Method and System for Object Recognition Search
NASA Technical Reports Server (NTRS)
Duong, Tuan A. (Inventor); Duong, Vu A. (Inventor); Stubberud, Allen R. (Inventor)
2012-01-01
A method for object recognition using shape and color features of the object to be recognized. An adaptive architecture is used to recognize and adapt the shape and color features for moving objects to enable object recognition.
Scene recognition following locomotion around a scene.
Motes, Michael A; Finlay, Cory A; Kozhevnikov, Maria
2006-01-01
Effects of locomotion on scene-recognition reaction time (RT) and accuracy were studied. In experiment 1, observers memorized an 11-object scene and made scene-recognition judgments on subsequently presented scenes from the encoded view or different views (ie scenes were rotated or observers moved around the scene, both from 40 degrees to 360 degrees). In experiment 2, observers viewed different 5-object scenes on each trial and made scene-recognition judgments from the encoded view or after moving around the scene, from 36 degrees to 180 degrees. Across experiments, scene-recognition RT increased (in experiment 2 accuracy decreased) with angular distance between encoded and judged views, regardless of how the viewpoint changes occurred. The findings raise questions about conditions in which locomotion produces spatially updated representations of scenes.
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Bobick, Aaron; Jones, Eric
2010-04-01
In this paper, we describe results from experimental analysis of a model designed to recognize activities and functions of moving and static objects from low-resolution wide-area video inputs. Our model is based on representing the activities and functions using three variables: (i) time; (ii) space; and (iii) structures. The activity and function recognition is achieved by imposing lexical, syntactic, and semantic constraints on the lower-level event sequences. In the reported research, we have evaluated the utility and sensitivity of several algorithms derived from natural language processing and pattern recognition domains. We achieved high recognition accuracy for a wide range of activity and function types in the experiments using Electro-Optical (EO) imagery collected by Wide Area Airborne Surveillance (WAAS) platform.
Generation, recognition, and consistent fusion of partial boundary representations from range images
NASA Astrophysics Data System (ADS)
Kohlhepp, Peter; Hanczak, Andrzej M.; Li, Gang
1994-10-01
This paper presents SOMBRERO, a new system for recognizing and locating 3D, rigid, non- moving objects from range data. The objects may be polyhedral or curved, partially occluding, touching or lying flush with each other. For data collection, we employ 2D time- of-flight laser scanners mounted to a moving gantry robot. By combining sensor and robot coordinates, we obtain 3D cartesian coordinates. Boundary representations (Brep's) provide view independent geometry models that are both efficiently recognizable and derivable automatically from sensor data. SOMBRERO's methods for generating, matching and fusing Brep's are highly synergetic. A split-and-merge segmentation algorithm with dynamic triangular builds a partial (21/2D) Brep from scattered data. The recognition module matches this scene description with a model database and outputs recognized objects, their positions and orientations, and possibly surfaces corresponding to unknown objects. We present preliminary results in scene segmentation and recognition. Partial Brep's corresponding to different range sensors or viewpoints can be merged into a consistent, complete and irredundant 3D object or scene model. This fusion algorithm itself uses the recognition and segmentation methods.
Object recognition for autonomous robot utilizing distributed knowledge database
NASA Astrophysics Data System (ADS)
Takatori, Jiro; Suzuki, Kenji; Hartono, Pitoyo; Hashimoto, Shuji
2003-10-01
In this paper we present a novel method of object recognition utilizing a remote knowledge database for an autonomous robot. The developed robot has three robot arms with different sensors; two CCD cameras and haptic sensors. It can see, touch and move the target object from different directions. Referring to remote knowledge database of geometry and material, the robot observes and handles the objects to understand them including their physical characteristics.
ERIC Educational Resources Information Center
Saneyoshi, Ayako; Michimata, Chikashi
2009-01-01
Participants performed two object-matching tasks for novel, non-nameable objects consisting of geons. For each original stimulus, two transformations were applied to create comparison stimuli. In the categorical transformation, a geon connected to geon A was moved to geon B. In the coordinate transformation, a geon connected to geon A was moved to…
Shape and Color Features for Object Recognition Search
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.
2012-01-01
A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.
Saneyoshi, Ayako; Michimata, Chikashi
2009-12-01
Participants performed two object-matching tasks for novel, non-nameable objects consisting of geons. For each original stimulus, two transformations were applied to create comparison stimuli. In the categorical transformation, a geon connected to geon A was moved to geon B. In the coordinate transformation, a geon connected to geon A was moved to a different position on geon A. The Categorical task consisted of the original and the categorically transformed objects. The Coordinate task consisted of the original and the coordinately transformed objects. The original object was presented to the central visual field, followed by a comparison object presented to the right or left visual half-fields (RVF and LVF). The results showed an RVF advantage for the Categorical task and an LVF advantage for the Coordinate task. The possibility that categorical and coordinate spatial processing subsystems would be basic computational elements for between- and within-category object recognition was discussed.
NASA Technical Reports Server (NTRS)
Tescher, Andrew G. (Editor)
1989-01-01
Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.
Jung, Jaehoon; Yoon, Inhye; Paik, Joonki
2016-01-01
This paper presents an object occlusion detection algorithm using object depth information that is estimated by automatic camera calibration. The object occlusion problem is a major factor to degrade the performance of object tracking and recognition. To detect an object occlusion, the proposed algorithm consists of three steps: (i) automatic camera calibration using both moving objects and a background structure; (ii) object depth estimation; and (iii) detection of occluded regions. The proposed algorithm estimates the depth of the object without extra sensors but with a generic red, green and blue (RGB) camera. As a result, the proposed algorithm can be applied to improve the performance of object tracking and object recognition algorithms for video surveillance systems. PMID:27347978
Learned Non-Rigid Object Motion is a View-Invariant Cue to Recognizing Novel Objects
Chuang, Lewis L.; Vuong, Quoc C.; Bülthoff, Heinrich H.
2012-01-01
There is evidence that observers use learned object motion to recognize objects. For instance, studies have shown that reversing the learned direction in which a rigid object rotated in depth impaired recognition accuracy. This motion reversal can be achieved by playing animation sequences of moving objects in reverse frame order. In the current study, we used this sequence-reversal manipulation to investigate whether observers encode the motion of dynamic objects in visual memory, and whether such dynamic representations are encoded in a way that is dependent on the viewing conditions. Participants first learned dynamic novel objects, presented as animation sequences. Following learning, they were then tested on their ability to recognize these learned objects when their animation sequence was shown in the same sequence order as during learning or in the reverse sequence order. In Experiment 1, we found that non-rigid motion contributed to recognition performance; that is, sequence-reversal decreased sensitivity across different tasks. In subsequent experiments, we tested the recognition of non-rigidly deforming (Experiment 2) and rigidly rotating (Experiment 3) objects across novel viewpoints. Recognition performance was affected by viewpoint changes for both experiments. Learned non-rigid motion continued to contribute to recognition performance and this benefit was the same across all viewpoint changes. By comparison, learned rigid motion did not contribute to recognition performance. These results suggest that non-rigid motion provides a source of information for recognizing dynamic objects, which is not affected by changes to viewpoint. PMID:22661939
Constraints in distortion-invariant target recognition system simulation
NASA Astrophysics Data System (ADS)
Iftekharuddin, Khan M.; Razzaque, Md A.
2000-11-01
Automatic target recognition (ATR) is a mature but active research area. In an earlier paper, we proposed a novel ATR approach for recognition of targets varying in fine details, rotation, and translation using a Learning Vector Quantization (LVQ) Neural Network (NN). The proposed approach performed segmentation of multiple objects and the identification of the objects using LVQNN. In this current paper, we extend the previous approach for recognition of targets varying in rotation, translation, scale, and combination of all three distortions. We obtain the analytical results of the system level design to show that the approach performs well with some constraints. The first constraint determines the size of the input images and input filters. The second constraint shows the limits on amount of rotation, translation, and scale of input objects. We present the simulation verification of the constraints using DARPA's Moving and Stationary Target Recognition (MSTAR) images with different depression and pose angles. The simulation results using MSTAR images verify the analytical constraints of the system level design.
Vision-based object detection and recognition system for intelligent vehicles
NASA Astrophysics Data System (ADS)
Ran, Bin; Liu, Henry X.; Martono, Wilfung
1999-01-01
Recently, a proactive crash mitigation system is proposed to enhance the crash avoidance and survivability of the Intelligent Vehicles. Accurate object detection and recognition system is a prerequisite for a proactive crash mitigation system, as system component deployment algorithms rely on accurate hazard detection, recognition, and tracking information. In this paper, we present a vision-based approach to detect and recognize vehicles and traffic signs, obtain their information, and track multiple objects by using a sequence of color images taken from a moving vehicle. The entire system consist of two sub-systems, the vehicle detection and recognition sub-system and traffic sign detection and recognition sub-system. Both of the sub- systems consist of four models: object detection model, object recognition model, object information model, and object tracking model. In order to detect potential objects on the road, several features of the objects are investigated, which include symmetrical shape and aspect ratio of a vehicle and color and shape information of the signs. A two-layer neural network is trained to recognize different types of vehicles and a parameterized traffic sign model is established in the process of recognizing a sign. Tracking is accomplished by combining the analysis of single image frame with the analysis of consecutive image frames. The analysis of the single image frame is performed every ten full-size images. The information model will obtain the information related to the object, such as time to collision for the object vehicle and relative distance from the traffic sings. Experimental results demonstrated a robust and accurate system in real time object detection and recognition over thousands of image frames.
Velocity and Structure Estimation of a Moving Object Using a Moving Monocular Camera
2006-01-01
map the Euclidean position of static landmarks or visual features in the environment . Recent applications of this technique include aerial...From Motion in a Piecewise Planar Environment ,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 2, No. 3, pp. 485-508...1988. [9] J. M. Ferryman, S. J. Maybank , and A. D. Worrall, “Visual Surveil- lance for Moving Vehicles,” Intl. Journal of Computer Vision, Vol. 37, No
A depictive neural model for the representation of motion verbs.
Rao, Sunil; Aleksander, Igor
2011-11-01
In this paper, we present a depictive neural model for the representation of motion verb semantics in neural models of visual awareness. The problem of modelling motion verb representation is shown to be one of function application, mapping a set of given input variables defining the moving object and the path of motion to a defined output outcome in the motion recognition context. The particular function-applicative implementation and consequent recognition model design presented are seen as arising from a noun-adjective recognition model enabling the recognition of colour adjectives as applied to a set of shapes representing objects to be recognised. The presence of such a function application scheme and a separately implemented position identification and path labelling scheme are accordingly shown to be the primitives required to enable the design and construction of a composite depictive motion verb recognition scheme. Extensions to the presented design to enable the representation of transitive verbs are also discussed.
