Sample records for moving belt interface

  1. Interface for liquid chromatograph-mass spectrometer

    DOEpatents

    Andresen, B.D.; Fought, E.R.

    1989-09-19

    A moving belt interface is described for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer. 8 figs.

  2. Interface for liquid chromatograph-mass spectrometer

    DOEpatents

    Andresen, Brian D.; Fought, Eric R.

    1989-01-01

    A moving belt interface for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer.

  3. Conceptual design of a Moving Belt Radiator (MBR) shuttle-attached experiment

    NASA Technical Reports Server (NTRS)

    Aguilar, Jerry L.

    1990-01-01

    The conceptual design of a shuttle-attached Moving Belt Radiator (MBR) experiment is presented. The MBR is an advanced radiator concept in which a rotating belt is used to radiate thermal energy to space. The experiment is developed with the primary focus being the verification of the dynamic characteristics of a rotating belt with a secondary objective of proving the thermal and sealing aspects in a reduced gravity, vacuum environment. The mechanical design, selection of the belt material and working fluid, a preliminary test plan, and program plan are presented. The strategy used for selecting the basic sizes and materials of the components are discussed. Shuttle and crew member requirements are presented with some options for increasing or decreasing the demands on the STS. An STS carrier and the criteria used in the selection process are presented. The proposed carrier for the Moving Belt Radiator experiment is the Hitchhiker-M. Safety issues are also listed with possible results. This experiment is designed so that a belt can be deployed, run at steady state conditions, run with dynamic perturbations imposed, verify the operation of the interface heat exchanger and seals, and finally be retracted into a stowed position for transport back to earth.

  4. ANALYSIS OF SELECTED CHEMICAL GROUPS BY LIQUID CHROMATOGRAPHY/MASS SPECTROMETRY

    EPA Science Inventory

    The use of the moving-belt liquid chromatographic interface in combination with mass spectrometry was evaluated for determining detection limits of selected members of various chemical classes. mong the chemical classes examined were benzidines, nitrosoamines, anilines, nitroarom...

  5. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    NASA Astrophysics Data System (ADS)

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-03-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system (x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient (∂p total/∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  6. A Numerical Simulation of Transport Phenomena During the Horizontal Single Belt Casting Process Using an Inclined Feeding System

    NASA Astrophysics Data System (ADS)

    Xu, Mianguang; Isac, Mihaiela; Guthrie, Roderick I. L.

    2018-06-01

    Horizontal single belt casting (HSBC) has great potential to replace current conventional continuous casting (CCC) processes for sheet metal production, by directly casting 3 to 1 mm sheet for the automobile industry. In the present paper, two-dimensional mathematical models were developed to study transport phenomena, for the case of an inclined wall feeding system for a liquid aluminum wrought alloy (AA6111). Based on the commercial software ANSYS FLUENT 14.5 and user-defined functions, a two-layer turbulence model was used to examine the fluid flow emanating from a slot nozzle set above a water-cooled, high-speed, steel belt. The Volume of Fluid (VOF) method was used to predict the shape of the melt-air interface. A transformed coordinate system ( x', y') was established in order to analyze the fluid flow on the inclined wall of the feeding system. The total pressure gauge gradient ( ∂p total/ ∂x) was used to describe the behavior of the melt film inside the slot nozzle of the head box. The modeling results show that during the melt film falling process, the total gauge pressure varies within the slot nozzle, which can decrease the stability of the falling film. The first impingement between the falling film and the inclined refractory wall of the feeding system gives rise to a local oscillation, and this influences the stability of the melt film moving downwards. At the rear meniscus position between the inclined wall and the moving belt, there is a clear vibration of the air-melt interface, together with a recirculation zone. The weak vibration of the air-melt interface could be induced by the periodic variation of the melt-air interface. Moreover, the formation of tiny air pockets is predicted. Finally, on the inclined wall of the feeding system, a suitable length of the transition area is needed to avoid over-acceleration of the melt film due to the force of gravity.

  7. A Revised Interface for the ARL Topodef Mobility Design Tool

    DTIC Science & Technology

    2012-04-01

    designed paths as though moving down a conveyor belt . Giving paths an existence independent of the nodes that travel along them not only makes their...A Revised Interface for the ARL Topodef Mobility Design Tool by Andrew J. Toth and Michael Christensen ARL-TR-5980 April 2012...Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by other

  8. Moving belt radiator development status

    NASA Technical Reports Server (NTRS)

    White, K. Alan

    1988-01-01

    Development of the Moving Belt Radiator (MBR) as an advanced space radiator concept is discussed. The ralative merits of Solid Belt (SBR), Liquid Belt (LBR), and Hybrid Belt (HBR) Radiators are described. Analytical and experimental efforts related to the dynamics of a rotating belt in microgravity are reviewed. The development of methods for transferring heat to the moving belt is discussed, and the results from several experimental investigations are summarized. Limited efforts related to the belt deployment and stowage, and to fabrication of a hybrid belt, are also discussed. Life limiting factors such as seal wear and micrometeroid resistance are identified. The results from various MBR point design studies for several power levels are compared with advanced Heat Pipe Radiator technology. MBR designs are shown to compare favorable at both 300 and 1000 K temperature levels. However, additional effort will be required to resolve critical technology issues and to demonstrate the advantage of MBR systems.

  9. Investigation of Moving Belt Radiator Technology Issues

    NASA Technical Reports Server (NTRS)

    Teagan, W. Peter; Aguilar, Jerry L.

    1994-01-01

    The development of an advanced spacecraft radiator technology is reported. The moving belt radiator is a thermal radiator concept with the promise of lower specific mass (per kW rejected) than that afforded by existing technologies. The results of a parametric study to estimate radiator mass for future space power systems is presented. It is shown that this technology can be scaled up to 200 MW for higher rejection temperatures. Several aspects of the design concept are discussed, including the dynamics of a large rotating belt in microgravity. The results of a computer code developed to model the belt dynamics are presented. A series of one-g experiments to investigate the dynamics of small belts is described. A comprehensive test program to investigate belt dynamics in microgravity aboard the NASA KC-135 aircraft is discussed. It was found that the desired circular shape can readily be achieved in microgravity. It is also shown that a rotating belt is stable when subjected to simulated attitude control maneuvers. Heat exchanger design is also investigated. Several sealing concepts were examined experimentally, and are discussed. Overall heat transfer coefficients to the rotating belt are presented. Material properties for various belt materials, including screen meshes, are also presented. The results presented in this report indicate that the moving belt radiator concept is technically feasible.

  10. Conceptual design of a moving belt radiator shuttle-attached experiments: Technical requirement Document

    NASA Technical Reports Server (NTRS)

    Aguilar, Jerry L.

    1989-01-01

    The technical requirements for a shuttle-attached Moving Belt Radiator (MBR) experiment are defined. The MBR is an advanced radiator concept in which a rotating belt radiates thermal energy to space. The requirements for integrating the MBR experiment in the shuttle bay are discussed. Requirements for the belt material and working fluid are outlined along with some possible options. The proposed size and relationship to a full scale Moving Belt Radiator are defined. The experiment is defined with the primary goal of dynamic testing and a secondary goal of demonstrating the sealing and heat transfer characteristics. A perturbation system which will simulate a docking maneuver or other type of short term acceleration is proposed for inclusion in the experimental apparatus. A deployment and retraction capability which will aid in evaluating the dynamics of a belt during such a maneuver is also described. The proposed test sequence for the experiment is presented. Details of the conceptual design are not presented herein, but rather in a separate Final Report.

  11. Challenging gait leads to stronger lower-limb kinematic synergies: The effects of walking within a more narrow pathway.

    PubMed

    Rosenblatt, N J; Latash, M L; Hurt, C P; Grabiner, M D

    2015-07-23

    Previous studies using the uncontrolled manifold (UCM) analysis demonstrated that during the swing phase of gait, multi-joint kinematic synergies act to stabilize, i.e., minimize the variance of, the mediolateral trajectory of the swinging limb. Importantly, these synergies are strongest during midswing, suggesting that during gait, individuals may employ strategies to avoid collisions between the limbs at this instance. The purpose of the current study was to test this hypothesis by quantifying whether the synergy index (ΔV) during the middle period of the swing phase of treadmill walking was affected when the width of the treadmill belt was narrowed, a task expected to increase the risk of limb collisions. Eleven healthy young adults walked on a dual-belt treadmill under two conditions: (1) dual-belt - both belts of the treadmill moved at 1.2 m/s (total width: 62.5 cm) and the subject walked with one foot on each of the moving belts and (2) single-belt - one treadmill belt moved at 1.2m/s while the other belt remained stationary and the subject walked with both feet on the moving belt (total width: 30.5 cm). During both conditions, motion capture recorded the positions of 22 passive reflective markers from which UCM analysis was used to quantify ΔV in the joint configuration space. Results indicate that ΔV during the middle-third of swing phase significantly increased by 20% during single-belt walking (p<.01). We interpret this as evidence that the stronger synergies at midswing are needed to stabilize the limb trajectory in order to reduce the risk of between-limb collisions during a period when the lower limbs are nearest each other in the frontal plane. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. The fall of a viscous thread onto a moving surface: a ‘fluid-mechanical sewing machine’

    NASA Astrophysics Data System (ADS)

    Chiu-Webster, S.; Lister, J. R.

    2006-12-01

    A viscous thread falling onto a steadily moving horizontal belt shows a surprisingly complex range of behaviour in experiments. Low belt speeds produce coiling, as might be expected from the behaviour of a thread falling onto a stationary surface. High belt speeds produce a steady thread, whose shape is predicted well by theory developed to describe a stretching viscous catenary with surface tension and inertia. Intermediate belt speeds show several novel modes of oscillation, which lay down a wide variety of patterns on the belt. The patterns include meanders, side kicks, slanted loops, braiding, figures-of-eight, Ws, and also period-doubled versions of figures-of-eight, meanders and coiling. The experimental boundary between steady and unsteady behaviour occurs at a slightly lower belt speed than the loss of the steady solution for a stretching catenary.

  13. Method and apparatus for scientific analysis under low temperature vacuum conditions

    DOEpatents

    Winefordner, James D.; Jones, Bradley T.

    1990-01-01

    A method and apparatus for scientific analysis of a sample under low temperature vacuum conditions uses a vacuum chamber with a conveyor belt disposed therein. One end of the conveyor belt is a cool end in thermal contact with the cold stage of a refrigerator, whereas the other end of the conveyor belt is a warm end spaced from the refrigerator. A septum allows injection of a sample into the vacuum chamber on top of the conveyor belt for spectroscopic or other analysis. The sample freezes on the conveyor belt at the cold end. One or more windows in the vacuum chamber housing allow spectroscopic analysis of the sample. Following the spectroscopic analysis, the conveyor belt may be moved such that the sample moves toward the warm end of the conveyor belt where upon it evaporates, thereby cleaning the conveyor belt. Instead of injecting the sample by way of a septum and use of a syringe and needle, the present device may be used in series with capillary-column gas chromatography or micro-bore high performance liquid chromatography.

  14. Lightweight moving radiators for heat rejection in space

    NASA Technical Reports Server (NTRS)

    Knapp, K.

    1981-01-01

    Low temperature droplet stream radiators, using nonmetallic fluids, can be used to radiate large amounts of waste heat from large space facilities. Moving belt radiators are suitable for use on a smaller scale, radiating as few as 10 kW from shuttle related operations. If appropriate seal technology can be developed, moving belt radiators may prove to be important for high temperature systems as well. Droplet stream radiators suitable for operation at peak temperatures near 300 K and 1000 K were studied using both freezing and nonfreezing droplets. Moving belt radiators were also investigated for operation in both temperature ranges. The potential mass and performance characteristics of both concepts were estimated on the basis of parametric variations of analytical point designs. These analyses included all consideration of the equipment required to operate the moving radiator system and take into account the mass of fluid lost by evaporation during mission lifetimes. Preliminary results indicate that low temperature droplet stream radiator appears to offer the greatest potential for improvement over conventional flat plate radiators.

  15. Synaptic ribbon. Conveyor belt or safety belt?

    PubMed

    Parsons, T D; Sterling, P

    2003-02-06

    The synaptic ribbon in neurons that release transmitter via graded potentials has been considered as a conveyor belt that actively moves vesicles toward their release sites. But evidence has accumulated to the contrary, and it now seems plausible that the ribbon serves instead as a safety belt to tether vesicles stably in mutual contact and thus facilitate multivesicular release by compound exocytosis.

  16. Conveyor with rotary airlock apparatus

    DOEpatents

    Kronbert, J.W.

    1993-01-01

    This invention is comprised of an apparatus for transferring objects from a first region to a second region, the first and second regions having differing atmospheric environments. The apparatus includes a shell having an entrance and an exit, a conveyer belt running through the shell from the entrance to the exit, and a horizontally mounted `revolving door` with at least four vanes revolving about its axis. The inner surface of the shell and the top surface of the conveyer belt act as opposing walls of the `revolving door`. The conveyer belt dips as it passes under but against the revolving vanes so as not to interfere with them but to engage at least two of the vanes and define thereby a moving chamber. Preferably, the conveyer belt has ridges or grooves on its surface that engage the edges of the vanes and act to rotate the vane assembly. Conduits are provided that communicate with the interior of the shell and allow the adjustment of the atmosphere of the moving chamber or recovery of constituents of the atmosphere of the first region from the moving chamber before they escape to the second region.

  17. Conveyor with rotary airlock apparatus

    DOEpatents

    Kronberg, James W.

    1995-01-01

    An apparatus for transferring objects from a first region to a second reg, the first and second regions having differing atmospheric environments. The apparatus includes a shell having an entrance and an exit, a conveyor belt running through the shell from the entrance to the exit, and a horizontally mounted "revolving door" with at least four vanes revolving about its axis. The inner surface of the shell and the top surface of the conveyor belt act as opposing walls of the "revolving door." The conveyor belt dips as it passes under but against the revolving vanes so as not to interfere with them but to engage at least two of the vanes and define thereby a moving chamber. Preferably, the conveyor belt has ridges or grooves on its surface that engage the edges of the vanes and act to rotate the vane assembly. Conduits are provided that communicate with the interior of the shell and allow the adjustment of the atmosphere of the moving chamber or recovery of constituents of the atmosphere of the first region from the moving chamber before they escape to the second region.

  18. Web of Pseudostreamer and Streamer Belts and their Interplanetary Signatures

    NASA Astrophysics Data System (ADS)

    Crooker, N. U.; Owens, M. J.; McPherron, R. L.

    2012-12-01

    A new method of identifying pseudostreamer and streamer belts on potential field source surface (PFSS) maps reveals how they interconnect to form a network or web-like pattern that expands to cover the Sun at solar maximum. The method is based upon calculating the distance dS between the photospheric footpoints of field lines that are uniformly spaced in longitude at the source surface. This distance peaks sharply under the large arcades characteristic of both pseudostreamer and streamer belts, where the former (latter) mark boundaries between coronal holes with the same (different) polarities. Thus the two kinds of belts are distinguished from each other by noting whether or not a change in magnetic polarity accompanies the peak, signaling passage of the heliospheric current sheet unique to the streamer belt. To compare the plasma and composition properties of pseudostreamer and streamer belts at 1 AU, we use 12 years of ACE data to perform superposed epoch analysis centered on stream interfaces in interaction regions, where the interfaces mark the trailing boundaries of what was originally slow flow. The interfaces are sorted according to whether they bound streamers or pseudostreamers by ballistically mapping them back to traces of dS across the source surface. Preliminary results indicate sharp drops in oxygen and carbon charge state ratios as well as the elemental abundance ratio Fe/O at both streamer and pseudostreamer boundaries. Combined with the web-like pattern of streamer and pseudostreamer belts, the results are consistent with the separatrix-web model of the slow solar wind first described by Antiochos et al. [Astrophys. J., 731, 112, 2011].

  19. Nonlinear vibration of a traveling belt with non-homogeneous boundaries

    NASA Astrophysics Data System (ADS)

    Ding, Hu; Lim, C. W.; Chen, Li-Qun

    2018-06-01

    Free and forced nonlinear vibrations of a traveling belt with non-homogeneous boundary conditions are studied. The axially moving materials in operation are always externally excited and produce strong vibrations. The moving materials with the homogeneous boundary condition are usually considered. In this paper, the non-homogeneous boundaries are introduced by the support wheels. Equilibrium deformation of the belt is produced by the non-homogeneous boundaries. In order to solve the equilibrium deformation, the differential and integral quadrature methods (DIQMs) are utilized to develop an iterative scheme. The influence of the equilibrium deformation on free and forced nonlinear vibrations of the belt is explored. The DIQMs are applied to solve the natural frequencies and forced resonance responses of transverse vibration around the equilibrium deformation. The Galerkin truncation method (GTM) is utilized to confirm the DIQMs' results. The numerical results demonstrate that the non-homogeneous boundary conditions cause the transverse vibration to deviate from the straight equilibrium, increase the natural frequencies, and lead to coexistence of square nonlinear terms and cubic nonlinear terms. Moreover, the influence of non-homogeneous boundaries can be exacerbated by the axial speed. Therefore, non-homogeneous boundary conditions of axially moving materials especially should be taken into account.

  20. A fluid-mechanical sewing machine

    NASA Astrophysics Data System (ADS)

    Lister, John; Chiu-Webster, Sunny

    2004-11-01

    It is a breakfast-table experience that when a viscous fluid thread falls a sufficient height onto a stationary horizontal surface the thread is undergoes a coiling instability. We describe experimental observations of a viscous thread falling onto a steadily moving horizontal belt. Low (or zero) belt speeds produce coiling as expected. High belt speeds produce a steady thread, whose shape is well-predicted by theory for a stretching catenary with surface tension and inertia. Intermediate belt speeds show various modes of oscillation, which produce a variety of `stitching' patterns on the belt. The onset of oscillations is predicted theoretically.

  1. Two biomechanical strategies for locomotor adaptation to split-belt treadmill walking in subjects with and without transtibial amputation.

    PubMed

    Selgrade, Brian P; Toney, Megan E; Chang, Young-Hui

    2017-02-28

    Locomotor adaptation is commonly studied using split-belt treadmill walking, in which each foot is placed on a belt moving at a different speed. As subjects adapt to split-belt walking, they reduce metabolic power, but the biomechanical mechanism behind this improved efficiency is unknown. Analyzing mechanical work performed by the legs and joints during split-belt adaptation could reveal this mechanism. Because ankle work in the step-to-step transition is more efficient than hip work, we hypothesized that control subjects would reduce hip work on the fast belt and increase ankle work during the step-to-step transition as they adapted. We further hypothesized that subjects with unilateral, trans-tibial amputation would instead increase propulsive work from their intact leg on the slow belt. Control subjects reduced hip work and shifted more ankle work to the step-to-step transition, supporting our hypothesis. Contrary to our second hypothesis, intact leg work, ankle work and hip work in amputees were unchanged during adaptation. Furthermore, all subjects increased collisional energy loss on the fast belt, but did not increase propulsive work. This was possible because subjects moved further backward during fast leg single support in late adaptation than in early adaptation, compensating by reducing backward movement in slow leg single support. In summary, subjects used two strategies to improve mechanical efficiency in split-belt walking adaptation: a CoM displacement strategy that allows for less forward propulsion on the fast belt; and, an ankle timing strategy that allows efficient ankle work in the step-to-step transition to increase while reducing inefficient hip work. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Human interface design using Button-type PEDOT electrode array in EIT

    NASA Astrophysics Data System (ADS)

    Wi, Hun; In Oh, Tong; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je

    2010-04-01

    Animal and human experiments using a multi-channel EIT system requires a cumbersome procedure to attach multiple electrodes. We have to ensure good contact of all electrodes and manage many lead wires during experiments. The problem becomes more severe as we increase the number of electrodes. These may limit the applicability of the imaging method in practice. Noting this technical difficulty, there have been a few trials to design human interface means such as electrode belts, helmets or rings. In this study, we developed an electrode belt for long-term monitoring of human lung ventilation. The belt includes 16 embossed electrodes which make good contact with the skin. The electrode is made by conductive polymer and metallic thread. Soft cushion and wide contact area minimize uncomfortable sensation and reduce contact impedances. The electrodes are attached to an elastic fabric belt at equal spacing. We describe details of its design and fabrication. Using the electrode belt and recently developed multi-frequency EIT system KHU Mark2, we show time-difference chest images of three human subjects during normal breathing cycles.

  3. Study on Mobile Object Positioning and Alarming System Based on the “Map World” in the Core Area of the Silk Road Economic Belt

    NASA Astrophysics Data System (ADS)

    Mu, Kai

    2017-02-01

    The established “Map World” on the National Geographic Information Public Service Platform offers free access to many geographic information in the Core Area of the Silk Road Economic Belt. Considering the special security situation and severe splittism and anti-splittism struggles in the Core Area of the Silk Road Economic Belt, a set of moving target positioning and alarming platform based on J2EE platform and B/S structure was designed and realized by combining the “Map World” data and global navigation satellite system. This platform solves various problems, such as effective combination of Global Navigation Satellite System (GNSS) and “Map World” resources, moving target alarming setting, inquiry of historical routes, system management, etc.

  4. Aircraft Crash Survival Design Guide. Volume 2. Aircraft Design Crash Impact Conditions and Human Tolerance

    DTIC Science & Technology

    1989-12-01

    abdomen and against the lower margin of the rib cagc This movement of the lap belt allows the pelvis to move forward under thc ’.p belt, causing severe...because of the asymmetry of the abdomen. 100 80 - 60 U. 0 40LETSRC 0 M RIGHT STRUCK./ 0 L -- L. . 0 50 100 150 200 250 TTI (MAX RIB) FIGURE 22...mathematical development: 0 The 24 vertebral bodies, the head, and the pelvis are rigid bodies constrained to move in the midsagittal plane. a Each rigid

  5. 30 CFR 75.1728 - Power-driven pulleys.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hands except on slow-moving equipment especially designed for hand feeding. (b) Pulleys of conveyors shall not be cleaned manually while the conveyor is in motion. (c) Coal spilled beneath belt conveyor... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1728 Power-driven pulleys. (a) Belts...

  6. 25. RW Meyer Sugar Mill: 18761889. Centrifugals, 1879, 1881. Manufacturer, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. RW Meyer Sugar Mill: 1876-1889. Centrifugals, 1879, 1881. Manufacturer, Unknown. Supplied by Honolulu Iron Works, Honolulu, Hawaii, 1879, 1881. View: After sugar was granulated and cooled it had to be dried and drained, completely separating the sugar crystals from the molasses. Revolving at 1200 rpm the inner basket drove the molasses outward into the stationary outer basket leaving dried sugar behind. The steam engine counter-shaft at the left was belt driven and belts running from the counter-shaft pulleys to the centrifugals' base-pulleys provided the necessary power. Part of the clutch system which moved the belt from a moving to a stationary pulley, thus turning the centrifugals on and off, is seen in Between the counter-shaft and the centrifugals. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  7. Vibration analysis on automatic take-up device of belt conveyor

    NASA Astrophysics Data System (ADS)

    Qin, Tailong; Wei, Jin

    2008-10-01

    Through introducing application condition of belt conveyor in the modern mining industry, the paper proposed, in the dynamic course of its starting, braking or loading, it would produce moving tension and elastic wave. And analyzed the factors cause the automatic take-up device of belt conveyor vibrating: the take-up device's structure and the elastic wave. Finally the paper proposed the measure to reduce vibration and carried on the modeling and simulation on the tension buffer device.

  8. Exploiting Continuous Scanning Laser Doppler Vibrometry in timing belt dynamic characterisation

    NASA Astrophysics Data System (ADS)

    Chiariotti, P.; Martarelli, M.; Castellini, P.

    2017-03-01

    Dynamic behaviour of timing belts has always interested the engineering community over the years. Nowadays, there are several numerical methods to predict the dynamics of these systems. However, the tuning of such models by experimental approaches still represents an issue: an accurate characterisation does require a measurement in operating conditions since the belt mounting condition might severely affect its dynamic behaviour. Moreover, since the belt is constantly moving during running conditions, non-contact measurement methods are needed. Laser Doppler Vibrometry (LDV) and imaging techniques do represent valid candidates for this purpose. This paper aims at describing the use of Continuous Scanning LDV (CSLDV) as a tool for the dynamic characterisation of timing belts in IC (Internal Combustion) engines (cylinder head). The high-spatial resolution data that can be collected in short testing time makes CSLDV highly suitable for such application. The measurement on a moving surface, however, represents a challenge for CSLDV. The paper discusses how the belt in-plane speed influences CSLDV signal and how an order-based multi-harmonic excitation might affect the recovery of Operational Deflection Shapes in a CSLDV test. A comparison with a standard Discrete Scanning LDV measurement is also given in order to show that a CSLDV test, if well designed, can indeed provide the same amount of information in a drastically reduced amount of time.

  9. KSC-04PD-2682

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter moves forward slowly as it begins its road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  10. KSC-04PD-2683

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Observers walk alongside the newly shod Crawler Transporter as it moves slowly forward. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  11. 49 CFR 571.209 - Standard No. 209; Seat belt assemblies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (1) Eye bolts, shoulder bolts, or other bolt used to secure the pelvic restraint of seat belt... connecting webbing to an eye bolt shall be provided with a retaining latch or keeper which shall not move...) Single attachment hook for connecting webbing to any eye bolt shall be tested in the following manner...

  12. 14 CFR 25.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...— (1) Proper use is made of seats, safety belts, and shoulder harnesses provided for in the design; and... likelihood of the upper torso restraint system (where installed) moving off the occupant's shoulder, and with... shoulder during the impact. (4) The lap safety belt must remain on the occupant's pelvis during the impact...

  13. 14 CFR 25.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...— (1) Proper use is made of seats, safety belts, and shoulder harnesses provided for in the design; and... likelihood of the upper torso restraint system (where installed) moving off the occupant's shoulder, and with... shoulder during the impact. (4) The lap safety belt must remain on the occupant's pelvis during the impact...

  14. 14 CFR 25.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...— (1) Proper use is made of seats, safety belts, and shoulder harnesses provided for in the design; and... likelihood of the upper torso restraint system (where installed) moving off the occupant's shoulder, and with... shoulder during the impact. (4) The lap safety belt must remain on the occupant's pelvis during the impact...

  15. 14 CFR 25.562 - Emergency landing dynamic conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...— (1) Proper use is made of seats, safety belts, and shoulder harnesses provided for in the design; and... likelihood of the upper torso restraint system (where installed) moving off the occupant's shoulder, and with... shoulder during the impact. (4) The lap safety belt must remain on the occupant's pelvis during the impact...

  16. A comparison of outer electron radiation belt dropouts during solar wind stream interface and magnetic cloud driven storms

    NASA Astrophysics Data System (ADS)

    Ogunjobi, O.; Sivakumar, V.; Mtumela, Z.

    2017-06-01

    Energetic electrons are trapped in the Earth's radiation belts which occupy a toroidal region between 3 and 7 \\hbox {R}E above the Earth's surface. Rapid loss of electrons from the radiation belts is known as dropouts. The source and loss mechanisms regulating the radiation belts population are not yet understood entirely, particularly during geomagnetic storm times. Nevertheless, the dominant loss mechanism may require an event based study to be better observed. Utilizing multiple data sources from the year 1997-2007, this study identifies radiation belt electron dropouts which are ultimately triggered when solar wind stream interfaces (SI) arrived at Earth, or when magnetic clouds (MC) arrived. Using superposed epoch analysis (SEA) technique, a synthesis of multiple observations is performed to reveal loss mechanism which might, perhaps, be a major contributor to radiation belt losses under SI and MC driven storms. Results show an abrupt slower decaying precipitation of electron peak (about 3000 counts/sec) on SI arrival within 5.05 < L < 6.05, which persist till 0.5 day before gradual recovery. This pattern is interpreted as an indication of depleted electrons from bounce lost cone via precipitating mechanism known as relativistic electron microburst. On the other hand, MC shows a pancake precipitating peak extending to lower L (Plasmapause); indicating a combination of electron cyclotron harmonic (ECH) and whistler mode waves as the contributing mechanisms.

  17. Idealized debris flow in flume with bed driven by a conveyor belt

    USGS Publications Warehouse

    Ling, Chi-Hai; Chen, Cheng-lung

    1989-01-01

    The generalized viscoplastic fluid (GVF) model is used to derive the theoretical expressions of two-dimensional velocities and surface profile for debris flow established in a flume with bed driven by a conveyor belt. The rheological parameters of the GVF model are evaluated through the comparison of theoretical results with measured data. A slip velocity of the established (steady) nonuniform flow on the moving bed (i.e., the conveyor belt) is observed, and a relation between the slip velocity and the velocity gradient at the bed is derived. Two belts, one rough and the other smooth, were tested. The flow profile in the flume is found to be linear and dependent on the roughness of the belt, but not much on its speed.

  18. Impact of the Illinois Seat Belt Use Law on Accidents, Deaths, and Injuries.

    ERIC Educational Resources Information Center

    Rock, Steven M.

    1992-01-01

    The impact of the 1985 Illinois seat belt law is explored using Box-Jenkins Auto-Regressive, Integrated Moving Averages (ARIMA) techniques and monthly accident statistical data from the state department of transportation for January-July 1990. A conservative estimate is that the law provides benefits of $15 million per month in Illinois. (SLD)

  19. KSC-04PD-2684

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter leaves tracks in the dirt as it moves forward on its road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  20. KSC-04PD-2685

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter leaves tracks in the dirt as it moves forward on its road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  1. Chaos on the conveyor belt.

    PubMed

    Sándor, Bulcsú; Járai-Szabó, Ferenc; Tél, Tamás; Néda, Zoltán

    2013-04-01

    The dynamics of a spring-block train placed on a moving conveyor belt is investigated both by simple experiments and computer simulations. The first block is connected by a spring to an external static point and, due to the dragging effect of the belt, the blocks undergo complex stick-slip dynamics. A qualitative agreement with the experimental results can be achieved only by taking into account the spatial inhomogeneity of the friction force on the belt's surface, modeled as noise. As a function of the velocity of the conveyor belt and the noise strength, the system exhibits complex, self-organized critical, sometimes chaotic, dynamics and phase transition-like behavior. Noise-induced chaos and intermittency is also observed. Simulations suggest that the maximum complexity of the dynamical states is achieved for a relatively small number of blocks (around five).

  2. Controls on reef development and the terrigenous-carbonate interface on a shallow shelf, Nicaragua (Central America)

    NASA Astrophysics Data System (ADS)

    Roberts, H. H.; Murray, S. P.

    1983-06-01

    Marine geology and physical oceanographic data collected during two field projects (˜4 months) on the Caribbean shelf of Nicaragua indicate a surprising dominance of carbonate deposition and reef growth on a shelf that is receiving an abnormally large volume of terrigenous sediments. High rainfall rates (˜400 500 cm/year), coupled with a warm tropical climate, encourage rapid denudation of the country's central volcanic highland and transport of large volumes of terrigenous sediment and fresh water to the coast. Estimates suggest that three times more fresh water and fifteen times more sediment are introduced per unit length of coastline than on the east coast of the United States. Distribution of the terrigenous facies, development of carbonate sediment suites, and the location and quality of viable reefs are strongly controlled by the dynamic interaction near the coasts of highly turbid fresh to brackish water effluents from thirteen rivers with clear marine waters of the shelf. Oceanic water from the central Caribbean drift current intersects the shelf and moves slowely in a dominant northwest direction toward the Yucatan Channel. A sluggish secondary gyre moves to the south toward Costa Rica. In contrast, the turbid coastal water is deflected to the south in response to density gradients, surface water slopes, and momentum supplied by the steady northeast trade winds. A distinct two-layered flow is commonly present in the sediment-rich coastal boundary zone, which is typically 10 20 km wide. The low-salinity upper layer is frictionally uncoupled from the ambient shelf water and therefore can expand out of the normally coherent coastal boundary zone during periods of abnormal flooding or times when instability is introduced into the northeast trades. Reef distribution, abruptness of the terrigenous-carbonate interface, and general shelf morphology reflect the long-term dynamic structure of the shelf waters. A smooth-bottomed ramp of siliciclastic sands to silts and clays mantles the inner shelf floor in a linear belt paralleling the coast. This belt generally corresponds to the western flank of the coastal boundary zone. Occurrence of reefs is generally confined to areas outside this zone. Terrigenous clays and silts of the inner shelf are abruptly (<20 km from the coast) replaced by Halimeda-rich sediment of the middle and outer shelf. Within the carbonate facies belt, reef complexes thrive as small, isolated masses; large, reef-capped platforms; reef fringes around islands; and shelfedge structures with vertical relief that can exceed 25 m. In general, the frequency and proliferation of reefs increase away from the turbid coastal boundary layer and toward the cooler and saltier water that upwells at the shelf margin.

  3. The design of RFID convey or belt gate systems using an antenna control unit.

    PubMed

    Park, Chong Ryol; Lee, Seung Joon; Eom, Ki Hwan

    2011-01-01

    This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID) antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPC)global for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance.

  4. The Design of RFID Convey or Belt Gate Systems Using an Antenna Control Unit

    PubMed Central

    Park, Chong Ryol; Lee, Seung Joon; Eom, Ki Hwan

    2011-01-01

    This paper proposes an efficient management system utilizing a Radio Frequency Identification (RFID) antenna control unit which is moving along with the path of boxes of materials on the conveyor belt by manipulating a motor. The proposed antenna control unit, which is driven by a motor and is located on top of the gate, has an array structure of two antennas with parallel connection. The array structure helps improve the directivity of antenna beam pattern and the readable RFID distance due to its configuration. In the experiments, as the control unit follows moving materials, the reading time has been improved by almost three-fold compared to an RFID system employing conventional fixed antennas. The proposed system also has a recognition rate of over 99% without additional antennas for detecting the sides of a box of materials. The recognition rate meets the conditions recommended by the Electronic Product Code glbal network (EPC)global for commercializing the system, with three antennas at a 20 dBm power of reader and a conveyor belt speed of 3.17 m/s. This will enable a host of new RFID conveyor belt gate systems with increased performance. PMID:22164119

  5. Method for determining molten metal pool level in twin-belt continuous casting machines

    DOEpatents

    Kaiser, Timothy D.; Daniel, Sabah S.; Dykes, Charles D.

    1989-03-21

    A method for determining level of molten metal in the input of a continuous metal casting machine having at least one endless, flexible, revolving casting belt with a surface which engages the molten metal to be cast and a reverse, cooled surface along which is directed high velocity liquid coolant includes the steps of predetermining the desired range of positions of the molten metal pool and positioning at least seven heat-sensing transducers in bearing contact with the moving reverse belt surface and spaced in upstream-downstream relationship relative to belt travel spanning the desired pool levels. A predetermined temperature threshold is set, somewhat above coolant temperature and the output signals of the transducer sensors are scanned regarding their output signals indicative of temperatures of the moving reverse belt surface. Position of the molten pool is determined using temperature interpolation between any successive pair of upstream-downstream spaced sensors, which follows confirmation that two succeeding downstream sensors are at temperature levels exceeding threshold temperature. The method accordingly provides high resolution for determining pool position, and verifies the determined position by utilizing full-strength signals from two succeeding downstream sensors. In addition, dual sensors are used at each position spanning the desired range of molten metal pool levels to provide redundancy, wherein only the higher temperature of each pair of sensors at a station is utilized.

  6. KSC-05PD-0178

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. New shoes adorn the Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight as it demonstrates its readiness for weight bearing by moving an unloaded 8,230,000-pound Mobile Launch Platform along the crawlerway. Its first road test on Jan. 21, following the replacement of all its shoes, was a success. Cracks appeared in the crawlers' shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program. Each crawler has 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds.

  7. 29 CFR 1917.151 - Machine guarding.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... restarting upon restoration of power. (7) The power supply to machines shall be turned off, locked out, and... contact with moving parts. (2) Belt, rope and chain drives shall be guarded to prevent employees from coming into contact with moving parts. (3) Gears, sprockets and chains shall be guarded to prevent...

  8. 29 CFR 1917.151 - Machine guarding.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... restarting upon restoration of power. (7) The power supply to machines shall be turned off, locked out, and... contact with moving parts. (2) Belt, rope and chain drives shall be guarded to prevent employees from coming into contact with moving parts. (3) Gears, sprockets and chains shall be guarded to prevent...

  9. 29 CFR 1917.151 - Machine guarding.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... restarting upon restoration of power. (7) The power supply to machines shall be turned off, locked out, and... contact with moving parts. (2) Belt, rope and chain drives shall be guarded to prevent employees from coming into contact with moving parts. (3) Gears, sprockets and chains shall be guarded to prevent...

  10. 29 CFR 1917.151 - Machine guarding.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... restarting upon restoration of power. (7) The power supply to machines shall be turned off, locked out, and... contact with moving parts. (2) Belt, rope and chain drives shall be guarded to prevent employees from coming into contact with moving parts. (3) Gears, sprockets and chains shall be guarded to prevent...

  11. 29 CFR 1917.151 - Machine guarding.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... restarting upon restoration of power. (7) The power supply to machines shall be turned off, locked out, and... contact with moving parts. (2) Belt, rope and chain drives shall be guarded to prevent employees from coming into contact with moving parts. (3) Gears, sprockets and chains shall be guarded to prevent...

  12. Moving belt metal detector

    NASA Astrophysics Data System (ADS)

    Nelson, Carl V.; Mendat, Deborah P.; Huynh, Toan B.

    2006-05-01

    The Johns Hopkins University Applied Physics Laboratory (APL) has developed a prototype metal detection survey system that will increase the search speed of conventional technology while maintaining high sensitivity. Higher search speeds will reduce the time to clear roads of landmines and improvised explosive devices (IED) and to locate unexploded ordnance (UXO) at Base Realignment and Closure (BRAC) sites, thus reducing remediation costs. The new survey sensor system is called the moving belt metal detector (MBMD) and operates by both increasing sensor speed over the ground while maintaining adequate sensor dwell time over the target for good signal-to-noise ratio (SNR) and reducing motion-induced sensor noise. The MBMD uses an array of metal detection sensors mounted on a flexible belt similar to a tank track. The belt motion is synchronized with the forward survey speed so individual sensor elements remain stationary relative to the ground. A single pulsed transmitter coil is configured to provide a uniform magnetic field along the length of the receivers in ground contact. Individual time-domain electromagnetic induction (EMI) receivers are designed to sense a single time-gate measurement of the total metal content. Each sensor module consists of a receiver coil, amplifier, digitizing electronics and a low power UHF wireless transmitter. This paper presents the survey system design concepts and metal detection data from various targets at several survey speeds. Although the laboratory prototype is designed to demonstrate metal detection survey speeds up to 10 m/s, higher speeds are achievable with a larger sensor array. In addition, the concept can be adapted to work with other sensor technologies not previously considered for moving platforms.

  13. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  14. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons

    DOE PAGES

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; ...

    2015-12-22

    The Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. So, our results demonstrate that the ULFmore » waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.« less

  15. Multi-port valve assembly

    DOEpatents

    Guggenheim, S. Frederic

    1986-01-01

    A multi-port fluid valve apparatus is used to control the flow of fluids through a plurality of valves and includes a web, which preferably is a stainless steel endless belt. The belt has an aperture therethrough and is progressed, under motor drive and control, so that its aperture is moved from one valve mechanism to another. Each of the valve mechanisms comprises a pair of valve blocks which are held in fluid-tight relationship against the belt. Each valve block consists of a block having a bore through which the fluid flows, a first seal surrounding the bore and a second seal surrounding the first seal, with the distance between the first and second seals being greater than the size of the belt aperture. In order to open a valve, the motor progresses the belt aperture to where it is aligned with the two bores of a pair of valve blocks, such alignment permitting a flow of the fluid through the valve. The valve is closed by movement of the belt aperture and its replacement, within the pair of valve blocks, by a solid portion of the belt.

  16. The Crustal Structure of the North-South Earthquake Belt in China Revealed from Deep Seismic Soundings and Gravity Data

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Guo, Lianghui; Shi, Lei; Li, Yonghua

    2018-01-01

    The North-South earthquake belt (NSEB) is one of the major earthquake regions in China. The studies of crustal structure play a great role in understanding tectonic evolution and in evaluating earthquake hazards in this region. However, some fundamental crustal parameters, especially crustal interface structure, are not clear in this region. In this paper, we reconstructed the crustal interface structure around the NSEB based on both the deep seismic sounding (DSS) data and the gravity data. We firstly reconstructed the crustal structure of crystalline basement (interface G), interface between upper and lower crusts (interface C) and Moho in the study area by compiling the results of 38 DSS profiles published previously. Then, we forwardly calculated the gravity anomalies caused by the interfaces G and C, and then subtracted them from the complete Bouguer gravity anomalies, yielding the regional gravity anomalies mainly due to the Moho interface. We then utilized a lateral-variable density interface inversion technique with constraints of the DSS data to invert the regional anomalies for the Moho depth model in the study area. The reliability of our Moho depth model was evaluated by comparing with other Moho depth models derived from other gravity inversion technique and receiver function analysis. Based on our Moho depth model, we mapped the crustal apparent density distribution in the study area for better understanding the geodynamics around the NSEB.

  17. Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes

    PubMed Central

    Pakhotin, I P; Drozdov, A Y; Shprits, Y Y; Boynton, R J; Subbotin, D A; Balikhin, M A

    2014-01-01

    This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed. PMID:26167432

  18. Mining The Sdss-moc Database For Main-belt Asteroid Solar Phase Behavior.

    NASA Astrophysics Data System (ADS)

    Truong, Thien-Tin; Hicks, M. D.

    2010-10-01

    The 4th Release of the Sloan Digital Sky Survey Moving Object Catalog (SDSS-MOC) contains 471569 moving object detections from 519 observing runs obtained up to March 2007. Of these, 220101 observations were linked with 104449 known small bodies, with 2150 asteroids sampled at least 10 times. It is our goal to mine this database in order to extract solar phase curve information for a large number of main-belt asteroids of different dynamical and taxonomic classes. We found that a simple linear phase curve fit allowed us to reject data contaminated by intrinsic rotational lightcurves and other effects. As expected, a running mean of solar phase coefficient is strongly correlated with orbital elements, with the inner main-belt dominated by bright S-type asteroids and transitioning to darker C and D-type asteroids with steeper solar phase slopes. We shall fit the empirical H-G model to our 2150 multi-sampled asteroids and correlate these parameters with spectral type derived from the SDSS colors and position within the asteroid belt. Our data should also allow us to constrain solar phase reddening for a variety of taxonomic classes. We shall discuss errors induced by the standard "g=0.15" assumption made in absolute magnitude determination, which may slightly affect number-size distribution models.

  19. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    PubMed

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-02

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems.

  20. Bending at the base of a dragged-out viscous thread

    NASA Astrophysics Data System (ADS)

    Blount, Maurice; Lister, John

    2007-11-01

    We consider steady flow of a slender viscous thread falling from a nozzle onto a moving horizontal belt. We analyse the asymptotic limit of a very slender thread, and show that it has a boundary-layer structure in which bending stresses only become important near the belt, where they support a vertical stress and allow the velocity and rolling conditions to be satisfied. The outer solution is analogous to a viscous catenary, with velocity fixed at the belt and at the nozzle. There are three asymptotic regimes, with distinct structures, corresponding to the cases that the belt speed is larger than, smaller than, or close to the velocity of a freely falling thread. The implications for the onset and amplitude of meanders in the `fluid-mechanical sewing machine' are explored.

  1. Three-dimensional local ALE-FEM method for fluid flow in domains containing moving boundaries/objects interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrington, David Bradley; Monayem, A. K. M.; Mazumder, H.

    2015-03-05

    A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is amore » fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.« less

  2. KSC-2012-4560

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – Workers help guide the United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard as it moves to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  3. KSC-2012-4558

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – Workers help guide the United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard as it moves to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  4. KSC-2012-4559

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – Workers help guide the United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard as it moves to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  5. KSC-04PD-2140

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. A worker watches as the giant-sized gear (left side) and sprocket (right side) is moved. It will be installed on a Crawler-Tranporter (CT). The drive sprocket turns the belt on the CT. The sprocket is mated to the gear that attaches to the drive motor. The CT travels on eight tracked tread belts, each containing 57 tread belt shoes, for a combined weight of 957,600 pounds. The CT carries the Space Shuttle atop its Mobile Launcher Platform, adding another 12 million pounds, from the Vehicle Assembly Building to the launch pad. NASA and United Space Alliance (USA) CT system engineers and USA technicians are repairing the sprockets and rollers on each belt before new shoes are installed. Replacement of the sprockets, gears and shoes is part of the most extensive maintenance work performed on the CT in its history.

  6. Unique characteristics of motor adaptation during walking in young children.

    PubMed

    Musselman, Kristin E; Patrick, Susan K; Vasudevan, Erin V L; Bastian, Amy J; Yang, Jaynie F

    2011-05-01

    Children show precocious ability in the learning of languages; is this the case with motor learning? We used split-belt walking to probe motor adaptation (a form of motor learning) in children. Data from 27 children (ages 8-36 mo) were compared with those from 10 adults. Children walked with the treadmill belts at the same speed (tied belt), followed by walking with the belts moving at different speeds (split belt) for 8-10 min, followed again by tied-belt walking (postsplit). Initial asymmetries in temporal coordination (i.e., double support time) induced by split-belt walking were slowly reduced, with most children showing an aftereffect (i.e., asymmetry in the opposite direction to the initial) in the early postsplit period, indicative of learning. In contrast, asymmetries in spatial coordination (i.e., center of oscillation) persisted during split-belt walking and no aftereffect was seen. Step length, a measure of both spatial and temporal coordination, showed intermediate effects. The time course of learning in double support and step length was slower in children than in adults. Moreover, there was a significant negative correlation between the size of the initial asymmetry during early split-belt walking (called error) and the aftereffect for step length. Hence, children may have more difficulty learning when the errors are large. The findings further suggest that the mechanisms controlling temporal and spatial adaptation are different and mature at different times.

  7. Discovery of the candidate Kuiper belt object 1992 QB1

    NASA Astrophysics Data System (ADS)

    Jewitt, D.; Luu, J.

    1993-04-01

    The discovery of a new faint object in the outer solar system, 1992 QB1, moving beyond the orbit of Neptune is reported. It is suggested that the 1992 QB1 may represent the first detection of a member of the Kuiper belt (Edgworth, 1949; Kuiper, 1951), the hypothesized population of objects beyond Neptune and a possible source of the short-period comets, as suggested by Whipple (1964), Fernandez (1980), and Duncan et al. (1988).

  8. Colors of Inner Disk Classical Kuiper Belt Objects

    NASA Astrophysics Data System (ADS)

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J.

    2010-07-01

    We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten inner belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.

  9. COLORS OF INNER DISK CLASSICAL KUIPER BELT OBJECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J., E-mail: wromanishin@ou.ed, E-mail: Stephen.Tegler@nau.ed, E-mail: gjc@specola.v

    2010-07-15

    We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten innermore » belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.« less

  10. Safety Assessment of TACOM’s Ride Motion Simulator

    DTIC Science & Technology

    1990-01-24

    level (1300 to 1800 psi). 24 Step 16. Pressurize the system by moving the main pressure switch to "ON." Wait for the roll, pitch, and yaw error signals...the appropriate seat/shoulder/safety belts and harnesses. Carefully, help the test subject dismount. Step 41. Flip the main pressure switch on the...Dismount the test subject. Step 6. Move the main pressure switch to the "OFF" position. This will block any hydraulic flow to the system. Step 7. Move the

  11. Anomalous deepening of a belt of intraslab earthquakes in the Pacific slab crust under Kanto, central Japan: Possible anomalous thermal shielding, dehydration reactions, and seismicity caused by shallower cold slab material

    USGS Publications Warehouse

    Hasegawa, A.; Nakajima, J.; Kita, S.; Okada, T.; Matsuzawa, T.; Kirby, S.H.

    2007-01-01

    A belt of intraslab seismicity in the Pacific slab crust parallel to iso-depth contours of the plate interface has been found beneath Hokkaido and Tohoku. Hypocenter relocations have shown that this seismic belt does not run parallel to but obliquely to the iso-depth contours beneath Kanto, deepening toward the north from ???100 km to ???140 km depth. The depth limit of the contact zone with the overlying Philippine Sea slab is located close to and parallel to this obliquely oriented seismic belt, suggesting that the deepening of the seismic belt there is caused by the contact with the overlying slab. The contact with this cold slab hinders the heating of the Pacific slab crust by hot mantle wedge, which would cause delay of eclogite-forming phase transformations and hence deepening of the seismic belt there. The depth limit of the subducting low-velocity crust also deepens toward the north, supporting this idea. Copyright 2007 by the American Geophysical Union.

  12. Band of Rubble

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This artist's animation illustrates a massive asteroid belt in orbit around a star the same age and size as our Sun. Evidence for this possible belt was discovered by NASA's Spitzer Space Telescope when it spotted warm dust around the star, presumably from asteroids smashing together.

    The view starts from outside the belt, where planets like the one shown here might possibly reside, then moves into to the dusty belt itself. A collision between two asteroids is depicted near the end of the movie. Collisions like this replenish the dust in the asteroid belt, making it detectable to Spitzer.

    The alien belt circles a faint, nearby star called HD 69830 located 41 light-years away in the constellation Puppis. Compared to our own solar system's asteroid belt, this one is larger and closer to its star - it is 25 times as massive, and lies just inside an orbit equivalent to that of Venus. Our asteroid belt circles between the orbits of Mars and Jupiter.

    Because Jupiter acts as an outer wall to our asteroid belt, shepherding its debris into a series of bands, it is possible that an unseen planet is likewise marshalling this belt's rubble. Previous observations using the radial velocity technique did not locate any large gas giant planets, indicating that any planets present in this system would have to be the size of Saturn or smaller.

    Asteroids are chunks of rock from 'failed' planets, which never managed to coalesce into full-sized planets. Asteroid belts can be thought of as construction sites that accompany the building of rocky planets.

  13. Juno Taking Shape

    NASA Image and Video Library

    2010-04-06

    Assembly began April 1, 2010, for NASA Juno spacecraft. Workers at Lockheed Martin Space Systems in Denver, Colorado are moving into place the vault that will protect the spacecraft sensitive electronics from Jupiter intense radiation belts.

  14. Vital Signs: Seat Belt Use Among Long-Haul Truck Drivers — United States, 2010

    PubMed Central

    Chen, Guang X.; Collins, James W.; Sieber, W. Karl; Pratt, Stephanie G.; Rodríguez-Acosta, Rosa L.; Lincoln, Jennifer E.; Birdsey, Jan; Hitchcock, Edward M.; Robinson, Cynthia F.

    2015-01-01

    Background Motor vehicle crashes were the leading cause of occupational fatalities in the United States in 2012, accounting for 25% of deaths. Truck drivers accounted for 46% of these deaths. This study estimates the prevalence of seat belt use and identifies factors associated with nonuse of seat belts among long-haul truck drivers (LHTDs), a group of workers at high risk for fatalities resulting from truck crashes. Methods CDC analyzed data from its 2010 national survey of LHTD health and injury. A total of 1,265 drivers completed the survey interview. Logistic regression was used to examine the association between seat belt nonuse and risk factors. Results An estimated 86.1% of LHTDs reported often using a seat belt, 7.8% used it sometimes, and 6.0% never. Reporting never using a belt was associated with often driving ≥10 mph (16 kph) over the speed limit (adjusted odds ratio [AOR] = 2.9), working for a company with no written safety program (AOR = 2.8), receiving two or more tickets for moving violations in the preceding 12 months (AOR = 2.2), living in a state without a primary belt law (AOR = 2.1); and being female (AOR = 2.3). Conclusions Approximately 14% of LHTDs are at increased risk for injury and death because they do not use a seat belt on every trip. Safety programs and other management interventions, engineering changes, and design changes might increase seat belt use among LHTDs. Implications for Public Health Primary state belt laws can help increase belt use among LHTDs. Manufacturers can use recently collected anthropometric data to design better-fitting and more comfortable seat belt systems. PMID:25742382

  15. KSC-2012-4353

    NASA Image and Video Library

    2012-08-10

    CAPE CANAVERAL, Fla. – The Radiation Belt Storm Probes, or RBSP, spacecraft are moved inside their payload fairing on the payload transporter from the Astrotech payload processing facility in Titusville, Fla. to Space Launch Complex-41 at Cape Canaveral Air Force Station. The fairing, which holds the twin RBSP spacecraft, will be lifted to the top of a United Launch Alliance Atlas V rocket for launch later in August. The two spacecraft are designed to study the Van Allen radiation belts in unprecedented detail. Photo credit: NASA/Dmitri Gerondidakis

  16. HUBBLE DETECTION OF COMET NUCLEUS AT FRINGE OF SOLAR SYSTEM

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is sample data from NASA's Hubble Space Telescope that illustrates the detection of comets in the Kuiper Belt, a region of space beyond the orbit of the planet Neptune. This pair of images, taken with the Wide Field Planetary Camera 2 (WFPC2), shows one of the candidate Kuiper Belt objects found with Hubble. Believed to be an icy comet nucleus several miles across, the object is so distant and faint that Hubble's search is the equivalent of finding the proverbial needle-in-haystack. Each photo is a 5-hour exposure of a piece of sky carefully selected such that it is nearly devoid of background stars and galaxies that could mask the elusive comet. The left image, taken on August 22, 1994, shows the candidate comet object (inside circle) embedded in the background. The right picture, take of the same region one hour forty-five minutes later shows the object has apparently moved in the predicted direction and rate of motion for a kuiper belt member. The dotted line on the images is a possible orbit that this Kuiper belt comet is following. A star (lower right corner) and a galaxy (upper right corner) provide a static background reference. In addition, other objects in the picture have not moved during this time, indicating they are outside our solar system. Through this search technique astronomers have identified 29 candidate comet nuclei belonging to an estimated population of 200 million particles orbiting the edge of our solar system. The Kupier Belt was theorized 40 years ago, and its larger members detected several years ago. However, Hubble has found the underlying population of normal comet-sized bodies. Credit: A. Cochran (University of Texas) and NASA

  17. Twin-belt continuous caster with containment and cooling of the exiting cast product for enabling high-speed casting of molten-center product

    DOEpatents

    Dykes, Charles D.; Daniel, Sabah S.; Wood, J. F. Barry

    1990-02-20

    In continuously casting molten metal into cast product by a twin-belt machine, it is desirable to achieve dramatic increases in speed (linear feet per minute) at which cast product exits the machine, particularly in installations where steel cast product is intended to feed a downstream regular rolling mill (as distinct from a planetary mill) operating in tandem with the twin-belt caster. Such high-speed casting produces product with a relatively thin shell and molten interior, and the shell tends to bulge outwardly due to metallostatic head pressure of the molten center. A number of cooperative features enable high-speed, twin-belt casting: (1) Each casting belt is slidably supported adjacent to the caster exit pulley for bulge control and enhanced cooling of cast product. (2) Lateral skew steering of each belt provides an effective increase in moving mold length plus a continuity of heat transfer not obtained with prior art belt steering apparatus. (3) The exiting slab is contained and supported downstream from the casting machine to prevent bulging of the shell of the cast product, and (4) spray cooling is incorporated in the exit containment apparatus for secondary cooling of cast product.

  18. Estimating seat belt effectiveness using matched-pair cohort methods.

    PubMed

    Cummings, Peter; Wells, James D; Rivara, Frederick P

    2003-01-01

    Using US data for 1986-1998 fatal crashes, we employed matched-pair analysis methods to estimate that the relative risk of death among belted compared with unbelted occupants was 0.39 (95% confidence interval (CI) 0.37-0.41). This differs from relative risk estimates of about 0.55 in studies that used crash data collected prior to 1986. Using 1975-1998 data, we examined and rejected three theories that might explain the difference between our estimate and older estimates: (1) differences in the analysis methods; (2) changes related to car model year; (3) changes in crash characteristics over time. A fourth theory, that the introduction of seat belt laws would induce some survivors to claim belt use when they were not restrained, could explain part of the difference in our estimate and older estimates; but even in states without seat belt laws, from 1986 through 1998, the relative risk estimate was 0.45 (95% CI 0.39-0.52). All of the difference between our estimate and older estimates could be explained by some misclassification of seat belt use. Relative risk estimates would move away from 1, toward their true value, if misclassification of both the belted and unbelted decreased over time, or if the degree of misclassification remained constant, as the prevalence of belt use increased. We conclude that estimates of seat belt effects based upon data prior to 1986 may be biased toward 1 by misclassification.

  19. Watershed regressions for pesticides (warp) models for predicting atrazine concentrations in Corn Belt streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.

    2012-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, are improved for application to the United States (U.S.) Corn Belt region by developing region-specific models that include watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. The WARP-CB models accounted for 53 to 62% of the variability in the various concentration statistics among the model-development sites. Model predictions were within a factor of 5 of the observed concentration statistic for over 90% of the model-development sites. The WARP-CB residuals and uncertainty are lower than those of the National WARP model for the same sites. Although atrazine-use intensity is the most important explanatory variable in the National WARP models, it is not a significant variable in the WARP-CB models. The WARP-CB models provide improved predictions for Corn Belt streams draining watersheds with atrazine-use intensities of 17 kg/km2 of watershed area or greater.

  20. Modelling and simulation of a moving interface problem: freeze drying of black tea extract

    NASA Astrophysics Data System (ADS)

    Aydin, Ebubekir Sıddık; Yucel, Ozgun; Sadikoglu, Hasan

    2017-06-01

    The moving interface separates the material that is subjected to the freeze drying process as dried and frozen. Therefore, the accurate modeling the moving interface reduces the process time and energy consumption by improving the heat and mass transfer predictions during the process. To describe the dynamic behavior of the drying stages of the freeze-drying, a case study of brewed black tea extract in storage trays including moving interface was modeled that the heat and mass transfer equations were solved using orthogonal collocation method based on Jacobian polynomial approximation. Transport parameters and physical properties describing the freeze drying of black tea extract were evaluated by fitting the experimental data using Levenberg-Marquardt algorithm. Experimental results showed good agreement with the theoretical predictions.

  1. National occupant protection use survey : controlled intersection study

    DOT National Transportation Integrated Search

    1995-05-01

    In late 1994, NHTSA conducted the National Occupant Protection Use Survey : (NOPUS). NOPUS is composed of three separate studies: the moving traffic study : which provides information on overall shoulder belt use, the controlled : intersection study ...

  2. Active Asteroids in the NEO Population

    NASA Astrophysics Data System (ADS)

    Jenniskens, Peter

    2016-01-01

    Some main-belt asteroids evolve into near-Earth objects. They can then experience the same meteoroid-producing phenomena as active asteroids in the main belt. If so, they would produce meteoroid streams, some of which evolve to intersect Earth's orbit and produce meteor showers at Earth. Only few of those are known. Meteoroid streams that move in orbits with Tisserand parameter well in excess of 3 are the Geminids and Daytime Sextantids of the Phaethon complex and the lesser known epsilon Pegasids. The observed activity appears to be related to nearly whole scale disintegrations, rather than dust ejection from volatile outgassing as observed in active comets. There is only a small population of asteroids with a main-belt origin that recently disintegrated into meteoroid streams.

  3. KSC-2012-3883

    NASA Image and Video Library

    2012-07-13

    CAPE CANAVERAL, Fla. - At Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the first stage of the United Launch Alliance Atlas V rocket has been moved into the Vertical Integration Facility. The Atlas V is being prepared for the Radiation Belt Storm Probes, or RBSP, mission. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Cory Huston

  4. KSC-2012-3884

    NASA Image and Video Library

    2012-07-13

    CAPE CANAVERAL, Fla. - At Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the first stage of the United Launch Alliance Atlas V rocket has been moved into the Vertical Integration Facility. The Atlas V is being prepared for the Radiation Belt Storm Probes, or RBSP, mission. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Cory Huston

  5. Numerical Simulation of the ``Fluid Mechanical Sewing Machine''

    NASA Astrophysics Data System (ADS)

    Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil

    2011-11-01

    A thin thread of viscous fluid falling onto a moving conveyor belt generates a wealth of complex ``stitch'' patterns depending on the belt speed and the fall height. To understand the rich nonlinear dynamics of this system, we have developed a new numerical code for simulating unsteady viscous threads, based on a discrete description of the geometry and a variational formulation for the viscous stresses. The code successfully reproduces all major features of the experimental state diagram of Morris et al. (Phys. Rev. E 2008). Fourier analysis of the motion of the thread's contact point with the belt suggests a new classification of the observed patterns, and reveals that the system behaves as a nonlinear oscillator coupling the pendulum modes of the thread.

