utility in stratifying risk for life-threatening ventricular arrhythmias. Signal processing techniques including the frequency-domain Spectral Method and the time-domain Modified Moving Average method have demonstrated the utility of TWA in arrhythmia risk stratification in prospective studies in >12,000 patients. The majority of exercise-based studies using both methods have reported high relative risks for cardiovascular mortality and for sudden cardiac death in patients with preserved as well as depressed left ventricular ejection fraction. Studies with ambulatory electrocardiogram-based TWA analysis with Modified Moving Average method have yielded significant predictive capacity. However, negative studies with the Spectral Method have also appeared, including 2 interventional studies in patients with implantable defibrillators. Meta-analyses have been performed to gain insights into this issue. Frontiers of TWA research include use in arrhythmia risk stratification of individuals with preserved ejection fraction, improvements in predictivity with quantitative analysis, and utility in guiding medical as well as device-based therapy. Overall, although TWA appears to be a useful marker of risk for arrhythmic and cardiovascular death, there is as yet no definitive evidence that it can guide therapy. PMID:21920259
ERIC Educational Resources Information Center
Ladawan, Charinrat; Singseewo, Adisak; Suksringarm, Paitool
2015-01-01
The research aimed to investigate environmental knowledge, team working skills, and desirable behaviors of students learning through the good science thinking moves method with metacognition techniques. The sample group included Matthayomsuksa 6 students from Nadoon Prachasan School, Nadoon District, Maha Sarakham Province. The research tools were…
Command Wire Sensor Measurements
2012-09-01
coupled with the extreme harsh terrain has meant that few of these techniques have proved robust enough when moved from the laboratory to the field...to image stationary objects and does not accurately image moving targets. Moving targets can be seriously distorted and displaced from their true...battlefield and for imaging of fixed targets. Moving targets can be detected with a SAR if they have a Doppler frequency shift greater than the
A comparison of LOD and UT1-UTC forecasts by different combined prediction techniques
NASA Astrophysics Data System (ADS)
Kosek, W.; Kalarus, M.; Johnson, T. J.; Wooden, W. H.; McCarthy, D. D.; Popiński, W.
Stochastic prediction techniques including autocovariance, autoregressive, autoregressive moving average, and neural networks were applied to the UT1-UTC and Length of Day (LOD) International Earth Rotation and Reference Systems Servive (IERS) EOPC04 time series to evaluate the capabilities of each method. All known effects such as leap seconds and solid Earth zonal tides were first removed from the observed values of UT1-UTC and LOD. Two combination procedures were applied to predict the resulting LODR time series: 1) the combination of the least-squares (LS) extrapolation with a stochastic predition method, and 2) the combination of the discrete wavelet transform (DWT) filtering and a stochastic prediction method. The results of the combination of the LS extrapolation with different stochastic prediction techniques were compared with the results of the UT1-UTC prediction method currently used by the IERS Rapid Service/Prediction Centre (RS/PC). It was found that the prediction accuracy depends on the starting prediction epochs, and for the combined forecast methods, the mean prediction errors for 1 to about 70 days in the future are of the same order as those of the method used by the IERS RS/PC.
Edge Preserved Speckle Noise Reduction Using Integrated Fuzzy Filters
Dewal, M. L.; Rohit, Manoj Kumar
2014-01-01
Echocardiographic images are inherent with speckle noise which makes visual reading and analysis quite difficult. The multiplicative speckle noise masks finer details, necessary for diagnosis of abnormalities. A novel speckle reduction technique based on integration of geometric, wiener, and fuzzy filters is proposed and analyzed in this paper. The denoising applications of fuzzy filters are studied and analyzed along with 26 denoising techniques. It is observed that geometric filter retains noise and, to address this issue, wiener filter is embedded into the geometric filter during iteration process. The performance of geometric-wiener filter is further enhanced using fuzzy filters and the proposed despeckling techniques are called integrated fuzzy filters. Fuzzy filters based on moving average and median value are employed in the integrated fuzzy filters. The performances of integrated fuzzy filters are tested on echocardiographic images and synthetic images in terms of image quality metrics. It is observed that the performance parameters are highest in case of integrated fuzzy filters in comparison to fuzzy and geometric-fuzzy filters. The clinical validation reveals that the output images obtained using geometric-wiener, integrated fuzzy, nonlocal means, and details preserving anisotropic diffusion filters are acceptable. The necessary finer details are retained in the denoised echocardiographic images. PMID:27437499
Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren
2016-01-01
Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words.
Omar, Hani; Hoang, Van Hai; Liu, Duen-Ren
2016-01-01
Enhancing sales and operations planning through forecasting analysis and business intelligence is demanded in many industries and enterprises. Publishing industries usually pick attractive titles and headlines for their stories to increase sales, since popular article titles and headlines can attract readers to buy magazines. In this paper, information retrieval techniques are adopted to extract words from article titles. The popularity measures of article titles are then analyzed by using the search indexes obtained from Google search engine. Backpropagation Neural Networks (BPNNs) have successfully been used to develop prediction models for sales forecasting. In this study, we propose a novel hybrid neural network model for sales forecasting based on the prediction result of time series forecasting and the popularity of article titles. The proposed model uses the historical sales data, popularity of article titles, and the prediction result of a time series, Autoregressive Integrated Moving Average (ARIMA) forecasting method to learn a BPNN-based forecasting model. Our proposed forecasting model is experimentally evaluated by comparing with conventional sales prediction techniques. The experimental result shows that our proposed forecasting method outperforms conventional techniques which do not consider the popularity of title words. PMID:27313605
Abou-Senna, Hatem; Radwan, Essam; Westerlund, Kurt; Cooper, C David
2013-07-01
The Intergovernmental Panel on Climate Change (IPCC) estimates that baseline global GHG emissions may increase 25-90% from 2000 to 2030, with carbon dioxide (CO2 emissions growing 40-110% over the same period. On-road vehicles are a major source of CO2 emissions in all the developed countries, and in many of the developing countries in the world. Similarly, several criteria air pollutants are associated with transportation, for example, carbon monoxide (CO), nitrogen oxides (NO(x)), and particulate matter (PM). Therefore, the need to accurately quantify transportation-related emissions from vehicles is essential. The new US. Environmental Protection Agency (EPA) mobile source emissions model, MOVES2010a (MOVES), can estimate vehicle emissions on a second-by-second basis, creating the opportunity to combine a microscopic traffic simulation model (such as VISSIM) with MOVES to obtain accurate results. This paper presents an examination of four different approaches to capture the environmental impacts of vehicular operations on a 10-mile stretch of Interstate 4 (I-4), an urban limited-access highway in Orlando, FL. First (at the most basic level), emissions were estimated for the entire 10-mile section "by hand" using one average traffic volume and average speed. Then three advanced levels of detail were studied using VISSIM/MOVES to analyze smaller links: average speeds and volumes (AVG), second-by-second link drive schedules (LDS), and second-by-second operating mode distributions (OPMODE). This paper analyzes how the various approaches affect predicted emissions of CO, NO(x), PM2.5, PM10, and CO2. The results demonstrate that obtaining precise and comprehensive operating mode distributions on a second-by-second basis provides more accurate emission estimates. Specifically, emission rates are highly sensitive to stop-and-go traffic and the associated driving cycles of acceleration, deceleration, and idling. Using the AVG or LDS approach may overestimate or underestimate emissions, respectively, compared to an operating mode distribution approach. Transportation agencies and researchers in the past have estimated emissions using one average speed and volume on a long stretch of roadway. With MOVES, there is an opportunity for higher precision and accuracy. Integrating a microscopic traffic simulation model (such as VISSIM) with MOVES allows one to obtain precise and accurate emissions estimates. The proposed emission rate estimation process also can be extended to gridded emissions for ozone modeling, or to localized air quality dispersion modeling, where temporal and spatial resolution of emissions is essential to predict the concentration of pollutants near roadways.
An adaptive moving mesh method for two-dimensional ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Han, Jianqiang; Tang, Huazhong
2007-01-01
This paper presents an adaptive moving mesh algorithm for two-dimensional (2D) ideal magnetohydrodynamics (MHD) that utilizes a staggered constrained transport technique to keep the magnetic field divergence-free. The algorithm consists of two independent parts: MHD evolution and mesh-redistribution. The first part is a high-resolution, divergence-free, shock-capturing scheme on a fixed quadrangular mesh, while the second part is an iterative procedure. In each iteration, mesh points are first redistributed, and then a conservative-interpolation formula is used to calculate the remapped cell-averages of the mass, momentum, and total energy on the resulting new mesh; the magnetic potential is remapped to the new mesh in a non-conservative way and is reconstructed to give a divergence-free magnetic field on the new mesh. Several numerical examples are given to demonstrate that the proposed method can achieve high numerical accuracy, track and resolve strong shock waves in ideal MHD problems, and preserve divergence-free property of the magnetic field. Numerical examples include the smooth Alfvén wave problem, 2D and 2.5D shock tube problems, two rotor problems, the stringent blast problem, and the cloud-shock interaction problem.
Li, Xing-hua; Han, Fang; Zhang, Cun-hou; Na, Ri-su; Liu, Peng-tao
2009-01-01
By using wavelet transform and remote sensing techniques, the influence of climate change on the unique mosaic landscape of sand land-wetland in middle-east Inner Mongolia in 1961 -2005 was studied. The results showed that in 1961-2005, the annual air temperature in study area had an increment of 0.32 degrees C x (10 a)(-1), the annual precipitation fluctuated with a cycle of 30 years and of 15 years, and the annual average wind speed decreased by 0.26 m x s(-1) x (10 a)(-1). In the southeast part of study area, which located in the places between Hunshandake sand land and Keerqin Deserts, there was a district, in which, the climatic characteristics did not change evidently. Until 2010, the study area would still have an increasing air temperature, lesser precipitation, and decreasing wind speed. Under the influence of warming and drying, the total area of Hunshandake sand land and the wetland around reduced year after year, and, with the vegetation degradation on sand land, wetland shrunk and lake dried up, moving sand land enlarged ceaselessly, while immovable and semi-moving sand lands reduced obviously.
Work-related accidents among the Iranian population: a time series analysis, 2000–2011
Karimlou, Masoud; Imani, Mehdi; Hosseini, Agha-Fatemeh; Dehnad, Afsaneh; Vahabi, Nasim; Bakhtiyari, Mahmood
2015-01-01
Background Work-related accidents result in human suffering and economic losses and are considered as a major health problem worldwide, especially in the economically developing world. Objectives To introduce seasonal autoregressive moving average (ARIMA) models for time series analysis of work-related accident data for workers insured by the Iranian Social Security Organization (ISSO) between 2000 and 2011. Methods In this retrospective study, all insured people experiencing at least one work-related accident during a 10-year period were included in the analyses. We used Box–Jenkins modeling to develop a time series model of the total number of accidents. Results There was an average of 1476 accidents per month (1476·05±458·77, mean±SD). The final ARIMA (p,d,q) (P,D,Q)s model for fitting to data was: ARIMA(1,1,1)×(0,1,1)12 consisting of the first ordering of the autoregressive, moving average and seasonal moving average parameters with 20·942 mean absolute percentage error (MAPE). Conclusions The final model showed that time series analysis of ARIMA models was useful for forecasting the number of work-related accidents in Iran. In addition, the forecasted number of work-related accidents for 2011 explained the stability of occurrence of these accidents in recent years, indicating a need for preventive occupational health and safety policies such as safety inspection. PMID:26119774
Work-related accidents among the Iranian population: a time series analysis, 2000-2011.
Karimlou, Masoud; Salehi, Masoud; Imani, Mehdi; Hosseini, Agha-Fatemeh; Dehnad, Afsaneh; Vahabi, Nasim; Bakhtiyari, Mahmood
2015-01-01
Work-related accidents result in human suffering and economic losses and are considered as a major health problem worldwide, especially in the economically developing world. To introduce seasonal autoregressive moving average (ARIMA) models for time series analysis of work-related accident data for workers insured by the Iranian Social Security Organization (ISSO) between 2000 and 2011. In this retrospective study, all insured people experiencing at least one work-related accident during a 10-year period were included in the analyses. We used Box-Jenkins modeling to develop a time series model of the total number of accidents. There was an average of 1476 accidents per month (1476·05±458·77, mean±SD). The final ARIMA (p,d,q) (P,D,Q)s model for fitting to data was: ARIMA(1,1,1)×(0,1,1)12 consisting of the first ordering of the autoregressive, moving average and seasonal moving average parameters with 20·942 mean absolute percentage error (MAPE). The final model showed that time series analysis of ARIMA models was useful for forecasting the number of work-related accidents in Iran. In addition, the forecasted number of work-related accidents for 2011 explained the stability of occurrence of these accidents in recent years, indicating a need for preventive occupational health and safety policies such as safety inspection.
The "moving valgus stress test" for medial collateral ligament tears of the elbow.
O'Driscoll, Shawn W M; Lawton, Richard L; Smith, Adam M
2005-02-01
The diagnosis of a painful partial tear of the medial collateral ligament in overhead-throwing athletes is challenging, even for experienced elbow surgeons and despite the use of sophisticated imaging techniques. The "moving valgus stress test" is an accurate physical examination technique for diagnosis of medial collateral ligament attenuation in the elbow. Cohort study (diagnosis); Level of evidence, 2. Twenty-one patients underwent surgical intervention for medial elbow pain due to medial collateral ligament insufficiency or other abnormality of chronic valgus overload, and they were assessed preoperatively with an examination called the moving valgus stress test. To perform the moving valgus stress test, the examiner applies and maintains a constant moderate valgus torque to the fully flexed elbow and then quickly extends the elbow. The test is positive if the medial elbow pain is reproduced at the medial collateral ligament and is at maximum between 120 degrees and 70 degrees. The moving valgus stress test was highly sensitive (100%, 17 of 17 patients) and specific (75%, 3 of 4 patients) when compared to assessment of the medial collateral ligament by surgical exploration or arthroscopic valgus stress testing. The mean shear range (ie, the arc within which pain was produced with the moving valgus stress test) was 120 degrees to 70 degrees. The mean angle at which pain was at a maximum was 90 degrees of elbow flexion. The moving valgus stress test is an accurate physical examination technique that, when performed and interpreted correctly, is highly sensitive for medial elbow pain arising from the medial collateral ligament.
Gebauer, Petr; Malá, Zdena; Boček, Petr
2014-03-01
This contribution is the third part of the project on strategies used in the selection and tuning of electrolyte systems for anionic ITP with ESI-MS detection. The strategy presented here is based on the creation of self-maintained ITP subsystems in moving-boundary systems and describes two new principal approaches offering physical separation of analyte zones from their common ITP stack and/or simultaneous selective stacking of two different analyte groups. Both strategic directions are based on extending the number of components forming the electrolyte system by adding a third suitable anion. The first method is the application of the spacer technique to moving-boundary anionic ITP systems, the second method is a technique utilizing a moving-boundary ITP system in which two ITP subsystems exist and move with mutually different velocities. It is essential for ESI detection that both methods can be based on electrolyte systems containing only several simple chemicals, such as simple volatile organic acids (formic and acetic) and their ammonium salts. The properties of both techniques are defined theoretically and discussed from the viewpoint of their applicability to trace analysis by ITP-ESI-MS. Examples of system design for selected model separations of preservatives and pharmaceuticals illustrate the validity of the theoretical model and application potential of the proposed techniques by both computer simulations and experiments. Both new methods enhance the application range of ITP-MS and may be beneficial particularly for complex multicomponent samples or for analytes with identical molecular mass. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Johnson, C. R., Jr.; Balas, M. J.
1980-01-01
A novel interconnection of distributed parameter system (DPS) identification and adaptive filtering is presented, which culminates in a common statement of coupled autoregressive, moving-average expansion or parallel infinite impulse response configuration adaptive parameterization. The common restricted complexity filter objectives are seen as similar to the reduced-order requirements of the DPS expansion description. The interconnection presents the possibility of an exchange of problem formulations and solution approaches not yet easily addressed in the common finite dimensional lumped-parameter system context. It is concluded that the shared problems raised are nevertheless many and difficult.
Forecasting daily meteorological time series using ARIMA and regression models
NASA Astrophysics Data System (ADS)
Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir
2018-04-01
The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.
NASA Astrophysics Data System (ADS)
Levine, Zachary H.; Pintar, Adam L.
2015-11-01
A simple algorithm for averaging a stochastic sequence of 1D arrays in a moving, expanding window is provided. The samples are grouped in bins which increase exponentially in size so that a constant fraction of the samples is retained at any point in the sequence. The algorithm is shown to have particular relevance for a class of Monte Carlo sampling problems which includes one characteristic of iterative reconstruction in computed tomography. The code is available in the CPC program library in both Fortran 95 and C and is also available in R through CRAN.
Zhu, Yu; Xia, Jie-lai; Wang, Jing
2009-09-01
Application of the 'single auto regressive integrated moving average (ARIMA) model' and the 'ARIMA-generalized regression neural network (GRNN) combination model' in the research of the incidence of scarlet fever. Establish the auto regressive integrated moving average model based on the data of the monthly incidence on scarlet fever of one city, from 2000 to 2006. The fitting values of the ARIMA model was used as input of the GRNN, and the actual values were used as output of the GRNN. After training the GRNN, the effect of the single ARIMA model and the ARIMA-GRNN combination model was then compared. The mean error rate (MER) of the single ARIMA model and the ARIMA-GRNN combination model were 31.6%, 28.7% respectively and the determination coefficient (R(2)) of the two models were 0.801, 0.872 respectively. The fitting efficacy of the ARIMA-GRNN combination model was better than the single ARIMA, which had practical value in the research on time series data such as the incidence of scarlet fever.
TERMA Framework for Biomedical Signal Analysis: An Economic-Inspired Approach
Elgendi, Mohamed
2016-01-01
Biomedical signals contain features that represent physiological events, and each of these events has peaks. The analysis of biomedical signals for monitoring or diagnosing diseases requires the detection of these peaks, making event detection a crucial step in biomedical signal processing. Many researchers have difficulty detecting these peaks to investigate, interpret and analyze their corresponding events. To date, there is no generic framework that captures these events in a robust, efficient and consistent manner. A new method referred to for the first time as two event-related moving averages (“TERMA”) involves event-related moving averages and detects events in biomedical signals. The TERMA framework is flexible and universal and consists of six independent LEGO building bricks to achieve high accuracy detection of biomedical events. Results recommend that the window sizes for the two moving averages (W1 and W2) have to follow the inequality (8×W1)≥W2≥(2×W1). Moreover, TERMA is a simple yet efficient event detector that is suitable for wearable devices, point-of-care devices, fitness trackers and smart watches, compared to more complex machine learning solutions. PMID:27827852
Estimating Perturbation and Meta-Stability in the Daily Attendance Rates of Six Small High Schools
NASA Astrophysics Data System (ADS)
Koopmans, Matthijs
This paper discusses the daily attendance rates in six small high schools over a ten-year period and evaluates how stable those rates are. “Stability” is approached from two vantage points: pulse models are fitted to estimate the impact of sudden perturbations and their reverberation through the series, and Autoregressive Fractionally Integrated Moving Average (ARFIMA) techniques are used to detect dependencies over the long range of the series. The analyses are meant to (1) exemplify the utility of time series approaches in educational research, which lacks a time series tradition, (2) discuss some time series features that seem to be particular to daily attendance rate trajectories such as the distinct downward pull coming from extreme observations, and (3) present an analytical approach to handle the important yet distinct patterns of variability that can be found in these data. The analysis also illustrates why the assumption of stability that underlies the habitual reporting of weekly, monthly and yearly averages in the educational literature is questionable, as it reveals dynamical processes (perturbation, meta-stability) that remain hidden in such summaries.
Relations between Precipitation and Shallow Groundwater in Illinois.
NASA Astrophysics Data System (ADS)
Changnon, Stanley A.; Huff, Floyd A.; Hsu, Chin-Fei
1988-12-01
The statistical relationships between monthly precipitation (P) and shallow groundwater levels (GW) in 20 wells scattered across Illinois with data for 1960-84 were defined using autoregressive integrated moving average (ARIMA) modeling. A lag of 1 month between P to GW was the strongest temporal relationship found across Illinois, followed by no (0) lag in the northern two-thirds of Illinois where mollisols predominate, and a lag of 2 months in the alfisols of southern Illinois. Spatial comparison of the 20 P-GW correlations with several physical conditions (aquifer types, soils, and physiography) revealed that the parent soil materials of outwash alluvium, glacial till, thick loess (2.1 m), and thin loess (>2.1) best defined regional relationships for drought assessment.Equations developed from ARTMA using 1960-79 data for each region were used to estimate GW levels during the 1980-81 drought, and estimates averaged between 25 to 45 cm of actual levels. These estimates are considered adequate to allow a useful assessment of drought onset, severity, and termination in other parts of the state. The techniques and equations should be transferrable to regions of comparable soils and climate.
DNA conformation on surfaces measured by fluorescence self-interference.
Moiseev, Lev; Unlü, M Selim; Swan, Anna K; Goldberg, Bennett B; Cantor, Charles R
2006-02-21
The conformation of DNA molecules tethered to the surface of a microarray may significantly affect the efficiency of hybridization. Although a number of methods have been applied to determine the structure of the DNA layer, they are not very sensitive to variations in the shape of DNA molecules. Here we describe the application of an interferometric technique called spectral self-interference fluorescence microscopy to the precise measurement of the average location of a fluorescent label in a DNA layer relative to the surface and thus determine specific information on the conformation of the surface-bound DNA molecules. Using spectral self-interference fluorescence microscopy, we have estimated the shape of coiled single-stranded DNA, the average tilt of double-stranded DNA of different lengths, and the amount of hybridization. The data provide important proofs of concept for the capabilities of novel optical surface analytical methods of the molecular disposition of DNA on surfaces. The determination of DNA conformations on surfaces and hybridization behavior provide information required to move DNA interfacial applications forward and thus impact emerging clinical and biotechnological fields.
Predicting Moves-on-Stills for Comic Art Using Viewer Gaze Data.
Jain, Eakta; Sheikh, Yaser; Hodgins, Jessica
2016-01-01
Comic art consists of a sequence of panels of different shapes and sizes that visually communicate the narrative to the reader. The move-on-stills technique allows such still images to be retargeted for digital displays via camera moves. Today, moves-on-stills can be created by software applications given user-provided parameters for each desired camera move. The proposed algorithm uses viewer gaze as input to computationally predict camera move parameters. The authors demonstrate their algorithm on various comic book panels and evaluate its performance by comparing their results with a professional DVD.
Heterogeneous CPU-GPU moving targets detection for UAV video
NASA Astrophysics Data System (ADS)
Li, Maowen; Tang, Linbo; Han, Yuqi; Yu, Chunlei; Zhang, Chao; Fu, Huiquan
2017-07-01
Moving targets detection is gaining popularity in civilian and military applications. On some monitoring platform of motion detection, some low-resolution stationary cameras are replaced by moving HD camera based on UAVs. The pixels of moving targets in the HD Video taken by UAV are always in a minority, and the background of the frame is usually moving because of the motion of UAVs. The high computational cost of the algorithm prevents running it at higher resolutions the pixels of frame. Hence, to solve the problem of moving targets detection based UAVs video, we propose a heterogeneous CPU-GPU moving target detection algorithm for UAV video. More specifically, we use background registration to eliminate the impact of the moving background and frame difference to detect small moving targets. In order to achieve the effect of real-time processing, we design the solution of heterogeneous CPU-GPU framework for our method. The experimental results show that our method can detect the main moving targets from the HD video taken by UAV, and the average process time is 52.16ms per frame which is fast enough to solve the problem.
An expert fitness diagnosis system based on elastic cloud computing.
Tseng, Kevin C; Wu, Chia-Chuan
2014-01-01
This paper presents an expert diagnosis system based on cloud computing. It classifies a user's fitness level based on supervised machine learning techniques. This system is able to learn and make customized diagnoses according to the user's physiological data, such as age, gender, and body mass index (BMI). In addition, an elastic algorithm based on Poisson distribution is presented to allocate computation resources dynamically. It predicts the required resources in the future according to the exponential moving average of past observations. The experimental results show that Naïve Bayes is the best classifier with the highest accuracy (90.8%) and that the elastic algorithm is able to capture tightly the trend of requests generated from the Internet and thus assign corresponding computation resources to ensure the quality of service.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, G.V.; Lewis, B.E.
1987-02-01
This report presents a design procedure for pulsed-mode, venturi-like reverse flow diverter (RFD) pumping systems. Design techniques are presented for systems in which the output line area is allowed to vary proportionally with the throat area of the RFD as well as situations in which the output line area is held constant. The results show that for cases in which the output line area is allowed to vary, an optimum RFD throat area exists for a given input pressure. For situations in which the output line area is held constant, the average output flow decreases in almost a linear fashionmore » with increasing RFD throat area. 6 refs., 8 figs.« less
Statistical process control based chart for information systems security
NASA Astrophysics Data System (ADS)
Khan, Mansoor S.; Cui, Lirong
2015-07-01
Intrusion detection systems have a highly significant role in securing computer networks and information systems. To assure the reliability and quality of computer networks and information systems, it is highly desirable to develop techniques that detect intrusions into information systems. We put forward the concept of statistical process control (SPC) in computer networks and information systems intrusions. In this article we propose exponentially weighted moving average (EWMA) type quality monitoring scheme. Our proposed scheme has only one parameter which differentiates it from the past versions. We construct the control limits for the proposed scheme and investigate their effectiveness. We provide an industrial example for the sake of clarity for practitioner. We give comparison of the proposed scheme with EWMA schemes and p chart; finally we provide some recommendations for the future work.
VizieR Online Data Catalog: HARPS timeseries data for HD41248 (Jenkins+, 2014)
NASA Astrophysics Data System (ADS)
Jenkins, J. S.; Tuomi, M.
2017-05-01
We modeled the HARPS radial velocities of HD 42148 by adopting the analysis techniques and the statistical model applied in Tuomi et al. (2014, arXiv:1405.2016). This model contains Keplerian signals, a linear trend, a moving average component with exponential smoothing, and linear correlations with activity indices, namely, BIS, FWHM, and chromospheric activity S index. We applied our statistical model outlined above to the full data set of radial velocities for HD 41248, combining the previously published data in Jenkins et al. (2013ApJ...771...41J) with the newly published data in Santos et al. (2014, J/A+A/566/A35), giving rise to a total time series of 223 HARPS (Mayor et al. 2003Msngr.114...20M) velocities. (1 data file).
Forecasting seeing and parameters of long-exposure images by means of ARIMA
NASA Astrophysics Data System (ADS)
Kornilov, Matwey V.
2016-02-01
Atmospheric turbulence is the one of the major limiting factors for ground-based astronomical observations. In this paper, the problem of short-term forecasting seeing is discussed. The real data that were obtained by atmospheric optical turbulence (OT) measurements above Mount Shatdzhatmaz in 2007-2013 have been analysed. Linear auto-regressive integrated moving average (ARIMA) models are used for the forecasting. A new procedure for forecasting the image characteristics of direct astronomical observations (central image intensity, full width at half maximum, radius encircling 80 % of the energy) has been proposed. Probability density functions of the forecast of these quantities are 1.5-2 times thinner than the respective unconditional probability density functions. Overall, this study found that the described technique could adequately describe temporal stochastic variations of the OT power.
Industrial Based Migration in India. A Case Study of Dumdum "Dunlop Industrial Zone"
NASA Astrophysics Data System (ADS)
Das, Biplab; Bandyopadhyay, Aditya; Sen, Jayashree
2012-10-01
Migration is a very important part in our present society. Basically Millions of people moved during the industrial revolution. Some simply moved from a village to a town in the hope of finding work whilst others moved from one country to another in search of a better way of life. The main reason for moving home during the 19th century was to find work. On one hand this involved migration from the countryside to the growing industrial cities, on the other it involved rates of migration, emigration, and the social changes that were drastically affecting factors such as marriage,birth and death rates. These social changes taking place as a result of capitalism had far ranging affects, such as lowering the average age of marriage and increasing the size of the average family.Migration was not just people moving out of the country, it also invloved a lot of people moving into Britain. In the 1840's Ireland suffered a terrible famine. Faced with a massive cost of feeding the starving population many local landowners paid for labourers to emigrate.There was a shift away from agriculturally based rural dwelling towards urban habitation to meet the mass demand for labour that new industry required. There became great regional differences in population levels and in the structure of their demography. This was due to rates of migration, emigration, and the social changes that were drastically affecting factors such as marriage, birth and death rates. These social changes taking place as a result of capitalism had far ranging affects, such as lowering the average age of marriage and increasing the size of the average family. There is n serious disagreement as to the extent of the population changes that occurred but one key question that always arouses debate is that of whether an expanding population resulted in economic growth or vice versa, i.e. was industrialization a catalyst for population growth? A clear answer is difficult to decipher as the two variables are so closely and fundamentally interlinked, but it seems that both factors provided impetus for each otherís take off. If anything, population and economic growth were complimentary towards one another rather than simply being causative factors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, M; Rockhill, J; Phillips, M
Purpose: To investigate a spatiotemporally optimal radiotherapy prescription scheme and its potential benefit for glioblastoma (GBM) patients using the proliferation and invasion (PI) glioma model. Methods: Standard prescription for GBM was assumed to deliver 46Gy in 23 fractions to GTV1+2cm margin and additional 14Gy in 7 fractions to GTV2+2cm margin. We simulated the tumor proliferation and invasion in 2D according to the PI glioma model with a moving velocity of 0.029(slow-move), 0.079(average-move), and 0.13(fast-move) mm/day for GTV2 with a radius of 1 and 2cm. For each tumor, the margin around GTV1 and GTV2 was varied to 0–6 cm and 1–3more » cm respectively. Total dose to GTV1 was constrained such that the equivalent uniform dose (EUD) to normal brain equals EUD with the standard prescription. A non-stationary dose policy, where the fractional dose varies, was investigated to estimate the temporal effect of the radiation dose. The efficacy of an optimal prescription scheme was evaluated by tumor cell-surviving fraction (SF), EUD, and the expected survival time. Results: Optimal prescription for the slow-move tumors was to use 3.0(small)-3.5(large) cm margins to GTV1, and 1.5cm margin to GTV2. For the average- and fast-move tumors, it was optimal to use 6.0cm margin for GTV1 suggesting that whole brain therapy is optimal, and then 1.5cm (average-move) and 1.5–3.0cm (fast-move, small-large) margins for GTV2. It was optimal to deliver the boost sequentially using a linearly decreasing fractional dose for all tumors. Optimal prescription led to 0.001–0.465% of the tumor SF resulted from using the standard prescription, and increased tumor EUD by 25.3–49.3% and the estimated survival time by 7.6–22.2 months. Conclusion: It is feasible to optimize a prescription scheme depending on the individual tumor characteristics. A personalized prescription scheme could potentially increase tumor EUD and the expected survival time significantly without increasing EUD to normal brain.« less
The Micromechanics of the Moving Contact Line
NASA Technical Reports Server (NTRS)
Han, Minsub; Lichter, Seth; Lin, Chih-Yu; Perng, Yeong-Yan
1996-01-01
The proposed research is divided into three components concerned with molecular structure, molecular orientation, and continuum averages of discrete systems. In the experimental program, we propose exploring how changes in interfacial molecular structure generate contact line motion. Rather than rely on the electrostatic and electrokinetic fields arising from the molecules themselves, we augment their interactions by an imposed field at the solid/liquid interface. By controling the field, we can manipulate the molecular structure at the solid/liquid interface. In response to controlled changes in molecular structure, we observe the resultant contact line motion. In the analytical portion of the proposed research we seek to formulate a system of equations governing fluid motion which accounts for the orientation of fluid molecules. In preliminary work, we have focused on describing how molecular orientation affects the forces generated at the moving contact line. Ideally, as assumed above, the discrete behavior of molecules can be averaged into a continuum theory. In the numerical portion of the proposed research, we inquire whether the contact line region is, in fact, large enough to possess a well-defined average. Additionally, we ask what types of behavior distinguish discrete systems from continuum systems. Might the smallness of the contact line region, in itself, lead to behavior different from that in the bulk? Taken together, our proposed research seeks to identify and accurately account for some of the molecular dynamics of the moving contact line, and attempts to formulate a description from which one can compute the forces at the moving contact line.
Kumar, M Kishore; Sreekanth, V; Salmon, Maëlle; Tonne, Cathryn; Marshall, Julian D
2018-08-01
This study uses spatiotemporal patterns in ambient concentrations to infer the contribution of regional versus local sources. We collected 12 months of monitoring data for outdoor fine particulate matter (PM 2.5 ) in rural southern India. Rural India includes more than one-tenth of the global population and annually accounts for around half a million air pollution deaths, yet little is known about the relative contribution of local sources to outdoor air pollution. We measured 1-min averaged outdoor PM 2.5 concentrations during June 2015-May 2016 in three villages, which varied in population size, socioeconomic status, and type and usage of domestic fuel. The daily geometric-mean PM 2.5 concentration was ∼30 μg m -3 (geometric standard deviation: ∼1.5). Concentrations exceeded the Indian National Ambient Air Quality standards (60 μg m -3 ) during 2-5% of observation days. Average concentrations were ∼25 μg m -3 higher during winter than during monsoon and ∼8 μg m -3 higher during morning hours than the diurnal average. A moving average subtraction method based on 1-min average PM 2.5 concentrations indicated that local contributions (e.g., nearby biomass combustion, brick kilns) were greater in the most populated village, and that overall the majority of ambient PM 2.5 in our study was regional, implying that local air pollution control strategies alone may have limited influence on local ambient concentrations. We compared the relatively new moving average subtraction method against a more established approach. Both methods broadly agree on the relative contribution of local sources across the three sites. The moving average subtraction method has broad applicability across locations. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Time Series ARIMA Models of Undergraduate Grade Point Average.
ERIC Educational Resources Information Center
Rogers, Bruce G.
The Auto-Regressive Integrated Moving Average (ARIMA) Models, often referred to as Box-Jenkins models, are regression methods for analyzing sequential dependent observations with large amounts of data. The Box-Jenkins approach, a three-stage procedure consisting of identification, estimation and diagnosis, was used to select the most appropriate…
ERIC Educational Resources Information Center
Adams, Gerald J.; Dial, Micah
1998-01-01
The cyclical nature of mathematics grades was studied for a cohort of elementary school students from a large metropolitan school district in Texas over six years (average cohort size of 8495). The study used an autoregressive integrated moving average (ARIMA) model. Results indicate that grades do exhibit a significant cyclical pattern. (SLD)
NASA Astrophysics Data System (ADS)
Waghorn, Ben J.; Shah, Amish P.; Ngwa, Wilfred; Meeks, Sanford L.; Moore, Joseph A.; Siebers, Jeffrey V.; Langen, Katja M.
2010-07-01
Intra-fraction organ motion during intensity-modulated radiation therapy (IMRT) treatment can cause differences between the planned and the delivered dose distribution. To investigate the extent of these dosimetric changes, a computational model was developed and validated. The computational method allows for calculation of the rigid motion perturbed three-dimensional dose distribution in the CT volume and therefore a dose volume histogram-based assessment of the dosimetric impact of intra-fraction motion on a rigidly moving body. The method was developed and validated for both step-and-shoot IMRT and solid compensator IMRT treatment plans. For each segment (or beam), fluence maps were exported from the treatment planning system. Fluence maps were shifted according to the target position deduced from a motion track. These shifted, motion-encoded fluence maps were then re-imported into the treatment planning system and were used to calculate the motion-encoded dose distribution. To validate the accuracy of the motion-encoded dose distribution the treatment plan was delivered to a moving cylindrical phantom using a programmed four-dimensional motion phantom. Extended dose response (EDR-2) film was used to measure a planar dose distribution for comparison with the calculated motion-encoded distribution using a gamma index analysis (3% dose difference, 3 mm distance-to-agreement). A series of motion tracks incorporating both inter-beam step-function shifts and continuous sinusoidal motion were tested. The method was shown to accurately predict the film's dose distribution for all of the tested motion tracks, both for the step-and-shoot IMRT and compensator plans. The average gamma analysis pass rate for the measured dose distribution with respect to the calculated motion-encoded distribution was 98.3 ± 0.7%. For static delivery the average film-to-calculation pass rate was 98.7 ± 0.2%. In summary, a computational technique has been developed to calculate the dosimetric effect of intra-fraction motion. This technique has the potential to evaluate a given plan's sensitivity to anticipated organ motion. With knowledge of the organ's motion it can also be used as a tool to assess the impact of measured intra-fraction motion after dose delivery.
Evidence of redshifts in the average solar line profiles of C IV and Si IV from OSO-8 observations
NASA Technical Reports Server (NTRS)
Roussel-Dupre, D.; Shine, R. A.
1982-01-01
Line profiles of C IV and Si V obtained by the Colorado spectrometer on OSO-8 are presented. It is shown that the mean profiles are redshifted with a magnitude varying from 6-20 km/s, and with a mean of 12 km/s. An apparent average downflow of material in the 50,000-100,000 K temperature range is measured. The redshifts are observed in the line center positions of spatially and temporally averaged profiles and are measured either relative to chromospheric Si I lines or from a comparison of sun center and limb profiles. The observations of 6-20 km/s redshifts place constraints on the mechanisms that dominate EUV line emission since it requires a strong weighting of the emission in regions of downward moving material, and since there is little evidence for corresponding upward moving materials in these lines.