Compensation for Blur Requires Increase in Field of View and Viewing Time
Kwon, MiYoung; Liu, Rong; Chien, Lillian
2016-01-01
Spatial resolution is an important factor for human pattern recognition. In particular, low resolution (blur) is a defining characteristic of low vision. Here, we examined spatial (field of view) and temporal (stimulus duration) requirements for blurry object recognition. The spatial resolution of an image such as letter or face, was manipulated with a low-pass filter. In experiment 1, studying spatial requirement, observers viewed a fixed-size object through a window of varying sizes, which was repositioned until object identification (moving window paradigm). Field of view requirement, quantified as the number of “views” (window repositions) for correct recognition, was obtained for three blur levels, including no blur. In experiment 2, studying temporal requirement, we determined threshold viewing time, the stimulus duration yielding criterion recognition accuracy, at six blur levels, including no blur. For letter and face recognition, we found blur significantly increased the number of views, suggesting a larger field of view is required to recognize blurry objects. We also found blur significantly increased threshold viewing time, suggesting longer temporal integration is necessary to recognize blurry objects. The temporal integration reflects the tradeoff between stimulus intensity and time. While humans excel at recognizing blurry objects, our findings suggest compensating for blur requires increased field of view and viewing time. The need for larger spatial and longer temporal integration for recognizing blurry objects may further challenge object recognition in low vision. Thus, interactions between blur and field of view should be considered for developing low vision rehabilitation or assistive aids. PMID:27622710
Object classification for obstacle avoidance
NASA Astrophysics Data System (ADS)
Regensburger, Uwe; Graefe, Volker
1991-03-01
Object recognition is necessary for any mobile robot operating autonomously in the real world. This paper discusses an object classifier based on a 2-D object model. Obstacle candidates are tracked and analyzed false alarms generated by the object detector are recognized and rejected. The methods have been implemented on a multi-processor system and tested in real-world experiments. They work reliably under favorable conditions but sometimes problems occur e. g. when objects contain many features (edges) or move in front of structured background.
A Motion-Based Feature for Event-Based Pattern Recognition
Clady, Xavier; Maro, Jean-Matthieu; Barré, Sébastien; Benosman, Ryad B.
2017-01-01
This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating “spiking” events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition. PMID:28101001
Automatic Recognition Of Moving Objects And Its Application To A Robot For Picking Asparagus
NASA Astrophysics Data System (ADS)
Baylou, P.; Amor, B. El Hadj; Bousseau, G.
1983-10-01
After a brief description of the robot for picking white asparagus, a statistical study of the different shapes of asparagus tips allowed us to determine certain discriminating parameters to detect the tips as they appear on the silhouette of the mound of earth. The localisation was done stereometrically with the help of two cameras. As the robot carrying the system of vision-localisation moves, the images are altered and decision cri-teria modified. A study of the image from mobile objects produced by both tube and CCD came-ras was carried out. A simulation of this phenomenon has been achieved in order to determine the modifications concerning object shapes, thresholding levels and decision parameters in function of the robot speed.
Object Recognition using Feature- and Color-Based Methods
NASA Technical Reports Server (NTRS)
Duong, Tuan; Duong, Vu; Stubberud, Allen
2008-01-01
An improved adaptive method of processing image data in an artificial neural network has been developed to enable automated, real-time recognition of possibly moving objects under changing (including suddenly changing) conditions of illumination and perspective. The method involves a combination of two prior object-recognition methods one based on adaptive detection of shape features and one based on adaptive color segmentation to enable recognition in situations in which either prior method by itself may be inadequate. The chosen prior feature-based method is known as adaptive principal-component analysis (APCA); the chosen prior color-based method is known as adaptive color segmentation (ACOSE). These methods are made to interact with each other in a closed-loop system to obtain an optimal solution of the object-recognition problem in a dynamic environment. One of the results of the interaction is to increase, beyond what would otherwise be possible, the accuracy of the determination of a region of interest (containing an object that one seeks to recognize) within an image. Another result is to provide a minimized adaptive step that can be used to update the results obtained by the two component methods when changes of color and apparent shape occur. The net effect is to enable the neural network to update its recognition output and improve its recognition capability via an adaptive learning sequence. In principle, the improved method could readily be implemented in integrated circuitry to make a compact, low-power, real-time object-recognition system. It has been proposed to demonstrate the feasibility of such a system by integrating a 256-by-256 active-pixel sensor with APCA, ACOSE, and neural processing circuitry on a single chip. It has been estimated that such a system on a chip would have a volume no larger than a few cubic centimeters, could operate at a rate as high as 1,000 frames per second, and would consume in the order of milliwatts of power.
Human detection in sensitive security areas through recognition of omega shapes using MACH filters
NASA Astrophysics Data System (ADS)
Rehman, Saad; Riaz, Farhan; Hassan, Ali; Liaquat, Muwahida; Young, Rupert
2015-03-01
Human detection has gained considerable importance in aggravated security scenarios over recent times. An effective security application relies strongly on detailed information regarding the scene under consideration. A larger accumulation of humans than the number of personal authorized to visit a security controlled area must be effectively detected, amicably alarmed and immediately monitored. A framework involving a novel combination of some existing techniques allows an immediate detection of an undesirable crowd in a region under observation. Frame differencing provides a clear visibility of moving objects while highlighting those objects in each frame acquired by a real time camera. Training of a correlation pattern recognition based filter on desired shapes such as elliptical representations of human faces (variants of an Omega Shape) yields correct detections. The inherent ability of correlation pattern recognition filters caters for angular rotations in the target object and renders decision regarding the existence of the number of persons exceeding an allowed figure in the monitored area.
Human recognition based on head-shoulder contour extraction and BP neural network
NASA Astrophysics Data System (ADS)
Kong, Xiao-fang; Wang, Xiu-qin; Gu, Guohua; Chen, Qian; Qian, Wei-xian
2014-11-01
In practical application scenarios like video surveillance and human-computer interaction, human body movements are uncertain because the human body is a non-rigid object. Based on the fact that the head-shoulder part of human body can be less affected by the movement, and will seldom be obscured by other objects, in human detection and recognition, a head-shoulder model with its stable characteristics can be applied as a detection feature to describe the human body. In order to extract the head-shoulder contour accurately, a head-shoulder model establish method with combination of edge detection and the mean-shift algorithm in image clustering has been proposed in this paper. First, an adaptive method of mixture Gaussian background update has been used to extract targets from the video sequence. Second, edge detection has been used to extract the contour of moving objects, and the mean-shift algorithm has been combined to cluster parts of target's contour. Third, the head-shoulder model can be established, according to the width and height ratio of human head-shoulder combined with the projection histogram of the binary image, and the eigenvectors of the head-shoulder contour can be acquired. Finally, the relationship between head-shoulder contour eigenvectors and the moving objects will be formed by the training of back-propagation (BP) neural network classifier, and the human head-shoulder model can be clustered for human detection and recognition. Experiments have shown that the method combined with edge detection and mean-shift algorithm proposed in this paper can extract the complete head-shoulder contour, with low calculating complexity and high efficiency.
Weighted feature selection criteria for visual servoing of a telerobot
NASA Technical Reports Server (NTRS)
Feddema, John T.; Lee, C. S. G.; Mitchell, O. R.
1989-01-01
Because of the continually changing environment of a space station, visual feedback is a vital element of a telerobotic system. A real time visual servoing system would allow a telerobot to track and manipulate randomly moving objects. Methodologies for the automatic selection of image features to be used to visually control the relative position between an eye-in-hand telerobot and a known object are devised. A weighted criteria function with both image recognition and control components is used to select the combination of image features which provides the best control. Simulation and experimental results of a PUMA robot arm visually tracking a randomly moving carburetor gasket with a visual update time of 70 milliseconds are discussed.
Culture modulates implicit ownership-induced self-bias in memory.
Sparks, Samuel; Cunningham, Sheila J; Kritikos, Ada
2016-08-01
The relation of incoming stimuli to the self implicitly determines the allocation of cognitive resources. Cultural variations in the self-concept shape cognition, but the extent is unclear because the majority of studies sample only Western participants. We report cultural differences (Asian versus Western) in ownership-induced self-bias in recognition memory for objects. In two experiments, participants allocated a series of images depicting household objects to self-owned or other-owned virtual baskets based on colour cues before completing a surprise recognition memory test for the objects. The 'other' was either a stranger or a close other. In both experiments, Western participants showed greater recognition memory accuracy for self-owned compared with other-owned objects, consistent with an independent self-construal. In Experiment 1, which required minimal attention to the owned objects, Asian participants showed no such ownership-related bias in recognition accuracy. In Experiment 2, which required attention to owned objects to move them along the screen, Asian participants again showed no overall memory advantage for self-owned items and actually exhibited higher recognition accuracy for mother-owned than self-owned objects, reversing the pattern observed for Westerners. This is consistent with an interdependent self-construal which is sensitive to the particular relationship between the self and other. Overall, our results suggest that the self acts as an organising principle for allocating cognitive resources, but that the way it is constructed depends upon cultural experience. Additionally, the manifestation of these cultural differences in self-representation depends on the allocation of attentional resources to self- and other-associated stimuli. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Harnessing Spatial Thinking to Support STEM Learning. OECD Education Working Papers, No. 161
ERIC Educational Resources Information Center
Newcombe, Nora
2017-01-01
Spatial intelligence concerns the locations of objects, their shapes, their relations, and the paths they take as they move. Recognition of spatial skills enriches the traditional educational focus on developing literacy and numerical skills to include a cognitive domain particularly relevant to achievement in science, technology, engineering and…
Objects predict fixations better than early saliency.
Einhäuser, Wolfgang; Spain, Merrielle; Perona, Pietro
2008-11-20
Humans move their eyes while looking at scenes and pictures. Eye movements correlate with shifts in attention and are thought to be a consequence of optimal resource allocation for high-level tasks such as visual recognition. Models of attention, such as "saliency maps," are often built on the assumption that "early" features (color, contrast, orientation, motion, and so forth) drive attention directly. We explore an alternative hypothesis: Observers attend to "interesting" objects. To test this hypothesis, we measure the eye position of human observers while they inspect photographs of common natural scenes. Our observers perform different tasks: artistic evaluation, analysis of content, and search. Immediately after each presentation, our observers are asked to name objects they saw. Weighted with recall frequency, these objects predict fixations in individual images better than early saliency, irrespective of task. Also, saliency combined with object positions predicts which objects are frequently named. This suggests that early saliency has only an indirect effect on attention, acting through recognized objects. Consequently, rather than treating attention as mere preprocessing step for object recognition, models of both need to be integrated.
Gnostic rings: usefulness in sensibility evaluation and sensory reeducation.
Brunelli, G; Battiston, B; Dellon, A L
1992-01-01
The benefit of additional clinical tools for quantifying patients' ability to recognize objects is clear, as well as its correlation with the moving two-point discrimination test. The recognition of letters is such a tool. The authors describe gnostic rings, an additional technique, that is useful for clinical sensibility testing, as well as for sensory reeducation.