  6. Deconstructing the conveyor belt.

    PubMed

    Lozier, M Susan

    2010-06-18

    For the past several decades, oceanographers have embraced the dominant paradigm that the ocean's meridional overturning circulation operates like a conveyor belt, transporting cold waters equatorward at depth and warm waters poleward at the surface. Within this paradigm, the conveyor, driven by changes in deepwater production at high latitudes, moves deep waters and their attendant properties continuously along western boundary currents and returns surface waters unimpeded to deepwater formation sites. A number of studies conducted over the past few years have challenged this paradigm by revealing the vital role of the ocean's eddy and wind fields in establishing the structure and variability of the ocean's overturning. Here, we review those studies and discuss how they have collectively changed our view of the simple conveyor-belt model.

  7. Kinesthetic Force Feedback and Belt Control for the Treadport Locomotion Interface.

    PubMed

    Hejrati, Babak; Crandall, Kyle L; Hollerbach, John M; Abbott, Jake J

    2015-01-01

    This paper describes an improved control system for the Treadport immersive locomotion interface, with results that generalize to any treadmill that utilizes an actuated tether to enable self-selected walking speed. A new belt controller is implemented to regulate the user's position; when combined with the user's own volition, this controller also enables the user to naturally self-select their walking speed as they would when walking over ground. A new kinesthetic-force-feedback controller is designed for the tether that applies forces to the user's torso. This new controller is derived based on maintaining the user's sense of balance during belt acceleration, rather than by rendering an inertial force as was done in our prior work. Based on the results of a human-subjects study, the improvements in both controllers significantly contribute to an improved perception of realistic walking on the Treadport. The improved control system uses intuitive dynamic-system and anatomical parameters and requires no ad hoc gain tuning. The control system simply requires three measurements to be made for a given user: the user's mass, the user's height, and the height of the tether attachment point on the user's torso.

  8. Finding Kuiper Belt Objects Below the Detection Limit

    NASA Astrophysics Data System (ADS)

    Whidden, Peter; Kalmbach, Bryce; Bektesevic, Dino; Connolly, Andrew; Jones, Lynne; Smotherman, Hayden; Becker, Andrew

    2018-01-01

    We demonstrate a novel approach for uncovering the signatures of moving objects (e.g. Kuiper Belt Objects) below the detection thresholds of single astronomical images. To do so, we will employ a matched filter moving at specific rates of proposed orbits through a time-domain dataset. This is analogous to the better-known "shift-and-stack" method; however it uses neither direct shifting nor stacking of the image pixels. Instead of resampling the raw pixels to create an image stack, we will instead integrate the object detection probabilities across multiple single-epoch images to accrue support for a proposed orbit. The filtering kernel provides a measure of the probability that an object is present along a given orbit, and enables the user to make principled decisions about when the search has been successful, and when it may be terminated. The results we present here utilize GPUs to speed up the search by two orders of magnitudes over CPU implementations.

  9. Complex dynamics at the interface between wild and domestic viruses of finfish

    USGS Publications Warehouse

    Kurath, G.; Winton, J.

    2011-01-01

    Viral traffic occurs readily between wild and domesticated stocks of finfish because aquatic environments have greater connectivity than their terrestrial counterparts and because the global expansion and dynamic nature of intensive aquaculture provide multiple pathways of transmission and unique drivers of virus adaptation. Supported by examples from the literature, we provide reasons why viruses move from wild fish reservoirs to infect domestic fish in aquaculture more readily than 'domestic' viruses move across the interface to infect wild stocks. We also hypothesize that 'wild' viruses moving across the interface to domestic populations of finfish are more frequently associated with disease outbreaks and host switches compared to domestic viruses that cross the interface to infect wild fish.

  10. KSC-2012-4066

    NASA Image and Video Library

    2012-07-27

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians use a crane to move the Radiation Belt Storm Probes, or RBSP, spacecraft A into position for stacking atop RBSP B. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann

  11. KSC-2012-4069

    NASA Image and Video Library

    2012-07-27

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians use a crane to move the Radiation Belt Storm Probes, or RBSP, spacecraft A into position for stacking atop RBSP B. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann

  12. KSC-2012-4068

    NASA Image and Video Library

    2012-07-27

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians use a crane to move the Radiation Belt Storm Probes, or RBSP, spacecraft A into position for stacking atop RBSP B. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann

  13. KSC-2012-4067

    NASA Image and Video Library

    2012-07-27

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians use a crane to move the Radiation Belt Storm Probes, or RBSP, spacecraft A into position for stacking atop RBSP B. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Jim Grossmann

  14. Triangular Libration Points in the CR3BP with Radiation, Triaxiality and Potential from a Belt

    NASA Astrophysics Data System (ADS)

    Singh, Jagadish; Taura, Joel John

    2017-07-01

    In this paper the equations of motion of the circular restricted three body problem is modified to include radiation of the bigger primary, triaxiality of the smaller primary; and gravitational potential created by a belt. We have obtained that due to the perturbations, the locations of the triangular libration points and their linear stability are affected. The points move towards the bigger primary due to the resultant effect of the perturbations. Triangular libration points are stable for 0<μ<μc0<μ<μc and unstable for μc≤μ≤12μc≤μ≤12, where μcμc is the critical mass ratio affected by the perturbations. The radiation of the bigger primary and triaxiality of the smaller primary have destabilizing propensities, whereas the potential created by the belt has stabilizing propensity. This model could be applied in the study of the motion of a dust particle near radiating -triaxial binary system surrounded by a belt.

  15. Punched belt hole position deviation analysis of float type water level gauge

    NASA Astrophysics Data System (ADS)

    Mao, Chunlei; Wang, Tao; Fu, Weijie; Li, Lianhui

    2018-03-01

    The key parts of the float type water level gauge instrument is perforated belt, The size and tolerance requirements of its aperture is: (1) alternation of 100+0.2 and 100-0.2, (2) 200±0.1, (3) 1000±0.15, (4) 10000±0.2. The single hole position: alternation of 100+0.2 and 100-0.2; double: 200±0.1, and ensure the best hole position error avoidance tends to be one-way, that is to say: when the punched belt combined with a water wheel rotating line moving, The hole position error to single direction increase or decrease, caused the water level nail gradually and close to the edge of the hole, and then edge and final punched belt was lifted. This paper uses the laser drilling process of steel strip for data collection and analysis. It is found that this method cannot meet the tolerance requirements and the double stamping processing method with adjustable cylindrical pin is feasible.

  16. Modelling Technique for Demonstrating Gravity Collapse Structures in Jointed Rock.

    ERIC Educational Resources Information Center

    Stimpson, B.

    1979-01-01

    Described is a base-friction modeling technique for studying the development of collapse structures in jointed rocks. A moving belt beneath weak material is designed to simulate gravity. A description is given of the model frame construction. (Author/SA)

  17. Precise hypocenter distribution and earthquake generating and stress in and around the upper-plane seismic belt in the subducting Pacific slab beneath NE Japan

    NASA Astrophysics Data System (ADS)

    Kita, S.; Okada, T.; Nakajima, J.; Matsuzawa, T.; Uchida, N.; Hasegawa, A.

    2007-12-01

    1. Introduction We found an intraslab seismic belt (upper-plane seismic belt) in the upper plane of the double seismic zone within the Pacific slab, running interface at depths of 70-100km beneath the forearc area. The location of the deeper limits of this belt appears to correspond to one of the facies boundaries (from jadeite lawsonite blueschist to lawsonite amphibole eclogite) in the oceanic crust [Kita et al., 2006, GRL]. In this study, we precisely relocated intraslab earthquakes by using travel time differences calculated by the waveform cross-spectrum analysis to obtain more detailed distribution of the upper plane-seismic belt within the Pacific slab beneath NE Japan. We also discuss the stress field in the slab by examining focal mechanisms of the earthquakes. 2. Data and Method We relocated events at depths of 50-00 km for the period from March 2003 to November 2006 from the JMA earthquake catalog. We applied the double-difference hypocenter location method (DDLM) by Waldhauser and Ellsworth (2000) to the arrival time data of the events. We use relative earthquake arrival times determined both by the waveform cross-spectrum analysis and by the catalog-picking data. We also determine focal mechanisms using the P wave polarity. 3. Spatial distribution of relocated hypocenters In the upper portion of the slab crust, seismicity is very active and distributed relatively homogeneously at depths of about 70-100km parallel to the volcanic front, where the upper-plane seismic belt has been found. In the lower portion of slab crust and/or the uppermost portion of the slab mantle, seismicity is spatially very limited to some small areas (each size is about 20 x 20km) at depths around 65km. Two of them correspond to the aftershock area of the 2003 Miyagi (M7.1) intraslab earthquake and that of the 1987 Iwaizumi (M6.6) intraslab earthquake, respectively. Based on the dehydration embrittelment hypothesis, the difference of the spatial distribution of the seismicity in the slab should correspond to the difference of the spatial distribution of the hydrated minerals and their dehydration reactions. In the upper slab crust, the upper-plane seismic belt is found because the hydrated minerals could be distributed homogeneously and the dehydration reaction (from jadeite lawsonite blueschist to lawsonite amphibole eclogite [Hacker et al., 2003b]) occurs perhaps largely at depth of 70-100km. Our result also suggests that in the lower portion of the slab crust and/or the uppermost portion of the slab mantle, the hydrated minerals could be inhomogeneously distributed and the seismicity occurs at depths around 65km, where another dehydration reaction may exist. 4. Characteristics of the focal mechanisms We examined the stress distribution within the slab by using focal mechanisms of the upper plane, interplane and lower plane events. From the plate interface to about 20 km below it, downdip-compressional (DC) type events are dominant. Below 20km from the plate interface, downdip-tensional (DT) type events are dominant. Many of interplane events have DC type focal mechanisms because of their locations in the uppermost portions of the slab mantle. These results indicate that the stress neutral plane from the DC type to DT type could be located at depth of about 20km from the plate interface.

  18. Liquid belt radiator design study

    NASA Technical Reports Server (NTRS)

    Teagan, W. P.; Fitzgerald, K. F.

    1986-01-01

    The Liquid Belt Radiator (LBR) is an advanced concept developed to meet the needs of anticipated future space missions. A previous study documented the advantages of this concept as a lightweight, easily deployable alternative to present day space heat rejection systems. The technical efforts associated with this study concentrate on refining the concept of the LBR as well as examining the issues of belt dynamics and potential application of the LBR to intermediate and high temperature heat rejection applications. A low temperature point design developed in previous work is updated assuming the use of diffusion pump oil, Santovac-6, as the heat transfer media. Additional analytical and design effort is directed toward determining the impact of interface heat exchanger, fluid bath sealing, and belt drive mechanism designs on system performance and mass. The updated design supports the earlier result by indicating a significant reduction in system specific system mass as compared to heat pipe or pumped fluid radiator concepts currently under consideration (1.3 kg/sq m versus 5 kg/sq m).

  19. The relationship between the plasmapause and outer belt electrons

    DOE PAGES

    Goldstein, J.; Baker, D. N.; Blake, J. B.; ...

    2016-09-01

    Here, we quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15–20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8–7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm –3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1–2 R E inside the plasmapause. Outer belt 2 is a dynamic zone of <3 MeV electrons within 0.5 R E of the moving plasmapause.more » Electron fluxes earthward of each belt's peak are anticorrelated with cold plasma density. Belt 1 decayed on hiss timescales prior to a disturbance on 17 January and suffered only a modest dropout, perhaps owing to shielding by the plasmasphere. Afterward, the partially depleted belt 1 continued to decay at the initial rate. Belt 2 was emptied out by strong disturbance-time losses but restored within 24 h. For global context we use a plasmapause test particle simulation and derive a new plasmaspheric index F p, the fraction of a circular drift orbit inside the plasmapause. We find that the locally measured plasmapause is (for this event) a good proxy for the globally integrated opportunity for losses in cold plasma. Our analysis of the 15–20 January 2013 time interval confirms that high-energy electron storage rings can persist for weeks or even months if prolonged quiet conditions prevail. This case study must be followed up by more general study (not limited to a 5 day period).« less

  20. The relationship between the plasmapause and outer belt electrons

    NASA Astrophysics Data System (ADS)

    Goldstein, J.; Baker, D. N.; Blake, J. B.; De Pascuale, S.; Funsten, H. O.; Jaynes, A. N.; Jahn, J.-M.; Kletzing, C. A.; Kurth, W. S.; Li, W.; Reeves, G. D.; Spence, H. E.

    2016-09-01

    We quantify the spatial relationship between the plasmapause and outer belt electrons for a 5 day period, 15-20 January 2013, by comparing locations of relativistic electron flux peaks to the plasmapause. A peak-finding algorithm is applied to 1.8-7.7 MeV relativistic electron flux data. A plasmapause gradient finder is applied to wave-derived electron number densities >10 cm-3. We identify two outer belts. Outer belt 1 is a stable zone of >3 MeV electrons located 1-2 RE inside the plasmapause. Outer belt 2 is a dynamic zone of <3 MeV electrons within 0.5 RE of the moving plasmapause. Electron fluxes earthward of each belt's peak are anticorrelated with cold plasma density. Belt 1 decayed on hiss timescales prior to a disturbance on 17 January and suffered only a modest dropout, perhaps owing to shielding by the plasmasphere. Afterward, the partially depleted belt 1 continued to decay at the initial rate. Belt 2 was emptied out by strong disturbance-time losses but restored within 24 h. For global context we use a plasmapause test particle simulation and derive a new plasmaspheric index Fp, the fraction of a circular drift orbit inside the plasmapause. We find that the locally measured plasmapause is (for this event) a good proxy for the globally integrated opportunity for losses in cold plasma. Our analysis of the 15-20 January 2013 time interval confirms that high-energy electron storage rings can persist for weeks or even months if prolonged quiet conditions prevail. This case study must be followed up by more general study (not limited to a 5 day period).

  1. Muscle activity during the active straight leg raise (ASLR), and the effects of a pelvic belt on the ASLR and on treadmill walking.

    PubMed

    Hu, Hai; Meijer, Onno G; van Dieën, Jaap H; Hodges, Paul W; Bruijn, Sjoerd M; Strijers, Rob L; Nanayakkara, Prabath W; van Royen, Barend J; Wu, Wenhua; Xia, Chun

    2010-02-10

    Women with pregnancy-related pelvic girdle pain (PPP), or athletes with groin pain, may have trouble with the active straight leg raise (ASLR), for which a pelvic belt can be beneficial. How the problems emerge, or how the belt works, remains insufficiently understood. We assessed muscle activity during ASLR, and how it changes with a pelvic belt. Healthy nulligravidae (N=17) performed the ASLR, and walked on a treadmill at increasing speeds, without and with a belt. Fine-wire electromyography (EMG) was used to record activity of the mm. psoas, iliacus and transversus abdominis, while other hip and trunk muscles were recorded with surface EMG. In ASLR, all muscles were active. In both tasks, transverse and oblique abdominal muscles were less active with the belt. In ASLR, there was more activity of the contralateral m. biceps femoris, and in treadmill walking of the m. gluteus maximus in conditions with a belt. For our interpretation, we take our starting point in the fact that hip flexors exert a forward rotating torque on the ilium. Apparently, the abdominal wall was active to prevent such forward rotation. If transverse and oblique abdominal muscles press the ilia against the sacrum (Snijders' "force closure"), the pelvis may move as one unit in the sagittal plane, and also contralateral hip extensor activity will stabilize the ipsilateral ilium. The fact that transverse and oblique abdominal muscles were less active in conditions with a pelvic belt suggests that the belt provides such "force closure", thus confirming Snijders' theory. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Novel Aerodynamic Design for Formula SAE Vehicles

    NASA Astrophysics Data System (ADS)

    Sentongo, Samuel; Carter, Austin; Cecil, Christopher; Feier, Ioan

    2017-11-01

    This paper identifies and evaluates the design characteristics of a novel airfoil that harnesses the Magnus Effect, applying a moving-surface boundary-layer control (MSBC) method to a Formula SAE Vehicle. The MSBC minimizes adverse pressure gradient and delays boundary layer separation through the use of a conveyor belt that interacts with the airfoil boundary layer. The MSBC allows dynamic control of the aerodynamic coefficients by variation of the belt speed, minimizing drag in high speed straights and maximizing downforce during vehicle cornering. A conveyer belt wing measuring approximately 0.9 x 0.9m in planform was designed and built to test the mechanical setup for such a MSBC wing. This study follows the relationship between inputted power and outputted surface velocity, with the goal being to maximize speed output vs. power input. The greatest hindrance to maximizing speed output is friction among belts, rollers, and stationary members. The maximum belt speed achieved during testing was 5.9 m/s with a power input of 48.8 W, which corresponds to 45.8 N of downforce based on 2D CFD results. Ongoing progress on this project is presented. United States Air Force Academy.

  3. Kinematics and Shoulder Belt Position of Child Rear Seat Passengers during Vehicle Maneuvers

    PubMed Central

    Bohman, Katarina; Stockman, Isabelle; Jakobsson, Lotta; Osvalder, Anna-Lisa; Bostrom, Ola; Arbogast, Kristy B.

    2011-01-01

    Head impact to the seat back has been identified as one important injury causation scenario for seat belt restrained, head-injured children and previous research highlighted vehicle maneuvers prior to impact as possible contributing factors. The aim was to quantify kinematics of child occupants during swerving maneuvers focusing on the child’s lateral movement and seat belt position relative to the child’s shoulder. A study was conducted on a closed-circuit test track with 16 children aged 4–12, restrained in the rear seat of a modern passenger vehicle. A professional driving instructor drove at 50 km/h making sharp turns in a repeatable fashion, resulting in inboard motion of the children. The children were exposed to two turns in each of two restraint systems. Shorter children were on a booster or highback booster cushion. The taller children were seated on a booster cushion or with only a lap and shoulder seat belt. Four film cameras were fixed in the vehicle monitoring the child. Vehicle data were also collected. The seat belt slipped off the shoulder in 1 of 5 turns, varying by age and restraint type. Among shorter children, the belt slipped off in a majority of turns when seated on a booster cushion while the belt remained on the shoulder when seated on the highback booster cushion. Among taller children, the shoulder belt moved far laterally on the shoulder in half of the turns. This data provides valuable knowledge on possible pre-impact postures of children as a result of vehicle swerving maneuvers for a variety of restraint systems. PMID:22105379

  4. Collision lifetimes and impact statistics of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Bottke, W. F., Jr.; Nolan, M. C.; Greenberg, R.

    1993-01-01

    We have examined the lifetimes of Near-Earth asteroids (NEA's) by directly computing the collision probabilities with other asteroids and with the terrestrial planets. We compare these to the dynamical lifetimes, and to collisional lifetimes assumed by other workers. We discuss the implications of the differences. The lifetimes of NEA's are important because, along with the statistics of craters on the Earth and Moon, they help us to compute the number of NEA's and the rate at which new NEA's are brought to the vicinity of the Earth. Assuming that the NEA population is in steady-state, the lifetimes determine the flux of new bodies needed to replenish the population. Earlier estimates of the lifetimes ignored (or incompletely accounted for) the differences in the velocities of asteroids as they move in their orbits, so our results differ from (for example) Greenberg and Chapman (1983, Icarus 55, 455) and Wetherill (1988, Icarus 76, 1) by factors of 2 to 10. We have computed the collision rates and relative velocities of NEA's with each other, the main-belt asteroids, and the terrestrial planets, using the corrected method described by Bottke et. al. (1992, GRL, in press). We find that NEA's typically have shorter collisional lifetimes than do main-belt asteroids of the same size, due to their high eccentricities, which typically give them aphelia in the main belt. Consequently, they spend a great deal of time in the main belt, and are moving much slower than the bodies around them, making them 'sitting ducks' for impacts with other asteroids. They cross the paths of many objects, and their typical collision velocities are much higher (10-15 km/s) than the collision velocities (5 km/s) among objects within the main belt. These factors combine to give them substantially shorter lifetimes than had been previously estimated.

  5. The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone

    NASA Astrophysics Data System (ADS)

    Ferrari, Luca; Orozco-Esquivel, Teresa; Manea, Vlad; Manea, Marina

    2012-02-01

    The Trans-Mexican Volcanic Belt (TMVB) is a 1000 km long Neogene continental arc showing a large variation in composition and volcanic style, and an intra-arc extensional tectonics. It overlies the Rivera and Cocos slabs, which display marked changes in geometry. Geophysical studies indicate that lithospheric mantle is very thin or absent beneath the forearc and arc, the fluids from the slab are released in a 40 to 100 km wide belt beneath the frontal part of the arc, and the lower crust beneath the arc is partially molten. East of 101°W the TMVB is built on a Precambrian to Paleozoic crust with thickness of 50-55 km. West of 101°W the TMVB is underlain by Jurassic to Cenozoic marine and continental arcs with a 35-40 km thick crust. The evolution of the TMVB occurred in four stages: 1) from ~ 20 to 10 Ma the initial andesitic arc moved inland showing progressively drier melting and, eventually, slab melting, suggesting flattening of the subducted slab; 2) since ~ 11 Ma a pulse of mafic volcanism migrated from west to east reaching the Gulf of Mexico by 7 Ma. This mafic lavas marks the lateral propagation of a slab tear, triggered by cessation of subduction beneath Baja California; 3) thereafter, the volcanic front started moving trenchward, with a marked phase of silicic volcanism between 7.5 and 3 Ma, local emplacement of small volume intraplate-like basalts since 5 Ma, and development of extensional faulting. These features are related to slab rollback, enhancing asthenophere flux into the mantle wedge and promoting partial melting of the crust; 4) the modern arc consists of a frontal belt dominated by flux and slab melting, and a rear belt characterized by more differentiated rocks or by mafic lavas with little or no evidence of subduction fluids but higher asthenosphere fingerprint.

  6. KSC-04PD-2679

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter is checked out before beginning a road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  7. KSC-04PD-2680

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter is checked out before beginning its road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  8. KSC-04PD-2681

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter is ready for its road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  9. KSC-04PD-2678

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The newly shod Crawler Transporter is ready for a road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  10. Microcomputer keeps watch at Emerald Mine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-04-01

    This paper reviews the computerized mine monitoring system set up at the Emerald Mine, SW Pennsylvania, USA. This coal mine has pioneered the automation of many production and safety features and this article covers their work in fire detection and conveyor belt monitoring. A central computer control room can safely watch over the whole underground mining operation using one 25 inch colour monitor. These new data-acquisition systems will lead the way, in the future, to safer move efficient coal mining. Multi-point monitoring of carbon monoxide, heat anomalies, toxic gases and the procedures in conveyor belt operation from start-up to closedown.

  11. Space power system utilizing Fresnel lenses for solar power and also thermal energy storage

    NASA Technical Reports Server (NTRS)

    Turner, R. H.

    1983-01-01

    A solar power plant suitable for earth orbits passing through Van Allen radiation belts is described. The solar-to-electricity conversion efficiency is estimated to be around 9 percent, and the expected power-to-weight ratio is competitive with photovoltaic arrays. The system is designed to be self-contained, to be indifferent to radiation belt exposures, store energy for periods when the orbiting system is in earth shadow (so that power generation is contant), have no moving parts and no working fluids, and be robust against micrometeorite attack. No electrical batteries are required.

  12. KSC-2012-4333

    NASA Image and Video Library

    2012-08-09

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians prepare the payload faring containing the two Radiation Belt Storm Probes, or RBSP, spacecraft for lifting on to a transporter to be moved to the launch complex. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp Photo credit: NASA/ Kim Shiflett

  13. KSC-2012-4340

    NASA Image and Video Library

    2012-08-09

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians use a crane to lower the payload faring containing the two Radiation Belt Storm Probes, or RBSP, spacecraft on to a transporter to be moved to the launch complex. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp Photo credit: NASA/ Kim Shiflett

  14. Synfolding magnetization in the Jurassic Preuss Sandstone, Wyoming- Idaho-Utah thrust belt

    USGS Publications Warehouse

    Hudson, M.R.; Reynolds, R.L.; Fishman, N.S.

    1989-01-01

    The Jurassic Preuss Sandstone, exposed in five thrust plates of the Wyoming-Idaho-Utah thrust belt, carried directions of remanent magnetization that group most tightly after only partial unfolding. Field, petrographic, and rock magnetic evidence indicates that the carrier of this magnetization is detrital, low-Ti titanomagnetite. The detrital titanomagnetite was remagnetized at low temperatures (75??-150??C) probably completely during folding. Anisotropy of magnetic susceptibility and petrographic observations indicate that the detrital titanomagnetite has been affected by tectonic strain. The locus of acquisition of synfolding magnetization in the Preuss migrated in conjunction with deformation in the thrust belt. A model is presented in which synfolding magnetization was acquired during cooling and folding as strata moved up thrust ramps. A lack of reverse-polarity directions remains a puzzling feature of the remanence. -from Authors

  15. A Moving Discontinuous Galerkin Finite Element Method for Flows with Interfaces

    DTIC Science & Technology

    2017-12-07

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6040--17-9765 A Moving Discontinuous Galerkin Finite Element Method for Flows with...guidance to revise the method to ensure such properties. Acknowledgements This work was sponsored by the Office of Naval Research through the Naval...18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT A Moving Discontinuous Galerkin Finite Element Method for Flows with Interfaces Andrew Corrigan, Andrew

  16. Theoretical study of heat transfer with moving phase-change interface in thawing of frozen food

    NASA Astrophysics Data System (ADS)

    Leung, M.; Ching, W. H.; Leung, D. Y. C.; Lam, G. C. K.

    2005-02-01

    A theoretical solution was obtained for a transient phase-change heat transfer problem in thawing of frozen food. In the physical model, a sphere originally at a uniform temperature below the phase-change temperature is suddenly immersed in a fluid at a temperature above the phase-change temperature. As the body temperature increases, the phase-change interface will be first formed on the surface. Subsequently, the interface will absorb the latent heat and move towards the centre until the whole body undergoes complete phase change. In the mathematical formulation, the nonhomogeneous problem arises from the moving phase-change interface. The solution in terms of the time-dependent temperature field was obtained by use of Green's function. A one-step Newton-Raphson method was specially designed to solve for the position of the moving interface to satisfy the interface condition. The theoretical results were compared with numerical results generated by a finite difference model and experimental measurements collected from a cold water thawing process. As a good agreement was found, the theoretical solution developed in this study was verified numerically and experimentally. Besides thawing of frozen food, there are many other practical applications of the theoretical solution, such as food freezing, soil freezing/thawing, metal casting and bath quenching heat treatment, among others.

  17. A two-class self-paced BCI to control a robot in four directions.

    PubMed

    Ron-Angevin, Ricardo; Velasco-Alvarez, Francisco; Sancha-Ros, Salvador; da Silva-Sauer, Leandro

    2011-01-01

    In this work, an electroencephalographic analysis-based, self-paced (asynchronous) brain-computer interface (BCI) is proposed to control a mobile robot using four different navigation commands: turn right, turn left, move forward and move back. In order to reduce the probability of misclassification, the BCI is to be controlled with only two mental tasks (relaxed state versus imagination of right hand movements), using an audio-cued interface. Four healthy subjects participated in the experiment. After two sessions controlling a simulated robot in a virtual environment (which allowed the user to become familiar with the interface), three subjects successfully moved the robot in a real environment. The obtained results show that the proposed interface enables control over the robot, even for subjects with low BCI performance. © 2011 IEEE

  18. New Radiation Zones on Jupiter

    NASA Image and Video Library

    2017-12-11

    This graphic shows a new radiation zone surrounding Jupiter, located just above the atmosphere near the equator, that has been discovered by NASA's Juno mission. The new radiation zone is depicted here as a glowing blue area around the planet's middle. This radiation zone includes energetic hydrogen, oxygen and sulfur ions moving at close to the speed of light (referred to as "relativistic" speeds). It resides inside Jupiter's previously known radiation belts. The zone was identified by the mission's Jupiter Energetic Particle Detector Instrument (JEDI), enabled by Juno's unique close approach to the planet during the spacecraft's science flybys (2,100 miles or 3,400 kilometers from the cloud tops). Juno scientists believe the particles creating this region of intense radiation are derived from energetic neutral atoms -- that is, fast-moving atoms without an electric charge -- coming from the tenuous gas around Jupiter's moons Io and Europa. The neutral atoms then become ions -- atoms with an electric charge -- as their electrons are stripped away by interaction with the planet's upper atmosphere. (This discovery is discussed further in an issue of the journal Geophysical Research Letters [Kollmann et al. (2017), Geophys. Res. Lett., 44, 5259-5268].) Juno also has detected signatures of a population of high-energy, heavy ions in the inner edges of Jupiter's relativistic electron radiation belt. This radiation belt was previously understood to contain mostly electrons moving at near light speed. The signatures of the heavy ions are observed at high latitude locations within the electron belt -- a region not previously explored by spacecraft. The origin and exact species of these heavy ions is not yet understood. Juno's Stellar Reference Unit (SRU-1) star camera detects the signatures of this population as extremely high noise in images collected as part of the mission's radiation monitoring investigation. The locations where the heavy ions were detected are indicated on the graphic by two bright, glowing spots along Juno's flight path past the planet, which is shown as a white line. The invisible lines of Jupiter's magnetic field are also portrayed here for context as faint, bluish lines. https://photojournal.jpl.nasa.gov/catalog/PIA22179

  19. To left of center is freight elevator used to move ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    To left of center is freight elevator used to move materials to the upper floors of the building. This elevator is also powered via the belts and drive shafts which operate the machine tools. Sign on elevator reads 'For Mr. Edison's Personal Use Only;' according to rumor, Edison was encouraged to use the elevator as he grew older, but refused. The elevator is designed for freight only. - Thomas A. Edison Laboratories, Building No. 5, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  20. A new skin friction balance and selected measurements

    NASA Technical Reports Server (NTRS)

    Vakili, A. D.

    1992-01-01

    A new skin friction balance with moving belt has been developed for measurement of the surface shear stress component in the direction of belt motion. The device is described in this paper with typical measurement results. This instrument is symmetric in design with small moving mass negligible internal friction. It is 3.8 cm high, 3.8 cm long and 2.1 cm wide, with the sensing surface 0.7 cm wide and 1.5 cm long, and it can be made in various sizes. The unique design of this instrument has reduced some of the errors associated with conventional floating-element balances. The instrument can use various sensing systems and the output signal is a linear function of the wall shear stress. Measurements show good agreement with data obtained by the floating element balances and flat plate prediction techniques. Dynamic measurements have been made in a limited range. The overall uncertainty of measurement is estimated to be +/- 2 percent.

  1. Meandering instability of a viscous thread

    NASA Astrophysics Data System (ADS)

    Morris, Stephen W.; Dawes, Jonathan H. P.; Ribe, Neil M.; Lister, John R.

    2008-06-01

    A viscous thread falling from a nozzle onto a surface exhibits the famous rope-coiling effect, in which the thread buckles to form loops. If the surface is replaced by a belt moving with speed U , the rotational symmetry of the buckling instability is broken and a wealth of interesting states are observed [see S. Chiu-Webster and J. R. Lister, J. Fluid Mech. 569, 89 (2006)]. We experimentally studied this “fluid-mechanical sewing machine” in a more precise apparatus. As U is reduced, the steady catenary thread bifurcates into a meandering state in which the thread displacements are only transverse to the motion of the belt. We measured the amplitude and frequency ω of the meandering close to the bifurcation. For smaller U , single-frequency meandering bifurcates to a two-frequency “figure-8” state, which contains a significant 2ω component and parallel as well as transverse displacements. This eventually reverts to single-frequency coiling at still smaller U . More complex, highly hysteretic states with additional frequencies are observed for larger nozzle heights. We propose to understand this zoology in terms of the generic amplitude equations appropriate for resonant interactions between two oscillatory modes with frequencies ω and 2ω . The form of the amplitude equations captures both the axisymmetry of the U=0 coiling state and the symmetry-breaking effects induced by the moving belt.

  2. Thread amplitudes and frequencies in a fluid mechanical `sewing machine'

    NASA Astrophysics Data System (ADS)

    Morris, Stephen W.; Dawes, J. H. P.; Lister, John; Dalziel, Stuart

    2006-11-01

    A viscous thread falling on a surface exhibits the famous rope- coiling effect, in which the thread buckles to form loops. If the surface is replaced by a belt moving at speed U, the rotational symmetry of the buckling instability is broken and a wealth of interesting states are observed (1). We experimentally studied this fluid mechanical `sewing machine' in a new, more precise apparatus. As U is reduced, the stretched thread bifurcates into a meandering state in which the thread displacements are only transverse to the motion of the belt. We measured the amplitudes A and frequency φ of the meandering close to the bifurcation. For small U, single- frequency meandering bifurcates to a two-frequency `figure 8' state, which contains a significant 2φ component and parallel as well as transverse displacements. This eventually reverts to single-frequency coiling at smaller U. More complex, highly hysteretic states with additional harmonics are observed for larger nozzle heights. We propose to understand this zoology in terms of the generic amplitude equations appropriate for resonant interactions between three oscillatory modes with frequencies φ, 2φ and 3φ. The form of the amplitude equations captures both the axisymmetry of the U=0 coiling state and the symmetry-breaking effects induced by the moving belt.(1) Chiu-Webster and Lister, J. Fluid Mech., in press.

  3. Meandering instability of a viscous thread.

    PubMed

    Morris, Stephen W; Dawes, Jonathan H P; Ribe, Neil M; Lister, John R

    2008-06-01

    A viscous thread falling from a nozzle onto a surface exhibits the famous rope-coiling effect, in which the thread buckles to form loops. If the surface is replaced by a belt moving with speed U , the rotational symmetry of the buckling instability is broken and a wealth of interesting states are observed [see S. Chiu-Webster and J. R. Lister, J. Fluid Mech. 569, 89 (2006)]. We experimentally studied this "fluid-mechanical sewing machine" in a more precise apparatus. As U is reduced, the steady catenary thread bifurcates into a meandering state in which the thread displacements are only transverse to the motion of the belt. We measured the amplitude and frequency omega of the meandering close to the bifurcation. For smaller U , single-frequency meandering bifurcates to a two-frequency "figure-8" state, which contains a significant 2omega component and parallel as well as transverse displacements. This eventually reverts to single-frequency coiling at still smaller U . More complex, highly hysteretic states with additional frequencies are observed for larger nozzle heights. We propose to understand this zoology in terms of the generic amplitude equations appropriate for resonant interactions between two oscillatory modes with frequencies omega and 2omega . The form of the amplitude equations captures both the axisymmetry of the U=0 coiling state and the symmetry-breaking effects induced by the moving belt.

  4. A numerical investigation of the fluid mechanical sewing machine

    NASA Astrophysics Data System (ADS)

    Brun, P.-T.; Ribe, N. M.; Audoly, B.

    2012-04-01

    A thin thread of viscous fluid falling onto a moving belt generates a surprising variety of patterns depending on the belt speed, fall height, flow rate, and fluid properties. Here, we simulate this experiment numerically using the discrete viscous threads method that can predict the non-steady dynamics of thin viscous filaments, capturing the combined effects of inertia and of deformation by stretching, bending, and twisting. Our simulations successfully reproduce nine out of ten different patterns previously seen in the laboratory and agree closely with the experimental phase diagram of Morris et al. [Phys. Rev. E 77, 066218 (2008)], 10.1103/PhysRevE.77.066218. We propose a new classification of the patterns based on the Fourier spectra of the longitudinal and transverse motion of the point of contact of the thread with the belt. These frequencies appear to be locked in most cases to simple ratios of the frequency Ωc of steady coiling obtained in the limit of zero belt speed. In particular, the intriguing "alternating loops" pattern is produced by combining the first five multiples of Ωc/3.

  5. Stability of a dragged viscous thread: Onset of ``stitching'' in a fluid-mechanical ``sewing machine''

    NASA Astrophysics Data System (ADS)

    Ribe, Neil M.; Lister, John R.; Chiu-Webster, Sunny

    2006-12-01

    A thin thread of viscous fluid that falls on a moving belt acts like a fluid-mechanical "sewing machine," exhibiting a rich variety of "stitch" patterns including meanders, translated coiling, slanted loops, braiding, figures-of-eight, W-patterns, side kicks, and period-doubled patterns. Using a numerical linear stability analysis, we determine the critical belt speed and oscillation frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to transverse oscillations or "meandering." The predictions of the stability analysis agree closely with the experimental measurements of Chiu-Webster and Lister [J. Fluid Mech. 569, 89 (2006)]. Moreover, the critical belt speed and onset frequency for meandering are nearly identical to the contact-point migration speed and angular frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.

  6. Asymptotic investigations into the `fluid mechanical sewing machine'

    NASA Astrophysics Data System (ADS)

    Blount, Maurice; Lister, John

    2008-11-01

    The fall of a slender viscous thread from a nozzle onto a moving horizontal belt exhibits a wide range of behaviour. Steady motion is observed above a critical belt speed. Below this speed the thread undergoes a buckling instability, and lays down on the belt a variety of stable, periodic patterns referred to as a `fluid mechanical sewing machine'. We expand on previous theoretical progress [1] by including the effects arising from the resistance of the thread to bending. While the bending resistance of a slender viscous thread is small, under certain circumstances it has a dominant effect. We work in the asymtotic limit of a slender thread, and investigate the full range of steady solutions. An asymptotic refinement to the estimate derived in [1] for the onset of buckling instability is presented, and the behaviour of the thread near onset is discussed. [1] S. Chiu-Webster & J.R. Lister, J. Fluid Mech. 569, 89-111.

  7. Onset of `stitching' in the fluid mechanical `sewing machine'

    NASA Astrophysics Data System (ADS)

    Ribe, Neil; Lister, John; Chiu-Webster, Sunny

    2006-11-01

    A thin thread of viscous fluid that falls on a moving belt acts like a fluid mechanical `sewing machine', exhibiting a rich variety of `stitch' patterns including meanders, side kicks, slanted loops, braiding, figures-of-eight, W-patterns, and period-doubled patterns (Chiu-Webster and Lister, J. Fluid Mech., in press). Using a numerical linear stability analysis based on asymptotic `slender thread' theory, we determine the critical belt speed and frequency of the first bifurcation, at which a steady dragged viscous thread becomes unstable to sideways oscillations (`meanders'). The predictions of the stability analysis agree closely with experimental measurements. Moreover, we find that the critical belt speed and frequency for meandering are nearly identical to the contact point migration speed and the frequency, respectively, of steady coiling of a viscous thread on a stationary surface, implying a remarkable degree of dynamical similarity between the two phenomena.

  8. KSC-2012-4308

    NASA Image and Video Library

    2012-08-07

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians move the two halves if the payload faring into position for encapsulation with the two Radiation Belt Storm Probes, or RBSP, spacecraft. The fairing will house and protect the RBSP during liftoff and flight through the atmosphere aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/ Kim Shiflett

  9. KSC-2012-4304

    NASA Image and Video Library

    2012-08-07

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians move the payload faring into position for encapsulation with the two Radiation Belt Storm Probes, or RBSP, spacecraft. The fairing will house and protect the RBSP during liftoff and flight through the atmosphere aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/ Kim Shiflett

  10. KSC-2012-4292

    NASA Image and Video Library

    2012-08-07

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, a technician moves the two Radiation Belt Storm Probes, or RBSP, spacecraft into position for encapsulation in the payload faring. The fairing will house and protect the RBSP during liftoff and flight through the atmosphere aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/ Kim Shiflett

  11. KSC-2012-4293

    NASA Image and Video Library

    2012-08-07

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians move the two Radiation Belt Storm Probes, or RBSP, spacecraft into position for encapsulation in the payload faring. The fairing will house and protect the RBSP during liftoff and flight through the atmosphere aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/ Kim Shiflett

  12. KSC-2012-4306

    NASA Image and Video Library

    2012-08-07

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians move the payload faring into position for encapsulation with the two Radiation Belt Storm Probes, or RBSP, spacecraft. The fairing will house and protect the RBSP during liftoff and flight through the atmosphere aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/ Kim Shiflett

  13. KSC-2012-4294

    NASA Image and Video Library

    2012-08-07

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians move the two Radiation Belt Storm Probes, or RBSP, spacecraft into position for encapsulation in the payload faring. The fairing will house and protect the RBSP during liftoff and flight through the atmosphere aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/ Kim Shiflett

  14. KSC-2012-4297

    NASA Image and Video Library

    2012-08-07

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians move the two Radiation Belt Storm Probes, or RBSP, spacecraft into position for encapsulation in the payload faring. The fairing will house and protect the RBSP during liftoff and flight through the atmosphere aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/ Kim Shiflett

  15. KSC-2012-4307

    NASA Image and Video Library

    2012-08-07

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians move the two halves if the payload faring into position for encapsulation with the two Radiation Belt Storm Probes, or RBSP, spacecraft. The fairing will house and protect the RBSP during liftoff and flight through the atmosphere aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/ Kim Shiflett

  16. KSC-2012-4305

    NASA Image and Video Library

    2012-08-07

    TITUSVILLE, Fla. - Inside the Astrotech payload processing facility in Titusville, Fla. near NASA’s Kennedy Space Center, technicians move the payload faring into position for encapsulation with the two Radiation Belt Storm Probes, or RBSP, spacecraft. The fairing will house and protect the RBSP during liftoff and flight through the atmosphere aboard an Atlas V rocket. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its liftoff aboard a United Launch Alliance Atlas V from Space Launch Complex 41 at Cape Canaveral Air Force Station, Fla. Liftoff is targeted for Aug. 23, 2012. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/ Kim Shiflett

  17. Horizontal high speed stacking for batteries with prismatic cans

    DOEpatents

    Bartos, Andrew L.; Lin, Yhu-Tin; Turner, III, Raymond D.

    2016-06-14

    A system and method for stacking battery cells or related assembled components. Generally planar, rectangular (prismatic-shaped) battery cells are moved from an as-received generally vertical stacking orientation to a generally horizontal stacking orientation without the need for robotic pick-and-place equipment. The system includes numerous conveyor belts that work in cooperation with one another to deliver, rotate and stack the cells or their affiliated assemblies. The belts are outfitted with components to facilitate the cell transport and rotation. The coordinated movement between the belts and the components promote the orderly transport and rotation of the cells from a substantially vertical stacking orientation into a substantially horizontal stacking orientation. The approach of the present invention helps keep the stacked assemblies stable so that subsequent assembly steps--such as compressing the cells or attaching electrical leads or thermal management components--may proceed with a reduced chance of error.

  18. Lower extremity sagittal joint moment production during split-belt treadmill walking

    PubMed Central

    Roemmich, Ryan T.; Stegemöller, Elizabeth L.; Hass, Chris J.

    2012-01-01

    The split-belt treadmill (SBT) has recently been used to rehabilitate locomotor asymmetries in clinical populations. However, the joint mechanics produced while walking on a SBT are not well-understood. The purpose of this study was to investigate the lower extremity sagittal joint moments produced by each limb during SBT walking and provide insight as to how these joint moment patterns may be useful in rehabilitating unilateral gait deficits. Thirteen healthy young volunteers walked on the SBT with the belts tied and in a “SPLIT” session in which one belt moved twice as fast as the other. Sagittal lower extremity joint moment and ground reaction force impulses were then calculated over the braking and propulsive phases of the gait cycle. Paired t-tests were performed to analyze magnitude differences between conditions (i.e. the fast and slow limbs during SPLIT vs. the same limb during tied-belt walking) and between the fast and slow limbs during SPLIT. During the SPLIT session, the fast limb produced higher ground reaction force and ankle moment impulses during the propulsive and braking phases, and lower knee moment impulses during the propulsive phase when compared to the slow limb. The knee moment impulse was also significantly higher during braking in the slow limb than in the fast limb. The mechanics of each limb during the SPLIT session also differed from the mechanics observed when the belt speeds were tied. Based on these findings, we suggest that each belt may have intrinsic value in rehabilitating specific unilateral locomotor deficits. PMID:22985473

  19. Searching for Chips of Kuiper Belt Objects in Meteorites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Ohsumi, K.; Briani, G.; Gounelle, M.; Mikouchi, T.; Satake, W.; Kurihara, T.; Weisberg, M. K.; Le, L.

    2009-01-01

    The Nice model [1&2] describes a scenario whereby the Jovian planets experienced a violent reshuffling event approx.3:9 Ga the giant planets moved, existing small body reservoirs were depleted or eliminated, and new reservoirs were created in particular locations. The Nice model quantitatively explains the orbits of the Jovian planets and Neptune [1], the orbits of bodies in several different small body reservoirs in the outer solar system (e.g., Trojans of Jupiter [2], the Kuiper belt and scattered disk [3], the irregular satellites of the giant planets [4], and the late heavy bombardment on the terrestrial planets approx.3:9 Ga [5]. This model is unique in plausibly explaining all of these phenomena. One issue with the Nice model is that it predicts that transported Kuiper Belt Objects (KBOs) (things looking like D class asteroids) should predominate in the outer asteroid belt, but we know only about 10% of the objects in the outer main asteroid belt appear to be D-class objects [6]. However based upon collisional modeling, Bottke et al. [6] argue that more than 90% of the objects captured in the outer main belt could have been eliminated by impacts if they had been weakly-indurated objects. These disrupted objects should have left behind pieces in the ancient regoliths of other, presumably stronger asteroids. Thus, a derived prediction of the Nice model is that ancient regolith samples (regolith-bearing meteorites) should contain fragments of collisionally-destroyed Kuiper belt objects. In fact KBO pieces might be expected to be present in most ancient regolith- bearing meteorites [7&8].

  20. Optimal Sensor Placement for Measuring Physical Activity with a 3D Accelerometer

    PubMed Central

    Boerema, Simone T.; van Velsen, Lex; Schaake, Leendert; Tönis, Thijs M.; Hermens, Hermie J.

    2014-01-01

    Accelerometer-based activity monitors are popular for monitoring physical activity. In this study, we investigated optimal sensor placement for increasing the quality of studies that utilize accelerometer data to assess physical activity. We performed a two-staged study, focused on sensor location and type of mounting. Ten subjects walked at various walking speeds on a treadmill, performed a deskwork protocol, and walked on level ground, while simultaneously wearing five ProMove2 sensors with a snug fit on an elastic waist belt. We found that sensor location, type of activity, and their interaction-effect affected sensor output. The most lateral positions on the waist belt were the least sensitive for interference. The effect of mounting was explored, by making two subjects repeat the experimental protocol with sensors more loosely fitted to the elastic belt. The loose fit resulted in lower sensor output, except for the deskwork protocol, where output was higher. In order to increase the reliability and to reduce the variability of sensor output, researchers should place activity sensors on the most lateral position of a participant's waist belt. If the sensor hampers free movement, it may be positioned slightly more forward on the belt. Finally, sensors should be fitted tightly to the body. PMID:24553085

  1. Powerful conveyer belt real-time online detection system based on x-ray

    NASA Astrophysics Data System (ADS)

    Rong, Feng; Miao, Chang-yun; Meng, Wei

    2009-07-01

    The powerful conveyer belt is widely used in the mine, dock, and so on. After used for a long time, internal steel rope of the conveyor belt may fracture, rust, joints moving, and so on .This would bring potential safety problems. A kind of detection system based on x-ray is designed in this paper. Linear array detector (LDA) is used. LDA cost is low, response fast; technology mature .Output charge of LDA is transformed into differential voltage signal by amplifier. This kind of signal have great ability of anti-noise, is suitable for long-distance transmission. The processor is FPGA. A IP core control 4-channel A/D convertor, achieve parallel output data collection. Soft-core processor MicroBlaze which process tcp/ip protocol is embedded in FPGA. Sampling data are transferred to a computer via Ethernet. In order to improve the image quality, algorithm of getting rid of noise from the measurement result and taking gain normalization for pixel value is studied and designed. Experiments show that this system work well, can real-time online detect conveyor belt of width of 2.0m and speed of 5 m/s, does not affect the production. Image is clear, visual and can easily judge the situation of conveyor belt.

  2. Shaping mobile belts by small-scale convection.

    PubMed

    Faccenna, Claudio; Becker, Thorsten W

    2010-06-03

    Mobile belts are long-lived deformation zones composed of an ensemble of crustal fragments, distributed over hundreds of kilometres inside continental convergent margins. The Mediterranean represents a remarkable example of this tectonic setting: the region hosts a diffuse boundary between the Nubia and Eurasia plates comprised of a mosaic of microplates that move and deform independently from the overall plate convergence. Surface expressions of Mediterranean tectonics include deep, subsiding backarc basins, intraplate plateaux and uplifting orogenic belts. Although the kinematics of the area are now fairly well defined, the dynamical origins of many of these active features are controversial and usually attributed to crustal and lithospheric interactions. However, the effects of mantle convection, well established for continental interiors, should be particularly relevant in a mobile belt, and modelling may constrain important parameters such as slab coherence and lithospheric strength. Here we compute global mantle flow on the basis of recent, high-resolution seismic tomography to investigate the role of buoyancy-driven and plate-motion-induced mantle circulation for the Mediterranean. We show that mantle flow provides an explanation for much of the observed dynamic topography and microplate motion in the region. More generally, vigorous small-scale convection in the uppermost mantle may also underpin other complex mobile belts such as the North American Cordillera or the Himalayan-Tibetan collision zone.

  3. KSC-04PD-2686

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. The Crawler Transporter sits behind the Vehicle Assembly Building after its road test of the new shoes. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  4. Spatial organization and time dependence of Jupiter's tropospheric temperatures, 1980-1993

    NASA Technical Reports Server (NTRS)

    Orton, Glenn S.; Friedson, A. James; Yanamandra-Fisher, Padmavati A.; Caldwell, John; Hammel, Heidi B.; Baines, Kevin H.; Bergstralh, Jay T.; Martin, Terry Z.; West, Robert A.; Veeder, Glenn J., Jr.

    1994-01-01

    The spatial organization and time dependence of Jupiter's temperature near 250-millibar pressure were measured through a jovian year by imaging thermal emission at 18 micrometers. The temperature field is influenced by seasonal radiative forcing, and its banded organization is closely correlated with the visible cloud field. Evidence was found for a quasi-periodic oscillation of temperatures in the Equatorial Zone, a correlation between tropospheric and stratospheric waves in the North Equatorial Belt, and slowly moving thermal features in the North and South Equatorial Belts. There appears to be no common relation between temporal changes of temperature and changes in the visual albedo of the various axisymmetric bands.

  5. Some recent developments of the immersed interface method for flow simulation

    NASA Astrophysics Data System (ADS)

    Xu, Sheng

    2017-11-01

    The immersed interface method is a general methodology for solving PDEs subject to interfaces. In this talk, I will give an overview of some recent developments of the method toward the enhancement of its robustness for flow simulation. In particular, I will present with numerical results how to capture boundary conditions on immersed rigid objects, how to adopt interface triangulation in the method, and how to parallelize the method for flow with moving objects. With these developments, the immersed interface method can achieve accurate and efficient simulation of a flow involving multiple moving complex objects. Thanks to NSF for the support of this work under Grant NSF DMS 1320317.

  6. 29 CFR 1915.131 - General precautions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electric cords for this purpose is prohibited. (b) When air tools of the reciprocating type are not in use, the dies and tools shall be removed. (c) All portable, power-driven circular saws shall be equipped... whip. (f) The moving parts of drive mechanisms, such as gearing and belting on large portable tools...

  7. 29 CFR 1915.131 - General precautions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electric cords for this purpose is prohibited. (b) When air tools of the reciprocating type are not in use, the dies and tools shall be removed. (c) All portable, power-driven circular saws shall be equipped... whip. (f) The moving parts of drive mechanisms, such as gearing and belting on large portable tools...

  8. 29 CFR 1915.131 - General precautions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electric cords for this purpose is prohibited. (b) When air tools of the reciprocating type are not in use, the dies and tools shall be removed. (c) All portable, power-driven circular saws shall be equipped... whip. (f) The moving parts of drive mechanisms, such as gearing and belting on large portable tools...

  9. 30 CFR 77.1710 - Protective clothing; requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substances or other materials which might cause injury to the skin. (c) Protective gloves when handling materials or performing work which might cause injury to the hands; however, gloves shall not be worn where... footwear. (f) Snug-fitting clothing when working around moving machinery or equipment. (g) Safety belts and...

  10. 30 CFR 77.1710 - Protective clothing; requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substances or other materials which might cause injury to the skin. (c) Protective gloves when handling materials or performing work which might cause injury to the hands; however, gloves shall not be worn where... footwear. (f) Snug-fitting clothing when working around moving machinery or equipment. (g) Safety belts and...

  11. 30 CFR 77.1710 - Protective clothing; requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substances or other materials which might cause injury to the skin. (c) Protective gloves when handling materials or performing work which might cause injury to the hands; however, gloves shall not be worn where... footwear. (f) Snug-fitting clothing when working around moving machinery or equipment. (g) Safety belts and...

  12. 30 CFR 77.1710 - Protective clothing; requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substances or other materials which might cause injury to the skin. (c) Protective gloves when handling materials or performing work which might cause injury to the hands; however, gloves shall not be worn where... footwear. (f) Snug-fitting clothing when working around moving machinery or equipment. (g) Safety belts and...

  13. Achieving an Effective National Security Posture in an Age of Austerity

    DTIC Science & Technology

    2014-05-14

    then the packages move through 300 miles of conveyor sorting- belts  Wal-Mart and Dell distinguish themselves based on their “sense and respond...Require “cost” as a design /military “requirement” (because cost, in a resource-constrained environment, is numbers; and, per Lanchester, numbers are

  14. Hybrid method for moving interface problems with application to the Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, T.Y.; Li, Zhilin; Osher, S.

    In this paper, a hybrid approach which combines the immersed interface method with the level set approach is presented. The fast version of the immersed interface method is used to solve the differential equations whose solutions and their derivatives may be discontinuous across the interfaces due to the discontinuity of the coefficients or/and singular sources along the interfaces. The moving interfaces then are updated using the newly developed fast level set formulation which involves computation only inside some small tubes containing the interfaces. This method combines the advantage of the two approaches and gives a second-order Eulerian discretization for interfacemore » problems. Several key steps in the implementation are addressed in detail. This new approach is then applied to Hele-Shaw flow, an unstable flow involving two fluids with very different viscosity. 40 refs., 10 figs., 3 tabs.« less

  15. Radiation Belt Electron Energy Spectra Characterization and Evolution Based on the Van Allen Probes Measurements

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Baker, D. N.; Jaynes, A. N.; Li, X.; Kanekal, S. G.; Blum, L. W.; Schiller, Q. A.; Leonard, T. W.; Elkington, S. R.

    2017-12-01

    The electron energy spectra, as an important characteristic of radiation belt electrons, provide valuable information on the physical mechanisms affecting different electron populations. Based on the measurements of 30 keV - 10 MeV electrons from MagEIS and REPT instruments on the Van Allen Probes, case studies and statistical analysis of the radiation belt electron energy spectra characterization and evolution have been performed. Generally the radiation belt electron energy spectra can be represented by one of the three types of distributions: exponential, power law, and bump-on-tail. Statistical analysis shows that the exponential spectra are usually dominant in the outer radiation belt; as the geomagnetic storms occur, energy spectra in the outer belt soften at first due to injection of lower-energy electrons and loss of higher-energy electrons, and gradually get harder due to loss of lower-energy electrons and delayed enhancement of higher energy electron fluxes. Power law spectra generally dominate the inner belt and higher L region (L>6) during injections. Bump-on-tail spectra commonly exist inside the plasmasphere following the geomagnetic storms and/or the compression of plasmasphere, while the energy of flux maxima is usually 1.8 MeV as the bump-on-tail spectra form and gradually moves to higher energies as the spectra evolve, with the ratio of flux maxima to minima up to >10. Detailed event study indicates that the appearance of bump-on-tail spectra are mainly due to energy-dependent losses caused by the plasmaspheric hiss wave scattering, while the disappearance of these spectra can be attributed to fast flux enhancements of lower-energy electrons during storms.

  16. OUTER RADIATION BELT AND AURORAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorchakov, E.V.

    1961-01-01

    Data obtained from Sputnik IH were used to determine the high-latitude boundary of the outer radiation belt and to interpret the nature of auroras. At the heights at which the auroras were observed, the outer boundary of the belt (69 deg north geomagnetic latitude) practically coincides with the auroral zone maximum (70 deg north geomagnetic latitude), while the maximum intensity of the outer belt near the earth lies at about 55 deg north geomagnetic latitude, i.e., at latitudes 15 deg below the auroral maximum. Consequently, auroras near the zone of maximum cannot be caused by the penetration into the atmospheremore » of electrons from the outer belt with energies on the order of 0.1 Mev (the mean energy of electrons in the outer belt). Other investigators have reported the detection of lowenergy streams at 55,000 to 75,000 km from the center of the earth in the equatorial plane. Moving toward the surface of the earth along the force lines of the magnetic field, electron streams of this type will reach the earth precisely in the region of the auroral zone maximum. It is considered possible that the electron streams are trapped at these distances from the earth and are at least partially responsible for auroras in the region of maximum. The existence of two maxima in the latitudinal distribution of auroral frequency, which attests to differert mechanisms of aurora formation, favors this hypothesis. In the region of the basic auroral maximum (70 deg north geomagnetic latitude) the auroras are the result of the invasion of belt particles, while in the region of the additional maximum (about 80 deg north geomagnetic latitude) they are caused by the direct penetration of corpuscular streams into the atmosphere. (OTS)« less

  17. New features in the structure of the classical Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Gladman, Brett; Bannister, Michele T.; Alexandersen, Mike; Chen, Ying-Tung; Gwyn, Stephen; Kavelaars, J. J.; Petit, Jean-Marc; Volk, Kathryn; OSSOS Collaboration

    2016-10-01

    We report fascinating new dynamical structures emerging from a higher precision view of the classical Kuiper belt (the plentiful non-resonant orbits with semimajor axes in roughly the a=35-60 au range). The classical Kuiper Belt divides into multiple sub-populations: an 'inner' classical belt (a small group of non-resonant objects with a<39.4 au where the 3:2 resonance is located), an abundant 'main' classical belt (between the 3:2 and the 2:1 at a=47.4 au), and a difficult to study outer classical belt beyond the 2:1. We examine the dynamical structure, as precisely revealed in the detections from OSSOS (the Outer Solar System Origin's Survey); the data set is of superb quality in terms of orbital element and numbers of detections (Kavelaars et al, this meeting).The previous CFEPS survey showed that the main classical belt requires a complex dynamical substructure that goes beyond a simple 'hot versus cold' division based primarily on orbital inclination; the 'cold' inclination component requires two sub-components in the semimajor axis and perihelion distance q space (Petit et al 2011). CFEPS modelled this as a 'stirred' component present at all a=40-47 AU semimajor axes, with a dense superposed 'kernel' near a=44 AU at low eccentricity; the first OSSOS data release remained consistent with this (Bannister et al 2016). As with the main asteroid belt, as statistics and orbital quality improve we see additional significant substructure emerging in the classical belt's orbital distribution.OSSOS continues to add evidence that the cold stirred component extends smoothly beyond the 2:1 (Bannister et al 2016). Unexpectedly, the data also reveal the clear existence of a paucity of orbits just beyond the outer edge of the kernel; there are significantly fewer TNOs in the narrow semimajor axis band from a=44.5-45.0 AU. This may be related to the kernel population's creation, or it may be an independent feature created by planet migration as resonances moved in the primordial Kuiper Belt.

  18. Experimental investigation of moving surfaces for boundary layer and circulation control of airfoils and wings

    NASA Astrophysics Data System (ADS)

    Vets, Robert

    An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. An experimental study was conducted to assess the application of a moving surface to affect boundary layers and circulation around airfoils for the purpose of altering and enhancing aerodynamic performance of finite wings at moderate Reynolds numbers. The moving surface was established by a wide, lightweight, nylon belt that enveloped a wing's symmetric airfoil profile articulated via a friction drive cylinder such that the direction of the upper surface was in the direction of the free stream. A water tunnel visualization study accompanied wind tunnel testing at the University of Washington, Kirsten Wind Tunnel of finite wings. The defining non-dimensional parameter for the system is the ratio of the surface velocity to the free stream velocity, us/Uo. Results show a general increase in lift with increasing us/Uo. The endurance parameter served as an additional metric for the system's performance. Examining the results of the endurance parameter shows general increase in endurance and lift with the moving surface activated. Peak performance in terms of increased endurance along with increased lift occurs at or slightly above us/Uo = 1. Water tunnel visualization showed a marked difference in the downwash for velocity ratios greater than 1, supporting the measured data. Reynolds numbers for this investigation were 1.9E5 and 4.3E5, relevant to the class of fixed wing, Tier-1, Unmanned Aerial Vehicles (UAV).