The flying hot wire and related instrumentation
NASA Technical Reports Server (NTRS)
Coles, D.; Cantnell, B.; Wadcock, A.
1978-01-01
A flying hot-wire technique is proposed for studies of separated turbulent flow in wind tunnels. The technique avoids the problem of signal rectification in regions of high turbulence level by moving the probe rapidly through the flow on the end of a rotating arm. New problems which arise include control of effects of torque variation on rotor speed, avoidance of interference from the wake of the moving arms, and synchronization of data acquisition with rotation. Solutions for these problems are described. The self-calibrating feature of the technique is illustrated by a sample X-array calibration.
A New Trend-Following Indicator: Using SSA to Design Trading Rules
NASA Astrophysics Data System (ADS)
Leles, Michel Carlo Rodrigues; Mozelli, Leonardo Amaral; Guimarães, Homero Nogueira
Singular Spectrum Analysis (SSA) is a non-parametric approach that can be used to decompose a time-series as trends, oscillations and noise. Trend-following strategies rely on the principle that financial markets move in trends for an extended period of time. Moving Averages (MAs) are the standard indicator to design such strategies. In this study, SSA is used as an alternative method to enhance trend resolution in comparison with the traditional MA. New trading rules using SSA as indicator are proposed. This paper shows that for the Down Jones Industrial Average (DJIA) and Shangai Securities Composite Index (SSCI) time-series the SSA trading rules provided, in general, better results in comparison to MA trading rules.
Sardiwalla, Yaeesh; Jufas, Nicholas; Morris, David P
2017-06-12
Minimally Invasive Ponto Surgery (MIPS) was recently described as a new technique to facilitate the placement of percutaneous bone anchored hearing devices. The procedure has resulted in a simplification of the surgical steps and a dramatic reduction in surgical time while maintaining excellent patient outcomes. Given these developments, our group sought to move the procedure from the main operating suite where they have traditionally been performed. This study aims to test the null hypothesis that MIPS and open approaches have the same direct costs for the implantation of percutaneous bone anchored hearing devices in a Canadian public hospital setting. A retrospective direct cost comparison of MIPS and open approaches for the implantation of bone conduction implants was conducted. Indirect and future costs were not included in the fiscal analysis. A simple cost comparison of the two approaches was made considering time, staff and equipment needs. All 12 operations were performed on adult patients from 2013 to 2016 by the same surgeon at a single hospital site. MIPS has a total mean reduction in cost of CAD$456.83 per operation from the hospital perspective when compared to open approaches. The average duration of the MIPS operation was 7 min, which is on average 61 min shorter compared with open approaches. The MIPS technique was more cost effective than traditional open approaches. This primarily reflects a direct consequence of a reduction in surgical time, with further contributions from reduced staffing and equipment costs. This simple, quick intervention proved to be feasible when performed outside the main operating room. A blister pack of required equipment could prove convenient and further reduce costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
2015-06-15
Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using amore » constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.« less
Depth-Based Detection of Standing-Pigs in Moving Noise Environments.
Kim, Jinseong; Chung, Yeonwoo; Choi, Younchang; Sa, Jaewon; Kim, Heegon; Chung, Yongwha; Park, Daihee; Kim, Hakjae
2017-11-29
In a surveillance camera environment, the detection of standing-pigs in real-time is an important issue towards the final goal of 24-h tracking of individual pigs. In this study, we focus on depth-based detection of standing-pigs with "moving noises", which appear every night in a commercial pig farm, but have not been reported yet. We first apply a spatiotemporal interpolation technique to remove the moving noises occurring in the depth images. Then, we detect the standing-pigs by utilizing the undefined depth values around them. Our experimental results show that this method is effective for detecting standing-pigs at night, in terms of both cost-effectiveness (using a low-cost Kinect depth sensor) and accuracy (i.e., 94.47%), even with severe moving noises occluding up to half of an input depth image. Furthermore, without any time-consuming technique, the proposed method can be executed in real-time.
An overview of the cosmetic treatment of facial muscles with a new botulinum toxin.
Wiest, Luitgard G
2009-01-01
Botulinum toxin (BTX) is used nowadays in a much more differentiated way with a much more individualized approach to the cosmetic treatment of patients. To the well known areas of the upper face new indications in the mid and lower face have been added. Microinjection techniques are increasingly used besides the classic intramuscular injection technique. BTX injections of the mid and lower face require small and smallest dosages. The perioral muscles act in concert to achieve the extraordinarily complex movements that control facial expressions, eating, and speech. As the mouth has horizontal as well as vertical movements, paralysis of these perioral muscles has a greater effect on facial function and appearance than does paralysis of muscles of the upper face, which move primarily in vertical direction. It is essential that BTX injections should achieve the desired cosmetic result with the minimum dose without any functional discomfort. In this paper the three-year clinical experience with average dosages for an optimal outcome in the treatment of facial muscles with a newly developed botulinum toxin type A (Xeomin) free from complexing proteins is presented.
Bao, Guanqun; Mi, Liang; Geng, Yishuang; Zhou, Mingda; Pahlavan, Kaveh
2014-01-01
Wireless Capsule Endoscopy (WCE) is progressively emerging as one of the most popular non-invasive imaging tools for gastrointestinal (GI) tract inspection. As a critical component of capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of intestinal disease. For the WCE, the position of the capsule is defined as the linear distance it is away from certain fixed anatomical landmarks. In order to measure the distance the capsule has traveled, a precise knowledge of how fast the capsule moves is urgently needed. In this paper, we present a novel computer vision based speed estimation technique that is able to extract the speed of the endoscopic capsule by analyzing the displacements between consecutive frames. The proposed approach is validated using a virtual testbed as well as the real endoscopic images. Results show that the proposed method is able to precisely estimate the speed of the endoscopic capsule with 93% accuracy on average, which enhances the localization accuracy of the WCE to less than 2.49 cm.
Method for image reconstruction of moving radionuclide source distribution
Stolin, Alexander V.; McKisson, John E.; Lee, Seung Joon; Smith, Mark Frederick
2012-12-18
A method for image reconstruction of moving radionuclide distributions. Its particular embodiment is for single photon emission computed tomography (SPECT) imaging of awake animals, though its techniques are general enough to be applied to other moving radionuclide distributions as well. The invention eliminates motion and blurring artifacts for image reconstructions of moving source distributions. This opens new avenues in the area of small animal brain imaging with radiotracers, which can now be performed without the perturbing influences of anesthesia or physical restraint on the biological system.
Distractor interference during smooth pursuit eye movements.
Spering, Miriam; Gegenfurtner, Karl R; Kerzel, Dirk
2006-10-01
When 2 targets for pursuit eye movements move in different directions, the eye velocity follows the vector average (S. G. Lisberger & V. P. Ferrera, 1997). The present study investigates the mechanisms of target selection when observers are instructed to follow a predefined horizontal target and to ignore a moving distractor stimulus. Results show that at 140 ms after distractor onset, horizontal eye velocity is decreased by about 25%. Vertical eye velocity increases or decreases by 1 degrees /s in the direction opposite from the distractor. This deviation varies in size with distractor direction, velocity, and contrast. The effect was present during the initiation and steady-state tracking phase of pursuit but only when the observer had prior information about target motion. Neither vector averaging nor winner-take-all models could predict the response to a moving to-be-ignored distractor during steady-state tracking of a predefined target. The contributions of perceptual mislocalization and spatial attention to the vertical deviation in pursuit are discussed. Copyright 2006 APA.
Hinds, Aynslie M; Bechtel, Brian; Distasio, Jino; Roos, Leslie L; Lix, Lisa M
2018-06-05
Residence in public housing, a subsidized and managed government program, may affect health and healthcare utilization. We compared healthcare use in the year before individuals moved into public housing with usage during their first year of tenancy. We also described trends in use. We used linked population-based administrative data housed in the Population Research Data Repository at the Manitoba Centre for Health Policy. The cohort consisted of individuals who moved into public housing in 2009 and 2010. We counted the number of hospitalizations, general practitioner (GP) visits, specialist visits, emergency department visits, and prescriptions drugs dispensed in the twelve 30-day intervals (i.e., months) immediately preceding and following the public housing move-in date. Generalized linear models with generalized estimating equations tested for a period (pre/post-move-in) by month interaction. Odds ratios (ORs), incident rate ratios (IRRs), and means are reported along with 95% confidence intervals (95% CIs). The cohort included 1942 individuals; the majority were female (73.4%) who lived in low income areas and received government assistance (68.1%). On average, the cohort had more than four health conditions. Over the 24 30-day intervals, the percentage of the cohort that visited a GP, specialist, and an emergency department ranged between 37.0% and 43.0%, 10.0% and 14.0%, and 6.0% and 10.0%, respectively, while the percentage of the cohort hospitalized ranged from 1.0% to 5.0%. Generally, these percentages were highest in the few months before the move-in date and lowest in the few months after the move-in date. The period by month interaction was statistically significant for hospitalizations, GP visits, and prescription drug use. The average change in the odds, rate, or mean was smaller in the post-move-in period than in the pre-move-in period. Use of some healthcare services declined after people moved into public housing; however, the decrease was only observed in the first few months and utilization rebounded. Knowledge of healthcare trends before individuals move in are informative for ensuring the appropriate supports are available to new public housing residents. Further study is needed to determine if decreased healthcare utilization following a move is attributable to decreased access.
The change of sleeping and lying posture of Japanese black cows after moving into new environment.
Fukasawa, Michiru; Komatsu, Tokushi; Higashiyama, Yumi
2018-04-25
The environmental change is one of the stressful events in livestock production. Change in environment disturbed cow behavior and cows needed several days to reach stable behavioral pattern, especially sleeping posture (SP) and lying posture (LP) have been used as an indicator for relax and well-acclimated to its environment. The aim of this study examines how long does Japanese black cow required for stabilization of SP and LP after moving into new environment. Seven pregnant Japanese black cows were used. Cows were moved into new tie-stall shed and measured sleeping and lying posture 17 times during 35 experimental days. Both SP and LP were detected by accelerometer fixed on middle occipital and hip-cross, respectively. Daily total time, frequency, and average bout of both SP and LP were calculated. Daily SP time was the shortest on day 1, and increased to the highest on day3. It decreased until day 9, after that stabilized about 65 min /day till the end of experiment. The longest average SP bout was shown on day 1, and it decreased to stabilize till day 7. Daily LP time was changed as same manner as daily SP time. The average SP bout showed the longest on day 1, and it decreased to stable level till day 7. On the other hand, the average LP bout showed the shortest on day1, and it was increased to stable level till on day 7. These results showed that pregnant Japanese black cows needed 1 week to stabilize their SP. However, there were different change pattern between the average SP and LP bout, even though the change pattern of daily SP and LP time were similar.
Ribeiro, Haroldo V; Mendes, Renio S; Lenzi, Ervin K; del Castillo-Mussot, Marcelo; Amaral, Luís A N
2013-01-01
The complexity of chess matches has attracted broad interest since its invention. This complexity and the availability of large number of recorded matches make chess an ideal model systems for the study of population-level learning of a complex system. We systematically investigate the move-by-move dynamics of the white player's advantage from over seventy thousand high level chess matches spanning over 150 years. We find that the average advantage of the white player is positive and that it has been increasing over time. Currently, the average advantage of the white player is 0.17 pawns but it is exponentially approaching a value of 0.23 pawns with a characteristic time scale of 67 years. We also study the diffusion of the move dependence of the white player's advantage and find that it is non-Gaussian, has long-ranged anti-correlations and that after an initial period with no diffusion it becomes super-diffusive. We find that the duration of the non-diffusive period, corresponding to the opening stage of a match, is increasing in length and exponentially approaching a value of 15.6 moves with a characteristic time scale of 130 years. We interpret these two trends as a resulting from learning of the features of the game. Additionally, we find that the exponent [Formula: see text] characterizing the super-diffusive regime is increasing toward a value of 1.9, close to the ballistic regime. We suggest that this trend is due to the increased broadening of the range of abilities of chess players participating in major tournaments.
Ribeiro, Haroldo V.; Mendes, Renio S.; Lenzi, Ervin K.; del Castillo-Mussot, Marcelo; Amaral, Luís A. N.
2013-01-01
The complexity of chess matches has attracted broad interest since its invention. This complexity and the availability of large number of recorded matches make chess an ideal model systems for the study of population-level learning of a complex system. We systematically investigate the move-by-move dynamics of the white player’s advantage from over seventy thousand high level chess matches spanning over 150 years. We find that the average advantage of the white player is positive and that it has been increasing over time. Currently, the average advantage of the white player is 0.17 pawns but it is exponentially approaching a value of 0.23 pawns with a characteristic time scale of 67 years. We also study the diffusion of the move dependence of the white player’s advantage and find that it is non-Gaussian, has long-ranged anti-correlations and that after an initial period with no diffusion it becomes super-diffusive. We find that the duration of the non-diffusive period, corresponding to the opening stage of a match, is increasing in length and exponentially approaching a value of 15.6 moves with a characteristic time scale of 130 years. We interpret these two trends as a resulting from learning of the features of the game. Additionally, we find that the exponent characterizing the super-diffusive regime is increasing toward a value of 1.9, close to the ballistic regime. We suggest that this trend is due to the increased broadening of the range of abilities of chess players participating in major tournaments. PMID:23382876
NASA Astrophysics Data System (ADS)
Jerome, N. P.; Orton, M. R.; d'Arcy, J. A.; Feiweier, T.; Tunariu, N.; Koh, D.-M.; Leach, M. O.; Collins, D. J.
2015-01-01
Respiratory motion commonly confounds abdominal diffusion-weighted magnetic resonance imaging, where averaging of successive samples at different parts of the respiratory cycle, performed in the scanner, manifests the motion as blurring of tissue boundaries and structural features and can introduce bias into calculated diffusion metrics. Storing multiple averages separately allows processing using metrics other than the mean; in this prospective volunteer study, median and trimmed mean values of signal intensity for each voxel over repeated averages and diffusion-weighting directions are shown to give images with sharper tissue boundaries and structural features for moving tissues, while not compromising non-moving structures. Expert visual scoring of derived diffusion maps is significantly higher for the median than for the mean, with modest improvement from the trimmed mean. Diffusion metrics derived from mono- and bi-exponential diffusion models are comparable for non-moving structures, demonstrating a lack of introduced bias from using the median. The use of the median is a simple and computationally inexpensive alternative to complex and expensive registration algorithms, requiring only additional data storage (and no additional scanning time) while returning visually superior images that will facilitate the appropriate placement of regions-of-interest when analysing abdominal diffusion-weighted magnetic resonance images, for assessment of disease characteristics and treatment response.
A novel algorithm for Bluetooth ECG.
Pandya, Utpal T; Desai, Uday B
2012-11-01
In wireless transmission of ECG, data latency will be significant when battery power level and data transmission distance are not maintained. In applications like home monitoring or personalized care, to overcome the joint effect of previous issues of wireless transmission and other ECG measurement noises, a novel filtering strategy is required. Here, a novel algorithm, identified as peak rejection adaptive sampling modified moving average (PRASMMA) algorithm for wireless ECG is introduced. This algorithm first removes error in bit pattern of received data if occurred in wireless transmission and then removes baseline drift. Afterward, a modified moving average is implemented except in the region of each QRS complexes. The algorithm also sets its filtering parameters according to different sampling rate selected for acquisition of signals. To demonstrate the work, a prototyped Bluetooth-based ECG module is used to capture ECG with different sampling rate and in different position of patient. This module transmits ECG wirelessly to Bluetooth-enabled devices where the PRASMMA algorithm is applied on captured ECG. The performance of PRASMMA algorithm is compared with moving average and S-Golay algorithms visually as well as numerically. The results show that the PRASMMA algorithm can significantly improve the ECG reconstruction by efficiently removing the noise and its use can be extended to any parameters where peaks are importance for diagnostic purpose.
Jerome, N P; Orton, M R; d'Arcy, J A; Feiweier, T; Tunariu, N; Koh, D-M; Leach, M O; Collins, D J
2015-01-21
Respiratory motion commonly confounds abdominal diffusion-weighted magnetic resonance imaging, where averaging of successive samples at different parts of the respiratory cycle, performed in the scanner, manifests the motion as blurring of tissue boundaries and structural features and can introduce bias into calculated diffusion metrics. Storing multiple averages separately allows processing using metrics other than the mean; in this prospective volunteer study, median and trimmed mean values of signal intensity for each voxel over repeated averages and diffusion-weighting directions are shown to give images with sharper tissue boundaries and structural features for moving tissues, while not compromising non-moving structures. Expert visual scoring of derived diffusion maps is significantly higher for the median than for the mean, with modest improvement from the trimmed mean. Diffusion metrics derived from mono- and bi-exponential diffusion models are comparable for non-moving structures, demonstrating a lack of introduced bias from using the median. The use of the median is a simple and computationally inexpensive alternative to complex and expensive registration algorithms, requiring only additional data storage (and no additional scanning time) while returning visually superior images that will facilitate the appropriate placement of regions-of-interest when analysing abdominal diffusion-weighted magnetic resonance images, for assessment of disease characteristics and treatment response.
Wu, Yan; Aarts, Ronald M.
2018-01-01
A recurring problem regarding the use of conventional comb filter approaches for elimination of periodic waveforms is the degree of selectivity achieved by the filtering process. Some applications, such as the gradient artefact correction in EEG recordings during coregistered EEG-fMRI, require a highly selective comb filtering that provides effective attenuation in the stopbands and gain close to unity in the pass-bands. In this paper, we present a novel comb filtering implementation whereby the iterative filtering application of FIR moving average-based approaches is exploited in order to enhance the comb filtering selectivity. Our results indicate that the proposed approach can be used to effectively approximate the FIR moving average filter characteristics to those of an ideal filter. A cascaded implementation using the proposed approach shows to further increase the attenuation in the filter stopbands. Moreover, broadening of the bandwidth of the comb filtering stopbands around −3 dB according to the fundamental frequency of the stopband can be achieved by the novel method, which constitutes an important characteristic to account for broadening of the harmonic gradient artefact spectral lines. In parallel, the proposed filtering implementation can also be used to design a novel notch filtering approach with enhanced selectivity as well. PMID:29599955
Watson, J T; Ritzmann, R E
1998-01-01
We have combined high-speed video motion analysis of leg movements with electromyogram (EMG) recordings from leg muscles in cockroaches running on a treadmill. The mesothoracic (T2) and metathoracic (T3) legs have different kinematics. While in each leg the coxa-femur (CF) joint moves in unison with the femurtibia (FT) joint, the relative joint excursions differ between T2 and T3 legs. In T3 legs, the two joints move through approximately the same excursion. In T2 legs, the FT joint moves through a narrower range of angles than the CF joint. In spite of these differences in motion, no differences between the T2 and T3 legs were seen in timing or qualitative patterns of depressor coxa and extensor tibia activity. The average firing frequencies of slow depressor coxa (Ds) and slow extensor tibia (SETi) motor neurons are directly proportional to the average angular velocity of their joints during stance. The average Ds and SETi firing frequency appears to be modulated on a cycle-by-cycle basis to control running speed and orientation. In contrast, while the frequency variations within Ds and SETi bursts were consistent across cycles, the variations within each burst did not parallel variations in the velocity of the relevant joints.
Gesture Based Control and EMG Decomposition
NASA Technical Reports Server (NTRS)
Wheeler, Kevin R.; Chang, Mindy H.; Knuth, Kevin H.
2005-01-01
This paper presents two probabilistic developments for use with Electromyograms (EMG). First described is a new-electric interface for virtual device control based on gesture recognition. The second development is a Bayesian method for decomposing EMG into individual motor unit action potentials. This more complex technique will then allow for higher resolution in separating muscle groups for gesture recognition. All examples presented rely upon sampling EMG data from a subject's forearm. The gesture based recognition uses pattern recognition software that has been trained to identify gestures from among a given set of gestures. The pattern recognition software consists of hidden Markov models which are used to recognize the gestures as they are being performed in real-time from moving averages of EMG. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard. Moving averages of EMG do not provide easy distinction between fine muscle groups. To better distinguish between different fine motor skill muscle groups we present a Bayesian algorithm to separate surface EMG into representative motor unit action potentials. The algorithm is based upon differential Variable Component Analysis (dVCA) [l], [2] which was originally developed for Electroencephalograms. The algorithm uses a simple forward model representing a mixture of motor unit action potentials as seen across multiple channels. The parameters of this model are iteratively optimized for each component. Results are presented on both synthetic and experimental EMG data. The synthetic case has additive white noise and is compared with known components. The experimental EMG data was obtained using a custom linear electrode array designed for this study.
Kittell, Aaron W.; Camenisch, Theodore G.; Ratke, Joseph J.; Sidabras, Jason W.; Hyde, James S.
2011-01-01
A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented. PMID:21741868
Inter-comparison of time series models of lake levels predicted by several modeling strategies
NASA Astrophysics Data System (ADS)
Khatibi, R.; Ghorbani, M. A.; Naghipour, L.; Jothiprakash, V.; Fathima, T. A.; Fazelifard, M. H.
2014-04-01
Five modeling strategies are employed to analyze water level time series of six lakes with different physical characteristics such as shape, size, altitude and range of variations. The models comprise chaos theory, Auto-Regressive Integrated Moving Average (ARIMA) - treated for seasonality and hence SARIMA, Artificial Neural Networks (ANN), Gene Expression Programming (GEP) and Multiple Linear Regression (MLR). Each is formulated on a different premise with different underlying assumptions. Chaos theory is elaborated in a greater detail as it is customary to identify the existence of chaotic signals by a number of techniques (e.g. average mutual information and false nearest neighbors) and future values are predicted using the Nonlinear Local Prediction (NLP) technique. This paper takes a critical view of past inter-comparison studies seeking a superior performance, against which it is reported that (i) the performances of all five modeling strategies vary from good to poor, hampering the recommendation of a clear-cut predictive model; (ii) the performances of the datasets of two cases are consistently better with all five modeling strategies; (iii) in other cases, their performances are poor but the results can still be fit-for-purpose; (iv) the simultaneous good performances of NLP and SARIMA pull their underlying assumptions to different ends, which cannot be reconciled. A number of arguments are presented including the culture of pluralism, according to which the various modeling strategies facilitate an insight into the data from different vantages.
FARMWORKERS, A REPRINT FROM THE 1966 MANPOWER REPORT.
ERIC Educational Resources Information Center
Manpower Administration (DOL), Washington, DC.
ALTHOUGH THE AVERAGE STANDARD OF LIVING OF FARM PEOPLE HAS BEEN RISING STEADILY, THEY CONTINUE TO FACE SEVERE PROBLEMS OF UNDEREMPLOYMENT AND POVERTY. THE AVERAGE PER CAPITA INCOME OF FARM RESIDENTS IS LESS THAN TWO-THIRDS THAT OF THE NONFARM POPULATION. MILLIONS HAVE MOVED TO CITIES, LEAVING STAGNATING RURAL COMMUNITIES, AND INCREASING THE CITY…
Salina, Loris; Ruffinengo, Carlo; Garrino, Lorenza; Massariello, Patrizia; Charrier, Lorena; Martin, Barbara; Favale, Maria Santina; Dimonte, Valerio
2012-05-01
The Undergraduate Nursing Course has been using videos for the past year or so. Videos are used for many different purposes such as during lessons, nurse refresher courses, reinforcement, and sharing and comparison of knowledge with the professional and scientific community. The purpose of this study was to estimate the efficacy of the video (moving an uncooperative patient from the supine to the lateral position) as an instrument to refresh and reinforce nursing techniques. A two-arm randomized controlled trial (RCT) design was chosen: both groups attended lessons in the classroom as well as in the laboratory; a month later while one group received written information as a refresher, the other group watched the video. Both groups were evaluated in a blinded fashion. A total of 223 students agreed to take part in the study. The difference observed between those who had seen the video and those who had read up on the technique turned out to be an average of 6.19 points in favour of the first (P < 0.05). The results of the RCT demonstrated that students who had seen the video were better able to apply the technique, resulting in a better performance. The video, therefore, represents an important tool to refresh and reinforce previous learning.
NASA Astrophysics Data System (ADS)
Beganović, Anel; Beć, Krzysztof B.; Henn, Raphael; Huck, Christian W.
2018-05-01
The applicability of two elimination techniques for interferences occurring in measurements with cells of short pathlength using Fourier transform near-infrared (FT-NIR) spectroscopy was evaluated. Due to the growing interest in the field of vibrational spectroscopy in aqueous biological fluids (e.g. glucose in blood), aqueous solutions of D-(+)-glucose were prepared and split into a calibration set and an independent validation set. All samples were measured with two FT-NIR spectrometers at various spectral resolutions. Moving average smoothing (MAS) and fast Fourier transform filter (FFT filter) were applied to the interference affected FT-NIR spectra in order to eliminate the interference pattern. After data pre-treatment, partial least squares regression (PLSR) models using different NIR regions were constructed using untreated (interference affected) spectra and spectra treated with MAS and FFT filter. The prediction of the independent validation set revealed information about the performance of the utilized interference elimination techniques, as well as the different NIR regions. The results showed that the combination band of water at approx. 5200 cm-1 is of great importance since its performance was superior to the one of the so-called first overtone of water at approx. 6800 cm-1. Furthermore, this work demonstrated that MAS and FFT filter are fast and easy-to-use techniques for the elimination of interference fringes in FT-NIR transmittance spectroscopy.
Severe Weather Guide - Mediterranean Ports. 7. Marseille
1988-03-01
the afternoon. Upper—level westerlies and the associated storm track is moved northward during summer, so extratropical cyclones and associated...autumn as the extratropical storm track moves southward. Precipitation amount is the highest of the year, with an average of 3 inches (76 mm) for the...18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Storm haven Mediterranean meteorology Marseille port
Polymer Coatings Degradation Properties
1985-02-01
undertaken 124). The Box-Jenkins approach first evaluates the partial auto -correlation function and determines the order of the moving average memory function...78 - Tables 15 and 16 show the resalit- f- a, the partial auto correlation plots. Second order moving .-. "ra ;;th -he appropriate lags were...coated films. Kaempf, Guenter; Papenroth, Wolfgang; Kunststoffe Date: 1982 Volume: 72 Number:7 Pages: 424-429 Parameters influencing the accelerated
NASA Technical Reports Server (NTRS)
Biedron, Robert T.; Vatsa, Veer N.; Atkins, Harold L.
2005-01-01
We apply an unsteady Reynolds-averaged Navier-Stokes (URANS) solver for unstructured grids to unsteady flows on moving and stationary grids. Example problems considered are relevant to active flow control and stability and control. Computational results are presented using the Spalart-Allmaras turbulence model and are compared to experimental data. The effect of grid and time-step refinement are examined.
Young, Chao-Wang; Hsieh, Jia-Ling; Ay, Chyung
2012-01-01
This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 100% cell lysing at the specific area. The integrated chip could successfully manipulate single cells to a specific position and lysis. The overall successful rate of cell tracking, positioning, and cell lysis is 80%. The average speed of cell driving was 17.74 μm/s. This technique will be developed for DNA extraction in biomolecular detection. It can simplify pre-treatment procedures for biotechnological analysis of samples. PMID:22736957
Young, Chao-Wang; Hsieh, Jia-Ling; Ay, Chyung
2012-01-01
This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 100% cell lysing at the specific area. The integrated chip could successfully manipulate single cells to a specific position and lysis. The overall successful rate of cell tracking, positioning, and cell lysis is 80%. The average speed of cell driving was 17.74 μm/s. This technique will be developed for DNA extraction in biomolecular detection. It can simplify pre-treatment procedures for biotechnological analysis of samples.
Scheller, G; Schwarz, M; Früh, H J; Jani, L
1999-01-01
Hip simulator trials were conducted to determine the initial wear between alumina femoral heads and carbon fibre reinforced plastic (CFRP, CAPROMAN) insert in a titanium socket. A force of 2500 N and a frequency of 0.857 H were applied. Using surface and sphericity measurement techniques, the amount of wear was determined. After 500,000 cycles, the centre of the head had moved by 10 microm into the insert, and the average radius increased by 2 microm. After 1 million cycles, the additional changes were less than 1 microm. Based on an examination of retrieved implants (wear rate: 6.1 microm/year) and based on the simulator results, the combination alumina-CFRP inserts could be approved for total hip replacement.
Reducing misfocus-related motion artefacts in laser speckle contrast imaging.
Ringuette, Dene; Sigal, Iliya; Gad, Raanan; Levi, Ofer
2015-01-01
Laser Speckle Contrast Imaging (LSCI) is a flexible, easy-to-implement technique for measuring blood flow speeds in-vivo. In order to obtain reliable quantitative data from LSCI the object must remain in the focal plane of the imaging system for the duration of the measurement session. However, since LSCI suffers from inherent frame-to-frame noise, it often requires a moving average filter to produce quantitative results. This frame-to-frame noise also makes the implementation of rapid autofocus system challenging. In this work, we demonstrate an autofocus method and system based on a novel measure of misfocus which serves as an accurate and noise-robust feedback mechanism. This measure of misfocus is shown to enable the localization of best focus with sub-depth-of-field sensitivity, yielding more accurate estimates of blood flow speeds and blood vessel diameters.
Statistical physics in foreign exchange currency and stock markets
NASA Astrophysics Data System (ADS)
Ausloos, M.
2000-09-01
Problems in economy and finance have attracted the interest of statistical physicists all over the world. Fundamental problems pertain to the existence or not of long-, medium- or/and short-range power-law correlations in various economic systems, to the presence of financial cycles and on economic considerations, including economic policy. A method like the detrended fluctuation analysis is recalled emphasizing its value in sorting out correlation ranges, thereby leading to predictability at short horizon. The ( m, k)-Zipf method is presented for sorting out short-range correlations in the sign and amplitude of the fluctuations. A well-known financial analysis technique, the so-called moving average, is shown to raise questions to physicists about fractional Brownian motion properties. Among spectacular results, the possibility of crash predictions has been demonstrated through the log-periodicity of financial index oscillations.
Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model
Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun
2014-01-01
Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models. PMID:25431586
Multifractal detrending moving-average cross-correlation analysis
NASA Astrophysics Data System (ADS)
Jiang, Zhi-Qiang; Zhou, Wei-Xing
2011-07-01
There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross correlations. The multifractal detrended cross-correlation analysis (MFDCCA) approaches can be used to quantify such cross correlations, such as the MFDCCA based on the detrended fluctuation analysis (MFXDFA) method. We develop in this work a class of MFDCCA algorithms based on the detrending moving-average analysis, called MFXDMA. The performances of the proposed MFXDMA algorithms are compared with the MFXDFA method by extensive numerical experiments on pairs of time series generated from bivariate fractional Brownian motions, two-component autoregressive fractionally integrated moving-average processes, and binomial measures, which have theoretical expressions of the multifractal nature. In all cases, the scaling exponents hxy extracted from the MFXDMA and MFXDFA algorithms are very close to the theoretical values. For bivariate fractional Brownian motions, the scaling exponent of the cross correlation is independent of the cross-correlation coefficient between two time series, and the MFXDFA and centered MFXDMA algorithms have comparative performances, which outperform the forward and backward MFXDMA algorithms. For two-component autoregressive fractionally integrated moving-average processes, we also find that the MFXDFA and centered MFXDMA algorithms have comparative performances, while the forward and backward MFXDMA algorithms perform slightly worse. For binomial measures, the forward MFXDMA algorithm exhibits the best performance, the centered MFXDMA algorithms performs worst, and the backward MFXDMA algorithm outperforms the MFXDFA algorithm when the moment order q<0 and underperforms when q>0. We apply these algorithms to the return time series of two stock market indexes and to their volatilities. For the returns, the centered MFXDMA algorithm gives the best estimates of hxy(q) since its hxy(2) is closest to 0.5, as expected, and the MFXDFA algorithm has the second best performance. For the volatilities, the forward and backward MFXDMA algorithms give similar results, while the centered MFXDMA and the MFXDFA algorithms fail to extract rational multifractal nature.
Traffic-Related Air Pollution, Blood Pressure, and Adaptive Response of Mitochondrial Abundance.
Zhong, Jia; Cayir, Akin; Trevisi, Letizia; Sanchez-Guerra, Marco; Lin, Xinyi; Peng, Cheng; Bind, Marie-Abèle; Prada, Diddier; Laue, Hannah; Brennan, Kasey J M; Dereix, Alexandra; Sparrow, David; Vokonas, Pantel; Schwartz, Joel; Baccarelli, Andrea A
2016-01-26
Exposure to black carbon (BC), a tracer of vehicular-traffic pollution, is associated with increased blood pressure (BP). Identifying biological factors that attenuate BC effects on BP can inform prevention. We evaluated the role of mitochondrial abundance, an adaptive mechanism compensating for cellular-redox imbalance, in the BC-BP relationship. At ≥ 1 visits among 675 older men from the Normative Aging Study (observations=1252), we assessed daily BP and ambient BC levels from a stationary monitor. To determine blood mitochondrial abundance, we used whole blood to analyze mitochondrial-to-nuclear DNA ratio (mtDNA/nDNA) using quantitative polymerase chain reaction. Every standard deviation increase in the 28-day BC moving average was associated with 1.97 mm Hg (95% confidence interval [CI], 1.23-2.72; P<0.0001) and 3.46 mm Hg (95% CI, 2.06-4.87; P<0.0001) higher diastolic and systolic BP, respectively. Positive BC-BP associations existed throughout all time windows. BC moving averages (5-day to 28-day) were associated with increased mtDNA/nDNA; every standard deviation increase in 28-day BC moving average was associated with 0.12 standard deviation (95% CI, 0.03-0.20; P=0.007) higher mtDNA/nDNA. High mtDNA/nDNA significantly attenuated the BC-systolic BP association throughout all time windows. The estimated effect of 28-day BC moving average on systolic BP was 1.95-fold larger for individuals at the lowest mtDNA/nDNA quartile midpoint (4.68 mm Hg; 95% CI, 3.03-6.33; P<0.0001), in comparison with the top quartile midpoint (2.40 mm Hg; 95% CI, 0.81-3.99; P=0.003). In older adults, short-term to moderate-term ambient BC levels were associated with increased BP and blood mitochondrial abundance. Our findings indicate that increased blood mitochondrial abundance is a compensatory response and attenuates the cardiac effects of BC. © 2015 American Heart Association, Inc.
Mehta, Amar J.; Kloog, Itai; Zanobetti, Antonella; Coull, Brent A.; Sparrow, David; Vokonas, Pantel; Schwartz, Joel
2014-01-01
Background The underlying mechanisms of the association between ambient temperature and cardiovascular morbidity and mortality are not well understood, particularly for daily temperature variability. We evaluated if daily mean temperature and standard deviation of temperature was associated with heart rate-corrected QT interval (QTc) duration, a marker of ventricular repolarization in a prospective cohort of older men. Methods This longitudinal analysis included 487 older men participating in the VA Normative Aging Study with up to three visits between 2000–2008 (n = 743). We analyzed associations between QTc and moving averages (1–7, 14, 21, and 28 days) of the 24-hour mean and standard deviation of temperature as measured from a local weather monitor, and the 24-hour mean temperature estimated from a spatiotemporal prediction model, in time-varying linear mixed-effect regression. Effect modification by season, diabetes, coronary heart disease, obesity, and age was also evaluated. Results Higher mean temperature as measured from the local monitor, and estimated from the prediction model, was associated with longer QTc at moving averages of 21 and 28 days. Increased 24-hr standard deviation of temperature was associated with longer QTc at moving averages from 4 and up to 28 days; a 1.9°C interquartile range increase in 4-day moving average standard deviation of temperature was associated with a 2.8 msec (95%CI: 0.4, 5.2) longer QTc. Associations between 24-hr standard deviation of temperature and QTc were stronger in colder months, and in participants with diabetes and coronary heart disease. Conclusion/Significance In this sample of older men, elevated mean temperature was associated with longer QTc, and increased variability of temperature was associated with longer QTc, particularly during colder months and among individuals with diabetes and coronary heart disease. These findings may offer insight of an important underlying mechanism of temperature-related cardiovascular morbidity and mortality in an older population. PMID:25238150
NASA Astrophysics Data System (ADS)
Elias, P. Q.; Jarrige, J.; Cucchetti, E.; Cannat, F.; Packan, D.
2017-09-01
Measuring the full ion velocity distribution function (IVDF) by non-intrusive techniques can improve our understanding of the ionization processes and beam dynamics at work in electric thrusters. In this paper, a Laser-Induced Fluorescence (LIF) tomographic reconstruction technique is applied to the measurement of the IVDF in the plume of a miniature Hall effect thruster. A setup is developed to move the laser axis along two rotation axes around the measurement volume. The fluorescence spectra taken from different viewing angles are combined using a tomographic reconstruction algorithm to build the complete 3D (in phase space) time-averaged distribution function. For the first time, this technique is used in the plume of a miniature Hall effect thruster to measure the full distribution function of the xenon ions. Two examples of reconstructions are provided, in front of the thruster nose-cone and in front of the anode channel. The reconstruction reveals the features of the ion beam, in particular on the thruster axis where a toroidal distribution function is observed. These findings are consistent with the thruster shape and operation. This technique, which can be used with other LIF schemes, could be helpful in revealing the details of the ion production regions and the beam dynamics. Using a more powerful laser source, the current implementation of the technique could be improved to reduce the measurement time and also to reconstruct the temporal evolution of the distribution function.