Intonation and dialog context as constraints for speech recognition.
Taylor, P; King, S; Isard, S; Wright, H
1998-01-01
This paper describes a way of using intonation and dialog context to improve the performance of an automatic speech recognition (ASR) system. Our experiments were run on the DCIEM Maptask corpus, a corpus of spontaneous task-oriented dialog speech. This corpus has been tagged according to a dialog analysis scheme that assigns each utterance to one of 12 "move types," such as "acknowledge," "query-yes/no" or "instruct." Most ASR systems use a bigram language model to constrain the possible sequences of words that might be recognized. Here we use a separate bigram language model for each move type. We show that when the "correct" move-specific language model is used for each utterance in the test set, the word error rate of the recognizer drops. Of course when the recognizer is run on previously unseen data, it cannot know in advance what move type the speaker has just produced. To determine the move type we use an intonation model combined with a dialog model that puts constraints on possible sequences of move types, as well as the speech recognizer likelihoods for the different move-specific models. In the full recognition system, the combination of automatic move type recognition with the move specific language models reduces the overall word error rate by a small but significant amount when compared with a baseline system that does not take intonation or dialog acts into account. Interestingly, the word error improvement is restricted to "initiating" move types, where word recognition is important. In "response" move types, where the important information is conveyed by the move type itself--for example, positive versus negative response--there is no word error improvement, but recognition of the response types themselves is good. The paper discusses the intonation model, the language models, and the dialog model in detail and describes the architecture in which they are combined.
NASA Astrophysics Data System (ADS)
Gohatre, Umakant Bhaskar; Patil, Venkat P.
2018-04-01
In computer vision application, the multiple object detection and tracking, in real-time operation is one of the important research field, that have gained a lot of attentions, in last few years for finding non stationary entities in the field of image sequence. The detection of object is advance towards following the moving object in video and then representation of object is step to track. The multiple object recognition proof is one of the testing assignment from detection multiple objects from video sequence. The picture enrollment has been for quite some time utilized as a reason for the location the detection of moving multiple objects. The technique of registration to discover correspondence between back to back casing sets in view of picture appearance under inflexible and relative change. The picture enrollment is not appropriate to deal with event occasion that can be result in potential missed objects. In this paper, for address such problems, designs propose novel approach. The divided video outlines utilizing area adjancy diagram of visual appearance and geometric properties. Then it performed between graph sequences by using multi graph matching, then getting matching region labeling by a proposed graph coloring algorithms which assign foreground label to respective region. The plan design is robust to unknown transformation with significant improvement in overall existing work which is related to moving multiple objects detection in real time parameters.
Real-time Human Activity Recognition
NASA Astrophysics Data System (ADS)
Albukhary, N.; Mustafah, Y. M.
2017-11-01
The traditional Closed-circuit Television (CCTV) system requires human to monitor the CCTV for 24/7 which is inefficient and costly. Therefore, there’s a need for a system which can recognize human activity effectively in real-time. This paper concentrates on recognizing simple activity such as walking, running, sitting, standing and landing by using image processing techniques. Firstly, object detection is done by using background subtraction to detect moving object. Then, object tracking and object classification are constructed so that different person can be differentiated by using feature detection. Geometrical attributes of tracked object, which are centroid and aspect ratio of identified tracked are manipulated so that simple activity can be detected.
Short memory fuzzy fusion image recognition schema employing spatial and Fourier descriptors
NASA Astrophysics Data System (ADS)
Raptis, Sotiris N.; Tzafestas, Spyros G.
2001-03-01
Single images quite often do not bear enough information for precise interpretation due to a variety of reasons. Multiple image fusion and adequate integration recently became the state of the art in the pattern recognition field. In this paper presented here and enhanced multiple observation schema is discussed investigating improvements to the baseline fuzzy- probabilistic image fusion methodology. The first innovation introduced consists in considering only a limited but seemingly ore effective part of the uncertainty information obtained by a certain time restricting older uncertainty dependencies and alleviating computational burden that is now needed for short sequence (stored into memory) of samples. The second innovation essentially grouping them into feature-blind object hypotheses. Experiment settings include a sequence of independent views obtained by camera being moved around the investigated object.
A Neural-Dynamic Architecture for Concurrent Estimation of Object Pose and Identity
Lomp, Oliver; Faubel, Christian; Schöner, Gregor
2017-01-01
Handling objects or interacting with a human user about objects on a shared tabletop requires that objects be identified after learning from a small number of views and that object pose be estimated. We present a neurally inspired architecture that learns object instances by storing features extracted from a single view of each object. Input features are color and edge histograms from a localized area that is updated during processing. The system finds the best-matching view for the object in a novel input image while concurrently estimating the object’s pose, aligning the learned view with current input. The system is based on neural dynamics, computationally operating in real time, and can handle dynamic scenes directly off live video input. In a scenario with 30 everyday objects, the system achieves recognition rates of 87.2% from a single training view for each object, while also estimating pose quite precisely. We further demonstrate that the system can track moving objects, and that it can segment the visual array, selecting and recognizing one object while suppressing input from another known object in the immediate vicinity. Evaluation on the COIL-100 dataset, in which objects are depicted from different viewing angles, revealed recognition rates of 91.1% on the first 30 objects, each learned from four training views. PMID:28503145
A Neuromorphic Architecture for Object Recognition and Motion Anticipation Using Burst-STDP
Balduzzi, David; Tononi, Giulio
2012-01-01
In this work we investigate the possibilities offered by a minimal framework of artificial spiking neurons to be deployed in silico. Here we introduce a hierarchical network architecture of spiking neurons which learns to recognize moving objects in a visual environment and determine the correct motor output for each object. These tasks are learned through both supervised and unsupervised spike timing dependent plasticity (STDP). STDP is responsible for the strengthening (or weakening) of synapses in relation to pre- and post-synaptic spike times and has been described as a Hebbian paradigm taking place both in vitro and in vivo. We utilize a variation of STDP learning, called burst-STDP, which is based on the notion that, since spikes are expensive in terms of energy consumption, then strong bursting activity carries more information than single (sparse) spikes. Furthermore, this learning algorithm takes advantage of homeostatic renormalization, which has been hypothesized to promote memory consolidation during NREM sleep. Using this learning rule, we design a spiking neural network architecture capable of object recognition, motion detection, attention towards important objects, and motor control outputs. We demonstrate the abilities of our design in a simple environment with distractor objects, multiple objects moving concurrently, and in the presence of noise. Most importantly, we show how this neural network is capable of performing these tasks using a simple leaky-integrate-and-fire (LIF) neuron model with binary synapses, making it fully compatible with state-of-the-art digital neuromorphic hardware designs. As such, the building blocks and learning rules presented in this paper appear promising for scalable fully neuromorphic systems to be implemented in hardware chips. PMID:22615855
Security Event Recognition for Visual Surveillance
NASA Astrophysics Data System (ADS)
Liao, W.; Yang, C.; Yang, M. Ying; Rosenhahn, B.
2017-05-01
With rapidly increasing deployment of surveillance cameras, the reliable methods for automatically analyzing the surveillance video and recognizing special events are demanded by different practical applications. This paper proposes a novel effective framework for security event analysis in surveillance videos. First, convolutional neural network (CNN) framework is used to detect objects of interest in the given videos. Second, the owners of the objects are recognized and monitored in real-time as well. If anyone moves any object, this person will be verified whether he/she is its owner. If not, this event will be further analyzed and distinguished between two different scenes: moving the object away or stealing it. To validate the proposed approach, a new video dataset consisting of various scenarios is constructed for more complex tasks. For comparison purpose, the experiments are also carried out on the benchmark databases related to the task on abandoned luggage detection. The experimental results show that the proposed approach outperforms the state-of-the-art methods and effective in recognizing complex security events.
Traffic Behavior Recognition Using the Pachinko Allocation Model
Huynh-The, Thien; Banos, Oresti; Le, Ba-Vui; Bui, Dinh-Mao; Yoon, Yongik; Lee, Sungyoung
2015-01-01
CCTV-based behavior recognition systems have gained considerable attention in recent years in the transportation surveillance domain for identifying unusual patterns, such as traffic jams, accidents, dangerous driving and other abnormal behaviors. In this paper, a novel approach for traffic behavior modeling is presented for video-based road surveillance. The proposed system combines the pachinko allocation model (PAM) and support vector machine (SVM) for a hierarchical representation and identification of traffic behavior. A background subtraction technique using Gaussian mixture models (GMMs) and an object tracking mechanism based on Kalman filters are utilized to firstly construct the object trajectories. Then, the sparse features comprising the locations and directions of the moving objects are modeled by PAM into traffic topics, namely activities and behaviors. As a key innovation, PAM captures not only the correlation among the activities, but also among the behaviors based on the arbitrary directed acyclic graph (DAG). The SVM classifier is then utilized on top to train and recognize the traffic activity and behavior. The proposed model shows more flexibility and greater expressive power than the commonly-used latent Dirichlet allocation (LDA) approach, leading to a higher recognition accuracy in the behavior classification. PMID:26151213
ERIC Educational Resources Information Center
Cipriani, Phyllis J.
2017-01-01
A constructivist approach for teaching and learning mathematics was the foundation for a longitudinal study at Rutgers University in 1987 (Maher, 2011). One of the objectives of the longitudinal study was to provide an environment where students solve problems in collaborative groups (Maher, 2011). Videos from the longitudinal study are stored in…
Flow detection via sparse frame analysis for suspicious event recognition in infrared imagery
NASA Astrophysics Data System (ADS)
Fernandes, Henrique C.; Batista, Marcos A.; Barcelos, Celia A. Z.; Maldague, Xavier P. V.
2013-05-01
It is becoming increasingly evident that intelligent systems are very bene¯cial for society and that the further development of such systems is necessary to continue to improve society's quality of life. One area that has drawn the attention of recent research is the development of automatic surveillance systems. In our work we outline a system capable of monitoring an uncontrolled area (an outside parking lot) using infrared imagery and recognizing suspicious events in this area. The ¯rst step is to identify moving objects and segment them from the scene's background. Our approach is based on a dynamic background-subtraction technique which robustly adapts detection to illumination changes. It is analyzed only regions where movement is occurring, ignoring in°uence of pixels from regions where there is no movement, to segment moving objects. Regions where movement is occurring are identi¯ed using °ow detection via sparse frame analysis. During the tracking process the objects are classi¯ed into two categories: Persons and Vehicles, based on features such as size and velocity. The last step is to recognize suspicious events that may occur in the scene. Since the objects are correctly segmented and classi¯ed it is possible to identify those events using features such as velocity and time spent motionless in one spot. In this paper we recognize the suspicious event suspicion of object(s) theft from inside a parked vehicle at spot X by a person" and results show that the use of °ow detection increases the recognition of this suspicious event from 78:57% to 92:85%.
Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions
NASA Astrophysics Data System (ADS)
Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.