  19. Adaptive mesh refinement techniques for the immersed interface method applied to flow problems

    PubMed Central

    Li, Zhilin; Song, Peng

    2013-01-01

    In this paper, we develop an adaptive mesh refinement strategy of the Immersed Interface Method for flow problems with a moving interface. The work is built on the AMR method developed for two-dimensional elliptic interface problems in the paper [12] (CiCP, 12(2012), 515–527). The interface is captured by the zero level set of a Lipschitz continuous function φ(x, y, t). Our adaptive mesh refinement is built within a small band of |φ(x, y, t)| ≤ δ with finer Cartesian meshes. The AMR-IIM is validated for Stokes and Navier-Stokes equations with exact solutions, moving interfaces driven by the surface tension, and classical bubble deformation problems. A new simple area preserving strategy is also proposed in this paper for the level set method. PMID:23794763

  20. Analysis of the fluid mechanical sewing machine

    NASA Astrophysics Data System (ADS)

    Brun, Pierre-Thomas; Audoly, Basile; Ribe, Neil

    2012-02-01

    A thin thread of viscous fluid falling onto a moving belt generates a surprising variety of patterns, similar to the stitch patterns produced by a traditional sewing machine. By simulating the dynamics of the viscous thread numerically, we can reproduce these patterns and their bifurcations. The results lead us to propose a new classification of the stitch patterns within a unified framework, based on the Fourier spectra of the motion of the point of contact of the thread with the belt. The frequencies of the longitudinal and transverse components of the contact point motion are locked in most cases to simple ratios of the frequency φc of steady coiling on a surface at rest (i.e., the limit of zero belt speed). In particular, the ``alternating loops'' pattern involves the first five multiples of φc/3. The dynamics of the patterns can be described by matching the upper (linear) and the lower (non-linear) portions of the thread. Following this path we propose a toy model that successfully reproduces the observed transitions from the steady dragged configuration to sinusoidal meanders, alternating loops, and the translated coiling pattern as the belt speed is varied.

  1. Stagnation, circulation, and erosion of granular materials through belt conveyor sluice gate

    NASA Astrophysics Data System (ADS)

    Pohlman, Nicholas; Moralda, Michael; Dunne, Ryan

    2013-11-01

    Control of flow rates in conversion reactors for discrete materials like biomass can be achieved in belt conveyors through a combination of belt speed, hopper size, and aperture opening. As material is extracted from the bottom of the storage hopper, other material cannot achieve plug flow and therefore is restricted from exiting through a sluice-gate type opening. The excess material moves vertically from the opening causing a pile up and recirculation back along the free surface of the hopper. Experimental results obtained through high speed imaging show the position of the stagnation point as well as the rate of circulation is dependent on the mass flow rate achieved and instantaneous fill level. The movement of material into the plug flow along the belt allows verification of deposition models on erodible beds rather than rigid surfaces with artificial roughness of glued particles. Similarly, the pile-up at the exit influences the efficiency of the transport affecting the narrow energy return on investment of biomass resources. The laboratory-scale behavior can therefore be translated into industrial performance metrics for increased operational efficiency. This work is supported by the NSF REU Site Operation E-Tank under award number 1156789.

  2. KSC-05PD-0179

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. Workers accompany the Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight as it demonstrates its readiness for weight bearing by carrying an unloaded 8,230,000-pound Mobile Launch Platform along the crawlerway. Its first road test on Jan. 21, following the replacement of all its shoes, was a success. Cracks appeared in the crawlers' shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program. Each crawler has 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds.

  3. KSC-05PD-0177

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight demonstrates its readiness for weight bearing by carrying an unloaded 8,230,000-pound Mobile Launch Platform along the crawlerway. Its first road test on Jan. 21, following the replacement of all its shoes, was a success. Cracks appeared in the crawlers' shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program. Each crawler has 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds.

  4. KSC-04PD-2677

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Before a road test of the Crawler Transporter, United Space Alliance Vice President, Associate Program Manager of Florida Operations, Bill Pickavance (in front), look at the controls of the cab. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  5. Rotating belt sieves for primary treatment, chemically enhanced primary treatment and secondary solids separation.

    PubMed

    Rusten, B; Rathnaweera, S S; Rismyhr, E; Sahu, A K; Ntiako, J

    2017-06-01

    Fine mesh rotating belt sieves (RBS) offer a very compact solution for removal of particles from wastewater. This paper shows examples from pilot-scale testing of primary treatment, chemically enhanced primary treatment (CEPT) and secondary solids separation of biofilm solids from moving bed biofilm reactors (MBBRs). Primary treatment using a 350 microns belt showed more than 40% removal of total suspended solids (TSS) and 30% removal of chemical oxygen demand (COD) at sieve rates as high as 160 m³/m²-h. Maximum sieve rate tested was 288 m³/m²-h and maximum particle load was 80 kg TSS/m²-h. When the filter mat on the belt increased from 10 to 55 g TSS/m², the removal efficiency for TSS increased from about 35 to 60%. CEPT is a simple and effective way of increasing the removal efficiency of RBS. Adding about 1 mg/L of cationic polymer and about 2 min of flocculation time, the removal of TSS typically increased from 40-50% without polymer to 60-70% with polymer. Using coagulation and flocculation ahead of the RBS, separation of biofilm solids was successful. Removal efficiencies of 90% TSS, 83% total P and 84% total COD were achieved with a 90 microns belt at a sieve rate of 41 m³/m²-h.

  6. Predictive models for moving contact line flows

    NASA Technical Reports Server (NTRS)

    Rame, Enrique; Garoff, Stephen

    2003-01-01

    Modeling flows with moving contact lines poses the formidable challenge that the usual assumptions of Newtonian fluid and no-slip condition give rise to a well-known singularity. This singularity prevents one from satisfying the contact angle condition to compute the shape of the fluid-fluid interface, a crucial calculation without which design parameters such as the pressure drop needed to move an immiscible 2-fluid system through a solid matrix cannot be evaluated. Some progress has been made for low Capillary number spreading flows. Combining experimental measurements of fluid-fluid interfaces very near the moving contact line with an analytical expression for the interface shape, we can determine a parameter that forms a boundary condition for the macroscopic interface shape when Ca much les than l. This parameter, which plays the role of an "apparent" or macroscopic dynamic contact angle, is shown by the theory to depend on the system geometry through the macroscopic length scale. This theoretically established dependence on geometry allows this parameter to be "transferable" from the geometry of the measurement to any other geometry involving the same material system. Unfortunately this prediction of the theory cannot be tested on Earth.

  7. The wildland-urban interface raster dataset of Catalonia.

    PubMed

    Alcasena, Fermín J; Evers, Cody R; Vega-Garcia, Cristina

    2018-04-01

    We provide the wildland urban interface (WUI) map of the autonomous community of Catalonia (Northeastern Spain). The map encompasses an area of some 3.21 million ha and is presented as a 150-m resolution raster dataset. Individual housing location, structure density and vegetation cover data were used to spatially assess in detail the interface, intermix and dispersed rural WUI communities with a geographical information system. Most WUI areas concentrate in the coastal belt where suburban sprawl has occurred nearby or within unmanaged forests. This geospatial information data provides an approximation of residential housing potential for loss given a wildfire, and represents a valuable contribution to assist landscape and urban planning in the region.

  8. Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice

    PubMed Central

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Ivashkina, O. I.; Zots, M. A.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2013-01-01

    Seeing the big picture of functional responses within large neural networks in a freely functioning brain is crucial for understanding the cellular mechanisms behind the higher nervous activity, including the most complex brain functions, such as cognition and memory. As a breakthrough toward meeting this challenge, implantable fiber-optic interfaces integrating advanced optogenetic technologies and cutting-edge fiber-optic solutions have been demonstrated, enabling a long-term optogenetic manipulation of neural circuits in freely moving mice. Here, we show that a specifically designed implantable fiber-optic interface provides a powerful tool for parallel long-term optical interrogation of distinctly separate, functionally different sites in the brain of freely moving mice. This interface allows the same groups of neurons lying deeply in the brain of a freely behaving mouse to be reproducibly accessed and optically interrogated over many weeks, providing a long-term dynamic detection of genome activity in response to a broad variety of pharmacological and physiological stimuli. PMID:24253232

  9. Ultra-high efficiency moving wire combustion interface for on-line coupling of HPLC

    PubMed Central

    Thomas, Avi T.; Ognibene, Ted; Daley, Paul; Turteltaub, Ken; Radousky, Harry; Bench, Graham

    2011-01-01

    We describe a 100% efficient moving-wire interface for on-line coupling of high performance liquid chromatography which transmits 100% of carbon in non-volatile analytes to a CO2 gas accepting ion source. This interface accepts a flow of analyte in solvent, evaporates the solvent, combusts the remaining analyte, and directs the combustion products to the instrument of choice. Effluent is transferred to a periodically indented wire by a coherent jet to increase efficiency and maintain peak resolution. The combustion oven is plumbed such that gaseous combustion products are completely directed to an exit capillary, avoiding the loss of combustion products to the atmosphere. This system achieves the near complete transfer of analyte at HPLC flow rates up to 125 μL/min at a wire speed of 6 cm/s. This represents a 30x efficiency increase and 8x maximum wire loading compared to the spray transfer technique used in earlier moving wire interfaces. PMID:22004428

  10. Implantable fiber-optic interface for parallel multisite long-term optical dynamic brain interrogation in freely moving mice

    NASA Astrophysics Data System (ADS)

    Doronina-Amitonova, L. V.; Fedotov, I. V.; Ivashkina, O. I.; Zots, M. A.; Fedotov, A. B.; Anokhin, K. V.; Zheltikov, A. M.

    2013-11-01

    Seeing the big picture of functional responses within large neural networks in a freely functioning brain is crucial for understanding the cellular mechanisms behind the higher nervous activity, including the most complex brain functions, such as cognition and memory. As a breakthrough toward meeting this challenge, implantable fiber-optic interfaces integrating advanced optogenetic technologies and cutting-edge fiber-optic solutions have been demonstrated, enabling a long-term optogenetic manipulation of neural circuits in freely moving mice. Here, we show that a specifically designed implantable fiber-optic interface provides a powerful tool for parallel long-term optical interrogation of distinctly separate, functionally different sites in the brain of freely moving mice. This interface allows the same groups of neurons lying deeply in the brain of a freely behaving mouse to be reproducibly accessed and optically interrogated over many weeks, providing a long-term dynamic detection of genome activity in response to a broad variety of pharmacological and physiological stimuli.

  11. Folding of a detachment and fault - Modified detachment folding along a lateral ramp, southwestern Montana, USA

    NASA Astrophysics Data System (ADS)

    Schmidt, Christopher; Whisner, S. Christopher; Whisner, Jennifer B.

    2014-12-01

    The inversion of the Middle Proterozoic Belt sedimentary basin during Late Cretaceous thrusting in Montana produced a large eastwardly-convex salient, the southern boundary of which is a 200 km-long oblique to lateral ramp subtended by a detachment between the Belt rocks and Archean basement. A 10 km-long lateral ramp segment exposes the upper levels of the detachment where hanging wall Belt rocks have moved out over the Paleozoic and Mesozoic section. The hanging wall structure consists of a train of high amplitude, faulted, asymmetrical detachment folds. Initial west-east shortening produced layer parallel shortening fabrics and dominantly strike slip faulting followed by symmetrical detachment folding. 'Lock-up' of movement on the detachment surface produced regional simple shear and caused the detachment folds to become asymmetrical and faulted. Folding of the detachment surface after lock-up modified the easternmost detachment folds further into a southeast-verging, overturned fold pair with a ramp-related fault along the base of the stretched mutual limb.

  12. Exfoliated β-Ga2O3 nano-belt field-effect transistors for air-stable high power and high temperature electronics.

    PubMed

    Kim, Janghyuk; Oh, Sooyeoun; Mastro, Michael A; Kim, Jihyun

    2016-06-21

    This study demonstrated the exfoliation of a two-dimensional (2D) β-Ga2O3 nano-belt and subsequent processing into a thin film transistor structure. This mechanical exfoliation and transfer method produces β-Ga2O3 nano-belts with a pristine surface as well as a continuous defect-free interface with the SiO2/Si substrate. This β-Ga2O3 nano-belt based transistor displayed an on/off ratio that increased from approximately 10(4) to 10(7) over the operating temperature range of 20 °C to 250 °C. No electrical breakdown was observed in our measurements up to VDS = +40 V and VGS = -60 V between 25 °C and 250 °C. Additionally, the electrical characteristics were not degraded after a month-long storage in ambient air. The demonstration of high-temperature/high-voltage operation of quasi-2D β-Ga2O3 nano-belts contrasts with traditional 2D materials such as transition metal dichalcogenides that intrinsically have limited temperature and power operational envelopes owing to their narrow bandgap. This work motivates the application of 2D β-Ga2O3 to high power nano-electronic devices for harsh environments such as high temperature chemical sensors and photodetectors as well as the miniaturization of power circuits and cooling systems in nano-electronics.

  13. ARSENIC TRANSPORT ACROSS THE GROUNDWATER – SURFACE WATER INTERFACE AT A SITE IN CENTRAL MASSACHUSETTS

    EPA Science Inventory

    Plow Shop Pond, located in central Massachusetts within the New England ‘arsenic belt,’ receives water from a series of interconnected upstream ponds as well as from upward-discharging groundwater. A small, shallow embayment on the southwest side of the pond is known as Red Cove...

  14. Space-time interface-tracking with topology change (ST-TC)

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Buscher, Austin; Asada, Shohei

    2014-10-01

    To address the computational challenges associated with contact between moving interfaces, such as those in cardiovascular fluid-structure interaction (FSI), parachute FSI, and flapping-wing aerodynamics, we introduce a space-time (ST) interface-tracking method that can deal with topology change (TC). In cardiovascular FSI, our primary target is heart valves. The method is a new version of the deforming-spatial-domain/stabilized space-time (DSD/SST) method, and we call it ST-TC. It includes a master-slave system that maintains the connectivity of the "parent" mesh when there is contact between the moving interfaces. It is an efficient, practical alternative to using unstructured ST meshes, but without giving up on the accurate representation of the interface or consistent representation of the interface motion. We explain the method with conceptual examples and present 2D test computations with models representative of the classes of problems we are targeting.

  15. Detection algorithm for glass bottle mouth defect by continuous wavelet transform based on machine vision

    NASA Astrophysics Data System (ADS)

    Qian, Jinfang; Zhang, Changjiang

    2014-11-01

    An efficient algorithm based on continuous wavelet transform combining with pre-knowledge, which can be used to detect the defect of glass bottle mouth, is proposed. Firstly, under the condition of ball integral light source, a perfect glass bottle mouth image is obtained by Japanese Computar camera through the interface of IEEE-1394b. A single threshold method based on gray level histogram is used to obtain the binary image of the glass bottle mouth. In order to efficiently suppress noise, moving average filter is employed to smooth the histogram of original glass bottle mouth image. And then continuous wavelet transform is done to accurately determine the segmentation threshold. Mathematical morphology operations are used to get normal binary bottle mouth mask. A glass bottle to be detected is moving to the detection zone by conveyor belt. Both bottle mouth image and binary image are obtained by above method. The binary image is multiplied with normal bottle mask and a region of interest is got. Four parameters (number of connected regions, coordinate of centroid position, diameter of inner cycle, and area of annular region) can be computed based on the region of interest. Glass bottle mouth detection rules are designed by above four parameters so as to accurately detect and identify the defect conditions of glass bottle. Finally, the glass bottles of Coca-Cola Company are used to verify the proposed algorithm. The experimental results show that the proposed algorithm can accurately detect the defect conditions of the glass bottles and have 98% detecting accuracy.

  16. Method and apparatus for setting precise nozzle/belt and nozzle/edge dam block gaps

    DOEpatents

    Carmichael, Robert J.; Dykes, Charles D.; Woodrow, Ronald

    1989-05-16

    A pair of guide pins are mounted on sideplate extensions of the caster and mating roller pairs are mounted on the nozzle assembly. The nozzle is advanced toward the caster so that the roller pairs engage the guide pins. Both guide pins are remotely adjustable in the vertical direction by hydraulic cylinders acting through eccentrics. This moves the nozzle vertically. The guide pin on the inboard side of the caster is similarly horizontally adjustable. The nozzle roller pair which engage the inboard guide pin are flanged so that the nozzle moves horizontally with the inboard guide pin.

  17. Projections of Demand for Waterborne Transportation, Ohio River Basin, 1980, 1990, 2000, 2020, 2040. Volume 6. Group IV. Aggregates.

    DTIC Science & Technology

    1980-12-01

    moved piece by piece rather than by conveyor belt. B-2. Institutional Factors Production of aggregates is highly centralized and vertically integrated ... Marketing of the product is most often done by the producers. Much production is used by the producers themselves; for example, as input into ready

  18. Robotics 101

    ERIC Educational Resources Information Center

    Sultan, Alan

    2011-01-01

    Robots are used in all kinds of industrial settings. They are used to rivet bolts to cars, to move items from one conveyor belt to another, to gather information from other planets, and even to perform some very delicate types of surgery. Anyone who has watched a robot perform its tasks cannot help but be impressed by how it works. This article…

  19. Should Parents Get Involved in Educational Reform?

    ERIC Educational Resources Information Center

    Blodget, Alden S.

    2012-01-01

    People tend to do things because that's how they have always done them or because that's the way others have done them. Schools are no different. The rigid factory model of education--a conveyor belt that moves children through a standard curriculum of books and lessons in a strict sequence--assumes that all brains are basically the same. They…

  20. Image pre-processing method for near-wall PIV measurements over moving curved interfaces

    NASA Astrophysics Data System (ADS)

    Jia, L. C.; Zhu, Y. D.; Jia, Y. X.; Yuan, H. J.; Lee, C. B.

    2017-03-01

    PIV measurements near a moving interface are always difficult. This paper presents a PIV image pre-processing method that returns high spatial resolution velocity profiles near the interface. Instead of re-shaping or re-orientating the interrogation windows, interface tracking and an image transformation are used to stretch the particle image strips near a curved interface into rectangles. Then the adaptive structured interrogation windows can be arranged at specified distances from the interface. Synthetic particles are also added into the solid region to minimize interfacial effects and to restrict particles on both sides of the interface. Since a high spatial resolution is only required in high velocity gradient region, adaptive meshing and stretching of the image strips in the normal direction is used to improve the cross-correlation signal-to-noise ratio (SN) by reducing the velocity difference and the particle image distortion within the interrogation window. A two dimensional Gaussian fit is used to compensate for the effects of stretching particle images. The working hypothesis is that fluid motion near the interface is ‘quasi-tangential flow’, which is reasonable in most fluid-structure interaction scenarios. The method was validated against the window deformation iterative multi-grid scheme (WIDIM) using synthetic image pairs with different velocity profiles. The method was tested for boundary layer measurements of a supersonic turbulent boundary layer on a flat plate, near a rotating blade and near a flexible flapping flag. This image pre-processing method provides higher spatial resolution than conventional WIDIM and good robustness for measuring velocity profiles near moving interfaces.

  1. Active Fault Mapping of Naga-Disang Thrust (Belt of Schuppen) for Assessing Future Earthquake Hazards in NE India

    NASA Astrophysics Data System (ADS)

    Kumar, A.

    2014-12-01

    We observe the geodynamic appraisal of Naga-Disang Thrust North East India. The Disang thrust extends NE-SW over a length of 480 km and it defines the eastern margin of Neogene basin. It branches out from Haflong-Naga thrust and in the NE at Bulbulia in the right bank of Noa Dihing River, it is terminated by Mishmi thrust, which extends into Myanmar as 'Sagaing fault,which dip generally towards SE. It extends between Dauki fault in the SW and Mishmi thrust in the NE. When the SW end of 'Belt of Schuppen' moved upwards and towards east along the Dauki fault, the NE end moved downwards and towards west along the Mishmi thrust, causing its 'S' shaped bending. The SRTM generated DEM is used to map the topographic expression of the schuppen belt, where these thrusts are significantly marked by topographic break. Satellite imagery map also shows presence lineaments supporting the post tectonic activities along Naga-Disang Thrusts. The southern part of 'Belt of Schuppen' extends along the sheared western limb of southerly plunging Kohima synform, a part of Indo Burma Ranges (IBR) and it is seismically active.The crustal velocity at SE of Schuppen is 39.90 mm/yr with a azimuth of 70.780 at Lumami, 38.84 mm/yr (Azimuth 54.09) at Senapati and 36.85 mm/yr (Azimuth 54.09) at Imphal. The crustal velocity at NW of Schuppen belt is 52.67 mm/yr (Azimuth 57.66) near Dhauki Fault in Meghalaya. It becomes 43.60 mm/yr (Azimuth76.50) - 44.25 (Azimuth 73.27) at Tiding and Kamlang Nagar around Mishmi thrust. The presence of Schuppen is marked by a change in high crustal velocity from Indian plate to low crustal velocity in Mishmi Suture as well as Indo Burma Ranges. The difference in crustal velocities results in building up of strain along the Schuppen which may trigger a large earthquake in the NE India in future. The belt of schuppean seems to be seismically active, however, the enough number of large earthquakes are not recorded. These observations are significant on Naga-Disang Thrusts to reveal a possible seismic gap in NE India observed from two great earthquakes in the region viz. 1897 (Shillong 8.7M) and 1950 (Arunachal-China 8.7M), which is required to be investigated.

  2. A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows

    NASA Astrophysics Data System (ADS)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-09-01

    A Cartesian grid-based sharp interface method is presented for viscous simulations of shocked particle-laden flows. The moving solid-fluid interfaces are represented using level sets. A moving least-squares reconstruction is developed to apply the no-slip boundary condition at solid-fluid interfaces and to supply viscous stresses to the fluid. The algorithms developed in this paper are benchmarked against similarity solutions for the boundary layer over a fixed flat plate and against numerical solutions for moving interface problems such as shock-induced lift-off of a cylinder in a channel. The framework is extended to 3D and applied to calculate low Reynolds number steady supersonic flow over a sphere. Viscous simulation of the interaction of a particle cloud with an incident planar shock is demonstrated; the average drag on the particles and the vorticity field in the cloud are compared to the inviscid case to elucidate the effects of viscosity on momentum transfer between the particle and fluid phases. The methods developed will be useful for obtaining accurate momentum and heat transfer closure models for macro-scale shocked particulate flow applications such as blast waves and dust explosions.

  3. Static continuous electrophoresis device

    NASA Technical Reports Server (NTRS)

    Rhodes, P. H. (Inventor)

    1982-01-01

    An apparatus is disclosed for carrying out a moving wall type electrophoresis process for separation of cellular particles. The apparatus includes a water-tight housing containing an electrolytic buffer solution. A separation chamber in the housing is defined by spaced opposed moving walls and spaced opposed side walls. Substrate assemblies, which support the moving wall include vacuum ports for positively sealing the moving walls against the substrate walls. Several suction conduits communicate with the suction ports and are arranged in the form of valleys in a grid plate. The raised land portion of the grid plat supports the substrate walls against deformation inwardly under suction. A cooling chamber is carried on the back side of plate. The apparatus also has tensioner means including roller and adjustment screws for maintaining the belts in position and a drive arrangement including an electric motor with a gear affixed to its output shaft. Electrode assemblies are disposed to provide the required electric field.

  4. Depth-Dependent Defect Studies Using Coherent Acoustic Phonons

    DTIC Science & Technology

    2014-09-29

    using CAP waves as an active moving interface to induce local changes in electric, acoustic , and optical properties. This is able to generate ultrafast...the elastic strain component [6]. b) Modification of the crystal lattice due to transient strain caused by the coherent acoustic phonon wave . The...opto-electronic properties of materials. We are also using CAP waves as an active moving interface to induce local changes in electric, acoustic , and

  5. KSC-04PD-2676

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. Bill Pickavance (in front), vice president, associate program manager of Florida Operations, United Space Alliance, joins workers Sam Dove, left, and Dan Drake in the cab of the Crawler Transporter before a road test. The Crawler Transporter that will move Space Shuttle Discovery to the launch pad for Return to Flight is taking its first road test following the replacement of all its shoes. The crawlers have 456 shoes, 57 per belt (8 belts in all). Each shoe weighs 2,200 pounds. Cracks appeared in the shoes in recent years, spurring a need for replacement. The new manufacturer, in Duluth, Minn., has improved the design for a safe Return to Flight and use through the balance of the Space Shuttle Program.

  6. Tectonic significance of Kibaran structures in Central and Eastern Africa

    NASA Astrophysics Data System (ADS)

    Rumvegeri, B. T.

    Tectonical movements of the Kibaran belt (1400-950 Ma) can be subdivided into two major deformation events, corresponding to tight, upright or recumbent folds, thrust faults, nappes and stretching lineation with a general plunging southwards. At the regional scale, the stretching lineation, associated with thrust faults and nappes is interpreted as an indication of a northwards moving direction. The shear zone with mafic-ultramafic rocks across Burundi, MW-Tanzania, SW-Uganda and NE-Zaïre is the suture zone of the Kibaran belt. Kibaran metamorphism is plurifacial and has four epizodes. The second, syn-D2, is the most important and constitutes the climax; it reached the granulite facies. The succession of tectonic, metamorphic and magmatic features suggests geotectonic evolution by subduction-collision.

  7. Motor vehicle seat belt restraint system analysis during rollover.

    PubMed

    Meyer, Steven E; Hock, Davis; Forrest, Stephen; Herbst, Brian; Sances, Anthony; Kumaresan, Srirangam

    2003-01-01

    The multi-planar and multiple impact long duration accident sequence of a real world rollover results in multidirectional vehicle acceleration pulses and multiplanar occupant motions not typically seen in a planar crash sequence. Various researchers have documented that, while contemporary production emergency locking seatbelt retractors (ELRs) have been found to be extremely effective in the planar crashes in which they are extensively evaluated, when subjected to multi-planar acceleration environments their response may be different than expected. Specifically, accelerations in the vertical plane have been shown to substantially affect the timeliness of the retractors inertial sensor moving out of its neutral position and locking the seat belt. An analysis of the vehicle occupant motions relative to the acceleration pulses sensed at the retractor location indicates a time phase shift that, under certain circumstances, can result in unexpected seat belt spool out and occupant excursions in these multi-planar, multiple impact crash sequences. This paper will review the various previous studies focusing on the retractors response to these multidirectional, including vertical, acceleration environments and review statistical studies based upon U.S. government collected data indicating a significant difference in belt usage rates in rollover accidents as compared to all other planar accident modes. A significant number of real world accident case studies will be reviewed wherein the performance of ELR equipped seatbelt systems spooled out. Finally, the typical occupant injury and the associated mechanism due to belt spool out in real world accidents will be delineated.

  8. The thrust belt in Southwest Montana and east-central Idaho

    USGS Publications Warehouse

    Ruppel, Edward T.; Lopez, David A.

    1984-01-01

    The leading edge of the Cordilleran fold and thrust in southwest Montana appears to be a continuation of the edge of the Wyoming thrust belt, projected northward beneath the Snake River Plain. Trces of the thrust faults that form the leading edge of the thrust belts are mostly concealed, but stratigraphic and structural evidence suggests that the belt enters Montana near the middle of the Centennial Mountains, continues west along the Red Rock River valley, and swings north into the Highland Mountains near Butte. The thrust belt in southwest Montana and east-central Idaho includes at least two major plates -- the Medicine Lodge and Grasshopper thrust plates -- each of which contains a distinctive sequence of rocks, different in facies and structural style from those of the cratonic region east of the thrust belt. The thrust plates are characterized by persuasive, open to tight and locally overturned folds, and imbricate thrust faults, structural styles unusual in Phanerozoic cratonic rocks. The basal decollement zones of the plates are composed of intensely sheared, crushed, brecciated, and mylonitized rocks, the decollement at the base of the Medicine Lodge plate is as much as 300 meters thick. The Medicine Lodge and Grasshopper thrust plates are fringed on the east by a 10- to 50-kilometer-wide zone of tightly folded rocks cut by imbricate thrust fauls, a zone that forms the eastern margin of the thrust belt in southwest Montana. The frontal fold and thrust zone includes rocks that are similar to those of the craton, even though they differ in details of thickness, composition, or stratigraphic sequence. The zone is interpreted to be one of terminal folding and thrusting in cratonic rocks overridden by the major thrust plates from farther west. The cratonic rocks were drape-folded over rising basement blocks that formed a foreland bulge in front of the thrust belt. The basement blocks are bounded by steep faults of Proterozoic ancestry, which also moved as tear faults during thrusting, and seem to have controlled the curving patterns of salients and reentrants at the leading edge of the thrust belt. Radiometric and stratiographic evidence shows that the thrust belt was in its present position by about 75 million year go.

  9. Passive radiation shielding considerations for the proposed space elevator

    NASA Astrophysics Data System (ADS)

    Jorgensen, A. M.; Patamia, S. E.; Gassend, B.

    2007-02-01

    The Earth's natural van Allen radiation belts present a serious hazard to space travel in general, and to travel on the space elevator in particular. The average radiation level is sufficiently high that it can cause radiation sickness, and perhaps death, for humans spending more than a brief period of time in the belts without shielding. The exact dose and the level of the related hazard depends on the type or radiation, the intensity of the radiation, the length of exposure, and on any shielding introduced. For the space elevator the radiation concern is particularly critical since it passes through the most intense regions of the radiation belts. The only humans who have ever traveled through the radiation belts have been the Apollo astronauts. They received radiation doses up to approximately 1 rem over a time interval less than an hour. A vehicle climbing the space elevator travels approximately 200 times slower than the moon rockets did, which would result in an extremely high dose up to approximately 200 rem under similar conditions, in a timespan of a few days. Technological systems on the space elevator, which spend prolonged periods of time in the radiation belts, may also be affected by the high radiation levels. In this paper we will give an overview of the radiation belts in terms relevant to space elevator studies. We will then compute the expected radiation doses, and evaluate the required level of shielding. We concentrate on passive shielding using aluminum, but also look briefly at active shielding using magnetic fields. We also look at the effect of moving the space elevator anchor point and increasing the speed of the climber. Each of these mitigation mechanisms will result in a performance decrease, cost increase, and technical complications for the space elevator.

  10. A marching-walking hybrid induces step length adaptation and transfers to natural walking

    PubMed Central

    Long, Andrew W.; Finley, James M.

    2015-01-01

    Walking is highly adaptable to new demands and environments. We have previously studied adaptation of locomotor patterns via a split-belt treadmill, where subjects learn to walk with one foot moving faster than the other. Subjects learn to adapt their walking pattern by changing the location (spatial) and time (temporal) of foot placement. Here we asked whether we can induce adaptation of a specific walking pattern when one limb does not “walk” but instead marches in place (i.e., marching-walking hybrid). The marching leg's movement is limited during the stance phase, and thus certain sensory signals important for walking may be reduced. We hypothesized that this would produce a spatial-temporal strategy different from that of normal split-belt adaptation. Healthy subjects performed two experiments to determine whether they could adapt their spatial-temporal pattern of step lengths during the marching-walking hybrid and whether the learning transfers to over ground walking. Results showed that the hybrid group did adapt their step lengths, but the time course of adaptation and deadaption was slower than that for the split-belt group. We also observed that the hybrid group utilized a mostly spatial strategy whereas the split-belt group utilized both spatial and temporal strategies. Surprisingly, we found no significant difference between the hybrid and split-belt groups in over ground transfer. Moreover, the hybrid group retained more of the learned pattern when they returned to the treadmill. These findings suggest that physical rehabilitation with this marching-walking paradigm on conventional treadmills may produce changes in symmetry comparable to what is observed during split-belt training. PMID:25867742

  11. A marching-walking hybrid induces step length adaptation and transfers to natural walking.

    PubMed

    Long, Andrew W; Finley, James M; Bastian, Amy J

    2015-06-01

    Walking is highly adaptable to new demands and environments. We have previously studied adaptation of locomotor patterns via a split-belt treadmill, where subjects learn to walk with one foot moving faster than the other. Subjects learn to adapt their walking pattern by changing the location (spatial) and time (temporal) of foot placement. Here we asked whether we can induce adaptation of a specific walking pattern when one limb does not "walk" but instead marches in place (i.e., marching-walking hybrid). The marching leg's movement is limited during the stance phase, and thus certain sensory signals important for walking may be reduced. We hypothesized that this would produce a spatial-temporal strategy different from that of normal split-belt adaptation. Healthy subjects performed two experiments to determine whether they could adapt their spatial-temporal pattern of step lengths during the marching-walking hybrid and whether the learning transfers to over ground walking. Results showed that the hybrid group did adapt their step lengths, but the time course of adaptation and deadaption was slower than that for the split-belt group. We also observed that the hybrid group utilized a mostly spatial strategy whereas the split-belt group utilized both spatial and temporal strategies. Surprisingly, we found no significant difference between the hybrid and split-belt groups in over ground transfer. Moreover, the hybrid group retained more of the learned pattern when they returned to the treadmill. These findings suggest that physical rehabilitation with this marching-walking paradigm on conventional treadmills may produce changes in symmetry comparable to what is observed during split-belt training. Copyright © 2015 the American Physiological Society.

  12. Origin of Outer Solar System

    NASA Technical Reports Server (NTRS)

    Holman, Matthew J.; Boyce, J. (Technical Monitor)

    2003-01-01

    We feel that at the present moment the available theoretical models of the Kuiper belt are still in advance of the data, and thus our main task has been to conduct observational work guided by theoretical motivations. Our efforts over the past year can be divided into four categories: A) Wide-field Searches for Kuiper Belt Objects; B) Pencil-beam Searches for Kuiper Belt Objects; C) Wide-field Searches for Moons of the Outer Planets; D) Pencil-beam Searches for Faint Uranian and Neptunian Moons; E) Recovery Observations. As of April 2002, we have conducted several searches for Kuiper belt objects using large-format mosaic CCD camera on 4-meter class telescopes. In May 1999, we used the Kitt Peak 4-meter with the NOAO Mosaic camera we attempted a search for KBOs at a range of ecliptic latitudes. In addition to our wide-field searches, we have conducted three 'pencil-beam' searches in the past year. In a pencil-beam search we take repeated integrations of the same field throughout a night. After preprocessing the resulting images we shift and recombine them along a range of rates and directions consistent with the motion of KBOs. Stationary objects then smear out, while objects moving at near the shift rate appear as point sources. In addition to our searches for Kuiper belt objects, we are completing the inventory of the outer solar system by search for faint satellites of the outer planets. In August 2001 we conducted pencil beam searches for faint Uranian and Neptunian satellites at CFHT and CTIO. These searches resulted in the discover of two Neptunian and four Uranian satellite candidates. The discovery of Kuiper belt objects and outer planet satellites is of little use if the discoveries are not followed by systematic, repeated astrometric observations that permit reliable estimates of their orbits.

  13. Image analysis of multiple moving wood pieces in real time

    NASA Astrophysics Data System (ADS)

    Wang, Weixing

    2006-02-01

    This paper presents algorithms for image processing and image analysis of wood piece materials. The algorithms were designed for auto-detection of wood piece materials on a moving conveyor belt or a truck. When wood objects on moving, the hard task is to trace the contours of the objects in n optimal way. To make the algorithms work efficiently in the plant, a flexible online system was designed and developed, which mainly consists of image acquisition, image processing, object delineation and analysis. A number of newly-developed algorithms can delineate wood objects with high accuracy and high speed, and in the wood piece analysis part, each wood piece can be characterized by a number of visual parameters which can also be used for constructing experimental models directly in the system.

  14. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    NASA Astrophysics Data System (ADS)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  15. Impact of fine mesh sieve primary treatment on nitrogen removal in moving bed biofilm reactors.

    PubMed

    Rusten, B; Razafimanantsoa, V A; Andriamiarinjaka, M A; Otis, C L; Sahu, A K; Bilstad, T

    2016-01-01

    The purpose of this project was to investigate the effect of selective particle removal during primary treatment on nitrogen removal in moving bed biofilm reactors (MBBRs). Two small MBBR pilot plants were operated in parallel, where one train treated 2 mm screened municipal wastewater and the other train treated wastewater that had passed through a Salsnes Filter SF1000 rotating belt sieve (RBS) with a 33 µs sieve cloth. The SF1000 was operated without a filter mat on the belt. The tests confirmed that, for the wastewater characteristics at the test plant, Salsnes Filter primary treatment with a 33 µs RBS and no filter mat produced a primary effluent that was close to optimum. Removal of organic matter with the 33 µs sieve had no negative effect on the denitrification process. Nitrification rates improved by 10-15% in the train with 33 µs RBS primary treatment. Mass balance calculations showed that without RBS primary treatment, the oxygen demand in the biological system was 36% higher. Other studies have shown that the sludge produced by RBS primary treatment is beneficial for biogas production and will also significantly improve sludge dewatering of the combined primary and biological sludge.

  16. Engineering brain-computer interfaces: past, present and future.

    PubMed

    Hughes, M A

    2014-06-01

    Electricity governs the function of both nervous systems and computers. Whilst ions move in polar fluids to depolarize neuronal membranes, electrons move in the solid-state lattices of microelectronic semiconductors. Joining these two systems together, to create an iono-electric brain-computer interface, is an immense challenge. However, such interfaces offer (and in select clinical contexts have already delivered) a method of overcoming disability caused by neurological or musculoskeletal pathology. To fulfill their theoretical promise, several specific challenges demand consideration. Rate-limiting steps cover a diverse range of disciplines including microelectronics, neuro-informatics, engineering, and materials science. As those who work at the tangible interface between brain and outside world, neurosurgeons are well placed to contribute to, and inform, this cutting edge area of translational research. This article explores the historical background, status quo, and future of brain-computer interfaces; and outlines the challenges to progress and opportunities available to the clinical neurosciences community.

  17. Attoliter Control of Microliquid

    NASA Astrophysics Data System (ADS)

    Imura, Fumito; Kuroiwa, Hiroyuki; Nakada, Akira; Kosaka, Kouji; Kubota, Hiroshi

    2007-11-01

    The technology of the sub-femtoliter volume control of liquids in nanometer range pipettes (nanopipettes) has been developed for carrying out surgical operations on living cells. We focus attention on an interface forming between oil and water in a nanopipette. The interface position can be moved by increasing or decreasing the input pressure. If the volume of liquid in the nanopipette can be controlled by moving the position of the interface, cell organelles can be discharged or suctioned and a drug-solution can be injected into the cell. Quantity volume control in the pico-attoliter range using a tapered nanopipette is controlled by the condition of an interface with a convex shape toward the top of the nanopipette. The volume can be controlled by the input pressure corresponding to the interfacial radius without the use of a microscope by preliminarily preparing the pipette shape and the interface radius as a function of the input pressure.

  18. Mathematical model for the Bridgman-Stockbarger crystal growing system

    NASA Technical Reports Server (NTRS)

    Roberts, G. O.

    1986-01-01

    In a major technical breakthrough, a computer model for Bridgman-Stockbarger crystal growth was developed. The model includes melt convection, solute effects, thermal conduction in the ampule, melt, and crystal, and the determination of the curved moving crystal-melt interface. The key to the numerical method is the use of a nonuniform computational mesh which moves with the interface, so that the interface is a mesh surface. In addition, implicit methods are used for advection and diffusion of heat, concentration, and vorticity, for interface movement, and for internal gracity waves. This allows large time-steps without loss of stability or accuracy. Numerical results are presented for the interface shape, temperature distribution, and concentration distribution, in steady-state crystl growth. Solutions are presented for two test cases using water, with two different salts in solution. The two diffusivities differ by a factor of ten, and the concentrations differ by a factor of twenty.

  19. Human-computer interface incorporating personal and application domains

    DOEpatents

    Anderson, Thomas G [Albuquerque, NM

    2011-03-29

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  20. Human-computer interface incorporating personal and application domains

    DOEpatents

    Anderson, Thomas G.

    2004-04-20

    The present invention provides a human-computer interface. The interface includes provision of an application domain, for example corresponding to a three-dimensional application. The user is allowed to navigate and interact with the application domain. The interface also includes a personal domain, offering the user controls and interaction distinct from the application domain. The separation into two domains allows the most suitable interface methods in each: for example, three-dimensional navigation in the application domain, and two- or three-dimensional controls in the personal domain. Transitions between the application domain and the personal domain are under control of the user, and the transition method is substantially independent of the navigation in the application domain. For example, the user can fly through a three-dimensional application domain, and always move to the personal domain by moving a cursor near one extreme of the display.

  1. Flexible electrode belt for EIT using nanofiber web dry electrodes.

    PubMed

    Oh, Tong In; Kim, Tae Eui; Yoon, Sun; Kim, Kap Jin; Woo, Eung Je; Sadleir, Rosalind J

    2012-10-01

    Efficient connection of multiple electrodes to the body for impedance measurement and voltage monitoring applications is of critical importance to measurement quality and practicality. Electrical impedance tomography (EIT) experiments have generally required a cumbersome procedure to attach the multiple electrodes needed in EIT. Once placed, these electrodes must then maintain good contact with the skin during measurements that may last several hours. There is usually also the need to manage the wires that run between the electrodes and the EIT system. These problems become more severe as the number of electrodes increases, and may limit the practicality and portability of this imaging method. There have been several trials describing human-electrode interfaces using configurations such as electrode belts, helmets or rings. In this paper, we describe an electrode belt we developed for long-term EIT monitoring of human lung ventilation. The belt included 16 embossed electrodes that were designed to make good contact with the skin. The electrodes were fabricated using an Ag-plated PVDF nanofiber web and metallic threads. A large contact area and padding were used behind each electrode to improve subject comfort and reduce contact impedances. The electrodes were incorporated, equally spaced, into an elasticated fabric belt. We tested the electrode belt in conjunction with the KHU Mark1 multi-frequency EIT system, and demonstrate time-difference images of phantoms and human subjects during normal breathing and running. We found that the Ag-plated PVDF nanofiber web electrodes were suitable for long-term measurement because of their flexibility and durability. Moreover, the contact impedance and stability of the Ag-plated PVDF nanofiber web electrodes were found to be comparable to similarly tested Ag/AgCl electrodes.

  2. Analysis of a turbulent boundary layer over a moving ground plane

    NASA Technical Reports Server (NTRS)

    Roper, A. T.; Gentry, G. L., Jr.

    1972-01-01

    Four methods of predicting the integral and friction parameters for a turbulent boundary layer over a moving ground plane were evaluated by using test information obtained in 76.2- by 50.8-centimeter tunnel. The tunnel was operated in the open sidewall configuration. These methods are (1) relative integral parameter method, (2) modified power law method, (3) relative power law method, and (4) modified law of the wall method. The modified law of the wall method predicts a more rapid decrease in skin friction with an increase in the ratio of belt velocity to free steam velocity than do methods (1) and (3).

  3. KSC-07pd0851

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- Two trucks (one air-ride, one flat-bed) deliver the Dawn spacecraft, as well as additional electrical and ground support equipment and xenon ground support equipment, to Astrotech. Dawn will be moved from the truck and the shipping container removed. The spacecraft will then be moved into the high bay of the Payload Processing Facility. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  4. Demonstrating the feasibility of monitoring the molecular-level structures of moving polymer/silane interfaces during silane diffusion using SFG.

    PubMed

    Chen, Chunyan; Wang, Jie; Loch, Cheryl L; Ahn, Dongchan; Chen, Zhan

    2004-02-04

    In this paper, the feasibility of monitoring molecular structures at a moving polymer/liquid interface by sum frequency generation (SFG) vibrational spectroscopy has been demonstrated. N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane (AATM, NH2(CH2)2NH(CH2)3Si(OCH3)3) has been brought into contact with a deuterated poly(methyl methacrylate) (d-PMMA) film, and the interfacial silane structure has been monitored using SFG. Upon initial contact, the SFG spectra can be detected, but as time progresses, the spectral intensity changes and finally disappears. Additional experiments indicate that these silane molecules can diffuse into the polymer film and the detected SFG signals are actually from the moving polymer/silane interface. Our results show that the molecular order of the polymer/silane interface exists during the entire diffusion process and is lost when the silane molecules traverse through the thickness of the d-PMMA film. The loss of the SFG signal is due to the formation of a new disordered substrate/silane interface, which contributes no detectable SFG signal. The kinetics of the diffusion of the silane into the polymer have been deduced from the time-dependent SFG signals detected from the AATM molecules as they diffuse through polymer films of different thickness.

  5. Crustal structure associated with Gondwana graben across the Narmada-Son lineament in India: An inference from aeromagnetics

    NASA Astrophysics Data System (ADS)

    Rao, D. Atchuta; Babu, H. V. Ram; Sinha, G. D. J. Sivakumar

    1992-10-01

    Aeromagnetic data over an 80-km-wide belt along the ENE-trending Narmada-Son lineament (NSL), starting from Baroda in the west and continuing to the south of Jabalpur in the east, has been studied to understand the structural and tectonic framework of the region. The area is covered by generally E-W-trending steeply dipping and folded Archean phyllites and quartzites as basement, with Bijawars (Upper Precambrian), upper Vindhyans (Upper Proterozoic), and Gondwanas (Upper Carboniferous) overlying them. Overlapping them all are the Deccan trap (Cretaceous-Eocene) flows. Aeromagnetic linements and their disposition and pattern in this region suggest major dislocations in the crust. The region around Hoshangabad, which is the intersection point of the NSL and the northwestern extension of the Godavari lineament, appears to have been intensely disturbed. Spectral analysis of aeromagnetic profiles across the NSL belt brought out a deep magnetic interface within crust at depths varying from 4 km to about 20 km below the surface, perhaps corresponding to the discontinuity characterized by the interface of granitic and basaltic rocks. There is a significant downwarping of this interface under the Hoshangabad region, suggesting that this is perhaps related to the evolution of the Gondwana basin structure in this area. This warping of the magnetic interface may be a reflection of the crustal flexuring and rift faulting. Elsewhere in the world, concentrations of carbonatite complexes and dike swarms are known to occur in areas of crustal flexuring and rift faulting. The occurrence of carbonatite complexes in this region (e.g. at Amba Dongar and Barwaha, and dike swarms in the Dadiapada region) gives credence to the present inferences from the aeromagnetic study.

  6. The Asian monsoon's role in atmospheric heat transport responses to orbital and millennial-scale climate change

    NASA Astrophysics Data System (ADS)

    McGee, D.; Green, B.; Donohoe, A.; Marshall, J.

    2015-12-01

    Recent studies have provided a framework for understanding the zonal-mean position of the tropical rain belt by documenting relationships between rain belt latitude and atmospheric heat transport across the equator (Donohoe et al., 2013). Modern seasonal and interannual variability in globally-averaged rain belt position (often referred to as 'ITCZ position') reflects the interhemispheric heat balance, with the rain belt's displacement toward the warmer hemisphere directly proportional to atmospheric heat transport into the cooler hemisphere. Model simulations suggest that rain belt shifts are likely to have obeyed the same relationship with interhemispheric heat transport in response to past changes in orbital parameters, ice sheets, and ocean circulation. This relationship implies that even small (±1 degree) shifts in the mean rain belt require large changes in hemispheric heat budgets, placing tight bounds on mean rain belt shifts in past climates. This work has primarily viewed tropical circulation in two dimensions, as a pair of zonal-mean Hadley cells on either side of the rain belt that are displaced north and south by perturbations in hemispheric energy budgets, causing the atmosphere to transport heat into the cooler hemisphere. Here we attempt to move beyond this zonal-mean perspective, motivated by arguments that the Asian monsoon system, rather than the zonal-mean circulation, plays the dominant role in annual-mean heat transport into the southern hemisphere in the modern climate (Heaviside and Czaja, 2012; Marshall et al., 2014). We explore a range of climate change experiments, including simulations of North Atlantic cooling and mid-Holocene climate, to test whether changes in interhemispheric atmospheric heat transport are primarily driven by the mean Hadley circulation, the Asian monsoon system, or other regional-scale atmospheric circulation changes. The scalings that this work identifies between Asian monsoon changes and atmospheric heat transport help to provide quantitative insights into Asian monsoon variability in past climates. References cited: Donohoe, A. et al., (2013) Journal of Climate 26, 3597-3618. Heaviside, C. and Czaja, A. (2012) Quart. J. Royal Met. Soc. 139, 2181-2189. Marshall, J. et al., (2014) Climate Dynamics 42, 1967-1979.

  7. MOVES2014 at the Project Level for Experienced Users, October 2014 Webinar Slides

    EPA Pesticide Factsheets

    This webinar covers the changes that enhance the MOtor Vehicle Emission Simulator at the project scale, changes to its graphical user interface at the project scale, how to convert a MOVES2010b project-level input file to MOVES2014 format, and new input.

  8. Nano-optical conveyor belt with waveguide-coupled excitation.

    PubMed

    Wang, Guanghui; Ying, Zhoufeng; Ho, Ho-pui; Huang, Ying; Zou, Ningmu; Zhang, Xuping

    2016-02-01

    We propose a plasmonic nano-optical conveyor belt for peristaltic transport of nano-particles. Instead of illumination from the top, waveguide-coupled excitation is used for trapping particles with a higher degree of precision and flexibility. Graded nano-rods with individual dimensions coded to have resonance at specific wavelengths are incorporated along the waveguide in order to produce spatially addressable hot spots. Consequently, by switching the excitation wavelength sequentially, particles can be transported to adjacent optical traps along the waveguide. The feasibility of this design is analyzed using three-dimensional finite-difference time-domain and Maxwell stress tensor methods. Simulation results show that this system is capable of exciting addressable traps and moving particles in a peristaltic fashion with tens of nanometers resolution. It is the first, to the best of our knowledge, report about a nano-optical conveyor belt with waveguide-coupled excitation, which is very important for scalability and on-chip integration. The proposed approach offers a new design direction for integrated waveguide-based optical manipulation devices and its application in large scale lab-on-a-chip integration.

  9. A technique for individual atom delivery into a crossed vortex bottle beam trap using a dynamic 1D optical lattice.

    PubMed

    Dinardo, Brad A; Anderson, Dana Z

    2016-12-01

    We describe a system for loading a single atom from a reservoir into a blue-detuned crossed vortex bottle beam trap using a dynamic 1D optical lattice. The lattice beams are frequency chirped using acousto-optic modulators, which causes the lattice to move along its axial direction and behave like an optical conveyor belt. A stationary lattice is initially loaded with approximately 6000 atoms from a reservoir, and the conveyor belt transports them 1.1 mm from the reservoir to a bottle beam trap, where a single atom is loaded via light-assisted collisions. Photon counting data confirm that an atom can be delivered and loaded into the bottle beam trap 13.1% of the time.

  10. 75 FR 15767 - Indiana Harbor Belt Railroad Company-Discontinuance of Trackage Rights Exemption-in Lake County, IN

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... that: (1) No local traffic has moved via its trackage rights over the line for at least 2 years; (2) any IHB overhead traffic can be rerouted over other lines; (3) no formal complaint filed by a user of... exemption is void ab initio. Board decisions and notices are available on our website at www.stb.dot.gov...

  11. KSC-07pd1220

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- After its successful transfer to a transporter, the Delta II first stage is ready to move out of Hangar M on Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  12. Robot Grasps Rotating Object

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.; Tso, Kam S.; Litwin, Todd E.; Hayati, Samad A.; Bon, Bruce B.

    1991-01-01

    Experimental robotic system semiautomatically grasps rotating object, stops rotation, and pulls object to rest in fixture. Based on combination of advanced techniques for sensing and control, constructed to test concepts for robotic recapture of spinning artificial satellites. Potential terrestrial applications for technology developed with help of system includes tracking and grasping of industrial parts on conveyor belts, tracking of vehicles and animals, and soft grasping of moving objects in general.

  13. ARC-1979-AC79-7105

    NASA Image and Video Library

    1979-07-06

    Range : 3.2 million km This image returned by Voyager 2 shows one of the long dark clouds observed in the North Equatorial Belt of Jupiter. A high, white cloud is seen moving over the darker cloud, providing an indication of the structure of the cloud layers. Thin white clouds are also seen within the dark cloud. At right, blue areas, free of high clouds, are seen.

  14. Does obesity affect the position of seat belt loading in occupants involved in real-world motor vehicle collisions?

    PubMed

    Hartka, Thomas R; Carr, Hannah M; Smith, Brittany R; Melmer, Monica; Sochor, Mark R

    2018-02-28

    Previous work has shown that the lap belt moves superior and forward compared to the bony pelvis as body mass index (BMI) increases. The goal of this project was to determine whether the location of lap belt loading is related to BMI for occupants who sustained real-world motor vehicle collisions (MVCs). A national MVC database was queried for vehicle occupants over a 10-year period (2003-2012) who were at least 16 years old, restrained by a 3-point seat belt, sitting in the front row, and involved in a front-end collision with a change in velocity of at least 56 km/h. Cases were excluded if there was not an available computed tomography (CT) scan of the abdomen. CT scans were then analyzed using adipose enhancement of 3-dimensional reconstructions. Scans were assessed for the presence a radiographic seat belt sign (rSBS), or subcutaneous fat stranding due to seat belt loading. In scans in which the rSBS was present, anterior and superior displacement of rSBS from the anterior-superior iliac spine (ASIS) was measured bilaterally. This displacement was correlated with BMI and injury severity. The inclusion and exclusion criteria yielded 151 cases for analysis. An rSBS could definitively be identified in 55 cases. Cases in which occupants were older and had higher BMI were more likely to display an rSBS. There was a correlation between increasing BMI and anterior rSBS displacement (P <.01 and P <.01, right and left, respectively). There was no significant correlation between BMI and superior displacement of the rSBS (P =.46 and P =.33, right and left, respectively). When the data were examined in terms of relating increasing superior displacement of the lap belt with Injury Severity Scale (P =.34) and maximum Abbreviated Injury Score (AIS) injury severity (P =.63), there was also no significant correlation. The results from this study demonstrated that anterior displacement of the radiographic seat belt sign but not superior displacement increased with higher BMI. These results suggest that obesity may worsen horizontal position but not the vertical position of the lap belt loading during real-world frontal MVCs.

  15. The radiation-belt electron phase-space-density response to stream-interaction regions: A study combining multi-point observations, data-assimilation, and physics-based modeling

    NASA Astrophysics Data System (ADS)

    Kellerman, A. C.; Shprits, Y.; McPherron, R. L.; Kondrashov, D. A.; Weygand, J. M.; Zhu, H.; Drozdov, A.

    2017-12-01

    Presented is an analysis of the phase-space density (PSD) response to the stream-interaction region (SIR), which utilizes a reanalysis dataset principally comprised of the data-assimilative Versatile Electron Radiation Belt (VERB) code, Van Allen Probe and GOES observations. The dataset spans the period 2012-2017, and includes several SIR (and CIR) storms. The PSD is examined for evidence of injections, transport, acceleration, and loss by considering the instantaneous and time-averaged change at adiabatic invariant values that correspond to ring-current, relativistic, and ultra-relativistic energies. In the solar wind, the following variables in the slow and fast wind on either side of the stream interface (SI) are considered in each case: the coronal hole polarity, IMF, solar wind speed, density, pressure, and SI tilt angle. In the magnetosphere, the Dst, AE, and past PSD state are considered. Presented is an analysis of the dominant mechanisms, both external and internal to the magnetosphere, that cause radiation-belt electron non-adiabatic changes during the passage of these fascinating solar wind structures.

  16. Modeling mechanical and thermo-mechanical erosion by flowing lava at Raglan, Cape Smith Belt, New Québec, Canada

    NASA Astrophysics Data System (ADS)

    Cataldo, V.; Williams, D. A.; Lesher, C. M.

    2015-12-01

    The 1.5-D Williams et al. model of thermal erosion by turbulent lava was recently applied to the Athabasca Valles lava channel on Mars, in an attempt to establish the importance of thermal erosion in excavating this ~80-100 m deep outflow channel. The modeled erosion depths (0.4-7.5 m) are far less than the depth of the channel which, combined with the short duration of the eruption, suggests that mechanical erosion may have had a greater role. Several studies suggest that mechanical erosion by lava is more important in channel-tube formation than previously thought, under certain circumstances. How would we be able to distinguish between mechanical and thermal erosion? By investigating model results when substrate properties change, as we move from a consolidated, mechanically strong substrate to a partially consolidated or unconsolidated, mechanically weaker substrate. The Proterozoic Raglan komatiitic basalt lava channel of the Cape Smith Belt, New Québec, Canada is a complex erosional environment involving invasive erosion of both sediment and gabbro substrates - which makes it a critical test case. The lava eroded an upper layer of soft sediment, with erosion at the tops, bottoms, and sides of the conduit, through underlying gabbro, and then burrowed laterally into underlying sediment, a scenario requiring a two-dimensional modeling approach. Using the available field data, we will simulate two-dimensional thermomechanical and mechanical erosion interfaces on all sides of a turbulent lava flow by creating a finite-element mesh. The mesh will be defined by the geometry of the lava flow at those lava conduits for which data on lava and substrate composition, lava thickness, slope of the ground, conduit area and volume, and lava flow length are available. Ultimately, this model will be applied to lunar sinuous rilles and martian lava channels for which the use of a two-dimensional approach is needed.

  17. Movement of the saltwater interface in the surficial aquifer system in response to hydrologic stresses and water-management practices, Broward County, Florida

    USGS Publications Warehouse

    Dausman, Alyssa M.; Langevin, Christian D.

    2005-01-01

    A study was conducted to evaluate the relation between water-level fluctuations and saltwater intrusion in Broward County, Florida. The objective was achieved through data collection at selected wells in Broward County and through the development of a variable-density ground-water flow model. The numerical model is representative of many locations in Broward County that contain a well field, control structure, canal, the Intracoastal Waterway, and the Atlantic Ocean. The model was used to simulate short-term movement (from tidal fluctuations to monthly changes) and long-term movement (greater than 10 years) of the saltwater interface resulting from changes in rainfall, well-field withdrawals, sea-level rise, and upstream canal stage. The SEAWAT code, which is a combined version of the computer codes, MODFLOW and MT3D, was used to simulate the complex variable-density flow patterns. Model results indicated that the canal, control structure, and sea level have major effects on ground-water flow. For periods greater than 10 years, the upstream canal stage controls the movement and location of the saltwater interface. If upstream canal stage is decreased by 1 foot (0.3048 meter), the saltwater interface takes 50 years to move inland and stabilize. If the upstream canal stage is then increased by 1 foot (0.3048 meter), the saltwater interface takes 90 years to move seaward and stabilize. If sea level rises about 48 centimeters over the next 100 year as predicted, then inland movement of the saltwater interface may cause well-field contamination. For periods less than 10 years, simulation results indicated that a 3-year drought with increased well-field withdrawals probably will not have long-term effects on the position of the saltwater interface in the Biscayne aquifer. The saltwater interface returns to its original position in less than 10 years. Model results, however, indicated that the interface location in the lower part of the surficial aquifer system takes longer than 10 years to recover from a drought. Additionally, rainfall seems to have the greatest effect on saltwater interface movement in areas some distance from canals, but the upstream canal stage has the greatest effect on the movement of the saltwater interface near canals. Field data indicated that saltwater interface movement includes short-term fluctuations caused by tidal fluctuations and long-term seasonal fluctuations. Statistical analyses of daily-averaged data indicated that the saltwater interface moves in response to pumpage, rainfall, and upstream canal stage. In areas near the canal, the saltwater interface is most affected by canal stage because water-management structures control the stage in the upstream part of the canal and allow movement of the saltwater interface. In areas away from the canal, the saltwater interface is most affected by pumpage and rainfall, depending on the location of well fields. Data analyses also revealed that rainfall changes the vertical flow direction in the Biscayne aquifer. Results from the study indicated that upstream canal stage substantially affects the long-term position of the saltwater interface in the surficial aquifer system. The saltwater interface moves faster inland than seaward because of changes in upstream canal stage. For short-term problems, such as drought, the threat of saltwater intrusion in the Biscayne aquifer does not appear to be severe if the well-field withdrawal is increased; however, this conclusion is based on the assumption that well-field withdrawals will decrease once the drought is over. Sea-level rise may be a potential threat to the water supply in Broward County as the saltwater interface moves inland toward well fields.

  18. Few-Mode Whispering-Gallery-Mode Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Matsko, Andrey; Iltchenko, Vladimir; Maleki, Lute

    2006-01-01

    Whispering-gallery-mode (WGM) optical resonators of a type now under development are designed to support few well-defined waveguide modes. In the simplest case, a resonator of this type would support one equatorial family of WGMs; in a more complex case, such a resonator would be made to support two, three, or some other specified finite number of modes. Such a resonator can be made of almost any transparent material commonly used in optics. The nature of the supported modes does not depend on which material is used, and the geometrical dispersion of this resonator is much smaller than that of a typical prior WGM resonator. Moreover, in principle, many such resonators could be fabricated as integral parts of a single chip. Basically, a resonator of this type consists of a rod, made of a suitable transparent material, from which protrudes a thin circumferential belt of the same material. The belt is integral with the rest of the rod (see figure) and acts as a circumferential waveguide. If the depth (d) and width (w) of the belt are made appropriately small, then the belt acts as though it were the core of a single-mode optical fiber: the belt and its adjacent supporting rod material support a single, circumferentially propagating mode or family of modes. It has been shown theoretically that the fiber-optic-like behavior of the belton- rod resonator structure can be summarized, in part, by the difference, Dn, between (1) an effective index of refraction of an imaginary fiber core and (2) the index of refraction (n) of the transparent rod/belt material. It has also been shown theoretically that for a given required value of Dn, the required depth of the belt can be estimated as d R Dn, where R is the radius of the rod. It must be emphasized that this estimated depth is independent of n and, hence, is independent of the choice of rod material. As in the cases of prior WGM resonators, input/output optical coupling involves utilization of evanescent fields. In the present case, there are two evanescent fields: one at the belt/air interface and one in the boundary region between the belt and the rest of the rod.