Copy-move forgery detection utilizing Fourier-Mellin transform log-polar features
NASA Astrophysics Data System (ADS)
Dixit, Rahul; Naskar, Ruchira
2018-03-01
In this work, we address the problem of region duplication or copy-move forgery detection in digital images, along with detection of geometric transforms (rotation and rescale) and postprocessing-based attacks (noise, blur, and brightness adjustment). Detection of region duplication, following conventional techniques, becomes more challenging when an intelligent adversary brings about such additional transforms on the duplicated regions. In this work, we utilize Fourier-Mellin transform with log-polar mapping and a color-based segmentation technique using K-means clustering, which help us to achieve invariance to all the above forms of attacks in copy-move forgery detection of digital images. Our experimental results prove the efficiency of the proposed method and its superiority to the current state of the art.
NASA Astrophysics Data System (ADS)
Wang, Yao-yao; Zhang, Juan; Zhao, Xue-wei; Song, Li-pei; Zhang, Bo; Zhao, Xing
2018-03-01
In order to improve depth extraction accuracy, a method using moving array lenslet technique (MALT) in pickup stage is proposed, which can decrease the depth interval caused by pixelation. In this method, the lenslet array is moved along the horizontal and vertical directions simultaneously for N times in a pitch to get N sets of elemental images. Computational integral imaging reconstruction method for MALT is taken to obtain the slice images of the 3D scene, and the sum modulus (SMD) blur metric is taken on these slice images to achieve the depth information of the 3D scene. Simulation and optical experiments are carried out to verify the feasibility of this method.
Detecting Phase Boundaries in Hard-Sphere Suspensions
NASA Technical Reports Server (NTRS)
McDowell, Mark; Rogers, Richard B.; Gray, Elizabeth
2009-01-01
A special image-data-processing technique has been developed for use in experiments that involve observation, via optical microscopes equipped with electronic cameras, of moving boundaries between the colloidal-solid and colloidal-liquid phases of colloidal suspensions of monodisperse hard spheres. During an experiment, it is necessary to adjust the position of a microscope to keep the phase boundary within view. A boundary typically moves at a speed of the order of microns per hour. Because an experiment can last days or even weeks, it is impractical to require human intervention to keep the phase boundary in view. The present image-data-processing technique yields results within a computation time short enough to enable generation of automated-microscope-positioning commands to track the moving phase boundary
Denni Algorithm An Enhanced Of SMS (Scan, Move and Sort) Algorithm
NASA Astrophysics Data System (ADS)
Aprilsyah Lubis, Denni; Salim Sitompul, Opim; Marwan; Tulus; Andri Budiman, M.
2017-12-01
Sorting has been a profound area for the algorithmic researchers, and many resources are invested to suggest a more working sorting algorithm. For this purpose many existing sorting algorithms were observed in terms of the efficiency of the algorithmic complexity. Efficient sorting is important to optimize the use of other algorithms that require sorted lists to work correctly. Sorting has been considered as a fundamental problem in the study of algorithms that due to many reasons namely, the necessary to sort information is inherent in many applications, algorithms often use sorting as a key subroutine, in algorithm design there are many essential techniques represented in the body of sorting algorithms, and many engineering issues come to the fore when implementing sorting algorithms., Many algorithms are very well known for sorting the unordered lists, and one of the well-known algorithms that make the process of sorting to be more economical and efficient is SMS (Scan, Move and Sort) algorithm, an enhancement of Quicksort invented Rami Mansi in 2010. This paper presents a new sorting algorithm called Denni-algorithm. The Denni algorithm is considered as an enhancement on the SMS algorithm in average, and worst cases. The Denni algorithm is compared with the SMS algorithm and the results were promising.
Applications of Space-Filling-Curves to Cartesian Methods for CFD
NASA Technical Reports Server (NTRS)
Aftosmis, Michael J.; Berger, Marsha J.; Murman, Scott M.
2003-01-01
The proposed paper presents a variety novel uses of Space-Filling-Curves (SFCs) for Cartesian mesh methods in 0. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, most are applicable on general body-fitted meshes -both structured and unstructured. We demonstrate the use of single O(N log N) SFC-based reordering to produce single-pass (O(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations. Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 512 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 10% of ideal even with only around 50,000 cells in each subdomain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with O(max(M,N)) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for finite-difference-based gradient design methods.
3D Visual Tracking of an Articulated Robot in Precision Automated Tasks
Alzarok, Hamza; Fletcher, Simon; Longstaff, Andrew P.
2017-01-01
The most compelling requirements for visual tracking systems are a high detection accuracy and an adequate processing speed. However, the combination between the two requirements in real world applications is very challenging due to the fact that more accurate tracking tasks often require longer processing times, while quicker responses for the tracking system are more prone to errors, therefore a trade-off between accuracy and speed, and vice versa is required. This paper aims to achieve the two requirements together by implementing an accurate and time efficient tracking system. In this paper, an eye-to-hand visual system that has the ability to automatically track a moving target is introduced. An enhanced Circular Hough Transform (CHT) is employed for estimating the trajectory of a spherical target in three dimensions, the colour feature of the target was carefully selected by using a new colour selection process, the process relies on the use of a colour segmentation method (Delta E) with the CHT algorithm for finding the proper colour of the tracked target, the target was attached to the six degree of freedom (DOF) robot end-effector that performs a pick-and-place task. A cooperation of two Eye-to Hand cameras with their image Averaging filters are used for obtaining clear and steady images. This paper also examines a new technique for generating and controlling the observation search window in order to increase the computational speed of the tracking system, the techniques is named Controllable Region of interest based on Circular Hough Transform (CRCHT). Moreover, a new mathematical formula is introduced for updating the depth information of the vision system during the object tracking process. For more reliable and accurate tracking, a simplex optimization technique was employed for the calculation of the parameters for camera to robotic transformation matrix. The results obtained show the applicability of the proposed approach to track the moving robot with an overall tracking error of 0.25 mm. Also, the effectiveness of CRCHT technique in saving up to 60% of the overall time required for image processing. PMID:28067860
David W. Williams; Guohong Li; Ruitong Gao
2004-01-01
Movements of 55 Anoplophora glabripennis (Motschulsky) adults were monitored on 200 willow trees, Salix babylonica L., at a site appx. 80 km southeast of Beijing, China, for 9-14 d in an individual mark-recapture study using harmonic radar. The average movement distance was appx. 14 m, with many beetles not moving at all and others moving >90 m. The rate of movement...
ERIC Educational Resources Information Center
Huang, Min-Hsiung
2009-01-01
Reports of international studies of student achievement often receive public attention worldwide. However, this attention overly focuses on the national rankings of average student performance. To move beyond the simplistic comparison of national mean scores, this study investigates (a) country differences in the measures of variability as well as…
Vortex reconnection rate, and loop birth rate, for a random wavefield
NASA Astrophysics Data System (ADS)
Hannay, J. H.
2017-04-01
A time dependent, complex scalar wavefield in three dimensions contains curved zero lines, wave ‘vortices’, that move around. From time to time pairs of these lines contact each other and ‘reconnect’ in a well studied manner, and at other times tiny loops of new line appear from nowhere (births) and grow, or the reverse, existing loops shrink and disappear (deaths). These three types are known to be the only generic events. Here the average rate of their occurrences per unit volume is calculated exactly for a Gaussian random wavefield that has isotropic, stationary statistics, arising from a superposition of an infinity of plane waves in different directions. A simplifying ‘axis fixing’ technique is introduced to achieve this. The resulting formulas are proportional to the standard deviation of angular frequencies, and depend in a simple way on the second and fourth moments of the power spectrum of the plane waves. Reconnections turn out to be more common than births and deaths combined. As an expository preliminary, the case of two dimensions, where the vortices are points, is studied and the average rate of pair creation (and likewise destruction) per unit area is calculated.
Sitnikov problem in the square configuration: elliptic case
NASA Astrophysics Data System (ADS)
Shahbaz Ullah, M.
2016-05-01
This paper is extension to the classical Sitnikov problem, when the four primaries of equal masses lie at the vertices of a square for all time and moving in elliptic orbits around their center of mass of the system, the distances between the primaries vary with time but always in such a way that their mutual distances remain in the same ratio. First we have established averaged equation of motion of the Sitnikov five-body problem in the light of Jalali and Pourtakdoust (Celest. Mech. Dyn. Astron. 68:151-162, 1997), by applying the Van der Pol transformation and averaging technique of Guckenheimer and Holmes (Nonlinear oscillations, dynamical system bifurcations of vector fields, Springer, Berlin, 1983). Next the Hamiltonian equation of motion has been solved with the help of action angle variables I and φ. Finally the periodicity and stability of the Sitnikov five-body problem have been examined with the help of Poincare surfaces of section (PSS). It is shown that chaotic region emerging from the destroyed islands, can easily be seen by increasing the eccentricity of the primaries to e = 0.21. It is valid for bounded small amplitude solutions z_{max} ( z_{max} = 0.65 ) and 0 ≤ e < 0.3.
Model averaging techniques for quantifying conceptual model uncertainty.
Singh, Abhishek; Mishra, Srikanta; Ruskauff, Greg
2010-01-01
In recent years a growing understanding has emerged regarding the need to expand the modeling paradigm to include conceptual model uncertainty for groundwater models. Conceptual model uncertainty is typically addressed by formulating alternative model conceptualizations and assessing their relative likelihoods using statistical model averaging approaches. Several model averaging techniques and likelihood measures have been proposed in the recent literature for this purpose with two broad categories--Monte Carlo-based techniques such as Generalized Likelihood Uncertainty Estimation or GLUE (Beven and Binley 1992) and criterion-based techniques that use metrics such as the Bayesian and Kashyap Information Criteria (e.g., the Maximum Likelihood Bayesian Model Averaging or MLBMA approach proposed by Neuman 2003) and Akaike Information Criterion-based model averaging (AICMA) (Poeter and Anderson 2005). These different techniques can often lead to significantly different relative model weights and ranks because of differences in the underlying statistical assumptions about the nature of model uncertainty. This paper provides a comparative assessment of the four model averaging techniques (GLUE, MLBMA with KIC, MLBMA with BIC, and AIC-based model averaging) mentioned above for the purpose of quantifying the impacts of model uncertainty on groundwater model predictions. Pros and cons of each model averaging technique are examined from a practitioner's perspective using two groundwater modeling case studies. Recommendations are provided regarding the use of these techniques in groundwater modeling practice.
A New Moving Object Detection Method Based on Frame-difference and Background Subtraction
NASA Astrophysics Data System (ADS)
Guo, Jiajia; Wang, Junping; Bai, Ruixue; Zhang, Yao; Li, Yong
2017-09-01
Although many methods of moving object detection have been proposed, moving object extraction is still the core in video surveillance. However, with the complex scene in real world, false detection, missed detection and deficiencies resulting from cavities inside the body still exist. In order to solve the problem of incomplete detection for moving objects, a new moving object detection method combined an improved frame-difference and Gaussian mixture background subtraction is proposed in this paper. To make the moving object detection more complete and accurate, the image repair and morphological processing techniques which are spatial compensations are applied in the proposed method. Experimental results show that our method can effectively eliminate ghosts and noise and fill the cavities of the moving object. Compared to other four moving object detection methods which are GMM, VIBE, frame-difference and a literature's method, the proposed method improve the efficiency and accuracy of the detection.
ERIC Educational Resources Information Center
Pennisi, Elizabeth
1991-01-01
An imaging technique that uses fluorescent dyes and allows scientists to track DNA as it moves through gels or in solution is described. The importance, opportunities, and implications of this technique are discussed. (KR)
Cigada, Alfredo; Lurati, Massimiliano; Ripamonti, Francesco; Vanali, Marcello
2008-12-01
This paper introduces a measurement technique aimed at reducing or possibly eliminating the spatial aliasing problem in the beamforming technique. Beamforming main disadvantages are a poor spatial resolution, at low frequency, and the spatial aliasing problem, at higher frequency, leading to the identification of false sources. The idea is to move the microphone array during the measurement operation. In this paper, the proposed approach is theoretically and numerically investigated by means of simple sound propagation models, proving its efficiency in reducing the spatial aliasing. A number of different array configurations are numerically investigated together with the most important parameters governing this measurement technique. A set of numerical results concerning the case of a planar rotating array is shown, together with a first experimental validation of the method.
Evaluation of 2-soft-release techniques to reintroduce black bears
Eastridge, Rick; Clark, Joseph D.
2002-01-01
Black bear (Ursus americanus) were extirpated from most of their range by the early 1900s by habitat destruction and unregulated hunting. Since then, bear habitat has recovered in many areas, but isolation may prevent natural recolonization. Black bear translocations often have limited success because of high mortality rates and low site fidelity. We tested 2 reintroduction techniques designed to overcome those problems. The first technique used a winter release whereby pre- or post-parturient female bears were removed from their dens and placed in new dens at the release area. The second technique involved translocating female bears to the reintroduction area during summer and holding them in pens for a 2-week acclimation period before release. We translocated 8 female bears with cubs with the winter-release technique and 6 female with the summer-release technique. After release, total distance moved, net distance moved, mean daily distance moved, and circuity for winter-released bears (x̄=18.3 km, 7.1 km, 1.4 km, and 0.36, respectively) were less than summer-released bears (x̄=97.6, 63.4 km 5.1 km, and 0.74; P=0.010, 0.040, 0.019, and 0.038, respectively). Also, survival of winter-released bears (0.88) was greater than that for summer-released bears (0.2, P=0.001). Population modeling indicated that the least one additional stocking of 6 adult females with 12 cubs would greatly increase chances of population reestablishment. the winter-release technique has distinct advantages over the summer-release technique, limiting post-release movements and increasing survival of translocated bears.
An examination of along-track interferometry for detecting ground moving targets
NASA Technical Reports Server (NTRS)
Chen, Curtis W.; Chapin, Elaine; Muellerschoen, Ron; Hensley, Scott
2005-01-01
Along-track interferometry (ATI) is an interferometric synthetic aperture radar technique primarily used to measure Earth-surface velocities. We present results from an airborne experiment demonstrating phenomenology specific to the context of observing discrete ground targets moving admidst a stationary clutter background.
Experimental Measurements of Sonic Boom Signatures Using a Continuous Data Acquisition Technique
NASA Technical Reports Server (NTRS)
Wilcox, Floyd J.; Elmiligui, Alaa A.
2013-01-01
A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel to determine the effectiveness of a technique to measure aircraft sonic boom signatures using a single conical survey probe while continuously moving the model past the probe. Sonic boom signatures were obtained using both move-pause and continuous data acquisition methods for comparison. The test was conducted using a generic business jet model at a constant angle of attack and a single model-to-survey-probe separation distance. The sonic boom signatures were obtained at a Mach number of 2.0 and a unit Reynolds number of 2 million per foot. The test results showed that it is possible to obtain sonic boom signatures while continuously moving the model and that the time required to acquire the signature is at least 10 times faster than the move-pause method. Data plots are presented with a discussion of the results. No tabulated data or flow visualization photographs are included.
LPV Modeling and Control for Active Flutter Suppression of a Smart Airfoil
NASA Technical Reports Server (NTRS)
Al-Hajjar, Ali M. H.; Al-Jiboory, Ali Khudhair; Swei, Sean Shan-Min; Zhu, Guoming
2018-01-01
In this paper, a novel technique of linear parameter varying (LPV) modeling and control of a smart airfoil for active flutter suppression is proposed, where the smart airfoil has a groove along its chord and contains a moving mass that is used to control the airfoil pitching and plunging motions. The new LPV modeling technique is proposed that uses mass position as a scheduling parameter to describe the physical constraint of the moving mass, in addition the hard constraint at the boundaries is realized by proper selection of the parameter varying function. Therefore, the position of the moving mass and the free stream airspeed are considered the scheduling parameters in the study. A state-feedback based LPV gain-scheduling controller with guaranteed H infinity performance is presented by utilizing the dynamics of the moving mass as scheduling parameter at a given airspeed. The numerical simulations demonstrate the effectiveness of the proposed LPV control architecture by significantly improving the performance while reducing the control effort.
Passive detection of copy-move forgery in digital images: state-of-the-art.
Al-Qershi, Osamah M; Khoo, Bee Ee
2013-09-10
Currently, digital images and videos have high importance because they have become the main carriers of information. However, the relative ease of tampering with images and videos makes their authenticity untrustful. Digital image forensics addresses the problem of the authentication of images or their origins. One main branch of image forensics is passive image forgery detection. Images could be forged using different techniques, and the most common forgery is the copy-move, in which a region of an image is duplicated and placed elsewhere in the same image. Active techniques, such as watermarking, have been proposed to solve the image authenticity problem, but those techniques have limitations because they require human intervention or specially equipped cameras. To overcome these limitations, several passive authentication methods have been proposed. In contrast to active methods, passive methods do not require any previous information about the image, and they take advantage of specific detectable changes that forgeries can bring into the image. In this paper, we describe the current state-of-the-art of passive copy-move forgery detection methods. The key current issues in developing a robust copy-move forgery detector are then identified, and the trends of tackling those issues are addressed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Creating stimuli for the study of biological-motion perception.
Dekeyser, Mathias; Verfaillie, Karl; Vanrie, Jan
2002-08-01
In the perception of biological motion, the stimulus information is confined to a small number of lights attached to the major joints of a moving person. Despite this drastic degradation of the stimulus information, the human visual apparatus organizes the swarm of moving dots into a vivid percept of a moving biological creature. Several techniques have been proposed to create point-light stimuli: placing dots at strategic locations on photographs or films, video recording a person with markers attached to the body, computer animation based on artificial synthesis, and computer animation based on motion-capture data. A description is given of the technique we are currently using in our laboratory to produce animated point-light figures. The technique is based on a combination of motion capture and three-dimensional animation software (Character Studio, Autodesk, Inc., 1998). Some of the advantages of our approach are that the same actions can be shown from any viewpoint, that point-light versions, as well as versions with a full-fleshed character, can be created of the same actions, and that point lights can indicate the center of a joint (thereby eliminating several disadvantages associated with other techniques).
Three Least-Squares Minimization Approaches to Interpret Gravity Data Due to Dipping Faults
NASA Astrophysics Data System (ADS)
Abdelrahman, E. M.; Essa, K. S.
2015-02-01
We have developed three different least-squares minimization approaches to determine, successively, the depth, dip angle, and amplitude coefficient related to the thickness and density contrast of a buried dipping fault from first moving average residual gravity anomalies. By defining the zero-anomaly distance and the anomaly value at the origin of the moving average residual profile, the problem of depth determination is transformed into a constrained nonlinear gravity inversion. After estimating the depth of the fault, the dip angle is estimated by solving a nonlinear inverse problem. Finally, after estimating the depth and dip angle, the amplitude coefficient is determined using a linear equation. This method can be applied to residuals as well as to measured gravity data because it uses the moving average residual gravity anomalies to estimate the model parameters of the faulted structure. The proposed method was tested on noise-corrupted synthetic and real gravity data. In the case of the synthetic data, good results are obtained when errors are given in the zero-anomaly distance and the anomaly value at the origin, and even when the origin is determined approximately. In the case of practical data (Bouguer anomaly over Gazal fault, south Aswan, Egypt), the fault parameters obtained are in good agreement with the actual ones and with those given in the published literature.
A monitoring tool for performance improvement in plastic surgery at the individual level.
Maruthappu, Mahiben; Duclos, Antoine; Orgill, Dennis; Carty, Matthew J
2013-05-01
The assessment of performance in surgery is expanding significantly. Application of relevant frameworks to plastic surgery, however, has been limited. In this article, the authors present two robust graphic tools commonly used in other industries that may serve to monitor individual surgeon operative time while factoring in patient- and surgeon-specific elements. The authors reviewed performance data from all bilateral reduction mammaplasties performed at their institution by eight surgeons between 1995 and 2010. Operative time was used as a proxy for performance. Cumulative sum charts and exponentially weighted moving average charts were generated using a train-test analytic approach, and used to monitor surgical performance. Charts mapped crude, patient case-mix-adjusted, and case-mix and surgical-experience-adjusted performance. Operative time was found to decline from 182 minutes to 118 minutes with surgical experience (p < 0.001). Cumulative sum and exponentially weighted moving average charts were generated using 1995 to 2007 data (1053 procedures) and tested on 2008 to 2010 data (246 procedures). The sensitivity and accuracy of these charts were significantly improved by adjustment for case mix and surgeon experience. The consideration of patient- and surgeon-specific factors is essential for correct interpretation of performance in plastic surgery at the individual surgeon level. Cumulative sum and exponentially weighted moving average charts represent accurate methods of monitoring operative time to control and potentially improve surgeon performance over the course of a career.
van Rossum, Huub H; Kemperman, Hans
2017-02-01
To date, no practical tools are available to obtain optimal settings for moving average (MA) as a continuous analytical quality control instrument. Also, there is no knowledge of the true bias detection properties of applied MA. We describe the use of bias detection curves for MA optimization and MA validation charts for validation of MA. MA optimization was performed on a data set of previously obtained consecutive assay results. Bias introduction and MA bias detection were simulated for multiple MA procedures (combination of truncation limits, calculation algorithms and control limits) and performed for various biases. Bias detection curves were generated by plotting the median number of test results needed for bias detection against the simulated introduced bias. In MA validation charts the minimum, median, and maximum numbers of assay results required for MA bias detection are shown for various bias. Their use was demonstrated for sodium, potassium, and albumin. Bias detection curves allowed optimization of MA settings by graphical comparison of bias detection properties of multiple MA. The optimal MA was selected based on the bias detection characteristics obtained. MA validation charts were generated for selected optimal MA and provided insight into the range of results required for MA bias detection. Bias detection curves and MA validation charts are useful tools for optimization and validation of MA procedures.
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2001-01-01
Since 1750, the number of cataclysmic volcanic eruptions (volcanic explosivity index (VEI)>=4) per decade spans 2-11, with 96 percent located in the tropics and extra-tropical Northern Hemisphere. A two-point moving average of the volcanic time series has higher values since the 1860's than before, being 8.00 in the 1910's (the highest value) and 6.50 in the 1980's, the highest since the 1910's peak. Because of the usual behavior of the first difference of the two-point moving averages, one infers that its value for the 1990's will measure approximately 6.50 +/- 1, implying that approximately 7 +/- 4 cataclysmic volcanic eruptions should be expected during the present decade (2000-2009). Because cataclysmic volcanic eruptions (especially those having VEI>=5) nearly always have been associated with short-term episodes of global cooling, the occurrence of even one might confuse our ability to assess the effects of global warming. Poisson probability distributions reveal that the probability of one or more events with a VEI>=4 within the next ten years is >99 percent. It is approximately 49 percent for an event with a VEI>=5, and 18 percent for an event with a VEI>=6. Hence, the likelihood that a climatically significant volcanic eruption will occur within the next ten years appears reasonably high.
Acoustic Liquid Manipulation Used to Enhance Electrochemical Processes
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.
2005-01-01
Working in concert with the NASA Technology Transfer and Partnership Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation of Elgin, Illinois, the NASA Glenn Research Center has applied nonlinear acoustic principles to industrial applications. High-intensity ultrasonic beam techniques employ the effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. This includes propelling liquids, moving bubbles, and ejecting liquids as droplets and fountains. Since these effects can be accomplished without mechanical pumps or moving parts, we are exploring how these techniques could be used to manipulate liquids in space applications. Some of these acoustic techniques could be used both in normal Earth gravity and in the microgravity of space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yuting; Liu, Tian; Yang, Xiaofeng
2013-10-01
Purpose: The objective of this work is to characterize and quantify the impact of respiratory-induced prostate motion. Methods and Materials: Real-time intrafraction motion is observed with the Calypso 4-dimensional nonradioactive electromagnetic tracking system (Calypso Medical Technologies, Inc. Seattle, Washington). We report the results from a total of 1024 fractions from 31 prostate cancer patients. Wavelet transform was used to decompose the signal to extract and isolate the respiratory-induced prostate motion from the total prostate displacement. Results: Our results show that the average respiratory motion larger than 0.5 mm can be observed in 68% of the fractions. Fewer than 1% ofmore » the patients showed average respiratory motion of less than 0.2 mm, whereas 99% of the patients showed average respiratory-induced motion ranging between 0.2 and 2 mm. The maximum respiratory range of motion of 3 mm or greater was seen in only 25% of the fractions. In addition, about 2% patients showed anxiety, indicated by a breathing frequency above 24 times per minute. Conclusions: Prostate motion is influenced by respiration in most fractions. Real-time intrafraction data are sensitive enough to measure the impact of respiration by use of wavelet decomposition methods. Although the average respiratory amplitude observed in this study is small, this technique provides a tool that can be useful if one moves to smaller treatment margins (≤5 mm). This also opens ups the possibility of being able to develop patient specific margins, knowing that prostate motion is not unpredictable.« less
Kuhlmann, Levin; Manton, Jonathan H; Heyse, Bjorn; Vereecke, Hugo E M; Lipping, Tarmo; Struys, Michel M R F; Liley, David T J
2017-04-01
Tracking brain states with electrophysiological measurements often relies on short-term averages of extracted features and this may not adequately capture the variability of brain dynamics. The objective is to assess the hypotheses that this can be overcome by tracking distributions of linear models using anesthesia data, and that anesthetic brain state tracking performance of linear models is comparable to that of a high performing depth of anesthesia monitoring feature. Individuals' brain states are classified by comparing the distribution of linear (auto-regressive moving average-ARMA) model parameters estimated from electroencephalographic (EEG) data obtained with a sliding window to distributions of linear model parameters for each brain state. The method is applied to frontal EEG data from 15 subjects undergoing propofol anesthesia and classified by the observers assessment of alertness/sedation (OAA/S) scale. Classification of the OAA/S score was performed using distributions of either ARMA parameters or the benchmark feature, Higuchi fractal dimension. The highest average testing sensitivity of 59% (chance sensitivity: 17%) was found for ARMA (2,1) models and Higuchi fractal dimension achieved 52%, however, no statistical difference was observed. For the same ARMA case, there was no statistical difference if medians are used instead of distributions (sensitivity: 56%). The model-based distribution approach is not necessarily more effective than a median/short-term average approach, however, it performs well compared with a distribution approach based on a high performing anesthesia monitoring measure. These techniques hold potential for anesthesia monitoring and may be generally applicable for tracking brain states.
A comparison of four streamflow record extension techniques
Hirsch, Robert M.
1982-01-01
One approach to developing time series of streamflow, which may be used for simulation and optimization studies of water resources development activities, is to extend an existing gage record in time by exploiting the interstation correlation between the station of interest and some nearby (long-term) base station. Four methods of extension are described, and their properties are explored. The methods are regression (REG), regression plus noise (RPN), and two new methods, maintenance of variance extension types 1 and 2 (MOVE.l, MOVE.2). MOVE.l is equivalent to a method which is widely used in psychology, biometrics, and geomorphology and which has been called by various names, e.g., ‘line of organic correlation,’ ‘reduced major axis,’ ‘unique solution,’ and ‘equivalence line.’ The methods are examined for bias and standard error of estimate of moments and order statistics, and an empirical examination is made of the preservation of historic low-flow characteristics using 50-year-long monthly records from seven streams. The REG and RPN methods are shown to have serious deficiencies as record extension techniques. MOVE.2 is shown to be marginally better than MOVE.l, according to the various comparisons of bias and accuracy.
A Comparison of Four Streamflow Record Extension Techniques
NASA Astrophysics Data System (ADS)
Hirsch, Robert M.
1982-08-01
One approach to developing time series of streamflow, which may be used for simulation and optimization studies of water resources development activities, is to extend an existing gage record in time by exploiting the interstation correlation between the station of interest and some nearby (long-term) base station. Four methods of extension are described, and their properties are explored. The methods are regression (REG), regression plus noise (RPN), and two new methods, maintenance of variance extension types 1 and 2 (MOVE.l, MOVE.2). MOVE.l is equivalent to a method which is widely used in psychology, biometrics, and geomorphology and which has been called by various names, e.g., `line of organic correlation,' `reduced major axis,' `unique solution,' and `equivalence line.' The methods are examined for bias and standard error of estimate of moments and order statistics, and an empirical examination is made of the preservation of historic low-flow characteristics using 50-year-long monthly records from seven streams. The REG and RPN methods are shown to have serious deficiencies as record extension techniques. MOVE.2 is shown to be marginally better than MOVE.l, according to the various comparisons of bias and accuracy.
NASA Astrophysics Data System (ADS)
Yoon, Eun-A.; Hwang, Doo-Jin; Chae, Jinho; Yoon, Won Duk; Lee, Kyounghoon
2018-03-01
This study was carried out to determine the in situ target strength and behavioral characteristics of moon jellyfish ( Aurelia aurita) using two frequencies (38 and 120 kHz) that present a 2- frequency-difference method for distinguishing A. aurita from other marine planktonic organisms. The average TS was shown as -71.9 -67.9 dB at 38 kHz and -75.5 -66.0 dB at 120 kHz and the average ΔMVBS120-38 kHz was similar at -1.5 3.5 dB. The TS values varied in a range of about 14 dB from -83.3 and -69.0 dB depending on the pulsation of A. aurita. The species moved in a range of -0.1 1.0 m and they mostly moved horizontally with moving speeds of 0.3 0.6 m·s-1. The TS and behavioral characteristics of A. aurita can distinguish the species from others. The acoustic technology can also contribute to understanding the distribution and abundance of the species.
Environmental Assessment: Installation Development at Sheppard Air Force Base, Texas
2007-05-01
column, or in topographic depressions. Water is then utilized by plants and is respired, or it moves slowly into groundwater and/or eventually to surface...water bodies where it slowly moves through the hydrologic cycle. Removal of vegetation decreases infiltration into the soil column and thereby...School District JP-4 jet propulsion fuel 4 kts knots Ldn Day- Night Average Sound Level Leq equivalent noise level Lmax maximum sound level lb pound
NASA Astrophysics Data System (ADS)
Yin, Yip Chee; Hock-Eam, Lim
2012-09-01
This paper investigates the forecasting ability of Mallows Model Averaging (MMA) by conducting an empirical analysis of five Asia countries, Malaysia, Thailand, Philippines, Indonesia and China's GDP growth rate. Results reveal that MMA has no noticeable differences in predictive ability compared to the general autoregressive fractional integrated moving average model (ARFIMA) and its predictive ability is sensitive to the effect of financial crisis. MMA could be an alternative forecasting method for samples without recent outliers such as financial crisis.
Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode.
Poher, V; Zhang, H X; Kennedy, G T; Griffin, C; Oddos, S; Gu, E; Elson, D S; Girkin, M; French, P M W; Dawson, M D; Neil, M A
2007-09-03
We describe an optical sectioning microscopy system with no moving parts based on a micro-structured stripe-array light emitting diode (LED). By projecting arbitrary line or grid patterns onto the object, we are able to implement a variety of optical sectioning microscopy techniques such as grid-projection structured illumination and line scanning confocal microscopy, switching from one imaging technique to another without modifying the microscope setup. The micro-structured LED and driver are detailed and depth discrimination capabilities are measured and calculated.
Multiview 3D sensing and analysis for high quality point cloud reconstruction
NASA Astrophysics Data System (ADS)
Satnik, Andrej; Izquierdo, Ebroul; Orjesek, Richard
2018-04-01
Multiview 3D reconstruction techniques enable digital reconstruction of 3D objects from the real world by fusing different viewpoints of the same object into a single 3D representation. This process is by no means trivial and the acquisition of high quality point cloud representations of dynamic 3D objects is still an open problem. In this paper, an approach for high fidelity 3D point cloud generation using low cost 3D sensing hardware is presented. The proposed approach runs in an efficient low-cost hardware setting based on several Kinect v2 scanners connected to a single PC. It performs autocalibration and runs in real-time exploiting an efficient composition of several filtering methods including Radius Outlier Removal (ROR), Weighted Median filter (WM) and Weighted Inter-Frame Average filtering (WIFA). The performance of the proposed method has been demonstrated through efficient acquisition of dense 3D point clouds of moving objects.
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.
1990-01-01
While chaos arises only in nonlinear systems, standard linear time series models are nevertheless useful for analyzing data from chaotic processes. This paper introduces such a model, the chaotic moving average. This time-domain model is based on the theorem that any chaotic process can be represented as the convolution of a linear filter with an uncorrelated process called the chaotic innovation. A technique, minimum phase-volume deconvolution, is introduced to estimate the filter and innovation. The algorithm measures the quality of a model using the volume covered by the phase-portrait of the innovation process. Experiments on synthetic data demonstrate that the algorithm accurately recovers the parameters of simple chaotic processes. Though tailored for chaos, the algorithm can detect both chaos and randomness, distinguish them from each other, and separate them if both are present. It can also recover nonminimum-delay pulse shapes in non-Gaussian processes, both random and chaotic.
Integrated coherent matter wave circuits
Ryu, C.; Boshier, M. G.
2015-09-21
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
NASA Astrophysics Data System (ADS)
Shao, Haidong; Jiang, Hongkai; Zhang, Haizhou; Duan, Wenjing; Liang, Tianchen; Wu, Shuaipeng
2018-02-01
The vibration signals collected from rolling bearing are usually complex and non-stationary with heavy background noise. Therefore, it is a great challenge to efficiently learn the representative fault features of the collected vibration signals. In this paper, a novel method called improved convolutional deep belief network (CDBN) with compressed sensing (CS) is developed for feature learning and fault diagnosis of rolling bearing. Firstly, CS is adopted for reducing the vibration data amount to improve analysis efficiency. Secondly, a new CDBN model is constructed with Gaussian visible units to enhance the feature learning ability for the compressed data. Finally, exponential moving average (EMA) technique is employed to improve the generalization performance of the constructed deep model. The developed method is applied to analyze the experimental rolling bearing vibration signals. The results confirm that the developed method is more effective than the traditional methods.
Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay
NASA Astrophysics Data System (ADS)
Pan, C.; Liu, Q. H.; Zheng, X.; He, Q. B.; Wu, Y. J.
2015-07-01
On 2013 December 14, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking the photos of each other. With the same beam VLBI (Very long baseline interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect a minor change of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in moving process, and lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.
Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay
NASA Astrophysics Data System (ADS)
Chao, Pan; Qing-hui, Liu; Xin, Zheng; Qing-bao, He; Ya-jun, Wu
2016-04-01
On 14th December 2013, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking pictures of each other. With the same beam VLBI (Very Long Baseline Interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect the minor changes of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in the moving process and the lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.
Nonparametric autocovariance estimation from censored time series by Gaussian imputation.
Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K
2009-02-01
One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.
A novel hybrid ensemble learning paradigm for tourism forecasting
NASA Astrophysics Data System (ADS)
Shabri, Ani
2015-02-01
In this paper, a hybrid forecasting model based on Empirical Mode Decomposition (EMD) and Group Method of Data Handling (GMDH) is proposed to forecast tourism demand. This methodology first decomposes the original visitor arrival series into several Intrinsic Model Function (IMFs) components and one residual component by EMD technique. Then, IMFs components and the residual components is forecasted respectively using GMDH model whose input variables are selected by using Partial Autocorrelation Function (PACF). The final forecasted result for tourism series is produced by aggregating all the forecasted results. For evaluating the performance of the proposed EMD-GMDH methodologies, the monthly data of tourist arrivals from Singapore to Malaysia are used as an illustrative example. Empirical results show that the proposed EMD-GMDH model outperforms the EMD-ARIMA as well as the GMDH and ARIMA (Autoregressive Integrated Moving Average) models without time series decomposition.
NASA Technical Reports Server (NTRS)
Zimmermann, M.
1980-01-01
A technique is presented for visualizing and quantitatively measuring velocity, temperature, and pressure by shining a single frequency laser beam into a gaseous flow which is seeded with an atomic species. The laser is tuned through the absorption frequencies of the seeded species and the absorption profile is detected by observing fluorescence as the atoms relax back to the ground state. The flow velocity is determined by observing the Doppler shift in the absorption frequency. Spectroscopic absorption line broadening mechanisms furnish information regarding the static temperature and pressure of the moving gas. Results of experiments conducted in the free stream and in the bow shock of a conical model mounted in a hypersonic wind tunnel indicate that the experimental uncertainties in the measurement of average values for the velocity, temperature and pressure of the flow are 0.1, 5 and 10 percent respectively.
NASA Astrophysics Data System (ADS)
Soeryana, E.; Fadhlina, N.; Sukono; Rusyaman, E.; Supian, S.
2017-01-01
Investments in stocks investors are also faced with the issue of risk, due to daily price of stock also fluctuate. For minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio of Mean-Variance to stocks by using mean and volatility is not constant based on logarithmic utility function. Non constant mean analysed using models Autoregressive Moving Average (ARMA), while non constant volatility models are analysed using the Generalized Autoregressive Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique. As a numerical illustration, the method is used to analyse some Islamic stocks in Indonesia. The expected result is to get the proportion of investment in each Islamic stock analysed.