2005-03-01
The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.
Dynamic information processing states revealed through neurocognitive models of object semantics
Clarke, Alex
2015-01-01
Recognising objects relies on highly dynamic, interactive brain networks to process multiple aspects of object information. To fully understand how different forms of information about objects are represented and processed in the brain requires a neurocognitive account of visual object recognition that combines a detailed cognitive model of semantic knowledge with a neurobiological model of visual object processing. Here we ask how specific cognitive factors are instantiated in our mental processes and how they dynamically evolve over time. We suggest that coarse semantic information, based on generic shared semantic knowledge, is rapidly extracted from visual inputs and is sufficient to drive rapid category decisions. Subsequent recurrent neural activity between the anterior temporal lobe and posterior fusiform supports the formation of object-specific semantic representations – a conjunctive process primarily driven by the perirhinal cortex. These object-specific representations require the integration of shared and distinguishing object properties and support the unique recognition of objects. We conclude that a valuable way of understanding the cognitive activity of the brain is though testing the relationship between specific cognitive measures and dynamic neural activity. This kind of approach allows us to move towards uncovering the information processing states of the brain and how they evolve over time. PMID:25745632
3-Dimensional Scene Perception during Active Electrolocation in a Weakly Electric Pulse Fish
von der Emde, Gerhard; Behr, Katharina; Bouton, Béatrice; Engelmann, Jacob; Fetz, Steffen; Folde, Caroline
2010-01-01
Weakly electric fish use active electrolocation for object detection and orientation in their environment even in complete darkness. The African mormyrid Gnathonemus petersii can detect object parameters, such as material, size, shape, and distance. Here, we tested whether individuals of this species can learn to identify 3-dimensional objects independently of the training conditions and independently of the object's position in space (rotation-invariance; size-constancy). Individual G. petersii were trained in a two-alternative forced-choice procedure to electrically discriminate between a 3-dimensional object (S+) and several alternative objects (S−). Fish were then tested whether they could identify the S+ among novel objects and whether single components of S+ were sufficient for recognition. Size-constancy was investigated by presenting the S+ together with a larger version at different distances. Rotation-invariance was tested by rotating S+ and/or S− in 3D. Our results show that electrolocating G. petersii could (1) recognize an object independently of the S− used during training. When only single components of a complex S+ were offered, recognition of S+ was more or less affected depending on which part was used. (2) Object-size was detected independently of object distance, i.e. fish showed size-constancy. (3) The majority of the fishes tested recognized their S+ even if it was rotated in space, i.e. these fishes showed rotation-invariance. (4) Object recognition was restricted to the near field around the fish and failed when objects were moved more than about 4 cm away from the animals. Our results indicate that even in complete darkness our G. petersii were capable of complex 3-dimensional scene perception using active electrolocation. PMID:20577635
ERIC Educational Resources Information Center
Birmingham, Elina; Meixner, Tamara; Iarocci, Grace; Kanan, Christopher; Smilek, Daniel; Tanaka, James W.
2013-01-01
The strategies children employ to selectively attend to different parts of the face may reflect important developmental changes in facial emotion recognition. Using the Moving Window Technique (MWT), children aged 5-12 years and adults ("N" = 129) explored faces with a mouse-controlled window in an emotion recognition task. An…
Cortical Circuit for Binding Object Identity and Location During Multiple-Object Tracking
Nummenmaa, Lauri; Oksama, Lauri; Glerean, Erico; Hyönä, Jukka
2017-01-01
Abstract Sustained multifocal attention for moving targets requires binding object identities with their locations. The brain mechanisms of identity-location binding during attentive tracking have remained unresolved. In 2 functional magnetic resonance imaging experiments, we measured participants’ hemodynamic activity during attentive tracking of multiple objects with equivalent (multiple-object tracking) versus distinct (multiple identity tracking, MIT) identities. Task load was manipulated parametrically. Both tasks activated large frontoparietal circuits. MIT led to significantly increased activity in frontoparietal and temporal systems subserving object recognition and working memory. These effects were replicated when eye movements were prohibited. MIT was associated with significantly increased functional connectivity between lateral temporal and frontal and parietal regions. We propose that coordinated activity of this network subserves identity-location binding during attentive tracking. PMID:27913430
Visual Recognition of the Elderly Concerning Risks of Falling or Stumbling Indoors in the Home
Katsura, Toshiki; Miura, Norio; Hoshino, Akiko; Usui, Kanae; Takahashi, Yasuro; Hisamoto, Seiichi
2011-01-01
Objective: The objective of this study was to verify the recognition of dangers and obstacles within a house in the elderly when walking based on analyses of gaze point fixation. Materials and Methods: The rate of recognizing indoor dangers was compared among 30 elderly, 14 middle-aged and 11 young individuals using the Eye Mark Recorder. Results: 1) All of the elderly, middle-aged and young individuals showed a high recognition rate of 100% or near 100% when ascending outdoor steps but a low rate of recognizing obstacles placed on the steps. They showed a recognition rate of about 60% when descending steps from residential premises to the street. The rate of recognizing middle steps in the elderly was significantly lower than that in younger and middle-aged individuals. Regarding recognition indoors, when ascending stairs, all of the elderly, middle-aged and young individuals showed a high recognition rate of nearly 100%. When descending stairs, they showed a recognition rate of 70-90%. However, although the recognition rate in the elderly was lower than in younger and middle-aged individuals, no significant difference was observed. 2) When moving indoors, all of the elderly, middle-aged and young individuals showed a recognition rate of 70%-80%. The recognition rate was high regarding obstacles such as floors, televisions and chests of drawers but low for obstacles in the bathroom and steps on the path. The rate of recognizing steps of doorsills forming the division between a Japanese-style room and corridor as well as obstacles in a Japanese-style room was low, and the rate in the elderly was low, being 40% or less. Conclusion: The rate of recognizing steps of doorsills as well as obstacles in a Japanese-style room was lower in the elderly in comparison with middle-aged or young individuals. PMID:25648876
The perception of geometrical structure from congruence
NASA Technical Reports Server (NTRS)
Lappin, Joseph S.; Wason, Thomas D.
1989-01-01
The principle function of vision is to measure the environment. As demonstrated by the coordination of motor actions with the positions and trajectories of moving objects in cluttered environments and by rapid recognition of solid objects in varying contexts from changing perspectives, vision provides real-time information about the geometrical structure and location of environmental objects and events. The geometric information provided by 2-D spatial displays is examined. It is proposed that the geometry of this information is best understood not within the traditional framework of perspective trigonometry, but in terms of the structure of qualitative relations defined by congruences among intrinsic geometric relations in images of surfaces. The basic concepts of this geometrical theory are outlined.
NASA Astrophysics Data System (ADS)
Li, Shengbo Eben; Li, Guofa; Yu, Jiaying; Liu, Chang; Cheng, Bo; Wang, Jianqiang; Li, Keqiang
2018-01-01
Detection and tracking of objects in the side-near-field has attracted much attention for the development of advanced driver assistance systems. This paper presents a cost-effective approach to track moving objects around vehicles using linearly arrayed ultrasonic sensors. To understand the detection characteristics of a single sensor, an empirical detection model was developed considering the shapes and surface materials of various detected objects. Eight sensors were arrayed linearly to expand the detection range for further application in traffic environment recognition. Two types of tracking algorithms, including an Extended Kalman filter (EKF) and an Unscented Kalman filter (UKF), for the sensor array were designed for dynamic object tracking. The ultrasonic sensor array was designed to have two types of fire sequences: mutual firing or serial firing. The effectiveness of the designed algorithms were verified in two typical driving scenarios: passing intersections with traffic sign poles or street lights, and overtaking another vehicle. Experimental results showed that both EKF and UKF had more precise tracking position and smaller RMSE (root mean square error) than a traditional triangular positioning method. The effectiveness also encourages the application of cost-effective ultrasonic sensors in the near-field environment perception in autonomous driving systems.
Eye tracking reveals a crucial role for facial motion in recognition of faces by infants
Xiao, Naiqi G.; Quinn, Paul C.; Liu, Shaoying; Ge, Liezhong; Pascalis, Olivier; Lee, Kang
2015-01-01
Current knowledge about face processing in infancy comes largely from studies using static face stimuli, but faces that infants see in the real world are mostly moving ones. To bridge this gap, 3-, 6-, and 9-month-old Asian infants (N = 118) were familiarized with either moving or static Asian female faces and then their face recognition was tested with static face images. Eye tracking methodology was used to record eye movements during familiarization and test phases. The results showed a developmental change in eye movement patterns, but only for the moving faces. In addition, the more infants shifted their fixations across facial regions, the better was their face recognition, but only for the moving faces. The results suggest that facial movement influences the way faces are encoded from early in development. PMID:26010387
Automated transformation-invariant shape recognition through wavelet multiresolution
NASA Astrophysics Data System (ADS)
Brault, Patrice; Mounier, Hugues
2001-12-01
We present here new results in Wavelet Multi-Resolution Analysis (W-MRA) applied to shape recognition in automatic vehicle driving applications. Different types of shapes have to be recognized in this framework. They pertain to most of the objects entering the sensors field of a car. These objects can be road signs, lane separation lines, moving or static obstacles, other automotive vehicles, or visual beacons. The recognition process must be invariant to global, affine or not, transformations which are : rotation, translation and scaling. It also has to be invariant to more local, elastic, deformations like the perspective (in particular with wide angle camera lenses), and also like deformations due to environmental conditions (weather : rain, mist, light reverberation) or optical and electrical signal noises. To demonstrate our method, an initial shape, with a known contour, is compared to the same contour altered by rotation, translation, scaling and perspective. The curvature computed for each contour point is used as a main criterion in the shape matching process. The original part of this work is to use wavelet descriptors, generated with a fast orthonormal W-MRA, rather than Fourier descriptors, in order to provide a multi-resolution description of the contour to be analyzed. In such way, the intrinsic spatial localization property of wavelet descriptors can be used and the recognition process can be speeded up. The most important part of this work is to demonstrate the potential performance of Wavelet-MRA in this application of shape recognition.
The monocular visual imaging technology model applied in the airport surface surveillance
NASA Astrophysics Data System (ADS)
Qin, Zhe; Wang, Jian; Huang, Chao
2013-08-01
At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.
Modeling peripheral vision for moving target search and detection.