  19. Assessing the Main-Belt Comet Population with Comet Hunters

    NASA Astrophysics Data System (ADS)

    Schwamb, Megan E.; Hsieh, Henry H.; Zhang, Zhi-Wei; Chen, Ying-Tung; Lintott, Chris; Wang, Shiang-Yu; Mishra, Ishan

    2017-01-01

    Cometary activity in the asteroid belt is a recent discovery. Evidence suggests recent collisions play a role excavating subsurface water ice in these Main Belt Comets (MBCs). MBCs may be an alternative source of Earth’s water. The properties and origins of the MBCs remain elusive. To date ~15 MBCs are known, but only with many tens to 100s of MBCs can we fully explore this new reservoir and its implications for the early Earth.Automated routines identify cometary objects by comparing the point spread functions (PSFs) of moving objects to background stars. This approach may miss cometary activity with low-level dust comae or trails that are too weak or extended to affect an object's near-nucleus PSF profile. Direct visual inspection of moving objects by survey team members can often catch such unusual objects, but such an approach is impractical for the largest surveys to date, and will only become more intractable with the next generation wide-field surveys.With the Internet, tens of thousands of people can be engaged in the scientific process. With this citizen science approach, the combined assessment of many non-experts often equals or rivals that of a trained expert and in many cases outperforms automated algorithms. The Comet Hunters (http://www.comethunters.org) project enlists the public to search for MBCs in data from the Hyper Suprime-Cam (HSC) wide survey. HSC is to date the largest field-of-view camera (covering a 1.5 degree diameter circle on sky) on a 8-10-m class telescope. The HSC wide survey provides the sensitivity to detect cometary activity at lower levels than have been possible for previous surveys.We will give an overview of the Comet Hunters project. We will present the results from the first ~10,000 HSC asteroids searched and provide an estimate on the frequency of cometary activity in the Main Asteroid beltAcknowledgements: This work uses data generated via the Zooniverse.org platform, development of which was supported by a Global Impact Award from Google, and by the Alfred P. Sloan Foundation. The HSC collaboration includes the astronomical communities of Japan and Taiwan, and Princeton University.

  20. Pressure waves in the aorta during isolated abdominal belt loading: the magnitude, phasing, and attenuation.

    PubMed

    Arregui-Dalmases, C; Del Pozo, E; Stacey, S; Kindig, M; Lessley, D; Lopez-Valdes, F; Forman, J; Kent, R

    2011-07-01

    While rupture of the aorta is a leading cause of sudden death following motor vehicle crashes, the specific mechanism that causes this injury is not currently well understood. Aortic ruptures occurring in the field are likely due to a complex combination of contributing factors such as acceleration, compression of the chest, and increased pressure within the aorta. The objective of the current study was to investigate one of these factors in more detail than has been done previously; specifically, to investigate the in situ intra-aortic pressure generated during isolated belt loading to the abdomen. Ten juvenile swine were subjected to dynamic belt loads applied to the abdomen. Intraaortic pressure was measured at multiple locations to assess the magnitude and propagation of the resulting blood pressure wave. The greatest average peak pressure (113.6 +/- 43.5 kPa) was measured in the abdominal aorta. Pressures measured in the thoracic aorta and aortic arch were 70 per cent and 50 per cent, respectively, that measured in the abdominal aorta. No macroscopic aortic trauma was observed. To the authors' knowledge the present study is the first one to document the presence, propagation, and attenuation of a transient pressure wave in the aorta generated by abdominal belt loading. The superiorly moving wave is sufficient to generate hydrostatic and intimal shear stress in the aorta, possibly contributing to the hypothesized mechanisms of traumatic aortic rupture.

  1. X-ray phase scanning setup for non-destructive testing using Talbot-Lau interferometer

    NASA Astrophysics Data System (ADS)

    Bachche, S.; Nonoguchi, M.; Kato, K.; Kageyama, M.; Koike, T.; Kuribayashi, M.; Momose, A.

    2016-09-01

    X-ray grating interferometry has a great potential for X-ray phase imaging over conventional X-ray absorption imaging which does not provide significant contrast for weakly absorbing objects and soft biological tissues. X-ray Talbot and Talbot-Lau interferometers which are composed of transmission gratings and measure the differential X-ray phase shifts have gained popularity because they operate with polychromatic beams. In X-ray radiography, especially for nondestructive testing in industrial applications, the feasibility of continuous sample scanning is not yet completely revealed. A scanning setup is frequently advantageous when compared to a direct 2D static image acquisition in terms of field of view, exposure time, illuminating radiation, etc. This paper demonstrates an efficient scanning setup for grating-based Xray phase imaging using laboratory-based X-ray source. An apparatus consisting of an X-ray source that emits X-rays vertically, optical gratings and a photon-counting detector was used with which continuously moving objects across the field of view as that of conveyor belt system can be imaged. The imaging performance of phase scanner was tested by scanning a long continuous moving sample at a speed of 5 mm/s and absorption, differential-phase and visibility images were generated by processing non-uniform moire movie with our specially designed phase measurement algorithm. A brief discussion on the feasibility of phase scanner with scanning setup approach including X-ray phase imaging performance is reported. The successful results suggest a breakthrough for scanning objects those are moving continuously on conveyor belt system non-destructively using the scheme of X-ray phase imaging.

  2. A finite-element model for moving contact line problems in immiscible two-phase flow

    NASA Astrophysics Data System (ADS)

    Kucala, Alec

    2017-11-01

    Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). The macroscale movement of the contact line is dependent on the molecular interactions occurring at the three-phase interface, however most MCL problems require resolution at the meso- and macro-scale. A phenomenological model must be developed to account for the microscale interactions, as resolving both the macro- and micro-scale would render most problems computationally intractable. Here, a model for the moving contact line is presented as a weak forcing term in the Navier-Stokes equation and applied directly at the location of the three-phase interface point. The moving interface is tracked with the level set method and discretized using the conformal decomposition finite element method (CDFEM), allowing for the surface tension and the wetting model to be computed at the exact interface location. A variety of verification test cases for simple two- and three-dimensional geometries are presented to validate the current MCL model, which can exhibit grid independence when a proper scaling for the slip length is chosen. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.

  3. Kinematics of the active West Andean fold-and-thrust belt (central Chile): Structure and long-term shortening rate

    NASA Astrophysics Data System (ADS)

    Riesner, M.; Lacassin, R.; Simoes, M.; Armijo, R.; Rauld, R.; Vargas, G.

    2017-02-01

    West verging thrusts, synthetic with the Nazca-South America subduction interface, have been recently discovered at the western front of the Andes. At 33°30'S, the active San Ramón fault stands as the most frontal of these west verging structures and represents a major earthquake threat for Santiago, capital city of Chile. Here we elaborate a detailed 3-D structural map and a precise cross section of the West Andean fold-and-thrust belt based on field observations, satellite imagery, and previous structural data, together with digital topography. We then reconstruct the evolution of this frontal belt using a trishear kinematic approach. Our reconstruction implies westward propagation of deformation with a total shortening of 9-15 km accumulated over the last 25 Myr. An overall long-term shortening rate of 0.1-0.5 mm/yr is deduced. The maximum value of this shortening rate compares well with the rate that may be inferred from recent trench data across the San Ramón fault and the slip associated with the past two Mw > 7 earthquakes. This suggests that the San Ramón fault is most probably the only presently active fault of the West Andean fold-and-thrust-belt and that most—if not all—the deformation is to be released seismically.

  4. KSC-07pd1216

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, a worker guides a transporter into place to receive the Delta II first stage. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  5. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In Astrotech's Payload Processing Facility, technicians help secure the Dawn spacecraft onto a moveable stand. Dawn will be moved into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C.

  6. Dawn Spacecraft Processing

    NASA Image and Video Library

    2007-04-10

    In Astrotech's Payload Processing Facility, an overhead crane lifts the Dawn spacecraft from its transporter. Dawn will be moved into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C

  7. Robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery from stroke: updates and advances.

    PubMed

    Boninger, Michael L; Wechsler, Lawrence R; Stein, Joel

    2014-11-01

    The aim of this study was to describe the current state and latest advances in robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery for stroke. The authors of this summary recently reviewed this work as part of a national presentation. The article represents the information included in each area. Each area has seen great advances and challenges as products move to market and experiments are ongoing. Robotics, stem cells, and brain-computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial.

  8. Robotics, Stem Cells and Brain Computer Interfaces in Rehabilitation and Recovery from Stroke; Updates and Advances

    PubMed Central

    Boninger, Michael L; Wechsler, Lawrence R.; Stein, Joel

    2014-01-01

    Objective To describe the current state and latest advances in robotics, stem cells, and brain computer interfaces in rehabilitation and recovery for stroke. Design The authors of this summary recently reviewed this work as part of a national presentation. The paper represents the information included in each area. Results Each area has seen great advances and challenges as products move to market and experiments are ongoing. Conclusion Robotics, stem cells, and brain computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial PMID:25313662

  9. ASTEROIDS: Living in the Kingdom of Chaos

    NASA Astrophysics Data System (ADS)

    Morbidelli, A.

    2000-10-01

    The existence of chaotic regions in the main asteroid belt, related with the lowest-order mean-motion and secular resonances, has long been known. However, only in the last decade have semi-analytic theories allowed a proper understanding of the chaotic behavior observed in numerical simulations which accurately incorporate the entire planetary system. The most spectacular result has been the discovery that the asteroids in some of these resonance may collide with the Sun on typical time scales of a few million year, their eccentricities being pumped to unity during their chaotic evolution. But the asteroid belt is not simply divided into violent chaotic zones and regular regions. It has been shown that the belt is criss-crossed by a large number of high-order mean-motion resonances with Jupiter or Mars, as well as by `three-body resonances' with Jupiter and Saturn. All these weak resonances cause the slow chaotic drift of the `proper' eccentricities and inclinations. The traces left by this evolution are visible, for example, in the structure of the Eos and Themis asteroid families. Weak chaos may also explain the anomalous dispersion of the eccentricities and inclinations observed in the Flora ``clan." Moreover, due to slow increases in their eccentricities, many asteroids start to cross the orbit of Mars, over a wide range of semimajor axes. The improved knowledge of the asteroid belt's chaotic structure provides, for the first time, an opportunity to build detailed quantitative models of the origin and the orbital distribution of Near-Earth Asteroids and meteorites. In turn, these models seem to imply that the semimajor axes of main-belt asteroids must also slowly evolve with time. For asteroids larger than about 20 km this is due mainly to encounters with Ceres, Pallas, and Vesta, while for smaller bodies the so-called Yarkovsky effect should dominate. Everything moves chaotically in the asteroid belt.

  10. NASA’s BARREL Mission Launches 20 Balloons

    NASA Image and Video Library

    2017-12-08

    Pumping helium into the first BARREL balloon to launch from Halley Research Satation. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. NASA’s BARREL Mission Launches 20 Balloons

    NASA Image and Video Library

    2017-12-08

    A crane lowers two BARREL balloon payloads onto the platform at Halley Research Station in Antarctica. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. NASA’s BARREL Mission Launches 20 Balloons

    NASA Image and Video Library

    2017-12-08

    The BARREL cargo on its four-hour journey from the supply ship to the research station. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. NASA’s BARREL Mission Launches 20 Balloons

    NASA Image and Video Library

    2017-12-08

    The BARREL team at the SANAE IV research station celebrates their final launch in the Antarctica sun. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Janus Colloids Actively Rotating on the Surface of Water.

    PubMed

    Wang, Xiaolu; In, Martin; Blanc, Christophe; Würger, Alois; Nobili, Maurizio; Stocco, Antonio

    2017-12-05

    Biological or artificial microswimmers move performing trajectories of different kinds such as rectilinear, circular, or spiral ones. Here, we report on circular trajectories observed for active Janus colloids trapped at the air-water interface. Circular motion is due to asymmetric and nonuniform surface properties of the particles caused by fabrication. Motion persistence is enhanced by the partial wetted state of the Janus particles actively moving in two dimensions at the air-water interface. The slowing down of in-plane and out-of-plane rotational diffusions is described and discussed.

  15. The cost-effectiveness of air bags by seating position.

    PubMed

    Graham, J D; Thompson, K M; Goldie, S J; Segui-Gomez, M; Weinstein, M C

    1997-11-05

    Motor vehicle crashes continue to cause significant mortality and morbidity in the United States. Installation of air bags in new passenger vehicles is a major initiative in the field of injury prevention. To assess the net health consequences and cost-effectiveness of driver's side and front passenger air bags from a societal perspective, taking into account the increased risk to children who occupy the front passenger seat and the diminished effectiveness for older adults. A deterministic state transition model tracked a hypothetical cohort of new vehicles over a 20-year period for 3 strategies: (1) installation of safety belts, (2) installation of driver's side air bags in addition to safety belts, and (3) installation of front passenger air bags in addition to safety belts and driver's side air bags. Changes in health outcomes, valued in terms of quality-adjusted life-years (QALYs) and costs (in 1993 dollars), were projected following the recommendations of the Panel on Cost-effectiveness in Health and Medicine. US population-based and convenience sample data were used. Incremental cost-effectiveness ratios. Safety belts are cost saving, even at 50% use. The addition of driver's side air bags to safety belts results in net health benefits at an incremental cost of $24000 per QALY saved. The further addition of front passenger air bags results in an incremental net benefit at a higher incremental cost of $61000 per QALY saved. Results were sensitive to the unit cost of air bag systems, their effectiveness, baseline fatality rates, the ratio of injuries to fatalities, and the real discount rate. Both air bag systems save life-years at costs that are comparable to many medical and public health practices. Immediate steps can be taken to enhance the cost-effectiveness of front passenger air bags, such as moving children to the rear seat.

  16. Connecting the Bird's Head to the Bird's Body - Cenozoic arc magmatism extends along the length of New Guinea.

    NASA Astrophysics Data System (ADS)

    Webb, Max; White, Lloyd; Jost, Benjamin

    2017-04-01

    New Guinea has a long, complicated history of arc magmatism. The present day shape of the island (resembling that of a bird in flight) formed as a result of oblique convergence of the Pacific and Caroline/Philippine plates with the northward moving Australian plate. This convergence resulted in multiple collisions of island arcs with continental crust, representing a modern day analogue to ancient accretionary orogens. This complex geological history has formed four major tectonic belts; accreted Palaeogene island arcs, the New Guinea Mobile Belt, the New Guinea Fold Belt and a stable platform. These tectonic belts are drawn across most of New Guinea in major review papers. However, these tectonic belts are not generally considered to extend through to New Guinea's western most peninsula (the Bird's Head). We present new field evidence, together with new U-Pb zircon geochronology and geochemical analyses from rocks collected within the Bird's Head. These document Middle to Late Miocene intermediate to felsic volcanic rocks and associated granitoid intrusives that formed along an active continental margin. These are effectively the equivalent of the Maramuni arc and Freida River Complex in eastern New Guinea. Several, broadly Eocene island arcs composed of dominantly mafic volcanic rocks are also found in the Bird's Head. These island arcs accreted along the Bird's Head sometime after their initial formation, possibly coinciding with Middle to Late Miocene active continental margin magmatism and we consider them to be equivalents of the Cyclops Mountains arc in Central New Guinea. This work demonstrates that New Guinea's east-west terranes are more extensive than previously thought. This potentially has implications for locating future ore deposits and understanding the relative position of the Bird's Head with respect to the rest of New Guinea in major plate reconstructions.

  17. A multi-dimensional high-order DG-ALE method based on gas-kinetic theory with application to oscillating bodies

    NASA Astrophysics Data System (ADS)

    Ren, Xiaodong; Xu, Kun; Shyy, Wei

    2016-07-01

    This paper presents a multi-dimensional high-order discontinuous Galerkin (DG) method in an arbitrary Lagrangian-Eulerian (ALE) formulation to simulate flows over variable domains with moving and deforming meshes. It is an extension of the gas-kinetic DG method proposed by the authors for static domains (X. Ren et al., 2015 [22]). A moving mesh gas kinetic DG method is proposed for both inviscid and viscous flow computations. A flux integration method across a translating and deforming cell interface has been constructed. Differently from the previous ALE-type gas kinetic method with piecewise constant mesh velocity at each cell interface within each time step, the mesh velocity variation inside a cell and the mesh moving and rotating at a cell interface have been accounted for in the finite element framework. As a result, the current scheme is applicable for any kind of mesh movement, such as translation, rotation, and deformation. The accuracy and robustness of the scheme have been improved significantly in the oscillating airfoil calculations. All computations are conducted in a physical domain rather than in a reference domain, and the basis functions move with the grid movement. Therefore, the numerical scheme can preserve the uniform flow automatically, and satisfy the geometric conservation law (GCL). The numerical accuracy can be maintained even for a largely moving and deforming mesh. Several test cases are presented to demonstrate the performance of the gas-kinetic DG-ALE method.

  18. Role of air-water interfaces in colloid transport in porous media: A review

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Aramrak, Surachet

    2017-07-01

    Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface chemistry.

  19. TRANSIENT DUPUIT INTERFACE FLOW WITH PARTIALLY PENETRATING FEATURES

    EPA Science Inventory

    A comprehensive potential is presented for Dupuit interface flow in coastal aquifers where both the fresh water and salt water are moving. The resulting potential flow problem may be solved, for incompressible confined aquifers, using analytic functions. The vertical velocity of ...

  20. KSC-07pd1257

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, the Dawn spacecraft, secure on a work stand, is moved to another room for solar panel installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  1. KSC-07pd1254

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers prepare the Dawn spacecraft to be moved to a work stand for solar panel installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  2. KSC-07pd1217

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- With the transporter in place inside Hangar M on Cape Canaveral Air Force Station, the suspended Delta II first stage can be placed on it. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  3. KSC-07pd1255

    NASA Image and Video Library

    2007-05-22

    KENNEDY SPACE CENTER, FLA. -- In a clean room at Astrotech, workers stand near while the Dawn spacecraft is lifted and moved toward a work stand for solar panel installation. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Photo credit: NASA/Jack Pfaller

  4. Integrated rig for the production of boron nitride nanotubes via the pressurized vapor-condenser method

    DOEpatents

    Smith, Michael W; Jordan, Kevin C

    2014-03-25

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  5. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    NASA Technical Reports Server (NTRS)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  6. Muller Mixer Fire - Lessons Learned

    DTIC Science & Technology

    1986-08-01

    wheel National Engineering stainless steel Special Simpson Porto Muller equipped with two-200 pound muller wheels plus an inside and outside plow...The mixer wheels /plows revolve at approximately 18 RPM and are driven by an 1800 RPM 3 H.P. motor through a double belt sheave and gear box. The bowl...diameter is approximately 39 inches and 12 inches deep with the mulling wheels /plows geared to move in a counterclockwise rotation. All bays are

  7. The Moving Edge: Perspectives on the Southern Wildland-Urban Interface

    Treesearch

    Martha C. Monroe; Alison W. Bowers; L. Annie Hermansen

    2003-01-01

    To better understand the wildland-urban interface across the 13 Southern States and to identify issues to be covered in the USDA Forest Service report, "Human Influences on Forest Ecosystems: The Southern Wildland-Urban Interface Assessment," 12 focus groups were conducted in 6 of the Southern States in May and June 2000. The groups were guided through a...

  8. The Input-Interface of Webcam Applied in 3D Virtual Reality Systems

    ERIC Educational Resources Information Center

    Sun, Huey-Min; Cheng, Wen-Lin

    2009-01-01

    Our research explores a virtual reality application based on Web camera (Webcam) input-interface. The interface can replace with the mouse to control direction intention of a user by the method of frame difference. We divide a frame into nine grids from Webcam and make use of the background registration to compute the moving object. In order to…

  9. Frequency modulation at a moving material interface and a conservation law for wave number. [acoustic wave reflection and transmission

    NASA Technical Reports Server (NTRS)

    Kleinstein, G. G.; Gunzburger, M. D.

    1976-01-01

    An integral conservation law for wave numbers is considered. In order to test the validity of the proposed conservation law, a complete solution for the reflection and transmission of an acoustic wave impinging normally on a material interface moving at a constant speed is derived. The agreement between the frequency condition thus deduced from the dynamic equations of motion and the frequency condition derived from the jump condition associated with the integral equation supports the proposed law as a true conservation law. Additional comparisons such as amplitude discontinuities and Snells' law in a moving media further confirm the stated proposition. Results are stated concerning frequency and wave number relations across a shock front as predicted by the proposed conservation law.

  10. Optical methods in fault dynamics

    NASA Astrophysics Data System (ADS)

    Uenishi, K.; Rossmanith, H. P.

    2003-10-01

    The Rayleigh pulse interaction with a pre-stressed, partially contacting interface between similar and dissimilar materials is investigated experimentally as well as numerically. This study is intended to obtain an improved understanding of the interface (fault) dynamics during the earthquake rupture process. Using dynamic photoelasticity in conjunction with high-speed cinematography, snapshots of time-dependent isochromatic fringe patterns associated with Rayleigh pulse-interface interaction are experimentally recorded. It is shown that interface slip (instability) can be triggered dynamically by a pulse which propagates along the interface at the Rayleigh wave speed. For the numerical investigation, the finite difference wave simulator SWIFD is used for solving the problem under different combinations of contacting materials. The effect of acoustic impedance ratio of the two contacting materials on the wave patterns is discussed. The results indicate that upon interface rupture, Mach (head) waves, which carry a relatively large amount of energy in a concentrated form, can be generated and propagated from the interface contact region (asperity) into the acoustically softer material. Such Mach waves can cause severe damage onto a particular region inside an adjacent acoustically softer area. This type of damage concentration might be a possible reason for the generation of the "damage belt" in Kobe, Japan, on the occasion of the 1995 Hyogo-ken Nanbu (Kobe) Earthquake.

  11. Study on cord/rubber interface at elevated temperatures by H-pull test method

    NASA Astrophysics Data System (ADS)

    Jamshidi, M.; Afshar, F.; Mohammadi, N.; Pourmahdian, S.

    2005-08-01

    Cords are used as reinforcing materials in rubber compounds. To increase cord/rubber interfacial adhesion, they are coated by an adhesive (usually based on resorcinol-formaldehyde-latex). These composites are used in many sectors such as tire and belt industries. Cord/rubber adhesion strength is an important aspect to determine the durability of system. Due to temperature increase during running tires, the adhesion energy becomes different from initial one. To study cord/rubber interface at elevated temperatures, H-adhesion test method was used. H-pull test is a simple method for adhesion evaluation at ambient temperature, so it is usually used for material quality control. In this research, cord/rubber systems were vulcanized at different temperatures and H-adhesion of samples were evaluated at elevated temperatures. Also cord/rubber interface was studied by ATR analyze to determine interfacial interactions kind.

  12. Laboratory experiments on subduction-induced circulation in the wedge and the evolution of mantle diapirs

    NASA Astrophysics Data System (ADS)

    Sylvia, R. T.; Kincaid, C. R.; Behn, M. D.; Zhang, N.

    2014-12-01

    Circulation in subduction zones involves large-scale, forced-convection by the motion of the down-going slab and small scale, buoyant diapirs of hydrated mantle or subducted sediments. Models of subduction-diapir interaction often neglect large-scale flow patterns induced by rollback, back-arc extension and slab morphology. We present results from laboratory experiments relating these parameters to styles of 4-D wedge circulation and diapir ascent. A glucose fluid is used to represent the mantle. Subducting lithosphere is modeled with continuous rubber belts moving with prescribed velocities, capable of reproducing a large range in downdip relative rollback plate rates. Differential steepening of distinct plate segments simulates the evolution of slab gaps. Back-arc extension is produced using Mylar sheeting in contact with fluid beneath the overriding plate that moves relative to the slab rollback rate. Diapirs are introduced at the slab-wedge interface in two modes: 1) distributions of low density rigid spheres and 2) injection of low viscosity, low density fluid to the base of the wedge. Results from 30 experiments with imposed along-trench (y) distributions of buoyancy, show near-vertical ascent paths only in cases with simple downdip subduction and ratios (W*) of diapir rise velocity to downdip plate rate of W*>1. For W* = 0.2-1, diapir ascent paths are complex, with large (400 km) lateral offsets between source and surfacing locations. Rollback and back-arc extension enhance these offsets, occasionally aligning diapirs from different along-trench locations into trench-normal, age-progressive linear chains beneath the overriding plate. Diapirs from different y-locations may surface beneath the same volcanic center, despite following ascent paths of very different lengths and transit times. In cases with slab gaps, diapirs from the outside edge of the steep plate move 1000 km parallel to the trench before surfacing above the shallow dipping plate. "Dead zones" resulting from lateral and vertical shear in the wedge above the slab gap, produce slow transit times. These 4-D ascent pathways are being incorporated into numerical models on the thermal and melting evolution of diapirs. Models show subduction-induced circulation significantly alters diapir ascent beneath arcs.

  13. Space shuttle: Longitudinal aerodynamic characteristics of low aspect ratio wing configurations in ground effect for a moving and stationary ground surface

    NASA Technical Reports Server (NTRS)

    Romere, P. O.; Chambliss, E. B.

    1972-01-01

    A 0.05-scale model of the NASA-MSC Orbiter 040A Configuration was tested. Test duration was approximately 80 hours during which the model was tested in and out of ground effect with a stationary and moving ground belt. Model height from ground plane surface was varied from one and one-half wing span to landing touchdown while angle of attack varied from -4 to 20 degrees. Eleven effectiveness and alternate configuration geometries were tested to insure complete analysis of low aspect ratio wing aircraft in the presence of ground effect. Test Mach number was approximately 0.067 with a corresponding dynamic pressure value of 6.5 psf.

  14. 78 FR 70415 - Federal Motor Vehicle Safety Standards; Occupant Crash Protection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-25

    ...Completing the first initiative of NHTSA's 2007 ``NHTSA's Approach to Motorcoach Safety'' plan and one of the principal undertakings of DOT's 2009 Motorcoach Safety Action Plan, and fulfilling a statutory mandate of the Motorcoach Enhanced Safety Act of 2012, incorporated into the Moving Ahead for Progress in the 21st Century Act, this final rule amends the Federal motor vehicle safety standard (FMVSS) on occupant crash protection to require lap/shoulder seat belts for each passenger seating position in all new over-the-road buses, and in new buses other than over-the-road buses with a gross vehicle weight rating (GVWR) greater than 11,793 kilograms (kg) (26,000 pounds (lb), with certain exclusions. By requiring the passenger lap/ shoulder seat belts, this final rule significantly reduces the risk of fatality and serious injury in frontal crashes and the risk of occupant ejection in rollovers, thus considerably enhancing the safety of these vehicles.

  15. Sedna Orbit Animation

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This animation shows the location of the newly discovered planet-like object, dubbed 'Sedna,' in relation to the rest of the solar system. Starting at the inner solar system, which includes the orbits of Mercury, Venus, Earth, and Mars (all in yellow), the view pulls away through the asteroid belt and the orbits of the outer planets beyond (green). Pluto and the distant Kuiper Belt objects are seen next until finally Sedna comes into view. As the field widens the full orbit of Sedna can be seen along with its current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. Moving past Sedna, what was previously thought to be the inner edge of the Oort cloud appears. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  16. Progress report on Bertelsen research and development of an air cushion crawler all-terrain vehicle

    NASA Astrophysics Data System (ADS)

    Bertelsen, W. R.

    1987-06-01

    The ACV is an exceptional amphibian but it is not, nor is any other existing craft, an all-terrain vehicle (ATV). Using the best elements of the ACV in an air-cushion crawler tractor, a true ATV can be attained. A conventional crawler drive train will propel two tracks as pressurized, propulsive pontoons. The key to a successful ATV is in perfecting efficient, durable, sliding seals to allow the belt to move in its orbit around the track unit and maintain its internal pressure. After deriving the adequate seal, a 12 inch wide x 86 inch long endless rubber belt was fitted bilateral seals and slide plates with internal guide wheels fore and aft with a 21 inch wheel base. From this approximately one-quarter scale model, full-scale air track crawlers, true ATVs, of any size and capacity can be produced.

  17. Slosh-Free Positioning of Containers with Liquids and Flexible Conveyor Belt

    NASA Astrophysics Data System (ADS)

    Hubinský, Peter; Pospiech, Thomas

    2010-03-01

    This paper describes a method for slosh-free moving of containers with a liquid at which the conveyor belt is flexible. It shows, by means of experimental results, that a container filled with a liquid can be regarded as a damped pendulum. Upon parameter identification of the two single-mode subsystems, theoretical modelling of the complete system is described. With respect to industrial application, feedforward control is used to transfer the container in horizontal direction without sloshing. The applied method requires deterministic and hard real time communication between the PLC and the servo amplifier which is realized here with Ethernet POWERLINK. The principle structure, calculations, time duration and the robustness of the basic types of input shaper are described and compared with each other. Additionally the positioning results of the two-mode system are presented. Finally, a possibility of the principle software implementation is presented.

  18. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers move the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

    NASA Image and Video Library

    2003-11-11

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers move the liquid oxygen feedline for the 17-inch disconnect toward orbiter Discovery for installation. The 17-inch liquid oxygen and liquid hydrogen disconnects provide the propellant feed interface from the external tank to the orbiter main propulsion system and the three Shuttle main engines.

  19. Toroidal, Counter-Toroidal, and Upwelling Flow in the Mantle Wedge of the Rivera and Cocos Plates: Implications for IOB Geochemistry in the Trans-Mexican Volcanic Belt

    NASA Astrophysics Data System (ADS)

    Neumann, Florian; Vásquez-Serrano, Alberto; Tolson, Gustavo; Negrete-Aranda, Raquel; Contreras, Juan

    2016-10-01

    We carried out analog laboratory modeling at a scale 1:4,000,000 and computer rendering of the flow patterns in a simulated western Middle American subduction zone. The scaled model consists of a transparent tank filled with corn syrup and housing two conveyor belts made of polyethylene strips. One of the strips dips 60° and moves at a velocity of 30 mm/min simulating the Rivera plate. The other one dips 45°, moves at 90 mm/min simulating the subduction of the Cocos plate. Our scaled subduction zone also includes a gap between the simulated slabs analogous to a tear recently observed in shear wave tomography studies. An acrylic plate 3 mm thick floats on the syrup in grazing contact with the polyethylene strips and simulates the overriding North America plate. Our experiments reveal a deep toroidal flow of asthenospheric mantle through the Cocos-Rivera separation. The flow is driven by a pressure gradient associated with the down-dip differential-motion of the slabs. Similarly, low pressure generated by the fast-moving Cocos plate creates a shallow counter-toroidal flow in the uppermost 100 km of the mantle wedge. The flow draws mantle beneath the western Trans-Mexican Volcanic Belt to the Jalisco block, then plunges into the deep mantle by the descending poloidal cell of the Cocos slab. Moreover, our model suggests a hydraulic jump causes an ~250 km asthenosphere upwelling around the area where intra-arc extensional systems converge in western Mexico. The upwelling eventually merges with the shallow counter-toroidal flow describing a motion in 3D space similar to an Archimedes' screw. Our results indicate the differential motion between subducting slabs drives mixing in the mantle wedge of the Rivera plate and allows the slab to steepen and retreat. Model results are in good agreement with seismic anisotropy studies and the geochemistry of lavas erupted in the Jalisco block. The model can explain the eruption of OIB lavas in the vicinity of the City of Guadalajara in western Mexico, and the south shoulder in the central part of the Tepic-Zacoalco fault system.

  20. Wave propagation in axially moving periodic strings

    NASA Astrophysics Data System (ADS)

    Sorokin, Vladislav S.; Thomsen, Jon Juel

    2017-04-01

    The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drives for diesel engines by capturing both their spatial periodicity and axial motion. The Method of Varying Amplitudes is employed in the analysis. It is shown that the compound wave traveling in the axially moving periodic string comprises many components with different frequencies and wavenumbers. This is in contrast to non-moving periodic structures, for which all components of the corresponding compound wave feature the same frequency. Due to this "multi-frequency" character of the wave motion, the conventional notion of frequency band-gaps appears to be not applicable for the moving periodic strings. Thus, for such structures, by frequency band-gaps it is proposed to understand frequency ranges in which the primary component of the compound wave attenuates. Such frequency band-gaps can be present for a moving periodic string, but only if its axial velocity is lower than the transverse wave speed, and, the higher the axial velocity, the narrower the frequency band-gaps. The revealed effects could be of potential importance for applications, e.g. they indicate that due to spatial inhomogeneity, oscillations of axially moving periodic chains always involve a multitude of frequencies.

  1. KSC-07pd1214

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, workers secure straps to an overhead crane around the Delta II rocket's first stage. It will be lifted and placed onto a transporter for its move to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  2. KSC-07pd1299

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- At Astrotech's Payload Processing Facility, technicians check the Dawn spacecraft as it is lowered onto a transporter. Dawn will be moved to the Hazardous Processing Facility for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser

  3. KSC-07pd1213

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, workers secure straps to an overhead crane around the Delta II rocket's first stage. It will be lifted and placed onto a transporter for its move to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  4. KSC-07pd1212

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- In Hangar M on Cape Canaveral Air Force Station, the first stage of the Delta II rocket that will launch the Dawn spacecraft is ready to be transferred to a transporter for its move to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  5. KSC-07pd1300

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. --At Astrotech's Payload Processing Facility, technicians maneuver the shipping container to place around the Dawn spacecraft, at right. Dawn will be moved to the Hazardous Processing Facility for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser

  6. Digital-Electronic/Optical Apparatus Would Recognize Targets

    NASA Technical Reports Server (NTRS)

    Scholl, Marija S.

    1994-01-01

    Proposed automatic target-recognition apparatus consists mostly of digital-electronic/optical cross-correlator that processes infrared images of targets. Infrared images of unknown targets correlated quickly with images of known targets. Apparatus incorporates some features of correlator described in "Prototype Optical Correlator for Robotic Vision System" (NPO-18451), and some of correlator described in "Compact Optical Correlator" (NPO-18473). Useful in robotic system; to recognize and track infrared-emitting, moving objects as variously shaped hot workpieces on conveyor belt.

  7. Chiron and the Centaurs: Escapees from the Kuiper Belt

    NASA Technical Reports Server (NTRS)

    Stern, Alan; Campins, Humberto

    1996-01-01

    The outer Solar System has long appeared to be a largely empty place, inhabited only by the four giant planets, Pluto and a transient population of comets. In 1977 however, a faint and enigmatic object - 2060 Chiron - was discovered moving on a moderately inclined, strongly chaotic 51-year orbit which takes it from just inside Saturn's orbit out almost as far as that of Uranus. It was not initially clear from where Chiron originated. these objects become temporarily trapped on Centaur-like orbits Following Chiron's discovery, almost 15 years elapsed before other similar objects were discovered; five more have now been identified. Based on the detection statistics implied by these discoveries, it has become clear that these objects belong to a significant population of several hundred (or possibly several thousand) large icy bodies moving on relatively short-lived orbits between the giant planets. This new class of objects, known collectively as the Centaurs, are intermediate in diameter between typical comets (1-20 km) and small icy planets such as Pluto (approx. 2,300 km) and Triton (approx. 2,700 km). Although the Centaurs are interesting in their own right, they have taken on added significance following the recognition that they most probably originated in the ancient reservoir of comets and larger objects located beyond the orbit of Neptune known as the Kuiper belt.

  8. Electrokinetic motion of a spherical micro particle at an oil-water interface in microchannel.

    PubMed

    Wang, Chengfa; Li, Mengqi; Song, Yongxin; Pan, Xinxiang; Li, Dongqing

    2018-03-01

    The electrokinetic motion of a negatively charged spherical particle at an oil-water interface in a microchannel is numerically investigated and analyzed in this paper. A three-dimensional (3D) transient numerical model is developed to simulate the particle electrokinetic motion. The channel wall, the surface of the particle and the oil-water interface are all considered negatively charged. The effects of the direct current (DC) electric field, the zeta potentials of the particle-water interface and the oil-water interface, and the dynamic viscosity ratio of oil to water on the velocity of the particle are studied in this paper. In addition, the influences of the particle size are also discussed. The simulation results show that the micro-particle with a small value of negative zeta potential moves in the same direction of the external electric field. However, if the zeta potential value of the particle-water interface is large enough, the moving direction of the particle is opposite to that of the electric field. The velocity of the particle at the interface increases with the increase in the electric field strength and the particle size, but decreases with the increase in the dynamic viscosity ratio of oil to water, and the absolute value of the negative zeta potentials of both the particle-water interface and the oil-water interface. This work is the first numerical study of the electrokinetic motion of a charged particle at an oil-water interface in a microchannel. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fault-controlled pluton emplacement in the Sevier fold-and-thrust belt of southwest Montana, USA

    NASA Astrophysics Data System (ADS)

    Kalakay, Thomas J.; John, Barbara E.; Lageson, David R.

    2001-06-01

    Problems associated with syncompressional pluton emplacement center on the need to make room for magma in environments where crustal shortening, not extension, occurs on a regional scale. New structural data from the Pioneer and Boulder batholiths of southwest Montana, USA, suggest emplacement at the top of frontal thrust ramps as composite tabular bodies at crustal depths between 1 and 10 km. Frontal thrust facilitated pluton emplacement was accommodated by: (1) a magma feeder zone created along the ramp interface; (2) providing 'releasing steps' at ramp tops that serve as initial points of emplacement and subsequent pluton growth; and (3) localizing antithetic back-thrusts that assist in pluton ascent. A model of magma emplacement is proposed that involves these elements. This model for syntectonic ramp-top emplacement of plutons helps explain how space is made for plutons within fold-and-thrust belts.

  10. Imaging high-pressure rock exhumation along the arc-continent suture in eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Brown, Dennis; Feng, Kuan-Fu; Wu, Yih-Min; Huang, Hsin-Hua

    2015-04-01

    Imaging high-pressure rock exhumation in active tectonic settings is considered to be one of the important observations that could potentially help to move forward the understanding of how this process works. Petrophysical analyses carried out along a high velocity zone imaged by seismic travel time tomography along the suture zone between the actively colliding Luzon Arc and the southeastern margin of Eurasia in Taiwan suggests that high-pressure rocks are being exhumed from at least a depth of 50 km below the arc-continent suture to the shallow subsurface where they coincide with an outcropping tectonic mélange called the Yuli Belt. The Yuli Belt comprises mainly greenschist facies quartz-mica schist, with lesser metabasite, metamorphosed mantle fragments and, importantly, minor blueschist. Modeling of published data bases of measured seismic velocities for a large suite of rocks suggests that all of the Yuli belt lithologies fit well with the measured Vp, Vs, and Vp/Vs at ambient pressures and temperatures (a 20 oC/km geotherm is used) from 10 to about 20 km depth. With the exception of hornblendite, mantle rocks need 30% to 40 % serpentinization to approximate the in situ range of Vp and and Vs at these depths. From about 20 km to 30 km, most continental crust and volcanic arc lithologies move out of the range of velocities measured by the tomography model at these depths. Blueschist (including the calculated Vp and Vs for the Yuli Belt samples), pyroxenite, and harzburgite, lherzolite, and dunite with around 20% to 30% serpentinization now enter into the range of velocities for these depths. From 40 km to 50 km depth, the mantle rocks pyroxenite, and weakly to unserpentinized harzburgite, lherzolite, and dunite, together with mafic eclogite velocities best fit the range of Vp, Vs and Vp/Vs at these depths. Seismicity along the arc-continent suture, the upper bounding fault of the high velocity zone examined here, indicate that it is a moderately oblique-slip thrust. The western boundary is a near vertical, sharp velocity gradient that, in the upper 10 to 15 km appears to link with a sinistral strike-slip fault. The high velocity zone itself is very seismically active down to a depth of 50 km. Focal mechanisms determined from within the high velocity zone are mostly strike-slip, oblique-slip, and extensional, with rare thrust mechanisms.

  11. The Middle to Late Devonian Eden-Comerong-Yalwal Volcanic Zone of Southeastern Australia: An ancient analogue of the Yellowstone-Snake River Plain region of the USA

    NASA Astrophysics Data System (ADS)

    Dadd, K. A.

    1992-11-01

    The Middle to Late Devonian Yalwal Volcanics, Comerong Volcanics, Boyd Volcanic Complex and associated gabbroic and A-type granitic plutons form part of a continental volcano-tectonic belt, the Eden-Comerong-Yalwal Volcanic Zone (EVZ), located parallel to the coast of southeastern Australia. The EVZ is characterised by an elongate outcrop pattern, bimodal basalt-rhyolite volcanism, and a paucity of sedimentary rocks. Volcanic centres were located along the length of the volcanic zone at positions indicated by subvolcanic plutons, dykes, rhyolite lavas and other proximal vent indicators including surge bedforms in tuff rings, and hydrothermal alteration. Previous interpretations that suggested the volcanic zone was a fault bounded rift are rejected in favour of a volcano-tectonic belt. The Yellowstone-Snake River Plain region (Y-SRP) in the USA is an appropriate analogue. Both regions have basalt lavas which range in composition from olivine tholeiite to ferrobasalt, alkalic rhyolitic rocks enriched in Y, Zr and Th, large rhyolite lava flows, plains-type basalt lava flows, and a paucity of sedimentary rocks. The Y-SRP is inferred to have developed by migration of the American plate over a fixed hot spot leading to a northeast temporal progression of the focus of volcanic activity. Application of a similar hot spot model to the EVZ (using a length of 300 km and a time range for volcanic activity of 5-10 Ma), suggests that during the Middle to Late Devonian the Australian plate was moving at a rate of between 3 and 6 cm/yr relative to the hot spot and that the northern extent of the volcanic zone at any time was a topographically high region with rhyolitic activity, similar to present day Yellowstone. As the focus of activity moved northward, the high region subsided and the depression was flooded by basalt. The EVZ was much wider (up to 70 km) and much longer than the belt defined by present-day outcrop and was of comparable scale to the Y-SRP. The main difference between the two volcanic belts is the lack of large pyroclastic flows and identifiable caldera complexes in the EVZ.

  12. An immersed boundary formulation for simulating high-speed compressible viscous flows with moving solids

    NASA Astrophysics Data System (ADS)

    Qu, Yegao; Shi, Ruchao; Batra, Romesh C.

    2018-02-01

    We present a robust sharp-interface immersed boundary method for numerically studying high speed flows of compressible and viscous fluids interacting with arbitrarily shaped either stationary or moving rigid solids. The Navier-Stokes equations are discretized on a rectangular Cartesian grid based on a low-diffusion flux splitting method for inviscid fluxes and conservative high-order central-difference schemes for the viscous components. Discontinuities such as those introduced by shock waves and contact surfaces are captured by using a high-resolution weighted essentially non-oscillatory (WENO) scheme. Ghost cells in the vicinity of the fluid-solid interface are introduced to satisfy boundary conditions on the interface. Values of variables in the ghost cells are found by using a constrained moving least squares method (CMLS) that eliminates numerical instabilities encountered in the conventional MLS formulation. The solution of the fluid flow and the solid motion equations is advanced in time by using the third-order Runge-Kutta and the implicit Newmark integration schemes, respectively. The performance of the proposed method has been assessed by computing results for the following four problems: shock-boundary layer interaction, supersonic viscous flows past a rigid cylinder, moving piston in a shock tube and lifting off from a flat surface of circular, rectangular and elliptic cylinders triggered by shock waves, and comparing computed results with those available in the literature.

  13. Photoelectrochemical molecular comb

    DOEpatents

    Thundat, Thomas G.; Ferrell, Thomas L.; Brown, Gilbert M.

    2006-08-15

    A method and apparatus for separating molecules. The apparatus includes a substrate having a surface. A film in contact with the surface defines a substrate/film interface. An electrode electrically connected to the film applies a voltage potential between the electrode and the substrate to form a depletion region in the substrate at the substrate/film interface. A photon energy source having an energy level greater than the potential is directed at the depletion region to form electron-hole pairs in the depletion region. At least one of the electron-hole pairs is separated by the potential into an independent electron and an independent hole having opposite charges and move in opposing directions. One of the electron and hole reach the substrate/film interface to create a photopotential in the film causing charged molecules in the film to move in response to the localized photovoltage.

  14. Diffuse interface immersed boundary method for multi-fluid flows with arbitrarily moving rigid bodies

    NASA Astrophysics Data System (ADS)

    Patel, Jitendra Kumar; Natarajan, Ganesh

    2018-05-01

    We present an interpolation-free diffuse interface immersed boundary method for multiphase flows with moving bodies. A single fluid formalism using the volume-of-fluid approach is adopted to handle multiple immiscible fluids which are distinguished using the volume fractions, while the rigid bodies are tracked using an analogous volume-of-solid approach that solves for the solid fractions. The solution to the fluid flow equations are carried out using a finite volume-immersed boundary method, with the latter based on a diffuse interface philosophy. In the present work, we assume that the solids are filled with a "virtual" fluid with density and viscosity equal to the largest among all fluids in the domain. The solids are assumed to be rigid and their motion is solved using Newton's second law of motion. The immersed boundary methodology constructs a modified momentum equation that reduces to the Navier-Stokes equations in the fully fluid region and recovers the no-slip boundary condition inside the solids. An implicit incremental fractional-step methodology in conjunction with a novel hybrid staggered/non-staggered approach is employed, wherein a single equation for normal momentum at the cell faces is solved everywhere in the domain, independent of the number of spatial dimensions. The scalars are all solved for at the cell centres, with the transport equations for solid and fluid volume fractions solved using a high-resolution scheme. The pressure is determined everywhere in the domain (including inside the solids) using a variable coefficient Poisson equation. The solution to momentum, pressure, solid and fluid volume fraction equations everywhere in the domain circumvents the issue of pressure and velocity interpolation, which is a source of spurious oscillations in sharp interface immersed boundary methods. A well-balanced algorithm with consistent mass/momentum transport ensures robust simulations of high density ratio flows with strong body forces. The proposed diffuse interface immersed boundary method is shown to be discretely mass-preserving while being temporally second-order accurate and exhibits nominal second-order accuracy in space. We examine the efficacy of the proposed approach through extensive numerical experiments involving one or more fluids and solids, that include two-particle sedimentation in homogeneous and stratified environment. The results from the numerical simulations show that the proposed methodology results in reduced spurious force oscillations in case of moving bodies while accurately resolving complex flow phenomena in multiphase flows with moving solids. These studies demonstrate that the proposed diffuse interface immersed boundary method, which could be related to a class of penalisation approaches, is a robust and promising alternative to computationally expensive conformal moving mesh algorithms as well as the class of sharp interface immersed boundary methods for multibody problems in multi-phase flows.

  15. Pore-scale modeling of moving contact line problems in immiscible two-phase flow.

    NASA Astrophysics Data System (ADS)

    Kucala, A.; Noble, D.; Martinez, M. J.

    2016-12-01

    Two immiscible fluids in static equilibrium form a common interface along a solid surface, characterized as the static contact (wetting) angle and is a function of surface geometry, intermolecular forces, and interfacial surface energies manifested as interfacial tension. This static configuration may become perturbed due to external force imbalances (mass injection, pressure gradients, buoyancy, etc.) and the contact line location and interface curvature becomes dynamic. Accurate modeling of moving contact line (MCL) problems is imperative in predicting capillary pressure vs. saturation curves, permeability, and preferential flow paths for a variety of applications, including geological carbon storage (GCS) and enhanced oil recovery (EOR). Here, we present a model for the moving contact line using pore-scale computational fluid dynamics (CFD) which solves the full, time-dependent Navier-Stokes equations using the Galerkin finite-element method. The MCL is modeled as a surface traction force proportional to the surface tension, dependent on the static properties of the immiscible fluid/solid system. The moving two-phase interface is tracked using the level set method and discretized with the conformal decomposition finite element method (CDFEM), allowing for surface tension effects to be computed at the exact interface location. We present a variety of verification test cases for simple two- and three-dimensional geometries to validate the current model, including threshold pressure predictions in flows through pore-throats for a variety of wetting angles. Simulations involving more complex geometries are also presented to be used in future simulations for GCS and EOR problems. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

  16. XPI: The Xanadu Parameter Interface

    NASA Technical Reports Server (NTRS)

    White, N.; Barrett, P.; Oneel, B.; Jacobs, P.

    1992-01-01

    XPI is a table driven parameter interface which greatly simplifies both command driven programs such as BROWSE and XIMAGE as well as stand alone single-task programs. It moves all of the syntax and semantic parsing of commands and parameters out of the users code into common code and externally defined tables. This allows the programmer to concentrate on writing the code unique to the application rather than reinventing the user interface and for external graphical interfaces to interface with no changes to the command driven program. XPI also includes a compatibility library which allows programs written using the IRAF host interface (Mandel and Roll) to use XPI in place of the IRAF host interface.

  17. Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems

    NASA Astrophysics Data System (ADS)

    Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark

    2017-11-01

    Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.

  18. A comparison of the performance of two advanced restraint systems in frontal impacts.

    PubMed

    Lopez-Valdes, F J; Juste, O; Pipkorn, B; Garcia-Muñoz, I; Sunnevång, C; Dahlgren, M; Alba, J J

    2014-01-01

    The goal of the study is to compare the kinematics and dynamics of the THOR dummy in a frontal impact under the action of 2 state-of-the-art restraint systems. Ten frontal sled tests were performed with THOR at 2 different impact speeds (35 and 9 km/h). Two advanced restraint systems were used: a pretensioned force-limiting belt (PT+FL) and a pretensioned belt incorporating an inflatable portion (PT+BB). Dummy measurements included upper and lower neck reactions, multipoint thoracic deflection, and rib deformation. Data were acquired at 10,000 Hz. Three-dimensional motion of relevant dummy landmarks was tracked at 1,000 Hz. RESULTS are reported in a local coordinate system moving with the test buck. Average forward displacement of the head was greater when the PT+FL belt was used (35 km/h: 376.3±16.1 mm [PT+BB] vs. 393.6±26.1 mm [PT+FL]; 9 km/h: 82.1±26.0 mm [PT+BB] vs. 98.8±0.2 mm [PT+FL]). The forward displacement of T1 was greater for the PT+FL belt at 35 km/h but smaller at 9 km/h. The forward motion of the pelvis was greater when the PT+BB was used, exhibiting a difference of 82 mm in the 9 km/h tests and 95.5 mm in the 35 km/h test. At 35 km/h, upper shoulder belt forces were similar (PT+FL: 4,756.8±116.6 N; PT+BB: 4,957.7±116.4 N). At 9 km/h, the PT+BB belt force was significantly greater than the PT+FL one. Lower neck flexion moments were higher for the PT+BB at 35 km/h but lower at 9 km/h (PT+FL: 34.2±3.5 Nm; PT+BB: 26.8±2.1 Nm). Maximum chest deflection occurred at the chest upper left region for both belts and regardless of the speed. The comparison of the performance of different restraints requires assessing occupant kinematics and dynamics from a global point of view. Even if the force acting on the chest is similar, kinematics can be substantially different. The 2 advanced belts compared here showed that while the PT+BB significantly reduced peak and resultant chest deflection, the resulting kinematics indicated an increased forward motion of the pelvis and a reduced rotation of the occupant's torso. Further research is needed to understand how these effects can influence the protection of real occupants in more realistic vehicle environments.

  19. NASA’s BARREL Mission Launches 20 Balloons

    NASA Image and Video Library

    2017-12-08

    BARREL team members run under the payload as the balloon first takes flight at the SANAE IV research station in Antarctica. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. NASA’s BARREL Mission Launches 20 Balloons

    NASA Image and Video Library

    2017-12-08

    An iceberg as viewed from the bow of the RRS Ernest Shackleton a few days before the BARREL team reached Halley Research Station in Antarctica. This research vessel regularly carries scientists and supplies to Halley. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. NASA’s BARREL Mission Launches 20 Balloons

    NASA Image and Video Library

    2017-12-08

    An emperor penguin waddles away on Christmas morning in Antarctica. On Christmas day, the BARREL team visited a penguin colony. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. NASA’s BARREL Mission Launches 20 Balloons

    NASA Image and Video Library

    2017-12-08

    Arrival of the RRS Ernest Shackleton near Halley Research Station in Antarctica. The Shackleton is the regular resupply ship for the station and it also brought in some of the BARREL team scientists. The long tether is for the ship’s mooring. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. NASA’s BARREL Mission Launches 20 Balloons

    NASA Image and Video Library

    2017-12-08

    Liftoff! A balloon begins to rise over the brand new Halley VI Research Station, which had its grand opening in February 2013. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  4. NASA’s BARREL Mission Launches 20 Balloons

    NASA Image and Video Library

    2017-12-08

    Watching a BARREL balloon – and the instruments dangling below – float up over the SANAE IV research base in Antarctica. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  5. NASA’s BARREL Mission Launches 20 Balloons

    NASA Image and Video Library

    2017-12-08

    Some of the BARREL balloon launches took place at the South African National Antarctic Expedition Research base, called SANAE IV, the others at Halley Research Station. This balloon is taking flight at SANAE IV. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Triple junction orogeny: tectonic evolution of the Pan-African Northern Damara Belt, Namibia

    NASA Astrophysics Data System (ADS)

    Lehmann, Jérémie; Saalmann, Kerstin; Naydenov, Kalin V.; Milani, Lorenzo; Charlesworth, Eugene G.; Kinnaird, Judith A.; Frei, Dirk; Kramers, Jan D.; Zwingmann, Horst

    2014-05-01

    Trench-trench-trench triple junctions are generally geometrically and kinematically unstable and therefore can result at the latest stages in complicated collisional orogenic belts. In such geodynamic sites, mechanism and timescale of deformations that accommodate convergence and final assembly of the three colliding continental plates are poorly studied. In western Namibia, Pan-African convergence of three cratonic blocks led to pene-contemporaneous closure of two highly oblique oceanic domains and formation of the triple junction Damara Orogen where the NE-striking Damara Belt abuts to the west against the NNW-striking Kaoko-Gariep Belt. Detailed description of structures and microstructures associated with remote sensing analysis, and dating of individual deformation events by means of K-Ar, Ar-Ar (micas) and U-Pb (zircon) isotopic studies from the Northern Damara Belt provide robust constraints on the tectonic evolution of this palaeo-triple junction orogeny. There, passive margin sequences of the Neoproterozoic ocean were polydeformed and polymetamorphosed to the biotite zone of the greenschist facies to up to granulite facies and anatexis towards the southern migmatitic core of the Central Damara Belt. Subtle relict structures and fold pattern analyses reveal the existence of an early D1 N-S shortening event, tentatively dated between ~635 Ma and ~580 Ma using published data. D1 structures were almost obliterated by pervasive and major D2 E-W coaxial shortening, related to the closure of the Kaoko-Gariep oceanic domain and subsequent formation of the NNW-striking Kaoko-Gariep Belt to the west of the study area. Early, km-scale D1 E-W trending steep folds were refolded during this D2 event, producing either Type I or Type II fold interference patterns visible from space. The D2 E-W convergence could have lasted until ~533 Ma based on published and new U-Pb ages. The final D3 NW-SE convergence in the northernmost Damara Belt produced a NE-striking deformation front in weak metasedimentary rocks during SE-directed indentation of a rigid Paleoproterozoic basement. In the central and southern parts of the Northern Damara Belt, D3 is mostly expressed by km-scale local Type I fold interference patterns formed by the refolding of D2 upright synclines as well as bending around a steep axis of the D2 refolded folds and steep S2 multilayer. In the western part however, where the two orthogonal trends of the Damara and Kaoko-Gariep Belts meet, D3 is described in literature as sinistral shearing along reactivated steep S2 planes that is associated with steep-hinge folds with steep NE-striking axial planes. Our new ages indicate that D3 lasted from ~513 Ma to ~460 Ma throughout the entire Northern Damara Belt. These results document for the first time a regional-scale early Pan-African N-S shortening event of uncertain geotectonic significance. They furthermore indicate that two competing orthogonal collisional systems have contributed in resolving instabilities at the triple orogenic junction over a period in the order of ~100 m.y. and could therefore account for the assembly of the three cratons. The E-W convergence was preponderant in strength and pre-dates the NW-SE one, the latter being associated with localized sinistral shearing along the Kaoko Belt interface in the westernmost Northern Damara Belt.

  7. LISA's Move from SilverPlatter to Bowker--Looking at the Interface.

    ERIC Educational Resources Information Center

    Stein, Jonathan

    1994-01-01

    Compares LISA (Library and Information Science Abstracts) on SilverPlatter's CD-ROM with its replacement version, Bowker-Saur's LISA Plus. Features reviewed include entry to the databases; use of Boolean search facilities; indexes and browsing; displaying and printing records; subsidiary functions; on-screen help; and interfaces. (Contains eight…

  8. Charge interaction between particle-laden fluid interfaces.

    PubMed

    Xu, Hui; Kirkwood, John; Lask, Mauricio; Fuller, Gerald

    2010-03-02

    Experiments are described where two oil/water interfaces laden with charged particles move at close proximity relative to one another. The particles on one of the interfaces were observed to be attracted toward the point of closest approach, forming a denser particle monolayer, while the particles on the opposite interface were repelled away from this point, forming a particle depletion zone. Such particle attraction/repulsion was observed even if one of the interfaces was free of particles. This phenomenon can be explained by the electrostatic interaction between the two interfaces, which causes surface charges (charged particles and ions) to redistribute in order to satisfy surface electric equipotential at each interface. In a forced particle oscillation experiment, we demonstrated the control of charged particle positions on the interface by manipulating charge interaction between interfaces.

  9. Locomotor adaptability in persons with unilateral transtibial amputation.

    PubMed

    Darter, Benjamin J; Bastian, Amy J; Wolf, Erik J; Husson, Elizabeth M; Labrecque, Bethany A; Hendershot, Brad D

    2017-01-01

    Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb.

  10. Spatial and Temporal Control Contribute to Step Length Asymmetry during Split-Belt Adaptation and Hemiparetic Gait

    PubMed Central

    Finley, James M.; Long, Andrew; Bastian, Amy J.; Torres-Oviedo, Gelsy

    2014-01-01

    Background Step length asymmetry (SLA) is a common hallmark of gait post-stroke. Though conventionally viewed as a spatial deficit, SLA can result from differences in where the feet are placed relative to the body (spatial strategy), the timing between foot-strikes (step time strategy), or the velocity of the body relative to the feet (step velocity strategy). Objective The goal of this study was to characterize the relative contributions of each of these strategies to SLA. Methods We developed an analytical model that parses SLA into independent step position, step time, and step velocity contributions. This model was validated by reproducing SLA values for twenty-five healthy participants when their natural symmetric gait was perturbed on a split-belt treadmill moving at either a 2:1 or 3:1 belt-speed ratio. We then applied the validated model to quantify step position, step time, and step velocity contributions to SLA in fifteen stroke survivors while walking at their self-selected speed. Results SLA was predicted precisely by summing the derived contributions, regardless of the belt-speed ratio. Although the contributions to SLA varied considerably across our sample of stroke survivors, the step position contribution tended to oppose the other two – possibly as an attempt to minimize the overall SLA. Conclusions Our results suggest that changes in where the feet are placed or changes in interlimb timing could be used as compensatory strategies to reduce overall SLA in stroke survivors. These results may allow clinicians and researchers to identify patient-specific gait abnormalities and personalize their therapeutic approaches accordingly. PMID:25589580

  11. Formation and Migration of Trans-Neptunian Objects

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Oegerle, William (Technical Monitor)

    2002-01-01

    We consider that trans-Neptunian objects (TNOs) with diameter d greater than 100 kilometers moving now in not very eccentric orbits could be formed directly by the compression of large rarefied dust condensations (with a greater than 30 AU), but not by the accretion of smaller solid planetesimals. Probably, some planetesimals with d approximately 100- 1000 kilometers in the feeding zone of the giant planets and even large main-belt asteroids also could be formed directly by such compression. Some smaller objects (TNOs, planetesimals, asteroids) could be debris of larger objects, and other such objects could be formed directly by compression of condensations. A small portion of planetesimals from the feeding zone of the giant planets that entered into the trans-Neptunian region could left in eccentrical orbits beyond Neptune and became so called "scattered objects". Our computer runs in which gravitational interactions of bodies were taken into account with the use of the spheres method, showed that the embryos of Uranus and Neptune could increase their semimajor axes from less than 10 AU to their present values, moving permanently in orbits with small eccentricities, due to gravitational interactions with the migrating planetesimals. Later on, Thommes et al. considered a similar model using direct numerical integration. The total amount of water delivered to the Earth during the formation of the giant, planets was about the mass of water in the Earth oceans. The end of such bombardment could be caused mainly by the planetesimals that became scattered objects. For the present mass of the trans-Neptunian belt, the collisional lifetime of 1-kilometer TNO is about the age of the Solar system, but only a small portion (less than 1%) of 100-km TNOs could be destroyed during this age. The probability of destruction of a typical TNO (with 30 less than a,less than 50 AU) by scattered objects can be of the same order of magnitude as that by typical TNOs. TNOs could be even more often destroyed during planet formation than during last 4 Gyr. The analysis of the results of the orbital evolution of Jupiter-crossing objects (JCOs) and TNOs showed that, in principle, the trans-Neptunian belt can provide up to 100% of Earth-crossing objects, but, of course, some of them came from the main asteroid belt. Most of the collisions of former JCOs with the Earth were from orbits with aphelia inside Jupiter's orbit and belonged to a small portion of objects which moved in such orbits for a long time. About 1 of 300 JCOs collided with the Sun. The ratio of the total mass of icy planetesimals that migrated from the feeding zone of the giant planets and collided with the planet to the mass of this planet was greater (by a factor of 3 in our runs) for Mars than that for Earth and Venus.