NASA Astrophysics Data System (ADS)
Soeryana, Endang; Halim, Nurfadhlina Bt Abdul; Sukono, Rusyaman, Endang; Supian, Sudradjat
2017-03-01
Investments in stocks investors are also faced with the issue of risk, due to daily price of stock also fluctuate. For minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio of Mean-Variance to stocks by using mean and volatility is not constant based on the Negative Exponential Utility Function. Non constant mean analyzed using models Autoregressive Moving Average (ARMA), while non constant volatility models are analyzed using the Generalized Autoregressive Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique. As a numerical illustration, the method is used to analyze some stocks in Indonesia. The expected result is to get the proportion of investment in each stock analyzed
Processing data base information having nonwhite noise
Gross, Kenneth C.; Morreale, Patricia
1995-01-01
A method and system for processing a set of data from an industrial process and/or a sensor. The method and system can include processing data from either real or calculated data related to an industrial process variable. One of the data sets can be an artificial signal data set generated by an autoregressive moving average technique. After obtaining two data sets associated with one physical variable, a difference function data set is obtained by determining the arithmetic difference between the two pairs of data sets over time. A frequency domain transformation is made of the difference function data set to obtain Fourier modes describing a composite function data set. A residual function data set is obtained by subtracting the composite function data set from the difference function data set and the residual function data set (free of nonwhite noise) is analyzed by a statistical probability ratio test to provide a validated data base.
ARMA models for earthquake ground motions. Seismic safety margins research program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, M. K.; Kwiatkowski, J. W.; Nau, R. F.
1981-02-01
Four major California earthquake records were analyzed by use of a class of discrete linear time-domain processes commonly referred to as ARMA (Autoregressive/Moving-Average) models. It was possible to analyze these different earthquakes, identify the order of the appropriate ARMA model(s), estimate parameters, and test the residuals generated by these models. It was also possible to show the connections, similarities, and differences between the traditional continuous models (with parameter estimates based on spectral analyses) and the discrete models with parameters estimated by various maximum-likelihood techniques applied to digitized acceleration data in the time domain. The methodology proposed is suitable for simulatingmore » earthquake ground motions in the time domain, and appears to be easily adapted to serve as inputs for nonlinear discrete time models of structural motions. 60 references, 19 figures, 9 tables.« less
Microfluidic Controlled Conformal Coating of Particles
NASA Astrophysics Data System (ADS)
Tsai, Scott; Wexler, Jason; Wan, Jiandi; Stone, Howard
2011-11-01
Coating flows are an important class of fluid mechanics problems. Typically a substrate is coated with a moving continuous film, but it is also possible to consider coating of discrete objects. In particular, in applications involving coating of particles that are useful in drug delivery, the coatings act as drug-carrying vehicles, while in cell therapy a thin polymeric coating is required to protect the cells from the host's immune system. Although many functional capabilities have been developed for lab-on-a-chip devices, a technique for coating has not been demonstrated. We present a microfluidic platform developed to coat micron-size spheres with a thin aqueous layer by magnetically pulling the particles from the aqueous phase to the non-aqueous phase in a co-flow. Coating thickness can be adjusted by the average fluid speed and the number of beads encapsulated inside a single coat is tuned by the ratio of magnetic to interfacial forces acting on the beads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, C.; Boshier, M. G.
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
Low, Diana H P; Motakis, Efthymios
2013-10-01
Binding free energy calculations obtained through molecular dynamics simulations reflect intermolecular interaction states through a series of independent snapshots. Typically, the free energies of multiple simulated series (each with slightly different starting conditions) need to be estimated. Previous approaches carry out this task by moving averages at certain decorrelation times, assuming that the system comes from a single conformation description of binding events. Here, we discuss a more general approach that uses statistical modeling, wavelets denoising and hierarchical clustering to estimate the significance of multiple statistically distinct subpopulations, reflecting potential macrostates of the system. We present the deltaGseg R package that performs macrostate estimation from multiple replicated series and allows molecular biologists/chemists to gain physical insight into the molecular details that are not easily accessible by experimental techniques. deltaGseg is a Bioconductor R package available at http://bioconductor.org/packages/release/bioc/html/deltaGseg.html.
NASA Astrophysics Data System (ADS)
Zhou, Weijie; Dang, Yaoguo; Gu, Rongbao
2013-03-01
We apply the multifractal detrending moving average (MFDMA) to investigate and compare the efficiency and multifractality of 5-min high-frequency China Securities Index 300 (CSI 300). The results show that the CSI 300 market becomes closer to weak-form efficiency after the introduction of CSI 300 future. We find that the CSI 300 is featured by multifractality and there are less complexity and risk after the CSI 300 index future was introduced. With the shuffling, surrogating and removing extreme values procedures, we unveil that extreme events and fat-distribution are the main origin of multifractality. Besides, we discuss the knotting phenomena in multifractality, and find that the scaling range and the irregular fluctuations for large scales in the Fq(s) vs s plot can cause a knot.
Gauging the Nearness and Size of Cycle Maximum
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Hathaway, David H.
2003-01-01
A simple method for monitoring the nearness and size of conventional cycle maximum for an ongoing sunspot cycle is examined. The method uses the observed maximum daily value and the maximum monthly mean value of international sunspot number and the maximum value of the 2-mo moving average of monthly mean sunspot number to effect the estimation. For cycle 23, a maximum daily value of 246, a maximum monthly mean of 170.1, and a maximum 2-mo moving average of 148.9 were each observed in July 2000. Taken together, these values strongly suggest that conventional maximum amplitude for cycle 23 would be approx. 124.5, occurring near July 2002 +/-5 mo, very close to the now well-established conventional maximum amplitude and occurrence date for cycle 23-120.8 in April 2000.
An algorithm for testing the efficient market hypothesis.
Boboc, Ioana-Andreea; Dinică, Mihai-Cristian
2013-01-01
The objective of this research is to examine the efficiency of EUR/USD market through the application of a trading system. The system uses a genetic algorithm based on technical analysis indicators such as Exponential Moving Average (EMA), Moving Average Convergence Divergence (MACD), Relative Strength Index (RSI) and Filter that gives buying and selling recommendations to investors. The algorithm optimizes the strategies by dynamically searching for parameters that improve profitability in the training period. The best sets of rules are then applied on the testing period. The results show inconsistency in finding a set of trading rules that performs well in both periods. Strategies that achieve very good returns in the training period show difficulty in returning positive results in the testing period, this being consistent with the efficient market hypothesis (EMH).
An Algorithm for Testing the Efficient Market Hypothesis
Boboc, Ioana-Andreea; Dinică, Mihai-Cristian
2013-01-01
The objective of this research is to examine the efficiency of EUR/USD market through the application of a trading system. The system uses a genetic algorithm based on technical analysis indicators such as Exponential Moving Average (EMA), Moving Average Convergence Divergence (MACD), Relative Strength Index (RSI) and Filter that gives buying and selling recommendations to investors. The algorithm optimizes the strategies by dynamically searching for parameters that improve profitability in the training period. The best sets of rules are then applied on the testing period. The results show inconsistency in finding a set of trading rules that performs well in both periods. Strategies that achieve very good returns in the training period show difficulty in returning positive results in the testing period, this being consistent with the efficient market hypothesis (EMH). PMID:24205148
Air quality at night markets in Taiwan.
Zhao, Ping; Lin, Chi-Chi
2010-03-01
In Taiwan, there are more than 300 night markets and they have attracted more and more visitors in recent years. Air quality in night markets has become a public concern. To characterize the current air quality in night markets, four major night markets in Kaohsiung were selected for this study. The results of this study showed that the mean carbon dioxide (CO2) concentrations at fixed and moving sites in night markets ranged from 326 to 427 parts per million (ppm) during non-open hours and from 433 to 916 ppm during open hours. The average carbon monoxide (CO) concentrations at fixed and moving sites in night markets ranged from 0.2 to 2.8 ppm during non-open hours and from 2.1 to 14.1 ppm during open hours. The average 1-hr levels of particulate matter with aerodynamic diameters less than 10 microm (PM10) and less than 2.5 microm (PM2.5) at fixed and moving sites in night markets were high, ranging from 186 to 451 microg/m3 and from 175 to 418 microg/m3, respectively. The levels of PM2.5 accounted for 80-97% of their respective PM10 concentrations. The average formaldehyde (HCHO) concentrations at fixed and moving sites in night markets ranged from 0 to 0.05 ppm during non-open hours and from 0.02 to 0.27 ppm during open hours. The average concentration of individual polycyclic aromatic hydrocarbons (PAHs) was found in the range of 0.09 x 10(4) to 1.8 x 10(4) ng/m3. The total identified PAHs (TIPs) ranged from 7.8 x 10(1) to 20 x 10(1) ng/m3 during non-open hours and from 1.5 x 10(4) to 4.0 x 10(4) ng/m3 during open hours. Of the total analyzed PAHs, the low-molecular-weight PAHs (two to three rings) were the dominant species, corresponding to an average of 97% during non-open hours and 88% during open hours, whereas high-molecular-weight PAHs (four to six rings) represented 3 and 12% of the total detected PAHs in the gas phase during non-open and open hours, respectively.
ERIC Educational Resources Information Center
Baker, Betty Ruth
Daily transitions in early childhood centers and classrooms include periods when children are completing one activity, preparing to begin a new activity, and moving from place to place in a room or building. Transition activities involve teaching techniques that prepare learners to listen, relax, sit down, move between locations or activities, and…
Velocity and Structure Estimation of a Moving Object Using a Moving Monocular Camera
2006-01-01
map the Euclidean position of static landmarks or visual features in the environment . Recent applications of this technique include aerial...From Motion in a Piecewise Planar Environment ,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 2, No. 3, pp. 485-508...1988. [9] J. M. Ferryman, S. J. Maybank , and A. D. Worrall, “Visual Surveil- lance for Moving Vehicles,” Intl. Journal of Computer Vision, Vol. 37, No
NASA Astrophysics Data System (ADS)
Musa, Omer; Weixuan, Li; Xiong, Chen; Lunkun, Gong; Wenhe, Liao
2018-07-01
Solid-fuel ramjet converts thermal energy of combustion products to a forward thrust without using any moving parts. Normally, it uses air intake system to compress the incoming air without swirler. A new design of swirler has been proposed and used in the current work. In this paper, a series of firing tests have been carried out to investigate the impact of using swirl flow on regression rate, combustion characteristics, and performance of solid-fuel ramjet engines. The influences of swirl intensity, solid fuel port diameter, and combustor length were studied and varied independently. A new technique for determining the time and space averaged regression rate of high-density polyethylene solid fuel surface after experiments has been proposed based on the laser scan technique. A code has been developed to reconstruct the data from the scanner and then used to obtain the three-dimensional distribution of the regression rate. It is shown that increasing swirl number increases regression rate, thrust, and characteristic velocity, and, decreases air-fuel ratio, corner recirculation zone length, and specific impulse. Using swirl flow enhances the flame stability meanwhile negatively affected on ignition process and specific impulse. Although a significant reduction of combustion chamber length can be achieved when swirl flow is used. Power fitting correlation for average regression rate was developed taking into account the influence of swirl number. Furthermore, varying port diameter and combustor length were found to have influences on regression rate, combustion characteristics and performance of solid-fuel ramjet.
Bubble masks for time-encoded imaging of fast neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brubaker, Erik; Brennan, James S.; Marleau, Peter
2013-09-01
Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixedmore » blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.« less
Kiani, M A; Sim, K S; Nia, M E; Tso, C P
2015-05-01
A new technique based on cubic spline interpolation with Savitzky-Golay smoothing using weighted least squares error filter is enhanced for scanning electron microscope (SEM) images. A diversity of sample images is captured and the performance is found to be better when compared with the moving average and the standard median filters, with respect to eliminating noise. This technique can be implemented efficiently on real-time SEM images, with all mandatory data for processing obtained from a single image. Noise in images, and particularly in SEM images, are undesirable. A new noise reduction technique, based on cubic spline interpolation with Savitzky-Golay and weighted least squares error method, is developed. We apply the combined technique to single image signal-to-noise ratio estimation and noise reduction for SEM imaging system. This autocorrelation-based technique requires image details to be correlated over a few pixels, whereas the noise is assumed to be uncorrelated from pixel to pixel. The noise component is derived from the difference between the image autocorrelation at zero offset, and the estimation of the corresponding original autocorrelation. In the few test cases involving different images, the efficiency of the developed noise reduction filter is proved to be significantly better than those obtained from the other methods. Noise can be reduced efficiently with appropriate choice of scan rate from real-time SEM images, without generating corruption or increasing scanning time. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Lo Giudice, G; Cicciù, M; Cervino, G; Lizio, A; Visco, A M
2012-01-01
The aim of this study is to investigate the presence and the extent of a possible marginal gap after the interposition of a flowable composite between the composite restoration and the dental structures (enamel and cementum). This technique is also used to eliminate the infiltration in a zone of the cavity preparation that is frequently at a risk of secondary decay. Fifteen human premolars extracted for orthodontic reasons were used for the study. A cavity with mesial and distal margin in enamel and cementum was realized in every tooth. The cavities were then restored with an adhesive system (ScotchBond 3MÔ) and composite (Filtek Supreme 3MÔ); and, a fine layer of flowable composite was applied in the distal margin of each cavity. Scanning electron microscopy (SEM) in secondary electron imaging (S.E.I.) modality was used for the study and identifying the marginal gaps in the composite restorations. Data was investigated on the mesial and distal margin of each cavity at the restoration-enamel interface, and at the restoration-cementum interface. The interfaces were divided in four groups: Group A (enamel/composite); Group B (enamel/flow/composite); Group C (cementum/composite); and, Group D (cementum/flow/composite). By the comparison of the gap's average width found in each group, it is evidenced that the average width of the gap increases when the interface moves from the coronal to the radicular end (Group A 0,1 ± 0,4 μm Vs Group C 12,3 ± 11,6 μm; Group B 0,2 ± 0,8 μm Vs Group D 2,8 ± 6,6 μm). Correlating the measurements of the marginal gap's average width among the Group A and Group B, no significant variations were obtained; and instead, on comparing Group C with Group D, the gap's average width decreases. The interposition of a low elastic modulus composite between the adhesive layer and the composite resin allows an improvement of the cementum-restoration interface by the means of a lower shrinkage stress during polymerization.
Li, Jian; Wu, Huan-Yu; Li, Yan-Ting; Jin, Hui-Ming; Gu, Bao-Ke; Yuan, Zheng-An
2010-01-01
To explore the feasibility of establishing and applying of autoregressive integrated moving average (ARIMA) model to predict the incidence rate of dysentery in Shanghai, so as to provide the theoretical basis for prevention and control of dysentery. ARIMA model was established based on the monthly incidence rate of dysentery of Shanghai from 1990 to 2007. The parameters of model were estimated through unconditional least squares method, the structure was determined according to criteria of residual un-correlation and conclusion, and the model goodness-of-fit was determined through Akaike information criterion (AIC) and Schwarz Bayesian criterion (SBC). The constructed optimal model was applied to predict the incidence rate of dysentery of Shanghai in 2008 and evaluate the validity of model through comparing the difference of predicted incidence rate and actual one. The incidence rate of dysentery in 2010 was predicted by ARIMA model based on the incidence rate from January 1990 to June 2009. The model ARIMA (1, 1, 1) (0, 1, 2)(12) had a good fitness to the incidence rate with both autoregressive coefficient (AR1 = 0.443) during the past time series, moving average coefficient (MA1 = 0.806) and seasonal moving average coefficient (SMA1 = 0.543, SMA2 = 0.321) being statistically significant (P < 0.01). AIC and SBC were 2.878 and 16.131 respectively and predicting error was white noise. The mathematic function was (1-0.443B) (1-B) (1-B(12))Z(t) = (1-0.806B) (1-0.543B(12)) (1-0.321B(2) x 12) micro(t). The predicted incidence rate in 2008 was consistent with the actual one, with the relative error of 6.78%. The predicted incidence rate of dysentery in 2010 based on the incidence rate from January 1990 to June 2009 would be 9.390 per 100 thousand. ARIMA model can be used to fit the changes of incidence rate of dysentery and to forecast the future incidence rate in Shanghai. It is a predicted model of high precision for short-time forecast.
Rate of Oviposition by Culex Quinquefasciatus in San Antonio, Texas, During Three Years
1988-09-01
autoregression and zero orders of integration and moving average ( ARIMA (l,O,O)). This model was chosen initially because rainfall ap- peared to...have no trend requiring integration and no obvious requirement for a moving aver- age component (i.e., no regular periodicity). This ARIMA model was...Say in both the northern and southern hem- ispheres exposes this species to a variety of climatic challenges to its survival. It is able to adjust
1983-11-01
S-Approximate Household inventory item average chance of being moved (%) High Electric toaster Vacuum cleaner 80 Colour television Medium Record...most rtadily moved are small items of electrical. I equipment and valuable items such as colour televisions. However, many respondents reported that...WESSEX WATER AUTHORITY, "Somerset Land Drainage District, land drainage sur ey report", Wessex Water Authority, Bridgwater, England, 1979. .34 "* • I.U
An improved switching converter model using discrete and average techniques
NASA Technical Reports Server (NTRS)
Shortt, D. J.; Lee, F. C.
1982-01-01
The nonlinear modeling and analysis of dc-dc converters has been done by averaging and discrete-sampling techniques. The averaging technique is simple, but inaccurate as the modulation frequencies approach the theoretical limit of one-half the switching frequency. The discrete technique is accurate even at high frequencies, but is very complex and cumbersome. An improved model is developed by combining the aforementioned techniques. This new model is easy to implement in circuit and state variable forms and is accurate to the theoretical limit.
NASA Astrophysics Data System (ADS)
Hu, Xiao-Su; Arredondo, Maria M.; Gomba, Megan; Confer, Nicole; DaSilva, Alexandre F.; Johnson, Timothy D.; Shalinsky, Mark; Kovelman, Ioulia
2015-12-01
Motion artifacts are the most significant sources of noise in the context of pediatric brain imaging designs and data analyses, especially in applications of functional near-infrared spectroscopy (fNIRS), in which it can completely affect the quality of the data acquired. Different methods have been developed to correct motion artifacts in fNIRS data, but the relative effectiveness of these methods for data from child and infant subjects (which is often found to be significantly noisier than adult data) remains largely unexplored. The issue is further complicated by the heterogeneity of fNIRS data artifacts. We compared the efficacy of the six most prevalent motion artifact correction techniques with fNIRS data acquired from children participating in a language acquisition task, including wavelet, spline interpolation, principal component analysis, moving average (MA), correlation-based signal improvement, and combination of wavelet and MA. The evaluation of five predefined metrics suggests that the MA and wavelet methods yield the best outcomes. These findings elucidate the varied nature of fNIRS data artifacts and the efficacy of artifact correction methods with pediatric populations, as well as help inform both the theory and practice of optical brain imaging analysis.
Integrating Retraction Modeling Into an Atlas-Based Framework for Brain Shift Prediction
Chen, Ishita; Ong, Rowena E.; Simpson, Amber L.; Sun, Kay; Thompson, Reid C.
2015-01-01
In recent work, an atlas-based statistical model for brain shift prediction, which accounts for uncertainty in the intraoperative environment, has been proposed. Previous work reported in the literature using this technique did not account for local deformation caused by surgical retraction. It is challenging to precisely localize the retractor location prior to surgery and the retractor is often moved in the course of the procedure. This paper proposes a technique that involves computing the retractor-induced brain deformation in the operating room through an active model solve and linearly superposing the solution with the precomputed deformation atlas. As a result, the new method takes advantage of the atlas-based framework’s accounting for uncertainties while also incorporating the effects of retraction with minimal intraoperative computing. This new approach was tested using simulation and phantom experiments. The results showed an improvement in average shift correction from 50% (ranging from 14 to 81%) for gravity atlas alone to 80% using the active solve retraction component (ranging from 73 to 85%). This paper presents a novel yet simple way to integrate retraction into the atlas-based brain shift computation framework. PMID:23864146
Fuzzy neural network technique for system state forecasting.
Li, Dezhi; Wang, Wilson; Ismail, Fathy
2013-10-01
In many system state forecasting applications, the prediction is performed based on multiple datasets, each corresponding to a distinct system condition. The traditional methods dealing with multiple datasets (e.g., vector autoregressive moving average models and neural networks) have some shortcomings, such as limited modeling capability and opaque reasoning operations. To tackle these problems, a novel fuzzy neural network (FNN) is proposed in this paper to effectively extract information from multiple datasets, so as to improve forecasting accuracy. The proposed predictor consists of both autoregressive (AR) nodes modeling and nonlinear nodes modeling; AR models/nodes are used to capture the linear correlation of the datasets, and the nonlinear correlation of the datasets are modeled with nonlinear neuron nodes. A novel particle swarm technique [i.e., Laplace particle swarm (LPS) method] is proposed to facilitate parameters estimation of the predictor and improve modeling accuracy. The effectiveness of the developed FNN predictor and the associated LPS method is verified by a series of tests related to Mackey-Glass data forecast, exchange rate data prediction, and gear system prognosis. Test results show that the developed FNN predictor and the LPS method can capture the dynamics of multiple datasets effectively and track system characteristics accurately.
Innovative slide repair techniques guidebook for Missouri.
DOT National Transportation Integrated Search
2011-09-01
Soil slides often require immediate action to keep traffic moving safely. This study will : focus on developing newer (innovative) approaches to evaluate slope failures and : provide cost-effective repair and mitigation techniques. Typically slides a...
Cooperative Robots to Observe Moving Targets: Review.
Khan, Asif; Rinner, Bernhard; Cavallaro, Andrea
2018-01-01
The deployment of multiple robots for achieving a common goal helps to improve the performance, efficiency, and/or robustness in a variety of tasks. In particular, the observation of moving targets is an important multirobot application that still exhibits numerous open challenges, including the effective coordination of the robots. This paper reviews control techniques for cooperative mobile robots monitoring multiple targets. The simultaneous movement of robots and targets makes this problem particularly interesting, and our review systematically addresses this cooperative multirobot problem for the first time. We classify and critically discuss the control techniques: cooperative multirobot observation of multiple moving targets, cooperative search, acquisition, and track, cooperative tracking, and multirobot pursuit evasion. We also identify the five major elements that characterize this problem, namely, the coordination method, the environment, the target, the robot and its sensor(s). These elements are used to systematically analyze the control techniques. The majority of the studied work is based on simulation and laboratory studies, which may not accurately reflect real-world operational conditions. Importantly, while our systematic analysis is focused on multitarget observation, our proposed classification is useful also for related multirobot applications.
A Generation at Risk: When the Baby Boomers Reach Golden Pond.
ERIC Educational Resources Information Center
Butler, Robert N.
The 20th century has seen average life expectancy in the United States move from under 50 years to over 70 years. Coupled with this increase in average life expectancy is the aging of the 76.4 million persons born between 1946 and 1964. As they approach retirement, these baby-boomers will have to balance their own needs with those of living…
Clinical implementation of target tracking by breathing synchronized delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tewatia, Dinesh; Zhang Tiezhi; Tome, Wolfgang
2006-11-15
Target-tracking techniques can be categorized based on the mechanism of the feedback loop. In real time tracking, breathing-delivery phase correlation is provided to the treatment delivery hardware. Clinical implementation of target tracking in real time requires major hardware modifications. In breathing synchronized delivery (BSD), the patient is guided to breathe in accordance with target motion derived from four-dimensional computed tomography (4D-CT). Violations of mechanical limitations of hardware are to be avoided at the treatment planning stage. Hardware modifications are not required. In this article, using sliding window IMRT delivery as an example, we have described step-by-step the implementation of targetmore » tracking by the BSD technique: (1) A breathing guide is developed from patient's normal breathing pattern. The patient tries to reproduce this guiding cycle by following the display in the goggles; (2) 4D-CT scans are acquired at all the phases of the breathing cycle; (3) The average tumor trajectory is obtained by deformable image registration of 4D-CT datasets and is smoothed by Fourier filtering; (4) Conventional IMRT planning is performed using the images at reference phase (full exhalation phase) and a leaf sequence based on optimized fluence map is generated; (5) Assuming the patient breathes with a reproducible breathing pattern and the machine maintains a constant dose rate, the treatment process is correlated with the breathing phase; (6) The instantaneous average tumor displacement is overlaid on the dMLC position at corresponding phase; and (7) DMLC leaf speed and acceleration are evaluated to ensure treatment delivery. A custom-built mobile phantom driven by a computer-controlled stepper motor was used in the dosimetry verification. A stepper motor was programmed such that the phantom moved according to the linear component of tumor motion used in BSD treatment planning. A conventional plan was delivered on the phantom with and without motion. The BSD plan was also delivered on the phantom that moved with the prescheduled pattern and synchronized with the delivery of each beam. Film dosimetry showed underdose and overdose in the superior and inferior regions of the target, respectively, if the tumor motion is not compensated during the delivery. BSD delivery resulted in a dose distribution very similar to the planned treatments.« less
Taylor, Brian A.; Hwang, Ken-Pin; Hazle, John D.; Stafford, R. Jason
2009-01-01
The authors investigated the performance of the iterative Steiglitz–McBride (SM) algorithm on an autoregressive moving average (ARMA) model of signals from a fast, sparsely sampled, multiecho, chemical shift imaging (CSI) acquisition using simulation, phantom, ex vivo, and in vivo experiments with a focus on its potential usage in magnetic resonance (MR)-guided interventions. The ARMA signal model facilitated a rapid calculation of the chemical shift, apparent spin-spin relaxation time (T2*), and complex amplitudes of a multipeak system from a limited number of echoes (≤16). Numerical simulations of one- and two-peak systems were used to assess the accuracy and uncertainty in the calculated spectral parameters as a function of acquisition and tissue parameters. The measured uncertainties from simulation were compared to the theoretical Cramer–Rao lower bound (CRLB) for the acquisition. Measurements made in phantoms were used to validate the T2* estimates and to validate uncertainty estimates made from the CRLB. We demonstrated application to real-time MR-guided interventions ex vivo by using the technique to monitor a percutaneous ethanol injection into a bovine liver and in vivo to monitor a laser-induced thermal therapy treatment in a canine brain. Simulation results showed that the chemical shift and amplitude uncertainties reached their respective CRLB at a signal-to-noise ratio (SNR)≥5 for echo train lengths (ETLs)≥4 using a fixed echo spacing of 3.3 ms. T2* estimates from the signal model possessed higher uncertainties but reached the CRLB at larger SNRs and∕or ETLs. Highly accurate estimates for the chemical shift (<0.01 ppm) and amplitude (<1.0%) were obtained with ≥4 echoes and for T2* (<1.0%) with ≥7 echoes. We conclude that, over a reasonable range of SNR, the SM algorithm is a robust estimator of spectral parameters from fast CSI acquisitions that acquire ≤16 echoes for one- and two-peak systems. Preliminary ex vivo and in vivo experiments corroborated the results from simulation experiments and further indicate the potential of this technique for MR-guided interventional procedures with high spatiotemporal resolution ∼1.6×1.6×4 mm3 in ≤5 s. PMID:19378736
Ivancevich, Nikolas M.; Dahl, Jeremy J.; Smith, Stephen W.
2010-01-01
Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively. PMID:19942503
Ivancevich, Nikolas M; Dahl, Jeremy J; Smith, Stephen W
2009-10-01
Phase correction has the potential to increase the image quality of 3-D ultrasound, especially transcranial ultrasound. We implemented and compared 2 algorithms for aberration correction, multi-lag cross-correlation and speckle brightness, using static and moving targets. We corrected three 75-ns rms electronic aberrators with full-width at half-maximum (FWHM) auto-correlation lengths of 1.35, 2.7, and 5.4 mm. Cross-correlation proved the better algorithm at 2.7 and 5.4 mm correlation lengths (P < 0.05). Static cross-correlation performed better than moving-target cross-correlation at the 2.7 mm correlation length (P < 0.05). Finally, we compared the static and moving-target cross-correlation on a flow phantom with a skull casting aberrator. Using signal from static targets, the correction resulted in an average contrast increase of 22.2%, compared with 13.2% using signal from moving targets. The contrast-to-noise ratio (CNR) increased by 20.5% and 12.8% using static and moving targets, respectively. Doppler signal strength increased by 5.6% and 4.9% for the static and moving-targets methods, respectively.
Recent Enhancements To The FUN3D Flow Solver For Moving-Mesh Applications
NASA Technical Reports Server (NTRS)
Biedron, Robert T,; Thomas, James L.
2009-01-01
An unsteady Reynolds-averaged Navier-Stokes solver for unstructured grids has been extended to handle general mesh movement involving rigid, deforming, and overset meshes. Mesh deformation is achieved through analogy to elastic media by solving the linear elasticity equations. A general method for specifying the motion of moving bodies within the mesh has been implemented that allows for inherited motion through parent-child relationships, enabling simulations involving multiple moving bodies. Several example calculations are shown to illustrate the range of potential applications. For problems in which an isolated body is rotating with a fixed rate, a noninertial reference-frame formulation is available. An example calculation for a tilt-wing rotor is used to demonstrate that the time-dependent moving grid and noninertial formulations produce the same results in the limit of zero time-step size.
An elementary research on wireless transmission of holographic 3D moving pictures
NASA Astrophysics Data System (ADS)
Takano, Kunihiko; Sato, Koki; Endo, Takaya; Asano, Hiroaki; Fukuzawa, Atsuo; Asai, Kikuo
2009-05-01
In this paper, a transmitting process of a sequence of holograms describing 3D moving objects over the communicating wireless-network system is presented. A sequence of holograms involves holograms is transformed into a bit stream data, and then it is transmitted over the wireless LAN and Bluetooth. It is shown that applying this technique, holographic data of 3D moving object is transmitted in high quality and a relatively good reconstruction of holographic images is performed.
How and Why Does Music Move Us?: Answers from Psychology and Neuroscience
ERIC Educational Resources Information Center
Hodges, Donald A.; Wilkins, Robin W.
2015-01-01
What scientific evidence can music educators share with their community stakeholders concerning how and why music moves us so powerfully? Five key points derived from recent psychological and neuroscientific findings are (1) Network Science is a new technique that allows researchers to examine the brain's interconnectivity as people listen to…
Application of the System Identification Technique to Goal-Directed Saccades.
1985-07-01
Saccadic eye movements are among the fastest voluntary muscle movements the human body is capable of producing and are characterized by a rapid shift of gaze ...moving the target the same distance the eyeball moves. Collewijn and Van der Mark (9), in their study of the slow phase of optokinetic nystagmus , used
Lee, Young-Sook; Chung, Wan-Young
2012-01-01
Vision-based abnormal event detection for home healthcare systems can be greatly improved using visual sensor-based techniques able to detect, track and recognize objects in the scene. However, in moving object detection and tracking processes, moving cast shadows can be misclassified as part of objects or moving objects. Shadow removal is an essential step for developing video surveillance systems. The goal of the primary is to design novel computer vision techniques that can extract objects more accurately and discriminate between abnormal and normal activities. To improve the accuracy of object detection and tracking, our proposed shadow removal algorithm is employed. Abnormal event detection based on visual sensor by using shape features variation and 3-D trajectory is presented to overcome the low fall detection rate. The experimental results showed that the success rate of detecting abnormal events was 97% with a false positive rate of 2%. Our proposed algorithm can allow distinguishing diverse fall activities such as forward falls, backward falls, and falling asides from normal activities. PMID:22368486
NASA Astrophysics Data System (ADS)
Sitohang, Yosep Oktavianus; Darmawan, Gumgum
2017-08-01
This research attempts to compare between two forecasting models in time series analysis for predicting the sales volume of motorcycle in Indonesia. The first forecasting model used in this paper is Autoregressive Fractionally Integrated Moving Average (ARFIMA). ARFIMA can handle non-stationary data and has a better performance than ARIMA in forecasting accuracy on long memory data. This is because the fractional difference parameter can explain correlation structure in data that has short memory, long memory, and even both structures simultaneously. The second forecasting model is Singular spectrum analysis (SSA). The advantage of the technique is that it is able to decompose time series data into the classic components i.e. trend, cyclical, seasonal and noise components. This makes the forecasting accuracy of this technique significantly better. Furthermore, SSA is a model-free technique, so it is likely to have a very wide range in its application. Selection of the best model is based on the value of the lowest MAPE. Based on the calculation, it is obtained the best model for ARFIMA is ARFIMA (3, d = 0, 63, 0) with MAPE value of 22.95 percent. For SSA with a window length of 53 and 4 group of reconstructed data, resulting MAPE value of 13.57 percent. Based on these results it is concluded that SSA produces better forecasting accuracy.
Remote sensing using MIMO systems
Bikhazi, Nicolas; Young, William F; Nguyen, Hung D
2015-04-28
A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.
Experimental comparisons of hypothesis test and moving average based combustion phase controllers.
Gao, Jinwu; Wu, Yuhu; Shen, Tielong
2016-11-01
For engine control, combustion phase is the most effective and direct parameter to improve fuel efficiency. In this paper, the statistical control strategy based on hypothesis test criterion is discussed. Taking location of peak pressure (LPP) as combustion phase indicator, the statistical model of LPP is first proposed, and then the controller design method is discussed on the basis of both Z and T tests. For comparison, moving average based control strategy is also presented and implemented in this study. The experiments on a spark ignition gasoline engine at various operating conditions show that the hypothesis test based controller is able to regulate LPP close to set point while maintaining the rapid transient response, and the variance of LPP is also well constrained. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Neonatal heart rate prediction.
Abdel-Rahman, Yumna; Jeremic, Aleksander; Tan, Kenneth
2009-01-01
Technological advances have caused a decrease in the number of infant deaths. Pre-term infants now have a substantially increased chance of survival. One of the mechanisms that is vital to saving the lives of these infants is continuous monitoring and early diagnosis. With continuous monitoring huge amounts of data are collected with so much information embedded in them. By using statistical analysis this information can be extracted and used to aid diagnosis and to understand development. In this study we have a large dataset containing over 180 pre-term infants whose heart rates were recorded over the length of their stay in the Neonatal Intensive Care Unit (NICU). We test two types of models, empirical bayesian and autoregressive moving average. We then attempt to predict future values. The autoregressive moving average model showed better results but required more computation.
Development of a Robust Identifier for NPPs Transients Combining ARIMA Model and EBP Algorithm
NASA Astrophysics Data System (ADS)
Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.
2014-08-01
This study introduces a novel identification method for recognition of nuclear power plants (NPPs) transients by combining the autoregressive integrated moving-average (ARIMA) model and the neural network with error backpropagation (EBP) learning algorithm. The proposed method consists of three steps. First, an EBP based identifier is adopted to distinguish the plant normal states from the faulty ones. In the second step, ARIMA models use integrated (I) process to convert non-stationary data of the selected variables into stationary ones. Subsequently, ARIMA processes, including autoregressive (AR), moving-average (MA), or autoregressive moving-average (ARMA) are used to forecast time series of the selected plant variables. In the third step, for identification the type of transients, the forecasted time series are fed to the modular identifier which has been developed using the latest advances of EBP learning algorithm. Bushehr nuclear power plant (BNPP) transients are probed to analyze the ability of the proposed identifier. Recognition of transient is based on similarity of its statistical properties to the reference one, rather than the values of input patterns. More robustness against noisy data and improvement balance between memorization and generalization are salient advantages of the proposed identifier. Reduction of false identification, sole dependency of identification on the sign of each output signal, selection of the plant variables for transients training independent of each other, and extendibility for identification of more transients without unfavorable effects are other merits of the proposed identifier.
Structural equation modeling of the inflammatory response to traffic air pollution
Baja, Emmanuel S.; Schwartz, Joel D.; Coull, Brent A.; Wellenius, Gregory A.; Vokonas, Pantel S.; Suh, Helen H.
2015-01-01
Several epidemiological studies have reported conflicting results on the effect of traffic-related pollutants on markers of inflammation. In a Bayesian framework, we examined the effect of traffic pollution on inflammation using structural equation models (SEMs). We studied measurements of C-reactive protein (CRP), soluble vascular cell adhesion molecule-1 (sVCAM-1), and soluble intracellular adhesion molecule-1 (sICAM-1) for 749 elderly men from the Normative Aging Study. Using repeated measures SEMs, we fit a latent variable for traffic pollution that is reflected by levels of black carbon, carbon monoxide, nitrogen monoxide and nitrogen dioxide to estimate its effect on a latent variable for inflammation that included sICAM-1, sVCAM-1 and CRP. Exposure periods were assessed using 1-, 2-, 3-, 7-, 14- and 30-day moving averages previsit. We compared our findings using SEMs with those obtained using linear mixed models. Traffic pollution was related to increased inflammation for 3-, 7-, 14- and 30-day exposure periods. An inter-quartile range increase in traffic pollution was associated with a 2.3% (95% posterior interval (PI): 0.0–4.7%) increase in inflammation for the 3-day moving average, with the most significant association observed for the 30-day moving average (23.9%; 95% PI: 13.9–36.7%). Traffic pollution adversely impacts inflammation in the elderly. SEMs in a Bayesian framework can comprehensively incorporate multiple pollutants and health outcomes simultaneously in air pollution–cardiovascular epidemiological studies. PMID:23232970
NASA Technical Reports Server (NTRS)
Wilson, Robert M.; Franklin, M. Rose (Technical Monitor)
2000-01-01
Since 1750, the number of cataclysmic volcanic eruptions (i.e., those having a volcanic explosivity index, or VEI, equal to 4 or larger) per decade is found to span 2-11, with 96% located in the tropics and extra-tropical Northern Hemisphere, A two-point moving average of the time series has higher values since the 1860s than before, measuring 8.00 in the 1910s (the highest value) and measuring 6.50 in the 1980s, the highest since the 18 1 0s' peak. On the basis of the usual behavior of the first difference of the two-point moving averages, one infers that the two-point moving average for the 1990s will measure about 6.50 +/- 1.00, implying that about 7 +/- 4 cataclysmic volcanic eruptions should be expected during the present decade (2000-2009). Because cataclysmic volcanic eruptions (especially, those having VEI equal to 5 or larger) nearly always have been associated with episodes of short-term global cooling, the occurrence of even one could ameliorate the effects of global warming. Poisson probability distributions reveal that the probability of one or more VEI equal to 4 or larger events occurring within the next ten years is >99%, while it is about 49% for VEI equal to 5 or larger events and 18% for VEI equal to 6 or larger events. Hence, the likelihood that a, climatically significant volcanic eruption will occur within the next 10 years appears reasonably high.