Yang, Ji Hyun; Huston, Jesse; Day, Michael; Balogh, Imre
2012-06-01
Most target search and detection models focus on foveal vision. In reality, peripheral vision plays a significant role, especially in detecting moving objects. There were 23 subjects who participated in experiments simulating target detection tasks in urban and rural environments while their gaze parameters were tracked. Button responses associated with foveal object and peripheral object (PO) detection and recognition were recorded. In an urban scenario, pedestrians appearing in the periphery holding guns were threats and pedestrians with empty hands were non-threats. In a rural scenario, non-U.S. unmanned aerial vehicles (UAVs) were considered threats and U.S. UAVs non-threats. On average, subjects missed detecting 2.48 POs among 50 POs in the urban scenario and 5.39 POs in the rural scenario. Both saccade reaction time and button reaction time can be predicted by peripheral angle and entrance speed of POs. Fast moving objects were detected faster than slower objects and POs appearing at wider angles took longer to detect than those closer to the gaze center. A second-order mixed-effect model was applied to provide each subject's prediction model for peripheral target detection performance as a function of eccentricity angle and speed. About half the subjects used active search patterns while the other half used passive search patterns. An interactive 3-D visualization tool was developed to provide a representation of macro-scale head and gaze movement in the search and target detection task. An experimentally validated stochastic model of peripheral vision in realistic target detection scenarios was developed.
Detecting Lateral Motion using Light's Orbital Angular Momentum.
Cvijetic, Neda; Milione, Giovanni; Ip, Ezra; Wang, Ting
2015-10-23
Interrogating an object with a light beam and analyzing the scattered light can reveal kinematic information about the object, which is vital for applications ranging from autonomous vehicles to gesture recognition and virtual reality. We show that by analyzing the change in the orbital angular momentum (OAM) of a tilted light beam eclipsed by a moving object, lateral motion of the object can be detected in an arbitrary direction using a single light beam and without object image reconstruction. We observe OAM spectral asymmetry that corresponds to the lateral motion direction along an arbitrary axis perpendicular to the plane containing the light beam and OAM measurement axes. These findings extend OAM-based remote sensing to detection of non-rotational qualities of objects and may also have extensions to other electromagnetic wave regimes, including radio and sound.
Detecting Lateral Motion using Light’s Orbital Angular Momentum
Cvijetic, Neda; Milione, Giovanni; Ip, Ezra; Wang, Ting
2015-01-01
Interrogating an object with a light beam and analyzing the scattered light can reveal kinematic information about the object, which is vital for applications ranging from autonomous vehicles to gesture recognition and virtual reality. We show that by analyzing the change in the orbital angular momentum (OAM) of a tilted light beam eclipsed by a moving object, lateral motion of the object can be detected in an arbitrary direction using a single light beam and without object image reconstruction. We observe OAM spectral asymmetry that corresponds to the lateral motion direction along an arbitrary axis perpendicular to the plane containing the light beam and OAM measurement axes. These findings extend OAM-based remote sensing to detection of non-rotational qualities of objects and may also have extensions to other electromagnetic wave regimes, including radio and sound. PMID:26493681
Digital-Electronic/Optical Apparatus Would Recognize Targets
NASA Technical Reports Server (NTRS)
Scholl, Marija S.
1994-01-01
Proposed automatic target-recognition apparatus consists mostly of digital-electronic/optical cross-correlator that processes infrared images of targets. Infrared images of unknown targets correlated quickly with images of known targets. Apparatus incorporates some features of correlator described in "Prototype Optical Correlator for Robotic Vision System" (NPO-18451), and some of correlator described in "Compact Optical Correlator" (NPO-18473). Useful in robotic system; to recognize and track infrared-emitting, moving objects as variously shaped hot workpieces on conveyor belt.
Dance recognition system using lower body movement.
Simpson, Travis T; Wiesner, Susan L; Bennett, Bradford C
2014-02-01
The current means of locating specific movements in film necessitate hours of viewing, making the task of conducting research into movement characteristics and patterns tedious and difficult. This is particularly problematic for the research and analysis of complex movement systems such as sports and dance. While some systems have been developed to manually annotate film, to date no automated way of identifying complex, full body movement exists. With pattern recognition technology and knowledge of joint locations, automatically describing filmed movement using computer software is possible. This study used various forms of lower body kinematic analysis to identify codified dance movements. We created an algorithm that compares an unknown move with a specified start and stop against known dance moves. Our recognition method consists of classification and template correlation using a database of model moves. This system was optimized to include nearly 90 dance and Tai Chi Chuan movements, producing accurate name identification in over 97% of trials. In addition, the program had the capability to provide a kinematic description of either matched or unmatched moves obtained from classification recognition.
Eye tracking reveals a crucial role for facial motion in recognition of faces by infants.
Xiao, Naiqi G; Quinn, Paul C; Liu, Shaoying; Ge, Liezhong; Pascalis, Olivier; Lee, Kang
2015-06-01
Current knowledge about face processing in infancy comes largely from studies using static face stimuli, but faces that infants see in the real world are mostly moving ones. To bridge this gap, 3-, 6-, and 9-month-old Asian infants (N = 118) were familiarized with either moving or static Asian female faces, and then their face recognition was tested with static face images. Eye-tracking methodology was used to record eye movements during the familiarization and test phases. The results showed a developmental change in eye movement patterns, but only for the moving faces. In addition, the more infants shifted their fixations across facial regions, the better their face recognition was, but only for the moving faces. The results suggest that facial movement influences the way faces are encoded from early in development. (c) 2015 APA, all rights reserved).
Multidisciplinary unmanned technology teammate (MUTT)
NASA Astrophysics Data System (ADS)
Uzunovic, Nenad; Schneider, Anne; Lacaze, Alberto; Murphy, Karl; Del Giorno, Mark
2013-01-01
The U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) held an autonomous robot competition called CANINE in June 2012. The goal of the competition was to develop innovative and natural control methods for robots. This paper describes the winning technology, including the vision system, the operator interaction, and the autonomous mobility. The rules stated only gestures or voice commands could be used for control. The robots would learn a new object at the start of each phase, find the object after it was thrown into a field, and return the object to the operator. Each of the six phases became more difficult, including clutter of the same color or shape as the object, moving and stationary obstacles, and finding the operator who moved from the starting location to a new location. The Robotic Research Team integrated techniques in computer vision, speech recognition, object manipulation, and autonomous navigation. A multi-filter computer vision solution reliably detected the objects while rejecting objects of similar color or shape, even while the robot was in motion. A speech-based interface with short commands provided close to natural communication of complicated commands from the operator to the robot. An innovative gripper design allowed for efficient object pickup. A robust autonomous mobility and navigation solution for ground robotic platforms provided fast and reliable obstacle avoidance and course navigation. The research approach focused on winning the competition while remaining cognizant and relevant to real world applications.
Independent motion detection with a rival penalized adaptive particle filter
NASA Astrophysics Data System (ADS)
Becker, Stefan; Hübner, Wolfgang; Arens, Michael
2014-10-01
Aggregation of pixel based motion detection into regions of interest, which include views of single moving objects in a scene is an essential pre-processing step in many vision systems. Motion events of this type provide significant information about the object type or build the basis for action recognition. Further, motion is an essential saliency measure, which is able to effectively support high level image analysis. When applied to static cameras, background subtraction methods achieve good results. On the other hand, motion aggregation on freely moving cameras is still a widely unsolved problem. The image flow, measured on a freely moving camera is the result from two major motion types. First the ego-motion of the camera and second object motion, that is independent from the camera motion. When capturing a scene with a camera these two motion types are adverse blended together. In this paper, we propose an approach to detect multiple moving objects from a mobile monocular camera system in an outdoor environment. The overall processing pipeline consists of a fast ego-motion compensation algorithm in the preprocessing stage. Real-time performance is achieved by using a sparse optical flow algorithm as an initial processing stage and a densely applied probabilistic filter in the post-processing stage. Thereby, we follow the idea proposed by Jung and Sukhatme. Normalized intensity differences originating from a sequence of ego-motion compensated difference images represent the probability of moving objects. Noise and registration artefacts are filtered out, using a Bayesian formulation. The resulting a posteriori distribution is located on image regions, showing strong amplitudes in the difference image which are in accordance with the motion prediction. In order to effectively estimate the a posteriori distribution, a particle filter is used. In addition to the fast ego-motion compensation, the main contribution of this paper is the design of the probabilistic filter for real-time detection and tracking of independently moving objects. The proposed approach introduces a competition scheme between particles in order to ensure an improved multi-modality. Further, the filter design helps to generate a particle distribution which is homogenous even in the presence of multiple targets showing non-rigid motion patterns. The effectiveness of the method is shown on exemplary outdoor sequences.
Eye Tracking Reveals a Crucial Role for Facial Motion in Recognition of Faces by Infants
ERIC Educational Resources Information Center
Xiao, Naiqi G.; Quinn, Paul C.; Liu, Shaoying; Ge, Liezhong; Pascalis, Olivier; Lee, Kang
2015-01-01
Current knowledge about face processing in infancy comes largely from studies using static face stimuli, but faces that infants see in the real world are mostly moving ones. To bridge this gap, 3-, 6-, and 9-month-old Asian infants (N = 118) were familiarized with either moving or static Asian female faces, and then their face recognition was…
Assessing the performance of a motion tracking system based on optical joint transform correlation
NASA Astrophysics Data System (ADS)
Elbouz, M.; Alfalou, A.; Brosseau, C.; Ben Haj Yahia, N.; Alam, M. S.
2015-08-01
We present an optimized system specially designed for the tracking and recognition of moving subjects in a confined environment (such as an elderly remaining at home). In the first step of our study, we use a VanderLugt correlator (VLC) with an adapted pre-processing treatment of the input plane and a postprocessing of the correlation plane via a nonlinear function allowing us to make a robust decision. The second step is based on an optical joint transform correlation (JTC)-based system (NZ-NL-correlation JTC) for achieving improved detection and tracking of moving persons in a confined space. The proposed system has been found to have significantly superior discrimination and robustness capabilities allowing to detect an unknown target in an input scene and to determine the target's trajectory when this target is in motion. This system offers robust tracking performance of a moving target in several scenarios, such as rotational variation of input faces. Test results obtained using various real life video sequences show that the proposed system is particularly suitable for real-time detection and tracking of moving objects.
Chiron and the Centaurs: Escapees from the Kuiper Belt
NASA Technical Reports Server (NTRS)
Stern, Alan; Campins, Humberto
1996-01-01
The outer Solar System has long appeared to be a largely empty place, inhabited only by the four giant planets, Pluto and a transient population of comets. In 1977 however, a faint and enigmatic object - 2060 Chiron - was discovered moving on a moderately inclined, strongly chaotic 51-year orbit which takes it from just inside Saturn's orbit out almost as far as that of Uranus. It was not initially clear from where Chiron originated. these objects become temporarily trapped on Centaur-like orbits Following Chiron's discovery, almost 15 years elapsed before other similar objects were discovered; five more have now been identified. Based on the detection statistics implied by these discoveries, it has become clear that these objects belong to a significant population of several hundred (or possibly several thousand) large icy bodies moving on relatively short-lived orbits between the giant planets. This new class of objects, known collectively as the Centaurs, are intermediate in diameter between typical comets (1-20 km) and small icy planets such as Pluto (approx. 2,300 km) and Triton (approx. 2,700 km). Although the Centaurs are interesting in their own right, they have taken on added significance following the recognition that they most probably originated in the ancient reservoir of comets and larger objects located beyond the orbit of Neptune known as the Kuiper belt.