  12. Disorder trapping by rapidly moving phase interface in an undercooled liquid

    NASA Astrophysics Data System (ADS)

    Galenko, Peter; Danilov, Denis; Nizovtseva, Irina; Reuther, Klemens; Rettenmayr, Markus

    2017-08-01

    Non-equilibrium phenomena such as the disappearance of solute drag, the origin of solute trapping and evolution of disorder trapping occur during fast transformations with originating metastable phases [D.M. Herlach, P.K. Galenko, D. Holland-Moritz, Metastable solids from undrercooled melts (Elsevier, Amsterdam, 2007)]. In the present work, a theoretical investigation of disorder trapping by a rapidly moving phase interface is presented. Using a model of fast phase transformations, a system of governing equations for the diffusion of atoms, and the evolution of both long-range order parameter and phase field variable is formulated. First numerical solutions are carried out for a congruently melting binary alloy system.

  13. A Huygens immersed-finite-element particle-in-cell method for modeling plasma-surface interactions with moving interface

    NASA Astrophysics Data System (ADS)

    Cao, Huijun; Cao, Yong; Chu, Yuchuan; He, Xiaoming; Lin, Tao

    2018-06-01

    Surface evolution is an unavoidable issue in engineering plasma applications. In this article an iterative method for modeling plasma-surface interactions with moving interface is proposed and validated. In this method, the plasma dynamics is simulated by an immersed finite element particle-in-cell (IFE-PIC) method, and the surface evolution is modeled by the Huygens wavelet method which is coupled with the iteration of the IFE-PIC method. Numerical experiments, including prototypical engineering applications, such as the erosion of Hall thruster channel wall, are presented to demonstrate features of this Huygens IFE-PIC method for simulating the dynamic plasma-surface interactions.

  14. Quadcopter control using a BCI

    NASA Astrophysics Data System (ADS)

    Rosca, S.; Leba, M.; Ionica, A.; Gamulescu, O.

    2018-01-01

    The paper presents how there can be interconnected two ubiquitous elements nowadays. On one hand, the drones, which are increasingly present and integrated into more and more fields of activity, beyond the military applications they come from, moving towards entertainment, real-estate, delivery and so on. On the other hand, unconventional man-machine interfaces, which are generous topics to explore now and in the future. Of these, we chose brain computer interface (BCI), which allows human-machine interaction without requiring any moving elements. The research consists of mathematical modeling and numerical simulation of a drone and a BCI. Then there is presented an application using a Parrot mini-drone and an Emotiv Insight BCI.

  15. Level set immersed boundary method for gas-liquid-solid interactions with phase-change

    NASA Astrophysics Data System (ADS)

    Dhruv, Akash; Balaras, Elias; Riaz, Amir; Kim, Jungho

    2017-11-01

    We will discuss an approach to simulate the interaction between two-phase flows with phase changes and stationary/moving structures. In our formulation, the Navier-Stokes and heat advection-diffusion equations are solved on a block-structured grid using adaptive mesh refinement (AMR) along with sharp jump in pressure, velocity and temperature across the interface separating the different phases. The jumps are implemented using a modified Ghost Fluid Method (Lee et al., J. Comput. Physics, 344:381-418, 2017), and the interface is tracked with a level set approach. Phase transition is achieved by calculating mass flux near the interface and extrapolating it to the rest of the domain using a Hamilton-Jacobi equation. Stationary/moving structures are simulated with an immersed boundary formulation based on moving least squares (Vanella & Balaras, J. Comput. Physics, 228:6617-6628, 2009). A variety of canonical problems involving vaporization, film boiling and nucleate boiling is presented to validate the method and demonstrate the its formal accuracy. The robustness of the solver in complex problems, which are crucial in efficient design of heat transfer mechanisms for various applications, will also be demonstrated. Work supported by NASA, Grant NNX16AQ77G.

  16. Development and application of virtual reality for man/systems integration

    NASA Technical Reports Server (NTRS)

    Brown, Marcus

    1991-01-01

    While the graphical presentation of computer models signified a quantum leap over presentations limited to text and numbers, it still has the problem of presenting an interface barrier between the human user and the computer model. The user must learn a command language in order to orient themselves in the model. For example, to move left from the current viewpoint of the model, they might be required to type 'LEFT' at a keyboard. This command is fairly intuitive, but if the viewpoint moves far enough that there are no visual cues overlapping with the first view, the user does not know if the viewpoint has moved inches, feet, or miles to the left, or perhaps remained in the same position, but rotated to the left. Until the user becomes quite familiar with the interface language of the computer model presentation, they will be proned to lossing their bearings frequently. Even a highly skilled user will occasionally get lost in the model. A new approach to presenting type type of information is to directly interpret the user's body motions as the input language for determining what view to present. When the user's head turns 45 degrees to the left, the viewpoint should be rotated 45 degrees to the left. Since the head moves through several intermediate angles between the original view and the final one, several intermediate views should be presented, providing the user with a sense of continuity between the original view and the final one. Since the primary way a human physically interacts with their environment should monitor the movements of the user's hands and alter objects in the virtual model in a way consistent with the way an actual object would move when manipulated using the same hand movements. Since this approach to the man-computer interface closely models the same type of interface that humans have with the physical world, this type of interface is often called virtual reality, and the model is referred to as a virtual world. The task of this summer fellowship was to set up a virtual reality system at MSFC and begin applying it to some of the questions which concern scientists and engineers involved in space flight. A brief discussion of this work is presented.

  17. KSC-07pd1219

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- Inside Hangar M on Cape Canaveral Air Force Station, Larry Penepent, manager of Launch Operations Engineering with United Launch Alliance, oversees the transfer of the Delta II first stage onto a transporter. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  18. KSC-07pd0858

    NASA Image and Video Library

    2007-04-11

    KENNEDY SPACE CENTER, FLA. -- In Astrotech's Payload Processing Facility, an overhead crane lifts the Dawn spacecraft from its transporter. Dawn will be moved into clean room C for unbagging and further processing. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/George Shelton

  19. KSC-07pd0852

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the shipping container holding the Dawn spacecraft is removed from the truck. The container will then be moved into the high bay of the Payload Processing Facility and the spacecraft removed. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  20. KSC-07pd0854

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, the shipping container holding the Dawn spacecraft is moved into the high bay of the Payload Processing Facility. The spacecraft will next be removed from the container. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  1. KSC-07pd1304

    NASA Image and Video Library

    2007-05-28

    KENNEDY SPACE CENTER, FLA. -- Inside Astrotech's Hazardous Processing Facility, technicians check the progress of the Dawn spacecraft as it is lifted off the transporter. Dawn will be moved to a scale for weighing and then prepared for fueling. Dawn is scheduled to launch June 30 aboard a Delta II rocket from Launch Complex 17-B at Cape Canaveral Air Force Station. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Photo credit: NASA/Charisse Nahser

  2. KSC-07pd1218

    NASA Image and Video Library

    2007-05-16

    KENNEDY SPACE CENTER, FLA. -- Inside Hangar M on Cape Canaveral Air Force Station, Larry Penepent, manager of Launch Operations Engineering with United Launch Alliance, oversees the transfer of the Delta II first stage onto a transporter. The Delta will be moved to the launch pad. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. Dawn is scheduled to launch June 30 from Launch Complex 17-B. Photo credit: NASA/Jack Pfaller

  3. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  4. Using Grand Canonical Monte Carlo Simulations to Understand the Role of Interfacial Fluctuations on Solvation at the Water-Vapor Interface.

    PubMed

    Rane, Kaustubh; van der Vegt, Nico F A

    2016-09-15

    The present work investigates the effect of interfacial fluctuations (predominantly capillary wave-like fluctuations) on the solvation free energy (Δμ) of a monatomic solute at the water-vapor interface. We introduce a grand-canonical-ensemble-based simulation approach that quantifies the contribution of interfacial fluctuations to Δμ. This approach is used to understand how the above contribution depends on the strength of dispersive and electrostatic solute-water interactions at the temperature of 400 K. At this temperature, we observe that interfacial fluctuations do play a role in the variation of Δμ with the strength of the electrostatic solute-water interaction. We also use grand canonical simulations to further investigate how interfacial fluctuations affect the propensity of the solute toward the water-vapor interface. To this end, we track a quantity called the interface potential (surface excess free energy) with the number of water molecules. With increasing number of water molecules, the liquid-vapor interface moves across a solute, which is kept at a fixed position in the simulation. Hence, the dependence of the interface potential on the number of waters models the process of moving the solute through the water-vapor interface. We analyze the change of the interface potential with the number of water molecules to explain that solute-induced changes in the interfacial fluctuations, like the pinning of capillary-wave-like undulations, do not play any role in the propensity of solutes toward water-vapor interfaces. The above analysis also shows that the dampening of interfacial fluctuations accompanies the adsorption of any solute at the liquid-vapor interface, irrespective of the chemical nature of the solute and solvent. However, such a correlation does not imply that dampening of fluctuations causes adsorption.

  5. Intelligent Adaptive Systems: Literature Research of Design Guidance for Intelligent Adaptive Automation and Interfaces

    DTIC Science & Technology

    2007-09-01

    behaviour based on past experience of interacting with the operator), and mobile (i.e., can move themselves from one machine to another). Edwards argues that...Sofge, D., Bugajska, M., Adams, W., Perzanowski, D., and Schultz, A. (2003). Agent-based Multimodal Interface for Dynamically Autonomous Mobile Robots...based architecture can provide a natural and scalable approach to implementing a multimodal interface to control mobile robots through dynamic

  6. Dynamical transitions of a driven Ising interface

    NASA Astrophysics Data System (ADS)

    Sahai, Manish K.; Sengupta, Surajit

    2008-03-01

    We study the structure of an interface in a three-dimensional Ising system created by an external nonuniform field H(r,t) . H changes sign over a two-dimensional plane of arbitrary orientation. When the field is pulled with velocity ve , [i.e., H(r,t)=H(r-vet) ], the interface undergoes several dynamical transitions. For low velocities it is pinned by the field profile and moves along with it, the distribution of local slopes undergoing a series of commensurate-incommensurate transitions. For large ve the interface depins and grows with Kardar-Parisi-Zhang exponents.

  7. Sensing position and speed by recording magnetization transitions on mechanically functional machine members (abstract)

    NASA Astrophysics Data System (ADS)

    Garshelis, I. J.

    1997-04-01

    Conventional means of sensing position and speed of moving machine members for control purposes typically requires the use of supplementary, ad hoc devices. Many mechanically functional moving machine members are fabricated from ferromagnetic steels and may, thus, provide an opportunity to themselves carry positionally relevant information in the form of local regions of deliberately instilled remanent magnetization, Mr. To avoid ambiguities associated with the imprecise borders of such regions as well as their possibly preexisting presence, information is more reliably carried in the form of local transitions in the polarity of Mr from a quiescent bias. The presence and physical location of such transitions relative to reference features either on the member itself or on other members undergoing correlated motion constitutes stored information. The presence of a transition is signaled by the transitory appearance of the external field associated with ∇ṡMr as the transition containing region passes by a magnetic-field detecting device fixed to the machine frame. Implanting and removing transitions from parts while in motion is readily accomplished by pulsed currents and biasing magnets. While the whole process of storing, reading, and erasing bits of information in magnetic form follows the concepts and principles of conventional magnetic recording, profoundly different quantitative factors, conditions, and performance requirements affect the implementation of the described sensing system. In particular, the coercivity, Hc, of commonly used steels is 3-30 Oe versus 300-1200 Oe in recording media and both the thickness of the media and the air gaps separating the media surface from the heads used in conventional systems are each 2-3 orders of magnitude smaller than their counterparts in the described system, where speed may also be variable down to zero. While the combined effect of these factors is to greatly diminish the attainable density of recorded information, this has only modest impact on the ability of the system to fulfill its purpose by effectively providing a dynamically adjustable "magnetic cam." The magnetic and operational details of an experimental sensing system were explored using a "timing" belt as the mechanically functional member. The molded polyurethane belt incorporated cabled steel wires (nine cold drawn carbon steel 0.08 mm diam) wound in an 0.8 mm pitch helix around the belt circumference; 13 full turns in the 10 mm wide belt. An isolated cable showed 4πM=15 kG in a 100 Oe field, 4πMr=11.9 kG with Hc=17 Oe. The belt was driven at surface speeds from 0-10 m/s. Bias was provided by a small barium ferrite magnet, magnetic transitions were recorded by current pulses through a coil wound on a gapped core and detected by a Hall-effect field sensor located at a fixed distance downstream. Fields of ±10 Oe with gradients >1 Oe/mm were detected at distances of 1.5 mm from the belt surface. Speed was determined from the elapsed time between a recording pulse and its detection.

  8. Insights into a fossil plate interface of an erosional subduction zone: a tectono-metamorphic study of the Tianshan metamorphic belt.

    NASA Astrophysics Data System (ADS)

    Bayet, Lea; Moritz, Lowen; Li, Jilei; Zhou, Tan; Agard, Philippe; John, Timm; Gao, Jun

    2016-04-01

    Subduction zone seismicity and volcanism are triggered by processes occurring at the slab-wedge interface as a consequence of metamorphic reactions, mass-transfer and deformation. Although the shallow parts of subduction zones (<30-40 km) can be partly accessed by geophysical methods, the resolution of these techniques is insufficient to characterize and image the plate interface at greater depths (>60km). In order to better understand the plate interface dynamics at these greater depths, one has to rely on the rock record from fossil subduction zones. The Chinese Tianshan metamorphic belt (TMB) represents an ideal candidate for such studies, because structures are well exposed with exceptionally fresh high-pressure rocks. Since previous studies from this area focused on fluid-related processes and its metamorphic evolution was assessed on single outcrops, the geodynamic setting of this metamorphic belt is unfortunately heavily debated. Here, we present a new geodynamic concept for the TMB based on detailed structural and petrological investigations on a more regional scale. A ~11km x 13km area was extensively covered, together with E-W and N-S transects, in order to produce a detailed map of the TMB. Overall, the belt is composed of two greenschist-facies units that constitute the northern and southern border of a large high-pressure (HP) to ultra high-pressure (UHP) unit in the center. This HP-UHP unit is mainly composed of metasediments and volcanoclastic rocks, with blueschist, eclogite and carbonate lenses. Only the southern part of the HP-UHP unit is composed of the uppermost part of an oceanic crust (e.g., pillow basalts and deep-sea carbonates). From south to north, the relative abundance and size of blueschist massive boudins and layers (as well as eclogite boudins) decreases and the sequence is increasingly interlayered with metasedimentary and carbonate-rich horizons. This indicates that the subducted material was dominated by trench filling made of sediments and volcanoclastic rocks, with only subordinate pieces of oceanic crust/lithosphere. The whole sequence is cut by km-scale major shear planes orientated WNW-ESE showing consistent top-to-the north shear senses. Lineations marked by glaucophane indicate that most of the deformation occurred during exhumation-related blueschist-facies conditions. Peak pressure and temperatures (P-T) were estimated by Raman spectroscopy, using the degree of organisation of carbonaceous material in metapelites for T and Raman peak shifts of quartz inclusions in garnets for P. In the whole HP-UHP region, consistent and homogeneous peak P-T conditions of 530±30°C and 2.3±3 GPa point to depths around 70 km and HP to UHP conditions, which is further supported by the local presence of coesite. The continuity of the lithological sequence and the lack of significant P/T offsets across the major shear planes indicate that, during exhumation, the HP-UHP unit primarily behaved as a single stack of essentially metasedimentary slices, and was only poorly dismembered on its way to the surface. Our study thus advocates for deep accretion/underplating and stacking of these tectonic slices (dominated by trench infill material) at depths of ~70 km, which has so far rarely been documented.

  9. Evidence of water degassing during emplacement and crystallization of 2.7 Ga komatiites from the Agnew-Wiluna greenstone belt, Western Australia

    NASA Astrophysics Data System (ADS)

    Fiorentini, M. L.; Beresford, S. W.; Stone, W. E.; Deloule, E.

    2012-07-01

    Komatiites are ancient volcanic rocks, mostly over 2.7 billion years old, which formed through >30% partial melting of the mantle. This study addresses the crucial relationship between volcanology and physical manifestation of primary magmatic water content in komatiites of the Agnew-Wiluna greenstone belt, Western Australia, and documents the degassing processes that occurred during the emplacement and crystallization of these magmas. The Agnew-Wiluna greenstone belt of Western Australia contains three co-genetic komatiite units that (1) display laterally variable volcanological features, including thick cumulates and spinifex-textured units, and (2) were emplaced as both lava flows and intrusions at various locations. Komatiite sills up to 500 m thick contain widespread occurrence of hydromagmatic amphibole in orthocumulate- and mesocumulate-textured rocks, which contain ca. 40-50 wt% MgO and <3 wt% TiO2. Conversely, komatiite flows do not contain any volatile-bearing mineral phases: ~150-m-thick flows only contain vesicles, amygdales and segregation structures, whereas <5-10-m-thick flows lack any textural and petrographic evidence of primary volatile contents. The main results of this study demonstrate that komatiites from the Agnew-Wiluna greenstone belt, irrespective of their initial water content, have degassed upon emplacement, flow and crystallization. More importantly, data show that komatiite flows most likely degassed more water than komatiite intrusions. Komatiite degassing may have indirectly influenced numerous physical and chemical parameters of the water from the primordial oceans and hence indirectly contributed to the creation of a complex zonation at the interface between water and seafloor.

  10. Use of a two-body belt abrasion test to measure the grindability of advanced ceramic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, P.J.; Zanoria, E.S.

    1998-07-01

    Structural materials, such as superalloys, intermetallic alloys and engineering ceramics, have been developed to achieve high hardness, high temperature strength, and high fracture toughness. However, these strong materials also tend to be difficult to grind and finish. In the 1990's, the US Department of Energy supported a series of projects to help reduce the cost of machining advanced ceramics. The same properties that make engineering materials attractive for use on severe thermal and mechanical environments (e.g., high hardness, high temperature strength, high fracture toughness) generally tend to make those materials difficult to grind and finish. In the mid-1990's, a beltmore » abrasion test was developed under subcontract to Oak Ridge National Laboratory to help to assess the grindability of structural ceramic materials. The procedure involves applying a 10 N normal force to the end face of a 3 x 4 mm cross-section test bar for 30 seconds which is rubbed against a wet, 220 grit diamond belt moving at 10 m/s. By measuring the change in the bar length after at least six 30-second tests, a belt grindability index is computed and expressed using the same units as a traditional wear factor (i.e., mm{sup 3}/N-m). The test has shown an excellent capability to discriminate not only between ceramics of different basic compositions, e.g., Al{sub 2}O{sub 3}, SiC, and Si{sub 3}N{sub 4}, but also between different lots of the same basic ceramic. Test-to-test variability decreases if the belt is worn in on the material of interest. The surface roughness of the abraded ends of the test specimens does not correlate directly with the belt grindability index, but instead reflects another attribute of grindability; namely the ability of a material to abrade smoothly without leaving excessive rough and pitted areas.« less

  11. Education in the Digital Age

    ERIC Educational Resources Information Center

    Thierstein, Joel

    2009-01-01

    Education is moving into the digital age. Pedagogies have changed to engage the latest digital technologies. The methods of distribution are now a blend between face-to-face and some other combination of virtual interfaces. The content is moving from traditional text-based learning to text-plus-multimedia. The community is now involved in the…

  12. U.S. Exploration EVA: ConOps, Interfaces and Test Objectives for Airlocks

    NASA Technical Reports Server (NTRS)

    Buffington, J.

    2017-01-01

    NASA is moving forward on defining the xEVA System Architecture and its implications to the spacecraft that host exploration EVA systems. This presentation provides an overview of the latest information for NASA's Concept of Operations (ConOps), Interfaces and corresponding Test Objectives for Airlocks hosting the xEVA System.

  13. A graphical, rule based robotic interface system

    NASA Technical Reports Server (NTRS)

    Mckee, James W.; Wolfsberger, John

    1988-01-01

    The ability of a human to take control of a robotic system is essential in any use of robots in space in order to handle unforeseen changes in the robot's work environment or scheduled tasks. But in cases in which the work environment is known, a human controlling a robot's every move by remote control is both time consuming and frustrating. A system is needed in which the user can give the robotic system commands to perform tasks but need not tell the system how. To be useful, this system should be able to plan and perform the tasks faster than a telerobotic system. The interface between the user and the robot system must be natural and meaningful to the user. A high level user interface program under development at the University of Alabama, Huntsville, is described. A graphical interface is proposed in which the user selects objects to be manipulated by selecting representations of the object on projections of a 3-D model of the work environment. The user may move in the work environment by changing the viewpoint of the projections. The interface uses a rule based program to transform user selection of items on a graphics display of the robot's work environment into commands for the robot. The program first determines if the desired task is possible given the abilities of the robot and any constraints on the object. If the task is possible, the program determines what movements the robot needs to make to perform the task. The movements are transformed into commands for the robot. The information defining the robot, the work environment, and how objects may be moved is stored in a set of data bases accessible to the program and displayable to the user.

  14. A catalog of slow-moving objects extracted from the Sloan Digital Sky Survey: Compilation and applications

    NASA Astrophysics Data System (ADS)

    Puckett, Andrew W.

    2007-08-01

    I have compiled the Slow-Moving Object Catalog of Known minor planets and comets ("the SMOCK") by comparing the predicted positions of known bodies with those of sources detected by the Sloan Digital Sky Survey (SDSS) that lack positional counterparts at other survey epochs. For the ~50% of the SDSS footprint that has been imaged only once, I have used the Astrophysical Research Consortium's 3.5-meter telescope to obtain reference images for confirmation of Solar System membership. The SMOCK search effort includes all known objects with orbital semimajor axes a > 4.7 AU, as well as a comparison sample of inherently bright Main Belt asteroids. In fact, objects of all proper motions are included, resulting in substantial overlap with the SDSS Moving Object Catalog (MOC) and providing an important check on the inclusion criteria of both catalogs. The MOC does not contain any correctly-identified known objects with a > 12 AU, and also excludes a number of detections of Main Belt and Trojan asteroids that happen to be moving slowly as they enter or leave retrograde motion. The SMOCK catalog is a publicly-available product of this investigation. Having created this new database, I demonstrate some of its applications. The broad dispersion of color indices for transneptunian objects (TNOs) and Centaurs is confirmed, and their tight correlation in ( g - r ) vs ( r - i ) is explored. Repeat observations for more than 30 of these objects allow me to reject the collisional resurfacing scenario as the primary explanation for this broad variety of colors. Trojans with large orbital inclinations are found to have systematically redder colors than their low-inclination counterparts, but an excess of reddish low-inclination objects at L5 is identified. Next, I confirm that non-Plutino TNOs are redder with increasing perihelion distance, and that this effect is even more pronounced among the Classical TNOs. Finally, I take advantage of the byproducts of my search technique and attempt to recover objects with poorly-known orbits. I have drastically improved the current and future ephemeris uncertainties of 3 Trojan asteroids, and have increased by 20%-450% the observed arcs of 10 additional bodies.

  15. Microstructure and properties of pure iron/copper composite cladding layers on carbon steel

    NASA Astrophysics Data System (ADS)

    Wan, Long; Huang, Yong-xian; Lü, Shi-xiong; Huang, Ti-fang; Lü, Zong-liang

    2016-08-01

    In the present study, pure iron/copper composite metal cladding was deposited onto carbon steel by tungsten inert gas welding. The study focused on interfacial morphological, microstructural, and mechanical analyses of the composite cladding layers. Iron liquid-solid-phase zones were formed at copper/steel and iron interfaces because of the melting of the steel substrate and iron. Iron concentrated in the copper cladding layer was observed to exhibit belt, globule, and dendrite morphologies. The appearance of iron-rich globules indicated the occurrence of liquid phase separation (LPS) prior to solidification, and iron-rich dendrites crystallized without the occurrence of LPS. The maximum microhardness of the iron/steel interface was lower than that of the copper/steel interface because of the diffusion of elemental carbon. All samples fractured in the cladding layers. Because of a relatively lower strength of the copper layer, a short plateau region appeared when shear movement was from copper to iron.

  16. Light-induced spatial control of pH-jump reaction at smart gel interface.

    PubMed

    Techawanitchai, Prapatsorn; Ebara, Mitsuhiro; Idota, Naokazu; Aoyagi, Takao

    2012-11-01

    We proposed here a 'smart' control of an interface movement of proton diffusion in temperature- and pH-responsive hydrogels using a light-induced spatial pH-jump reaction. A photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (NBA) was integrated into poly(N-isopropylacrylamide-o-2-carboxyisopropylacrylamide) (P(NIPAAm-co-CIPAAm)) hydrogels. NBA-integrated hydrogels demonstrated quick release of proton upon UV irradiation, allowing the pH inside the gel to decrease below the pK(a) of P(NIPAAm-co-CIPAAm) within a minute. The NBA-integrated gel was shown to shrink rapidly upon UV irradiation without polymer "skin layer" formation due to a uniform decrease of pH inside the gel. Spatial control of gel shrinking was also created by irradiating UV light to a limited region of the gel through a photomask. The interface of proton diffusion ("active interface") gradually moved toward non-illuminated area. The apparent position of "active interface", however, did not change remarkably above the LCST, while protons continuously diffused outward direction. This is because the "active interface" also moved inward direction as gel shrank above the LCST. As a result, slow movement of the apparent interface was observed. The NBA-integrated gel was also successfully employed for the controlled release of an entrapped dextran in a light controlled manner. This system is highly promising as smart platforms for triggered and programmed transportation of drugs. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Method and apparatus for filtering gas with a moving granular filter bed

    DOEpatents

    Brown, Robert C.; Wistrom, Corey; Smeenk, Jerod L.

    2007-12-18

    A method and apparatus for filtering gas (58) with a moving granular filter bed (48) involves moving a mass of particulate filter material (48) downwardly through a filter compartment (35); tangentially introducing gas into the compartment (54) to move in a cyclonic path downwardly around the moving filter material (48); diverting the cyclonic path (58) to a vertical path (62) to cause the gas to directly interface with the particulate filter material (48); thence causing the gas to move upwardly through the filter material (48) through a screened partition (24, 32) into a static upper compartment (22) of a filter compartment for exodus (56) of the gas which has passed through the particulate filter material (48).

  18. First Steps Toward Ultrasound-Based Motion Compensation for Imaging and Therapy: Calibration with an Optical System and 4D PET Imaging

    PubMed Central

    Schwaab, Julia; Kurz, Christopher; Sarti, Cristina; Bongers, André; Schoenahl, Frédéric; Bert, Christoph; Debus, Jürgen; Parodi, Katia; Jenne, Jürgen Walter

    2015-01-01

    Target motion, particularly in the abdomen, due to respiration or patient movement is still a challenge in many diagnostic and therapeutic processes. Hence, methods to detect and compensate this motion are required. Diagnostic ultrasound (US) represents a non-invasive and dose-free alternative to fluoroscopy, providing more information about internal target motion than respiration belt or optical tracking. The goal of this project is to develop an US-based motion tracking for real-time motion correction in radiation therapy and diagnostic imaging, notably in 4D positron emission tomography (PET). In this work, a workflow is established to enable the transformation of US tracking data to the coordinates of the treatment delivery or imaging system – even if the US probe is moving due to respiration. It is shown that the US tracking signal is equally adequate for 4D PET image reconstruction as the clinically used respiration belt and provides additional opportunities in this concern. Furthermore, it is demonstrated that the US probe being within the PET field of view generally has no relevant influence on the image quality. The accuracy and precision of all the steps in the calibration workflow for US tracking-based 4D PET imaging are found to be in an acceptable range for clinical implementation. Eventually, we show in vitro that an US-based motion tracking in absolute room coordinates with a moving US transducer is feasible. PMID:26649277

  19. Pioneers 10 and 11 deep space missions

    NASA Technical Reports Server (NTRS)

    Dyal, Palmer

    1990-01-01

    Pioneers 10 and 11 were launched from Earth, 2 March 1972, and 5 April 1973, respectively. The Pioneers were the first spacecraft to explore the asteroid belt and the first to encounter the giant planets, Jupiter and Saturn. The Pioneer 10 spacecraft is now the most distant man-made object in our solar system and is farther from the Sun than all nine planets. It is 47 AU from the Sun and is moving in a direction opposite to that of the Sun's motion through the galaxy. Pioneer 11 is 28 AU from the Sun and is traveling in the direction opposite of Pioneer 10, in the same direction as the Sun moves in the galaxy. These two Pioneer spacecraft provided the first large-scale, in-situ measurements of the gas and dust surrounding a star, the Sun. Since launch, the Pioneers have measured large-scale properties of the heliosphere during more than one complete 11-year solar sunspot cycle, and have measured the properties of the expanding solar atmosphere, the transport of cosmic rays into the heliosphere, and the high-energy trapped radiation belts and magnetic fields associated with the planets Jupiter and Saturn. Accurate Doppler tracking of these spin-stabilized spacecraft was used to search for differential gravitational forces from a possible trans-Neptunian planet and to search for gravitational radiation. Future objectives of the Pioneer 10 and 11 missions are to continue measuring the large-scale properties of the heliosphere and to search for its boundary with interstellar space.

  20. Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhaoguo; Chen, Lunjin; Zhu, Hui

    Here, we present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show thatmore » the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.« less

  1. Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013

    NASA Astrophysics Data System (ADS)

    He, Zhaoguo; Chen, Lunjin; Zhu, Hui; Xia, Zhiyang; Reeves, G. D.; Xiong, Ying; Xie, Lun; Cao, Yong

    2017-09-01

    We present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show that the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.

  2. Multiple-Satellite Observation of Magnetic Dip Event During the Substorm on 10 October 2013

    DOE PAGES

    He, Zhaoguo; Chen, Lunjin; Zhu, Hui; ...

    2017-09-05

    Here, we present a multiple-satellite observation of the magnetic dip event during the substorm on 10 October 2013. The observation illustrates the temporal and spatial evolution of the magnetic dip and gives a compelling evidence that ring current ions induce the magnetic dip by enhanced plasma beta. The dip moves with the energetic ions in a comparable drift velocity and affects the dynamics of relativistic electrons in the radiation belt. In addition, the magnetic dip provides a favorable condition for the electromagnetic ion cyclotron (EMIC) wave generation based on the linear theory analysis. The calculated proton diffusion coefficients show thatmore » the observed EMIC wave can lead to the pitch angle scattering losses of the ring current ions, which in turn partially relax the magnetic dip in the observations. This study enriches our understanding of magnetic dip evolution and demonstrates the important role of the magnetic dip for the coupling of radiation belt and ring current.« less

  3. The radiation belts and ring current: the relationship between Dst and relativistic electron phase space density

    NASA Astrophysics Data System (ADS)

    Grande, M.; Carter, M.; Perry, C. H.

    2002-03-01

    We briefly review the radiation belts, before moving on to a more detailed examination of the relationship between the Disturbance Storm Time Index (Dst) and relativistic electron flux. We show that there is a strong correlation between the growth phase of storms, as represented by Dst, and dropouts in electron flux. Recovery is accompanied by growth of the electron flux. We calculate Electron Phase Space Density (PSD) as a function of adiabatic invariants using electron particle mesurements from the Imaging Electron Sensor (IES) and the High Sensitivity Telescope (HIST) on the CEPPAD experiment onboard POLAR. We present the time history of the phase space density through the year 1998 as L-sorted plots and look in detail at the May 98 storm. Comparison with the Tsyganenko 96 magnetic field model prediction for the last closed field line suggests that the loss of electrons may be directly caused by the opening of drift shells.

  4. On the dust zoning of rapidly rotating cometary nuclei

    NASA Astrophysics Data System (ADS)

    Houpis, H. L. F.; Mendis, D. A.

    1981-12-01

    The effects of nuclear rotation on the surface of a cometary nucleus (a comet at 1 AU that is H2O dominated and has a radius of 1 km) are considered. It is shown that this dust does not accumulate uniformly on the surface, which here is considered spherical. While dust particles in the two polar cap regions and an equatorial belt remain at rest on the surface, those in two midlatitude bands migrate toward the equator, stopping at the two low latitudes to form dust ridges. As the nucleus spins up, both the polar caps and the equatorial belt shrink in size, and the dust ridges move toward the equator, eventually spinning off the dust from the nucleus when the nuclear rotation period is less than about 3.3 hr. For larger particles for which the gas buoyancy is negligible, migration takes place only if the rotation period is not significantly larger than the critical value of 3.3 hr or if the surface friction is abnormally small.

  5. News and Views: Diamond is new head of SKA; Did you read our `A&G' mobile issue? BBC writer wins astro journalism prize; Kavli prize recognizes work on Kuiper Belt objects

    NASA Astrophysics Data System (ADS)

    2012-10-01

    Philip Diamond will become director general of the Square Kilometre Array this month, moving from Australia to the new SKA headquarters at Jodrell Bank Radio Observatory. Technology writer Katia Moskvitch has won the first European Astronomy Journalism Prize for her series of articles on the Very Large Telescope at Paranal, Chile. Moskvitch will be the guest of the ESO at the inauguration of the Atacama Large Millimeter/submillimeter Array (ALMA) in the Atacama desert in March 2013. The 2012 Kavli Prize in Astrophysics is shared between David C Jewitt (University of California, USA), Jane X Luu (Massachusetts Institute of Technology, Lincoln Laboratory, USA), and Michael E Brown (California Institute of Technology, USA) “for discovering and characterizing the Kuiper Belt and its largest members, work that led to a major advance in the understanding of the history of our planetary system”.

  6. Multiple spatially localized dynamical states in friction-excited oscillator chains

    NASA Astrophysics Data System (ADS)

    Papangelo, A.; Hoffmann, N.; Grolet, A.; Stender, M.; Ciavarella, M.

    2018-03-01

    Friction-induced vibrations are known to affect many engineering applications. Here, we study a chain of friction-excited oscillators with nearest neighbor elastic coupling. The excitation is provided by a moving belt which moves at a certain velocity vd while friction is modelled with an exponentially decaying friction law. It is shown that in a certain range of driving velocities, multiple stable spatially localized solutions exist whose dynamical behavior (i.e. regular or irregular) depends on the number of oscillators involved in the vibration. The classical non-repeatability of friction-induced vibration problems can be interpreted in light of those multiple stable dynamical states. These states are found within a "snaking-like" bifurcation pattern. Contrary to the classical Anderson localization phenomenon, here the underlying linear system is perfectly homogeneous and localization is solely triggered by the friction nonlinearity.

  7. Flow regions of granules in Dorfan Impingo filter for gas cleanup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, J.T.; Smid, J.; Hsiau, S.S.

    1999-07-01

    Inside a two-dimensional model of the louvered Dorfan Impingo panel with transparent front and rear walls the flow region of filter granules without gas cross flow were observed. The white PE beads were used as filter granules. Colored PE beads served as tracers. Filter granules were discharged and circulated to the bed. The flow rate of filter medium was controlled by the belt conveyor. The image processing system including a Frame Grabber and JVC videocamera was used to record the granular flow. Every image of motion was digitized and stored in a file. The flow patterns and the quasi-stagnant zonesmore » history in the moving granular bed were evaluated. The experiment showed fast central moving region (flowing core) of filter granules and quasi-stagnant zones close to louver walls.« less

  8. Moving towards the Assessment of Collaborative Problem Solving Skills with a Tangible User Interface

    ERIC Educational Resources Information Center

    Ras, Eric; Krkovic, Katarina; Greiff, Samuel; Tobias, Eric; Maquil, Valérie

    2014-01-01

    The research on the assessment of collaborative problem solving (ColPS), as one crucial 21st Century Skill, is still in its beginnings. Using Tangible User Interfaces (TUI) for this purpose has only been marginally investigated in technology-based assessment. Our first empirical studies focused on light-weight performance measurements, usability,…

  9. Touch in Computer-Mediated Environments: An Analysis of Online Shoppers' Touch-Interface User Experiences

    ERIC Educational Resources Information Center

    Chung, Sorim

    2016-01-01

    Over the past few years, one of the most fundamental changes in current computer-mediated environments has been input devices, moving from mouse devices to touch interfaces. However, most studies of online retailing have not considered device environments as retail cues that could influence users' shopping behavior. In this research, I examine the…

  10. Interface shapes during vertical Bridgman growth of (Pb, Sn)Te crystals

    NASA Technical Reports Server (NTRS)

    Huang, YU; Debnam, William J.; Fripp, Archibald L.

    1990-01-01

    Melt-solid interfaces obtained during vertical Bridgman growth of (Pb, Sn)Te crystals were investigated with a quenching technique. The shapes of these interfaces, revealed by etching longitudinally cut sections, were correlated with the composition variations determined by EMPA. These experiments demonstrated that the interface shape can be changed from concave to convex by moving its location from the edge of the cold zone into the hot zone. The metallography and microsegregation near the melt-solid interface were analyzed in detail. A sharp change in composition above the interface indicated the existence of a diffusion boundary layer 40-90 microns thick. This small diffusion boundary layer is consistent with strong convective mixing in the (Pb, Sn)Te melt.

  11. VizieR Online Data Catalog: Spectroscopy of main-belt Ch/Cgh-type asteroids (Vernazza+, 2016)

    NASA Astrophysics Data System (ADS)

    Vernazza, P.; Marsset, M.; Beck, P.; Binzel, R. P.; Birlan, M.; Cloutis, E. A.; DeMeo, F. E.; Dumas, C.; Hiroi, T.

    2016-09-01

    We conducted an extensive spectroscopic survey in the near-infrared range of 70 main-belt Ch/Cgh-type asteroids and 4 Ch/Cgh-type families and combined these measurements with available visible wavelength spectra. New data presented here are near-infrared asteroid spectral measurements for Ch- and Cgh-type asteroids from 0.7-2.5μm obtained using SpeX, the low- to medium-resolution near-IR spectrograph and imager on the 3m NASA InfraRed Telescope Facility (IRTF) located on Mauna Kea, HI. Observing runs were conducted remotely primarily from the Observatory of Paris-Meudon, France between 2010 April and 2012 January. The spectrograph SpeX, combined with a 0.8*15arcsec slit, was used in the low-resolution prism mode for acquisition of the spectra in the 0.7-2.5μm wavelength range. In order to monitor the high luminosity and variability of the sky in the near-IR, the telescope was moved along the slit during the acquisition of the data so as to obtain a sequence of spectra located at two different positions (A and B) on the array. In addition, we complemented our data set with additional near-infrared spectra retrieved from the Small Main-Belt Asteroid Spectroscopic Survey (SMASS) database (http://smass.mit.edu/). Combining these near-infrared measurements with available visible wavelength spectra (Bus, 1999PhDT........50B; Lazzaro et al., 2004Icar..172..179L) allows for the first time an extensive visible and near-infrared (VNIR) spectral database of main-belt Ch and Cgh types with D>45km (78% or 49/63 of all Ch and Cgh types listed in SMASS; see Table1). (1 data file).

  12. Ballooning in the constant sun of the South Pole summer

    NASA Image and Video Library

    2014-04-24

    Release of a BARREL balloon. The launch crew can be seen on the right holding the payload as the top of the balloon moves overhead where they can release it. Credit: NASA/Goddard/BARREL Read more: www.nasa.gov/content/goddard/nasas-barrel-returns-success... -- Three months, 20 balloons, and one very successful campaign. The team for NASA's BARREL – short for Balloon Array for Radiation belt Relativistic Electron Losses -- mission returned from Antarctica in March 2014. BARREL's job is to help unravel the mysterious Van Allen belts, two gigantic donuts of radiation that surround Earth, which can shrink and swell in response to incoming energy and particles from the sun and sometimes expose satellites to harsh radiation. While in Antarctica, the team launched 20 balloons carrying instruments that sense charged particles that are scattered into the atmosphere from the belts, spiraling down the magnetic fields near the South Pole. Each balloon traveled around the pole for up to three weeks. The team will coordinate the BARREL data with observations from NASA's two Van Allen Probes to better understand how occurrences in the belts relate to bursts of particles funneling down toward Earth. BARREL team members will be on hand at the USA Science and Engineering Festival in DC on April 26 and 27, 2014 for the exhibit Space Balloons: Exploring the Extremes of Space Weather. NASA image use policy.NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission.Follow us on TwitterLike us on FacebookFind us on Instagram

  13. Fabrication and Operation of a Nano-Optical Conveyor Belt

    PubMed Central

    Ryan, Jason; Zheng, Yuxin; Hansen, Paul; Hesselink, Lambertus

    2015-01-01

    The technique of using focused laser beams to trap and exert forces on small particles has enabled many pivotal discoveries in the nanoscale biological and physical sciences over the past few decades. The progress made in this field invites further study of even smaller systems and at a larger scale, with tools that could be distributed more easily and made more widely available. Unfortunately, the fundamental laws of diffraction limit the minimum size of the focal spot of a laser beam, which makes particles smaller than a half-wavelength in diameter hard to trap and generally prevents an operator from discriminating between particles which are closer together than one half-wavelength. This precludes the optical manipulation of many closely-spaced nanoparticles and limits the resolution of optical-mechanical systems. Furthermore, manipulation using focused beams requires beam-forming or steering optics, which can be very bulky and expensive. To address these limitations in the system scalability of conventional optical trapping our lab has devised an alternative technique which utilizes near-field optics to move particles across a chip. Instead of focusing laser beams in the far-field, the optical near field of plasmonic resonators produces the necessary local optical intensity enhancement to overcome the restrictions of diffraction and manipulate particles at higher resolution. Closely-spaced resonators produce strong optical traps which can be addressed to mediate the hand-off of particles from one to the next in a conveyor-belt-like fashion. Here, we describe how to design and produce a conveyor belt using a gold surface patterned with plasmonic C-shaped resonators and how to operate it with polarized laser light to achieve super-resolution nanoparticle manipulation and transport. The nano-optical conveyor belt chip can be produced using lithography techniques and easily packaged and distributed. PMID:26381708

  14. Fabrication and Operation of a Nano-Optical Conveyor Belt.

    PubMed

    Ryan, Jason; Zheng, Yuxin; Hansen, Paul; Hesselink, Lambertus

    2015-08-26

    The technique of using focused laser beams to trap and exert forces on small particles has enabled many pivotal discoveries in the nanoscale biological and physical sciences over the past few decades. The progress made in this field invites further study of even smaller systems and at a larger scale, with tools that could be distributed more easily and made more widely available. Unfortunately, the fundamental laws of diffraction limit the minimum size of the focal spot of a laser beam, which makes particles smaller than a half-wavelength in diameter hard to trap and generally prevents an operator from discriminating between particles which are closer together than one half-wavelength. This precludes the optical manipulation of many closely-spaced nanoparticles and limits the resolution of optical-mechanical systems. Furthermore, manipulation using focused beams requires beam-forming or steering optics, which can be very bulky and expensive. To address these limitations in the system scalability of conventional optical trapping our lab has devised an alternative technique which utilizes near-field optics to move particles across a chip. Instead of focusing laser beams in the far-field, the optical near field of plasmonic resonators produces the necessary local optical intensity enhancement to overcome the restrictions of diffraction and manipulate particles at higher resolution. Closely-spaced resonators produce strong optical traps which can be addressed to mediate the hand-off of particles from one to the next in a conveyor-belt-like fashion. Here, we describe how to design and produce a conveyor belt using a gold surface patterned with plasmonic C-shaped resonators and how to operate it with polarized laser light to achieve super-resolution nanoparticle manipulation and transport. The nano-optical conveyor belt chip can be produced using lithography techniques and easily packaged and distributed.

  15. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene

    PubMed Central

    Yang, Shiling; Ding, Zhongli; Li, Yangyang; Wang, Xu; Jiang, Wenying; Huang, Xiaofang

    2015-01-01

    Glacial–interglacial changes in the distribution of C3/C4 vegetation on the Chinese Loess Plateau have been related to East Asian summer monsoon intensity and position, and could provide insights into future changes caused by global warming. Here, we present δ13C records of bulk organic matter since the Last Glacial Maximum (LGM) from 21 loess sections across the Loess Plateau. The δ13C values (range: –25‰ to –16‰) increased gradually both from the LGM to the mid-Holocene in each section and from northwest to southeast in each time interval. During the LGM, C4 biomass increased from <5% in the northwest to 10–20% in the southeast, while during the mid-Holocene C4 vegetation increased throughout the Plateau, with estimated biomass increasing from 10% to 20% in the northwest to >40% in the southeast. The spatial pattern of C4 biomass in both the LGM and the mid-Holocene closely resembles that of modern warm-season precipitation, and thus can serve as a robust analog for the contemporary East Asian summer monsoon rain belt. Using the 10–20% isolines for C4 biomass in the cold LGM as a reference, we derived a minimum 300-km northwestward migration of the monsoon rain belt for the warm Holocene. Our results strongly support the prediction that Earth's thermal equator will move northward in a warmer world. The southward displacement of the monsoon rain belt and the drying trend observed during the last few decades in northern China will soon reverse as global warming continues. PMID:26460029

  16. Warming-induced northwestward migration of the East Asian monsoon rain belt from the Last Glacial Maximum to the mid-Holocene.

    PubMed

    Yang, Shiling; Ding, Zhongli; Li, Yangyang; Wang, Xu; Jiang, Wenying; Huang, Xiaofang

    2015-10-27

    Glacial-interglacial changes in the distribution of C3/C4 vegetation on the Chinese Loess Plateau have been related to East Asian summer monsoon intensity and position, and could provide insights into future changes caused by global warming. Here, we present δ(13)C records of bulk organic matter since the Last Glacial Maximum (LGM) from 21 loess sections across the Loess Plateau. The δ(13)C values (range: -25‰ to -16‰) increased gradually both from the LGM to the mid-Holocene in each section and from northwest to southeast in each time interval. During the LGM, C4 biomass increased from <5% in the northwest to 10-20% in the southeast, while during the mid-Holocene C4 vegetation increased throughout the Plateau, with estimated biomass increasing from 10% to 20% in the northwest to >40% in the southeast. The spatial pattern of C4 biomass in both the LGM and the mid-Holocene closely resembles that of modern warm-season precipitation, and thus can serve as a robust analog for the contemporary East Asian summer monsoon rain belt. Using the 10-20% isolines for C4 biomass in the cold LGM as a reference, we derived a minimum 300-km northwestward migration of the monsoon rain belt for the warm Holocene. Our results strongly support the prediction that Earth's thermal equator will move northward in a warmer world. The southward displacement of the monsoon rain belt and the drying trend observed during the last few decades in northern China will soon reverse as global warming continues.

  17. Three-Dimensional Simulation of Liquid Drop Dynamics Within Unsaturated Vertical Hele-Shaw Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai Huang; Paul Meakin

    A three-dimensional, multiphase fluid flow model with volume of fluid-interface tracking was developed and applied to study the multiphase dynamics of moving liquid drops of different sizes within vertical Hele-Shaw cells. The simulated moving velocities are significantly different from those obtained from a first-order analytical approximation, based on simple force-balance concepts. The simulation results also indicate that the moving drops can exhibit a variety of shapes and that the transition among these different shapes is largely determined by the moving velocities. More important, there is a transition from a linear moving regime at small capillary numbers, in which the capillarymore » number scales linearly with the Bond number, to a nonlinear moving regime at large capillary numbers, in which the moving drop releases a train of droplets from its trailing edge. The train of droplets forms a variety of patterns at different moving velocities.« less

  18. Studies of Disks Around the Sun and Other Stars

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1997-01-01

    This is a NASA Origins of Solar Systems research program, and this NASA Headquarters grant has now been transferred to a new grant at NASA GSFC (NAG5-4082). Thus the need for this 'Final Report' on a project that is not, in fact, complete. We are conducting research designed to enhance our understanding of the evolution and detectability of comet clouds and disks. This area holds promise for also improving our understanding of outer solar system formation, the bombardment history of the planets, the transport of volatiles and organics from the outer solar system to the inner planets, and to the ultimate fate of comet clouds around the Sun and other stars. According to "standard" theory, both the Kuiper Belt and the Oort Cloud are (at least in part) natural products of the planetary accumulation stage of solar system formation. One expects such assemblages to be a common attribute of other solar systems. Our program consists of modeling collisions in the Kuiper Belt and the dust disks around other stars. The modeling effort focuses on moving from our simple, first-generation, Kuiper Belt collision rate model, to a time-dependent, second-generation model that incorporates physical collisions, velocity evolution, dynamical erosion, and various dust transport mechanisms. This second generation model is to be used to study the evolution of surface mass density and the object-size spectrum in the disk.

  19. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U-Pb zircon geochronology

    NASA Astrophysics Data System (ADS)

    Hosseini, Mohammad Reza; Hassanzadeh, Jamshid; Alirezaei, Saeed; Sun, Weidong; Li, Cong-Ying

    2017-07-01

    The Urumieh-Dokhtar magmatic belt of Central Iran runs parallel to the Zagros orogenic belt and has been resulted from Neotethys ocean subduction underneath Eurasia. The Bahr Aseman volcanic-plutonic complex (BAC), covering an area 2000 km2 in the Kerman magmatic belt (KMB) in the southern section of the Urumieh-Dokhtar belt, has long been considered as the earliest manifestation of extensive Cenozoic arc magmatism in KMB. The nature and timing of the magmatism, however, is poorly constrained. An area 1000 km2, in BAC and adjacent Razak volcaniclastic complex and Jebal Barez-type granitoids, was mapped and sampled for geochemistry and geochronology. Andesite and basaltic andesite are the main volcanic components in the study area; plutonic bodies vary from tonalite to quartz diorite, granodiorite and biotite-granite. The rocks in BAC display dominantly normal calc-alkaline character. On spider diagrams, the rocks are characterized by enrichments in LILE relative to HFSE and enrichments in LREE relative to HREE. These features suggest a subduction related setting for the BAC. LaN/YbN ratios for the intrusive and volcanic rocks range from 1.41 to 5.16 and 1.01 to 6.42, respectively. These values are lower than those for other known granitoids in KMB, namely the abyssal, dominantly Oligocene Jebal Barez-type (LaN/YbN = 1.66-9.98), and the shallow, dominantly late Miocene Kuh Panj-type (LaN/YbN = 12.97-36.04) granitoids. This suggests a less evolved magma source for the BAC igneous rocks. In Y vs. Nb and Th/Yb vs. La/Yb discrimination diagrams, an island-arc setting is defined for the BAC rocks. The rocks further plot in primitive island-arc domain in Nb vs. Rb/Zr and Y/Nb vs. TiO2 diagrams. The BAC volcanic and plutonic rocks yielded zircon U-Pb ages of 78.1 to 82.7 Ma and 77.5 to 80.8 Ma, respectively. Zircon U-Pb dating of volcanic rocks and granitoids from the adjacent Razak complex and the Jebal Barez-type granitoids indicated 48.2 Ma and 26.1 Ma ages, respectively, consistent with earlier works on similar rocks elsewhere in KMB. The new data allow a revision of the chronostratigraphy/tectonic history of KMB. In Late Cretaceous, a back arc rift developed extending from Nain to Baft (NB back arc) to the northeast of the Sanandaj-Sirjan magmatic arc. Along with shrinking of the Neotethys Ocean, the dip angle of the subducting slab decreased during the Late Cretaceous, and arc magmatism moved from the Sanandaj-Sirjan zone landward. Meanwhile, Bahr Aseman volcanic-plutonic complex formed as an island-arc in NB back arc rift. Later with arc shift, due to shallowing of subducted slab, magmatism moved toward continent leading to extensive volcanism in Kerman magmatic arc during Eocene and Oligocene, represented by volcanic-sedimentary Razak and Hezar Complexes, respectively.

  20. Transportable Applications Environment Plus, Version 5.1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Transportable Applications Environment Plus (TAE+) computer program providing integrated, portable programming environment for developing and running application programs based on interactive windows, text, and graphical objects. Enables both programmers and nonprogrammers to construct own custom application interfaces easily and to move interfaces and application programs to different computers. Used to define corporate user interface, with noticeable improvements in application developer's and end user's learning curves. Main components are; WorkBench, What You See Is What You Get (WYSIWYG) software tool for design and layout of user interface; and WPT (Window Programming Tools) Package, set of callable subroutines controlling user interface of application program. WorkBench and WPT's written in C++, and remaining code written in C.

  1. NASA’s BARREL Mission Launches 20 Balloons

    NASA Image and Video Library

    2017-12-08

    A BARREL balloon floats into the sky as it is partially filled. When fully inflated, each balloon is 90 feet in diameter and carries an instrument suite that weighs 50 pounds. This is small for an Antarctica balloon launch, which can have balloons Typical balloons l the size of a football field with payloads of some 3,000 pounds. Credit: NASA --- In Antarctica in January, 2013 – the summer at the South Pole – scientists launched 20 balloons up into the air to study an enduring mystery of space weather: when the giant radiation belts surrounding Earth lose material, where do the extra particles actually go? The mission is called BARREL (Balloon Array for Radiation belt Relativistic Electron Losses) and it is led by physicist Robyn Millan of Dartmouth College in Hanover, NH. Millan provided photographs from the team’s time in Antarctica. The team launched a balloon every day or two into the circumpolar winds that circulate around the pole. Each balloon floated for anywhere from 3 to 40 days, measuring X-rays produced by fast-moving electrons high up in the atmosphere. BARREL works hand in hand with another NASA mission called the Van Allen Probes, which travels through the Van Allen radiation belts surrounding Earth. The belts wax and wane over time in response to incoming energy and material from the sun, sometimes intensifying the radiation through which satellites must travel. Scientists wish to understand this process better, and even provide forecasts of this space weather, in order to protect our spacecraft. As the Van Allen Probes were observing what was happening in the belts, BARREL tracked electrons that precipitated out of the belts and hurtled down Earth’s magnetic field lines toward the poles. By comparing data, scientists will be able to track how what’s happening in the belts correlates to the loss of particles – information that can help us understand this mysterious, dynamic region that can impact spacecraft. Having launched balloons in early 2013, the team is back at home building the next set of payloads. They will launch 20 more balloons in 2014. NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Development of megasonic cleaning for silicon wafers

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1980-01-01

    A cleaning and drying system for processing at least 2500 three in. diameter wafers per hour was developed with a reduction in process cost. The system consists of an ammonia hydrogen peroxide bath in which both surfaces of 3/32 in. spaced, ion implanted wafers are cleaned in quartz carriers moved on a belt past two pairs of megasonic transducers. The wafers are dried in the novel room temperature, high velocity air dryer in the same carriers used for annealing. A new laser scanner was used effectively to monitor the cleaning ability on a sampling basis.

  3. KSC-07pd0853

    NASA Image and Video Library

    2007-04-10

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, an external cover is removed from around the shipping container holding the Dawn spacecraft. The container will then be moved into the high bay of the Payload Processing Facility and the spacecraft removed. Dawn's mission is to explore two of the asteroid belt's most intriguing and dissimilar occupants: asteroid Vesta and the dwarf planet Ceres. The Dawn mission is managed by JPL, a division of the California Institute of Technology in Pasadena, for NASA's Science Mission Directorate in Washington, D.C. Photo credit: NASA/Jim Grossmann

  4. Environmental Analysis of the Upper Susitna River Basin using Landsat Imagery

    DTIC Science & Technology

    1980-01-01

    CourseslData Measuring Sites (SCS) 0 Snow Cover Measurement Location 4 C R RE /N OAA) j HŔ River Gauging Station (UISGS, COE) tI’ql with Water...large-scale map that can be used in selection of moved westward across the area (Kachadoorian drilling sites, provide a basis for estimating 1974...A033500 petrology and structure of the Maclaren, Ruby Range McKim, H L, L W Gatto, C I Merry, and R K Haugen (1976b) and Coast Range Belts implications

  5. Space Flight Ionizing Radiation Environments

    NASA Technical Reports Server (NTRS)

    Koontz, Steve

    2017-01-01

    The space-flight ionizing radiation (IR) environment is dominated by very high-kinetic energy-charged particles with relatively smaller contributions from X-rays and gamma rays. The Earth's surface IR environment is not dominated by the natural radioisotope decay processes. Dr. Steven Koontz's lecture will provide a solid foundation in the basic engineering physics of space radiation environments, beginning with the space radiation environment on the International Space Station and moving outward through the Van Allen belts to cislunar space. The benefits and limitations of radiation shielding materials will also be summarized.

  6. A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES

    PubMed Central

    Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.M.; Vargas, A.; von Loebbecke, A.

    2010-01-01

    A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed surfaces are represented by grids consisting of unstructured triangular elements; while the flow is computed on non-uniform Cartesian grids. The paper describes the salient features of the methodology with special emphasis on the immersed boundary treatment for stationary and moving boundaries. Simulations of a number of canonical two- and three-dimensional flows are used to verify the accuracy and fidelity of the solver over a range of Reynolds numbers. Flow past suddenly accelerated bodies are used to validate the solver for moving boundary problems. Finally two cases inspired from biology with highly complex three-dimensional bodies are simulated in order to demonstrate the versatility of the method. PMID:20216919

  7. Inverse optimal design of the radiant heating in materials processing and manufacturing

    NASA Astrophysics Data System (ADS)

    Fedorov, A. G.; Lee, K. H.; Viskanta, R.

    1998-12-01

    Combined convective, conductive, and radiative heat transfer is analyzed during heating of a continuously moving load in the industrial radiant oven. A transient, quasi-three-dimensional model of heat transfer between a continuous load of parts moving inside an oven on a conveyor belt at a constant speed and an array of radiant heaters/burners placed inside the furnace enclosure is developed. The model accounts for radiative exchange between the heaters and the load, heat conduction in the load, and convective heat transfer between the moving load and oven environment. The thermal model developed has been used to construct a general framework for an inverse optimal design of an industrial oven as an example. In particular, the procedure based on the Levenberg-Marquardt nonlinear least squares optimization algorithm has been developed to obtain the optimal temperatures of the heaters/burners that need to be specified to achieve a prescribed temperature distribution of the surface of a load. The results of calculations for several sample cases are reported to illustrate the capabilities of the procedure developed for the optimal inverse design of an industrial radiant oven.

  8. Seismic crustal structure of the Limpopo mobile belt, Zimbabwe

    NASA Astrophysics Data System (ADS)

    Stuart, G. W.; Zengeni, T. G.

    1987-12-01

    A 145 km N-S seismic traverse was deployed to determine the crustal structure of the Limpopo mobile belt in southern Zimbabwe and the nature of its northern boundary with the Zimbabwean craton. Rockbursts from South African gold mines to the south and regional seismicity from the Kariba-South Zambia belt to the north were used as seismic sources. P-wave relative teleseismic residuals were also measured to assess whether any velocity contrast between the craton and the mobile belt extended into the upper mantle. Interpretation of reduced travel times from the local Buchwa iron-ore mine blasts, which were broadside to the traverse, revealed an upper crustal interface in the Limpopo mobile belt at a depth of 5.8 ± 0.6 km, dividing material with a velocity of about 5.8 km/s from that of about 6.4 km/s. On the craton, arrivals from the same source showed a 4.4 ± 0.5 km thick 5.5 km/s layer overlying crust of about velocity 6.5 km/s. P-wave arrivals from the regional seismicity were used to construct a crustal cross-section. Absolute crustal thickness was tentatively estimated from the identification of a Moho reflection on the mine blast recordings. To the south of Rutenga, the crust thins from around 34 km to 29 km in association with a positive gravity anomaly centred over the late-Karoo Nuanetsi Igneous Province and Karoo Tuli Syncline. North of Rutenga to the boundary with the Zimbabwean craton, the crust is about 34 km thick. The craton boundary was found to be a steeply southerly dipping zone associated with high-velocity material, which could either be deep-seated greenstones or mafic material associated with the margin in the region studied. This zone divides cratonic crust, which was found to be about 40 km thick, from that typical of the mobile belt and implies a step in the Moho of around 6 km. Analysis of relative teleseismic residuals showed that the velocity contrasts are not confined to the crust but extend into the uppermost upper mantle with the cratonic lithosphere being about 4% faster than that of the Limpopo mobile belt. The resolution of the technique is such that it is difficult to ascertain whether these differences are features of Precambrian evolution or are due to reactivation of the upper mantle during Karoo igneous and tectonic activity.