NASA Astrophysics Data System (ADS)
Page, Douglas; Owirka, Gregory; Nichols, Howard; Scarborough, Steven
2014-06-01
We describe techniques for improving ground moving target indication (GMTI) performance in multi-channel synthetic aperture radar (SAR) systems. Our approach employs a combination of moving reference processing (MRP) to compensate for defocus of moving target SAR responses and space-time adaptive processing (STAP) to mitigate the effects of strong clutter interference. Using simulated moving target and clutter returns, we demonstrate focusing of the target return using MRP, and discuss the effect of MRP on the clutter response. We also describe formation of adaptive degrees of freedom (DOFs) for STAP filtering of MRP processed data. For the simulated moving target in clutter example, we demonstrate improvement in the signal to interference plus noise (SINR) loss compared to more standard algorithm configurations. In addition to MRP and STAP, the use of tracker feedback, false alarm mitigation, and parameter estimation techniques are also described. A change detection approach for reducing false alarms from clutter discretes is outlined, and processing of a measured data coherent processing interval (CPI) from a continuously orbiting platform is described. The results demonstrate detection and geolocation of a high-value target under track. The endoclutter target is not clearly visible in single-channel SAR chips centered on the GMTI track prediction. Detections are compared to truth data before and after geolocation using measured angle of arrival (AOA).
DOT National Transportation Integrated Search
2009-05-01
Techniques are described for installing instrumentation within highway/railway crossings - to measure vertical pressures under moving highway and railway loadings - using earth pressure cells. Also, techniques are described for installing instrumenta...
Eye tracking and gating system for proton therapy of orbital tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Dongho; Yoo, Seung Hoon; Moon, Sung Ho
2012-07-15
Purpose: A new motion-based gated proton therapy for the treatment of orbital tumors using real-time eye-tracking system was designed and evaluated. Methods: We developed our system by image-pattern matching, using a normalized cross-correlation technique with LabVIEW 8.6 and Vision Assistant 8.6 (National Instruments, Austin, TX). To measure the pixel spacing of an image consistently, four different calibration modes such as the point-detection, the edge-detection, the line-measurement, and the manual measurement mode were suggested and used. After these methods were applied to proton therapy, gating was performed, and radiation dose distributions were evaluated. Results: Moving phantom verification measurements resulted in errorsmore » of less than 0.1 mm for given ranges of translation. Dosimetric evaluation of the beam-gating system versus nongated treatment delivery with a moving phantom shows that while there was only 0.83 mm growth in lateral penumbra for gated radiotherapy, there was 4.95 mm growth in lateral penumbra in case of nongated exposure. The analysis from clinical results suggests that the average of eye movements depends distinctively on each patient by showing 0.44 mm, 0.45 mm, and 0.86 mm for three patients, respectively. Conclusions: The developed automatic eye-tracking based beam-gating system enabled us to perform high-precision proton radiotherapy of orbital tumors.« less
Applications of Space-Filling-Curves to Cartesian Methods for CFD
NASA Technical Reports Server (NTRS)
Aftosmis, M. J.; Murman, S. M.; Berger, M. J.
2003-01-01
This paper presents a variety of novel uses of space-filling-curves (SFCs) for Cartesian mesh methods in CFD. While these techniques will be demonstrated using non-body-fitted Cartesian meshes, many are applicable on general body-fitted meshes-both structured and unstructured. We demonstrate the use of single theta(N log N) SFC-based reordering to produce single-pass (theta(N)) algorithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh interpolation operator has many practical applications including warm starts on modified geometry, or as an inter-grid transfer operator on remeshed regions in moving-body simulations Exploiting the compact construction of these operators, we further show that these algorithms are highly amenable to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to 640 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the SFC partitions are, on-average, within 15% of ideal even with only around 50,000 cells in each sub-domain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used to map a solution with N unknowns to another mesh with M unknowns with theta(M + N) operations. This capability is demonstrated both on moving-body simulations and in mapping solutions to perturbed meshes for control surface deflection or finite-difference-based gradient design methods.
Using Hidden Markov Models to characterise intermittent social behaviour in fish shoals
NASA Astrophysics Data System (ADS)
Bode, Nikolai W. F.; Seitz, Michael J.
2018-02-01
The movement of animals in groups is widespread in nature. Understanding this phenomenon presents an important problem in ecology with many applications that range from conservation to robotics. Underlying all group movements are interactions between individual animals and it is therefore crucial to understand the mechanisms of this social behaviour. To date, despite promising methodological developments, there are few applications to data of practical statistical techniques that inferentially investigate the extent and nature of social interactions in group movement. We address this gap by demonstrating the usefulness of a Hidden Markov Model approach to characterise individual-level social movement in published trajectory data on three-spined stickleback shoals ( Gasterosteus aculeatus) and novel data on guppy shoals ( Poecilia reticulata). With these models, we formally test for speed-mediated social interactions and verify that they are present. We further characterise this inferred social behaviour and find that despite the substantial shoal-level differences in movement dynamics between species, it is qualitatively similar in guppies and sticklebacks. It is intermittent, occurring in varying numbers of individuals at different time points. The speeds of interacting fish follow a bimodal distribution, indicating that they are either stationary or move at a preferred mean speed, and social fish with more social neighbours move at higher speeds, on average. Our findings and methodology present steps towards characterising social behaviour in animal groups.
Specific tackling situations affect the biomechanical demands experienced by rugby union players.
Seminati, Elena; Cazzola, Dario; Preatoni, Ezio; Trewartha, Grant
2017-03-01
Tackling in Rugby Union is an open skill which can involve high-speed collisions and is the match event associated with the greatest proportion of injuries. This study aimed to analyse the biomechanics of rugby tackling under three conditions: from a stationary position, with dominant and non-dominant shoulder, and moving forward, with dominant shoulder. A specially devised contact simulator, a 50-kg punch bag instrumented with pressure sensors, was translated towards the tackler (n = 15) to evaluate the effect of laterality and tackling approach on the external loads absorbed by the tackler, on head and trunk motion, and on trunk muscle activities. Peak impact force was substantially higher in the stationary dominant (2.84 ± 0.74 kN) than in the stationary non-dominant condition (2.44 ± 0.64 kN), but lower than in the moving condition (3.40 ± 0.86 kN). Muscle activation started on average 300 ms before impact, with higher activation for impact-side trapezius and non-impact-side erector spinae and gluteus maximus muscles. Players' technique for non-dominant-side tackles was less compliant with current coaching recommendations in terms of cervical motion (more neck flexion and lateral bending in the stationary non-dominant condition) and players could benefit from specific coaching focus on non-dominant-side tackles.
Model studies of surface noise interference in ground-probing radar
NASA Astrophysics Data System (ADS)
Arcone, S. A.; Delaney, A. J.
1985-11-01
Ground-probing radar can be an effective tool for exploring the top 10 to 20 m of ground, especially in cold regions where the freezing of water decreases signal absorption. However, the large electrical variability of the surface, combined with the short wavelengths used, can often cause severe ground clutter that can mask a desired, deeper return. In this study a model facility was constructed consisting of a metallic reflector covered by sand. Troughs of saturated sand were emplaced at the surface to carry surface electrical properties and to act as a noise source to interfere with the bottom reflections. Antenna polarization and height, and signal stacking in both static (antennas stationary) and dynamic (antennas moving) modes were then investigated as methods for reducing the surface clutter. Polarization parallel to the profile direction (perpendicular to the troughs' axes) gave profiles superior to the perpendicular case because of the dimensional sensitivity of the antenna radiation. Dynamic stacking greatly improved the signal-to-noise ratio because noise sources were averaged as the antennas moved, while the desired reflector, buried at constant depth, was enhanced. Raising the antennas above the surface also reduced noise because the surface area over which reflections were integrated increased. All three noise reduction techniques could be effective in surveys for reflectors at nearly constant depth such as groundwater tables or ice/water interfaces.
A novel capsulorhexis technique using shearing forces with cystotome.
Karim, Shah M R; Ong, Chin T; Sleep, Tamsin J
2010-05-15
To demonstrate a capsulorhexis technique using predominantly shearing forces with a cystotome on a virtual reality simulator and on a human eye. Our technique involves creating the initial anterior capsular tear with a cystotome to raise a flap. The flap left unfolded on the lens surface. The cystotome tip is tilted horizontally and is engaged on the flap near the leading edge of the tear. The cystotome is moved in a circular fashion to direct the vector forces. The loose flap is constantly swept towards the centre so that it does not obscure the view on the tearing edge. Our technique has the advantage of reducing corneal wound distortion and subsequent anterior chamber collapse. The capsulorhexis flap is moved away from the tear leading edge allowing better visualisation of the direction of tear. This technique offers superior control of the capsulorhexis by allowing the surgeon to change the direction of the tear to achieve the desired capsulorhexis size. The EYESI Surgical Simulator is a realistic training platform for surgeons to practice complex capsulorhexis techniques. The shearing forces technique is a suitable alternative and in some cases a far better technique in achieving the desired capsulorhexis.
NASA Technical Reports Server (NTRS)
Forbes, T. G.; Hones, E. W., Jr.; Bame, S. J.; Asbridge, J. R.; Paschmann, G.; Sckopke, N.; Russell, C. T.
1981-01-01
From an ISEE survey of substorm dropouts and recoveries during the period February 5 to May 25, 1978, 66 timing events observed by the Los Alamos Scientific Laboratory/Max-Planck-Institut Fast Plasma Experiments were studied in detail. Near substorm onset, both the average timing velocity and the bulk flow velocity at the edge of the plasma sheet are inward, toward the center. Measured normal to the surface of the plasma sheet, the timing velocity is 23 + or - 18 km/s and the proton flow velocity is 20 + or - 8 km/s. During substorm recovery, the plasma sheet reappears moving outward with an average timing velocity of 133 + or - 31 km/s; however, the corresponding proton flow velocity is only 3 + or - 7 km/s in the same direction. It is suggested that the difference between the average timing velocity for the expansion of the plasma sheet and the plasma bulk flow perpendicular to the surface of the sheet during substorm recovery is most likely the result of surface waves moving past the position of the satellites.
Modified Exponential Weighted Moving Average (EWMA) Control Chart on Autocorrelation Data
NASA Astrophysics Data System (ADS)
Herdiani, Erna Tri; Fandrilla, Geysa; Sunusi, Nurtiti
2018-03-01
In general, observations of the statistical process control are assumed to be mutually independence. However, this assumption is often violated in practice. Consequently, statistical process controls were developed for interrelated processes, including Shewhart, Cumulative Sum (CUSUM), and exponentially weighted moving average (EWMA) control charts in the data that were autocorrelation. One researcher stated that this chart is not suitable if the same control limits are used in the case of independent variables. For this reason, it is necessary to apply the time series model in building the control chart. A classical control chart for independent variables is usually applied to residual processes. This procedure is permitted provided that residuals are independent. In 1978, Shewhart modification for the autoregressive process was introduced by using the distance between the sample mean and the target value compared to the standard deviation of the autocorrelation process. In this paper we will examine the mean of EWMA for autocorrelation process derived from Montgomery and Patel. Performance to be investigated was investigated by examining Average Run Length (ARL) based on the Markov Chain Method.
The vacuum friction paradox and related puzzles
NASA Astrophysics Data System (ADS)
Barnett, Stephen M.; Sonnleitner, Matthias
2018-04-01
The frequency of light emitted by a moving source is shifted by a factor proportional to its velocity. We find that this Doppler shift requires the existence of a paradoxical effect: that a moving atom radiating in otherwise empty space feels a net or average force acing against its direction motion and proportional in magnitude to is speed. Yet there is no preferred rest frame, either in relativity or in Newtonian mechanics, so how can there be a vacuum friction force?
REGIONAL SEISMIC CHEMICAL AND NUCLEAR EXPLOSION DISCRIMINATION: WESTERN U.S. EXAMPLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, W R; Taylor, S R; Matzel, E
2006-07-07
We continue exploring methodologies to improve regional explosion discrimination using the western U.S. as a natural laboratory. The western U.S. has abundant natural seismicity, historic nuclear explosion data, and widespread mine blasts, making it a good testing ground to study the performance of regional explosion discrimination techniques. We have assembled and measured a large set of these events to systematically explore how to best optimize discrimination performance. Nuclear explosions can be discriminated from a background of earthquakes using regional phase (Pn, Pg, Sn, Lg) amplitude measures such as high frequency P/S ratios. The discrimination performance is improved if the amplitudesmore » can be corrected for source size and path length effects. We show good results are achieved using earthquakes alone to calibrate for these effects with the MDAC technique (Walter and Taylor, 2001). We show significant further improvement is then possible by combining multiple MDAC amplitude ratios using an optimized weighting technique such as Linear Discriminant Analysis (LDA). However this requires data or models for both earthquakes and explosions. In many areas of the world regional distance nuclear explosion data is lacking, but mine blast data is available. Mine explosions are often designed to fracture and/or move rock, giving them different frequency and amplitude behavior than contained chemical shots, which seismically look like nuclear tests. Here we explore discrimination performance differences between explosion types, the possible disparity in the optimization parameters that would be chosen if only chemical explosions were available and the corresponding effect of that disparity on nuclear explosion discrimination. Even after correcting for average path and site effects, regional phase ratios contain a large amount of scatter. This scatter appears to be due to variations in source properties such as depth, focal mechanism, stress drop, in the near source material properties (including emplacement conditions in the case of explosions) and in variations from the average path and site correction. Here we look at several kinds of averaging as a means to try and reduce variance in earthquake and explosion populations and better understand the factors going into a minimum variance level as a function of epicenter (see Anderson ee et al. this volume). We focus on the performance of P/S ratios over the frequency range from 1 to 16 Hz finding some improvements in discrimination as frequency increases. We also explore averaging and optimally combining P/S ratios in multiple frequency bands as a means to reduce variance. Similarly we explore the effects of azimuthally averaging both regional amplitudes and amplitude ratios over multiple stations to reduce variance. Finally we look at optimal performance as a function of magnitude and path length, as these put limits the availability of good high frequency discrimination measures.« less
Woolcock, Patrick J; Koziel, Jacek A; Cai, Lingshuang; Johnston, Patrick A; Brown, Robert C
2013-03-15
Time-weighted average (TWA) passive sampling using solid-phase microextraction (SPME) and gas chromatography was investigated as a new method of collecting, identifying and quantifying contaminants in process gas streams. Unlike previous TWA-SPME techniques using the retracted fiber configuration (fiber within needle) to monitor ambient conditions or relatively stagnant gases, this method was developed for fast-moving process gas streams at temperatures approaching 300 °C. The goal was to develop a consistent and reliable method of analyzing low concentrations of contaminants in hot gas streams without performing time-consuming exhaustive extraction with a slipstream. This work in particular aims to quantify trace tar compounds found in a syngas stream generated from biomass gasification. This paper evaluates the concept of retracted SPME at high temperatures by testing the three essential requirements for TWA passive sampling: (1) zero-sink assumption, (2) consistent and reliable response by the sampling device to changing concentrations, and (3) equal concentrations in the bulk gas stream relative to the face of the fiber syringe opening. Results indicated the method can accurately predict gas stream concentrations at elevated temperatures. Evidence was also discovered to validate the existence of a second boundary layer within the fiber during the adsorption/absorption process. This limits the technique to operating within reasonable mass loadings and loading rates, established by appropriate sampling depths and times for concentrations of interest. A limit of quantification for the benzene model tar system was estimated at 0.02 g m(-3) (8 ppm) with a limit of detection of 0.5 mg m(-3) (200 ppb). Using the appropriate conditions, the technique was applied to a pilot-scale fluidized-bed gasifier to verify its feasibility. Results from this test were in good agreement with literature and prior pilot plant operation, indicating the new method can measure low concentrations of tar in gasification streams. Copyright © 2013 Elsevier B.V. All rights reserved.
Time series forecasting using ERNN and QR based on Bayesian model averaging
NASA Astrophysics Data System (ADS)
Pwasong, Augustine; Sathasivam, Saratha
2017-08-01
The Bayesian model averaging technique is a multi-model combination technique. The technique was employed to amalgamate the Elman recurrent neural network (ERNN) technique with the quadratic regression (QR) technique. The amalgamation produced a hybrid technique known as the hybrid ERNN-QR technique. The potentials of forecasting with the hybrid technique are compared with the forecasting capabilities of individual techniques of ERNN and QR. The outcome revealed that the hybrid technique is superior to the individual techniques in the mean square error sense.
Hydrogeology and leachate movement near two chemical-waste sites in Oswego County, New York
Anderson, H.R.; Miller, Todd S.
1986-01-01
Forty-five observation wells and test holes were installed at two chemical waste disposal sites in Oswego County, New York, to evaluate the hydrogeologic conditions and the rate and direction of leachate migration. At the site near Oswego groundwater moves northward at an average velocity of 0.4 ft/day through unconsolidated glacial deposits and discharges into White Creek and Wine Creek, which border the site and discharge to Lake Ontario. Leaking barrels by chemical wastes have contaminated the groundwater within the site, as evidenced by detection of 10 ' priority pollutant ' organic compounds, and elevated values of specific conductance, chloride, arsenic, lead, and mercury. At the site near Fulton, where 8,000 barrels of chemical wastes are buried, groundwater in the sandy surficial aquifer bordering the landfill on the south and east moves southward and eastward at an average velocity of 2.8 ft/day and discharges to Bell Creek, which discharges to the Oswego River, or moves beneath the landfill. Leachate is migrating eastward, southeastward, and southwestward, as evidenced by elevated values of specific conductance, temperature, and concentrations of several trace metals at wells east, southeast, and southwest of the site. (USGS)
Quantification of moving target cyber defenses
NASA Astrophysics Data System (ADS)
Farris, Katheryn A.; Cybenko, George
2015-05-01
Current network and information systems are static, making it simple for attackers to maintain an advantage. Adaptive defenses, such as Moving Target Defenses (MTD) have been developed as potential "game-changers" in an effort to increase the attacker's workload. With many new methods being developed, it is difficult to accurately quantify and compare their overall costs and effectiveness. This paper compares the tradeoffs between current approaches to the quantification of MTDs. We present results from an expert opinion survey on quantifying the overall effectiveness, upfront and operating costs of a select set of MTD techniques. We find that gathering informed scientific opinions can be advantageous for evaluating such new technologies as it offers a more comprehensive assessment. We end by presenting a coarse ordering of a set of MTD techniques from most to least dominant. We found that seven out of 23 methods rank as the more dominant techniques. Five of which are techniques of either address space layout randomization or instruction set randomization. The remaining two techniques are applicable to software and computer platforms. Among the techniques that performed the worst are those primarily aimed at network randomization.
The Accuracy of Talking Pedometers when Used during Free-Living: A Comparison of Four Devices
ERIC Educational Resources Information Center
Albright, Carolyn; Jerome, Gerald J.
2011-01-01
The purpose of this study was to determine the accuracy of four commercially available talking pedometers in measuring accumulated daily steps of adult participants while they moved independently. Ten young sighted adults (with an average age of 24.1 [plus or minus] 4.6 years), 10 older sighted adults (with an average age of 73 [plus or minus] 5.5…
Comparison of estimators for rolling samples using Forest Inventory and Analysis data
Devin S. Johnson; Michael S. Williams; Raymond L. Czaplewski
2003-01-01
The performance of three classes of weighted average estimators is studied for an annual inventory design similar to the Forest Inventory and Analysis program of the United States. The first class is based on an ARIMA(0,1,1) time series model. The equal weight, simple moving average is a member of this class. The second class is based on an ARIMA(0,2,2) time series...
NASA Astrophysics Data System (ADS)
Wu, Yu-Jie; Lin, Guan-Wei
2017-04-01
Since 1999, Taiwan has experienced a rapid rise in the number of landslides, and the number even reached a peak after the 2009 Typhoon Morakot. Although it is proved that the ground-motion signals induced by slope processes could be recorded by seismograph, it is difficult to be distinguished from continuous seismic records due to the lack of distinct P and S waves. In this study, we combine three common seismic detectors including the short-term average/long-term average (STA/LTA) approach, and two diagnostic functions of moving average and scintillation index. Based on these detectors, we have established an auto-detection algorithm of landslide-quakes and the detection thresholds are defined to distinguish landslide-quake from earthquakes and background noises. To further improve the proposed detection algorithm, we apply it to seismic archives recorded by Broadband Array in Taiwan for Seismology (BATS) during the 2009 Typhoon Morakots and consequently the discrete landslide-quakes detected by the automatic algorithm are located. The detection algorithm show that the landslide-detection results are consistent with that of visual inspection and hence can be used to automatically monitor landslide-quakes.
High-Resolution Coarse-Grained Modeling Using Oriented Coarse-Grained Sites.
Haxton, Thomas K
2015-03-10
We introduce a method to bring nearly atomistic resolution to coarse-grained models, and we apply the method to proteins. Using a small number of coarse-grained sites (about one per eight atoms) but assigning an independent three-dimensional orientation to each site, we preferentially integrate out stiff degrees of freedom (bond lengths and angles, as well as dihedral angles in rings) that are accurately approximated by their average values, while retaining soft degrees of freedom (unconstrained dihedral angles) mostly responsible for conformational variability. We demonstrate that our scheme retains nearly atomistic resolution by mapping all experimental protein configurations in the Protein Data Bank onto coarse-grained configurations and then analytically backmapping those configurations back to all-atom configurations. This roundtrip mapping throws away all information associated with the eliminated (stiff) degrees of freedom except for their average values, which we use to construct optimal backmapping functions. Despite the 4:1 reduction in the number of degrees of freedom, we find that heavy atoms move only 0.051 Å on average during the roundtrip mapping, while hydrogens move 0.179 Å on average, an unprecedented combination of efficiency and accuracy among coarse-grained protein models. We discuss the advantages of such a high-resolution model for parametrizing effective interactions and accurately calculating observables through direct or multiscale simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, Mohammad; Salloum, Maher; Lee, Jina
2017-07-10
KARMA4 is a C++ library for autoregressive moving average (ARMA) modeling and forecasting of time-series data while incorporating both process and observation error. KARMA4 is designed for fitting and forecasting of time-series data for predictive purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burlaga, L. F.; Ness, N. F., E-mail: lburlagahsp@verizon.net, E-mail: nfnudel@yahoo.com
2012-04-10
We examine the relationships between the magnetic field and the radial velocity component V{sub R} observed in the heliosheath by instruments on Voyager 1 (V1). No increase in the magnetic field strength B was observed in a region where V{sub R} decreased linearly from 70 km s{sup -1} to 0 km s{sup -1} as plasma moved outward past V1. An unusually broad transition from positive to negative polarity was observed during a Almost-Equal-To 26 day interval when the heliospheric current sheet (HCS) moved below the latitude of V1 and the speed of V1 was comparable to the radial speed ofmore » the heliosheath flow. When V1 moved through a region where V{sub R} Almost-Equal-To 0 (the 'stagnation region'), B increased linearly with time by a factor of two, and the average of B was 0.14 nT. Nothing comparable to this was observed previously. The magnetic polarity was negative throughout the stagnation region for Almost-Equal-To 580 days until 2011 DOY 235, indicating that the HCS was below the latitude of V1. The average passage times of the magnetic holes and proton boundary layers were the same during 2009 and 2011, because the plasma moved past V1 during 2009 at the same speed that V1 moved through the stagnation region during 2011. The microscale fluctuations of B in the stagnation region during 2011 are qualitatively the same as those observed in the heliosheath during 2009. These results suggest that the stagnation region is a part of the heliosheath, rather than a 'transition region' associated with the heliopause.« less
Source apportionment of speciated PM10 in the United Kingdom in 2008: Episodes and annual averages
NASA Astrophysics Data System (ADS)
Redington, A. L.; Witham, C. S.; Hort, M. C.
2016-11-01
The Lagrangian atmospheric dispersion model NAME (Numerical Atmospheric-dispersion Modelling Environment), has been used to simulate the formation and transport of PM10 over North-West Europe in 2008. The model has been evaluated against UK measurement data and been shown to adequately represent the observed PM10 at rural and urban sites on a daily basis. The Lagrangian nature of the model allows information on the origin of pollutants (and hence their secondary products) to be retained to allow attribution of pollutants at receptor sites back to their sources. This source apportionment technique has been employed to determine whether the different components of the modelled PM10 have originated from UK, shipping, European (excluding the UK) or background sources. For the first time this has been done to evaluate the composition during periods of elevated PM10 as well as the annual average composition. The episode data were determined by selecting the model data for each hour when the corresponding measurement data was >50 μg/m3. All the modelled sites show an increase in European pollution contribution and a decrease in the background contribution in the episode case compared to the annual average. The European contribution is greatest in southern and eastern parts of the UK and decreases moving northwards and westwards. Analysis of the speciated attribution data over the selected sites reveals that for 2008, as an annual average, the top three contributors to total PM10 are UK primary PM10 (17-25%), UK origin nitrate aerosol (18-21%) and background PM10 (11-16%). Under episode conditions the top three contributors to modelled PM10 are UK origin nitrate aerosol (12-33%), European origin nitrate aerosol (11-19%) and UK primary PM10 (12-18%).
Ansari, Mozafar; Othman, Faridah; Abunama, Taher; El-Shafie, Ahmed
2018-04-01
The function of a sewage treatment plant is to treat the sewage to acceptable standards before being discharged into the receiving waters. To design and operate such plants, it is necessary to measure and predict the influent flow rate. In this research, the influent flow rate of a sewage treatment plant (STP) was modelled and predicted by autoregressive integrated moving average (ARIMA), nonlinear autoregressive network (NAR) and support vector machine (SVM) regression time series algorithms. To evaluate the models' accuracy, the root mean square error (RMSE) and coefficient of determination (R 2 ) were calculated as initial assessment measures, while relative error (RE), peak flow criterion (PFC) and low flow criterion (LFC) were calculated as final evaluation measures to demonstrate the detailed accuracy of the selected models. An integrated model was developed based on the individual models' prediction ability for low, average and peak flow. An initial assessment of the results showed that the ARIMA model was the least accurate and the NAR model was the most accurate. The RE results also prove that the SVM model's frequency of errors above 10% or below - 10% was greater than the NAR model's. The influent was also forecasted up to 44 weeks ahead by both models. The graphical results indicate that the NAR model made better predictions than the SVM model. The final evaluation of NAR and SVM demonstrated that SVM made better predictions at peak flow and NAR fit well for low and average inflow ranges. The integrated model developed includes the NAR model for low and average influent and the SVM model for peak inflow.
Detection of a faint fast-moving near-Earth asteroid using the synthetic tracking technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Chengxing; Shao, Michael; Nemati, Bijan
We report a detection of a faint near-Earth asteroid (NEA) using our synthetic tracking technique and the CHIMERA instrument on the Palomar 200 inch telescope. With an apparent magnitude of 23 (H = 29, assuming detection at 20 lunar distances), the asteroid was moving at 6.°32 day{sup –1} and was detected at a signal-to-noise ratio (S/N) of 15 using 30 s of data taken at a 16.7 Hz frame rate. The detection was confirmed by a second observation 77 minutes later at the same S/N. Because of its high proper motion, the NEA moved 7 arcsec over the 30 smore » of observation. Synthetic tracking avoided image degradation due to trailing loss that affects conventional techniques relying on 30 s exposures; the trailing loss would have degraded the surface brightness of the NEA image on the CCD down to an approximate magnitude of 25 making the object undetectable. This detection was a result of our 12 hr blind search conducted on the Palomar 200 inch telescope over two nights, scanning twice over six (5.°3 × 0.°046) fields. Detecting only one asteroid is consistent with Harris's estimates for the distribution of the asteroid population, which was used to predict a detection of 1.2 NEAs in the H-magnitude range 28-31 for the two nights. The experimental design, data analysis methods, and algorithms are presented. We also demonstrate milliarcsecond-level astrometry using observations of two known bright asteroids on the same system with synthetic tracking. We conclude by discussing strategies for scheduling observations to detect and characterize small and fast-moving NEAs using the new technique.« less
Calculating High Speed Centrifugal Compressor Performance from Averaged Measurements
NASA Astrophysics Data System (ADS)
Lou, Fangyuan; Fleming, Ryan; Key, Nicole L.
2012-12-01
To improve the understanding of high performance centrifugal compressors found in modern aircraft engines, the aerodynamics through these machines must be experimentally studied. To accurately capture the complex flow phenomena through these devices, research facilities that can accurately simulate these flows are necessary. One such facility has been recently developed, and it is used in this paper to explore the effects of averaging total pressure and total temperature measurements to calculate compressor performance. Different averaging techniques (including area averaging, mass averaging, and work averaging) have been applied to the data. Results show that there is a negligible difference in both the calculated total pressure ratio and efficiency for the different techniques employed. However, the uncertainty in the performance parameters calculated with the different averaging techniques is significantly different, with area averaging providing the least uncertainty.
Real Time Search Algorithm for Observation Outliers During Monitoring Engineering Constructions
NASA Astrophysics Data System (ADS)
Latos, Dorota; Kolanowski, Bogdan; Pachelski, Wojciech; Sołoducha, Ryszard
2017-12-01
Real time monitoring of engineering structures in case of an emergency of disaster requires collection of a large amount of data to be processed by specific analytical techniques. A quick and accurate assessment of the state of the object is crucial for a probable rescue action. One of the more significant evaluation methods of large sets of data, either collected during a specified interval of time or permanently, is the time series analysis. In this paper presented is a search algorithm for those time series elements which deviate from their values expected during monitoring. Quick and proper detection of observations indicating anomalous behavior of the structure allows to take a variety of preventive actions. In the algorithm, the mathematical formulae used provide maximal sensitivity to detect even minimal changes in the object's behavior. The sensitivity analyses were conducted for the algorithm of moving average as well as for the Douglas-Peucker algorithm used in generalization of linear objects in GIS. In addition to determining the size of deviations from the average it was used the so-called Hausdorff distance. The carried out simulation and verification of laboratory survey data showed that the approach provides sufficient sensitivity for automatic real time analysis of large amount of data obtained from different and various sensors (total stations, leveling, camera, radar).
NASA Technical Reports Server (NTRS)
Ramirez, Daniel Perez; Lyamani, H.; Olmo, F. J.; Whiteman, D. N.; Navas-Guzman, F.; Alados-Arboledas, L.
2012-01-01
This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, delta Ae(lambda), and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of delta Ae() and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable Ae(lambda) and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.
The Moving Figure: In Search of a Personal Artistic Vision through Life Drawing
ERIC Educational Resources Information Center
Zourntos, Ted
2013-01-01
"The Moving Figure" unit of study examines the relationship between observation, expression, and memory drawing techniques with second year college-level Illustration students. The goal of the exercises is to foster the development of a personal artistic voice in drawing by asking the students to directly place themselves in-situ within…
NASA Astrophysics Data System (ADS)
Hazelaar, Colien; Dahele, Max; Mostafavi, Hassan; van der Weide, Lineke; Slotman, Ben; Verbakel, Wilko
2018-06-01
Lung tumors treated in breath-hold are subject to inter- and intra-breath-hold variations, which makes tumor position monitoring during each breath-hold important. A markerless technique is desirable, but limited tumor visibility on kV images makes this challenging. We evaluated if template matching + triangulation of kV projection images acquired during breath-hold stereotactic treatments could determine 3D tumor position. Band-pass filtering and/or digital tomosynthesis (DTS) were used as image pre-filtering/enhancement techniques. On-board kV images continuously acquired during volumetric modulated arc irradiation of (i) a 3D-printed anthropomorphic thorax phantom with three lung tumors (n = 6 stationary datasets, n = 2 gradually moving), and (ii) four patients (13 datasets) were analyzed. 2D reference templates (filtered DRRs) were created from planning CT data. Normalized cross-correlation was used for 2D matching between templates and pre-filtered/enhanced kV images. For 3D verification, each registration was triangulated with multiple previous registrations. Generally applicable image processing/algorithm settings for lung tumors in breath-hold were identified. For the stationary phantom, the interquartile range of the 3D position vector was on average 0.25 mm for 12° DTS + band-pass filtering (average detected positions in 2D = 99.7%, 3D = 96.1%, and 3D excluding first 12° due to triangulation angle = 99.9%) compared to 0.81 mm for band-pass filtering only (55.8/52.9/55.0%). For the moving phantom, RMS errors for the lateral/longitudinal/vertical direction after 12° DTS + band-pass filtering were 1.5/0.4/1.1 mm and 2.2/0.3/3.2 mm. For the clinical data, 2D position was determined for at least 93% of each dataset and 3D position excluding first 12° for at least 82% of each dataset using 12° DTS + band-pass filtering. Template matching + triangulation using DTS + band-pass filtered images could accurately determine the position of stationary lung tumors. However, triangulation was less accurate/reliable for targets with continuous, gradual displacement in the lateral and vertical directions. This technique is therefore currently most suited to detect/monitor offsets occurring between initial setup and the start of treatment, inter-breath-hold variations, and tumors with predominantly longitudinal motion.
NASA Astrophysics Data System (ADS)
Jordan, Gyozo; Petrik, Attila; De Vivo, Benedetto; Albanese, Stefano; Demetriades, Alecos; Sadeghi, Martiya
2017-04-01
Several studies have investigated the spatial distribution of chemical elements in topsoil (0-20 cm) within the framework of the EuroGeoSurveys Geochemistry Expert Group's 'Geochemical Mapping of Agricultural and Grazing Land Soil' project . Most of these studies used geostatistical analyses and interpolated concentration maps, Exploratory and Compositional Data and Analysis to identify anomalous patterns. The objective of our investigation is to demonstrate the use of digital image processing techniques for reproducible spatial pattern recognition and quantitative spatial feature characterisation. A single element (Ni) concentration in agricultural topsoil is used to perform the detailed spatial analysis, and to relate these features to possible underlying processes. In this study, simple univariate statistical methods were implemented first, and Tukey's inner-fence criterion was used to delineate statistical outliers. The linear and triangular irregular network (TIN) interpolation was used on the outlier-free Ni data points, which was resampled to a 10*10 km grid. Successive moving average smoothing was applied to generalise the TIN model and to suppress small- and at the same time enhance significant large-scale features of Nickel concentration spatial distribution patterns in European topsoil. The TIN map smoothed with a moving average filter revealed the spatial trends and patterns without losing much detail, and it was used as the input into digital image processing, such as local maxima and minima determination, digital cross sections, gradient magnitude and gradient direction calculation, second derivative profile curvature calculation, edge detection, local variability assessment, lineament density and directional variogram analyses. The detailed image processing analysis revealed several NE-SW, E-W and NW-SE oriented elongated features, which coincide with different spatial parameter classes and alignment with local maxima and minima. The NE-SW oriented linear pattern is the dominant feature to the south of the last glaciation limit. Some of these linear features are parallel to the suture zone of the Iapetus Ocean, while the others follow the Alpine and Carpathian Chains. The highest variability zones of Ni concentration in topsoil are located in the Alps and in the Balkans where mafic and ultramafic rocks outcrop. The predominant NE-SW oriented pattern is also captured by the strong anisotropy in the semi-variograms in this direction. A single major E-W oriented north-facing feature runs along the southern border of the last glaciation zone. This zone also coincides with a series of local maxima in Ni concentration along the glaciofluvial deposits. The NW-SE elongated spatial features are less dominant and are located in the Pyrenees and Scandinavia. This study demonstrates the efficiency of systematic image processing analysis in identifying and characterising spatial geochemical patterns that often remain uncovered by the usual visual map interpretation techniques.
Chui, Chen-Shou; Yorke, Ellen; Hong, Linda
2003-07-01
Intensity-modulated radiation therapy can be conveniently delivered with a multileaf collimator. With this method, the entire field is not delivered at once, but rather it is composed of many subfields defined by the leaf positions as a function of beam on time. At any given instant, only these subfields are delivered. During treatment, if the organ moves, part of the volume may move in or out of these subfields. Due to this interplay between organ motion and leaf motion the delivered dose may be different from what was planned. In this work, we present a method that calculates the effects of organ motion on delivered dose. The direction of organ motion may be parallel or perpendicular to the leaf motion, and the effect can be calculated for a single fraction or for multiple fractions. Three breast patients and four lung patients were included in this study,with the amplitude of the organ motion varying from +/- 3.5 mm to +/- 10 mm, and the period varying from 4 to 8 seconds. Calculations were made for these patients with and without organ motion, and results were examined in terms of isodose distribution and dose volume histograms. Each calculation was repeated ten times in order to estimate the statistical uncertainties. For selected patients, calculations were also made with conventional treatment technique. The effects of organ motion on conventional techniques were compared relative to that on IMRT techniques. For breast treatment, the effect of organ motion primarily broadened the penumbra at the posterior field edge. The dose in the rest of the treatment volume was not significantly affected. For lung treatment, the effect also broadened the penumbra and degraded the coverage of the planning target volume (PTV). However, the coverage of the clinical target volume (CTV) was not much affected, provided the PTV margin was adequate. The same effects were observed for both IMRT and conventional treatment techniques. For the IMRT technique, the standard deviations of ten samples of a 30-fraction calculation were very small for all patients, implying that over a typical treatment course of 30 fractions, the delivered dose was very close to the expected value. Hence, under typical clinical conditions, the effect of organ motion on delivered dose can be calculated without considering the interplay between the organ motion and the leaf motion. It can be calculated as the weighted average of the dose distribution without organ motion with the distribution of organ motion. Since the effects of organ motion on dose were comparable for both IMRT and conventional techniques, the PTV margin should remain the same for both techniques.