Papenmeier, Frank; Schwan, Stephan
2016-02-01
Viewing objects with stereoscopic displays provides additional depth cues through binocular disparity supporting object recognition. So far, it was unknown whether this results from the representation of specific stereoscopic information in memory or a more general representation of an object's depth structure. Therefore, we investigated whether continuous object rotation acting as depth cue during encoding results in a memory representation that can subsequently be accessed by stereoscopic information during retrieval. In Experiment 1, we found such transfer effects from continuous object rotation during encoding to stereoscopic presentations during retrieval. In Experiments 2a and 2b, we found that the continuity of object rotation is important because only continuous rotation and/or stereoscopic depth but not multiple static snapshots presented without stereoscopic information caused the extraction of an object's depth structure into memory. We conclude that an object's depth structure and not specific depth cues are represented in memory. Copyright © 2015 Elsevier B.V. All rights reserved.
Vision requirements for Space Station applications
NASA Technical Reports Server (NTRS)
Crouse, K. R.
1985-01-01
Problems which will be encountered by computer vision systems in Space Station operations are discussed, along with solutions be examined at Johnson Space Station. Lighting cannot be controlled in space, nor can the random presence of reflective surfaces. Task-oriented capabilities are to include docking to moving objects, identification of unexpected objects during autonomous flights to different orbits, and diagnoses of damage and repair requirements for autonomous Space Station inspection robots. The approaches being examined to provide these and other capabilities are television IR sensors, advanced pattern recognition programs feeding on data from laser probes, laser radar for robot eyesight and arrays of SMART sensors for automated location and tracking of target objects. Attention is also being given to liquid crystal light valves for optical processing of images for comparisons with on-board electronic libraries of images.
Human action recognition based on point context tensor shape descriptor
NASA Astrophysics Data System (ADS)
Li, Jianjun; Mao, Xia; Chen, Lijiang; Wang, Lan
2017-07-01
Motion trajectory recognition is one of the most important means to determine the identity of a moving object. A compact and discriminative feature representation method can improve the trajectory recognition accuracy. This paper presents an efficient framework for action recognition using a three-dimensional skeleton kinematic joint model. First, we put forward a rotation-scale-translation-invariant shape descriptor based on point context (PC) and the normal vector of hypersurface to jointly characterize local motion and shape information. Meanwhile, an algorithm for extracting the key trajectory based on the confidence coefficient is proposed to reduce the randomness and computational complexity. Second, to decrease the eigenvalue decomposition time complexity, a tensor shape descriptor (TSD) based on PC that can globally capture the spatial layout and temporal order to preserve the spatial information of each frame is proposed. Then, a multilinear projection process is achieved by tensor dynamic time warping to map the TSD to a low-dimensional tensor subspace of the same size. Experimental results show that the proposed shape descriptor is effective and feasible, and the proposed approach obtains considerable performance improvement over the state-of-the-art approaches with respect to accuracy on a public action dataset.
A new selective developmental deficit: Impaired object recognition with normal face recognition.
Germine, Laura; Cashdollar, Nathan; Düzel, Emrah; Duchaine, Bradley
2011-05-01
Studies of developmental deficits in face recognition, or developmental prosopagnosia, have shown that individuals who have not suffered brain damage can show face recognition impairments coupled with normal object recognition (Duchaine and Nakayama, 2005; Duchaine et al., 2006; Nunn et al., 2001). However, no developmental cases with the opposite dissociation - normal face recognition with impaired object recognition - have been reported. The existence of a case of non-face developmental visual agnosia would indicate that the development of normal face recognition mechanisms does not rely on the development of normal object recognition mechanisms. To see whether a developmental variant of non-face visual object agnosia exists, we conducted a series of web-based object and face recognition tests to screen for individuals showing object recognition memory impairments but not face recognition impairments. Through this screening process, we identified AW, an otherwise normal 19-year-old female, who was then tested in the lab on face and object recognition tests. AW's performance was impaired in within-class visual recognition memory across six different visual categories (guns, horses, scenes, tools, doors, and cars). In contrast, she scored normally on seven tests of face recognition, tests of memory for two other object categories (houses and glasses), and tests of recall memory for visual shapes. Testing confirmed that her impairment was not related to a general deficit in lower-level perception, object perception, basic-level recognition, or memory. AW's results provide the first neuropsychological evidence that recognition memory for non-face visual object categories can be selectively impaired in individuals without brain damage or other memory impairment. These results indicate that the development of recognition memory for faces does not depend on intact object recognition memory and provide further evidence for category-specific dissociations in visual recognition. Copyright © 2010 Elsevier Srl. All rights reserved.
Strategic avionics technology planning
NASA Technical Reports Server (NTRS)
Cox, Kenneth J.; Brown, Don C.
1991-01-01
NASA experience in development and insertion of technology into programs had led to a recognition that a Strategic Plan for Avionics is needed for space. In the fall of 1989 an Avionics Technology Symposium was held in Williamsburg, Virginia. In early 1990, as a followon, a NASA wide Strategic Avionics Technology Working Group was chartered by NASA Headquarters. This paper will describe the objectives of this working group, technology bridging, and approaches to incentivize both the federal and commercial sectors to move toward rapidly developed, simple, and reliable systems with low life cycle cost.
A novel snapshot polarimetric imager
NASA Astrophysics Data System (ADS)
Wong, Gerald; McMaster, Ciaran; Struthers, Robert; Gorman, Alistair; Sinclair, Peter; Lamb, Robert; Harvey, Andrew R.
2012-10-01
Polarimetric imaging (PI) is of increasing importance in determining additional scene information beyond that of conventional images. For very long-range surveillance, image quality is degraded due to turbulence. Furthermore, the high magnification required to create images with sufficient spatial resolution suitable for object recognition and identification require long focal length optical systems. These are incompatible with the size and weight restrictions for aircraft. Techniques which allow detection and recognition of an object at the single pixel level are therefore likely to provide advance warning of approaching threats or long-range object cueing. PI is a technique that has the potential to detect object signatures at the pixel level. Early attempts to develop PI used rotating polarisers (and spectral filters) which recorded sequential polarized images from which the complete Stokes matrix could be derived. This approach has built-in latency between frames and requires accurate registration of consecutive frames to analyze real-time video of moving objects. Alternatively, multiple optical systems and cameras have been demonstrated to remove latency, but this approach increases cost and bulk of the imaging system. In our investigation we present a simplified imaging system that divides an image into two orthogonal polarimetric components which are then simultaneously projected onto a single detector array. Thus polarimetric data is recorded without latency on a single snapshot. We further show that, for pixel-level objects, the data derived from only two orthogonal states (H and V) is sufficient to increase the probability of detection whilst reducing false alarms compared to conventional unpolarised imaging.
Roark, Dana A; O'Toole, Alice J; Abdi, Hervé; Barrett, Susan E
2006-01-01
Familiarity with a face or person can support recognition in tasks that require generalization to novel viewing contexts. Using naturalistic viewing conditions requiring recognition of people from face or whole body gait stimuli, we investigated the effects of familiarity, facial motion, and direction of learning/test transfer on person recognition. Participants were familiarized with previously unknown people from gait videos and were tested on faces (experiment 1a) or were familiarized with faces and were tested with gait videos (experiment 1b). Recognition was more accurate when learning from the face and testing with the gait videos, than when learning from the gait videos and testing with the face. The repetition of a single stimulus, either the face or gait, produced strong recognition gains across transfer conditions. Also, the presentation of moving faces resulted in better performance than that of static faces. In experiment 2, we investigated the role of facial motion further by testing recognition with static profile images. Motion provided no benefit for recognition, indicating that structure-from-motion is an unlikely source of the motion advantage found in the first set of experiments.
Continuous recognition of spatial and nonspatial stimuli in hippocampal-lesioned rats.
Jackson-Smith, P; Kesner, R P; Chiba, A A
1993-03-01
The present experiments compared the performance of hippocampal-lesioned rats to control rats on a spatial continuous recognition task and an analogous nonspatial task with similar processing demands. Daily sessions for Experiment 1 involved sequential presentation of individual arms on a 12-arm radial maze. Each arm contained a Froot Loop reinforcement the first time it was presented, and latency to traverse the arm was measured. A subset of the arms were repeated, but did not contain reinforcement. Repeated arms were presented with lags ranging from 0 to 6 (0 to 6 different arm presentations occurred between the first and the repeated presentation). Difference scores were computed by subtracting the latency on first presentations from the latency on repeated presentations, and these scores were high in all rats prior to surgery, with a decreasing function across lag. There were no differences in performance following cortical control or sham surgery. However, there was a total deficit in performance following large electrolytic lesions of the hippocampus. The second experiment employed the same continuous recognition memory procedure, but used three-dimensional visual objects (toys, junk items, etc., in various shapes, sizes, and textures) as stimuli on a flat runway. As in Experiment 1, the stimuli were presented successively and latency to run to and move the object was measured. Objects were repeated with lags ranging from 0 to 4. Performance on this task following surgery did not differ from performance prior to surgery for either the control group or the hippocampal lesion group. These results provide support for Kesner's attribute model of hippocampal function in that the hippocampus is assumed to mediate data-based memory for spatial locations, but not three-dimensional visual objects.
Using advanced computer vision algorithms on small mobile robots
NASA Astrophysics Data System (ADS)
Kogut, G.; Birchmore, F.; Biagtan Pacis, E.; Everett, H. R.
2006-05-01
The Technology Transfer project employs a spiral development process to enhance the functionality and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool by converging existing component technologies onto a transition platform for optimization. An example of this approach is the implementation of advanced computer vision algorithms on small mobile robots. We demonstrate the implementation and testing of the following two algorithms useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with the Adaboost training algorithm, and 2) human presence detection from a moving platform. Object classification is performed with an Adaboost training system developed at the University of California, San Diego (UCSD) Computer Vision Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working towards a solution to increase the robustness of this system to perform generic object recognition, this paper demonstrates an extension to this application by detecting soda cans in a cluttered indoor environment. The human presence detection from a moving platform system uses a data fusion algorithm which combines results from a scanning laser and a thermal imager. The system is able to detect the presence of humans while both the humans and the robot are moving simultaneously. In both systems, the two aforementioned algorithms were implemented on embedded hardware and optimized for use in real-time. Test results are shown for a variety of environments.
Can Changes in Eye Movement Scanning Alter the Age-Related Deficit in Recognition Memory?
Chan, Jessica P. K.; Kamino, Daphne; Binns, Malcolm A.; Ryan, Jennifer D.