  9. Fast Solvers for Moving Material Interfaces

    DTIC Science & Technology

    2008-01-01

    interface method—with the semi-Lagrangian contouring method developed in References [16–20]. We are now finalizing portable C / C ++ codes for fast adaptive ...stepping scheme couples a CIR predictor with a trapezoidal corrector using the velocity evaluated from the CIR approximation. It combines the...formula with efficient geometric algorithms and fast accurate contouring techniques. A modular adaptive implementation with fast new geometry modules

  10. Optical Neural Interfaces

    PubMed Central

    Warden, Melissa R.; Cardin, Jessica A.; Deisseroth, Karl

    2014-01-01

    Genetically encoded optical actuators and indicators have changed the landscape of neuroscience, enabling targetable control and readout of specific components of intact neural circuits in behaving animals. Here, we review the development of optical neural interfaces, focusing on hardware designed for optical control of neural activity, integrated optical control and electrical readout, and optical readout of population and single-cell neural activity in freely moving mammals. PMID:25014785

  11. An Icy Kuiper-Belt Around the Young Solar-Type Star HD 181327

    NASA Technical Reports Server (NTRS)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J.; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Mathews, G. S.; hide

    2011-01-01

    HD 181327 is a young Main Sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx 12 Myr). It harbors an optically thin belt of circumstellar material at approx90 AU, presumed to result from collisions in a populat.ion of unseen planetesimals. Aims. We aim to study the dust properties in the belt in great details, and to constrain the gas-to-dust ratio. Methods. We obtained far-IR photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 nun observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST /NICMOS scattered light images that break the degeneracy between the disk geometry and the dust properties. We then use the radiative transfer code GRaTer to compute a large grid of dust models, and we apply a Bayesian inference method to identify the grain models that best reproduce the SED. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes. We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an import.ant layer of ice for a total dust mass of approx 0.05 stellar Mass. We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx 17 Stellar Mass Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the dust disk suggest that it has passed the stage of gaseous planets formation. The dust reveals a population of icy planetesimals, similar to the primitive Edgeworth-Kuiper Belt, that may be a source for the future delivery of water and volatiles onto forming terrestrial planets.

  12. Evidence of the coupled geology system and its impact on the evolution of South China during the transformation from Sinian to Cambrian

    NASA Astrophysics Data System (ADS)

    Yang, C.; Wang, T.; Chen, Z.

    2016-12-01

    Separate interpretation of the evidence on tectonic, sedimentology or climate is insufficient to reappear the dynamic process of the evolution of the Earth surface, thus, tectonic, sedimentology and climate should be considered as a coupled system. Thick carbonate succession is overlaying on the paleo-uplift which is divided into two parts by a fluted belt in the center of Sichuan Basin. Sinian carbonate rocks is commonly composed by algae dolomite, while at the top of the Sinian succession the rocks had experienced meteoric karstification. Grain dolostones, fine-grained siliciclastic sandstones with mudstone appeare as the regional sediment of Cambrian. However, extraordinary thick mudstone had settled in the fluted belt, and the succession could be divided in to siliciclastic mud of the lower and clay-carbonate mud of the upper. The geochemistry and well log synthesized profile of Z4 well indicate that the chemical condition of siliciclastic mud and clay-carbonate mud had changed from oxidation to reduction, however the siliciclastic mud only appeared within the fluted belt. The fluted belt does not exist on the map of the gravity anomaly, but it had been convinced by the seismic data. The precursor of the fluted belt might be a sag within the platform basement, while with the sea level gradually raising up, the growth of algal mound exacerbated the geomorphology difference. Then a regression had happened at the end of the Sinian, starved all the algae and caused weather crust. Meanwhile, the fluted belt became a closed lagoon, received the sediment including algal mound fragment and biosilic crystals. Afterwards, rapidly increasing of the sea level deposited thick cay-carbonate mud that could be recognized as the sediment of maximum flooding surface. Then with the sea level decreasing, siliciclastic sandstones and inorganic grain carbonate became the main petrology of the Cambrian strata. Fine-grained eolian siliciclastic sandstones within the Cambrian carbonate indicate the influence of the continent, but this terrigenous clastics not exist in Sinian carbonate because the location of the platform moved closer to the continent in Cambrian. Meanwhile, there is no algal within Cambrian carbonate, it means the platform might drift to inhospitable place for the algal during the period.

  13. Origin of coffinite in sedimentary rocks by a sequential adsorption-reduction mechanism.

    USGS Publications Warehouse

    Goldhaber, M.B.; Hemingway, B.S.; Mohagheghi, A.; Reynolds, R.L.; Northrop, H.R.

    1987-01-01

    Coffinite is the dominant ore mineral in the V-U ores of the Tony-M mine in the Henry Mts mineral belt of the Colorado Plateau. This orebody was formed at a density-stratified solution interface between uranyl-ion-bearing meteoric water and a saline fluid which was locally reducing. The localization of U at this solution interface occurred by adsorption onto the surfaces of detrital minerals, this adsorption being related to the pH difference between the two fluids. Experimental evidence is presented showing that the adsorption facilitated the reduction of uranium to U(IV). This adsorbed, reduced uranium bonded with aqueous silica in the ore zone to form coffinite. The high concentration of silica (as a monomeric species) in the ore-forming solution stabilized coffinite in preference to uraninite.-R.A.H.

  14. Holographic optical tweezers for object manipulations at an air-liquid surface.

    PubMed

    Jesacher, Alexander; Fürhapter, Severin; Maurer, Christian; Bernet, Stefan; Ritsch-Marte, Monika

    2006-06-26

    We investigate holographic optical tweezers manipulating micro-beads at a suspended air-liquid interface. Axial confinement of the particles in the two-dimensional interface is maintained by the interplay between surface tension and gravity. Therefore, optical trapping of the micro-beads is possible even with a long distance air objective. Efficient micro-circulation of the liquid can be induced by fast rotating beads, driven by the orbital angular momentum transfer of incident Laguerre-Gaussian (doughnut) laser modes. Our setup allows various ways of creating a tailored dynamic flow of particles and liquid within the surface. We demonstrate examples of surface manipulations like efficient vortex pumps and mixers, interactive particle flow steering by arrays of vortex pumps, the feasibility of achieving a "clocked" traffic of micro beads, and size-selective guiding of beads along optical "conveyor belts".

  15. A fictitious domain finite element method for simulations of fluid-structure interactions: The Navier-Stokes equations coupled with a moving solid

    NASA Astrophysics Data System (ADS)

    Court, Sébastien; Fournié, Michel

    2015-05-01

    The paper extends a stabilized fictitious domain finite element method initially developed for the Stokes problem to the incompressible Navier-Stokes equations coupled with a moving solid. This method presents the advantage to predict an optimal approximation of the normal stress tensor at the interface. The dynamics of the solid is governed by the Newton's laws and the interface between the fluid and the structure is materialized by a level-set which cuts the elements of the mesh. An algorithm is proposed in order to treat the time evolution of the geometry and numerical results are presented on a classical benchmark of the motion of a disk falling in a channel.

  16. Interface projection techniques for fluid-structure interaction modeling with moving-mesh methods

    NASA Astrophysics Data System (ADS)

    Tezduyar, Tayfun E.; Sathe, Sunil; Pausewang, Jason; Schwaab, Matthew; Christopher, Jason; Crabtree, Jason

    2008-12-01

    The stabilized space-time fluid-structure interaction (SSTFSI) technique developed by the Team for Advanced Flow Simulation and Modeling (T★AFSM) was applied to a number of 3D examples, including arterial fluid mechanics and parachute aerodynamics. Here we focus on the interface projection techniques that were developed as supplementary methods targeting the computational challenges associated with the geometric complexities of the fluid-structure interface. Although these supplementary techniques were developed in conjunction with the SSTFSI method and in the context of air-fabric interactions, they can also be used in conjunction with other moving-mesh methods, such as the Arbitrary Lagrangian-Eulerian (ALE) method, and in the context of other classes of FSI applications. The supplementary techniques currently consist of using split nodal values for pressure at the edges of the fabric and incompatible meshes at the air-fabric interfaces, the FSI Geometric Smoothing Technique (FSI-GST), and the Homogenized Modeling of Geometric Porosity (HMGP). Using split nodal values for pressure at the edges and incompatible meshes at the interfaces stabilizes the structural response at the edges of the membrane used in modeling the fabric. With the FSI-GST, the fluid mechanics mesh is sheltered from the consequences of the geometric complexity of the structure. With the HMGP, we bypass the intractable complexities of the geometric porosity by approximating it with an “equivalent”, locally-varying fabric porosity. As test cases demonstrating how the interface projection techniques work, we compute the air-fabric interactions of windsocks, sails and ringsail parachutes.

  17. Global organization of tectonic deformation on Venus

    NASA Astrophysics Data System (ADS)

    Bilotti, Frank; Connors, Chris; Suppe, John

    1993-03-01

    The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the direct result of poleward compression. The trends of wrinkle ridges have been mapped over the planet and several large, sweeping patterns evidently reflect long-wavelength topography. Using wrinkle ridges as paleostress indicators, we have developed local and regional stress trajectory maps.

  18. Global organization of tectonic deformation on Venus

    NASA Technical Reports Server (NTRS)

    Bilotti, Frank; Connors, Chris; Suppe, John

    1993-01-01

    The geographic organization of surface deformation on Venus as on Earth is a key to understanding the global tectonic system. To date we have mapped the distribution of three unambiguous tectonic land forms on Venus: (1) linear foldbelts analogous to those at plate margins of the Earth; (2) linear rift zones, analogous to continental rifts on the Earth; and (3) distributed plains deformation in the form of wrinkle ridges and extensional faults and fractures. The linear foldbelts are the dominant structural style in the Northern Hemisphere; ninety percent of the planet's foldbelts lie above the equator. In contrast, compressive deformation in the Southern Hemisphere is dominated by two large, sweeping patterns of wrinkle ridges. The two hemispheres are divided by an equatorial region that is largely covered by rift zones and several large tessera blocks. A tectonic model of generally poleward convergence of the Northern Hemisphere explains the distribution of foldbelts and rift zones. In our model, a northern hemispherical plate (or system of plates) moves poleward and deforms along discrete, predominately longitudinal bands. We recognize four types of foldbelts based on their relationships to other large-scale tectonic features on Venus. There are foldbelts that lie within the low plains, foldbelts associated with coronae, novae and chasmata, foldbelts that lie at the margins of poly-deformed tessera plateaus, and the folded mountain belts around Lakshmi Planum. We see a geometric increase in the area of fold belts when normalized to percent area at a given latitude. This increase is consistent with our model of poleward convergence. Also, the orientations of most foldbelts are either approximately north-south or parallel to lines of latitude in the northern hemisphere. This observation is also consistent with the model in that the longitudinal bands are the result of the decreasing area of the sphere as the plate moves poleward and the latitudinal belts are the direct result of poleward compression. The trends of wrinkle ridges have been mapped over the planet and several large, sweeping patterns evidently reflect long-wavelength topography. Using wrinkle ridges as paleostress indicators, we have developed local and regional stress trajectory maps.

  19. On the Structure of the Mixing Zone at an Unstable Contact Boundary

    NASA Astrophysics Data System (ADS)

    Meshkov, E. E.

    2018-01-01

    The interface between two media of different densities (contact boundary) moving with an acceleration directed from the less dense medium to the more dense one is unstable (Rayleigh-Taylor instability) [1, 2]. The initial perturbations of the interface grow indefinitely and, as a result, a medium mixing zone growing with time is formed at the interface. The structure of such a mixing zone at gas-gas and gas-liquid interfaces is discussed on the basis of laboratory experiments on shock tubes of various types. It is concluded that the regions of turbulent and laminar flows are combined in the mixing zone.

  20. Gate tuneable beamsplitter in ballistic graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rickhaus, Peter; Makk, Péter, E-mail: Peter.Makk@unibas.ch; Schönenberger, Christian

    2015-12-21

    We present a beam splitter in a suspended, ballistic, multiterminal, bilayer graphene device. By using local bottomgates, a p-n interface tilted with respect to the current direction can be formed. We show that the p-n interface acts as a semi-transparent mirror in the bipolar regime and that the reflectance and transmittance of the p-n interface can be tuned by the gate voltages. Moreover, by studying the conductance features appearing in magnetic field, we demonstrate that the position of the p-n interface can be moved by 1 μm. The herein presented beamsplitter device can form the basis of electron-optic interferometers in graphene.

  1. Thermal conductance of and heat generation in tire-pavement interface and effect on aircraft braking

    NASA Technical Reports Server (NTRS)

    Miller, C. D.

    1976-01-01

    A finite-difference analysis was performed on temperature records obtained from a free rolling automotive tire and from pavement surface. A high thermal contact conductance between tire and asphalt was found on a statistical basis. Average slip due to squirming between tire and asphalt was about 1.5 mm. Consequent friction heat was estimated as 64 percent of total power absorbed by bias-ply, belted tire. Extrapolation of results to aircraft tire indicates potential braking improvement by even moderate increase of heat absorbing capacity of runway surface.

  2. Forward and reverse shocks in the outer heliosphere: Observations from Voyager 2

    NASA Technical Reports Server (NTRS)

    Lazarus, A. J.; Belcher, J. W.; Paularena, K. I.; Richardson, J. D.; Steinberg, J. T.; Pizzo, V. J.; Gosling, J. T.

    1995-01-01

    Observations from Voyager 2 as it moved from 10 to 14 deg S heliographic latitude in the period from 1992 through 1994 were used to gather statistics on the relative number of forward and reverse shocks. These results can be used to compare with observations from the Ulysses spacecraft which moved from 6 deg S to 70 deg S heliographic latitude during that time period. The Ulysses observations are in agreement with a 3-D, MHD model of the evolution of a steady tilted-dipole solar wind flow configuration prevalent in 1993. The model predicts and the Ulysses observations confirm a preponderance of reverse shocks at Ulysses latitudes poleward of streamer-belt latitudes. A preliminary scan of the Voyager data supports the complementary prediction of the model that forward fronts should dominate at large heliocentric distances near the heliographic equatorial plane during the same time period.

  3. Coiling of elastic rods from a geometric perspective

    NASA Astrophysics Data System (ADS)

    Jawed, Mohammad; Brun, Pierre-Thomas; Reis, Pedro

    2015-03-01

    We present results from a systematic numerical investigation of the pattern formation of coiling obtained when a slender elastic rod is deployed onto a moving substrate; a system known as the elastic sewing machine (ESM). The Discrete Elastic Rods method is employed to explore the parameter space, construct phase diagrams, identify their phase boundaries and characterize the morphology of the patterns. The nontrivial geometric nonlinearities are described in terms of the gravito-bending length and the deployment height. Our results are interpreted using a reduced geometric model for the evolution of the position of the contact point with the belt and the curvature of the rod in its neighborhood. This geometric model reproduces all of the coiling patterns of the ESM, which allows us to establish a universal link between our elastic problem and the analogous patterns obtained when depositing a viscous thread onto a moving surface; a well-known system referred to as the fluid mechanical sewing machine.

  4. High temperature thermal energy storage in moving sand

    NASA Technical Reports Server (NTRS)

    Turner, R. H.; Awaya, H. I.

    1978-01-01

    Several high-temperature (to 500 C) heat-storage systems using sand as the storage medium are described. The advantages of sand as a storage medium include low cost for sand, widespread availability, non-toxicity, non-degradation characteristics, easy containment, and safety. The systems considered include: stationary sand with closely spaced tubes throughout the volume, the use of a fluidized bed, use of conveyor belt transporter, and the use of a blower rapid transport system. For a stationary sand bed, very close spacing of heat transfer tubes throughout the volume is required, manifesting as high power related system cost. The suggestion of moving sand past or around pipes is intended to reduce the power related costs at the penalty of added system complexity. Preliminary system cost estimates are offered. These rough calculations indicate that mobile sand heat storage systems cost less than the stationary sand approach.

  5. 1D array of dark spot traps formed by counter-propagating nested Gaussian laser beams for trapping and moving atomic qubits

    NASA Astrophysics Data System (ADS)

    Gillen-Christandl, Katharina; Frazer, Travis D.

    2017-04-01

    The standing wave of two identical counter-propagating Gaussian laser beams constitutes a 1D array of bright spots that can serve as traps for single neutral atoms for quantum information operations. Detuning the frequency of one of the beams causes the array to start moving, effectively forming a conveyor belt for the qubits. Using a pair of nested Gaussian laser beams with different beam waists, however, forms a standing wave with a 1D array of dark spot traps confined in all dimensions. We have computationally explored the trap properties and limitations of this configuration and, trading off trap depth and frequencies with the number of traps and trap photon scattering rates, we determined the laser powers and beam waists needed for useful 1D arrays of dark spot traps for trapping and transporting atomic qubits in neutral atom quantum computing platforms.

  6. Virtual Manufacturing (la Fabrication virtuelle)

    DTIC Science & Technology

    1998-05-01

    with moving parts and subassemblies, • verification of product subcomponents and systems operations through kinematics studies, and • realism ...dimensions, parts moved in mechanism based directions, and realism of interaction is increased through use of sound, touch and other parameters. For the...direct converters from CAD systems. A simple cinematic package is also high on the requirement to be able to simulate motions as well as an interface to

  7. SKITTER/implement mechanical interface

    NASA Technical Reports Server (NTRS)

    Cash, John Wilson, III; Cone, Alan E.; Garolera, Frank J.; German, David; Lindabury, David Peter; Luckado, Marshall Cleveland; Murphey, Craig; Rowell, John Bryan; Wilkinson, Brad

    1988-01-01

    SKITTER (Spacial Kinematic Inertial Translatory Tripod Extremity Robot) is a three-legged transport vehicle designed to perform under the unique environment of the moon. The objective of this project was to design a mechanical interface for SKITTER. This mechanical latching interface will allow SKITTER to use a series of implements such as drills, cranes, etc., and perform different tasks on the moon. The design emphasized versatility and detachability; that is, the interface design is the same for all implements, and connection and detachment is simple. After consideration of many alternatives, a system of three identical latches at each of the three interface points was chosen. The latching mechanism satisfies the design constraints because it facilitates connection and detachment. Also, the moving parts are protected from the dusty environment by housing plates.

  8. A hands-free region-of-interest selection interface for solo surgery with a wide-angle endoscope: preclinical proof of concept.

    PubMed

    Jung, Kyunghwa; Choi, Hyunseok; Hong, Hanpyo; Adikrishna, Arnold; Jeon, In-Ho; Hong, Jaesung

    2017-02-01

    A hands-free region-of-interest (ROI) selection interface is proposed for solo surgery using a wide-angle endoscope. A wide-angle endoscope provides images with a larger field of view than a conventional endoscope. With an appropriate selection interface for a ROI, surgeons can also obtain a detailed local view as if they moved a conventional endoscope in a specific position and direction. To manipulate the endoscope without releasing the surgical instrument in hand, a mini-camera is attached to the instrument, and the images taken by the attached camera are analyzed. When a surgeon moves the instrument, the instrument orientation is calculated by an image processing. Surgeons can select the ROI with this instrument movement after switching from 'task mode' to 'selection mode.' The accelerated KAZE algorithm is used to track the features of the camera images once the instrument is moved. Both the wide-angle and detailed local views are displayed simultaneously, and a surgeon can move the local view area by moving the mini-camera attached to the surgical instrument. Local view selection for a solo surgery was performed without releasing the instrument. The accuracy of camera pose estimation was not significantly different between camera resolutions, but it was significantly different between background camera images with different numbers of features (P < 0.01). The success rate of ROI selection diminished as the number of separated regions increased. However, separated regions up to 12 with a region size of 160 × 160 pixels were selected with no failure. Surgical tasks on a phantom model and a cadaver were attempted to verify the feasibility in a clinical environment. Hands-free endoscope manipulation without releasing the instruments in hand was achieved. The proposed method requires only a small, low-cost camera and an image processing. The technique enables surgeons to perform solo surgeries without a camera assistant.

  9. Integration of Space Weather Forecasts into Space Protection

    NASA Astrophysics Data System (ADS)

    Reeves, G.

    2012-09-01

    How would the US respond to a clandestine attack that disabled one of our satellites? How would we know that it was an attack, not a natural failure? The goal of space weather programs as applied to space protection are simple: Provide a rapid and reliable assessment of the probability that satellite or system failure was caused by the space environment. Achieving that goal is not as simple. However, great strides are being made on a number of fronts. We will report on recent successes in providing rapid, automated anomaly/attack assessment for the penetrating radiation environment in the Earth's radiation belts. We have previously reported on the Dynamic Radiation Environment Assimilation Model (DREAM) that was developed at Los Alamos National Laboratory to assess hazards posed by the natural and by nuclear radiation belts. This year we will report on recent developments that are moving this program from the research, test, and evaluation phases to real-time implementation and application. We will discuss the challenges of leveraging space environment data sets for applications that are beyond the scope of mission requirements, the challenges of moving data from where they exist to where they are needed, the challenges of turning data into actionable information, and how those challenges were overcome. We will discuss the state-of-the-art as it exists in 2012 including the new capabilities that have been enabled and the limitations that still exist. We will also discuss how currently untapped data resources could advance the state-of-the-art and the future steps for implementing automatic real-time anomaly forensics.

  10. Winds Near Jupiter's Belt-Zone Boundary

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Time Sequence of a belt-zone boundary near Jupiter's equator. These mosaics show Jupiter's appearance at 757 nanometers (near-infrared) and were taken nine hours apart. Images at 757 nanometers show features of Jupiter's primary visible cloud deck.

    Jupiter's atmospheric circulation is dominated by alternating jets of east/west (zonal) winds. The bands have different widths and wind speeds but have remained constant as long as telescopes and spacecraft have measured them. A strong eastward jet is made visible as it stretches the clouds just below the center of this mosaic. The maximum wind speed of this jet is 128 meters per second (286 miles per hour). Features on this jet move about one quarter of the width of the mosaic. All the features visible in these mosaics are moving eastward (right).

    North is at the top. The mosaic covers latitudes -13 to +3 degrees and is centered at longitude 282 degrees West. The smallest resolved features are tens of kilometers in size. These images were taken on November 5th, 1996, at a range of 1.2 million kilometers by the Solid State Imaging system aboard NASA's Galileo spacecraft.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  11. The hypothesis of the local supercloud and the nearby moving groups of stars

    NASA Astrophysics Data System (ADS)

    Olano, C. A.

    2016-06-01

    The velocity distribution of stars in the solar neighbourhood can be globally characterized by the presence of two stellar streams (I and II). Stream I contains kinematic substructures, named moving groups of stars, such us the Pleiades and Hyades groups. While Stream II is essentially associated with the Sirius group. The origin and nature of these two stellar streams are still not completely clear. We propose that Streams I and II were gravitationally linked to an old gas supercloud that was disintegrated in parts that formed new subsystems, viz., the Orion arm and Gould's belt. On the basis of this idea, we constructed a dynamical model of the supercloud in order to explain the kinematic and structural characteristics of the local system of gas and stars. For the study of the relative orbits of the two stellar streams with respect to the supercloud's centre and of the Galactic orbit of the supercloud, we developed appropriate epicyclic motion equations. The results of the model indicate the possibility that about 75-100 Myr ago the supercloud crossed the Perseus arm and as a consequence was strongly braked. Besides, around 60 Myr ago, the position of the supercloud coincided approximately with that of the Big Dent, a huge depression of the Galactic disc. We suggest that the cause that originated the Big Dent could be the same that perturbed the supercloud starting the formation of the Orion arm and Gould's belt. In this context, we derived the theoretical distributions of positions and velocities for the stars of Streams I and II.

  12. Metallurgical Design and Development of NASA Crawler/Transporter Tread Belt Shoe Castings

    NASA Technical Reports Server (NTRS)

    Parker, Donald S.

    2006-01-01

    The NASA Crawler/Transporters (CT-1 and CT-2) used to transport the Space Shuffles are one of the largest tracked vehicles in existence today. Two of these machines have been used to move space flight vehicles at Kennedy Space Center since the Apollo missions of the 1960's and relatively few modifications have been made to keep them operational. In September of 2003 during normal Crawler/Transporter operations cracks were observed along the roller pad surfaces of several tread belt shoes. Further examination showed 20 cracked shoes on CT-1 and 40 cracked shoes on CT-2 and a formal failure analysis investigation was undertaken while the cracked shoes were replaced. Six shoes were cross-sectioned with the fracture surfaces exposed and it was determined that the cracks were due to fatigue that initiated on the internal casting web channels at pre-existing casting defects and propagated through thickness both transgranularly and intergranularly between internal shrinkage cavities, porosity, and along austenitic and ferritic grain boundaries. The original shoes were cast during the 1960's using a modified 861330 steel with slightly higher levels of chromium, nickel and molybdenum followed by heat treatment to achieve a minimum tensile strength of 11 Oksi. Subsequent metallurgical analysis of the tread belt shoes after multiple failures showed excessive internal defects, alloy segregation, a nonuniform ferritic/ bainitic/martensitic microstructure, and low average tensile properties indicative of poor casting and poor heat-treatment. As a result, NASA funded an initiative to replace all of the tread belt shoes on both crawler/transporters along with a redesign of the alloy, manufacturing, and heat-treatment to create a homogeneous cast structure with uniform mechanical and metallurgical properties. ME Global, a wholly owned subsidiary of ME Elecmetal based in Minneapolis, MN was selected as manufacturing and design partner to develop the new shoes and this paper describes the research, development, and manufacturing that resulted in the successful delivery of 1044 new Crawler/Transporter tread belt shoes all meeting rigid metallurgical and mechanical design criteria derived from finite element modeling of the stress loads required for safe space shuttle transport.

  13. Evolution of the Late Cretaceous-Paleogene Cordilleran arc magmatism in NW Mexico: a review from updated geochronological studies.

    NASA Astrophysics Data System (ADS)

    Valencia-Moreno, M.; Iriondo, A.; Perez-Segura, E.; Noguez-Alcantara, B.

    2007-05-01

    During most of the Mesozoic and Cenozoic, the locus of subduction related arc magmatism in northwestern Mexico was relatively mobile, probably due to changes in the mechanical conditions of the Farallon-North America plate convergence. The older Mesozoic events recognized in this region occurred in the Late Triassic and Jurassic, but the associated rocks are poorly preserved. However, a belt of Late Cretaceous through Paleogene magmatic rocks is well exposed along Baja California, Sonora and Sinaloa. Since the late 70's, it was noted that during the Early Cretaceous the igneous activity along this belt remained relatively static in the westernmost part, but migrated eastward in the Late Cretaceous, penetrating more than 1000 km into the continent. The arc magmatism reached western Sonora at about 90 Ma, and then it started to move faster inland, presumably due to flattening of the subducted oceanic slab. Recent U-Pb zircon data revealed unexpected old ages (89-95 Ma) near the eastern edge of Sonora, which are difficult to explain on the basis of the classic tectonic interpretations. A model based on two synchronic sites for magma emplacement may explain the age overlapping observed along the belt; however, a profound re-evaluation a proper geodynamic scenario to support this model is required. Even if restoration of the large Neogene crustal extension is made, particularly for central and northern Sonora, the relatively flat-subduction regime commonly accepted for the Laramide event appears unable to explain the anomalously broad expression of the magmatic belt in northwestern Mexico. An alternative model based on two synchronic sites of magma emplacement, as suggested by the new age data, may better explain the large volume of igneous rocks produced during this time in Sonora and most of Chihuahua. This mechanism may differ southwards in Sinaloa, where the magmatic belt becomes considerably narrower. Moreover, the possible existence of two spatially distinct sites for magma generation may help understand the post-Laramide volcanism, commonly interpreted as a result of a fast return of a single magmatic arc to the trench, due to a progressive steepening of the subducted oceanic slab.

  14. Interaction of a sodium ion with the water liquid-vapor interface

    NASA Technical Reports Server (NTRS)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1989-01-01

    Molecular dynamics results are presented for the density profile of a sodium ion near the water liquid-vapor interface at 320 K. These results are compared with the predictions of a simple dielectric model for the interaction of a monovalent ion with this interface. The interfacial region described by the model profile is too narrow and the profile decreases too abruptly near the solution interface. Thus, the simple model does not provide a satisfactory description of the molecular dynamics results for ion positions within two molecular diameters from the solution interface where appreciable ion concentrations are observed. These results suggest that surfaces associated with dielectric models of ionic processes at aqueous solution interfaces should be located at least two molecular diameters inside the liquid phase. A free energy expense of about 2 kcal/mol is required to move the ion within two molecular layers of the free water liquid-vapor interface.

  15. Applications of artificial intelligence to space station and automated software techniques: High level robot command language

    NASA Technical Reports Server (NTRS)

    Mckee, James W.

    1989-01-01

    The objective is to develop a system that will allow a person not necessarily skilled in the art of programming robots to quickly and naturally create the necessary data and commands to enable a robot to perform a desired task. The system will use a menu driven graphical user interface. This interface will allow the user to input data to select objects to be moved. There will be an imbedded expert system to process the knowledge about objects and the robot to determine how they are to be moved. There will be automatic path planning to avoid obstacles in the work space and to create a near optimum path. The system will contain the software to generate the required robot instructions.

  16. Friction forces position the neural anlage

    PubMed Central

    Smutny, Michael; Ákos, Zsuzsa; Grigolon, Silvia; Shamipour, Shayan; Ruprecht, Verena; Čapek, Daniel; Behrndt, Martin; Papusheva, Ekaterina; Tada, Masazumi; Hof, Björn; Vicsek, Tamás; Salbreux, Guillaume; Heisenberg, Carl-Philipp

    2017-01-01

    During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo. PMID:28346437

  17. Friction forces position the neural anlage.

    PubMed

    Smutny, Michael; Ákos, Zsuzsa; Grigolon, Silvia; Shamipour, Shayan; Ruprecht, Verena; Čapek, Daniel; Behrndt, Martin; Papusheva, Ekaterina; Tada, Masazumi; Hof, Björn; Vicsek, Tamás; Salbreux, Guillaume; Heisenberg, Carl-Philipp

    2017-04-01

    During embryonic development, mechanical forces are essential for cellular rearrangements driving tissue morphogenesis. Here, we show that in the early zebrafish embryo, friction forces are generated at the interface between anterior axial mesoderm (prechordal plate, ppl) progenitors migrating towards the animal pole and neurectoderm progenitors moving in the opposite direction towards the vegetal pole of the embryo. These friction forces lead to global rearrangement of cells within the neurectoderm and determine the position of the neural anlage. Using a combination of experiments and simulations, we show that this process depends on hydrodynamic coupling between neurectoderm and ppl as a result of E-cadherin-mediated adhesion between those tissues. Our data thus establish the emergence of friction forces at the interface between moving tissues as a critical force-generating process shaping the embryo.

  18. Seismic Reflection Characteristic and Structure Unit Division of Nanwei Uplift in the Nansha Waters, South China Sea

    NASA Astrophysics Data System (ADS)

    Guo, L.; Zhan, W.; Yao, Y.

    2016-12-01

    Nanwei uplift is located in the continent-ocean transition zone at the southern margin of the South China Sea (SCS). It has the structural characteristics in typical passive margin models. Attributed to squeezing action, the anticline and faulted anticline structure were well developed since Oligocene. The development of organic reef and marine mudstone deposit indicated the drifting and subsidence stage. In this area, the structural evolution is not only related to the dynamic systems of rifting, basin spreading and expansion ending, but also to the collisions between different plates. Meanwhile, a large number of continental margin rifting basins with rich oil and gas resources developed in Nanwei uplift. It is meaningful to analyze the characteristics of seismic reflection waves. Also, two main structural unit were divided for studying the special structures and stratigraphic features in this paper. Two high-resolution single-channel seismic Line Nan-1 and Line Nan-2 in the Nansha Waters, acquired by the trial vessel "Shiyan 2" of the South China Sea Institute of Oceanology in 2013, is interpreted and analyzed in this study. The profiles show that there are a lot of normal fault half-garben systems and depressions in NE direction. Five seismic interfaces have been distinguished, named T0,T3,T4,T5 and Tg respectively. It corresponds to different regional unconformities in different geological age which indicated the characteristics of regional tectonics. On the basis of tectonic shape and previous geophysical data, it is believed that the Nanwei uplift zone is mainly composed of two structural units, the southern subsidence belt and northern buried volcanic uplift belt. The general range of zoning is also discussed in this paper. It is considered that the buried volcanic uplift belt mainly involved the marginal area along the southern ocean basin from 63-72 km wide in SE direction, the neighboring subsidence belt in rifting stage is parallel to the buried volcanic uplift belt with 57.5-128 km wide. In addition, the epicenter distributions of sporadic and larger than 4 magnitude earthquakes suggest that the entire Nanwei uplift is still a relatively stable tectonic activity zone, the crustal stability is good.

  19. A spring-block analogy for the dynamics of stock indexes

    NASA Astrophysics Data System (ADS)

    Sándor, Bulcsú; Néda, Zoltán

    2015-06-01

    A spring-block chain placed on a running conveyor belt is considered for modeling stylized facts observed in the dynamics of stock indexes. Individual stocks are modeled by the blocks, while the stock-stock correlations are introduced via simple elastic forces acting in the springs. The dragging effect of the moving belt corresponds to the expected economic growth. The spring-block system produces collective behavior and avalanche like phenomena, similar to the ones observed in stock markets. An artificial index is defined for the spring-block chain, and its dynamics is compared with the one measured for the Dow Jones Industrial Average. For certain parameter regions the model reproduces qualitatively well the dynamics of the logarithmic index, the logarithmic returns, the distribution of the logarithmic returns, the avalanche-size distribution and the distribution of the investment horizons. A noticeable success of the model is that it is able to account for the gain-loss asymmetry observed in the inverse statistics. Our approach has mainly a pedagogical value, bridging between a complex socio-economic phenomena and a basic (mechanical) model in physics.

  20. KSC-07pd1640

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move another segment of the lower canister onto the workstand holding the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  1. KSC-07pd1643

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the partially enclosed Dawn spacecraft into another room to complete the canning. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  2. KSC-07pd1638

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  3. KSC-07pd1637

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister toward the stand holding the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  4. KSC-07pd1639

    NASA Image and Video Library

    2007-06-26

    KENNEDY SPACE CENTER, FLA. -- At Astrotech, technicians move the first segment of the lower canister around the upper stage booster below the Dawn spacecraft. When enclosed in the canister, Dawn will be transported to Launch Pad 17-B and lifted into the mobile service tower for mating with the Delta II launch vehicle. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/George Shelton

  5. Sedna Orbit Comparisons

    NASA Image and Video Library

    2004-03-15

    These four panels show the location of the newly discovered planet-like object, dubbed "Sedna," which lies in the farthest reaches of our solar system. Each panel, moving counterclockwise from the upper left, successively zooms out to place Sedna in context. The first panel shows the orbits of the inner planets, including Earth, and the asteroid belt that lies between Mars and Jupiter. In the second panel, Sedna is shown well outside the orbits of the outer planets and the more distant Kuiper Belt objects. Sedna's full orbit is illustrated in the third panel along with the object's current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. The final panel zooms out much farther, showing that even this large elliptical orbit falls inside what was previously thought to be the inner edge of the Oort cloud. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed. http://photojournal.jpl.nasa.gov/catalog/PIA05569

  6. Sedna Orbit Comparisons

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These four panels show the location of the newly discovered planet-like object, dubbed 'Sedna,' which lies in the farthest reaches of our solar system. Each panel, moving counterclockwise from the upper left, successively zooms out to place Sedna in context. The first panel shows the orbits of the inner planets, including Earth, and the asteroid belt that lies between Mars and Jupiter. In the second panel, Sedna is shown well outside the orbits of the outer planets and the more distant Kuiper Belt objects. Sedna's full orbit is illustrated in the third panel along with the object's current location. Sedna is nearing its closest approach to the Sun; its 10,000 year orbit typically takes it to far greater distances. The final panel zooms out much farther, showing that even this large elliptical orbit falls inside what was previously thought to be the inner edge of the Oort cloud. The Oort cloud is a spherical distribution of cold, icy bodies lying at the limits of the Sun's gravitational pull. Sedna's presence suggests that this Oort cloud is much closer than scientists believed.

  7. KSC-08pd2668

    NASA Image and Video Library

    2008-09-19

    CAPE CANAVERAL, Fla. - At NASA's Kennedy Space Center, the massive crawler-transporter carrying space shuttle Endeavour approaches the launch pad. First motion of Endeavour from the Vehicle Assembly Building was at 11:15 p.m. Sept. 18. The crawler travels on eight tracked tread belts, each containing 57 tread belt “shoes.” Each shoe is 7.5 feet long, 1.5 feet wide and weighs approximately 2,100 pounds. Endeavour completed the 4.2-mile journey to Launch Pad 39B on Sept. 19 at 6:59 a.m. EDT. For the first time since July 2001, two shuttles are on the launch pads at the same time at the center. Endeavour will stand by at pad B in the unlikely event that a rescue mission is necessary during space shuttle Atlantis' upcoming mission to repair NASA's Hubble Space Telescope, targeted to launch Oct. 10. After Endeavour is cleared from its duty as a rescue spacecraft, it will be moved to Launch Pad 39A for the STS-126 mission to the International Space Station. That flight is targeted for launch Nov. 12. Photo credit: NASA/Dimitri Gerondidakis

  8. The conveyor belt hypothesis for thymocyte migration: participation of adhesion and de-adhesion molecules.

    PubMed

    Villa-Verde, D M; Calado, T C; Ocampo, J S; Silva-Monteiro, E; Savino, W

    1999-05-01

    Thymocyte differentiation is the process by which bone marrow-derived precursors enter the thymus, proliferate, rearrange the genes and express the corresponding T cell receptors, and undergo positive and/or negative selection, ultimately yielding mature T cells that will represent the so-called T cell repertoire. This process occurs in the context of cell migration, whose cellular and molecular basis is still poorly understood. Kinetic studies favor the idea that these cells leave the organ in an ordered pattern, as if they were moving on a conveyor belt. We have recently proposed that extracellular matrix glycoproteins, such as fibronectin, laminin and type IV collagen, among others, produced by non-lymphoid cells both in the cortex and in the medulla, would constitute a macromolecular arrangement allowing differentiating thymocytes to migrate. Here we discuss the participation of both molecules with adhesive and de-adhesive properties in the intrathymic T cell migration. Functional experiments demonstrated that galectin-3, a soluble beta-galactoside-binding lectin secreted by thymic microenvironmental cells, is a likely candidate for de-adhesion proteins by decreasing thymocyte interaction with the thymic microenvironment.

  9. Lithospheric Response of the Anatolian Plateau in the Realm of the Black Sea and the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Ergun, Mustafa

    2016-04-01

    The Eastern Mediterranean and the Middle East make up the southern boundary of the Tethys Ocean for the last 200 Ma by the disintegration of the Pangaea and closure of the Tethys Ocean. It covers the structures: Hellenic and Cyprus arcs; Eastern Anatolian Fault Zone; Bitlis Suture Zone and Zagros Mountains. The northern boundary of the Tethys Ocean is made up the Black Sea and the Caspian Sea, and it extends up to Po valley towards the west (Pontides, Caucasus). Between these two zones the Alp-Himalayan orogenic belt is situated where the Balkan, Anatolia and the Iran plateaus are placed as the remnants of the lost Ocean of the Tethys. The active tectonics of the eastern Mediterranean is the consequences of the convergence between the Africa, Arabian plates in the south and the Eurasian plate in the north. These plates act as converging jaws of vise forming a crustal mosaic in between. The active crustal deformation pattern reveals two N-S trending maximum compression or crustal shortening syntaxes': (i) the eastern Black Sea and the Arabian plate, (ii) the western Black Sea and the Isparta Angle. The transition in young mountain belts, from ocean crust through the agglomeration of arc systems with long histories of oceanic closures, to a continental hinterland is well exemplified by the plate margin in the eastern Mediterranean. The boundary between the African plate and the Aegean/Anatolian microplate is in the process of transition from subduction to collision along the Cyprus Arc. Since the Black Sea has oceanic lithosphere, it is actually a separate plate. However it can be considered as a block, because the Black Sea is a trapped oceanic basin that cannot move freely within the Eurasian Plate. Lying towards the northern margin of orogenic belts related to the closure of the Tethys Ocean, it is generally considered to be a result of back-arc extension associated with the northward subduction of the Tethyan plate to the south. Interface oceanic lithosphere at the leading edge of the northward moving African Plate in the eastern Mediterranean Sea and the deforming Aegean-Anatolian Plate continental lithosphere forms the northward dipping Hellenic and Cyprean subduction zones in the south. Since there is a velocity differential between the northward motion of African and Arabian Plates (10 mm/yr and 18 mm/yr, respectively), this difference is accommodated along the sinistral strike-slip Dead Sea Fault that forms the plate boundary between the African and the Arabian Plates. Continental crust forms from structurally thickened remnants of oceanic crust and overlying sediments, which are then invaded by arc magmatism. Understanding this process is a first order problem of lithospheric dynamics. The transition in young mountain belts, from ocean crust through the agglomeration of arc systems with long histories of oceanic closures, to a continental hinterland is well exemplified by the plate margin in the eastern Mediterranean. Mountains are subject to erosion, which can disturb isostatic compensation. If the eroded mountains are no longer high enough to justify their deep root-zones, the topography is isostatically overcompensated. Similarly, the buoyancy forces that result from overcompensation of mountainous topography cause vertical uplift. The Eastern Mediterranean Basin, having 100 milligal gravity values lower than other isostatically compensated oceans, it is in general overcompensated. Normally the Eastern Mediterranean Basin should rise under its present isostatic condition. It is known, however, that the Eastern Mediterranean Basin with its thick sediment-filled basins is actually sinking. Anatolia, having 100 milligals gravity values higher than other isostatically compensated zones of the world, is in general undercompensated. Normal isostatic conditions require that Anatolia should sink. It is known, however, that Anatolia, with the exception of local grabens, is rising. While the Black Sea, having 100-milligal lower gravity value than other isostatically compensated oceans, it is in general overcompensated and The Black Sea basin with very thick sedimentary cover (more than 12-14 km thick) is actually sinking.

  10. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.

    PubMed

    Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko

    2016-05-14

    In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures.

  11. Harmonic growth of spherical Rayleigh-Taylor instability in weakly nonlinear regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wanhai; LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190; Chen, Yulian

    Harmonic growth in classical Rayleigh-Taylor instability (RTI) on a spherical interface is analytically investigated using the method of the parameter expansion up to the third order. Our results show that the amplitudes of the first four harmonics will recover those in planar RTI as the interface radius tends to infinity compared against the initial perturbation wavelength. The initial radius dramatically influences the harmonic development. The appearance of the second-order feedback to the initial unperturbed interface (i.e., the zeroth harmonic) makes the interface move towards the spherical center. For these four harmonics, the smaller the initial radius is, the faster theymore » grow.« less

  12. Transient Dupuit Interface Flow with partially penetrating features

    NASA Astrophysics Data System (ADS)

    Bakker, Mark

    1998-11-01

    A comprehensive potential is presented for Dupuit interface flow in coastal aquifers where both the fresh water and salt water are moving. The resulting potential flow problem may be solved, for incompressible confined aquifers, using analytic functions. The vertical velocity of the interface may then be computed analytically and the change of the position of the interface may be simulated by numerical integration through time, starting with a known (or estimated) initial position. The upconing of the interface below a partially penetrating ditch or well may be studied if Dupuit solutions for such features are available. A new Dupuit solution is derived for a ditch that penetrates the aquifer partially from above; a Dupuit solution for a partially penetrating well may be obtained following a similar derivation. The new Dupuit solution is combined with the interface solution to simulate the upconing of an initially horizontal interface below a series of partially penetrating ditches; the interface converges to the known steady state position.

  13. Materials Research Society (MRS) 2014 Fall Meeting, Boston, MA on November 30 December 5, 2014

    DTIC Science & Technology

    2015-12-18

    10.1557/opl.2015.216, Published online by Cambridge University Press 03 Mar 2015 Lithium - ion Diffusion in Solid Electrolyte Interface (SEI) Predicted by...challenges; Innovation and Inclusion: What It Takes to Move Diversity Forward, Vern Myers, Esq., principal of Vern Myers Consulting Group, LLC, engaged...bacteriophage to synthesize radically novel electronic and battery devices at protein and semiconductor interfaces. Ashutosh Chilkoti (Duke Univ

  14. On an interface of the online system for a stochastic analysis of the varied information flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorshenin, Andrey K.; MIREA, MGUPI; Kuzmin, Victor Yu.

    The article describes a possible approach to the construction of an interface of an online asynchronous system that allows researchers to analyse varied information flows. The implemented stochastic methods are based on the mixture models and the method of moving separation of mixtures. The general ideas of the system functionality are demonstrated on an example for some moments of a finite normal mixture.

  15. x-y-recording in transmission electron microscopy. A versatile and inexpensive interface to personal computers with application to stereology.

    PubMed

    Rickmann, M; Siklós, L; Joó, F; Wolff, J R

    1990-09-01

    An interface for IBM XT/AT-compatible computers is described which has been designed to read the actual specimen stage position of electron microscopes. The complete system consists of (i) optical incremental encoders attached to the x- and y-stage drivers of the microscope, (ii) two keypads for operator input, (iii) an interface card fitted to the bus of the personal computer, (iv) a standard configuration IBM XT (or compatible) personal computer optionally equipped with a (v) HP Graphic Language controllable colour plotter. The small size of the encoders and their connection to the stage drivers by simple ribbed belts allows an easy adaptation of the system to most electron microscopes. Operation of the interface card itself is supported by any high-level language available for personal computers. By the modular concept of these languages, the system can be customized to various applications, and no computer expertise is needed for actual operation. The present configuration offers an inexpensive attachment, which covers a wide range of applications from a simple notebook to high-resolution (200-nm) mapping of tissue. Since section coordinates can be processed in real-time, stereological estimations can be derived directly "on microscope". This is exemplified by an application in which particle numbers were determined by the disector method.

  16. Surface passivation of p-type Ge substrate with high-quality GeNx layer formed by electron-cyclotron-resonance plasma nitridation at low temperature

    NASA Astrophysics Data System (ADS)

    Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Otani, Yohei; Ono, Toshiro

    2011-09-01

    We have investigated the effects of the formation temperature and postmetallization annealing (PMA) on the interface properties of GeNx/p-Ge fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The nitridation temperature is found to be a critical parameter in improving the finally obtained GeNx/Ge interface properties. The GeNx/Ge formed at room temperature and treated by PMA at 400 °C exhibits the best interface properties with an interface trap density of 1 × 1011 cm-2 eV-1. The GeNx/Ge interface is unpinned and the Fermi level at the Ge surface can move from the valence band edge to the conduction band edge.

  17. The interaction of bubbles with solidification interfaces. [during coasting phase of sounding rocket flight

    NASA Technical Reports Server (NTRS)

    Papazian, J. M.; Wilcox, W. R.

    1977-01-01

    The behavior of bubbles at a dendritic solidification interface was studied during the coasting phase of a sounding rocket flight. Sequential photographs of the gradient freeze experiment showed nucleation, growth and coalescence of bubbles at the moving interface during both the low-gravity and one-gravity tests. In the one-gravity test the bubbles were observed to detach from the interface and float to the top of the melt. However, in the low-gravity tests no bubble detachment from the interface or steady state bubble motion occurred and large voids were grown into the crystal. These observations are discussed in terms of the current theory of thermal migration of bubbles and in terms of their implications on the space processing of metals.

  18. KSC-07pd1654

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- NASA's Dawn spacecraft moves out of the Astrotech facility in Titusville, Fla., for transportation to Launch Pad 17-B at Cape Canaveral Air Force Station, and mate to the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA's first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  19. Precambrian perspectives.

    PubMed

    Goodwin, A M

    1981-07-03

    The Precambrian record is interpreted in terms of an evolutionary progression that moves in the direction of increasing continental stability. An early, highly mobile microplate tectonics phase progressed through a more stable, largely intracratonic, ensialic, mobile belt phase to the modern macroplate tectonics phase that involves large, rigid lithospheric plates. Various phases are characterized by distinctive crustal associations. Three controls-bulk earth heat production, crustal fractionation and cratonization, and atmospheric oxygen accumulation-are viewed as the cumulative cause of the trends and events that characterize the crust at different stages of development, from its inception approximately 4.6 billion years ago to the present.

  20. Evaluation of Head Orientation and Neck Muscle EMG Signals as Command Inputs to a Human-Computer Interface for Individuals with High Tetraplegia

    PubMed Central

    Williams, Matthew R.; Kirsch, Robert F.

    2013-01-01

    We investigated the performance of three user interfaces for restoration of cursor control in individuals with tetraplegia: head orientation, EMG from face and neck muscles, and a standard computer mouse (for comparison). Subjects engaged in a 2D, center-out, Fitts’ Law style task and performance was evaluated using several measures. Overall, head orientation commanded motion resembled mouse commanded cursor motion (smooth, accurate movements to all targets), although with somewhat lower performance. EMG commanded movements exhibited a higher average speed, but other performance measures were lower, particularly for diagonal targets. Compared to head orientation, EMG as a cursor command source was less accurate, was more affected by target direction and was more prone to overshoot the target. In particular, EMG commands for diagonal targets were more sequential, moving first in one direction and then the other rather than moving simultaneous in the two directions. While the relative performance of each user interface differs, each has specific advantages depending on the application. PMID:18990652

  1. High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersson, N. Anders; Sjogreen, Bjorn

    Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less

  2. High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2017-04-18

    Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less

  3. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment.

    PubMed

    Song, Jinhui; Zhou, Jun; Wang, Zhong Lin

    2006-08-01

    This paper presents the experimental observation of piezoelectric generation from a single ZnO wire/belt for illustrating a fundamental process of converting mechanical energy into electricity at nanoscale. By deflecting a wire/belt using a conductive atomic force microscope tip in contact mode, the energy is first created by the deflection force and stored by piezoelectric potential, and later converts into piezoelectric energy. The mechanism of the generator is a result of coupled semiconducting and piezoelectric properties of ZnO. A piezoelectric effect is required to create electric potential of ionic charges from elastic deformation; semiconducting property is necessary to separate and maintain the charges and then release the potential via the rectifying behavior of the Schottky barrier at the metal-ZnO interface, which serves as a switch in the entire process. The good conductivity of ZnO is rather unique because it makes the current flow possible. This paper demonstrates a principle for harvesting energy from the environment. The technology has the potential of converting mechanical movement energy (such as body movement, muscle stretching, blood pressure), vibration energy (such as acoustic/ultrasonic wave), and hydraulic energy (such as flow of body fluid, blood flow, contraction of blood vessels) into electric energy that may be sufficient for self-powering nanodevices and nanosystems in applications such as in situ, real-time, and implantable biosensing, biomedical monitoring, and biodetection.

  4. Automated Detection of Small Bodies by Space Based Observation

    NASA Astrophysics Data System (ADS)

    Bidstrup, P. R.; Grillmayer, G.; Andersen, A. C.; Haack, H.; Jorgensen, J. L.

    The number of known comets and asteroids is increasing every year. Up till now this number is including approximately 250,000 of the largest minor planets, as they are usually referred. These discoveries are due to the Earth-based observation which has intensified over the previous decades. Additionally larger telescopes and arrays of telescopes are being used for exploring our Solar System. It is believed that all near- Earth and Main-Belt asteroids of diameters above 10 to 30 km have been discovered, leaving these groups of objects as observationally complete. However, the cataloguing of smaller bodies is incomplete as only a very small fraction of the expected number has been discovered. It is estimated that approximately 1010 main belt asteroids in the size range 1 m to 1 km are too faint to be observed using Earth-based telescopes. In order to observe these small bodies, space-based search must be initiated to remove atmospheric disturbances and to minimize the distance to the asteroids and thereby minimising the requirement for long camera integration times. A new method of space-based detection of moving non-stellar objects is currently being developed utilising the Advanced Stellar Compass (ASC) built for spacecraft attitude determination by Ørsted, Danish Technical University. The ASC serves as a backbone technology in the project as it is capable of fully automated distinction of known and unknown celestial objects. By only processing objects of particular interest, i.e. moving objects, it will be possible to discover small bodies with a minimum of ground control, with the ultimate ambition of a fully automated space search probe. Currently, the ASC is being mounted on the Flying Laptop satellite of the Institute of Space Systems, Universität Stuttgart. It will, after a launch into a low Earth polar orbit in 2008, test the detection method with the ASC equipment that already had significant in-flight experience. A future use of the ASC based automated detection of small bodies is currently on a preliminary stage and known as the Bering project - a deep space survey to the asteroid Main-Belt. With a successful detection method, the Bering mission is expected to discover approximately 6 new small objects per day and 1 will thus during the course of a few years discover 5,000-10,000 new sub-kilometer asteroids. Discovery of new small bodies can: 1) Provide further links between groups of meteorites. 2) Constrain the cratering rate at planetary surfaces and thus allow significantly improved cratering ages for terrains on Mars and other planets. 3) Help determine processes that transfer small asteroids from orbits in the asteroid Main-Belt to the inner Solar System. 2

  5. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop.

    PubMed

    Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K

    2008-01-01

    A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.

  6. Robot Control Through Brain Computer Interface For Patterns Generation

    NASA Astrophysics Data System (ADS)

    Belluomo, P.; Bucolo, M.; Fortuna, L.; Frasca, M.

    2011-09-01

    A Brain Computer Interface (BCI) system processes and translates neuronal signals, that mainly comes from EEG instruments, into commands for controlling electronic devices. This system can allow people with motor disabilities to control external devices through the real-time modulation of their brain waves. In this context an EEG-based BCI system that allows creative luminous artistic representations is here presented. The system that has been designed and realized in our laboratory interfaces the BCI2000 platform performing real-time analysis of EEG signals with a couple of moving luminescent twin robots. Experiments are also presented.

  7. Experiment 13: The Study of Dopant Segregation Behavior During the Growth of GaAs in Microgravity on USML-2

    NASA Technical Reports Server (NTRS)

    Matthiesen, David H.; Kaforey, Monica L.; Bly, J. M.; Chait, Arnon; Kafalas, James; Carlson, Douglas

    1998-01-01

    An investigation into the segregation behavior of selenium doped gallium arsenide (Se/GaAs) during directional solidification in the microgravity environment was conducted using the Crystal Growth Furnace (CGF) aboard the second United States Microgravity Laboratory (USML-2). Two crystals were successfully processed on USML-2, which lasted from October 20 to November 7, 1995. The first sample was processed for 67 hours, 45 minutes (MET 5/04:53:45-8/00:23:50) and included 19 hours of growth at 0.5 microns/sec which yielded 3.42 cm of sample length, and 5 hours of growth at 1.5 microns/sec which yielded 2.7 cm of sample. During the second experiment, the furnace temperature was adjusted to move the melt-solid interface position towards the hot end of the furnace. The second sample was processed for 50 hours, 10 minutes (MET 8/18:48:49-10/21:58:54) and included 11 hours of growth at 0.5 microns/sec which yielded 1.98 cm of sample, and 1 hour, 25 minutes of growth at 5.0 microns/sec which yielded 2.6 cm of sample. This sample provides an order of magnitude change in growth rate and reproduces one of the growth rates used during USML-1. In contrast to the results from USML-1, no voids were present in either crystal grown on USML-2. The absence of voids in either sample indicates that growth rate changes alone were not responsible for the formation of voids found in the crystals grown on USML-1. Sections of the ground-based and flight crystals grown on USML-2 were cut and polished. All of the interface demarcation lines expected from the current pulse interface demarcation (CPID) system have been identified. These measurements have been analyzed for interface positions, interface shapes, and growth rates. Using a newly developed technique, based on experimental and numerical results, the seeding interface reproducibility from run to run was <= 2.5 mm. The seeding interface position could be controllably moved, with respect to the furnace zones, by adjusting the control set points of the heating zones. The interface shapes flattened slightly as the interface position moved closer to the hot zone but was always an unfavorable concave into the solid shape. The growth rate was found to equal the furnace translation rate, after a 2 -hour transient, for growth rates <= 1.0 microns/sec. Segregation measurements for the ground-based crystals are indicative of complete mixing behavior, as expected. Segregation measurements of the flight crystals are still in progress.

  8. Constraints on Subduction Zone Coupling along the Philippine and Manila Trenches based on GPS and Seismological Data

    NASA Astrophysics Data System (ADS)

    Hamburger, M. W.; Johnson, K. M.; Nowicki, M. A. E.; Bacolcol, T. C.; Solidum, R., Jr.; Galgana, G.; Hsu, Y. J.; Yu, S. B.; Rau, R. J.; McCaffrey, R.

    2014-12-01

    We present results of two techniques to estimate the degree of coupling along the two major subduction zone boundaries that bound the Philippine Mobile Belt, the Philippine Trench and the Manila Trench. Convergence along these plate margins accommodates about 100 mm/yr of oblique plate motion between the Philippine Sea and Sundaland plates. The coupling estimates are based on a recently acquired set of geodetic data from a dense nationwide network of continuous and campaign GPS sites in the Philippines. First, we use a kinematic, elastic block model (tdefnode; McCaffrey, 2009) that combines existing fault geometries, GPS velocities and focal mechanism solutions to solve for block rotations, fault coupling, and intra-block deformation. Secondly, we use a plate-block kinematic model described in Johnson (2013) to simultaneously estimate long-term fault slip rates, block motions and interseismic coupling on block-bounding faults. The best-fit model represents the Philippine Mobile Belt by 14 independently moving rigid tectonic blocks, separated by active faults and subduction zones. The model predicts rapid convergence along the Manila Trench, decreasing progressively southwards, from > 100 mm/yr in the north to less than 20 mm/yr in the south at the Mindoro Island collision zone. Persistent areas of high coupling, interpreted to be asperities, are observed along the Manila Trench slab interface, in central Luzon (16-18°N) and near its southern and northern terminations. Along the Philippine Trench, we observe ~50 mm/yr of oblique convergence, with high coupling observed at its central and southern segments. We identify the range of allowable coupling distributions and corresponding moment accumulation rates on the two subduction zones by conducting a suite of inversions in which the total moment accumulation rate on a selected fault is fixed. In these constrained moment inversions we test the range of possible solutions that meet criteria for minimum, best-fit, and maximum coupling that still fit the data, based on reduced chi-squared calculations. In spite of the variable coupling, the total potential moment accumulation rate along each of the two subduction zones is estimated to range from 3.98 x 1019 to 2.24 x 1020 N-m yr-1, equivalent to a magnitude Mw 8.4 to 8.9 earthquake per 100 years.

  9. The Deep Lens Survey : Real--time Optical Transient and Moving Object Detection

    NASA Astrophysics Data System (ADS)

    Becker, Andy; Wittman, David; Stubbs, Chris; Dell'Antonio, Ian; Loomba, Dinesh; Schommer, Robert; Tyson, J. Anthony; Margoniner, Vera; DLS Collaboration

    2001-12-01

    We report on the real-time optical transient program of the Deep Lens Survey (DLS). Meeting the DLS core science weak-lensing objective requires repeated visits to the same part of the sky, 20 visits for 63 sub-fields in 4 filters, on a 4-m telescope. These data are reduced in real-time, and differenced against each other on all available timescales. Our observing strategy is optimized to allow sensitivity to transients on several minute, one day, one month, and one year timescales. The depth of the survey allows us to detect and classify both moving and stationary transients down to ~ 25th magnitude, a relatively unconstrained region of astronomical variability space. All transients and moving objects, including asteroids, Kuiper belt (or trans-Neptunian) objects, variable stars, supernovae, 'unknown' bursts with no apparent host, orphan gamma-ray burst afterglows, as well as airplanes, are posted on the web in real-time for use by the community. We emphasize our sensitivity to detect and respond in real-time to orphan afterglows of gamma-ray bursts, and present one candidate orphan in the field of Abell 1836. See http://dls.bell-labs.com/transients.html.

  10. An Icy Kuiper Belt Around the Young Solar-type Star HD 181327

    NASA Technical Reports Server (NTRS)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Matthews, G. S.; hide

    2012-01-01

    Context. HD 181327 is a young main sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx.. 12 Myr). It harbors an optically thin belt of circumstellar material at radius approx.. 90 AU, presumed to result from collisions in a population of unseen planetesimals. Aims. We aim to study the dust properties in the belt in details, and to constrain the gas-to-dust ratio. Methods. We obtained far-infrared photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 mm observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST/NICMOS scattered light images that allow the degeneracy between the disk geometry and the dust properties to be broken. We then use the radiative transfer code GRaTeR to compute a large grid of models, and we identify the grain models that best reproduce the spectral energy distribution (SED) through a Bayesian analysis. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes.We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an important layer of ice, for a total dust mass of approx.. 0.05 Solar Mass (in grains up to 1 mm). We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx. 17 Solar Mass. Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the dust disk suggest that it has passed the stage of gaseous planets formation. The dust reveals a population of icy planetesimals, similar to the primitive Edgeworth-Kuiper belt, that may be a source for the future delivery of water and volatiles onto forming terrestrial planets.