Ichikawa, Nobuki; Homma, Shigenori; Yoshida, Tadashi; Ohno, Yosuke; Kawamura, Hideki; Kamiizumi, You; Iijima, Hiroaki; Taketomi, Akinobu
2018-01-01
The use of laparoscopic colectomy is becoming widespread and acquisition of its technique is challenging. In this study, we investigated whether supervision by a technically qualified surgeon affects the proficiency and safety of laparoscopic colectomy performed by novice surgeons. The outcomes of 23 right colectomies and 19 high anterior resections for colon cancers performed by five novice surgeons (experience level of <10 cases) between 2014 and 2016 were assessed. A laparoscopic surgeon qualified by the Endoscopic Surgical Skill Qualification System (Japan Society for Endoscopic Surgery) participated in surgeries as the teaching assistant. In the right colectomy group, one patient (4.3%) required conversion to open surgery and postoperative morbidities occurred in two cases (8.6%). The operative time moving average gradually decreased from 216 to 150 min, and the blood loss decreased from 128 to 28 mL. In the CUSUM charts, the values for operative time decreased continuously after the 18th case, as compared to the Japanese standard. The values for blood loss also plateaued after the 18th case. In the high anterior resection group, one patient (5.2%) required conversion to open surgery and no postoperative complication occurred in any patient. The operative time moving average gradually decreased from 258 to 228 min, and the blood loss decreased from 33 to 18 mL. The CUSUM charts showed that the values of operative time plateaued after the 18th case, as compared to the Japanese standard. In the CUSUM chart for blood loss, no distinguishing peak or trend was noted. Supervision by a technically qualified surgeon affects the proficiency and safety of laparoscopic colectomy performed by novice surgeons. The trainee's learning curve in this study represents successful mentoring by the laparoscopic surgeon qualified by the Endoscopic Surgical Skill Qualification System.
Electron Acceleration in the Magnetotail during Substorms in Semi-Global PIC Simulations
NASA Astrophysics Data System (ADS)
Richard, R. L.; Schriver, D.; Ashour-Abdalla, M.; El-Alaoui, M.; Lapenta, G.; Walker, R. J.
2015-12-01
To understand the acceleration of electrons during a substorm reconnection event we have applied a semi-global particle in cell (PIC) simulation box embedded within a global magnetohydrodynamic (MHD) simulation of Earth's magnetosphere for an event on February 15, 2008. The MHD results were used to populate the PIC simulation and to set the boundary conditions. In the magnetotail we found that a series of dipolarizations formed due to unsteady reconnection. We also found that the most energetic electrons were in the separatrices far from the x-point. We attributed the acceleration to a streaming instability in the separatrices. To further understand electron acceleration we have applied the large scale kinetic (LSK) technique in which tens- to hundreds- of thousands of electrons are followed within the electric and magnetic fields from the PIC simulations., Electrons are already included in the PIC simulation, but the LSK simulations will allow selected individual particles to be followed and analyzed. Initially we performed electron LSK calculations in a two dimensional version of the PIC simulation in which electrons were allowed to move in the ignorable cross tail direction. These LSK calculations showed that electrons gained energy primarily for two reasons: (1) acceleration by the average dawn to dusk electric field and (2) acceleration by intense but localized electric field structures. The overall electron transport was more dawnward than duskward due to the average electric field. At the same time electrons typically moved away from the reconnection region in both the earthward and tailward directions. Superimposed on this large-scale transport was motion in both the dusk and dawn directions across the tail because of the electric field structures, which were particularly intense in the separatrices. LSK calculations are now being carried out by using the full three-dimensional magnetic and electric fields from the PIC simulation and these results will be compared with the two-dimensional results for the same substorm event.
NASA Astrophysics Data System (ADS)
Zhu, Li; Najafizadeh, Laleh
2017-06-01
We investigate the problem related to the averaging procedure in functional near-infrared spectroscopy (fNIRS) brain imaging studies. Typically, to reduce noise and to empower the signal strength associated with task-induced activities, recorded signals (e.g., in response to repeated stimuli or from a group of individuals) are averaged through a point-by-point conventional averaging technique. However, due to the existence of variable latencies in recorded activities, the use of the conventional averaging technique can lead to inaccuracies and loss of information in the averaged signal, which may result in inaccurate conclusions about the functionality of the brain. To improve the averaging accuracy in the presence of variable latencies, we present an averaging framework that employs dynamic time warping (DTW) to account for the temporal variation in the alignment of fNIRS signals to be averaged. As a proof of concept, we focus on the problem of localizing task-induced active brain regions. The framework is extensively tested on experimental data (obtained from both block design and event-related design experiments) as well as on simulated data. In all cases, it is shown that the DTW-based averaging technique outperforms the conventional-based averaging technique in estimating the location of task-induced active regions in the brain, suggesting that such advanced averaging methods should be employed in fNIRS brain imaging studies.
Relativistic Transformations of Light Power.
ERIC Educational Resources Information Center
McKinley, John M.
1979-01-01
Using a photon-counting technique, finds the angular distribution of emitted and detected power and the total radiated power of an arbitrary moving source, and uses the technique to verify the predicted effect of the earth's motion through the cosmic blackbody radiation. (Author/GA)
Modelling Technique for Demonstrating Gravity Collapse Structures in Jointed Rock.
ERIC Educational Resources Information Center
Stimpson, B.
1979-01-01
Described is a base-friction modeling technique for studying the development of collapse structures in jointed rocks. A moving belt beneath weak material is designed to simulate gravity. A description is given of the model frame construction. (Author/SA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teo, P; Guo, K; Alayoubi, N
Purpose: Accounting for tumor motion during radiation therapy is important to ensure that the tumor receives the prescribed dose. Increasing the field size to account for this motion exposes the surrounding healthy tissues to unnecessary radiation. In contrast to using motion-encompassing techniques to treat moving tumors, conformal radiation therapy (RT) uses a smaller field to track the tumor and adapts the beam aperture according to the motion detected. This work investigates and compares the performance of three markerless, EPID based, optical flow methods to track tumor motion with conformal RT. Methods: Three techniques were used to track the motions ofmore » a 3D printed lung tumor programmed to move according to the tumor of seven lung cancer patients. These techniques utilized a multi-resolution optical flow algorithm as the core computation for image registration. The first method (DIR) registers the incoming images with an initial reference frame, while the second method (RFSF) uses an adaptive reference frame and the third method (CU) uses preceding image frames for registration. The patient traces and errors were evaluated for the seven patients. Results: The average position errors for all patient traces were 0.12 ± 0.33 mm, −0.05 ± 0.04 mm and −0.28 ± 0.44 mm for CU, DIR and RFSF method respectively. The position errors distributed within 1 standard deviation are 0.74 mm, 0.37 mm and 0.96 mm respectively. The CU and RFSF algorithms are sensitive to the characteristics of the patient trace and produce a wider distribution of errors amongst patients. Although the mean error for the DIR method is negatively biased (−0.05 mm) for all patients, it has the narrowest distribution of position error, which can be corrected using an offset calibration. Conclusion: Three techniques of image registration and position update were studied. Using direct comparison with an initial frame yields the best performance. The authors would like to thank Dr.YeLin Suh for making the Cyberknife dataset available to us. Scholarship funding from the Natural Sciences and Engineering Research Council of Canada (NSERC) and CancerCare Manitoba Foundation is acknowledged.« less
Warlick, W B; O'Rear, J H; Earley, L; Moeller, J H; Gaffney, D K; Leavitt, D D
1997-01-01
The dose to the contralateral breast has been associated with an increased risk of developing a second breast malignancy. Varying techniques have been devised and described in the literature to minimize this dose. Metal beam modifiers such as standard wedges are used to improve the dose distribution in the treated breast, but unfortunately introduce an increased scatter dose outside the treatment field, in particular to the contralateral breast. The enhanced dynamic wedge is a means of remote wedging created by independently moving one collimator jaw through the treatment field during dose delivery. This study is an analysis of differing doses to the contralateral breast using two common clinical set-up techniques with the enhanced dynamic wedge versus the standard metal wedge. A tissue equivalent block (solid water), modeled to represent a typical breast outline, was designed as an insert in a Rando phantom to simulate a standard patient being treated for breast conservation. Tissue equivalent material was then used to complete the natural contour of the breast and to reproduce appropriate build-up and internal scatter. Thermoluminescent dosimeter (TLD) rods were placed at predetermined distances from the geometric beam's edge to measure the dose to the contralateral breast. A total of 35 locations were used with five TLDs in each location to verify the accuracy of the measured dose. The radiation techniques used were an isocentric set-up with co-planar, non divergent posterior borders and an isocentric set-up with a half beam block technique utilizing the asymmetric collimator jaw. Each technique used compensating wedges to optimize the dose distribution. A comparison of the dose to the contralateral breast was then made with the enhanced dynamic wedge vs. the standard metal wedge. The measurements revealed a significant reduction in the contralateral breast dose with the enhanced dynamic wedge compared to the standard metal wedge in both set-up techniques. The dose was measured at varying distances from the geometric field edge, ranging from 2 to 8 cm. The average dose with the enhanced dynamic wedge was 2.7-2.8%. The average dose with the standard wedge was 4.0-4.7%. Thermoluminescent dosimeter measurements suggest an increase in both scattered electrons and photons with metal wedges. The enhanced dynamic wedge is a practical clinical advance which improves the dose distribution in patients undergoing breast conservation while at the same time minimizing dose to the contralateral breast, thereby reducing the potential carcinogenic effects.
Intelligent transportation systems infrastructure initiative
DOT National Transportation Integrated Search
1997-01-01
The three-quarter moving composite price index is the weighted average of the indices for three consecutive quarters. The Composite Bid Price Index is composed of six indicator items: common excavation, to indicate the price trend for all roadway exc...
Shao, Ying-Hui; Gu, Gao-Feng; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Sornette, Didier
2012-01-01
Notwithstanding the significant efforts to develop estimators of long-range correlations (LRC) and to compare their performance, no clear consensus exists on what is the best method and under which conditions. In addition, synthetic tests suggest that the performance of LRC estimators varies when using different generators of LRC time series. Here, we compare the performances of four estimators [Fluctuation Analysis (FA), Detrended Fluctuation Analysis (DFA), Backward Detrending Moving Average (BDMA), and Centred Detrending Moving Average (CDMA)]. We use three different generators [Fractional Gaussian Noises, and two ways of generating Fractional Brownian Motions]. We find that CDMA has the best performance and DFA is only slightly worse in some situations, while FA performs the worst. In addition, CDMA and DFA are less sensitive to the scaling range than FA. Hence, CDMA and DFA remain “The Methods of Choice” in determining the Hurst index of time series. PMID:23150785
Shekarchi, Sayedali; Hallam, John; Christensen-Dalsgaard, Jakob
2013-11-01
Head-related transfer functions (HRTFs) are generally large datasets, which can be an important constraint for embedded real-time applications. A method is proposed here to reduce redundancy and compress the datasets. In this method, HRTFs are first compressed by conversion into autoregressive-moving-average (ARMA) filters whose coefficients are calculated using Prony's method. Such filters are specified by a few coefficients which can generate the full head-related impulse responses (HRIRs). Next, Legendre polynomials (LPs) are used to compress the ARMA filter coefficients. LPs are derived on the sphere and form an orthonormal basis set for spherical functions. Higher-order LPs capture increasingly fine spatial details. The number of LPs needed to represent an HRTF, therefore, is indicative of its spatial complexity. The results indicate that compression ratios can exceed 98% while maintaining a spectral error of less than 4 dB in the recovered HRTFs.
Direct determination approach for the multifractal detrending moving average analysis
NASA Astrophysics Data System (ADS)
Xu, Hai-Chuan; Gu, Gao-Feng; Zhou, Wei-Xing
2017-11-01
In the canonical framework, we propose an alternative approach for the multifractal analysis based on the detrending moving average method (MF-DMA). We define a canonical measure such that the multifractal mass exponent τ (q ) is related to the partition function and the multifractal spectrum f (α ) can be directly determined. The performances of the direct determination approach and the traditional approach of the MF-DMA are compared based on three synthetic multifractal and monofractal measures generated from the one-dimensional p -model, the two-dimensional p -model, and the fractional Brownian motions. We find that both approaches have comparable performances to unveil the fractal and multifractal nature. In other words, without loss of accuracy, the multifractal spectrum f (α ) can be directly determined using the new approach with less computation cost. We also apply the new MF-DMA approach to the volatility time series of stock prices and confirm the presence of multifractality.
ARMA Cholesky Factor Models for the Covariance Matrix of Linear Models.
Lee, Keunbaik; Baek, Changryong; Daniels, Michael J
2017-11-01
In longitudinal studies, serial dependence of repeated outcomes must be taken into account to make correct inferences on covariate effects. As such, care must be taken in modeling the covariance matrix. However, estimation of the covariance matrix is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcomes these limitations, two Cholesky decomposition approaches have been proposed: modified Cholesky decomposition for autoregressive (AR) structure and moving average Cholesky decomposition for moving average (MA) structure, respectively. However, the correlations of repeated outcomes are often not captured parsimoniously using either approach separately. In this paper, we propose a class of flexible, nonstationary, heteroscedastic models that exploits the structure allowed by combining the AR and MA modeling of the covariance matrix that we denote as ARMACD. We analyze a recent lung cancer study to illustrate the power of our proposed methods.
Optimized nested Markov chain Monte Carlo sampling: theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Joshua D; Shaw, M Sam; Sewell, Thomas D
2009-01-01
Metropolis Monte Carlo sampling of a reference potential is used to build a Markov chain in the isothermal-isobaric ensemble. At the endpoints of the chain, the energy is reevaluated at a different level of approximation (the 'full' energy) and a composite move encompassing all of the intervening steps is accepted on the basis of a modified Metropolis criterion. By manipulating the thermodynamic variables characterizing the reference system we maximize the average acceptance probability of composite moves, lengthening significantly the random walk made between consecutive evaluations of the full energy at a fixed acceptance probability. This provides maximally decorrelated samples ofmore » the full potential, thereby lowering the total number required to build ensemble averages of a given variance. The efficiency of the method is illustrated using model potentials appropriate to molecular fluids at high pressure. Implications for ab initio or density functional theory (DFT) treatment are discussed.« less
NASA Astrophysics Data System (ADS)
Uilhoorn, F. E.
2016-10-01
In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.
An Automatic Technique for Finding Faint Moving Objects in Wide Field CCD Images
NASA Astrophysics Data System (ADS)
Hainaut, O. R.; Meech, K. J.
1996-09-01
The traditional method used to find moving objects in astronomical images is to blink pairs or series of frames after registering them to align the background objects. While this technique is extremely efficient in terms of the low signal-to-noise ratio that the human sight can detect, it proved to be extremely time-, brain- and eyesight-consuming. The wide-field images provided by the large CCD mosaic recently built at IfA cover a field of view of 20 to 30' over 8192(2) pixels. Blinking such images is an enormous task, comparable to that of blinking large photographic plates. However, as the data are available digitally (each image occupying 260Mb of disk space), we are developing a set of computer codes to perform the moving object identification in sets of frames. This poster will describe the techniques we use in order to reach a detection efficiency as good as that of a human blinker; the main steps are to find all the objects in each frame (for which we rely on ``S-Extractor'' (Bertin & Arnouts (1996), A&ASS 117, 393), then identify all the background objects, and finally to search the non-background objects for sources moving in a coherent fashion. We will also describe the results of this method applied to actual data from the 8k CCD mosaic. {This work is being supported, in part, by NSF grant AST 92-21318.}
Alali, Sanaz; Gribble, Adam; Vitkin, I Alex
2016-03-01
A new polarimetry method is demonstrated to image the entire Mueller matrix of a turbid sample using four photoelastic modulators (PEMs) and a charge coupled device (CCD) camera, with no moving parts. Accurate wide-field imaging is enabled with a field-programmable gate array (FPGA) optical gating technique and an evolutionary algorithm (EA) that optimizes imaging times. This technique accurately and rapidly measured the Mueller matrices of air, polarization elements, and turbid phantoms. The system should prove advantageous for Mueller matrix analysis of turbid samples (e.g., biological tissues) over large fields of view, in less than a second.
Huang, Chiung-Shing; Harikrishnan, Pandurangan; Liao, Yu-Fang; Ko, Ellen W C; Liou, Eric J W; Chen, Philip K T
2007-05-01
To evaluate the changes in maxillary position after maxillary distraction osteogenesis in six growing children with cleft lip and palate. Retrospective, longitudinal study on maxillary changes at A point, anterior nasal spine, posterior nasal spine, central incisor, and first molar. The University Hospital Craniofacial Center. Cephalometric radiographs were used to measure the maxillary position immediately after distraction, at 6 months, and more than 1 year after distraction. After maxillary distraction with a rigid external distraction device, the maxilla (A point) on average moved forward 9.7 mm and downward 3.5 mm immediately after distraction, moved backward 0.9 mm and upward 2.0 mm after 6 months postoperatively, and then moved further backward 2.3 mm and downward 6.8 mm after more than 1 year from the predistraction position. In most cases, maxilla moved forward at distraction and started to move backward until 1 year after distraction, but remained forward, as compared with predistraction position. Maxilla also moved downward during distraction and upward in 6 months, but started descending in 1 year. There also was no further forward growth of the maxilla after distraction in growing children with clefts.
An Indoor Continuous Positioning Algorithm on the Move by Fusing Sensors and Wi-Fi on Smartphones.
Li, Huaiyu; Chen, Xiuwan; Jing, Guifei; Wang, Yuan; Cao, Yanfeng; Li, Fei; Zhang, Xinlong; Xiao, Han
2015-12-11
Wi-Fi indoor positioning algorithms experience large positioning error and low stability when continuously positioning terminals that are on the move. This paper proposes a novel indoor continuous positioning algorithm that is on the move, fusing sensors and Wi-Fi on smartphones. The main innovative points include an improved Wi-Fi positioning algorithm and a novel positioning fusion algorithm named the Trust Chain Positioning Fusion (TCPF) algorithm. The improved Wi-Fi positioning algorithm was designed based on the properties of Wi-Fi signals on the move, which are found in a novel "quasi-dynamic" Wi-Fi signal experiment. The TCPF algorithm is proposed to realize the "process-level" fusion of Wi-Fi and Pedestrians Dead Reckoning (PDR) positioning, including three parts: trusted point determination, trust state and positioning fusion algorithm. An experiment is carried out for verification in a typical indoor environment, and the average positioning error on the move is 1.36 m, a decrease of 28.8% compared to an existing algorithm. The results show that the proposed algorithm can effectively reduce the influence caused by the unstable Wi-Fi signals, and improve the accuracy and stability of indoor continuous positioning on the move.
Proceedings of the Annual Conference on Manual Control (18th) Held at Dayton, Ohio on 8-10 June 1982
1983-01-01
frequency of the disturbance the probability to cross the borderline becomes larger, and corrective action (moving average value further away-,_. from the...pupillometer. The prototypical data was the average of 10 records from 5 normal subjects who showed similar responses. The different amplitudes of light...following orders touch, position, temperature , and vain. Our subjects sometimes reported numbness in the fingertips, dulled pinprick sensations
NASA Astrophysics Data System (ADS)
Abrokwah, K.; O'Reilly, A. M.
2017-12-01
Groundwater is an important resource that is extracted every day because of its invaluable use for domestic, industrial and agricultural purposes. The need for sustaining groundwater resources is clearly indicated by declining water levels and has led to modeling and forecasting accurate groundwater levels. In this study, spectral decomposition of climatic forcing time series was used to develop hybrid wavelet analysis (WA) and moving window average (MWA) artificial neural network (ANN) models. These techniques are explored by modeling historical groundwater levels in order to provide understanding of potential causes of the observed groundwater-level fluctuations. Selection of the appropriate decomposition level for WA and window size for MWA helps in understanding the important time scales of climatic forcing, such as rainfall, that influence water levels. Discrete wavelet transform (DWT) is used to decompose the input time-series data into various levels of approximate and details wavelet coefficients, whilst MWA acts as a low-pass signal-filtering technique for removing high-frequency signals from the input data. The variables used to develop and validate the models were daily average rainfall measurements from five National Atmospheric and Oceanic Administration (NOAA) weather stations and daily water-level measurements from two wells recorded from 1978 to 2008 in central Florida, USA. Using different decomposition levels and different window sizes, several WA-ANN and MWA-ANN models for simulating the water levels were created and their relative performances compared against each other. The WA-ANN models performed better than the corresponding MWA-ANN models; also higher decomposition levels of the input signal by the DWT gave the best results. The results obtained show the applicability and feasibility of hybrid WA-ANN and MWA-ANN models for simulating daily water levels using only climatic forcing time series as model inputs.
Ridenour, Ty A; Pineo, Thomas Z; Maldonado Molina, Mildred M; Hassmiller Lich, Kristen
2013-06-01
Psychosocial prevention research lacks evidence from intensive within-person lines of research to understand idiographic processes related to development and response to intervention. Such data could be used to fill gaps in the literature and expand the study design options for prevention researchers, including lower-cost yet rigorous studies (e.g., for program evaluations), pilot studies, designs to test programs for low prevalence outcomes, selective/indicated/adaptive intervention research, and understanding of differential response to programs. This study compared three competing analytic strategies designed for this type of research: autoregressive moving average, mixed model trajectory analysis, and P-technique. Illustrative time series data were from a pilot study of an intervention for nursing home residents with diabetes (N = 4) designed to improve control of blood glucose. A within-person, intermittent baseline design was used. Intervention effects were detected using each strategy for the aggregated sample and for individual patients. The P-technique model most closely replicated observed glucose levels. ARIMA and P-technique models were most similar in terms of estimated intervention effects and modeled glucose levels. However, ARIMA and P-technique also were more sensitive to missing data, outliers and number of observations. Statistical testing suggested that results generalize both to other persons as well as to idiographic, longitudinal processes. This study demonstrated the potential contributions of idiographic research in prevention science as well as the need for simulation studies to delineate the research circumstances when each analytic approach is optimal for deriving the correct parameter estimates.
Pineo, Thomas Z.; Maldonado Molina, Mildred M.; Lich, Kristen Hassmiller
2013-01-01
Psychosocial prevention research lacks evidence from intensive within-person lines of research to understand idiographic processes related to development and response to intervention. Such data could be used to fill gaps in the literature and expand the study design options for prevention researchers, including lower-cost yet rigorous studies (e.g., for program evaluations), pilot studies, designs to test programs for low prevalence outcomes, selective/indicated/ adaptive intervention research, and understanding of differential response to programs. This study compared three competing analytic strategies designed for this type of research: autoregressive moving average, mixed model trajectory analysis, and P-technique. Illustrative time series data were from a pilot study of an intervention for nursing home residents with diabetes (N=4) designed to improve control of blood glucose. A within-person, intermittent baseline design was used. Intervention effects were detected using each strategy for the aggregated sample and for individual patients. The P-technique model most closely replicated observed glucose levels. ARIMA and P-technique models were most similar in terms of estimated intervention effects and modeled glucose levels. However, ARIMA and P-technique also were more sensitive to missing data, outliers and number of observations. Statistical testing suggested that results generalize both to other persons as well as to idiographic, longitudinal processes. This study demonstrated the potential contributions of idiographic research in prevention science as well as the need for simulation studies to delineate the research circumstances when each analytic approach is optimal for deriving the correct parameter estimates. PMID:23299558
ERIC Educational Resources Information Center
Joyner, Helen S.; Smith, Denise
2015-01-01
The current face of the dairy manufacturing industry has changed from its traditional conception. Industry emphasis is moving away from traditional dairy products, such as fluid milk, ice cream, and butter, and moving toward yogurts, dairy beverages, and value-added products incorporating ingredients derived from milk and whey. However, many…
Briët, Olivier J T; Amerasinghe, Priyanie H; Vounatsou, Penelope
2013-01-01
With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions' impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during "consolidation" and "pre-elimination" phases. Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low.
Video-Assisted Thoracic Surgical Lobectomy for Lung Cancer: Description of a Learning Curve.
Yao, Fei; Wang, Jian; Yao, Ju; Hang, Fangrong; Cao, Shiqi; Cao, Yongke
2017-07-01
Video-assisted thoracic surgical (VATS) lobectomy is gaining popularity in the treatment of lung cancer. The aim of this study is to investigate the learning curve of VATS lobectomy by using multidimensional methods and to compare the learning curve groups with respect to perioperative clinical outcomes. We retrospectively reviewed a prospective database to identify 67 consecutive patients who underwent VATS lobectomy for lung cancer by a single surgeon. The learning curve was analyzed by using moving average and the cumulative sum (CUSUM) method. With the moving average and CUSUM analyses for the operation time, patients were stratified into two groups, with chronological order defining early and late experiences. Perioperative clinical outcomes were compared between the two learning curve groups. According to the moving average method, the peak point for operation time occurred at the 26th case. The CUSUM method also showed the operation time peak point at the 26th case. When results were compared between early- and late-experience periods, the operation time, duration of chest drainage, and postoperative hospital stay were significantly longer in the early-experience group (cases 1 to 26). The intraoperative estimated blood loss was significantly less in the late-experience group (cases 27 to 67). CUSUM charts showed a decreasing duration of chest drainage after the 36th case and shortening postoperative hospital stay after the 37th case. Multidimensional statistical analyses suggested that the learning curve for VATS lobectomy for lung cancer required ∼26 cases. Favorable intraoperative and postoperative care parameters for VATS lobectomy were observed in the late-experience group.
Briët, Olivier J. T.; Amerasinghe, Priyanie H.; Vounatsou, Penelope
2013-01-01
Introduction With the renewed drive towards malaria elimination, there is a need for improved surveillance tools. While time series analysis is an important tool for surveillance, prediction and for measuring interventions’ impact, approximations by commonly used Gaussian methods are prone to inaccuracies when case counts are low. Therefore, statistical methods appropriate for count data are required, especially during “consolidation” and “pre-elimination” phases. Methods Generalized autoregressive moving average (GARMA) models were extended to generalized seasonal autoregressive integrated moving average (GSARIMA) models for parsimonious observation-driven modelling of non Gaussian, non stationary and/or seasonal time series of count data. The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria has decreased dramatically in recent years. Results The malaria series showed long-term changes in the mean, unstable variance and seasonality. After fitting negative-binomial Bayesian models, both a GSARIMA and a GARIMA deterministic seasonality model were selected based on different criteria. Posterior predictive distributions indicated that negative-binomial models provided better predictions than Gaussian models, especially when counts were low. The G(S)ARIMA models were able to capture the autocorrelation in the series. Conclusions G(S)ARIMA models may be particularly useful in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, especially when control is increased. Although building and fitting GSARIMA models is laborious, they may provide more realistic prediction distributions than do Gaussian methods and may be more suitable when counts are low. PMID:23785448
A Pareto-optimal moving average multigene genetic programming model for daily streamflow prediction
NASA Astrophysics Data System (ADS)
Danandeh Mehr, Ali; Kahya, Ercan
2017-06-01
Genetic programming (GP) is able to systematically explore alternative model structures of different accuracy and complexity from observed input and output data. The effectiveness of GP in hydrological system identification has been recognized in recent studies. However, selecting a parsimonious (accurate and simple) model from such alternatives still remains a question. This paper proposes a Pareto-optimal moving average multigene genetic programming (MA-MGGP) approach to develop a parsimonious model for single-station streamflow prediction. The three main components of the approach that take us from observed data to a validated model are: (1) data pre-processing, (2) system identification and (3) system simplification. The data pre-processing ingredient uses a simple moving average filter to diminish the lagged prediction effect of stand-alone data-driven models. The multigene ingredient of the model tends to identify the underlying nonlinear system with expressions simpler than classical monolithic GP and, eventually simplification component exploits Pareto front plot to select a parsimonious model through an interactive complexity-efficiency trade-off. The approach was tested using the daily streamflow records from a station on Senoz Stream, Turkey. Comparing to the efficiency results of stand-alone GP, MGGP, and conventional multi linear regression prediction models as benchmarks, the proposed Pareto-optimal MA-MGGP model put forward a parsimonious solution, which has a noteworthy importance of being applied in practice. In addition, the approach allows the user to enter human insight into the problem to examine evolved models and pick the best performing programs out for further analysis.
Optimizing Sampling Design to Deal with Mist-Net Avoidance in Amazonian Birds and Bats
Marques, João Tiago; Ramos Pereira, Maria J.; Marques, Tiago A.; Santos, Carlos David; Santana, Joana; Beja, Pedro; Palmeirim, Jorge M.
2013-01-01
Mist netting is a widely used technique to sample bird and bat assemblages. However, captures often decline with time because animals learn and avoid the locations of nets. This avoidance or net shyness can substantially decrease sampling efficiency. We quantified the day-to-day decline in captures of Amazonian birds and bats with mist nets set at the same location for four consecutive days. We also evaluated how net avoidance influences the efficiency of surveys under different logistic scenarios using re-sampling techniques. Net avoidance caused substantial declines in bird and bat captures, although more accentuated in the latter. Most of the decline occurred between the first and second days of netting: 28% in birds and 47% in bats. Captures of commoner species were more affected. The numbers of species detected also declined. Moving nets daily to minimize the avoidance effect increased captures by 30% in birds and 70% in bats. However, moving the location of nets may cause a reduction in netting time and captures. When moving the nets caused the loss of one netting day it was no longer advantageous to move the nets frequently. In bird surveys that could even decrease the number of individuals captured and species detected. Net avoidance can greatly affect sampling efficiency but adjustments in survey design can minimize this. Whenever nets can be moved without losing netting time and the objective is to capture many individuals, they should be moved daily. If the main objective is to survey species present then nets should still be moved for bats, but not for birds. However, if relocating nets causes a significant loss of netting time, moving them to reduce effects of shyness will not improve sampling efficiency in either group. Overall, our findings can improve the design of mist netting sampling strategies in other tropical areas. PMID:24058579
Girls Thrive Emotionally, Boys Falter After Move to Better Neighborhood
... averaging 34 percent, compared to 50 percent for control group families. Mental illness is more prevalent among youth ... compared to 3.5 percent among boys in control group families who did not receive vouchers. Rates of ...
Rippling Dune Front in Herschel Crater on Mars
2011-11-17
A rippled dune front in Herschel Crater on Mars moved an average of about two meters about two yards between March 3, 2007 and December 1, 2010, as seen in one of two images from NASA Mars Reconnaissance Orbiter.
Rippling Dune Front in Herschel Crater on Mars
2011-11-17
A rippled dune front in Herschel Crater on Mars moved an average of about one meter about one yard between March 3, 2007 and December 1, 2010, as seen in one of two images from NASA Mars Reconnaissance Orbiter.
Shifting Sand in Herschel Crater
2011-11-17
The eastern margin of a rippled dune in Herschel Crater on Mars moved an average distance of three meters about three yards between March 3, 2007 and December 1, 2010, in one of two images taken by NASA Mars Reconnaissance Orbiter.
Forecasting Daily Patient Outflow From a Ward Having No Real-Time Clinical Data
Tran, Truyen; Luo, Wei; Phung, Dinh; Venkatesh, Svetha
2016-01-01
Background: Modeling patient flow is crucial in understanding resource demand and prioritization. We study patient outflow from an open ward in an Australian hospital, where currently bed allocation is carried out by a manager relying on past experiences and looking at demand. Automatic methods that provide a reasonable estimate of total next-day discharges can aid in efficient bed management. The challenges in building such methods lie in dealing with large amounts of discharge noise introduced by the nonlinear nature of hospital procedures, and the nonavailability of real-time clinical information in wards. Objective Our study investigates different models to forecast the total number of next-day discharges from an open ward having no real-time clinical data. Methods We compared 5 popular regression algorithms to model total next-day discharges: (1) autoregressive integrated moving average (ARIMA), (2) the autoregressive moving average with exogenous variables (ARMAX), (3) k-nearest neighbor regression, (4) random forest regression, and (5) support vector regression. Although the autoregressive integrated moving average model relied on past 3-month discharges, nearest neighbor forecasting used median of similar discharges in the past in estimating next-day discharge. In addition, the ARMAX model used the day of the week and number of patients currently in ward as exogenous variables. For the random forest and support vector regression models, we designed a predictor set of 20 patient features and 88 ward-level features. Results Our data consisted of 12,141 patient visits over 1826 days. Forecasting quality was measured using mean forecast error, mean absolute error, symmetric mean absolute percentage error, and root mean square error. When compared with a moving average prediction model, all 5 models demonstrated superior performance with the random forests achieving 22.7% improvement in mean absolute error, for all days in the year 2014. Conclusions In the absence of clinical information, our study recommends using patient-level and ward-level data in predicting next-day discharges. Random forest and support vector regression models are able to use all available features from such data, resulting in superior performance over traditional autoregressive methods. An intelligent estimate of available beds in wards plays a crucial role in relieving access block in emergency departments. PMID:27444059
Computer simulation of concentrated solid solution strengthening
NASA Technical Reports Server (NTRS)
Kuo, C. T. K.; Arsenault, R. J.
1976-01-01
The interaction forces between a straight edge dislocation moving through a three-dimensional block containing a random array of solute atoms were determined. The yield stress at 0 K was obtained by determining the average maximum solute-dislocation interaction force that is encountered by edge dislocation, and an expression relating the yield stress to the length of the dislocation and the solute concentration is provided. The magnitude of the solid solution strengthening due to solute atoms can be determined directly from the numerical results, provided the dislocation line length that moves as a unit is specified.
Mao, Weihua; Riaz, Nadeem; Lee, Louis; Wiersma, Rodney; Xing, Lei
2008-01-01
The advantage of highly conformal dose techniques such as 3DCRT and IMRT is limited by intrafraction organ motion. A new approach to gain near real-time 3D positions of internally implanted fiducial markers is to analyze simultaneous onboard kV beam and treatment MV beam images (from fluoroscopic or electronic portal image devices). Before we can use this real-time image guidance for clinical 3DCRT and IMRT treatments, four outstanding issues need to be addressed. (1) How will fiducial motion blur the image and hinder tracking fiducials? kV and MV images are acquired while the tumor is moving at various speeds. We find that a fiducial can be successfully detected at a maximum linear speed of 1.6 cm∕s. (2) How does MV beam scattering affect kV imaging? We investigate this by varying MV field size and kV source to imager distance, and find that common treatment MV beams do not hinder fiducial detection in simultaneous kV images. (3) How can one detect fiducials on images from 3DCRT and IMRT treatment beams when the MV fields are modified by a multileaf collimator (MLC)? The presented analysis is capable of segmenting a MV field from the blocking MLC and detecting visible fiducials. This enables the calculation of nearly real-time 3D positions of markers during a real treatment. (4) Is the analysis fast enough to track fiducials in nearly real time? Multiple methods are adopted to predict marker positions and reduce search regions. The average detection time per frame for three markers in a 1024×768 image was reduced to 0.1 s or less. Solving these four issues paves the way to tracking moving fiducial markers throughout a 3DCRT or IMRT treatment. Altogether, these four studies demonstrate that our algorithm can track fiducials in real time, on degraded kV images (MV scatter), in rapidly moving tumors (fiducial blurring), and even provide useful information in the case when some fiducials are blocked from view by the MLC. This technique can provide a gating signal or be used for intra-fractional tumor tracking on a Linac equipped with a kV imaging system. Any motion exceeding a preset threshold can warn the therapist to suspend a treatment session and reposition the patient. PMID:18777916
Multi-frame image processing with panning cameras and moving subjects
NASA Astrophysics Data System (ADS)
Paolini, Aaron; Humphrey, John; Curt, Petersen; Kelmelis, Eric
2014-06-01
Imaging scenarios commonly involve erratic, unpredictable camera behavior or subjects that are prone to movement, complicating multi-frame image processing techniques. To address these issues, we developed three techniques that can be applied to multi-frame image processing algorithms in order to mitigate the adverse effects observed when cameras are panning or subjects within the scene are moving. We provide a detailed overview of the techniques and discuss the applicability of each to various movement types. In addition to this, we evaluated algorithm efficacy with demonstrated benefits using field test video, which has been processed using our commercially available surveillance product. Our results show that algorithm efficacy is significantly improved in common scenarios, expanding our software's operational scope. Our methods introduce little computational burden, enabling their use in real-time and low-power solutions, and are appropriate for long observation periods. Our test cases focus on imaging through turbulence, a common use case for multi-frame techniques. We present results of a field study designed to test the efficacy of these techniques under expanded use cases.
Interdisciplinary Common Ground: Techniques and Attentional Processes
ERIC Educational Resources Information Center
Arvidson, P. Sven
2014-01-01
Common ground in the interdisciplinary research process is the pivot from disciplinary to interdisciplinary perspective. As thinking moves from disciplinary to interdisciplinary, what is the shape or structure of attention, how does intellectual content transform in the attending process? Four common ground techniques--extension, redefinition,…
Monitoring beach changes using GPS surveying techniques
Morton, Robert; Leach, Mark P.; Paine, Jeffrey G.; Cardoza, Michael A.