2011-01-01
Older adults typically exhibit poorer face recognition compared to younger adults. These recognition differences may be due to underlying age-related changes in eye movement scanning. We examined whether older adults’ recognition could be improved by yoking their eye movements to those of younger adults. Participants studied younger and older faces, under free viewing conditions (bases), through a gaze-contingent moving window (own), or a moving window which replayed the eye movements of a base participant (yoked). During the recognition test, participants freely viewed the faces with no viewing restrictions. Own-age recognition biases were observed for older adults in all viewing conditions, suggesting that this effect occurs independently of scanning. Participants in the bases condition had the highest recognition accuracy, and participants in the yoked condition were more accurate than participants in the own condition. Among yoked participants, recognition did not depend on age of the base participant. These results suggest that successful encoding for all participants requires the bottom-up contribution of peripheral information, regardless of the locus of control of the viewer. Although altering the pattern of eye movements did not increase recognition, the amount of sampling of the face during encoding predicted subsequent recognition accuracy for all participants. Increased sampling may confer some advantages for subsequent recognition, particularly for people who have declining memory abilities. PMID:21687460
Face recognition in the thermal infrared domain
NASA Astrophysics Data System (ADS)
Kowalski, M.; Grudzień, A.; Palka, N.; Szustakowski, M.
2017-10-01
Biometrics refers to unique human characteristics. Each unique characteristic may be used to label and describe individuals and for automatic recognition of a person based on physiological or behavioural properties. One of the most natural and the most popular biometric trait is a face. The most common research methods on face recognition are based on visible light. State-of-the-art face recognition systems operating in the visible light spectrum achieve very high level of recognition accuracy under controlled environmental conditions. Thermal infrared imagery seems to be a promising alternative or complement to visible range imaging due to its relatively high resistance to illumination changes. A thermal infrared image of the human face presents its unique heat-signature and can be used for recognition. The characteristics of thermal images maintain advantages over visible light images, and can be used to improve algorithms of human face recognition in several aspects. Mid-wavelength or far-wavelength infrared also referred to as thermal infrared seems to be promising alternatives. We present the study on 1:1 recognition in thermal infrared domain. The two approaches we are considering are stand-off face verification of non-moving person as well as stop-less face verification on-the-move. The paper presents methodology of our studies and challenges for face recognition systems in the thermal infrared domain.
Real-time posture reconstruction for Microsoft Kinect.
Shum, Hubert P H; Ho, Edmond S L; Jiang, Yang; Takagi, Shu
2013-10-01
The recent advancement of motion recognition using Microsoft Kinect stimulates many new ideas in motion capture and virtual reality applications. Utilizing a pattern recognition algorithm, Kinect can determine the positions of different body parts from the user. However, due to the use of a single-depth camera, recognition accuracy drops significantly when the parts are occluded. This hugely limits the usability of applications that involve interaction with external objects, such as sport training or exercising systems. The problem becomes more critical when Kinect incorrectly perceives body parts. This is because applications have limited information about the recognition correctness, and using those parts to synthesize body postures would result in serious visual artifacts. In this paper, we propose a new method to reconstruct valid movement from incomplete and noisy postures captured by Kinect. We first design a set of measurements that objectively evaluates the degree of reliability on each tracked body part. By incorporating the reliability estimation into a motion database query during run time, we obtain a set of similar postures that are kinematically valid. These postures are used to construct a latent space, which is known as the natural posture space in our system, with local principle component analysis. We finally apply frame-based optimization in the space to synthesize a new posture that closely resembles the true user posture while satisfying kinematic constraints. Experimental results show that our method can significantly improve the quality of the recognized posture under severely occluded environments, such as a person exercising with a basketball or moving in a small room.
On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.
Shao, Zhanpeng; Li, Youfu
2016-02-01
Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.
Jurado-Berbel, Patricia; Costa-Miserachs, David; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Portell-Cortés, Isabel
2010-02-11
The present work examined whether post-training systemic epinephrine (EPI) is able to modulate short-term (3h) and long-term (24 h and 48 h) memory of standard object recognition, as well as long-term (24 h) memory of separate "what" (object identity) and "where" (object location) components of object recognition. Although object recognition training is associated to low arousal levels, all the animals received habituation to the training box in order to further reduce emotional arousal. Post-training EPI improved long-term (24 h and 48 h), but not short-term (3 h), memory in the standard object recognition task, as well as 24 h memory for both object identity and object location. These data indicate that post-training epinephrine: (1) facilitates long-term memory for standard object recognition; (2) exerts separate facilitatory effects on "what" (object identity) and "where" (object location) components of object recognition; and (3) is capable of improving memory for a low arousing task even in highly habituated rats.
Experience moderates overlap between object and face recognition, suggesting a common ability
Gauthier, Isabel; McGugin, Rankin W.; Richler, Jennifer J.; Herzmann, Grit; Speegle, Magen; Van Gulick, Ana E.
2014-01-01
Some research finds that face recognition is largely independent from the recognition of other objects; a specialized and innate ability to recognize faces could therefore have little or nothing to do with our ability to recognize objects. We propose a new framework in which recognition performance for any category is the product of domain-general ability and category-specific experience. In Experiment 1, we show that the overlap between face and object recognition depends on experience with objects. In 256 subjects we measured face recognition, object recognition for eight categories, and self-reported experience with these categories. Experience predicted neither face recognition nor object recognition but moderated their relationship: Face recognition performance is increasingly similar to object recognition performance with increasing object experience. If a subject has a lot of experience with objects and is found to perform poorly, they also prove to have a low ability with faces. In a follow-up survey, we explored the dimensions of experience with objects that may have contributed to self-reported experience in Experiment 1. Different dimensions of experience appear to be more salient for different categories, with general self-reports of expertise reflecting judgments of verbal knowledge about a category more than judgments of visual performance. The complexity of experience and current limitations in its measurement support the importance of aggregating across multiple categories. Our findings imply that both face and object recognition are supported by a common, domain-general ability expressed through experience with a category and best measured when accounting for experience. PMID:24993021
Experience moderates overlap between object and face recognition, suggesting a common ability.
Gauthier, Isabel; McGugin, Rankin W; Richler, Jennifer J; Herzmann, Grit; Speegle, Magen; Van Gulick, Ana E
2014-07-03
Some research finds that face recognition is largely independent from the recognition of other objects; a specialized and innate ability to recognize faces could therefore have little or nothing to do with our ability to recognize objects. We propose a new framework in which recognition performance for any category is the product of domain-general ability and category-specific experience. In Experiment 1, we show that the overlap between face and object recognition depends on experience with objects. In 256 subjects we measured face recognition, object recognition for eight categories, and self-reported experience with these categories. Experience predicted neither face recognition nor object recognition but moderated their relationship: Face recognition performance is increasingly similar to object recognition performance with increasing object experience. If a subject has a lot of experience with objects and is found to perform poorly, they also prove to have a low ability with faces. In a follow-up survey, we explored the dimensions of experience with objects that may have contributed to self-reported experience in Experiment 1. Different dimensions of experience appear to be more salient for different categories, with general self-reports of expertise reflecting judgments of verbal knowledge about a category more than judgments of visual performance. The complexity of experience and current limitations in its measurement support the importance of aggregating across multiple categories. Our findings imply that both face and object recognition are supported by a common, domain-general ability expressed through experience with a category and best measured when accounting for experience. © 2014 ARVO.
Generalization between canonical and non-canonical views in object recognition
Ghose, Tandra; Liu, Zili
2013-01-01
Viewpoint generalization in object recognition is the process that allows recognition of a given 3D object from many different viewpoints despite variations in its 2D projections. We used the canonical view effects as a foundation to empirically test the validity of a major theory in object recognition, the view-approximation model (Poggio & Edelman, 1990). This model predicts that generalization should be better when an object is first seen from a non-canonical view and then a canonical view than when seen in the reversed order. We also manipulated object similarity to study the degree to which this view generalization was constrained by shape details and task instructions (object vs. image recognition). Old-new recognition performance for basic and subordinate level objects was measured in separate blocks. We found that for object recognition, view generalization between canonical and non-canonical views was comparable for basic level objects. For subordinate level objects, recognition performance was more accurate from non-canonical to canonical views than the other way around. When the task was changed from object recognition to image recognition, the pattern of the results reversed. Interestingly, participants responded “old” to “new” images of “old” objects with a substantially higher rate than to “new” objects, despite instructions to the contrary, thereby indicating involuntary view generalization. Our empirical findings are incompatible with the prediction of the view-approximation theory, and argue against the hypothesis that views are stored independently. PMID:23283692
Pohl, Rüdiger F; Michalkiewicz, Martha; Erdfelder, Edgar; Hilbig, Benjamin E
2017-07-01
According to the recognition-heuristic theory, decision makers solve paired comparisons in which one object is recognized and the other not by recognition alone, inferring that recognized objects have higher criterion values than unrecognized ones. However, success-and thus usefulness-of this heuristic depends on the validity of recognition as a cue, and adaptive decision making, in turn, requires that decision makers are sensitive to it. To this end, decision makers could base their evaluation of the recognition validity either on the selected set of objects (the set's recognition validity), or on the underlying domain from which the objects were drawn (the domain's recognition validity). In two experiments, we manipulated the recognition validity both in the selected set of objects and between domains from which the sets were drawn. The results clearly show that use of the recognition heuristic depends on the domain's recognition validity, not on the set's recognition validity. In other words, participants treat all sets as roughly representative of the underlying domain and adjust their decision strategy adaptively (only) with respect to the more general environment rather than the specific items they are faced with.
Eye movements during object recognition in visual agnosia.
Charles Leek, E; Patterson, Candy; Paul, Matthew A; Rafal, Robert; Cristino, Filipe
2012-07-01
This paper reports the first ever detailed study about eye movement patterns during single object recognition in visual agnosia. Eye movements were recorded in a patient with an integrative agnosic deficit during two recognition tasks: common object naming and novel object recognition memory. The patient showed normal directional biases in saccades and fixation dwell times in both tasks and was as likely as controls to fixate within object bounding contour regardless of recognition accuracy. In contrast, following initial saccades of similar amplitude to controls, the patient showed a bias for short saccades. In object naming, but not in recognition memory, the similarity of the spatial distributions of patient and control fixations was modulated by recognition accuracy. The study provides new evidence about how eye movements can be used to elucidate the functional impairments underlying object recognition deficits. We argue that the results reflect a breakdown in normal functional processes involved in the integration of shape information across object structure during the visual perception of shape. Copyright © 2012 Elsevier Ltd. All rights reserved.
The role of color information on object recognition: a review and meta-analysis.