  11. Optic flow improves adaptability of spatiotemporal characteristics during split-belt locomotor adaptation with tactile stimulation

    PubMed Central

    Anthony Eikema, Diderik Jan A.; Chien, Jung Hung; Stergiou, Nicholas; Myers, Sara A.; Scott-Pandorf, Melissa M.; Bloomberg, Jacob J.; Mukherjee, Mukul

    2015-01-01

    Human locomotor adaptation requires feedback and feed-forward control processes to maintain an appropriate walking pattern. Adaptation may require the use of visual and proprioceptive input to decode altered movement dynamics and generate an appropriate response. After a person transfers from an extreme sensory environment and back, as astronauts do when they return from spaceflight, the prolonged period required for re-adaptation can pose a significant burden. In our previous paper, we showed that plantar tactile vibration during a split-belt adaptation task did not interfere with the treadmill adaptation however, larger overground transfer effects with a slower decay resulted. Such effects, in the absence of visual feedback (of motion) and perturbation of tactile feedback, is believed to be due to a higher proprioceptive gain because, in the absence of relevant external dynamic cues such as optic flow, reliance on body-based cues is enhanced during gait tasks through multisensory integration. In this study we therefore investigated the effect of optic flow on tactile stimulated split-belt adaptation as a paradigm to facilitate the sensorimotor adaptation process. Twenty healthy young adults, separated into two matched groups, participated in the study. All participants performed an overground walking trial followed by a split-belt treadmill adaptation protocol. The tactile group (TC) received vibratory plantar tactile stimulation only, whereas the virtual reality and tactile group (VRT) received an additional concurrent visual stimulation: a moving virtual corridor, inducing perceived self-motion. A post-treadmill overground trial was performed to determine adaptation transfer. Interlimb coordination of spatiotemporal and kinetic variables was quantified using symmetry indices, and analyzed using repeated-measures ANOVA. Marked changes of step length characteristics were observed in both groups during split-belt adaptation. Stance and swing time symmetry were similar in the two groups, suggesting that temporal parameters are not modified by optic flow. However, whereas the TC group displayed significant stance time asymmetries during the post-treadmill session, such aftereffects were absent in the VRT group. The results indicated that the enhanced transfer resulting from exposure to plantar cutaneous vibration during adaptation was alleviated by optic flow information. The presence of visual self-motion information may have reduced proprioceptive gain during learning. Thus, during overground walking, the learned proprioceptive split-belt pattern is more rapidly overridden by visual input due to its increased relative gain. The results suggest that when visual stimulation is provided during adaptive training, the system acquires the novel movement dynamics while maintaining the ability to flexibly adapt to different environments. PMID:26525712

  12. Hundred lightcurves of sub-km main-belt asteroids

    NASA Astrophysics Data System (ADS)

    Yoshida, F.; Souami, D.; Bouquillon, S.; Nakamura, T.; Dermawan, B.; Yagi, M.; Souchay, J.

    2014-07-01

    We observed a single sky field near opposition and near the ecliptic plane using the Subaru telescope equipped with the Suprime-Cam. Taking advantage of the wide field of view (FOV) for the Suprime-Cam, the plan was to obtain 100 lightcurves of asteroids at the same time. The total observing time interval was about 8 hours on September 2, 2002, with 2-min exposures. We detected 147 moving objects in the single FOV (34'×27') on the Suprime-Cam (see Figure). Of those, 112 detections corresponded to different objects. We used the R filter during almost the entire observing run, but we took a few images with the B filter at the beginning, the middle, and the end of the run. We classified main-belt asteroids into S- and C-complexes with the B-R color of the object (Yoshida & Nakamura 2007). Although we carefully avoided regions of bright stars, the sky in the images taken by Suprime-Cam were actually crowded with faint objects. Therefore, the asteroids overlapped with background stars very often. Thus, it was very difficult to get lightcurves with high accuracy. We modified the GAIA-GBOT (Ground Based Optical Tracking) PIPELINE to measure the position and brightness of each object (Bouquillon et al. 2012). Once the objects were identified and their positions measured in pixel coordinates, the pipeline proceeded to the astrometric calibration and then to the photometric calibrations with the Guide Star Catalog II (Lasker et al. 2008). The pipeline produced time series of photometry for each object. The average brightness of each lightcurve ranged between 19--24 mag. We then estimated the rotational period from the lightcurve of each object. In our presentation, we will show the spin-period distribution of sub- km main-belt asteroids and compare it with that of large main-belt asteroids obtained from the lightcurve catalogue.

  13. Size and Perihelion Distribution of S and Q-type Asteroid Spectral Slopes from the Near Earth Region Through the Main Belt

    NASA Astrophysics Data System (ADS)

    Graves, Kevin; Minton, David A.; Hirabayashi, Masatoshi; Carry, Benoit; DeMeo, Francesca E.

    2016-10-01

    High resolution spectral observations of small S-type and Q-type Near Earth Asteroids (NEAs) have shown two important trends. The spectral slope of these asteroids, which is a good indication of the amount of space weathering the surface has received, has been shown to decrease with decreasing perihelion and size. Specifically, these trends show that there are less weathered surfaces at low perihelion and small sizes. With recent results from all-sky surveys such as the Sloan Digital Sky Survey's (SDSS) Moving Object Catalog, we have gained an additional data set to test the presence of these trends in the NEAs as well as the Mars Crossers (MCs) and the Main Belt. We use an analog to the spectral slope in the SDSS data which is the slope through the g', r' and i' filters, known as the gri-slope, to investigate the amount of weathering that is present among small asteroids throughout the inner solar system. We find that the trend of the gri-slope decreases with decreasing size at nearly the same rate in the Main Belt as in the MC and NEA regions. We propose that these results suggest a ubiquitous presence of Q-types and S-types with low spectral slopes at small sizes throughout the inner solar system, from the Main Belt to the NEA region. Additionally, we suggest that the trend of decreasing spectral slope with perihelion may only be valid at perihelia of approximately less than 1 AU. These results suggest a change in the interpretation for the formation of Q-type asteroids. Planetary encounters may help to explain the high fraction of Q-types at low perihelia, but another process which is present everywhere must also be refreshing the surfaces of these asteroids. We suggest the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect as a possible mechanism.

  14. Numerical Simulations of Free Surface Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema

    2003-11-01

    We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.

  15. Interface Psychology: Touchscreens Change Attribute Importance, Decision Criteria, and Behavior in Online Choice

    PubMed Central

    Gips, James

    2015-01-01

    Abstract As the rise of tablets and smartphones move the dominant interface for digital content from mouse or trackpad to direct touchscreen interaction, work is needed to explore the role of interfaces in shaping psychological reactions to online content. This research explores the role of direct-touch interfaces in product search and choice, and isolates the touch element from other form factor changes such as screen size. Results from an experimental study using a travel recommendation Web site show that a direct-touch interface (vs. a more traditional mouse interface) increases the number of alternatives searched, and biases evaluations toward tangible attributes such as décor and furniture over intangible attributes such as WiFi and employee demeanor. Direct-touch interfaces also elevate the importance of internal and subjective satisfaction metrics such as instinct over external and objective metrics such as reviews, which in turn increases anticipated satisfaction metrics. Findings suggest that interfaces can strongly affect how online content is explored, perceived, remembered, and acted on, and further work in interface psychology could be as fruitful as research exploring the content itself. PMID:26348814

  16. Interface Psychology: Touchscreens Change Attribute Importance, Decision Criteria, and Behavior in Online Choice.

    PubMed

    Brasel, S Adam; Gips, James

    2015-09-01

    As the rise of tablets and smartphones move the dominant interface for digital content from mouse or trackpad to direct touchscreen interaction, work is needed to explore the role of interfaces in shaping psychological reactions to online content. This research explores the role of direct-touch interfaces in product search and choice, and isolates the touch element from other form factor changes such as screen size. Results from an experimental study using a travel recommendation Web site show that a direct-touch interface (vs. a more traditional mouse interface) increases the number of alternatives searched, and biases evaluations toward tangible attributes such as décor and furniture over intangible attributes such as WiFi and employee demeanor. Direct-touch interfaces also elevate the importance of internal and subjective satisfaction metrics such as instinct over external and objective metrics such as reviews, which in turn increases anticipated satisfaction metrics. Findings suggest that interfaces can strongly affect how online content is explored, perceived, remembered, and acted on, and further work in interface psychology could be as fruitful as research exploring the content itself.

  17. Precursory strong-signal characteristics of the convective clouds of the Central Tibetan Plateau detected by radar echoes with respect to the evolutionary processes of an eastward-moving heavy rainstorm belt in the Yangtze River Basin

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Xu, Xiangde; Ruan, Zheng; Chen, Bin; Wang, Fang

    2018-03-01

    The integrated analysis of the data from a C-band frequency-modulated continuous-wave (C-FMCW) radar site in Naqu obtained during a rainstorm over the middle and lower reaches of the Yangtze River and the data concerning the three-dimensional structure of the circulation of the precipitation system that occurred over the lower reaches of the Yangtze River Basin during the Third Tibetan Plateau (TP) Atmospheric Experiment from August 15th to 19th, 2014, was carried out. The changes in the echo intensity at the C-FMCW radar site in Naqu were of regional indicative significance for the characteristics of the whole-layer apparent heat source Q1 in local areas and the region of the adjacent river source area, including the Yangtze River, Yellow River, and Lancang River (hereinafter referred to as the "source area of three rivers"), as well as to the vertical speeds due to the development of convection. This study indicates that the C-FMCW radar echo intensity of the plateau convection zone and the related power structures of the coupled dipole circulations in the middle layer of the atmosphere, as well as in the upper atmospheric level divergence and lower atmospheric level convergence, are important stimuli for convective clouds in this region. Furthermore, these radar data provided a physical image of the development and maintenance mechanisms of an eastward-moving heavy rainstorm belt. This study also shows that changes in the echo intensities at the C-FMCW radar site of Naqu can provide strong signals related to heavy rainstorm processes in the upper reaches of the Yangtze River.

  18. Use of integrated analogue and numerical modelling to predict tridimensional fracture intensity in fault-related-folds.

    NASA Astrophysics Data System (ADS)

    Pizzati, Mattia; Cavozzi, Cristian; Magistroni, Corrado; Storti, Fabrizio

    2016-04-01

    Fracture density pattern predictions with low uncertainty is a fundamental issue for constraining fluid flow pathways in thrust-related anticlines in the frontal parts of thrust-and-fold belts and accretionary prisms, which can also provide plays for hydrocarbon exploration and development. Among the drivers that concur to determine the distribution of fractures in fold-and-thrust-belts, the complex kinematic pathways of folded structures play a key role. In areas with scarce and not reliable underground information, analogue modelling can provide effective support for developing and validating reliable hypotheses on structural architectures and their evolution. In this contribution, we propose a working method that combines analogue and numerical modelling. We deformed a sand-silicone multilayer to eventually produce a non-cylindrical thrust-related anticline at the wedge toe, which was our test geological structure at the reservoir scale. We cut 60 serial cross-sections through the central part of the deformed model to analyze faults and folds geometry using dedicated software (3D Move). The cross-sections were also used to reconstruct the 3D geometry of reference surfaces that compose the mechanical stratigraphy thanks to the use of the software GoCad. From the 3D model of the experimental anticline, by using 3D Move it was possible to calculate the cumulative stress and strain underwent by the deformed reference layers at the end of the deformation and also in incremental steps of fold growth. Based on these model outputs it was also possible to predict the orientation of three main fractures sets (joints and conjugate shear fractures) and their occurrence and density on model surfaces. The next step was the upscaling of the fracture network to the entire digital model volume, to create DFNs.

  19. Flight Telerobotic Servicer prototype simulator

    NASA Astrophysics Data System (ADS)

    Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob

    A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.

  20. Earthdata User Interface Patterns: Building Usable Web Interfaces Through a Shared UI Pattern Library

    NASA Astrophysics Data System (ADS)

    Siarto, J.

    2014-12-01

    As more Earth science software tools and services move to the web--the design and usability of those tools become ever more important. A good user interface is becoming expected and users are becoming increasingly intolerant of websites and web applications that work against them. The Earthdata UI Pattern Library attempts to give these scientists and developers the design tools they need to make usable, compelling user interfaces without the associated overhead of using a full design team. Patterns are tested and functional user interface elements targeted specifically at the Earth science community and will include web layouts, buttons, tables, typography, iconography, mapping and visualization/graphing widgets. These UI elements have emerged as the result of extensive user testing, research and software development within the NASA Earthdata team over the past year.

  1. A Peridynamic Approach for Nanoscratch Simulation of the Cement Mortar

    NASA Astrophysics Data System (ADS)

    Zhao, Jingjing; Zhang, Qing; Lu, Guangda; Chen, Depeng

    2018-03-01

    The present study develops a peridynamic approach for simulating the nanoscratch procedure on the cement mortar interface. In this approach, the cement and sand are considered as discrete particles with certain mechanical properties on the nanoscale. Besides, the interaction force functions for different components in the interface are represented by combining the van der Waals force and the peridynamic force. The nanoscratch procedures with the indenter moving along certain direction either parallel or perpendicular to the interface are simulated in this paper. The simulation results show the damage evolution processes and the final damage distributions of the cement mortar under different scratching speed and depth of the indenter, indicating that the interface between cement and sand is a weak area.

  2. Conveyor belt biomantles: Centripetal bioturbation coupled with erosional downwasting -- an explanatory model

    NASA Astrophysics Data System (ADS)

    Johnson, D. L.; Johnson, D. N.

    2012-12-01

    Science advances on the strength of clarifying and unifying concepts, models, and methodologies that enhance and expand our explanatory paradigms. If valid, such structures allow us to accurately understand and appreciate how the world works. To aid in this task, new term-concepts must sometimes be coined and formalized. To understand certain ubiquitously occurring -- though as yet un-conceptualized -- surface processes that operate non-stop, and assessing their efficacies, is a desirable goal in landscape evolution studies. All near-surface processes are, of course, biological, chemical, and or physical in nature, and many if not most operate in combination. But of this triumvirate, biological processes, both biochemical and biomechanical (bioturbations), are perhaps least understood. Combinations of ubiquitously and semi-continuously occurring poorly understood processes that are both obscure and yet obvious have collectively produced Earth's biomantle. The biomantle occupies the uppermost Pedosphere, is a planet-wide layer, and unique to Earth. It thus functions as the biogenically habitable interface between the Atmosphere, Biosphere, Hydrosphere, and Lithosphere. The biomantle is defined as the organic-bearing bioturbated upper part of soil, including the topsoil, and of subaqueous substrates (lake, stream, ocean floor sediments) where most biota live, operate, move, wriggle, rest, sleep, estivate, seek food, eat, compete, fight, hide, reproduce, die, and assimilate. Its position and function in the uppermost soil layer of the Critical Zone must modulate and mediate much or most of what takes place above and below in ways yet to be established. In an attempt to increase understanding of this complicated biodynamic pedomembrane, and to identify the main processes that produce it, we present an iterative process model that pits ongoing cyclic bioturbation driven constructional processes against ongoing cyclic physically driven destructional processes. More specifically, and in summary, we present a model that displays how semi-continuous biomechanical and centripetally driven constructional soil-sediment biotransfers to raised animal-produced point centers are concomitantly leveled by physical-erosional centrifugally driven, lateral-radial downwasting processes. The model is analogous to a cyclical conveyor belt system of soil-sediment biotransfers to, then erosionally away, from innumerably raised point centers, the "activity centers" of burrowing animals. Career-spanning fieldwork across many tropical, subtropical, and mid-latitude environments strongly support the overall validity of the model. Apart from microbes, animals represent the most diverse organismic group on the planet, with plants and fungi distant seconds. Moreover, many if not most spend at least part of their existence living on and/or in soil and sediment, which includes both the subaerial and subaqueous realms of Earth (that is, all of it, except extreme polar areas). Animals bioturbate, vertically and laterally, and likely have done so since pre-Cambrian time. The fundamental conveyor belt process, where ongoing centripetal bioturbations are coupled with ongoing erosional wasting and spreading, joined by subsidiary processes, drives biomantle formation.

  3. Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials

    PubMed Central

    2014-01-01

    Background People with severe disabilities, e.g. due to neurodegenerative disease, depend on technology that allows for accurate wheelchair control. For those who cannot operate a wheelchair with a joystick, brain-computer interfaces (BCI) may offer a valuable option. Technology depending on visual or auditory input may not be feasible as these modalities are dedicated to processing of environmental stimuli (e.g. recognition of obstacles, ambient noise). Herein we thus validated the feasibility of a BCI based on tactually-evoked event-related potentials (ERP) for wheelchair control. Furthermore, we investigated use of a dynamic stopping method to improve speed of the tactile BCI system. Methods Positions of four tactile stimulators represented navigation directions (left thigh: move left; right thigh: move right; abdomen: move forward; lower neck: move backward) and N = 15 participants delivered navigation commands by focusing their attention on the desired tactile stimulus in an oddball-paradigm. Results Participants navigated a virtual wheelchair through a building and eleven participants successfully completed the task of reaching 4 checkpoints in the building. The virtual wheelchair was equipped with simulated shared-control sensors (collision avoidance), yet these sensors were rarely needed. Conclusion We conclude that most participants achieved tactile ERP-BCI control sufficient to reliably operate a wheelchair and dynamic stopping was of high value for tactile ERP classification. Finally, this paper discusses feasibility of tactile ERPs for BCI based wheelchair control. PMID:24428900

  4. Influence of climate on deep-water clastic sedimentation: application of a modern model, Peru-Chile Trough, to an ancient system, Ouachita Trough

    USGS Publications Warehouse

    Edgar, N. Terence; Cecil, C. Blaine

    2003-01-01

    Traditionally, an abrupt and massive influx of siliciclastic sediments into an area of deposition has been attributed to tectonic uplift without consideration of the influence of climate or climatic change on rates of weathering, erosion, transportation, and deposition. With few exceptions, fluvial sediment transport is minimal in both extremely arid climates and in perhumid (everwet) climates. Maximum sediment transport occurs in climates characterized by strongly seasonal rainfall, where the effect of vegetation on erosion is minimal. The Peru–Chile trench and Andes Mountain system (P–CT/AMS) of the eastern Pacific Ocean clearly illustrates the effects of climate on rates of weathering, erosion, transport, and deep-sea sedimentation. Terrigenous sediment is virtually absent in the arid belt north of lat. 30° S in the P–CT, but in the belt of seasonal rainfall south of lat. 30° S terrigenous sediment is abundant. Spatial variations in the amount and seasonality of annual precipitation are now generally accepted as the cause for this difference. The spatial variation in sediment supply to the P–CT appears to be an excellent modern analogue for the temporal variation in sediment supply to certain ancient systems, such as the Ouachita Trough in the southern United States. By comparison, during the Ordovician through the early Mississippian, sediment was deposited at very slow rates as the Ouachita Trough moved northward through the southern hemisphere dry belt (lat. 10° S to lat. 30° S). The deposystem approached the tropical humid zone during the Mississippian, coincident with increased coarse clastic sedimentation. By the Middle Pennsylvanian (Atokan), the provenance area and the deposystem moved well into the tropical humid zone, and as much as 8,500 m of mineralogically mature (but texturally immature) quartz sand was introduced and deposited. This increase in clastic sediment deposition traditionally has been attributed solely to tectonic activity. However, we contend that the principal control on the introduction of abundant terrigenous sediment was the movement of the deposystem from an arid or semiarid climate into a seasonally wetter climatic regime. The physical and mineralogical maturity of the quartz sand is the result of tropical weathering in provenance areas.

  5. A Finite Element Method for Simulation of Compressible Cavitating Flows

    NASA Astrophysics Data System (ADS)

    Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad

    2016-11-01

    This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.

  6. Scientists discover massive jet streams flowing inside the sun

    NASA Astrophysics Data System (ADS)

    1997-08-01

    These new findings will help them understand the famous sunspot cycle and associated increases in solar activity that can affect the Earth with power and communications disruptions. The observations are the latest made by the Solar Oscillations Investigation (SOI) group at Stanford University, CA, and they build on discoveries by the SOHO science team over the past year. "We have detected motion similar to the weather patterns in the Earth's atmosphere", said Dr. Jesper Schou of Stanford. "Moreover, in what is a completely new discovery, we have found a jet-like flow near the poles. This flow is totally inside the Sun. It is completely unexpected, and cannot be seen at the surface." "These polar streams are on a small scale, compared to the whole Sun, but they are still immense compared to atmospheric jet streams on the Earth", added Dr. Philip Scherrer, the SOI principal investigator at Stanford. "Ringing the Sun at about 75 degrees latitude, they consist of flattened oval regions about 30,000 kilometres across where material moves about ten percent (about 130 km/h) faster than its surroundings. Although these are the smallest structures yet observed inside the Sun, each is still large enough to engulf two Earths." Additionally, there are features similar to the Earth's trade winds on the surface of the Sun. The Sun rotates much faster at the equator than at the poles. However, Stanford researchers Schou and Dr. Alexander G. Kosovichev have found that there are belts in the northern and southern hemispheres where currents flow at different speeds relative to each other. Six of these gaseous bands move slightly faster than the material surrounding them. The solar belts are more than 65 thousand km across and they contain "winds" that move about 15 kilometres per hour relative to their surroundings. The first evidence of these belts was found more than a decade ago by Dr. Robert Howard of the Mount Wilson Observatory. The Stanford researchers have now shown that, rather than being superficial surface motion, the belts extend down to a depth of at least 20 thousand kilometres below the Sun's surface. "In one way, the Sun's zonal belts behave more like the colourful banding found on Jupiter than the region of tradewinds on the Earth," said Stanford's Dr. Craig DeForest. "Somewhat like stripes on a barber pole, they start in the mid-latitudes and gradually move toward the equator during the eleven year solar cycle. They also appear to have a relationship to sunspot formation as sunspots tend to form at the edges of these zones". "We speculate that the differences in speed of the plasma at the edge of these bands may be connected with the generation of the solar magnetic cycle; which, in turn, generates periodic increases in solar activity, but we'll need more observations to see if this is correct," said DeForest. Finally, the solar physicists have determined that the entire outer layer of the Sun, to a depth of at least 25 thousand kilometres, is slowly but steadily flowing from the equator to the poles. The polar flow rate is relatively slow, about 80 km per hour, compared to its rotation speed, about 6.000 km/h; however, this is fast enough to transport an object from the equator to the pole in a bit more than a year. "Oddly enough, the polar flow moves in the opposite direction from that of the sunspots and the zonal belts, which are moving from higher to lower latitudes," said DeForest. Evidence for polar flow had previously been observed at the Sun's surface, but scientists did not know how deep the motion extended. With a volume equal to about four percent of the total Sun, this feature probably has an important impact on the Sun's activity, argue Stanford researchers Scherrer, with Dr. Thomas L. Duvall Jr., Dr. Richard S. Bogart, and graduate student Peter M. Giles. For the last year, the SOHO spacecraft has been aiming its battery of 12 scientific instruments at the Sun from a position 1.5 million kilometres sunward from the Earth. The Stanford research team has been viewing the Sun's surface with one of these instruments called a Michelson Doppler Imager that can measure the vertical motion of the Sun's surface at one million different points once per minute. The measurements show the effects of sound waves that permeate the interior. The researchers then apply techniques similar to Earth based seismology and computer aided tomography to infer and map the flow patterns and temperature beneath the Sun's roiling surface. "These techniques allow us to peer inside the Sun using sound waves, much like a doctor can look inside a pregnant woman with a sonogram," said Dr. Schou. Currently, the Stanford scientists have both identified new structures in the interior of the Sun and clarified the form of previously discovered ones. Understanding their relationship to solar activity will require more observations and time for analysis. "At this point, we do not know whether the plasma streams snake around like the jet stream on Earth, or whether it is a less dynamic feature," said Dr. Douglas Gough, of Cambridge University, UK. "It is intriguing to speculate that these streams may affect solar weather like the terrestrial jetstream impacts weather patterns on Earth, but this is completely unclear right now. The same speculation may apply to the other flows we've observed, or they may act in concert. It will be especially helpful to make observations as the Sun enters its next active cycle, expected to peak around the year 2001." NOTE TO EDITORS: Images to support this story and further information are available from : ESA Public Relations Division Tel: +33.1(0)53.69.7155 Fax: +33.1(0)53.69.7690 The images also can be found at the following Internet address: http://www.gsfc.nasa.gov/

  7. Scientists discover massive jet streams flowing inside the sun

    NASA Astrophysics Data System (ADS)

    1997-07-01

    These new findings will help them understand the famous sunspot cycle and associated increases in solar activity that can affect the Earth with power and communications disruptions. The observations are the latest made by the Solar Oscillations Investigation (SOI) group at Stanford University, CA, and they build on discoveries by the SOHO science team over the past year. "We have detected motion similar to the weather patterns in the Earth's atmosphere", said Dr. Jesper Schou of Stanford. "Moreover, in what is a completely new discovery, we have found a jet-like flow near the poles. This flow is totally inside the Sun. It is completely unexpected, and cannot be seen at the surface." "These polar streams are on a small scale, compared to the whole Sun, but they are still immense compared to atmospheric jet streams on the Earth", added Dr. Philip Scherrer, the SOI principal investigator at Stanford. "Ringing the Sun at about 75 degrees latitude, they consist of flattened oval regions about 30,000 kilometres across where material moves about ten percent (about 130 km/h) faster than its surroundings. Although these are the smallest structures yet observed inside the Sun, each is still large enough to engulf two Earths." Additionally, there are features similar to the Earth's trade winds on the surface of the Sun. The Sun rotates much faster at the equator than at the poles. However, Stanford researchers Schou and Dr. Alexander G. Kosovichev have found that there are belts in the northern and southern hemispheres where currents flow at different speeds relative to each other. Six of these gaseous bands move slightly faster than the material surrounding them. The solar belts are more than 65 thousand km across and they contain "winds" that move about 15 kilometres per hour relative to their surroundings. The first evidence of these belts was found more than a decade ago by Dr. Robert Howard of the Mount Wilson Observatory. The Stanford researchers have now shown that, rather than being superficial surface motion, the belts extend down to a depth of at least 20 thousand kilometres below the Sun's surface. "In one way, the Sun's zonal belts behave more like the colourful banding found on Jupiter than the region of tradewinds on the Earth," said Stanford's Dr. Craig DeForest. "Somewhat like stripes on a barber pole, they start in the mid-latitudes and gradually move toward the equator during the eleven year solar cycle. They also appear to have a relationship to sunspot formation as sunspots tend to form at the edges of these zones". "We speculate that the differences in speed of the plasma at the edge of these bands may be connected with the generation of the solar magnetic cycle; which, in turn, generates periodic increases in solar activity, but we'll need more observations to see if this is correct," said DeForest. Finally, the solar physicists have determined that the entire outer layer of the Sun, to a depth of at least 25 thousand kilometres, is slowly but steadily flowing from the equator to the poles. The polar flow rate is relatively slow, about 80 km per hour, compared to its rotation speed, about 6.000 km/h; however, this is fast enough to transport an object from the equator to the pole in a bit more than a year. "Oddly enough, the polar flow moves in the opposite direction from that of the sunspots and the zonal belts, which are moving from higher to lower latitudes," said DeForest. Evidence for polar flow had previously been observed at the Sun's surface, but scientists did not know how deep the motion extended. With a volume equal to about four percent of the total Sun, this feature probably has an important impact on the Sun's activity, argue Stanford researchers Scherrer, with Dr. Thomas L. Duvall Jr., Dr. Richard S. Bogart, and graduate student Peter M. Giles. For the last year, the SOHO spacecraft has been aiming its battery of 12 scientific instruments at the Sun from a position 1.5 million kilometres sunward from the Earth. The Stanford research team has been viewing the Sun's surface with one of these instruments called a Michelson Doppler Imager that can measure the vertical motion of the Sun's surface at one million different points once per minute. The measurements show the effects of sound waves that permeate the interior. The researchers then apply techniques similar to Earth based seismology and computer aided tomography to infer and map the flow patterns and temperature beneath the Sun's roiling surface. "These techniques allow us to peer inside the Sun using sound waves, much like a doctor can look inside a pregnant woman with a sonogram," said Dr. Schou. Currently, the Stanford scientists have both identified new structures in the interior of the Sun and clarified the form of previously discovered ones. Understanding their relationship to solar activity will require more observations and time for analysis. "At this point, we do not know whether the plasma streams snake around like the jet stream on Earth, or whether it is a less dynamic feature," said Dr. Douglas Gough, of Cambridge University, UK. "It is intriguing to speculate that these streams may affect solar weather like the terrestrial jetstream impacts weather patterns on Earth, but this is completely unclear right now. The same speculation may apply to the other flows we've observed, or they may act in concert. It will be especially helpful to make observations as the Sun enters its next active cycle, expected to peak around the year 2001." NOTE TO EDITORS: Images to support this story and further information are available from : ESA Public Relations Division Tel: +33.1(0)53.69.7155 Fax: +33.1(0)53.69.7690 The images also can be found at the following Internet address: http://www.gsfc.nasa.gov/

  8. Use of seatbelts in cars with automatic belts.

    PubMed Central

    Williams, A F; Wells, J K; Lund, A K; Teed, N J

    1992-01-01

    Use of seatbelts in late model cars with automatic or manual belt systems was observed in suburban Washington, DC, Chicago, Los Angeles, and Philadelphia. In cars with automatic two-point belt systems, the use of shoulder belts by drivers was substantially higher than in the same model cars with manual three-point belts. This finding was true in varying degrees whatever the type of automatic belt, including cars with detachable nonmotorized belts, cars with detachable motorized belts, and especially cars with nondetachable motorized belts. Most of these automatic shoulder belts systems include manual lap belts. Use of lap belts was lower in cars with automatic two-point belt systems than in the same model cars with manual three-point belts; precisely how much lower could not be reliably estimated in this survey. Use of shoulder and lap belts was slightly higher in General Motors cars with detachable automatic three-point belts compared with the same model cars with manual three-point belts; in Hondas there was no difference in the rates of use of manual three-point belts and the rates of use of automatic three-point belts. PMID:1561301

  9. A planetary-scale disturbance in the most intense Jovian atmospheric jet from JunoCam and ground-based observations

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, A.; Rogers, J. H.; Orton, G. S.; García-Melendo, E.; Legarreta, J.; Colas, F.; Dauvergne, J. L.; Hueso, R.; Rojas, J. F.; Pérez-Hoyos, S.; Mendikoa, I.; Iñurrigarro, P.; Gomez-Forrellad, J. M.; Momary, T.; Hansen, C. J.; Eichstaedt, G.; Miles, P.; Wesley, A.

    2017-05-01

    We describe a huge planetary-scale disturbance in the highest-speed Jovian jet at latitude 23.5°N that was first observed in October 2016 during the Juno perijove-2 approach. An extraordinary outburst of four plumes was involved in the disturbance development. They were located in the range of planetographic latitudes from 22.2° to 23.0°N and moved faster than the jet peak with eastward velocities in the range 155 to 175 m s-1. In the wake of the plumes, a turbulent pattern of bright and dark spots (wave number 20-25) formed and progressed during October and November on both sides of the jet, moving with speeds in the range 100-125 m s-1 and leading to a new reddish and homogeneous belt when activity ceased in late November. Nonlinear numerical models reproduce the disturbance cloud patterns as a result of the interaction between local sources (the plumes) and the zonal eastward jet.

  10. Multiphase Fluid Dynamics for Spacecraft Applications

    NASA Astrophysics Data System (ADS)

    Shyy, W.; Sim, J.

    2011-09-01

    Multiphase flows involving moving interfaces between different fluids/phases are observed in nature as well as in a wide range of engineering applications. With the recent development of high fidelity computational techniques, a number of challenging multiphase flow problems can now be computed. We introduce the basic notion of the main categories of multiphase flow computation; Lagrangian, Eulerian, and Eulerian-Lagrangian techniques to represent and follow interface, and sharp and continuous interface methods to model interfacial dynamics. The marker-based adaptive Eulerian-Lagrangian method, which is one of the most popular methods, is highlighted with microgravity and space applications including droplet collision and spacecraft liquid fuel tank surface stability.

  11. Using in-depth investigations to identify transportation safety issues for wheelchair-seated occupants of motor vehicles.

    PubMed

    Schneider, Lawrence W; Klinich, Kathleen D; Moore, Jamie L; MacWilliams, Joel B

    2010-04-01

    In-depth investigations of motor-vehicle crashes involve detailed inspection, measurement, and photodocumentation of vehicle exterior and interior damage, evidence of belt-restraint use, and evidence of occupant contacts with the vehicle interior. Results of in-depth investigations thereby provide the most objective way to identify current and emerging injury problems and issues in occupant safety and crash protection, and provide important feedback on the real-world performance of the latest restraint-system and vehicle crashworthiness technologies. To provide an objective understanding of real-world transportation safety issues for wheelchair-seated travelers, the University of Michigan Transportation Research Institute (UMTRI) has been conducting and assembling data from in-depth investigations of motor-vehicle crashes and non-crash adverse moving-vehicle incidents, such as emergency vehicle braking, turning, and swerving, in which there was at least one vehicle occupant sitting in a wheelchair. The results of 39 investigations involving 42 wheelchair-seated occupants have been assembled and entered into a wheelchair-occupant crash/injury database. In addition, a biomechanical analysis of each case has been performed to identify key safety issues for wheelchair-seated travelers. The wheelchairs of 34 of the 42 occupants who were seated in wheelchairs while traveling in motor vehicles were effectively secured by either a four-point, strap-type tiedown system or a docking securement device, and all but one of these properly secured wheelchairs remained in place during the crash or non-collision event. However, 30 of the 42 occupants were improperly restrained, either because of non-use or incomplete use of available belt restraints, or because the belt restraints were improperly positioned on the occupant's body. Twenty-six of the 42 occupants sustained significant injuries and 10 of these occupants died as a direct result of injuries sustained, or from complications resulting from those injuries. These findings, when combined with the analyses of the individual cases, point to a need for better driver and caregiver education and training on how to properly secure wheelchairs and position belt restraints on wheelchair-seated passengers. They also point to a need for improved restraint systems used by wheelchair-seated drivers, and a need for wheelchair designs that facilitate the proper use and positioning of vehicle-anchored belt restraints. Copyright 2009 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Wetting failure of hydrophilic surfaces promoted by surface roughness

    PubMed Central

    Zhao, Meng-Hua; Chen, Xiao-Peng; Wang, Qing

    2014-01-01

    Wetting failure is of vital importance to many physical phenomena, such as industrial coating and drop emission. Here we show when and how the surface roughness promotes the destabilization of a moving contact line on a hydrophilic surface. Beyond the balance of the driving force and viscous resistance where a stable wetting interface is sustained, wetting failure occurs and is modified by the roughness of the surface. The promoting effect arises only when the wetting velocity is high enough to create a gas-liquid-solid composite interface in the vicinity of the moving contact line, and it is a function of the intrinsic contact angle and proportion of solid tops. We propose a model to explain splashes of rough solid spheres impacting into liquids. It reveals a novel concept that dynamic wetting on hydrophilic rough surfaces can be similar to that on hydrophobic surfaces, and brings a new way to design surfaces with specific wetting properties. PMID:24948390

  13. KSC-07pd1664

    NASA Image and Video Library

    2007-06-27

    KENNEDY SPACE CENTER, FLA. -- At Launch Pad 17-B, at Cape Canaveral Air Force Station, the Delta II launch vehicle with NASA’s Dawn spacecraft mission logo can be seen as it is moved into position for stacking with the Delta II launch vehicle. Launch is scheduled for July 7. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. Photo credit: NASA/Troy Cryder.

  14. KSC-07pd2063

    NASA Image and Video Library

    2007-07-22

    KENNEDY SPACE CENTER, FLA. — The Dawn spacecraft is moved inside the Astrotech payload processing facility. Dawn was returned from Launch Pad 17-B at Cape Canaveral Air Force Station to Astrotech to await a new launch date. The launch opportunity extends from Sept. 7 to Oct. 15. Dawn is the ninth mission in NASA's Discovery Program. The spacecraft will be the first to orbit two planetary bodies, asteroid Vesta and dwarf planet Ceres, during a single mission. Vesta and Ceres lie in the asteroid belt between Mars and Jupiter. It is also NASA’s first purely scientific mission powered by three solar electric ion propulsion engines. NASA/Charisse Nahser

  15. Six-degree-of-freedom parallel minimanipulator with three inextensible limbs

    NASA Technical Reports Server (NTRS)

    Tahmasebi, Farhad (Inventor); Tsai, Lung-Wen (Inventor)

    1994-01-01

    A Six-Degree-of-Freedom Parallel-Manipulator having three inextensible limbs for manipulating a platform is described. The three inextensible limbs are attached via universal joints to the platform at non-collinear points. Each of the inextensible limbs is also attached via universal joints to a two-degree-of-freedom parallel driver such as a five-bar linkage, a pantograph, or a bidirectional linear stepper motor. The drivers move the lower ends of the limbs parallel to a fixed base and thereby provide manipulation of the platform. The actuators are mounted on the fixed base without using any power transmission devices such as gears or belts.

  16. Magnetic conveyor belt for transporting and merging trapped atom clouds.

    PubMed

    Hänsel, W; Reichel, J; Hommelhoff, P; Hänsch, T W

    2001-01-22

    We demonstrate an integrated magnetic device which transports cold atoms near a surface with very high positioning accuracy. Time-dependent currents in a lithographic conductor pattern create a moving chain of potential wells; atoms are transported in these wells while remaining confined in all three dimensions. We achieve mean fluxes up to 10(6) s(-1) with a negligible heating rate. An extension of this device allows merging of atom clouds by unification of two Ioffe-Pritchard potentials. The unification, which we demonstrate experimentally, can be performed without loss of phase space density. This novel, all-magnetic atom manipulation offers exciting perspectives, such as trapped-atom interferometry.

  17. Wall Driven Cavity Approach to Slug Flow Modeling In a Micro channel

    NASA Astrophysics Data System (ADS)

    Sahu, Avinash; Kulkarni, Shekhar; Pushpavanam, Subramaniam; Pushpavanam Research League Team, Prof.

    2014-03-01

    Slug flow is a commonly observed stable regime and occurs at relatively low flow rates of the fluids. Wettability of channel decides continuous and discrete phases. In these types of biphasic flows, the fluid - fluid interface acts as a barrier that prohibits species movement across the interface. The flow inside a slug is qualitatively similar to the well known shallow cavity flow. In shallow cavities the flow mimics the ``fully developed'' internal circulation in slug flows. Another approach to slug flow modeling can be in a moving reference frame. Here the wall boundary moves in the direction opposite to that of the flow, hence induces circulations within the phases which is analogous to the well known Lid Driven Cavity. The two parallel walls are moved in the opposite directions which generate circulation patterns, equivalent to the ones regularly observed in slug flow in micro channels. A fourth order stream function equation is solved using finite difference approach. The flow field obtained using the two approaches will be used to analyze the effect on mass transfer and chemical reactions in the micro channel. The internal circulations and the performance of these systems will be validated experimentally.

  18. A binary motor imagery tasks based brain-computer interface for two-dimensional movement control

    NASA Astrophysics Data System (ADS)

    Xia, Bin; Cao, Lei; Maysam, Oladazimi; Li, Jie; Xie, Hong; Su, Caixia; Birbaumer, Niels

    2017-12-01

    Objective. Two-dimensional movement control is a popular issue in brain-computer interface (BCI) research and has many applications in the real world. In this paper, we introduce a combined control strategy to a binary class-based BCI system that allows the user to move a cursor in a two-dimensional (2D) plane. Users focus on a single moving vector to control 2D movement instead of controlling vertical and horizontal movement separately. Approach. Five participants took part in a fixed-target experiment and random-target experiment to verify the effectiveness of the combination control strategy under the fixed and random routine conditions. Both experiments were performed in a virtual 2D dimensional environment and visual feedback was provided on the screen. Main results. The five participants achieved an average hit rate of 98.9% and 99.4% for the fixed-target experiment and the random-target experiment, respectively. Significance. The results demonstrate that participants could move the cursor in the 2D plane effectively. The proposed control strategy is based only on a basic two-motor imagery BCI, which enables more people to use it in real-life applications.

  19. Soft lubrication: The elastohydrodynamics of nonconforming and conforming contacts

    NASA Astrophysics Data System (ADS)

    Skotheim, J. M.; Mahadevan, L.

    2005-09-01

    We study the lubrication of fluid-immersed soft interfaces and show that elastic deformation couples tangential and normal forces and thus generates lift. We consider materials that deform easily, due to either geometry (e.g., a shell) or constitutive properties (e.g., a gel or a rubber), so that the effects of pressure and temperature on the fluid properties may be neglected. Four different system geometries are considered: a rigid cylinder moving parallel to a soft layer coating a rigid substrate; a soft cylinder moving parallel to a rigid substrate; a cylindrical shell moving parallel to a rigid substrate; and finally a cylindrical conforming journal bearing coated with a thin soft layer. In addition, for the particular case of a soft layer coating a rigid substrate, we consider both elastic and poroelastic material responses. For all these cases, we find the same generic behavior: there is an optimal combination of geometric and material parameters that maximizes the dimensionless normal force as a function of the softness parameter η =hydrodynamicpressure/elasticstiffness=surfacedeflection/gapthickness, which characterizes the fluid-induced deformation of the interface. The corresponding cases for a spherical slider are treated using scaling concepts.

  20. Drift-resonant, relativistic electron acceleration at the outer planets: Insights from the response of Saturn's radiation belts to magnetospheric storms

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Kollmann, P.; Krupp, N.; Paranicas, C.; Dialynas, K.; Sergis, N.; Mitchell, D. G.; Hamilton, D. C.; Krimigis, S. M.

    2018-05-01

    The short, 7.2-day orbital period of Cassini's Ring Grazing Orbits (RGO) provided an opportunity to monitor how fast the effects of an intense magnetospheric storm-time period (days 336-343/2016) propagated into Saturn's electron radiation belts. Following the storms, Cassini's MIMI/LEMMS instrument detected a transient extension of the electron radiation belts that in subsequent orbits moved towards the inner belts, intensifying them in the process. This intensification was followed by an equally fast decay, possibly due to the rapid absorption of MeV electrons by the planet's main rings. Surprisingly, all this cycle was completed within four RGOs, effectively in less than a month. That is considerably faster than the year-long time scales of Saturn's proton radiation belt evolution. In order to explain this difference, we propose that electron radial transport is partly controlled by the variability of global scale electric fields which have a fixed local time pointing. Such electric fields may distort significantly the orbits of a particular class of energetic electrons that cancel out magnetospheric corotation due to their westward gradient and curvature drifts (termed "corotation-resonant" or "local-time stationary" electrons) and transport them radially between the ring current and the radiation belts within several days and few weeks. The significance of the proposed process is highlighted by the fact that corotation resonance at Saturn occurs for electrons of few hundred keV to several MeV. These are the characteristic energies of seed electrons from the ring current that sustain the radiation belts of the planet. Our model's feasibility is demonstrated through the use of a simple test-particle simulation, where we estimate that uniform but variable electric fields with magnitudes lower that 1.0 mV/m can lead to a very efficient transport of corotation resonant electrons. Such electric fields have been consistently measured in the magnetosphere, and here we provide additional evidence showing that they may be constantly present all the way down to the outer edge of Saturn's main rings, further supporting our model. The implications of our findings are not limited to Saturn. Corotation resonance at Jupiter occurs for electrons with energies above about 10 MeV throughout the quasi-dipolar, energetic particle-trapping region of the magnetosphere. The proposed process could in principle then lead to rapid transport and adiabatic acceleration electrons into ultra-relativistic energies. The observation by Galileo's EPD/LEMMS instrument of an intense Jovian acceleration event at the orbital distance of Ganymede during the mission's C22 orbit, when > 11 MeV electron fluxes were preferentially enhanced, provides additional support to our transport model and insights on the origin of that orbit's extreme energetic electron environment. Finally, if the mode of radial transport that we describe here is a dominant one, radial diffusion coefficients (DLL) would be subject to strong energy, pitch angle and species dependencies.

  1. Septate-tubular textures in 2.0-Ga pillow lavas from the Pechenga Greenstone Belt: a nano-spectroscopic approach to investigate their biogenicity.

    PubMed

    Fliegel, D; Wirth, R; Simonetti, A; Furnes, H; Staudigel, H; Hanski, E; Muehlenbachs, K

    2010-12-01

    Pillow lava rims and interpillow hyaloclastites from the upper part of the Pechenga Greenstone Belt, Kola Peninsula, N-Russia contain rare tubular textures 15-20 μm in diameter and up to several hundred μm long in prehnite-pumpellyite to lower greenschist facies meta-volcanic glass. The textures are septate with regular compartments 5-20 μm across and exhibit branching, stopping and no intersecting features. Synchrotron micro-energy dispersive X-ray was used to image elemental distributions; scanning transmission X-ray microscopy, Fe L-edge and C K-edge were used to identify iron and carbon speciation at interfaces between the tubular textures and the host rock. In situ U-Pb radiometric dating by LA-MC-ICP-MS (laser ablation multicollector inductively coupled plasma mass spectrometry) of titanite from pillow lavas yielded a metamorphic age of 1790 ± 89 Ma. Focused ion-beam milling combined with transmission electron microscopy was used to analyze the textures in three dimensions. Electron diffraction showed that the textures are mineralized by orientated pumpellyite. On the margins of the tubes, an interface between mica or chlorite and the pumpellyite shows evidence of dissolution reactions where the pumpellyite is replaced by mica/chlorite. A thin poorly crystalline Fe-phase, probably precipitated out of solution, occurs at the interface between pumpellyite and mica/chlorite. This sequence of phases leads to the hypothesis that the tubes were initially hollow, compartmentalized structures in volcanic glass that were mineralized by pumpellyite during low-grade metamorphism. Later, a Fe-bearing fluid mineralized the compartments between the pumpellyite and lastly the pumpellyite was partially dissolved and replaced by chlorite during greenschist metamorphism. The most plausible origin for a septate-tubular texture is a progressive etching of the host matrix by several generations of microbes and subsequently these tubes were filled by authigenic mineral precipitates. This preserves the textures in the rock record over geological time. The micro textures reported here thus represent a pumpellyite-mineralized trace fossil that records a Paleoproterozoic sub-seafloor biosphere. © 2010 Blackwell Publishing Ltd.

  2. Transmission and reflection of strongly nonlinear solitary waves at granular interfaces.

    PubMed

    Tichler, A M; Gómez, L R; Upadhyaya, N; Campman, X; Nesterenko, V F; Vitelli, V

    2013-07-26

    The interaction of a solitary wave with an interface formed by two strongly nonlinear noncohesive granular lattices displays rich behavior, characterized by the breakdown of continuum equations of motion in the vicinity of the interface. By treating the solitary wave as a quasiparticle with an effective mass, we construct an intuitive (energy- and linear-momentum-conserving) discrete model to predict the amplitudes of the transmitted solitary waves generated when an incident solitary-wave front, parallel to the interface, moves from a denser to a lighter granular hexagonal lattice. Our findings are corroborated with simulations. We then successfully extend this model to oblique interfaces, where we find that the angle of refraction and reflection of a solitary wave follows, below a critical value, an analogue of Snell's law in which the solitary-wave speed replaces the speed of sound, which is zero in the sonic vacuum.

  3. Transmission and Reflection of Strongly Nonlinear Solitary Waves at Granular Interfaces

    NASA Astrophysics Data System (ADS)

    Tichler, A. M.; Gómez, L. R.; Upadhyaya, N.; Campman, X.; Nesterenko, V. F.; Vitelli, V.

    2013-07-01

    The interaction of a solitary wave with an interface formed by two strongly nonlinear noncohesive granular lattices displays rich behavior, characterized by the breakdown of continuum equations of motion in the vicinity of the interface. By treating the solitary wave as a quasiparticle with an effective mass, we construct an intuitive (energy- and linear-momentum-conserving) discrete model to predict the amplitudes of the transmitted solitary waves generated when an incident solitary-wave front, parallel to the interface, moves from a denser to a lighter granular hexagonal lattice. Our findings are corroborated with simulations. We then successfully extend this model to oblique interfaces, where we find that the angle of refraction and reflection of a solitary wave follows, below a critical value, an analogue of Snell’s law in which the solitary-wave speed replaces the speed of sound, which is zero in the sonic vacuum.

  4. Propagation of misfit dislocations from buffer/Si interface into Si

    DOEpatents

    Liliental-Weber, Zuzanna [El Sobrante, CA; Maltez, Rogerio Luis [Porto Alegre, BR; Morkoc, Hadis [Richmond, VA; Xie, Jinqiao [Raleigh, VA

    2011-08-30

    Misfit dislocations are redirected from the buffer/Si interface and propagated to the Si substrate due to the formation of bubbles in the substrate. The buffer layer growth process is generally a thermal process that also accomplishes annealing of the Si substrate so that bubbles of the implanted ion species are formed in the Si at an appropriate distance from the buffer/Si interface so that the bubbles will not migrate to the Si surface during annealing, but are close enough to the interface so that a strain field around the bubbles will be sensed by dislocations at the buffer/Si interface and dislocations are attracted by the strain field caused by the bubbles and move into the Si substrate instead of into the buffer epi-layer. Fabrication of improved integrated devices based on GaN and Si, such as continuous wave (CW) lasers and light emitting diodes, at reduced cost is thereby enabled.

  5. Surface passivation of p-type Ge substrate with high-quality GeN{sub x} layer formed by electron-cyclotron-resonance plasma nitridation at low temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuda, Yukio; Otani, Yohei; Okamoto, Hiroshi

    2011-09-26

    We have investigated the effects of the formation temperature and postmetallization annealing (PMA) on the interface properties of GeN{sub x}/p-Ge fabricated by the plasma nitridation of Ge substrates using an electron-cyclotron-resonance-generated nitrogen plasma. The nitridation temperature is found to be a critical parameter in improving the finally obtained GeN{sub x}/Ge interface properties. The GeN{sub x}/Ge formed at room temperature and treated by PMA at 400 deg. C exhibits the best interface properties with an interface trap density of 1 x 10{sup 11 }cm{sup -2 }eV{sup -1}. The GeN{sub x}/Ge interface is unpinned and the Fermi level at the Ge surfacemore » can move from the valence band edge to the conduction band edge.« less

  6. The Micromechanics of the Moving Contact Line

    NASA Technical Reports Server (NTRS)

    Lichter, Seth

    1999-01-01

    A transient moving contact line is investigated experimentally. The dynamic interface shape between 20 and 800 microns from the contact line is compared with theory. A novel experiment is devised, in which the contact line is set into motion by electrically altering the solid-liquid surface tension gamma(sub SL). The contact line motion simulates that of spontaneous wetting along a vertical plate with a maximum capillary number Ca approx. = 4 x 10(exp -2). The images of the dynamic meniscus are analyzed as a funtion of Ca. For comparison, the steady-state hydrodynamic equation based on the creeping flow model in a wedge geometry and the three-region uniform perturbation expansion of Cox (1986) is adopted. The interface shape is well depicted by the uniform solutions for Ca <= 10(exp -3). However, for Ca > 10(exp -3), the uniform solution over-predicts the viscous bending. This over-prediction can be accounted for by modifying the slip coefficient within the intermediate solution. With this correction, the measured interface shape is seen to match the theoretical prediction for all capillary numbers. The amount of slip needed to fit the measurements does not scale with the capillary number.

  7. A numerical method for solving the 3D unsteady incompressible Navier Stokes equations in curvilinear domains with complex immersed boundaries

    NASA Astrophysics Data System (ADS)

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g. the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [A. Gilmanov, F. Sotiropoulos, A hybrid cartesian/immersed boundary method for simulating flows with 3d, geometrically complex, moving bodies, Journal of Computational Physics 207 (2005) 457-492.]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.

  8. Fluorescent optical liquid level sensor

    DOEpatents

    Weiss, Jonathan D.

    2001-01-01

    A liquid level sensor comprising a transparent waveguide containing fluorescent material that is excited by light of a first wavelength and emits at a second, longer wavelength. The upper end of the waveguide is connected to a light source at the first wavelength through a beveled portion of the waveguide such that the input light is totally internally reflected within the waveguide above an air/liquid interface in a tank but is transmitted into the liquid below this interface. Light is emitted from the fluorescent material only in those portions of the waveguide that are above the air/liquid interface, to be collected at the upper end of the waveguide by a detector that is sensitive only to the second wavelength. As the interface moves down in the tank, the signal strength from the detector will increase.

  9. Interdimensional effects in systems with quasirelativistic fermions

    NASA Astrophysics Data System (ADS)

    Zulkoskey, A. C.; Dick, R.; Tanaka, K.

    2017-07-01

    We examine the Green function and the density of states for fermions moving in three-dimensional Dirac materials with interfaces which affect the propagation properties of particles. Motivation for our research comes from interest in materials that exhibit quasirelativistic dispersion relations. By modifying Dirac-type contributions to the Hamiltonian in an interface we are able to calculate the Green function and the density of states. The density of states inside the interface exhibits interpolating behavior between two and three dimensions, with two-dimensional behavior at high energies and three-dimensional behavior at low energies, provided that the shift in the mass parameter in the interface is small. We also discuss the impact of the interpolating density of states on optical absorption in Dirac materials with a two-dimensional substructure.

  10. KSC-07pd1513

    NASA Image and Video Library

    2007-06-15

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station, the second stage of the Delta II launch vehicle for the Dawn spacecraft arrives at the upper level of the mobile service tower. It will be moved inside the tower and mated with the first stage already in the tower. The Delta II-Heavy, manufactured by the United Launch Alliance, is scheduled to launch the Dawn spacecraft on its 4-year flight to the asteroid belt. The Delta II-Heavy is the strongest rocket in the Delta II class. It will use three stages and nine solid-fueled booster rockets to propel Dawn on its way. A 9.5-foot payload fairing will protect the spacecraft from the heat and stresses of launch. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch by investigating in detail the largest protoplanets that have remained intact since their formations: asteroid Vesta and the dwarf planet Ceres. They reside in the extensive zone between Mars and Jupiter together with many other smaller bodies, called the asteroid belt. Dawn is scheduled to launch July 7. Photo credit: NASA/Jack Pfaller

  11. CCD scanning for asteroids and comets

    NASA Technical Reports Server (NTRS)

    Gehrels, T.; Mcmillan, R. S.

    1986-01-01

    A change coupled device (CCD) is used in a scanning mode to find new asteroids and recover known asteroids and comet nuclei. Current scientific programs include recovery of asteroids and comet nuclei requested by the Minor Planet Center (MPC), discovery of new asteroids in the main belt and of unusual orbital types, and follow-up astrometry of selected new asteroids discovered. The routine six sigma limiting visual magnitude is 19.6 and slightly more than a square degree is scanned three times every 90 minutes of observing time during the fortnight centered on New Moon. Semiautomatic software for detection of moving objects is in routine use; angular speeds as low as 11.0 arcseconds per hour were distinguished from the effects of the Earth's atmosphere on the field of view. A typical set of three 29-minute scans near the opposition point along the ecliptic typically nets at least 5 new main-belt asteroids down to magnitude 19.6. In 18 observing runs (months) 43 asteroids were recovered, astrometric and photometric data on 59 new asteroids were reported, 10 new asteroids with orbital elements were consolidated, and photometry and positions of 22 comets were reported.

  12. KSC-08pd2667

    NASA Image and Video Library

    2008-09-19

    CAPE CANAVERAL, Fla. - During space shuttle Endeavour’s rollout to the launch pad at NASA's Kennedy Space Center, a worker checks equipment on the tracks of the massive crawler-transporter. The crawler travels on eight tracked tread belts, each containing 57 tread belt “shoes.” Each shoe is 7.5 feet long, 1.5 feet wide and weighs approximately 2,100 pounds. First motion of Endeavour from the Vehicle Assembly Building was at 11:15 p.m. Sept. 18. Endeavour completed the 4.2-mile journey to Launch Pad 39B on Sept. 19 at 6:59 a.m. EDT. For the first time since July 2001, two shuttles are on the launch pads at the same time at the center. Endeavour will stand by at pad B in the unlikely event that a rescue mission is necessary during space shuttle Atlantis' upcoming mission to repair NASA's Hubble Space Telescope, targeted to launch Oct. 10. After Endeavour is cleared from its duty as a rescue spacecraft, it will be moved to Launch Pad 39A for the STS-126 mission to the International Space Station. That flight is targeted for launch Nov. 12. Photo credit: NASA/Dimitri Gerondidakis

  13. Future developments in brain-machine interface research.

    PubMed

    Lebedev, Mikhail A; Tate, Andrew J; Hanson, Timothy L; Li, Zheng; O'Doherty, Joseph E; Winans, Jesse A; Ifft, Peter J; Zhuang, Katie Z; Fitzsimmons, Nathan A; Schwarz, David A; Fuller, Andrew M; An, Je Hi; Nicolelis, Miguel A L

    2011-01-01

    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition.

  14. Intrusive rocks and plutonic belts of southeastern Alaska, U.S.A.

    USGS Publications Warehouse

    Brew, David A.; Morrell, Robert P.; Roddick, J.A.

    1983-01-01

    About 30 percent of the 175,000-km2 area of southeastern Alaska is underlain by intrusive igneous rocks. Compilation of available information on the distribution, composition, and ages of these rocks indicates the presence of six major and six minor plutonic belts. From west to east, the major belts are: the Fairweather-Baranof belt of early to mid-Tertiary granodiorite; the Muir-Chichagof belt of mid-Cretaceous tonalite and granodiorite; the Admiralty-Revillagigedo belt of porphyritic granodiorite, quartz diorite, and diorite of probable Cretaceous age; the Klukwan-Duke belt of concentrically zoned or Alaskan-type ultramafic-mafic plutons of mid-Cretaceous age within the Admiralty-Revillagigedo belt; the Coast Plutonic Complex sill belt of tonalite of unknown, but perhaps mid-Cretaceous, age; and the Coast Plutonic Complex belt I of early to mid-Tertiary granodiorite and quartz monzonite. The minor belts are distributed as follows: the Glacier Bay belt of Cretaceous and(or) Tertiary granodiorite, tonalite, and quartz diorite lies within the Fair-weather-Baranof belt; layered gabbro complexes of inferred mid-Tertiary age lie within and are probably related to the Fairweather-Baranof belt; the Chilkat-Chichagof belt of Jurassic granodiorite and tonalite lies within the Muir-Chichagof belt; the Sitkoh Bay alkaline, the Kendrick Bay pyroxenite to quartz monzonite, and the Annette and Cape Fox trondhjemite plutons, all interpreted to be of Ordovician(?) age, together form the crude southern southeastern Alaska belt within the Muir-Chichagof belt; the Kuiu-Etolin mid-Tertiary belt of volcanic and plutonic rocks extends from the Muir-Chichagof belt eastward into the Admiralty-Revillagigedo belt; and the Behm Canal belt of mid- to late Tertiary granite lies within and next to Coast Plutonic Complex belt II. In addition, scattered mafic-ultramafic bodies occur within the Fairweather-Baranof, Muir-Chichagof, and Coast Plutonic Complex belts I and II. Palinspastic reconstruction of 200 km of right-lateral movement on the Chatham Strait fault does not significantly change the pattern of the major belts but does bring parts of the minor mid-Tertiary and Ordovician(?) belts closer together. The major belts are related to the stratigraphic-tectonic terranes of Berg, Jones, and Coney (1978) as follows: the Fairweather-Baranof belt is largely in the Chugach, Wrangell (Wrangellia), and Alexander terranes; the Muir-Chichagof belt is in the Alexander and Wrangell terranes; the Admiralty-Revillagigedo belt is in the Gravina and Taku terranes; the Klukwan-Duke belt is in the Gravina, Taku, and Alexander terranes; the Coast Plutonic Complex sill belt is probably between the Taku and Tracy Arm terranes; and the Coast Plutonic Complex belts I and II are in the Tracy Arm and Stikine terranes. Significant metallic-mineral deposits are spatially related to certain of these belts, and some deposits may be genetically related. Gold, copper, and molybdenum occurrences may be related to granodiorites of the Fairweather-Baranof belt. Magmatic copper-nickel deposits occur in the layered gabbro within that belt. The Juneau gold belt, which contains gold, silver, copper, lead, and zinc occurrences, parallels and lies close to the Coast Plutonic Complex sill belt; iron deposits occur in the Klukwan-Duke belt; and porphyry molybdenum deposits occur in the Behm Canal belt. The Muir-Chichagof belt of mid-Cretaceous age and the Admiralty-Revillagigedo belt of probable Cretaceous age are currently interpreted as possible magmatic arcs associated with subduction events. In general, the other belts of intrusive rocks are spatially related to structural discontinuities, but genetic relations, if any, are not yet known. The Coast Plutonic Complex sill belt is probably related to a post-Triassic, pre-early Tertiary suture zone that nearly corresponds to the boundary between the Tracy Arm and Taku terranes. The boundary between the Admiralty-Revillagigedo and Muir-Chichagof belts coincides nearly with the Seymour Canal-Clarence Strait lineament and also is probably a major post-Triassic suture.