1993-01-01
The adaptation of Global Positioning System (GPS) surveying techniques to beach monitoring activities is a promising response to this challenge. An experiment that employed both GPS and conventional beach surveying was conducted, and a new beach monitoring method employing kinematic GPS surveys was devised. This new method involves the collection of precise shore-parallel and shore-normal GPS positions from a moving vehicle so that an accurate two-dimensional beach surface can be generated. Results show that the GPS measurements agree with conventional shore-normal surveys at the 1 cm level, and repeated GPS measurements employing the moving vehicle demonstrate a precision of better than 1 cm. In addition, the nearly continuous sampling and increased resolution provided by the GPS surveying technique reveals alongshore changes in beach morphology that are undetected by conventional shore-normal profiles. The application of GPS surveying techniques combined with the refinement of appropriate methods for data collection and analysis provides a better understanding of beach changes, sediment transport, and storm impacts.
Image-Based 3d Reconstruction and Analysis for Orthodontia
NASA Astrophysics Data System (ADS)
Knyaz, V. A.
2012-08-01
Among the main tasks of orthodontia are analysis of teeth arches and treatment planning for providing correct position for every tooth. The treatment plan is based on measurement of teeth parameters and designing perfect teeth arch curve which teeth are to create after treatment. The most common technique for teeth moving uses standard brackets which put on teeth and a wire of given shape which is clamped by these brackets for producing necessary forces to every tooth for moving it in given direction. The disadvantages of standard bracket technique are low accuracy of tooth dimensions measurements and problems with applying standard approach for wide variety of complex orthodontic cases. The image-based technique for orthodontic planning, treatment and documenting aimed at overcoming these disadvantages is proposed. The proposed approach provides performing accurate measurements of teeth parameters needed for adequate planning, designing correct teeth position and monitoring treatment process. The developed technique applies photogrammetric means for teeth arch 3D model generation, brackets position determination and teeth shifting analysis.
Control technique for planetary rover
NASA Technical Reports Server (NTRS)
Nakatani, Ichiro; Kubota, Takashi; Adachi, Tadashi; Saitou, Hiroaki; Okamoto, Sinya
1994-01-01
Beginning next century, several schemes for sending a planetary rover to the moon or Mars are being planned. As part of the development program, autonomous navigation technology is being studied to allow the rover the ability to move autonomously over a long range of unknown planetary surface. In the previous study, we ran the autonomous navigation experiment on an outdoor test terrain by using a rover test-bed that was controlled by a conventional sense-plan-act method. In some cases during the experiment, a problem occurred with the rover moving into untraversable areas. To improve this situation, a new control technique has been developed that gives the rover the ability of reacting to the outputs of the proximity sensors, a reaction behavior if you will. We have developed a new rover test-bed system on which an autonomous navigation experiment was performed using the newly developed control technique. In this outdoor experiment, the new control technique effectively produced the control command for the rover to avoid obstacles and be guided to the goal point safely.
Turbine Engine Flowpath Averaging Techniques
1980-10-01
u~%x AEDC- TMR- 8 I-G 1 • R. P TURBINE ENGINE FLOWPATH AVERAGING TECHNIQUES T. W. Skiles ARO, Inc. October 1980 Final Report for Period...COVERED 00-01-1980 to 00-10-1980 4. TITLE AND SUBTITLE Turbine Engine Flowpath Averaging Techniques 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...property for gas turbine engines were investigated. The investigation consisted of a literature review and review of turbine engine current flowpath
Weather explains high annual variation in butterfly dispersal
Rytteri, Susu; Heikkinen, Risto K.; Heliölä, Janne; von Bagh, Peter
2016-01-01
Weather conditions fundamentally affect the activity of short-lived insects. Annual variation in weather is therefore likely to be an important determinant of their between-year variation in dispersal, but conclusive empirical studies are lacking. We studied whether the annual variation of dispersal can be explained by the flight season's weather conditions in a Clouded Apollo (Parnassius mnemosyne) metapopulation. This metapopulation was monitored using the mark–release–recapture method for 12 years. Dispersal was quantified for each monitoring year using three complementary measures: emigration rate (fraction of individuals moving between habitat patches), average residence time in the natal patch, and average distance moved. There was much variation both in dispersal and average weather conditions among the years. Weather variables significantly affected the three measures of dispersal and together with adjusting variables explained 79–91% of the variation observed in dispersal. Different weather variables became selected in the models explaining variation in three dispersal measures apparently because of the notable intercorrelations. In general, dispersal rate increased with increasing temperature, solar radiation, proportion of especially warm days, and butterfly density, and decreased with increasing cloudiness, rainfall, and wind speed. These results help to understand and model annually varying dispersal dynamics of species affected by global warming. PMID:27440662
Highly-resolved numerical simulations of bed-load transport in a turbulent open-channel flow
NASA Astrophysics Data System (ADS)
Vowinckel, Bernhard; Kempe, Tobias; Nikora, Vladimir; Jain, Ramandeep; Fröhlich, Jochen
2015-11-01
The study presents the analysis of phase-resolving Direct Numerical Simulations of a horizontal turbulent open-channel flow laden with a large number of spherical particles. These particles have a mobility close to their threshold of incipient motion andare transported in bed-load mode. The coupling of the fluid phase with the particlesis realized by an Immersed Boundary Method. The Double-Averaging Methodology is applied for the first time convolutingthe data into a handy set of quantities averaged in time and space to describe the most prominent flow features.In addition, a systematic study elucidatesthe impact of mobility and sediment supply on the pattern formation of particle clusters ina very large computational domain. A detailed description of fluid quantities links the developed particle patterns to the enhancement of turbulence and to a modified hydraulic resistance. Conditional averaging isapplied toerosion events providingthe processes involved inincipient particle motion. Furthermore, the detection of moving particle clusters as well as their surrounding flow field is addressedby a a moving frameanalysis. Funded by German Research Foundation (DFG), project FR 1593/5-2, computational time provided by ZIH Dresden, Germany, and JSC Juelich, Germany.
Two-stage damage diagnosis based on the distance between ARMA models and pre-whitening filters
NASA Astrophysics Data System (ADS)
Zheng, H.; Mita, A.
2007-10-01
This paper presents a two-stage damage diagnosis strategy for damage detection and localization. Auto-regressive moving-average (ARMA) models are fitted to time series of vibration signals recorded by sensors. In the first stage, a novel damage indicator, which is defined as the distance between ARMA models, is applied to damage detection. This stage can determine the existence of damage in the structure. Such an algorithm uses output only and does not require operator intervention. Therefore it can be embedded in the sensor board of a monitoring network. In the second stage, a pre-whitening filter is used to minimize the cross-correlation of multiple excitations. With this technique, the damage indicator can further identify the damage location and severity when the damage has been detected in the first stage. The proposed methodology is tested using simulation and experimental data. The analysis results clearly illustrate the feasibility of the proposed two-stage damage diagnosis methodology.
Pridemore, William Alex; Chamlin, Mitchell B.
2008-01-01
Aim Assess the impact of heavy drinking on homicide and suicide mortality in Russia between 1956 and 2002. Measures and design Alcohol-related mortality was used as a proxy for heavy drinking. We used autoregressive integrated moving average techniques to model total and sex-specific alcohol—homicide and alcohol—suicide relationships at the population level. Findings We found a positive and significant contemporaneous association between alcohol and homicide and between alcohol and suicide. We found no evidence of lagged relationships. These results held for overall and sex-specific associations. Conclusion Our results lend convergent validity to the alcohol—suicide link in Russia found by Nemtsov and to the alcohol—homicide associations found in cross-sectional analyses of Russia. Levels of alcohol consumption, homicide and suicide in Russia are among the highest in the world, and the mounting evidence of the damaging effects of consumption on the social fabric of the country reveals the need for intervention at multiple levels. PMID:17156171
Single-Molecule Chemistry with Surface- and Tip-Enhanced Raman Spectroscopy.
Zrimsek, Alyssa B; Chiang, Naihao; Mattei, Michael; Zaleski, Stephanie; McAnally, Michael O; Chapman, Craig T; Henry, Anne-Isabelle; Schatz, George C; Van Duyne, Richard P
2017-06-14
Single-molecule (SM) surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS) have emerged as analytical techniques for characterizing molecular systems in nanoscale environments. SERS and TERS use plasmonically enhanced Raman scattering to characterize the chemical information on single molecules. Additionally, TERS can image single molecules with subnanometer spatial resolution. In this review, we cover the development and history of SERS and TERS, including the concept of SERS hot spots and the plasmonic nanostructures necessary for SM detection, the past and current methodologies for verifying SMSERS, and investigations into understanding the signal heterogeneities observed with SMSERS. Moving on to TERS, we cover tip fabrication and the physical origins of the subnanometer spatial resolution. Then, we highlight recent advances of SMSERS and TERS in fields such as electrochemistry, catalysis, and SM electronics, which all benefit from the vibrational characterization of single molecules. SMSERS and TERS provide new insights on molecular behavior that would otherwise be obscured in an ensemble-averaged measurement.
An efficient approach to ARMA modeling of biological systems with multiple inputs and delays
NASA Technical Reports Server (NTRS)
Perrott, M. H.; Cohen, R. J.
1996-01-01
This paper presents a new approach to AutoRegressive Moving Average (ARMA or ARX) modeling which automatically seeks the best model order to represent investigated linear, time invariant systems using their input/output data. The algorithm seeks the ARMA parameterization which accounts for variability in the output of the system due to input activity and contains the fewest number of parameters required to do so. The unique characteristics of the proposed system identification algorithm are its simplicity and efficiency in handling systems with delays and multiple inputs. We present results of applying the algorithm to simulated data and experimental biological data In addition, a technique for assessing the error associated with the impulse responses calculated from estimated ARMA parameterizations is presented. The mapping from ARMA coefficients to impulse response estimates is nonlinear, which complicates any effort to construct confidence bounds for the obtained impulse responses. Here a method for obtaining a linearization of this mapping is derived, which leads to a simple procedure to approximate the confidence bounds.
Acceleration and Velocity Sensing from Measured Strain
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truax, Roger
2015-01-01
A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.
NASA Astrophysics Data System (ADS)
Ramezanzadeh, B.; Arman, S. Y.; Mehdipour, M.; Markhali, B. P.
2014-01-01
In this study, the corrosion inhibition properties of two similar heterocyclic compounds namely benzotriazole (BTA) and benzothiazole (BNS) inhibitors on copper in 1.0 M H2SO4 solution were studied by electrochemical techniques as well as surface analysis. The results showed that corrosion inhibition of copper largely depends on the molecular structure and concentration of the inhibitors. The effect of DC trend on the interpretation of electrochemical noise (ECN) results in time domain was evaluated by moving average removal (MAR) method. Accordingly, the impact of square and Hanning window functions as drift removal methods in frequency domain was studied. After DC trend removal, a good trend was observed between electrochemical noise (ECN) data and the results obtained from EIS and potentiodynamic polarization. Furthermore, the shot noise theory in frequency domain was applied to approach the charge of each electrochemical event (q) from the potential and current noise signals.
RADON CONCENTRATION TIME SERIES MODELING AND APPLICATION DISCUSSION.
Stránský, V; Thinová, L
2017-11-01
In the year 2010 a continual radon measurement was established at Mladeč Caves in the Czech Republic using a continual radon monitor RADIM3A. In order to model radon time series in the years 2010-15, the Box-Jenkins Methodology, often used in econometrics, was applied. Because of the behavior of radon concentrations (RCs), a seasonal integrated, autoregressive moving averages model with exogenous variables (SARIMAX) has been chosen to model the measured time series. This model uses the time series seasonality, previously acquired values and delayed atmospheric parameters, to forecast RC. The developed model for RC time series is called regARIMA(5,1,3). Model residuals could be retrospectively compared with seismic evidence of local or global earthquakes, which occurred during the RCs measurement. This technique enables us to asses if continuously measured RC could serve an earthquake precursor. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Vernon, Stephen P.; Ceglio, Natale M.
2000-01-01
The invention is a method for the production of axially symmetric, graded and ungraded thickness thin film and multilayer coatings that avoids the use of apertures or masks to tailor the deposition profile. A motional averaging scheme permits the deposition of uniform thickness coatings independent of the substrate radius. Coating uniformity results from an exact cancellation of substrate radius dependent terms, which occurs when the substrate moves at constant velocity. If the substrate is allowed to accelerate over the source, arbitrary coating profiles can be generated through appropriate selection and control of the substrate center of mass equation of motion. The radial symmetry of the coating profile is an artifact produced by orbiting the substrate about its center of mass; other distributions are obtained by selecting another rotation axis. Consequently there is a direct mapping between the coating thickness and substrate equation of motion which can be used to tailor the coating profile without the use of masks and apertures.
Forecasting hotspots in East Kutai, Kutai Kartanegara, and West Kutai as early warning information
NASA Astrophysics Data System (ADS)
Wahyuningsih, S.; Goejantoro, R.; Rizki, N. A.
2018-04-01
The aims of this research are to model hotspots and forecast hotspot 2017 in East Kutai, Kutai Kartanegara and West Kutai. The methods which used in this research were Holt exponential smoothing, Holt’s additive dump trend method, Holt-Winters’ additive method, additive decomposition method, multiplicative decomposition method, Loess decomposition method and Box-Jenkins method. For smoothing techniques, additive decomposition is better than Holt’s exponential smoothing. The hotspots model using Box-Jenkins method were Autoregressive Moving Average ARIMA(1,1,0), ARIMA(0,2,1), and ARIMA(0,1,0). Comparing the results from all methods which were used in this research, and based on Root of Mean Squared Error (RMSE), show that Loess decomposition method is the best times series model, because it has the least RMSE. Thus the Loess decomposition model used to forecast the number of hotspot. The forecasting result indicatethat hotspots pattern tend to increase at the end of 2017 in Kutai Kartanegara and West Kutai, but stationary in East Kutai.
The Mobility of Youth in the Justice System: Implications for Recidivism.
Wolff, Kevin T; Baglivio, Michael T; Intravia, Jonathan; Greenwald, Mark A; Epps, Nathan
2017-07-01
Both residential mobility and community disadvantage have been shown to be associated with negative outcomes for adolescents generally and juvenile offenders specifically. The current study examines the effects of moving among a large sample (n = 13,096) of previously adjudicated youth (31.6 % female, 41.2 % Black, 16.5 % Hispanic). Additionally, we examine whether moving upward to a more affluent neighborhood, moving downward to an area of greater disadvantage, or moving laterally to a similar neighborhood tempers the effects of residential mobility. We use a combination of analytical techniques, including propensity score matching to untangle the effects of mobility sans pre-existing conditions between movers and non-movers. Results show relocation increases recidivism, irrespective of the direction of the move with regard to socioeconomic context. Moving upward has the most detrimental impact for adjudicated male adolescents, while downward relocations evidenced the largest effect for female youth. Implications for policy and future research needs are discussed.
Force measurements by micromanipulation of a single actin filament by glass needles
NASA Astrophysics Data System (ADS)
Kishino, Akiyoshi; Yanagida, Toshio
1988-07-01
Single actin filaments (~7nm in diameter) labelled with fluorescent phalloidin can be clearly seen by video-fluorescence microscopy1. This technique has been used to observe motions of single filaments in solution and in several in vitro movement assays1-5. In a further development of the technique, we report here a method to catch and manipulate a single actin filament (F-actin) by glass microneedles under conditions in which external force on the filament can be applied and measured. Using this method, we directly measured the tensile strength of a filament (the force necessary to break the bond between two actin monomers) and the force required for a filament to be moved by myosin or its proteolytic fragment bound to a glass surface in the presence of ATP. The first result shows that the tensile strength of the F-actin-phalloidin complex is comparable with the average force exerted on a single thin filament in muscle fibres during isometric contraction. This force is increased only slightly by tropomyosin. The second measurement shows that the myosin head (subfragment-1) can produce the same ATP-dependent force as intact myosin. The magnitude of this force is comparable with that produced by each head of myosin in muscle during isometric contraction.
Chavhan, Govind B; Babyn, Paul S; Vasanawala, Shreyas S
2013-05-01
Familiarity with basic sequence properties and their trade-offs is necessary for radiologists performing abdominal magnetic resonance (MR) imaging. Acquiring diagnostic-quality MR images in the pediatric abdomen is challenging due to motion, inability to breath hold, varying patient size, and artifacts. Motion-compensation techniques (eg, respiratory gating, signal averaging, suppression of signal from moving tissue, swapping phase- and frequency-encoding directions, use of faster sequences with breath holding, parallel imaging, and radial k-space filling) can improve image quality. Each of these techniques is more suitable for use with certain sequences and acquisition planes and in specific situations and age groups. Different T1- and T2-weighted sequences work better in different age groups and with differing acquisition planes and have specific advantages and disadvantages. Dynamic imaging should be performed differently in younger children than in older children. In younger children, the sequence and the timing of dynamic phases need to be adjusted. Different sequences work better in smaller children and in older children because of differing breath-holding ability, breathing patterns, field of view, and use of sedation. Hence, specific protocols should be maintained for younger children and older children. Combining longer-higher-resolution sequences and faster-lower-resolution sequences helps acquire diagnostic-quality images in a reasonable time. © RSNA, 2013.
Spacewatch search for near-Earth asteroids
NASA Technical Reports Server (NTRS)
Gehreis, Tom
1991-01-01
The objective of the Spacewatch Program is to develop new techniques for the discovery of near-earth asteroids and to prove the efficiency of the techniques. Extensive experience was obtained with the 0.91-m Spacewatch Telescope on Kitt Peak that now has the largest CCD detector in the world: a Tektronix 2048 x 2048 with 27-micron pixel size. During the past year, software and hardware for optimizing the discovery of near-earth asteroids were installed. As a result, automatic detection of objects that move with rates between 0.1 and 4 degrees per day has become routine since September 1990. Apparently, one or two near-earth asteroids are discovered per month, on average. The follow up is with astrometry over as long an arc as the geometry and faintness of the object allow, typically three months following the discovery observations. During the second half of 1990, replacing the 0.91-m mirror with a larger one, to increase the discovery rate, was considered. Studies and planning for this switch are proposed for funding during the coming year. It was also proposed that the Spacewatch Telescope be turned on the sky, instead of having the drive turned off, in order to increase the rate of discoveries by perhaps a factor of two.
Envelopment filter and K-means for the detection of QRS waveforms in electrocardiogram.
Merino, Manuel; Gómez, Isabel María; Molina, Alberto J
2015-06-01
The electrocardiogram (ECG) is a well-established technique for determining the electrical activity of the heart and studying its diseases. One of the most common pieces of information that can be read from the ECG is the heart rate (HR) through the detection of its most prominent feature: the QRS complex. This paper describes an offline version and a real-time implementation of a new algorithm to determine QRS localization in the ECG signal based on its envelopment and K-means clustering algorithm. The envelopment is used to obtain a signal with only QRS complexes, deleting P, T, and U waves and baseline wander. Two moving average filters are applied to smooth data. The K-means algorithm classifies data into QRS and non-QRS. The technique is validated using 22 h of ECG data from five Physionet databases. These databases were arbitrarily selected to analyze different morphologies of QRS complexes: three stored data with cardiac pathologies, and two had data with normal heartbeats. The algorithm has a low computational load, with no decision thresholds. Furthermore, it does not require any additional parameter. Sensitivity, positive prediction and accuracy from results are over 99.7%. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Zhihua
2012-11-01
This paper presents a wireless power transfer system for a motion-free capsule endoscopy inspection. Conventionally, a wireless power transmitter in a specifically designed jacket has to be connected to a strong power source with a long cable. To avoid the power cable and allow patients to walk freely in a room, this paper proposes a two-hop wireless power transfer system. First, power is transferred from a floor to a power relay in the patient's jacket via strong coupling. Next, power is delivered from the power relay to the capsule via loose coupling. Besides making patients much more conformable, the proposed techniques eliminate the sources of reliability issues arisen from the moving cable and connectors. In the capsule, it is critical to enhance the power conversion efficiency. This paper develops a switch-mode rectifier (rectifying efficiency of 93.6%) and a power combination circuit (enhances combining efficiency by 18%). Thanks to the two-hop transfer mechanism and the novel circuit techniques, this system is able to transfer an average power of 24 mW and a peak power of 90 mW from the floor to a 13 mm × 27 mm capsule over a distance of 1 m with the maximum dc-to-dc power efficiency of 3.04%.
Wang, Rui-Rong; Yu, Xiao-Qing; Zheng, Shu-Wang; Ye, Yang
2016-01-01
Location based services (LBS) provided by wireless sensor networks have garnered a great deal of attention from researchers and developers in recent years. Chirp spread spectrum (CSS) signaling formatting with time difference of arrival (TDOA) ranging technology is an effective LBS technique in regards to positioning accuracy, cost, and power consumption. The design and implementation of the location engine and location management based on TDOA location algorithms were the focus of this study; as the core of the system, the location engine was designed as a series of location algorithms and smoothing algorithms. To enhance the location accuracy, a Kalman filter algorithm and moving weighted average technique were respectively applied to smooth the TDOA range measurements and location results, which are calculated by the cooperation of a Kalman TDOA algorithm and a Taylor TDOA algorithm. The location management server, the information center of the system, was designed with Data Server and Mclient. To evaluate the performance of the location algorithms and the stability of the system software, we used a Nanotron nanoLOC Development Kit 3.0 to conduct indoor and outdoor location experiments. The results indicated that the location system runs stably with high accuracy at absolute error below 0.6 m.
Pressure probe study of the water relations of Phycomyces blakesleeanus sporangiophores
NASA Technical Reports Server (NTRS)
Cosgrove, D. J.; Ortega, J. K.; Shropshire, W. Jr
1987-01-01
The physical characteristics which govern the water relations of the giant-celled sporangiophore of Phycomyces blakesleeanus were measured with the pressure probe technique and with nanoliter osmometry. These properties are important because they govern water uptake associated with cell growth and because they may influence expansion of the sporangiophore wall. Turgor pressure ranged from 1.1 to 6.6 bars (mean = 4.1 bars), and was the same for stage I and stage IV sporangiophores. Sporangiophore osmotic pressure averaged 11.5 bars. From the difference between cell osmotic pressure and turgor pressure, the average water potential of the sporangiophore was calculated to be about -7.4 bars. When sporangiophores were submerged under water, turgor remained nearly constant. We propose that the low cell turgor pressure is due to solutes in the cell wall solution, i.e., between the cuticle and the plasma membrane. Membrane hydraulic conductivity averaged 4.6 x 10(-6) cm s-1 bar-1, and was significantly greater in stage I sporangiophores than in stage IV sporangiophores. Contrary to previous reports, the sporangiophore is separated from the supporting mycelium by septa which prevent bulk volume flow between the two regions. The presence of a wall compartment between the cuticle and the plasma membrane results in anomalous osmosis during pressure clamp measurements. This behavior arises because of changes in solute concentration as water moves into or out of the wall compartment surrounding the sporangiophore. Theoretical analysis shows how the equations governing transient water flow are altered by the characteristics of the cell wall compartment.
An analog retina model for detecting dim moving objects against a bright moving background
NASA Technical Reports Server (NTRS)
Searfus, R. M.; Colvin, M. E.; Eeckman, F. H.; Teeters, J. L.; Axelrod, T. S.
1991-01-01
We are interested in applications that require the ability to track a dim target against a bright, moving background. Since the target signal will be less than or comparable to the variations in the background signal intensity, sophisticated techniques must be employed to detect the target. We present an analog retina model that adapts to the motion of the background in order to enhance targets that have a velocity difference with respect to the background. Computer simulation results and our preliminary concept of an analog 'Z' focal plane implementation are also presented.
Driving-forces model on individual behavior in scenarios considering moving threat agents
NASA Astrophysics Data System (ADS)
Li, Shuying; Zhuang, Jun; Shen, Shifei; Wang, Jia
2017-09-01
The individual behavior model is a contributory factor to improve the accuracy of agent-based simulation in different scenarios. However, few studies have considered moving threat agents, which often occur in terrorist attacks caused by attackers with close-range weapons (e.g., sword, stick). At the same time, many existing behavior models lack validation from cases or experiments. This paper builds a new individual behavior model based on seven behavioral hypotheses. The driving-forces model is an extension of the classical social force model considering scenarios including moving threat agents. An experiment was conducted to validate the key components of the model. Then the model is compared with an advanced Elliptical Specification II social force model, by calculating the fitting errors between the simulated and experimental trajectories, and being applied to simulate a specific circumstance. Our results show that the driving-forces model reduced the fitting error by an average of 33.9% and the standard deviation by an average of 44.5%, which indicates the accuracy and stability of the model in the studied situation. The new driving-forces model could be used to simulate individual behavior when analyzing the risk of specific scenarios using agent-based simulation methods, such as risk analysis of close-range terrorist attacks in public places.
Kim, Seung-Cheol; Dong, Xiao-Bin; Kwon, Min-Woo; Kim, Eun-Soo
2013-05-06
A novel approach for fast generation of video holograms of three-dimensional (3-D) moving objects using a motion compensation-based novel-look-up-table (MC-N-LUT) method is proposed. Motion compensation has been widely employed in compression of conventional 2-D video data because of its ability to exploit high temporal correlation between successive video frames. Here, this concept of motion-compensation is firstly applied to the N-LUT based on its inherent property of shift-invariance. That is, motion vectors of 3-D moving objects are extracted between the two consecutive video frames, and with them motions of the 3-D objects at each frame are compensated. Then, through this process, 3-D object data to be calculated for its video holograms are massively reduced, which results in a dramatic increase of the computational speed of the proposed method. Experimental results with three kinds of 3-D video scenarios reveal that the average number of calculated object points and the average calculation time for one object point of the proposed method, have found to be reduced down to 86.95%, 86.53% and 34.99%, 32.30%, respectively compared to those of the conventional N-LUT and temporal redundancy-based N-LUT (TR-N-LUT) methods.
ERIC Educational Resources Information Center
Jones, Kip
2004-01-01
The paper argues that the systematic review of qualitative research is best served by reliance upon qualitative methods themselves. A case is made for strengthening the narrative literature review and using narrative itself as a method of review. A technique is proposed that builds upon recent developments in qualitative systematic review by the…
Electromagnetic Environment Due To A Pulsed Moving Conductor
1999-06-01
ELECTROMAGNETIC ENVIRONMENT DUE TO A PULSED MOVING CONDUCTOR Ira Kohlberg Kohl berg Associates, Inc., 11308 South Shore Road, Reston, VA 20190...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Kohlberg Associates, Inc., 11308 South Shore Road, Reston, VA 20190 8. PERFORMING ORGANIZATION REPORT...in this analysis but can readily be computed using the techniques developed in this study. REFERENCES I. I. Kohlberg , A. Zielinski, and C. Le
Variable beam dose rate and DMLC IMRT to moving body anatomy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papiez, Lech; Abolfath, Ramin M.
2008-11-15
Derivation of formulas relating leaf speeds and beam dose rates for delivering planned intensity profiles to static and moving targets in dynamic multileaf collimator (DMLC) intensity modulated radiation therapy (IMRT) is presented. The analysis of equations determining algorithms for DMLC IMRT delivery under a variable beam dose rate reveals a multitude of possible delivery strategies for a given intensity map and for any given target motion patterns. From among all equivalent delivery strategies for DMLC IMRT treatments specific subclasses of strategies can be selected to provide deliveries that are particularly suitable for clinical applications providing existing delivery devices are used.more » Special attention is devoted to the subclass of beam dose rate variable DMLC delivery strategies to moving body anatomy that generalize existing techniques of such deliveries in Varian DMLC irradiation methodology to static body anatomy. Few examples of deliveries from this subclass of DMLC IMRT irradiations are investigated to illustrate the principle and show practical benefits of proposed techniques.« less
From video to computation of biological fluid-structure interaction problems
NASA Astrophysics Data System (ADS)
Dillard, Seth I.; Buchholz, James H. J.; Udaykumar, H. S.
2016-04-01
This work deals with the techniques necessary to obtain a purely Eulerian procedure to conduct CFD simulations of biological systems with moving boundary flow phenomena. Eulerian approaches obviate difficulties associated with mesh generation to describe or fit flow meshes to body surfaces. The challenges associated with constructing embedded boundary information, body motions and applying boundary conditions on the moving bodies for flow computation are addressed in the work. The overall approach is applied to the study of a fluid-structure interaction problem, i.e., the hydrodynamics of swimming of an American eel, where the motion of the eel is derived from video imaging. It is shown that some first-blush approaches do not work, and therefore, careful consideration of appropriate techniques to connect moving images to flow simulations is necessary and forms the main contribution of the paper. A combination of level set-based active contour segmentation with optical flow and image morphing is shown to enable the image-to-computation process.
Decoupled tracking and thermal monitoring of non-stationary targets.
Tan, Kok Kiong; Zhang, Yi; Huang, Sunan; Wong, Yoke San; Lee, Tong Heng
2009-10-01
Fault diagnosis and predictive maintenance address pertinent economic issues relating to production systems as an efficient technique can continuously monitor key health parameters and trigger alerts when critical changes in these variables are detected, before they lead to system failures and production shutdowns. In this paper, we present a decoupled tracking and thermal monitoring system which can be used on non-stationary targets of closed systems such as machine tools. There are three main contributions from the paper. First, a vision component is developed to track moving targets under a monitor. Image processing techniques are used to resolve the target location to be tracked. Thus, the system is decoupled and applicable to closed systems without the need for a physical integration. Second, an infrared temperature sensor with a built-in laser for locating the measurement spot is deployed for non-contact temperature measurement of the moving target. Third, a predictive motion control system holds the thermal sensor and follows the moving target efficiently to enable continuous temperature measurement and monitoring.
Using dark current data to estimate AVIRIS noise covariance and improve spectral analyses
NASA Technical Reports Server (NTRS)
Boardman, Joseph W.
1995-01-01
Starting in 1994, all AVIRIS data distributions include a new product useful for quantification and modeling of the noise in the reported radiance data. The 'postcal' file contains approximately 100 lines of dark current data collected at the end of each data acquisition run. In essence this is a regular spectral-image cube, with 614 samples, 100 lines and 224 channels, collected with a closed shutter. Since there is no incident radiance signal, the recorded DN measure only the DC signal level and the noise in the system. Similar dark current measurements, made at the end of each line are used, with a 100 line moving average, to remove the DC signal offset. Therefore, the pixel-by-pixel fluctuations about the mean of this dark current image provide an excellent model for the additive noise that is present in AVIRIS reported radiance data. The 61,400 dark current spectra can be used to calculate the noise levels in each channel and the noise covariance matrix. Both of these noise parameters should be used to improve spectral processing techniques. Some processing techniques, such as spectral curve fitting, will benefit from a robust estimate of the channel-dependent noise levels. Other techniques, such as automated unmixing and classification, will be improved by the stable and scene-independence noise covariance estimate. Future imaging spectrometry systems should have a similar ability to record dark current data, permitting this noise characterization and modeling.
A study of video frame rate on the perception of moving imagery detail
NASA Technical Reports Server (NTRS)
Haines, Richard F.; Chuang, Sherry L.
1993-01-01
The rate at which each frame of color moving video imagery is displayed was varied in small steps to determine what is the minimal acceptable frame rate for life scientists viewing white rats within a small enclosure. Two, twenty five second-long scenes (slow and fast animal motions) were evaluated by nine NASA principal investigators and animal care technicians. The mean minimum acceptable frame rate across these subjects was 3.9 fps both for the slow and fast moving animal scenes. The highest single trial frame rate averaged across all subjects for the slow and the fast scene was 6.2 and 4.8, respectively. Further research is called for in which frame rate, image size, and color/gray scale depth are covaried during the same observation period.
A comparison of moving object detection methods for real-time moving object detection
NASA Astrophysics Data System (ADS)
Roshan, Aditya; Zhang, Yun
2014-06-01
Moving object detection has a wide variety of applications from traffic monitoring, site monitoring, automatic theft identification, face detection to military surveillance. Many methods have been developed across the globe for moving object detection, but it is very difficult to find one which can work globally in all situations and with different types of videos. The purpose of this paper is to evaluate existing moving object detection methods which can be implemented in software on a desktop or laptop, for real time object detection. There are several moving object detection methods noted in the literature, but few of them are suitable for real time moving object detection. Most of the methods which provide for real time movement are further limited by the number of objects and the scene complexity. This paper evaluates the four most commonly used moving object detection methods as background subtraction technique, Gaussian mixture model, wavelet based and optical flow based methods. The work is based on evaluation of these four moving object detection methods using two (2) different sets of cameras and two (2) different scenes. The moving object detection methods have been implemented using MatLab and results are compared based on completeness of detected objects, noise, light change sensitivity, processing time etc. After comparison, it is observed that optical flow based method took least processing time and successfully detected boundary of moving objects which also implies that it can be implemented for real-time moving object detection.
Grand, Laszlo; Ftomov, Sergiu; Timofeev, Igor
2012-01-01
Parallel electrophysiological recording and behavioral monitoring of freely moving animals is essential for a better understanding of the neural mechanisms underlying behavior. In this paper we describe a novel wireless recording technique, which is capable of synchronously recording in vivo multichannel electrophysiological (LFP, MUA, EOG, EMG) and activity data (accelerometer, video) from freely moving cats. The method is based on the integration of commercially available components into a simple monitoring system and is complete with accelerometers and the needed signal processing tools. LFP activities of freely moving group-housed cats were recorded from multiple intracortical areas and from the hippocampus. EMG, EOG, accelerometer and video were simultaneously acquired with LFP activities 24-h a day for 3 months. These recordings confirm the possibility of using our wireless method for 24-h long-term monitoring of neurophysiological and behavioral data of freely moving experimental animals such as cats, ferrets, rabbits and other large animals. PMID:23099345
Kramer, Jeffery; Liem, Liong; Russo, Marc; Smet, Iris; Van Buyten, Jean-Pierre; Huygen, Frank
2015-01-01
One prominent side effect from neurostimulation techniques, and in particular spinal cord stimulation (SCS), is the change in intensity of stimulation when moving from an upright (vertical) to a recumbent or supine (horizontal) position and vice versa. It is well understood that the effects of gravity combined with highly conductive cerebrospinal fluid provide the mechanism by which changes in body position can alter the intensity of stimulation-induced paresthesias. While these effects are well established for leads that are placed within the more medial aspects of the spinal canal, little is known about these potential effects in leads placed in the lateral epidural space and in particular within the neural foramina near the dorsal root ganglion (DRG). We prospectively validated a newly developed paresthesia intensity rating scale and compared perceived paresthesia intensities when subjects assumed upright vs. supine bodily positions during neuromodulation of the DRG. On average, the correlation coefficient between stimulation intensity (pulse amplitude) and perceived paresthesia intensity was 0.83, demonstrating a strong linear relationship. No significant differences in paresthesia intensities were reported within subjects when moving from an upright (4.5 ± 0.14) to supine position 4.5 (± 0.12) (p > 0.05). This effect persisted through 12 months following implant. Neuromodulation of the DRG produces paresthesias that remain consistent across body positions, suggesting that this paradigm may be less susceptible to positional effects than dorsal column stimulation. © 2014 International Neuromodulation Society.
Time resolved aerosol monitoring in the urban centre of Soweto
NASA Astrophysics Data System (ADS)
Formenti, P.; Annegarn, H. J.; Piketh, S. J.
1998-03-01
A programme of aerosol sampling was conducted from 1982 to 1984 in the urban area of Soweto, Johannesburg, South Africa. The particulate matter (aerodynamic diameter <15 μm) was collected using a two hours time resolution single stage streaker sampler and elemental concentrations were resolved via Particle Induced X-ray Emission (PIXE) analysis. Samples have been selected for analysis from an aerosol sample archive to establish base-line atmospheric conditions that existed in Soweto prior to large scale electrification, and to establish source apportionment of crustal elements between coal smoke and traffic induced road dust, based on chemical elemental measurements. A novel technique is demonstrated for processing PIXE-derived time sequence elemental concentration vectors. Slowly varying background components have been extracted from sulphur and crustal aerosol components, using alternatively two digital filters: a moving minimum, and a moving average. The residuals of the crustal elements, assigned to locally generated aerosol components, were modelled using surrogate tracers: sulphur as a surrogate for coal smoke; and Pb as a surrogate for traffic activity. Results from this source apportionment revealed coal emissions contributed between 40% and 50% of the aerosol mineral matter, while 18-22% originated from road dust. Background aerosol, characteristic of the regional winter aerosol burden over the South African Highveld, was between 12% and 21%. Minor contributors identified included a manganese smelter, located 30 km from the sampling site, and informal trash burning, as the source of intermittent heavy metals (Cu, Zn). Elemental source profiles derived for these various sources are presented.