  15. Rapid Geodetic Shortening Across the Eastern Cordillera of NW Argentina Observed by the Puna-Andes GPS Array

    NASA Astrophysics Data System (ADS)

    McFarland, Phillip K.; Bennett, Richard A.; Alvarado, Patricia; DeCelles, Peter G.

    2017-10-01

    We present crustal velocities for 29 continuously recording GPS stations from the southern central Andes across the Puna, Eastern Cordillera, and Santa Barbara system for the period between the 27 February 2010 Maule and 1 April 2014 Iquique earthquakes in a South American frame. The velocity field exhibits a systematic decrease in magnitude from 35 mm/yr near the trench to <1 mm/yr within the craton. We forward model loading on the Nazca-South America (NZ-SA) subduction interface using back slip on elastic dislocations to approximate a fully locked interface from 10 to 50 km depth. We generate an ensemble of models by iterating over the percentage of NZ-SA convergence accommodated at the subduction interface. Velocity residuals calculated for each model demonstrate that locking on the NZ-SA interface is insufficient to reproduce the observed velocities. We model deformation associated with a back-arc décollement using an edge dislocation, estimating model parameters from the velocity residuals for each forward model of the subduction interface ensemble using a Bayesian approach. We realize our best fit to the thrust-perpendicular velocity field with 70 ± 5% of NZ-SA convergence accommodated at the subduction interface and a slip rate of 9.1 ± 0.9 mm/yr on the fold-thrust belt décollement. We also estimate a locking depth of 14 ± 9 km, which places the downdip extent of the locked zone 135 ± 20 km from the thrust front. The thrust-parallel component of velocity is fit by a constant shear strain rate of -19 × 10-9 yr-1, equivalent to clockwise rigid block rotation of the back arc at a rate of 1.1°/Myr.

  16. Wave Propagation Through Inhomogeneities With Applications to Novel Sensing Techniques

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Tokars, R.; Varga, D.; Floyd B.

    2008-01-01

    The paper describes phenomena observed as a result of laser pencil beam interactions with abrupt interfaces including aerodynamic shocks. Based on these phenomena, a novel flow visualization technique based on a laser scanning pencil beam is introduced. The technique reveals properties of light interaction with interfaces including aerodynamic shocks that are not seen using conventional visualization. Various configurations of scanning beam devices including those with no moving parts, as well as results of "proof-of-concept" tests, are included.

  17. Adapting human-machine interfaces to user performance.

    PubMed

    Danziger, Zachary; Fishbach, Alon; Mussa-Ivaldi, Ferdinando A

    2008-01-01

    The goal of this study was to create and examine machine learning algorithms that adapt in a controlled and cadenced way to foster a harmonious learning environment between the user of a human-machine interface and the controlled device. In this experiment, subjects' high-dimensional finger motions remotely controlled the joint angles of a simulated planar 2-link arm, which was used to hit targets on a computer screen. Subjects were required to move the cursor at the endpoint of the simulated arm.

  18. Observed use of automatic seat belts in 1987 cars.

    PubMed

    Williams, A F; Wells, J K; Lund, A K; Teed, N

    1989-10-01

    Usage of the automatic belt systems supplied by six large-volume automobile manufacturers to meet the federal requirements for automatic restraints were observed in suburban Washington, D.C., Chicago, Los Angeles, and Philadelphia. The different belt systems studied were: Ford and Toyota (motorized, nondetachable automatic shoulder belt), Nissan (motorized, detachable shoulder belt), VW and Chrysler (nonmotorized, detachable shoulder belt), and GM (nonmotorized detachable lap and shoulder belt). Use of automatic belts was significantly greater than manual belt use in otherwise comparable late-model cars for all manufacturers except Chrysler; in Chrysler cars, automatic belt use was significantly lower than manual belt use. The automatic shoulder belts provided by Ford, Nissan, Toyota, and VW increased use rates to about 90%. Because use rates were lower in Ford cars with manual belts, their increase was greater. GM cars had the smallest increase in use rates; however, lap belt use was highest in GM cars. The other manufacturers supply knee bolsters to supplement shoulder belt protection; all--except VW--also provide manual lap belts, which were used by about half of those who used the automatic shoulder belt. The results indicate that some manufacturers have been more successful than others in providing automatic belt systems that result in high use that, in turn, will mean fewer deaths and injuries in those cars.

  19. Infrared Thermography Sensor for Temperature and Speed Measurement of Moving Material.

    PubMed

    Usamentiaga, Rubén; García, Daniel Fernando

    2017-05-18

    Infrared thermography offers significant advantages in monitoring the temperature of objects over time, but crucial aspects need to be addressed. Movements between the infrared camera and the inspected material seriously affect the accuracy of the calculated temperature. These movements can be the consequence of solid objects that are moved, molten metal poured, material on a conveyor belt, or just vibrations. This work proposes a solution for monitoring the temperature of material in these scenarios. In this work both real movements and vibrations are treated equally, proposing a unified solution for both problems. The three key steps of the proposed procedure are image rectification, motion estimation and motion compensation. Image rectification calculates a front-parallel projection of the image that simplifies the estimation and compensation of the movement. Motion estimation describes the movement using a mathematical model, and estimates the coefficients using robust methods adapted to infrared images. Motion is finally compensated for in order to produce the correct temperature time history of the monitored material regardless of the movement. The result is a robust sensor for temperature of moving material that can also be used to measure the speed of the material. Different experiments are carried out to validate the proposed method in laboratory and real environments. Results show excellent performance.

  20. Infrared Thermography Sensor for Temperature and Speed Measurement of Moving Material

    PubMed Central

    Usamentiaga, Rubén; García, Daniel Fernando

    2017-01-01

    Infrared thermography offers significant advantages in monitoring the temperature of objects over time, but crucial aspects need to be addressed. Movements between the infrared camera and the inspected material seriously affect the accuracy of the calculated temperature. These movements can be the consequence of solid objects that are moved, molten metal poured, material on a conveyor belt, or just vibrations. This work proposes a solution for monitoring the temperature of material in these scenarios. In this work both real movements and vibrations are treated equally, proposing a unified solution for both problems. The three key steps of the proposed procedure are image rectification, motion estimation and motion compensation. Image rectification calculates a front-parallel projection of the image that simplifies the estimation and compensation of the movement. Motion estimation describes the movement using a mathematical model, and estimates the coefficients using robust methods adapted to infrared images. Motion is finally compensated for in order to produce the correct temperature time history of the monitored material regardless of the movement. The result is a robust sensor for temperature of moving material that can also be used to measure the speed of the material. Different experiments are carried out to validate the proposed method in laboratory and real environments. Results show excellent performance. PMID:28524110

  1. Late Mesozoic deformations of the Verkhoyansk-Kolyma orogenic belt, Northeast Russia

    NASA Astrophysics Data System (ADS)

    Fridovsky, Valery

    2016-04-01

    The Verkhoyansk-Kolyma orogenic belt marks the boundary between the Kolyma-Omolon superterrane (microcontinent) and the submerged eastern margin of the North Asian craton. The orogenic system is remark able for its large number of economically viable gold deposits (Natalka, Pavlik, Rodionovskoe, Drazhnoe, Bazovskoe, Badran, Malo-Tarynskoe, etc.). The Verkhoyansk - Kolyma orogenic belt is subdivided into Kular-Nera and the Polousny-Debin terranes. The Kular-Nera terrane is mainly composed of the Upper Permian, Triassic, and Lower Jurassic black shales that are metamorphosed at lower greenschist facies conditions. The Charky-Indigirka and the Chai-Yureya faults separate the Kular-Nera from the Polousny-Debin terrane that is predominantly composed of the Jurassic flyschoi dturbidites. The deformation structure of the region evolved in association with several late Mesozoic tectonic events that took place in the north-eastern part ofthe Paleo-Pacific. In Late Jurassic-Early Cretaceous several generations of fold and thrust systems were formed due to frontal accretion of the Kolyma-Omolon superterrane to the eastern margin of the North Asian craton.Thrusting and folding was accompanied by granitic magmatism, metamorphic reworking of the Late Paleozoic and the Early Mesozoic sedimentary rocks, and formation of Au-Sn-W mineralization. Three stages of deformation related to frontal accretion can be distinguished. First stage D1 has developed in the north-eastern part of the Verkhoyansk - Kolyma orogenic belt. Early tight and isoclinal folds F1 and assosiated thrusts are characteristic of D1. Major thrusts, linear concentric folds F2 and cleavage were formed during D2. The main ore-controlling structures are thrust faults forming imbricate fan systems. Frontal and oblique ramps and systems of bedding and cross thrusts forming duplexes are common. It is notable that mineralized tectonized zones commonly develop along thrusts at the contacts of rocks of contrasting competence. The superimposed structures are recognized from the early cleavage deformations. Folds F3 are often chevron type, open or tight. D1, D2 and D3 deformations are coaxial. In the Late-Neocomian-Aptian the Kolyma-Omolon superterrane started moving to the west. As a result, the thrust faults were reactivated with sinistral strike-slip motions along fault planes. At that time, granitoids of the North and Transverse belts were emplaced in the northwestern part of the Kolyma-Omolon superterrane. The strike slip faults were associated with cross open folds. The postacrettionary stage is associated with the development of the Albian-Late Cretaceous Okhotsk-Chukotka subduction zone. During this stage strike-slip faults and associated deformation structures were superimposed upon accretion-related tectonic structures of the Verkhoyansk - Kolyma orogenic belt.

  2. Conceptualization and application of an approach for designing healthcare software interfaces.

    PubMed

    Kumar, Ajit; Maskara, Reena; Maskara, Sanjeev; Chiang, I-Jen

    2014-06-01

    The aim of this study is to conceptualize a novel approach, which facilitates us to design prototype interfaces for healthcare software. Concepts and techniques from various disciplines were used to conceptualize an interface design approach named MORTARS (Map Original Rhetorical To Adapted Rhetorical Situation). The concepts and techniques included in this approach are (1) rhetorical situation - a concept of philosophy provided by Bitzer (1968); (2) move analysis - an applied linguistic technique provided by Swales (1990) and Bhatia (1993); (3) interface design guidelines - a cognitive and computer science concept provided by Johnson (2010); (4) usability evaluation instrument - an interface evaluation questionnaire provided by Lund (2001); (5) user modeling via stereotyping - a cognitive and computer science concept provided by Rich (1979). A prototype interface for outpatient clinic software was designed to introduce the underlying concepts of MORTARS. The prototype interface was evaluated by thirty-two medical informaticians. The medical informaticians found the designed prototype interface to be useful (73.3%), easy to use (71.9%), easy to learn (93.1%), and satisfactory (53.2%). MORTARS approach was found to be effective in designing the prototype user interface for the outpatient clinic software. This approach might be further used to design interfaces for various software pertaining to healthcare and other domains. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. The Micromechanics of the Moving Contact Line

    NASA Technical Reports Server (NTRS)

    Han, Minsub; Lichter, Seth; Lin, Chih-Yu; Perng, Yeong-Yan

    1996-01-01

    The proposed research is divided into three components concerned with molecular structure, molecular orientation, and continuum averages of discrete systems. In the experimental program, we propose exploring how changes in interfacial molecular structure generate contact line motion. Rather than rely on the electrostatic and electrokinetic fields arising from the molecules themselves, we augment their interactions by an imposed field at the solid/liquid interface. By controling the field, we can manipulate the molecular structure at the solid/liquid interface. In response to controlled changes in molecular structure, we observe the resultant contact line motion. In the analytical portion of the proposed research we seek to formulate a system of equations governing fluid motion which accounts for the orientation of fluid molecules. In preliminary work, we have focused on describing how molecular orientation affects the forces generated at the moving contact line. Ideally, as assumed above, the discrete behavior of molecules can be averaged into a continuum theory. In the numerical portion of the proposed research, we inquire whether the contact line region is, in fact, large enough to possess a well-defined average. Additionally, we ask what types of behavior distinguish discrete systems from continuum systems. Might the smallness of the contact line region, in itself, lead to behavior different from that in the bulk? Taken together, our proposed research seeks to identify and accurately account for some of the molecular dynamics of the moving contact line, and attempts to formulate a description from which one can compute the forces at the moving contact line.

  4. Navigation interface for recommending home medical products.

    PubMed

    Luo, Gang

    2012-04-01

    Based on users' health issues, an intelligent personal health record (iPHR) system can automatically recommend home medical products (HMPs) and display them in a sequential order. However, the sequential output interface does not categorize search results and is not easy for users to quickly navigate to their desired HMPs. To address this problem, we developed a navigation interface for retrieved HMPs. Our idea is to use medical knowledge and nursing knowledge to construct a navigation hierarchy based on product categories. This hierarchy is added to the left side of each search result Web page to help users move through retrieved HMPs. We demonstrate the effectiveness of our techniques using USMLE medical exam cases.

  5. Embedded Control System for Smart Walking Assistance Device.

    PubMed

    Bosnak, Matevz; Skrjanc, Igor

    2017-03-01

    This paper presents the design and implementation of a unique control system for a smart hoist, a therapeutic device that is used in rehabilitation of walking. The control system features a unique human-machine interface that allows the human to intuitively control the system just by moving or rotating its body. The paper contains an overview of the complete system, including the design and implementation of custom sensors, dc servo motor controllers, communication interfaces and embedded-system based central control system. The prototype of the complete system was tested by conducting a 6-runs experiment on 11 subjects and results are showing that the proposed control system interface is indeed intuitive and simple to adopt by the user.

  6. Laterally bendable belt conveyor

    DOEpatents

    Peterson, William J.

    1985-01-01

    An endless, laterally flexible and bendable belt conveyor particularly adapted for coal mining applications in facilitating the transport of the extracted coal up- or downslope and around corners in a continuous manner is disclosed. The conveying means includes a flat rubber belt reinforced along the middle portion thereof along which the major portion of the belt tension is directed so as to cause rotation of the tubular shaped belt when trammed around lateral turns thus preventing excessive belt bulging distortion between adjacent belt supports which would inhibit belt transport. Pretension induced into the fabric reinforced flat rubber belt by conventional belt take-up means supports the load conveyed when the belt conveyor is making lateral turns. The carrying and return portions of the belt are supported and formed into a tubular shape by a plurality of shapers positioned along its length. Each shaper is supported from above by a monorail and includes clusters of idler rollers which support the belt. Additional cluster rollers in each shaper permit the belt supporting roller clusters to rotate in response to the belt's operating tension imposed upon the cluster rollers by induced lateral belt friction forces. The freely rotating roller clusters thus permit the belt to twist on lateral curves without damage to itself while precluding escape of the conveyed material by effectively enclosing it in the tube-shaped, inner belt transport length.

  7. Granulite belts of Central India with special reference to the Bhopalpatnam Granulite Belt: Significance in crustal evolution and implications for Columbia supercontinent

    NASA Astrophysics Data System (ADS)

    Vansutre, Sandeep; Hari, K. R.

    2010-11-01

    The Central Indian collage incorporates the following major granulite belts: (1) the Balaghat-Bhandara Granulite Belt (BBG), (2) the Ramakona-Katangi Granulite Belt (RKG), (3) the Chhatuabhavna Granulite (CBG) of Bilaspur-Raigarh Belt, (4) the Makrohar Granulite Belt (MGB) of Mahakoshal supracrustals, (5) the Kondagaon Granulite Belt (KGGB), (6) the Bhopalpatnam Granulite Belt (BGB), (7) the Konta Granulite Belt (KTGB) and (8) the Karimnagar Granulite Belt (KNGB) of the East Dharwar Craton (EDC). We briefly synthesize the general geologic, petrologic and geochronologic features of these belts and explain the Precambrian crustal evolution in Central India. On the basis of the available data, a collisional relationship between Bastar craton and the EDC during the Paleo-Mesoproterozoic is reiterated as proposed by the earlier workers. The tectonic evolution of only few of the orogenic belts (BGB in particular) of Central India is related to Columbia.

  8. Microfluidic on-chip fluorescence-activated interface control system

    PubMed Central

    Haiwang, Li; Nguyen, N. T.; Wong, T. N.; Ng, S. L.

    2010-01-01

    A microfluidic dynamic fluorescence-activated interface control system was developed for lab-on-a-chip applications. The system consists of a straight rectangular microchannel, a fluorescence excitation source, a detection sensor, a signal conversion circuit, and a high-voltage feedback system. Aqueous NaCl as conducting fluid and aqueous glycerol as nonconducting fluid were introduced to flow side by side into the straight rectangular microchannel. Fluorescent dye was added to the aqueous NaCl to work as a signal representing the interface position. Automatic control of the liquid interface was achieved by controlling the electroosmotic effect that exists only in the conducting fluid using a high-voltage feedback system. A LABVIEW program was developed to control the output of high-voltage power supply according the actual interface position, and then the interface position is modified as the output of high-voltage power supply. At last, the interface can be moved to the desired position automatically using this feedback system. The results show that the system presented in this paper can control an arbitrary interface location in real time. The effects of viscosity ratio, flow rates, and polarity of electric field were discussed. This technique can be extended to switch the sample flow and droplets automatically. PMID:21173886

  9. Interface formation of epitaxial MgO/Co2MnSi(001) structures: Elemental segregation and oxygen migration

    NASA Astrophysics Data System (ADS)

    McFadden, Anthony; Wilson, Nathaniel; Brown-Heft, Tobias; Pennachio, Daniel; Pendharkar, Mihir; Logan, John A.; Palmstrøm, Chris J.

    2017-12-01

    The interface formation in epitaxial MgO /Co2MnSi (001) films was studied using in-situ X-ray photoelectron spectroscopy (XPS). MgO was deposited on single crystal Co2MnSi (001) layers using e-beam evaporation: a technique which is expected to oxidize the Co2MnSi layer somewhat due to the rise in oxygen partial pressure during MgO deposition while leaving the deposited MgO oxygen deficient. Not unexpectedly, we find that e-beam evaporation of MgO raises the oxygen background in the deposition chamber to a level that readily oxidizes the Co2MnSi surface, with oxygen bonding preferentially to Mn and Si over Co. Interestingly, this oxidation causes an elemental segregation, with Mn-Si effectively moving toward the surface, resulting in an MgO /Co2MnSi interface with a composition significantly differing from the original surface of the unoxidized Co2MnSi film. As MgO is deposited on the oxidized Co2MnSi , the Mn-oxides are reduced, while the Si oxide remains, and is only somewhat reduced after additional annealing in ultrahigh vacuum. Annealing after the MgO is grown on Co2MnSi causes oxygen to move away from the oxidized Co2MnSi interface toward the surface and into the MgO. This observation is consistent with an increase in the tunneling magnetoresistance ratio with post-growth annealing measured in fabricated magnetic tunnel junctions (MTJs). The findings are discussed in light of fabrication of MgO/Heusler based MTJs, where the exponential decay of tunneling probability with contact separation exemplifies the importance of the ferromagnet/tunnel barrier interface.

  10. Diffuse-interface approach to rotating Hele-Shaw flows.

    PubMed

    Chen, Ching-Yao; Huang, Yu-Sheng; Miranda, José A

    2011-10-01

    When two fluids of different densities move in a rotating Hele-Shaw cell, the interface between them becomes centrifugally unstable and deforms. Depending on the viscosity contrast of the system, distinct types of complex patterns arise at the fluid-fluid boundary. Deformations can also induce the emergence of interfacial singularities and topological changes such as droplet pinch-off and self-intersection. We present numerical simulations based on a diffuse-interface model for this particular two-phase displacement that capture a variety of pattern-forming behaviors. This is implemented by employing a Boussinesq Hele-Shaw-Cahn-Hilliard approach, considering the whole range of possible values for the viscosity contrast, and by including inertial effects due to the Coriolis force. The role played by these two physical contributions on the development of interface singularities is illustrated and discussed.

  11. A numerical method for electro-kinetic flow with deformable fluid interfaces

    NASA Astrophysics Data System (ADS)

    Booty, Michael; Ma, Manman; Siegel, Michael

    2013-11-01

    We consider two-phase flow of ionic fluids whose motion is driven by an imposed electric field. At a fluid interface, a screening cloud of ions develops and forms an electro-chemical double layer or Debye layer. The imposed field acts on this induced charge distribution, resulting in a strong slip flow near the interface. We formulate a ``hybrid'' or multiscale numerical method in the thin Debye layer limit that incorporates an asymptotic analysis of the electrostatic potential and fluid dynamics in the Debye layer into a boundary integral solution of the full moving boundary problem. Results of the method are presented that show time-dependent deformation and steady state drop interface shapes when the timescale for charge-up of the Debye layer is either much less than or comparable to the timescale of the flow.

  12. Human occupants in low-speed frontal sled tests: effects of pre-impact bracing on chest compression, reaction forces, and subject acceleration.

    PubMed

    Kemper, Andrew R; Beeman, Stephanie M; Madigan, Michael L; Duma, Stefan M

    2014-01-01

    The purpose of this study was to investigate the effects of pre-impact bracing on the chest compression, reaction forces, and accelerations experienced by human occupants during low-speed frontal sled tests. A total of twenty low-speed frontal sled tests, ten low severity (∼2.5g, Δv=5 kph) and ten medium severity (∼5g, Δv=10 kph), were performed on five 50th-percentile male human volunteers. Each volunteer was exposed to two impulses at each severity, one relaxed and the other braced prior to the impulse. A 59-channel chestband, aligned at the nipple line, was used to quantify the chest contour and anterior-posterior sternum deflection. Three-axis accelerometer cubes were attached to the sternum, 7th cervical vertebra, and sacrum of each subject. In addition, three linear accelerometers and a three-axis angular rate sensor were mounted to a metal mouthpiece worn by each subject. Seatbelt tension load cells were attached to the retractor, shoulder, and lap portions of the standard three-point driver-side seatbelt. In addition, multi-axis load cells were mounted to each interface between the subject and the test buck to quantify reaction forces. For relaxed tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, all belt forces, and three resultant reaction forces (right foot, seatpan, and seatback). For braced tests, the higher test severity resulted in significantly larger peak values for all resultant accelerations, and two resultant reaction forces (right foot and seatpan). Bracing did not have a significant effect on the occupant accelerations during the low severity tests, but did result in a significant decrease in peak resultant sacrum linear acceleration during the medium severity tests. Bracing was also found to significantly reduce peak shoulder and retractor belt forces for both test severities, and peak lap belt force for the medium test severity. In contrast, bracing resulted in a significant increase in the peak resultant reaction force for the right foot and steering column at both test severities. Chest compression due to belt loading was observed for all relaxed subjects at both test severities, and was found to increase significantly with increasing severity. Conversely, chest compression due to belt loading was essentially eliminated during the braced tests for all but one subject, who sustained minor chest compression due to belt loading during the medium severity braced test. Overall, the data from this study illustrate that muscle activation has a significant effect on the biomechanical response of human occupants in low-speed frontal impacts.

  13. Discovery of Main-belt Comet P/2006 VW139 by Pan-STARRS1

    NASA Astrophysics Data System (ADS)

    Hsieh, Henry H.; Yang, Bin; Haghighipour, Nader; Kaluna, Heather M.; Fitzsimmons, Alan; Denneau, Larry; Novaković, Bojan; Jedicke, Robert; Wainscoat, Richard J.; Armstrong, James D.; Duddy, Samuel R.; Lowry, Stephen C.; Trujillo, Chadwick A.; Micheli, Marco; Keane, Jacqueline V.; Urban, Laurie; Riesen, Timm; Meech, Karen J.; Abe, Shinsuke; Cheng, Yu-Chi; Chen, Wen-Ping; Granvik, Mikael; Grav, Tommy; Ip, Wing-Huen; Kinoshita, Daisuke; Kleyna, Jan; Lacerda, Pedro; Lister, Tim; Milani, Andrea; Tholen, David J.; Vereš, Peter; Lisse, Carey M.; Kelley, Michael S.; Fernández, Yanga R.; Bhatt, Bhuwan C.; Sahu, Devendra K.; Kaiser, Nick; Chambers, K. C.; Hodapp, Klaus W.; Magnier, Eugene A.; Price, Paul A.; Tonry, John L.

    2012-03-01

    The main-belt asteroid (300163) 2006 VW139 (later designated P/2006 VW139) was discovered to exhibit comet-like activity by the Pan-STARRS1 (PS1) survey telescope using automated point-spread-function analyses performed by PS1's Moving Object Processing System. Deep follow-up observations show both a short (~10'') antisolar dust tail and a longer (~60'') dust trail aligned with the object's orbit plane, similar to the morphology observed for another main-belt comet (MBC), P/2010 R2 (La Sagra), and other well-established comets, implying the action of a long-lived, sublimation-driven emission event. Photometry showing the brightness of the near-nucleus coma remaining constant over ~30 days provides further evidence for this object's cometary nature, suggesting it is in fact an MBC, and not a disrupted asteroid. A spectroscopic search for CN emission was unsuccessful, though we find an upper limit CN production rate of Q CN < 1.3 × 1024 mol s-1, from which we infer a water production rate of Q_H_2O<10^{26} mol s-1. We also find an approximately linear optical spectral slope of 7.2%/1000 Å, similar to other cometary dust comae. Numerical simulations indicate that P/2006 VW139 is dynamically stable for >100 Myr, while a search for a potential asteroid family around the object reveals a cluster of 24 asteroids within a cutoff distance of 68 m s-1. At 70 m s-1, this cluster merges with the Themis family, suggesting that it could be similar to the Beagle family to which another MBC, 133P/Elst-Pizarro, belongs.

  14. DISCOVERY OF MAIN-BELT COMET P/2006 VW{sub 139} BY Pan-STARRS1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Henry H.; Yang Bin; Haghighipour, Nader

    2012-03-20

    The main-belt asteroid (300163) 2006 VW{sub 139} (later designated P/2006 VW{sub 139}) was discovered to exhibit comet-like activity by the Pan-STARRS1 (PS1) survey telescope using automated point-spread-function analyses performed by PS1's Moving Object Processing System. Deep follow-up observations show both a short ({approx}10'') antisolar dust tail and a longer ({approx}60'') dust trail aligned with the object's orbit plane, similar to the morphology observed for another main-belt comet (MBC), P/2010 R2 (La Sagra), and other well-established comets, implying the action of a long-lived, sublimation-driven emission event. Photometry showing the brightness of the near-nucleus coma remaining constant over {approx}30 days provides furthermore » evidence for this object's cometary nature, suggesting it is in fact an MBC, and not a disrupted asteroid. A spectroscopic search for CN emission was unsuccessful, though we find an upper limit CN production rate of Q{sub CN} < 1.3 Multiplication-Sign 10{sup 24} mol s{sup -1}, from which we infer a water production rate of Q{sub H{sub 2O}}<10{sup 26} mol s{sup -1}. We also find an approximately linear optical spectral slope of 7.2%/1000 A, similar to other cometary dust comae. Numerical simulations indicate that P/2006 VW{sub 139} is dynamically stable for >100 Myr, while a search for a potential asteroid family around the object reveals a cluster of 24 asteroids within a cutoff distance of 68 m s{sup -1}. At 70 m s{sup -1}, this cluster merges with the Themis family, suggesting that it could be similar to the Beagle family to which another MBC, 133P/Elst-Pizarro, belongs.« less

  15. Control Program for an Optical-Calibration Robot

    NASA Technical Reports Server (NTRS)

    Johnston, Albert

    2005-01-01

    A computer program provides semiautomatic control of a moveable robot used to perform optical calibration of video-camera-based optoelectronic sensor systems that will be used to guide automated rendezvous maneuvers of spacecraft. The function of the robot is to move a target and hold it at specified positions. With the help of limit switches, the software first centers or finds the target. Then the target is moved to a starting position. Thereafter, with the help of an intuitive graphical user interface, an operator types in coordinates of specified positions, and the software responds by commanding the robot to move the target to the positions. The software has capabilities for correcting errors and for recording data from the guidance-sensor system being calibrated. The software can also command that the target be moved in a predetermined sequence of motions between specified positions and can be run in an advanced control mode in which, among other things, the target can be moved beyond the limits set by the limit switches.

  16. 30 CFR 75.1731 - Maintenance of belt conveyors and belt conveyor entries.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maintenance of belt conveyors and belt conveyor....1731 Maintenance of belt conveyors and belt conveyor entries. (a) Damaged rollers, or other damaged belt conveyor components, which pose a fire hazard must be immediately repaired or replaced. All other...

  17. Establishing mesh topology in multi-material cells: enabling technology for robust and accurate multi-material simulations

    DOE PAGES

    Kikinzon, Evgeny; Shashkov, Mikhail Jurievich; Garimella, Rao Veerabhadra

    2018-05-29

    Real world problems are typically multi-material, combining materials such as gases, liquids and solids that have very different properties. The material interfaces may be fixed in time or can be a part of the solution, as in fluid-structure interactions or air-water dynamics, and therefore move and change shape. In such problems the computational mesh may be non-conformal to interfaces due to complexity of these interfaces, presence of small fractions of materials, or because the mesh does not move with the flow, as in the arbitrary Lagrangian–Eulerian (ALE) methods. In order to solve problems of interest on such meshes, interface reconstructionmore » methods are usually used to recover an approximation of material regions within the cells. For a cell intersecting multiple material regions, these approximations of contained subregions can be considered as single-material subcells in a local mesh that we call a minimesh. In this paper, we discuss some of the requirements that discretization methods have on topological information in the resulting hierarchical meshes and present an approach that allows incorporating the buildup of sufficiently detailed topology into the nested dissections based PLIC-type reconstruction algorithms (e.g. Volume-of-Fluid, Moment-of-Fluid) in an efficient and robust manner. Specifically, we describe the X-MOF interface reconstruction algorithm in 2D, which extends the Moment-Of-Fluid (MOF) method to include the topology of minimeshes created inside of multi-material cells and parent-child relations between corresponding mesh entities on different hierarchy levels. X-MOF retains the property of being local to a cell and not requiring external communication, which makes it suitable for massively parallel applications. Here, we demonstrate some scaling results for the X-MOF implementation in Tangram, a modern interface reconstruction framework for exascale computing.« less

  18. Establishing mesh topology in multi-material cells: enabling technology for robust and accurate multi-material simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kikinzon, Evgeny; Shashkov, Mikhail Jurievich; Garimella, Rao Veerabhadra

    Real world problems are typically multi-material, combining materials such as gases, liquids and solids that have very different properties. The material interfaces may be fixed in time or can be a part of the solution, as in fluid-structure interactions or air-water dynamics, and therefore move and change shape. In such problems the computational mesh may be non-conformal to interfaces due to complexity of these interfaces, presence of small fractions of materials, or because the mesh does not move with the flow, as in the arbitrary Lagrangian–Eulerian (ALE) methods. In order to solve problems of interest on such meshes, interface reconstructionmore » methods are usually used to recover an approximation of material regions within the cells. For a cell intersecting multiple material regions, these approximations of contained subregions can be considered as single-material subcells in a local mesh that we call a minimesh. In this paper, we discuss some of the requirements that discretization methods have on topological information in the resulting hierarchical meshes and present an approach that allows incorporating the buildup of sufficiently detailed topology into the nested dissections based PLIC-type reconstruction algorithms (e.g. Volume-of-Fluid, Moment-of-Fluid) in an efficient and robust manner. Specifically, we describe the X-MOF interface reconstruction algorithm in 2D, which extends the Moment-Of-Fluid (MOF) method to include the topology of minimeshes created inside of multi-material cells and parent-child relations between corresponding mesh entities on different hierarchy levels. X-MOF retains the property of being local to a cell and not requiring external communication, which makes it suitable for massively parallel applications. Here, we demonstrate some scaling results for the X-MOF implementation in Tangram, a modern interface reconstruction framework for exascale computing.« less

  19. Wrench tectonics control on Neogene-Quaternary sedimentation along the Mid-Hungarian Mobile Belt

    NASA Astrophysics Data System (ADS)

    Pogacsas, Gyorgy; Juhász, Györgyi; Mádl-Szőnyi, Judit; Simon, Szilvia; Lukács, Szilveszter; Csizmeg, János

    2010-05-01

    The Neogene Pannonian basin is underlain by a large orogenic collage which is built up by several tectonostratigraphic terrains. The basement of the Pannonian Basin became imbricate nappes during the Cretaceous Alpine collision. Nappes of Late Cretaceous in age have been proven below the Great Hungarian Plain (Grow et al 1994). The boundary of the two main terrains, the northwestern ALCAPA (Alpine-Carpathian-Pannonian) and the southeastern TISZA, is the Mid-Hungarian Mobile Belt. It is the most significant neotectonic zone of the Pannonian Basin. The structural analysis of the middle section of the Mid-Hungarian Mobile Belt was carried out on a 120km x 50km area, between the Danube and the Tisza river, on the basis of interpretation of seismic data. The structural analysis of the Neogene-Quaternary sediments was supported by sequence stratigraphic interpretation of seismic, well log and core-sample data. Regional seismic profiles were both oriented in the dip direction, which highlights sediment supply routes into the basin, and strike-oriented. The studied segment of the Mid-Hungarian Mobile Belt consists of several long (some ten kilometres long) strike slip fault zones. The offset lengths of the individual strike slipe faults varies between a few and a dozens of kilometres. Activity along the Mid-Hungarian Mobile Belt can be characterised by four periods, the size and shape of facies zones of each development period were controlled by tectonics: 1. During the early Miocene, the ALPACA moved eastward, bounded by sinistral strike-slipe system along its northern side and dextral strike-slipe fault system along its contact with the Southern Alps and the TISZA terrain. The largest movement took part during the Ottnangian-Karpatian (19-16.5 Ma). The TISZA unit moved northeastward over the remnant Carpathian Flysch Basin (Nemcok et al 2006). These terrains movements resulted in right lateral, convergent wide wrench along the Mid-Hungarian Mobile Belt. The ALPACA terrain, lying originally between the Central Alpine and Southern Alpine units, reached its recent position by some hundred kilometers strike slip movement, resulting in shifting of depocenters from the SW toward NE. The TISZA unit was characterised by clockwise motion, while counterclockwise rotation of the ALPACA is inferred in Late Oligocene-Miocene. Lower Miocene layers were deposited in depocenters whose subsidence was initiated by escape tectonics, NE-ward displacement of the ALCAPA terrane, and uplifting of the NW-SE oriented Neo-Vardar zone. The Neo-Vardar zone was represented by wide area of continental and alluvial depositional systems. 2. During the middle-late Badenian (15.5-13.6Ma), the ALCAPA collided with the European platform, and the eastward movement of the Tisza-Dacia became pronounced. Because of that the former right lateral motion along the Mid-Hungarian Mobile Belt ceased and a long period of left lateral strike slipe began. Earlier development of pull-apart basins, related to the extensive strike-slip faulting inside the ALCAPA, changed to the graben opening driven by the westward subduction and the eastward motion of the Tisza-Dacia. The middle-late Badenian period was characterised by sediments deposited in listric fault bounded half grabens, in crestal collapse grabens related to (flat-ramp) listric faults, in wide and/or narrow rift systems. Migration of volcanic activity and facies belts took place during relatively short period of times. Large displacements along listric faults have resulted in tilting of originally horizontal strata, and the formation of a regional unconformity between the middle Miocene and the upper Miocene sediments. Wrench fault related pull apart basins were filled by terrestrial to marine sediments. 3. During the Sarmatian-Pannonian (13.6-6.2 Ma), while the eastward motion of the ALPACA was strictly restricted, the Tisza-Dacia unit was able still to move eastward until the last parts of the remnant Carpathian Flysch Basin were overridden by the Carpathian orogen. An estimation of 8-10 km magnitude of Late Miocene strike slip was based on detailed seismic study on the Kiskőrös segment of the Mid-Hungarian Mobile Belt, while Detzky Lőrincz (1997) estimated 5-10 km strike slip for the Szolnok segment of the same Mobile Belt. The Tisza-Dacia unit collided with the European platform during the Pannonian (11.5-6.2 Ma), and the intra-Carpathian stress field changed to the present stress field. During the Pannonian sediments were transported from NW into the studied part of the Pannonian Basin. The main route of sediment supply was perpendicular to the strike of the Mid Hungarian Mobile Belt. The delta system could keep up with the (Pannonian) lake level rise so aggradation occured. Then the structural style chanced and at SB Pa-4 (appr. 6.8 Ma) a strong base level drop occured driven by the onset of inversion in the coeval marginal areas of the basin. Sedimentation continued at a lower base level from that time. Coincidence of base level drop, rejuvenation of tectonic activity along the Mid-Hungarian Mobile Belt and presence of delta/shore facies zones being paralell with the Mobile Belt resulted giant incised canyon system in the Alpár area. The canyon system incised several hundred meters in the preexisting aggrading substrat, loosing topographic expression headwards and downdip (Juhász et al 2007). The individual valleys range from 5 to 10 km, with smaller tributaries. The valley depth is greatest 600-700 m)around their confluence. The canyons are filled with clay marls, and are overlain by fluvial sediments, suggesting a significant transgression in between. The canyon system is related to a large releasing bend and/or extensional duplex of the Mid-Hungarian Mobile Belt. 4. During the Pliocene-Quaternary, the postrift fill of the Pannonian Basin system, related to the regional thermal subsidence, started to undergo an inversion. Convergence vector again became parallel to the Africa-Europe convergence vector. Pliocene-Quaternary was characterised by 1-5 km left lateral wrenching along the Mid-Hungarian Mobile Belt. Based on high resolution seismic measurements on the Danube river Toth (2003) supposed an even more recent activity along the Paks-Szolnok wrench fault zone. The supposed late Quaternary activity of the Mid-Hungarian Mobile Belt is supported by recent hydrogeologic investigations. According to Mádl-Szőnyi et al (2005) and Simon et al (in press) from the Pre-Neogene basement originates an ascending overpressured highly saline water flow regime. Deep ascending water rises near to the surface, intercepting the aquifer and aquitard layers along conductive strike slipe faults of the Mid-Hungarian Mobile Belt and mixing with shallower groundwater. Acknowledgements The research work was supported by the Hungarian National Research Fund (OTKA 035168, T 047159). References Detzky Lőrinc K. (1997) Detailed tectonic study of the Western edge of the Szolnok flysch zone using seismic and well data. Thesis Candidate of Science. Hungarian Academy of Science. p. 121. Grow J. A., R. E. Mattick, A. Bérczi-Makk, Cs. Péró, D. Hajdú, Gy. Pogácsás, P. Várnai, E. Varga, (1994) Structure of the Békés basin inferred from seismic reflection, well and gravity data. in Teleki P., J. Kókai, R.E. Mattick eds. Basin analysis in petroleum exploration, a case study from the Békés basin, Hungary. Kluwer Academic Publisher, Dordrecht, Netherlands, p. 1-38. Juhász, Gy., Pogácsás Gy., Magyar I. (2007) A giant canyon system incised into the Late-Neogene (pannonian s.l.) sediments? (in Hungarian Óriáskanyon-rendszer szeli át a pannóniai üledékeket? Földtani Közlöny (Bulletin of the Geological Society of Hungary)137/3. 307-326. Mádlné Szőnyi J. Simon Sz. Tóth J. Pogácsás Gy. (2005) Interrelationship between surface and subsurface waters at the Kelemen-szék and Kolon lakes, Duna-Tisza Interfluve, Hungary (in Hungarian Felszíni és felszín alatti vizek kapcsolata a Duna-Tisza közi Kelemen-szék és Kolon-tó esetében). Általános Földtani Szemle 30. 93-110. Nemcok, M., G. Pogacsas, and L. Pospisil, (2006) Activity timing of the main tectonic systems in the Carpathian-Pannonian region in relation to the rollback destruction of the lithosphere, in J. Golonka and F. Picha, eds., The Carpathians and their foreland:Geology and hydrocarbon resources: AAPG Memoir 84. p. 743-766. Simon Sz., Mádl-Szőnyi J., Müller I., Pogácsás Gy. (in press) Basement source of surface salinization, Lake Kelemenszék area, Duna-Tisza Interfluve, Hungary (submitted to the Hydrology Journal) Toth T. (2003) Seismic survey on rivers (Folyóvizi szeizmikus mérések) PhD Thesis, Eötvös Lorand University, Geophysical Department, Budapest. p. 136.

  20. A possible divot in the Kuiper belt's scattered-object size distribution

    NASA Astrophysics Data System (ADS)

    Shankman, C.; Kavelaars, J.; Gladman, B.; Petit, J.

    2014-07-01

    The formation and evolution history of the Solar System, while not directly accessible, has measurable signatures in the present-day size distributions of the Trans-Neptunian Object (TNO) populations. The form of the size distribution is modelled as a power law with number going as size to some characteristic slope. Recent works have shown that a single power law does not match the observations across all sizes; the power law breaks to a different form [1, 2, 3]. The large- size objects record the accretion history, while the small-size objects record the collision history. The changes of size-distribution shape and slope as one moves from 'large' to 'medium' to 'small' KBOs are the signature needed to constrain the formation and collision history of the Solar System. The scattering TNOs are those TNOs undergoing strong (scattering) interactions Neptune. The scattering objects can come to pericentre in the giant planet region. This close-in pericentre passage allows for the observation of smaller objects, and thus for the constraint of the small-size end of the size distribution. Our recent analysis of the Canada France Ecliptic Plane Survey's (CFEPS) scattering objects revealed an exciting potential form for the scattering object size distribution - a divot (see Figure). Our divot (a sharp drop in the number of objects per unit size which then returns at a potentially different slope) matches our observations well and can simultaneously explain observed features in other inclined (so-called "hot") Kuiper Belt populations. In this scenario all of the hot populations would share the same source and have been implanted in the outer solar system through scattering processes. If confirmed, our divot would represent a new exciting paradigm for the formation history of the Kuiper Belt. Here we present the results of an extension of our previous work to include a new, deeper, Kuiper Belt survey. By the addition of two new faint scattering objects from this survey which, in tandem with the full characterizations of the survey's biases (acting like non- detections limits), we better constrain the form of the scattering object size distribution.

  1. Conceptual Model for Basement and Surface Structure Relationships in an Oblique Collision, Sawtooth Range, MT

    NASA Astrophysics Data System (ADS)

    Palu, J. M.; Burberry, C. M.

    2014-12-01

    The reactivation potential of pre-existing basement structures affects the geometry of subsequent deformation structures. A conceptual model depicting the results of these interactions can be applied to multiple fold-thrust systems and lead to valuable deformation predictions. These predictions include the potential for hydrocarbon traps or seismic risk in an actively deforming area. The Sawtooth Range, Montana, has been used as a study area. A model for the development of structures close to the Augusta Syncline in the Sawtooth Range is being developed using: 1) an ArcGIS map of the basement structures of the belt based on analysis of geophysical data indicating gravity anomalies and aeromagnetic lineations, seismic data indicating deformation structures, and well logs for establishing lithologies, previously collected by others and 2) an ArcGIS map of the surface deformation structures of the belt based on interpretation of remote sensing images and verification through the collection of surface field data indicating stress directions and age relationships, resulting in a conceptual model based on the understanding of the interaction of the two previous maps including statistical correlations of data and development of balanced cross-sections using Midland Valley's 2D/3D Move software. An analysis of the model will then indicate viable deformation paths where prominent basement structures influenced subsequently developed deformation structures and reactivated faults. Preliminary results indicate that the change in orientation of thrust faults observed in the Sawtooth Range, from a NNW-SSE orientation near the Gibson Reservoir to a WNW-ESE trend near Haystack Butte correlates with pre-existing deformation structures lying within the Great Falls Tectonic Zone. The Scapegoat-Bannatyne trend appears to be responsible for this orientation change and rather than being a single feature, may be composed of up to 4 NE-SW oriented basement strike-slip faults. This indicates that the pre-existing basement features have a profound effect on the geometry of the later deformation. This conceptual model can also be applied to other deformed belts to provide a prediction for the potential hydrocarbon trap locations of the belt as well as their seismic risk.

  2. Fold interference pattern in thick-skinned tectonics; a case study from the external Variscan belt of Eastern Anti-Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Baidder, L.; Michard, A.; Soulaimani, A.; Fekkak, A.; Eddebbi, A.; Rjimati, E.-C.; Raddi, Y.

    2016-07-01

    Conflicting views are expressed in literature concerning fold interference patterns in thick-skinned tectonic context (e.g. Central Anti-Atlas and Rocky Mountains-Colorado areas). Such patterns are referred to superimposed events with distinct orientation of compression or to the inversion of paleofaults with distinct strike during a single compressional event. The present work presents a case study where both types of control on fold interference are likely to be combined. The studied folds occur in the Tafilalt-Maider area of eastern Anti-Atlas, i.e. in the E-trending foreland fold belt of the Meseta Variscan Orogen in the area where it connects with the SE-trending, intracontinental Ougarta Variscan belt. Detail mapping documents unusual fold geometries such as sigmoidal and croissant- or boomerang-shaped folds associated with a complex major fault pattern. The folded rock material corresponds to a 6-8 km-thick Cambrian-Serpukhovian sedimentary pile that includes alternating competent and incompetent formations. The basement of the Paleozoic succession is made up of rhomboedric tilted blocks that formed during the Cambrian rifting of north-western Gondwana and the Devonian dislocation of the Sahara platform. The latter event is responsible for an array of paleofaults bounding the Maider and South Tafilalt Devonian-Early Carboniferous basins with respect to the adjoining high axes. The Variscan Orogeny began during the Bashkirian-Westphalian with a N-S direction of shortening that converted the NW-trending Ougnat-Ouzina paleogeographic high into a mega dextral shear zone. Folds developed on top of a moving mosaic of basement blocks, being oriented en echelon on the inverted paleofaults or above intensely sheared fault zones. However, a dominantly NE-SW compression responsible for the building of the Ougarta belt also affected the studied area, presumably during the latest Carboniferous-Early Permian. The resulting fold interference pattern and peculiar geometries (J. Tijekht croissant-shaped fold) would exemplify a dual control of deformation by both the variably oriented basement paleofaults and the evolution of the regional shortening direction with time.

  3. Uninterrupted optical light curves of main-belt asteroids from the K2 mission

    NASA Astrophysics Data System (ADS)

    Szabó, R.; Pál, A.; Sárneczky, K.; Szabó, Gy. M.; Molnár, L.; Kiss, L. L.; Hanyecz, O.; Plachy, E.; Kiss, Cs.

    2016-11-01

    Context. Because the second reaction wheel failed, a new mission was conceived for the otherwise healthy Kepler space telescope. In the course of the K2 mission, the telescope is staring at the plane of the Ecliptic. Thousands of solar system bodies therefore cross the K2 fields and usually cause additional noise in the highly accurate photometric data. Aims: We here follow the principle that some person's noise is another person's signal and investigate the possibility of deriving continuous asteroid light curves. This is the first such endeavor. In general, we are interested in the photometric precision that the K2 mission can deliver on moving solar system bodies. In particular, we investigate space photometric optical light curves of main-belt asteroids. Methods: We studied the K2 superstamps that cover the fields of M35, and Neptune together with Nereid, which were observed in the long-cadence mode (29.4 min sampling). Asteroid light curves were generated by applying elongated apertures. We used the Lomb-Scargle method to determine periodicities that are due to rotation. Results: We derived K2 light curves of 924 main-belt asteroids in the M35 field and 96 in the path of Neptune and Nereid. The light curves are quasi-continuous and several days long. K2 observations are sensitive to longer rotational periods than typical ground-based surveys. Rotational periods are derived for 26 main-belt asteroids for the first time. The asteroid sample is dominated by faint objects (>20 mag). Owing to the faintness of the asteroids and the high density of stars in the M35 field, only 4.0% of the asteroids with at least 12 data points show clear periodicities or trends that signal a long rotational period, as opposed to 15.9% in the less crowded Neptune field. We found that the duty cycle of the observations had to reach 60% to successfully recover rotational periods. Full Tables 1-4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/596/A40

  4. Analysis of Fault Spacing in Thrust-Belt Wedges Using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Regensburger, P. V.; Ito, G.

    2017-12-01

    Numerical modeling is invaluable in studying the mechanical processes governing the evolution of geologic features such as thrust-belt wedges. The mechanisms controlling thrust fault spacing in wedges is not well understood. Our numerical model treats the thrust belt as a visco-elastic-plastic continuum and uses a finite-difference, marker-in-cell method to solve for conservation of mass and momentum. From these conservation laws, stress is calculated and Byerlee's law is used to determine the shear stress required for a fault to form. Each model consists of a layer of crust, initially 3-km-thick, carried on top of a basal décollement, which moves at a constant speed towards a rigid backstop. A series of models were run with varied material properties, focusing on the angle of basal friction at the décollement, the angle of friction within the crust, and the cohesion of the crust. We investigate how these properties affected the spacing between thrusts that have the most time-integrated history of slip and therefore have the greatest effect on the large-scale undulations in surface topography. The surface position of these faults, which extend through most of the crustal layer, are identifiable as local maxima in positive curvature of surface topography. Tracking the temporal evolution of faults, we find that thrust blocks are widest when they first form at the front of the wedge and then they tend to contract over time as more crustal material is carried to the wedge. Within each model, thrust blocks form with similar initial widths, but individual thrust blocks develop differently and may approach an asymptotic width over time. The median of thrust block widths across the whole wedge tends to decrease with time. Median fault spacing shows a positive correlation with both wedge cohesion and internal friction. In contrast, median fault spacing exhibits a negative correlation at small angles of basal friction (<17˚) and a positive correlation with larger angles of basal friction. From these correlations, we will derive scaling laws that can be used to predict fault spacing in thrust-belt wedges.

  5. Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankara Rama Krishnan, P. S.; Munroe, Paul; Nagarajan, V.

    Cation intermixing at functional oxide interfaces remains a highly controversial area directly relevant to interface-driven nanoelectronic device properties. Here, we systematically explore the cation intermixing in epitaxial (001) oriented multiferroic bismuth ferrite (BFO) grown on a (001) lanthanum aluminate (LAO) substrate. Aberration corrected dedicated scanning transmission electron microscopy and electron energy loss spectroscopy reveal that the interface is not chemically sharp, but with an intermixing of ∼2 nm. The driving force for this process is identified as misfit-driven elastic strain. Landau-Ginzburg-Devonshire-based phenomenological theory was combined with the Sheldon and Shenoy formula in order to understand the influence of boundary conditions andmore » depolarizing fields arising from misfit strain between the LAO substrate and BFO film. The theory predicts the presence of a strong potential gradient at the interface, which decays on moving into the bulk of the film. This potential gradient is significant enough to drive the cation migration across the interface, thereby mitigating the misfit strain. Our results offer new insights on how chemical roughening at oxide interfaces can be effective in stabilizing the structural integrity of the interface without the need for misfit dislocations. These findings offer a general formalism for understanding cation intermixing at highly strained oxide interfaces that are used in nanoelectronic devices.« less

  6. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries.

    PubMed

    Ge, Liang; Sotiropoulos, Fotis

    2007-08-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus.

  7. A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries

    PubMed Central

    Ge, Liang; Sotiropoulos, Fotis

    2008-01-01

    A novel numerical method is developed that integrates boundary-conforming grids with a sharp interface, immersed boundary methodology. The method is intended for simulating internal flows containing complex, moving immersed boundaries such as those encountered in several cardiovascular applications. The background domain (e.g the empty aorta) is discretized efficiently with a curvilinear boundary-fitted mesh while the complex moving immersed boundary (say a prosthetic heart valve) is treated with the sharp-interface, hybrid Cartesian/immersed-boundary approach of Gilmanov and Sotiropoulos [1]. To facilitate the implementation of this novel modeling paradigm in complex flow simulations, an accurate and efficient numerical method is developed for solving the unsteady, incompressible Navier-Stokes equations in generalized curvilinear coordinates. The method employs a novel, fully-curvilinear staggered grid discretization approach, which does not require either the explicit evaluation of the Christoffel symbols or the discretization of all three momentum equations at cell interfaces as done in previous formulations. The equations are integrated in time using an efficient, second-order accurate fractional step methodology coupled with a Jacobian-free, Newton-Krylov solver for the momentum equations and a GMRES solver enhanced with multigrid as preconditioner for the Poisson equation. Several numerical experiments are carried out on fine computational meshes to demonstrate the accuracy and efficiency of the proposed method for standard benchmark problems as well as for unsteady, pulsatile flow through a curved, pipe bend. To demonstrate the ability of the method to simulate flows with complex, moving immersed boundaries we apply it to calculate pulsatile, physiological flow through a mechanical, bileaflet heart valve mounted in a model straight aorta with an anatomical-like triple sinus. PMID:19194533

  8. ML Crew Access Arm Move

    NASA Image and Video Library

    2017-11-09

    The Orion crew access arm, secured on a stand, is being prepared for its move from a storage location at NASA's Kennedy Space Center in Florida, to the mobile launcher (ML) tower near the Vehicle Assembly Building at the center. The crew access arm will be installed at about the 274-foot level on the tower. It will rotate from its retracted position and interface with the Orion crew hatch location to provide entry to the Orion crew module. The Ground Systems Development and Operations Program is overseeing installation of umbilicals and launch accessories on the ML tower.

  9. Application Portable Parallel Library

    NASA Technical Reports Server (NTRS)

    Cole, Gary L.; Blech, Richard A.; Quealy, Angela; Townsend, Scott

    1995-01-01

    Application Portable Parallel Library (APPL) computer program is subroutine-based message-passing software library intended to provide consistent interface to variety of multiprocessor computers on market today. Minimizes effort needed to move application program from one computer to another. User develops application program once and then easily moves application program from parallel computer on which created to another parallel computer. ("Parallel computer" also include heterogeneous collection of networked computers). Written in C language with one FORTRAN 77 subroutine for UNIX-based computers and callable from application programs written in C language or FORTRAN 77.

  10. Mathematical modelling of convective processes in a weld pool under electric arc surfacing

    NASA Astrophysics Data System (ADS)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.

    2017-01-01

    The authors develop the mathematical model of convective processes in a molten pool under electric arc surfacing with flux-cored wire. The model is based on the ideas of how convective flows appear due to temperature gradient and action of electromagnetic forces. Influence of alloying elements in the molten metal was modeled as a non-linear dependence of surface tension upon temperature. Surface tension and its temperature coefficient were calculated according to the electron density functional method with consideration to asymmetric electron distribution at the interface “molten metal / shielding gas”. Simultaneous solution of Navier-Stokes and Maxwell equations according to finite elements method with consideration to the moving heat source at the interface showed that there is a multi-vortex structure in the molten metal. This structure gives rise to a downward heat flux which, at the stage of heating, moves from the centre of the pool and stirs it full width. At the cooling stage this flux moves towards the centre of the pool and a single vortex is formed near the symmetry centre. This flux penetration is ∼ 10 mm. Formation of the downward heat flux is determined by sign reversal of the temperature coefficient of surface tension due to the presence of alloying elements.

  11. Self-propulsion against a moving membrane: Enhanced accumulation and drag force

    NASA Astrophysics Data System (ADS)

    Marini Bettolo Marconi, U.; Sarracino, A.; Maggi, C.; Puglisi, A.

    2017-09-01

    Self-propulsion (SP) is a main feature of active particles (AP), such as bacteria or biological micromotors, distinguishing them from passive colloids. A renowned consequence of SP is accumulation at static interfaces, even in the absence of hydrodynamic interactions. Here we address the role of SP in the interaction between AP and a moving semipermeable membrane. In particular, we implement a model of noninteracting AP in a channel crossed by a partially penetrable wall, moving at a constant velocity c . With respect to both the cases of passive colloids with c >0 and AP with c =0 , the AP with finite c show enhancement of accumulation in front of the obstacle and experience a largely increased drag force. This effect is understood in terms of an effective potential localised at the interface between particles and membrane, of height proportional to c τ /ξ , where τ is the AP's reorientation time and ξ the width characterizing the surface's smoothness (ξ →0 for hard core obstacles). An approximate analytical scheme is able to reproduce the observed density profiles and the measured drag force, in very good agreement with numerical simulations. The effects discussed here can be exploited for automatic selection and filtering of AP with desired parameters.

  12. NHQ20171218_ATD2_001

    NASA Image and Video Library

    2017-12-18

    You’re on board an aircraft at the gate. Seat belts are all fastened and you’re ready to go. But then you wait. Finally you leave the gate and move out onto the tarmac. And wait. Why the delays? It’s all in the timing. Right now NASA is testing a software solution at Charlotte Douglas International Airport that coordinates the schedules between different “drivers” at the airport – the FAA controllers for traffic arriving and departing; the airline controllers for traffic on the airport’s surface. The goal? Get everyone to collaborate by sharing the same information about where an aircraft is, where it needs to be and when it needs to be there.

  13. KSC-07pd1720

    NASA Image and Video Library

    2007-07-01

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the second half of the fairing moves toward NASA's Dawn spacecraft to complete encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller

  14. KSC-07pd1717

    NASA Image and Video Library

    2007-07-01

    KENNEDY SPACE CENTER, FLA. -- On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the first half of the fairing moves toward NASA's Dawn spacecraft for encapsulation. The fairing is a molded structure that fits flush with the outside surface of the Delta II upper stage booster and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. Dawn's goal is to characterize the conditions and processes of the solar system's earliest epoch 4.5 billion years ago by investigating in detail two of the largest asteroids, Ceres and Vesta. They reside between Mars and Jupiter in the asteroid belt. Launch is scheduled for July 8. Photo credit: NASA/Amanda Diller

  15. Laparoscopic simulation interface

    DOEpatents

    Rosenberg, Louis B.

    2006-04-04

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  16. Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2016-07-01

    In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio Rcritical, in terms of the adiabatic indices of the two fluids, and a critical Mach number Mscritical of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than Rcritical then a standing shock wave is possible at Ms=Mscritical . Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. We point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.

  17. Solvent Exchange Leading to Nanobubble Nucleation: A Molecular Dynamics Study

    PubMed Central

    2017-01-01

    The solvent exchange procedure has become the most-used protocol to produce surface nanobubbles, while the molecular mechanisms behind the solvent exchange are far from being fully understood. In this paper, we build a simple model and use molecular dynamics simulations to investigate the dynamic characteristics of solvent exchange for producing nanobubbles. We find that at the first stage of solvent exchange, there exists an interface between interchanging solvents of different gas solubility. This interface moves toward the substrate gradually as the exchange process proceeds. Our simulations reveal directed diffusion of gas molecules against the gas concentration gradient, driven by the solubility gradient of the liquid composition across the moving solvent–solvent interface. It is this directed diffusion that causes gas retention and produces a local gas oversaturation much higher near the substrate than far from it. At the second stage of solvent exchange, the high local gas oversaturation leads to bubble nucleation either on the solid surface or in the bulk solution, which is found to depend on the substrate hydrophobicity and the degree of local gas oversaturation. Our findings suggest that solvent exchange could be developed into a standard procedure to produce oversaturation and used to a variety of nucleation applications other than generating nanobubbles. PMID:28742364

  18. Discrete Fractional Component Monte Carlo Simulation Study of Dilute Nonionic Surfactants at the Air-Water Interface.

    PubMed

    Yoo, Brian; Marin-Rimoldi, Eliseo; Mullen, Ryan Gotchy; Jusufi, Arben; Maginn, Edward J

    2017-09-26

    We present a newly developed Monte Carlo scheme to predict bulk surfactant concentrations and surface tensions at the air-water interface for various surfactant interfacial coverages. Since the concentration regimes of these systems of interest are typically very dilute (≪10 -5 mol. frac.), Monte Carlo simulations with the use of insertion/deletion moves can provide the ability to overcome finite system size limitations that often prohibit the use of modern molecular simulation techniques. In performing these simulations, we use the discrete fractional component Monte Carlo (DFCMC) method in the Gibbs ensemble framework, which allows us to separate the bulk and air-water interface into two separate boxes and efficiently swap tetraethylene glycol surfactants C 10 E 4 between boxes. Combining this move with preferential translations, volume biased insertions, and Wang-Landau biasing vastly enhances sampling and helps overcome the classical "insertion problem", often encountered in non-lattice Monte Carlo simulations. We demonstrate that this methodology is both consistent with the original molecular thermodynamic theory (MTT) of Blankschtein and co-workers, as well as their recently modified theory (MD/MTT), which incorporates the results of surfactant infinite dilution transfer free energies and surface tension calculations obtained from molecular dynamics simulations.

  19. A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2016-04-01

    We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.

  20. Microwave interferometry technique for obtaining gas interface velocity measurements in an expansion tube facility

    NASA Technical Reports Server (NTRS)

    Laney, C. C., Jr.

    1974-01-01

    A microwave interferometer technique to determine the front interface velocity of a high enthalpy gas flow, is described. The system is designed to excite a standing wave in an expansion tube, and to measure the shift in this standing wave as it is moved by the test gas front. Data, in the form of a varying sinusoidal signal, is recorded on a high-speed drum camera-oscilloscope combination. Measurements of average and incremental velocities in excess of 6,000 meters per second were made.

Top