Turner, Hugo C; Bettis, Alison A; Dunn, Julia C; Whitton, Jane M; Hollingsworth, T Déirdre; Fleming, Fiona M; Anderson, Roy M
2017-06-01
While the need for more sensitive diagnostics for intestinal helminths is well known, the cost of developing and implementing new tests is considered relatively high compared to the Kato-Katz technique. Here, we review the reported costs of performing the Kato-Katz technique. We also outline several economic arguments we believe highlight the need for further investment in alternative diagnostics, and considerations that should be made when comparing their costs. In our opinion, we highlight that, without new diagnostic methods, it will be difficult for policy makers to make the most cost-effective decisions and that the potentially higher unit costs of new methods can be outweighed by the long-term programmatic benefits they have (such as the ability to detect the interruption of transmission). Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Moller, Arlen C.; Merchant, Gina; Conroy, David E.; West, Robert; Hekler, Eric B.; Kugler, Kari C.; Michie, Susan
2017-01-01
As more behavioral health interventions move from traditional to digital platforms, the application of evidence-based theories and techniques may be doubly advantageous. First, it can expedite digital health intervention development, improving efficacy, and increasing reach. Second, moving behavioral health interventions to digital platforms presents researchers with novel (potentially paradigm shifting) opportunities for advancing theories and techniques. In particular, the potential for technology to revolutionize theory refinement is made possible by leveraging the proliferation of “real-time” objective measurement and “big data” commonly generated and stored by digital platforms. Much more could be done to realize this potential. This paper offers proposals for better leveraging the potential advantages of digital health platforms, and reviews three of the cutting edge methods for doing so: optimization designs, dynamic systems modeling, and social network analysis. PMID:28058516
Al-Menshed, Firas H; Thabit, Jassim M
2017-03-01
2D imaging technique was applied in (8) transects near a pit of contaminated water near contaminated well southeast of Karbala city, Iraq. Each transect was 30 m long with 1 m electrode spacing. Data acquisition was fulfilled by using Wenner electrode array. The resistivity of water-contaminated zone is found less than 3Ω.m and the top dry zone recorded relatively high resistivity (more than 170Ω.m). It is found that the greatest amount of seepage was found moving towards northeast direction coincided with groundwater movement direction, whereas there was no movement towards northwest and southeast directions and restricted on the closest areas to the pit location. The outcomes suggested that the 2D imaging technique is a successful and powerful tool in separating contaminated zone from clear one and in detecting underground seepage depth and moving direction.
REVIEW ARTICLE: Hither and yon: a review of bi-directional microtubule-based transport
NASA Astrophysics Data System (ADS)
Gross, Steven P.
2004-06-01
Active transport is critical for cellular organization and function, and impaired transport has been linked to diseases such as neuronal degeneration. Much long distance transport in cells uses opposite polarity molecular motors of the kinesin and dynein families to move cargos along microtubules. It is increasingly clear that many cargos are moved by both sets of motors, and frequently reverse course. This review compares this bi-directional transport to the more well studied uni-directional transport. It discusses some bi-directionally moving cargos, and critically evaluates three different physical models for how such transport might occur. It then considers the evidence for the number of active motors per cargo, and how the net or average direction of transport might be controlled. The likelihood of a complex linking the activities of kinesin and dynein is also discussed. The paper concludes by reviewing elements of apparent universality between different bi-directionally moving cargos and by briefly considering possible reasons for the existence of bi-directional transport.
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2013-01-01
Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.
A 12-Year Analysis of Nonbattle Injury Among US Service Members Deployed to Iraq and Afghanistan.
Le, Tuan D; Gurney, Jennifer M; Nnamani, Nina S; Gross, Kirby R; Chung, Kevin K; Stockinger, Zsolt T; Nessen, Shawn C; Pusateri, Anthony E; Akers, Kevin S
2018-05-30
Nonbattle injury (NBI) among deployed US service members increases the burden on medical systems and results in high rates of attrition, affecting the available force. The possible causes and trends of NBI in the Iraq and Afghanistan wars have, to date, not been comprehensively described. To describe NBI among service members deployed to Iraq and Afghanistan, quantify absolute numbers of NBIs and proportion of NBIs within the Department of Defense Trauma Registry, and document the characteristics of this injury category. In this retrospective cohort study, data from the Department of Defense Trauma Registry on 29 958 service members injured in Iraq and Afghanistan from January 1, 2003, through December 31, 2014, were obtained. Injury incidence, patterns, and severity were characterized by battle injury and NBI. Trends in NBI were modeled using time series analysis with autoregressive integrated moving average and the weighted moving average method. Statistical analysis was performed from January 1, 2003, to December 31, 2014. Primary outcomes were proportion of NBIs and the changes in NBI over time. Among 29 958 casualties (battle injury and NBI) analyzed, 29 003 were in men and 955 were in women; the median age at injury was 24 years (interquartile range, 21-29 years). Nonbattle injury caused 34.1% of total casualties (n = 10 203) and 11.5% of all deaths (206 of 1788). Rates of NBI were higher among women than among men (63.2% [604 of 955] vs 33.1% [9599 of 29 003]; P < .001) and in Operation New Dawn (71.0% [298 of 420]) and Operation Iraqi Freedom (36.3% [6655 of 18 334]) compared with Operation Enduring Freedom (29.0% [3250 of 11 204]) (P < .001). A higher proportion of NBIs occurred in members of the Air Force (66.3% [539 of 810]) and Navy (48.3% [394 of 815]) than in members of the Army (34.7% [7680 of 22 154]) and Marine Corps (25.7% [1584 of 6169]) (P < .001). Leading mechanisms of NBI included falls (2178 [21.3%]), motor vehicle crashes (1921 [18.8%]), machinery or equipment accidents (1283 [12.6%]), blunt objects (1107 [10.8%]), gunshot wounds (728 [7.1%]), and sports (697 [6.8%]), causing predominantly blunt trauma (7080 [69.4%]). The trend in proportion of NBIs did not decrease over time, remaining at approximately 35% (by weighted moving average) after 2006 and approximately 39% by autoregressive integrated moving average. Assuming stable battlefield conditions, the autoregressive integrated moving average model estimated that the proportion of NBIs from 2015 to 2022 would be approximately 41.0% (95% CI, 37.8%-44.3%). In this study, approximately one-third of injuries during the Iraq and Afghanistan wars resulted from NBI, and the proportion of NBIs was steady for 12 years. Understanding the possible causes of NBI during military operations may be useful to target protective measures and safety interventions, thereby conserving fighting strength on the battlefield.
Wolthaus, J W H; Sonke, J J; van Herk, M; Damen, E M F
2008-09-01
lower lobe lung tumors move with amplitudes of up to 2 cm due to respiration. To reduce respiration imaging artifacts in planning CT scans, 4D imaging techniques are used. Currently, we use a single (midventilation) frame of the 4D data set for clinical delineation of structures and radiotherapy planning. A single frame, however, often contains artifacts due to breathing irregularities, and is noisier than a conventional CT scan since the exposure per frame is lower. Moreover, the tumor may be displaced from the mean tumor position due to hysteresis. The aim of this work is to develop a framework for the acquisition of a good quality scan representing all scanned anatomy in the mean position by averaging transformed (deformed) CT frames, i.e., canceling out motion. A nonrigid registration method is necessary since motion varies over the lung. 4D and inspiration breath-hold (BH) CT scans were acquired for 13 patients. An iterative multiscale motion estimation technique was applied to the 4D CT scan, similar to optical flow but using image phase (gray-value transitions from bright to dark and vice versa) instead. From the (4D) deformation vector field (DVF) derived, the local mean position in the respiratory cycle was computed and the 4D DVF was modified to deform all structures of the original 4D CT scan to this mean position. A 3D midposition (MidP) CT scan was then obtained by (arithmetic or median) averaging of the deformed 4D CT scan. Image registration accuracy, tumor shape deviation with respect to the BH CT scan, and noise were determined to evaluate the image fidelity of the MidP CT scan and the performance of the technique. Accuracy of the used deformable image registration method was comparable to established automated locally rigid registration and to manual landmark registration (average difference to both methods < 0.5 mm for all directions) for the tumor region. From visual assessment, the registration was good for the clearly visible features (e.g., tumor and diaphragm). The shape of the tumor, with respect to that of the BH CT scan, was better represented by the MidP reconstructions than any of the 4D CT frames (including MidV; reduction of "shape differences" was 66%). The MidP scans contained about one-third the noise of individual 4D CT scan frames. We implemented an accurate method to estimate the motion of structures in a 4D CT scan. Subsequently, a novel method to create a midposition CT scan (time-weighted average of the anatomy) for treatment planning with reduced noise and artifacts was introduced. Tumor shape and position in the MidP CT scan represents that of the BH CT scan better than MidV CT scan and, therefore, was found to be appropriate for treatment planning.
Motion versus position in the perception of head-centred movement.
Freeman, Tom C A; Sumnall, Jane H
2002-01-01
Abstract. Observers can recover motion with respect to the head during an eye movement by comparing signals encoding retinal motion and the velocity of pursuit. Evidently there is a mismatch between these signals because perceived head-centred motion is not always veridical. One example is the Filehne illusion, in which a stationary object appears to move in the opposite direction to pursuit. Like the motion aftereffect, the phenomenal experience of the Filehne illusion is one in which the stimulus moves but does not seem to go anywhere. This raises problems when measuring the illusion by motion nulling because the more traditional technique confounds perceived motion with changes in perceived position. We devised a new nulling technique using global-motion stimuli that degraded familiar position cues but preserved cues to motion. Stimuli consisted of random-dot patterns comprising signal and noise dots that moved at the same retinal 'base' speed. Noise moved in random directions. In an eye-stationary speed-matching experiment we found noise slowed perceived retinal speed as 'coherence strength' (ie percentage of signal) was reduced. The effect occurred over the two-octave range of base speeds studied and well above direction threshold. When the same stimuli were combined with pursuit, observers were able to null the Filehne illusion by adjusting coherence. A power law relating coherence to retinal base speed fit the data well with a negative exponent. Eye-movement recordings showed that pursuit was quite accurate. We then tested the hypothesis that the stimuli found at the null-points appeared to move at the same retinal speed. Two observers supported the hypothesis, a third partially, and a fourth showed a small linear trend. In addition, the retinal speed found by the traditional Filehne technique was similar to the matches obtained with the global-motion stimuli. The results provide support for the idea that speed is the critical cue in head-centred motion perception.
An Indoor Continuous Positioning Algorithm on the Move by Fusing Sensors and Wi-Fi on Smartphones
Li, Huaiyu; Chen, Xiuwan; Jing, Guifei; Wang, Yuan; Cao, Yanfeng; Li, Fei; Zhang, Xinlong; Xiao, Han
2015-01-01
Wi-Fi indoor positioning algorithms experience large positioning error and low stability when continuously positioning terminals that are on the move. This paper proposes a novel indoor continuous positioning algorithm that is on the move, fusing sensors and Wi-Fi on smartphones. The main innovative points include an improved Wi-Fi positioning algorithm and a novel positioning fusion algorithm named the Trust Chain Positioning Fusion (TCPF) algorithm. The improved Wi-Fi positioning algorithm was designed based on the properties of Wi-Fi signals on the move, which are found in a novel “quasi-dynamic” Wi-Fi signal experiment. The TCPF algorithm is proposed to realize the “process-level” fusion of Wi-Fi and Pedestrians Dead Reckoning (PDR) positioning, including three parts: trusted point determination, trust state and positioning fusion algorithm. An experiment is carried out for verification in a typical indoor environment, and the average positioning error on the move is 1.36 m, a decrease of 28.8% compared to an existing algorithm. The results show that the proposed algorithm can effectively reduce the influence caused by the unstable Wi-Fi signals, and improve the accuracy and stability of indoor continuous positioning on the move. PMID:26690447
Commercial vehicle fleet management and information systems. Phase 1 : interim report
DOT National Transportation Integrated Search
1998-01-01
The three-quarter moving composite price index is the weighted average of the indices for three consecutive quarters. The Composite Bid Price Index is composed of six indicator items: common excavation, to indicate the price trend for all roadway exc...
The monocular visual imaging technology model applied in the airport surface surveillance
NASA Astrophysics Data System (ADS)
Qin, Zhe; Wang, Jian; Huang, Chao
2013-08-01
At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.
Moving Target Techniques: Leveraging Uncertainty for CyberDefense
2015-12-15
cyberattacks is a continual struggle for system managers. Attackers often need only find one vulnerability (a flaw or bug that an attacker can exploit...additional parsing code itself could have security-relevant software bugs . Dynamic Network Techniques in the dynamic network domain change the...evaluation of MT techniques can benefit from a variety of evaluation approaches, including abstract analysis, modeling and simulation, test bed
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2009-01-01
Yearly frequencies of North Atlantic basin tropical cyclones, their locations of origin, peak wind speeds, average peak wind speeds, lowest pressures, and average lowest pressures for the interval 1950-2008 are examined. The effects of El Nino and La Nina on the tropical cyclone parametric values are investigated. Yearly and 10-year moving average (10-yma) values of tropical cyclone parameters are compared against those of temperature and decadal-length oscillation, employing both linear and bi-variate analysis, and first differences in the 10-yma are determined. Discussion of the 2009 North Atlantic basin hurricane season, updating earlier results, is given.
Chess-playing epilepsy: a case report with video-EEG and back averaging.
Mann, M W; Gueguen, B; Guillou, S; Debrand, E; Soufflet, C
2004-12-01
A patient suffering from juvenile myoclonic epilepsy experienced myoclonic jerks, fairly regularly, while playing chess. The myoclonus appeared particularly when he had to plan his strategy, to choose between two solutions or while raising the arm to move a chess figure. Video-EEG-polygraphy was performed, with back averaging of the myoclonus registered during a chess match and during neuropsychological testing with Kohs cubes. The EEG spike wave complexes were localised in the fronto-central region. [Published with video sequences].
Verity Salmon; Colleen Iversen; Peter Thornton; Ma
2017-03-01
Transect data is from point center quarter surveys for shrub density performed in July 2016 at the Kougarok hill slope located at Kougarok Road, Mile Marker 64. For each sample point along the transects, moving averages for shrub density and shrub basal area are provided along with GPS coordinates, average shrub height and active layer depth. The individual height, basal area, and species of surveyed shrubs are also included. Data upload will be completed January 2017.
NASA Technical Reports Server (NTRS)
Nunes, A. C., Jr.
1986-01-01
Applicabilities and limitations of three techniques analyzed. NASA technical memorandum discusses physics of electron-beam, gas/ tungsten-arc, and laser-beam welding. From comparison of capabilities and limitations of each technique with regard to various welding conditions and materials, possible to develop criteria for selecting best welding technique in specific application. All three techniques classified as fusion welding; small volume of workpiece melted by intense heat source. Heat source moved along seam, leaving in wake solid metal that joins seam edges together.
Time series analysis of collective motions in proteins
NASA Astrophysics Data System (ADS)
Alakent, Burak; Doruker, Pemra; ćamurdan, Mehmet C.
2004-01-01
The dynamics of α-amylase inhibitor tendamistat around its native state is investigated using time series analysis of the principal components of the Cα atomic displacements obtained from molecular dynamics trajectories. Collective motion along a principal component is modeled as a homogeneous nonstationary process, which is the result of the damped oscillations in local minima superimposed on a random walk. The motion in local minima is described by a stationary autoregressive moving average model, consisting of the frequency, damping factor, moving average parameters and random shock terms. Frequencies for the first 50 principal components are found to be in the 3-25 cm-1 range, which are well correlated with the principal component indices and also with atomistic normal mode analysis results. Damping factors, though their correlation is less pronounced, decrease as principal component indices increase, indicating that low frequency motions are less affected by friction. The existence of a positive moving average parameter indicates that the stochastic force term is likely to disturb the mode in opposite directions for two successive sampling times, showing the modes tendency to stay close to minimum. All these four parameters affect the mean square fluctuations of a principal mode within a single minimum. The inter-minima transitions are described by a random walk model, which is driven by a random shock term considerably smaller than that for the intra-minimum motion. The principal modes are classified into three subspaces based on their dynamics: essential, semiconstrained, and constrained, at least in partial consistency with previous studies. The Gaussian-type distributions of the intermediate modes, called "semiconstrained" modes, are explained by asserting that this random walk behavior is not completely free but between energy barriers.
Xu, Dandan; Zhang, Yi; Zhou, Lian; Li, Tiantian
2018-03-17
The association between exposure to ambient particulate matter (PM) and reduced lung function parameters has been reported in many works. However, few studies have been conducted in developing countries with high levels of air pollution like China, and little attention has been paid to the acute effects of short-term exposure to air pollution on lung function. The study design consisted of a panel comprising 86 children from the same school in Nanjing, China. Four measurements of lung function were performed. A mixed-effects regression model with study participant as a random effect was used to investigate the relationship between PM 2.5 and lung function. An increase in the current day, 1-day and 2-day moving average PM 2.5 concentration was associated with decreases in lung function indicators. The greatest effect of PM 2.5 on lung function was detected at 1-day moving average PM 2.5 exposure. An increase of 10 μg/m 3 in the 1-day moving average PM 2.5 concentration was associated with a 23.22 mL decrease (95% CI: 13.19, 33.25) in Forced Vital Capacity (FVC), a 18.93 mL decrease (95% CI: 9.34, 28.52) in 1-s Forced Expiratory Volume (FEV 1 ), a 29.38 mL/s decrease (95% CI: -0.40, 59.15) in Peak Expiratory Flow (PEF), and a 27.21 mL/s decrease (95% CI: 8.38, 46.04) in forced expiratory flow 25-75% (FEF 25-75% ). The effects of PM 2.5 on lung function had significant lag effects. After an air pollution event, the health effects last for several days and we still need to pay attention to health protection.
Short-Term Exposure to Air Pollution and Biomarkers of Oxidative Stress: The Framingham Heart Study.
Li, Wenyuan; Wilker, Elissa H; Dorans, Kirsten S; Rice, Mary B; Schwartz, Joel; Coull, Brent A; Koutrakis, Petros; Gold, Diane R; Keaney, John F; Lin, Honghuang; Vasan, Ramachandran S; Benjamin, Emelia J; Mittleman, Murray A
2016-04-28
Short-term exposure to elevated air pollution has been associated with higher risk of acute cardiovascular diseases, with systemic oxidative stress induced by air pollution hypothesized as an important underlying mechanism. However, few community-based studies have assessed this association. Two thousand thirty-five Framingham Offspring Cohort participants living within 50 km of the Harvard Boston Supersite who were not current smokers were included. We assessed circulating biomarkers of oxidative stress including blood myeloperoxidase at the seventh examination (1998-2001) and urinary creatinine-indexed 8-epi-prostaglandin F2α (8-epi-PGF2α) at the seventh and eighth (2005-2008) examinations. We measured fine particulate matter (PM2.5), black carbon, sulfate, nitrogen oxides, and ozone at the Supersite and calculated 1-, 2-, 3-, 5-, and 7-day moving averages of each pollutant. Measured myeloperoxidase and 8-epi-PGF2α were loge transformed. We used linear regression models and linear mixed-effects models with random intercepts for myeloperoxidase and indexed 8-epi-PGF2α, respectively. Models were adjusted for demographic variables, individual- and area-level measures of socioeconomic position, clinical and lifestyle factors, weather, and temporal trend. We found positive associations of PM2.5 and black carbon with myeloperoxidase across multiple moving averages. Additionally, 2- to 7-day moving averages of PM2.5 and sulfate were consistently positively associated with 8-epi-PGF2α. Stronger positive associations of black carbon and sulfate with myeloperoxidase were observed among participants with diabetes than in those without. Our community-based investigation supports an association of select markers of ambient air pollution with circulating biomarkers of oxidative stress. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Models for short term malaria prediction in Sri Lanka
Briët, Olivier JT; Vounatsou, Penelope; Gunawardena, Dissanayake M; Galappaththy, Gawrie NL; Amerasinghe, Priyanie H
2008-01-01
Background Malaria in Sri Lanka is unstable and fluctuates in intensity both spatially and temporally. Although the case counts are dwindling at present, given the past history of resurgence of outbreaks despite effective control measures, the control programmes have to stay prepared. The availability of long time series of monitored/diagnosed malaria cases allows for the study of forecasting models, with an aim to developing a forecasting system which could assist in the efficient allocation of resources for malaria control. Methods Exponentially weighted moving average models, autoregressive integrated moving average (ARIMA) models with seasonal components, and seasonal multiplicative autoregressive integrated moving average (SARIMA) models were compared on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to four months ahead. The addition of covariates such as the number of malaria cases in neighbouring districts or rainfall were assessed for their ability to improve prediction of selected (seasonal) ARIMA models. Results The best model for forecasting and the forecasting error varied strongly among the districts. The addition of rainfall as a covariate improved prediction of selected (seasonal) ARIMA models modestly in some districts but worsened prediction in other districts. Improvement by adding rainfall was more frequent at larger forecasting horizons. Conclusion Heterogeneity of patterns of malaria in Sri Lanka requires regionally specific prediction models. Prediction error was large at a minimum of 22% (for one of the districts) for one month ahead predictions. The modest improvement made in short term prediction by adding rainfall as a covariate to these prediction models may not be sufficient to merit investing in a forecasting system for which rainfall data are routinely processed. PMID:18460204
Gerber, Brian D.; Kendall, William L.
2017-01-01
Monitoring animal populations can be difficult. Limited resources often force monitoring programs to rely on unadjusted or smoothed counts as an index of abundance. Smoothing counts is commonly done using a moving-average estimator to dampen sampling variation. These indices are commonly used to inform management decisions, although their reliability is often unknown. We outline a process to evaluate the biological plausibility of annual changes in population counts and indices from a typical monitoring scenario and compare results with a hierarchical Bayesian time series (HBTS) model. We evaluated spring and fall counts, fall indices, and model-based predictions for the Rocky Mountain population (RMP) of Sandhill Cranes (Antigone canadensis) by integrating juvenile recruitment, harvest, and survival into a stochastic stage-based population model. We used simulation to evaluate population indices from the HBTS model and the commonly used 3-yr moving average estimator. We found counts of the RMP to exhibit biologically unrealistic annual change, while the fall population index was largely biologically realistic. HBTS model predictions suggested that the RMP changed little over 31 yr of monitoring, but the pattern depended on assumptions about the observational process. The HBTS model fall population predictions were biologically plausible if observed crane harvest mortality was compensatory up to natural mortality, as empirical evidence suggests. Simulations indicated that the predicted mean of the HBTS model was generally a more reliable estimate of the true population than population indices derived using a moving 3-yr average estimator. Practitioners could gain considerable advantages from modeling population counts using a hierarchical Bayesian autoregressive approach. Advantages would include: (1) obtaining measures of uncertainty; (2) incorporating direct knowledge of the observational and population processes; (3) accommodating missing years of data; and (4) forecasting population size.
A new image segmentation method based on multifractal detrended moving average analysis
NASA Astrophysics Data System (ADS)
Shi, Wen; Zou, Rui-biao; Wang, Fang; Su, Le
2015-08-01
In order to segment and delineate some regions of interest in an image, we propose a novel algorithm based on the multifractal detrended moving average analysis (MF-DMA). In this method, the generalized Hurst exponent h(q) is calculated for every pixel firstly and considered as the local feature of a surface. And then a multifractal detrended moving average spectrum (MF-DMS) D(h(q)) is defined by the idea of box-counting dimension method. Therefore, we call the new image segmentation method MF-DMS-based algorithm. The performance of the MF-DMS-based method is tested by two image segmentation experiments of rapeseed leaf image of potassium deficiency and magnesium deficiency under three cases, namely, backward (θ = 0), centered (θ = 0.5) and forward (θ = 1) with different q values. The comparison experiments are conducted between the MF-DMS method and other two multifractal segmentation methods, namely, the popular MFS-based and latest MF-DFS-based methods. The results show that our MF-DMS-based method is superior to the latter two methods. The best segmentation result for the rapeseed leaf image of potassium deficiency and magnesium deficiency is from the same parameter combination of θ = 0.5 and D(h(- 10)) when using the MF-DMS-based method. An interesting finding is that the D(h(- 10)) outperforms other parameters for both the MF-DMS-based method with centered case and MF-DFS-based algorithms. By comparing the multifractal nature between nutrient deficiency and non-nutrient deficiency areas determined by the segmentation results, an important finding is that the gray value's fluctuation in nutrient deficiency area is much severer than that in non-nutrient deficiency area.
Improved Training Method for Rapid Rehabilitation of Amputees
2015-05-01
Falls Overall Project Summary This report describes a four year research effort to develop and test a novel training technique aimed at increasing...month post training assessment. One subject moved after completing the training and did not return for follow-up. Three subjects failed to respond to...training (n=5) Reasons: Moved, revisions, suicide attempt, time conflict Completed Training (n= 20) Completed post - testing (n=20). Lost to
Free-Flow Open-Chamber Electrophoresis
NASA Technical Reports Server (NTRS)
Sharnez, Rizwan; Sammons, David W.
1994-01-01
Free-flow open-chamber electrophoresis variant of free-flow electrophoresis performed in chamber with open ends and in which velocity of electro-osmotic flow adjusted equal to and opposite mean electrophoretic velocity of sample. Particles having electrophoretic mobilities greater than mean mobility of sample particles move toward cathode, those with mobilities less move toward anode. Technique applied to separation of components of mixtures of biologically important substances. Sensitivity enhanced by use of tapered chamber.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coruh, M; Ewell, L; Demez, N
Purpose: To estimate the dose delivered to a moving lung tumor by proton therapy beams of different modulation types, and compare with Monte Carlo predictions. Methods: A radiology support devices (RSD) phantom was irradiated with therapeutic proton radiation beams using two different types of modulation: uniform scanning (US) and double scattered (DS). The Eclipse© dose plan was designed to deliver 1.00Gy to the isocenter of a static ∼3×3×3cm (27cc) tumor in the phantom with 100% coverage. The peak to peak amplitude of tumor motion varied from 0.0 to 2.5cm. The radiation dose was measured with an ion-chamber (CC-13) located withinmore » the tumor. The time required to deliver the radiation dose varied from an average of 65s for the DS beams to an average of 95s for the US beams. Results: The amount of radiation dose varied from 100% (both US and DS) to the static tumor down to approximately 92% for the moving tumor. The ratio of US dose to DS dose ranged from approximately 1.01 for the static tumor, down to 0.99 for the 2.5cm moving tumor. A Monte Carlo simulation using TOPAS included a lung tumor with 4.0cm of peak to peak motion. In this simulation, the dose received by the tumor varied by ∼40% as the period of this motion varied from 1s to 4s. Conclusion: The radiation dose deposited to a moving tumor was less than for a static tumor, as expected. At large (2.5cm) amplitudes, the DS proton beams gave a dose closer to the desired dose than the US beams, but equal within experimental uncertainty. TOPAS Monte Carlo simulation can give insight into the moving tumor — dose relationship. This work was supported in part by the Philips corporation.« less
Consistent and efficient processing of ADCP streamflow measurements
Mueller, David S.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan
2016-01-01
The use of Acoustic Doppler Current Profilers (ADCPs) from a moving boat is a commonly used method for measuring streamflow. Currently, the algorithms used to compute the average depth, compute edge discharge, identify invalid data, and estimate velocity and discharge for invalid data vary among manufacturers. These differences could result in different discharges being computed from identical data. Consistent computational algorithm, automated filtering, and quality assessment of ADCP streamflow measurements that are independent of the ADCP manufacturer are being developed in a software program that can process ADCP moving-boat discharge measurements independent of the ADCP used to collect the data.
Disaster loss and social media: Can online information increase flood resilience?
NASA Astrophysics Data System (ADS)
Allaire, Maura C.
2016-09-01
When confronted with natural disasters, individuals around the world increasingly use online resources to become informed of forecasted conditions and advisable actions. This study tests the effectiveness of online information and social media in enabling households to reduce disaster losses. The 2011 Bangkok flood is utilized as a case study since it was one of the first major disasters to affect a substantial population connected to social media. The role of online information is investigated with a mixed methods approach. Both quantitative (propensity score matching) and qualitative (in-depth interviews) techniques are employed. The study relies on two data sources—survey responses from 469 Bangkok households and in-depth interviews with internet users who were a subset of the survey participants. Propensity score matching indicates that social media enabled households to reduce flood losses by an average of 37% (USD 3708 per household), using a nearest neighbor estimator. This reduction is substantial when considering that household flood losses for the matched sample averaged USD 8278. Social media offered information not available from other sources, such as localized and nearly real-time updates of flood location and depth. With this knowledge, households could move belongings to higher ground before floodwaters arrived. These findings suggest that utilizing social media users as sensors could better inform populations during disasters. Overall, the study reveals that online information can enable effective disaster preparedness and reduce losses.
Disaster Loss and Social Media: Can Online Information Increase Flood Resilience?
NASA Astrophysics Data System (ADS)
Allaire, M.
2016-12-01
When confronted with natural disasters, individuals around the world increasingly use online resources to become informed of forecasted conditions and advisable actions. This study tests the effectiveness of online information and social media in enabling households to reduce disaster losses. The 2011 Bangkok flood is utilized as a case study since it was one of the first major disasters to affect a substantial population connected to social media. The role of online information is investigated with a mixed methods approach. Both quantitative (propensity score matching) and qualitative (in-depth interviews) techniques are employed. The study relies on two data sources - survey responses from 469 Bangkok households and in-depth interviews with twenty-three internet users who are a subset of the survey participants. Propensity score matching indicates that social media enabled households to reduce flood losses by an average of 37% (USD 3,708), using a nearest neighbor estimator. This reduction is massive when considering that total flood losses for the full sample averaged USD 4,903. Social media offered information not available from other sources, such as localized and nearly real-time updates of flood location and depth. With this knowledge, households could move belongings to higher ground before floodwaters arrived. These findings suggest that utilizing social media users as sensors could better inform populations during disasters. Overall, the study reveals that online information can enable effective disaster preparedness and reduce losses.
Space Shuttle Main Engine Propellant Path Leak Detection Using Sequential Image Processing
NASA Technical Reports Server (NTRS)
Smith, L. Montgomery; Malone, Jo Anne; Crawford, Roger A.
1995-01-01
Initial research in this study using theoretical radiation transport models established that the occurrence of a leak is accompanies by a sudden but sustained change in intensity in a given region of an image. In this phase, temporal processing of video images on a frame-by-frame basis was used to detect leaks within a given field of view. The leak detection algorithm developed in this study consists of a digital highpass filter cascaded with a moving average filter. The absolute value of the resulting discrete sequence is then taken and compared to a threshold value to produce the binary leak/no leak decision at each point in the image. Alternatively, averaging over the full frame of the output image produces a single time-varying mean value estimate that is indicative of the intensity and extent of a leak. Laboratory experiments were conducted in which artificially created leaks on a simulated SSME background were produced and recorded from a visible wavelength video camera. This data was processed frame-by-frame over the time interval of interest using an image processor implementation of the leak detection algorithm. In addition, a 20 second video sequence of an actual SSME failure was analyzed using this technique. The resulting output image sequences and plots of the full frame mean value versus time verify the effectiveness of the system.
NASA Astrophysics Data System (ADS)
Wu, X.; Vahdati, M.; Sayma, A.; Imregun, M.
2005-03-01
This paper describes a large-scale aeroelasticity computation for an aero-engine core compressor. The computational domain includes all 17 bladerows, resulting in a mesh with over 68 million points. The Favre-averaged Navier Stokes equations are used to represent the flow in a non-linear time-accurate fashion on unstructured meshes of mixed elements. The structural model of the first two rotor bladerows is based on a standard finite element representation. The fluid mesh is moved at each time step according to the structural motion so that changes in blade aerodynamic damping and flow unsteadiness can be accommodated automatically. An efficient domain decomposition technique, where special care was taken to balance the memory requirement across processors, was developed as part of the work. The calculation was conducted in parallel mode on 128 CPUs of an SGI Origin 3000. Ten vibration cycles were obtained using over 2.2 CPU years, though the elapsed time was a week only. Steady-state flow measurements and predictions were found to be in good agreement. A comparison of the averaged unsteady flow and the steady-state flow revealed some discrepancies. It was concluded that, in due course, the methodology would be adopted by industry to perform routine numerical simulations of the unsteady flow through entire compressor assemblies with vibrating blades not only to minimise engine and rig tests but also to improve performance predictions.
NASA Astrophysics Data System (ADS)
Nagpal, Shaina; Gupta, Amit
2017-08-01
Free Space Optics (FSO) link exploits the tremendous network capacity and is capable of offering wireless communications similar to communications through optical fibres. However, FSO link is extremely weather dependent and the major effect on FSO links is due to adverse weather conditions like fog and snow. In this paper, an FSO link is designed using an array of receivers. The disparity of the link for very high attenuation conditions due to fog and snow is analysed using aperture averaging technique. Further effect of aperture averaging technique is investigated by comparing the systems using aperture averaging technique with systems not using aperture averaging technique. The performance of proposed model of FSO link has been evaluated in terms of Q factor, bit error rate (BER) and eye diagram.
Integrating WEPP into the WEPS infrastructure
USDA-ARS?s Scientific Manuscript database
The Wind Erosion Prediction System (WEPS) and the Water Erosion Prediction Project (WEPP) share a common modeling philosophy, that of moving away from primarily empirically based models based on indices or "average conditions", and toward a more process based approach which can be evaluated using ac...
Model Identification of Integrated ARMA Processes
ERIC Educational Resources Information Center
Stadnytska, Tetiana; Braun, Simone; Werner, Joachim
2008-01-01
This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…
Integration of social information by human groups
Granovskiy, Boris; Gold, Jason M.; Sumpter, David; Goldstone, Robert L.
2015-01-01
We consider a situation in which individuals search for accurate decisions without direct feedback on their accuracy but with information about the decisions made by peers in their group. The “wisdom of crowds” hypothesis states that the average judgment of many individuals can give a good estimate of, for example, the outcomes of sporting events and the answers to trivia questions. Two conditions for the application of wisdom of crowds are that estimates should be independent and unbiased. Here, we study how individuals integrate social information when answering trivia questions with answers that range between 0 and 100% (e.g., ‘What percentage of Americans are left-handed?’). We find that, consistent with the wisdom of crowds hypothesis, average performance improves with group size. However, individuals show a consistent bias to produce estimates that are insufficiently extreme. We find that social information provides significant, albeit small, improvement to group performance. Outliers with answers far from the correct answer move towards the position of the group mean. Given that these outliers also tend to be nearer to 50% than do the answers of other group members, this move creates group polarization away from 50%. By looking at individual performance over different questions we find that some people are more likely to be affected by social influence than others. There is also evidence that people differ in their competence in answering questions, but lack of competence is not significantly correlated with willingness to change guesses. We develop a mathematical model based on these results that postulates a cognitive process in which people first decide whether to take into account peer guesses, and if so, to move in the direction of these guesses. The size of the move is proportional to the distance between their own guess and the average guess of the group. This model closely approximates the distribution of guess movements and shows how outlying incorrect opinions can be systematically removed from a group resulting, in some situations, in improved group performance. However, improvement is only predicted for cases in which the initial guesses of individuals in the group are biased. PMID:26189568
Integration of Social Information by Human Groups.
Granovskiy, Boris; Gold, Jason M; Sumpter, David J T; Goldstone, Robert L
2015-07-01
We consider a situation in which individuals search for accurate decisions without direct feedback on their accuracy, but with information about the decisions made by peers in their group. The "wisdom of crowds" hypothesis states that the average judgment of many individuals can give a good estimate of, for example, the outcomes of sporting events and the answers to trivia questions. Two conditions for the application of wisdom of crowds are that estimates should be independent and unbiased. Here, we study how individuals integrate social information when answering trivia questions with answers that range between 0% and 100% (e.g., "What percentage of Americans are left-handed?"). We find that, consistent with the wisdom of crowds hypothesis, average performance improves with group size. However, individuals show a consistent bias to produce estimates that are insufficiently extreme. We find that social information provides significant, albeit small, improvement to group performance. Outliers with answers far from the correct answer move toward the position of the group mean. Given that these outliers also tend to be nearer to 50% than do the answers of other group members, this move creates group polarization away from 50%. By looking at individual performance over different questions we find that some people are more likely to be affected by social influence than others. There is also evidence that people differ in their competence in answering questions, but lack of competence is not significantly correlated with willingness to change guesses. We develop a mathematical model based on these results that postulates a cognitive process in which people first decide whether to take into account peer guesses, and if so, to move in the direction of these guesses. The size of the move is proportional to the distance between their own guess and the average guess of the group. This model closely approximates the distribution of guess movements and shows how outlying incorrect opinions can be systematically removed from a group resulting, in some situations, in improved group performance. However, improvement is only predicted for cases in which the initial guesses of individuals in the group are biased. Copyright © 2015 Cognitive Science Society, Inc.
B. Lane Rivenbark; C. Rhett Jackson
2004-01-01
Regional average evapotranspiration estimates developed by water balance techniques are frequently used to estimate average discharge in ungaged strttams. However, the lower stream size range for the validity of these techniques has not been explored. Flow records were collected and evaluated for 16 small streams in the Southern Appalachians to test whether the...
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
DOE Office of Scientific and Technical Information (OSTI.GOV)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.
2014-09-12
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less
Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network
Yu, Ying; Wang, Yirui; Tang, Zheng
2017-01-01
With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient. PMID:28246527
Wang, Kewei; Song, Wentao; Li, Jinping; Lu, Wu; Yu, Jiangang; Han, Xiaofeng
2016-05-01
The aim of this study is to forecast the incidence of bacillary dysentery with a prediction model. We collected the annual and monthly laboratory data of confirmed cases from January 2004 to December 2014. In this study, we applied an autoregressive integrated moving average (ARIMA) model to forecast bacillary dysentery incidence in Jiangsu, China. The ARIMA (1, 1, 1) × (1, 1, 2)12 model fitted exactly with the number of cases during January 2004 to December 2014. The fitted model was then used to predict bacillary dysentery incidence during the period January to August 2015, and the number of cases fell within the model's CI for the predicted number of cases during January-August 2015. This study shows that the ARIMA model fits the fluctuations in bacillary dysentery frequency, and it can be used for future forecasting when applied to bacillary dysentery prevention and control. © 2016 APJPH.