Bramão, Inês; Reis, Alexandra; Petersson, Karl Magnus; Faísca, Luís
2011-09-01
In this study, we systematically review the scientific literature on the effect of color on object recognition. Thirty-five independent experiments, comprising 1535 participants, were included in a meta-analysis. We found a moderate effect of color on object recognition (d=0.28). Specific effects of moderator variables were analyzed and we found that color diagnosticity is the factor with the greatest moderator effect on the influence of color in object recognition; studies using color diagnostic objects showed a significant color effect (d=0.43), whereas a marginal color effect was found in studies that used non-color diagnostic objects (d=0.18). The present study did not permit the drawing of specific conclusions about the moderator effect of the object recognition task; while the meta-analytic review showed that color information improves object recognition mainly in studies using naming tasks (d=0.36), the literature review revealed a large body of evidence showing positive effects of color information on object recognition in studies using a large variety of visual recognition tasks. We also found that color is important for the ability to recognize artifacts and natural objects, to recognize objects presented as types (line-drawings) or as tokens (photographs), and to recognize objects that are presented without surface details, such as texture or shadow. Taken together, the results of the meta-analysis strongly support the contention that color plays a role in object recognition. This suggests that the role of color should be taken into account in models of visual object recognition. Copyright © 2011 Elsevier B.V. All rights reserved.
The role of perceptual load in object recognition.
Lavie, Nilli; Lin, Zhicheng; Zokaei, Nahid; Thoma, Volker
2009-10-01
Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were unaffected by a change in the distracter object view under conditions of low perceptual load. These results were found both with repetition priming measures of distracter recognition and with performance on a surprise recognition memory test. The results support load theory proposals that distracter recognition critically depends on the level of perceptual load. The implications for the role of attention in object recognition theories are discussed. PsycINFO Database Record (c) 2009 APA, all rights reserved.
Updating representations of learned scenes.
Finlay, Cory A; Motes, Michael A; Kozhevnikov, Maria
2007-05-01
Two experiments were designed to compare scene recognition reaction time (RT) and accuracy patterns following observer versus scene movement. In Experiment 1, participants memorized a scene from a single perspective. Then, either the scene was rotated or the participants moved (0 degrees -360 degrees in 36 degrees increments) around the scene, and participants judged whether the objects' positions had changed. Regardless of whether the scene was rotated or the observer moved, RT increased with greater angular distance between judged and encoded views. In Experiment 2, we varied the delay (0, 6, or 12 s) between scene encoding and locomotion. Regardless of the delay, however, accuracy decreased and RT increased with angular distance. Thus, our data show that observer movement does not necessarily update representations of spatial layouts and raise questions about the effects of duration limitations and encoding points of view on the automatic spatial updating of representations of scenes.
Analysis and Recognition of Curve Type as The Basis of Object Recognition in Image
NASA Astrophysics Data System (ADS)
Nugraha, Nurma; Madenda, Sarifuddin; Indarti, Dina; Dewi Agushinta, R.; Ernastuti
2016-06-01
An object in an image when analyzed further will show the characteristics that distinguish one object with another object in an image. Characteristics that are used in object recognition in an image can be a color, shape, pattern, texture and spatial information that can be used to represent objects in the digital image. The method has recently been developed for image feature extraction on objects that share characteristics curve analysis (simple curve) and use the search feature of chain code object. This study will develop an algorithm analysis and the recognition of the type of curve as the basis for object recognition in images, with proposing addition of complex curve characteristics with maximum four branches that will be used for the process of object recognition in images. Definition of complex curve is the curve that has a point of intersection. By using some of the image of the edge detection, the algorithm was able to do the analysis and recognition of complex curve shape well.
It Takes Two–Skilled Recognition of Objects Engages Lateral Areas in Both Hemispheres
Bilalić, Merim; Kiesel, Andrea; Pohl, Carsten; Erb, Michael; Grodd, Wolfgang
2011-01-01
Our object recognition abilities, a direct product of our experience with objects, are fine-tuned to perfection. Left temporal and lateral areas along the dorsal, action related stream, as well as left infero-temporal areas along the ventral, object related stream are engaged in object recognition. Here we show that expertise modulates the activity of dorsal areas in the recognition of man-made objects with clearly specified functions. Expert chess players were faster than chess novices in identifying chess objects and their functional relations. Experts' advantage was domain-specific as there were no differences between groups in a control task featuring geometrical shapes. The pattern of eye movements supported the notion that experts' extensive knowledge about domain objects and their functions enabled superior recognition even when experts were not directly fixating the objects of interest. Functional magnetic resonance imaging (fMRI) related exclusively the areas along the dorsal stream to chess specific object recognition. Besides the commonly involved left temporal and parietal lateral brain areas, we found that only in experts homologous areas on the right hemisphere were also engaged in chess specific object recognition. Based on these results, we discuss whether skilled object recognition does not only involve a more efficient version of the processes found in non-skilled recognition, but also qualitatively different cognitive processes which engage additional brain areas. PMID:21283683
Implementation of jump-diffusion algorithms for understanding FLIR scenes
NASA Astrophysics Data System (ADS)
Lanterman, Aaron D.; Miller, Michael I.; Snyder, Donald L.
1995-07-01
Our pattern theoretic approach to the automated understanding of forward-looking infrared (FLIR) images brings the traditionally separate endeavors of detection, tracking, and recognition together into a unified jump-diffusion process. New objects are detected and object types are recognized through discrete jump moves. Between jumps, the location and orientation of objects are estimated via continuous diffusions. An hypothesized scene, simulated from the emissive characteristics of the hypothesized scene elements, is compared with the collected data by a likelihood function based on sensor statistics. This likelihood is combined with a prior distribution defined over the set of possible scenes to form a posterior distribution. The jump-diffusion process empirically generates the posterior distribution. Both the diffusion and jump operations involve the simulation of a scene produced by a hypothesized configuration. Scene simulation is most effectively accomplished by pipelined rendering engines such as silicon graphics. We demonstrate the execution of our algorithm on a silicon graphics onyx/reality engine.
Holdstock, J S; Mayes, A R; Roberts, N; Cezayirli, E; Isaac, C L; O'Reilly, R C; Norman, K A
2002-01-01
The claim that recognition memory is spared relative to recall after focal hippocampal damage has been disputed in the literature. We examined this claim by investigating object and object-location recall and recognition memory in a patient, YR, who has adult-onset selective hippocampal damage. Our aim was to identify the conditions under which recognition was spared relative to recall in this patient. She showed unimpaired forced-choice object recognition but clearly impaired recall, even when her control subjects found the object recognition task to be numerically harder than the object recall task. However, on two other recognition tests, YR's performance was not relatively spared. First, she was clearly impaired at an equivalently difficult yes/no object recognition task, but only when targets and foils were very similar. Second, YR was clearly impaired at forced-choice recognition of object-location associations. This impairment was also unrelated to difficulty because this task was no more difficult than the forced-choice object recognition task for control subjects. The clear impairment of yes/no, but not of forced-choice, object recognition after focal hippocampal damage, when targets and foils are very similar, is predicted by the neural network-based Complementary Learning Systems model of recognition. This model postulates that recognition is mediated by hippocampally dependent recollection and cortically dependent familiarity; thus hippocampal damage should not impair item familiarity. The model postulates that familiarity is ineffective when very similar targets and foils are shown one at a time and subjects have to identify which items are old (yes/no recognition). In contrast, familiarity is effective in discriminating which of similar targets and foils, seen together, is old (forced-choice recognition). Independent evidence from the remember/know procedure also indicates that YR's familiarity is normal. The Complementary Learning Systems model can also accommodate the clear impairment of forced-choice object-location recognition memory if it incorporates the view that the most complete convergence of spatial and object information, represented in different cortical regions, occurs in the hippocampus.
Higher-Order Neural Networks Applied to 2D and 3D Object Recognition
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly; Reid, Max B.
1994-01-01
A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.
Peterson, M A; de Gelder, B; Rapcsak, S Z; Gerhardstein, P C; Bachoud-Lévi, A
2000-01-01
In three experiments we investigated whether conscious object recognition is necessary or sufficient for effects of object memories on figure assignment. In experiment 1, we examined a brain-damaged participant, AD, whose conscious object recognition is severely impaired. AD's responses about figure assignment do reveal effects from memories of object structure, indicating that conscious object recognition is not necessary for these effects, and identifying the figure-ground test employed here as a new implicit test of access to memories of object structure. In experiments 2 and 3, we tested a second brain-damaged participant, WG, for whom conscious object recognition was relatively spared. Nevertheless, effects from memories of object structure on figure assignment were not evident in WG's responses about figure assignment in experiment 2, indicating that conscious object recognition is not sufficient for effects of object memories on figure assignment. WG's performance sheds light on AD's performance, and has implications for the theoretical understanding of object memory effects on figure assignment.
Fast neuromimetic object recognition using FPGA outperforms GPU implementations.
Orchard, Garrick; Martin, Jacob G; Vogelstein, R Jacob; Etienne-Cummings, Ralph
2013-08-01
Recognition of objects in still images has traditionally been regarded as a difficult computational problem. Although modern automated methods for visual object recognition have achieved steadily increasing recognition accuracy, even the most advanced computational vision approaches are unable to obtain performance equal to that of humans. This has led to the creation of many biologically inspired models of visual object recognition, among them the hierarchical model and X (HMAX) model. HMAX is traditionally known to achieve high accuracy in visual object recognition tasks at the expense of significant computational complexity. Increasing complexity, in turn, increases computation time, reducing the number of images that can be processed per unit time. In this paper we describe how the computationally intensive and biologically inspired HMAX model for visual object recognition can be modified for implementation on a commercial field-programmable aate Array, specifically the Xilinx Virtex 6 ML605 evaluation board with XC6VLX240T FPGA. We show that with minor modifications to the traditional HMAX model we can perform recognition on images of size 128 × 128 pixels at a rate of 190 images per second with a less than 1% loss in recognition accuracy in both binary and multiclass visual object recognition tasks.
The development of newborn object recognition in fast and slow visual worlds
Wood, Justin N.; Wood, Samantha M. W.
2016-01-01
Object recognition is central to perception and cognition. Yet relatively little is known about the environmental factors that cause invariant object recognition to emerge in the newborn brain. Is this ability a hardwired property of vision? Or does the development of invariant object recognition require experience with a particular kind of visual environment? Here, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) require visual experience with slowly changing objects to develop invariant object recognition abilities. When newborn chicks were raised with a slowly rotating virtual object, the chicks built invariant object representations that generalized across novel viewpoints and rotation speeds. In contrast, when newborn chicks were raised with a virtual object that rotated more quickly, the chicks built viewpoint-specific object representations that failed to generalize to novel viewpoints and rotation speeds. Moreover, there was a direct relationship between the speed of the object and the amount of invariance in the chick's object representation. Thus, visual experience with slowly changing objects plays a critical role in the development of invariant object recognition. These results indicate that invariant object recognition is not a hardwired property of vision, but is learned rapidly when newborns encounter a slowly changing visual world. PMID:27097925
Niimi, Ryosuke; Yokosawa, Kazuhiko
2009-01-01
Visual recognition of three-dimensional (3-D) objects is relatively impaired for some particular views, called accidental views. For most familiar objects, the front and top views are considered to be accidental views. Previous studies have shown that foreshortening of the axes of elongation of objects in these views impairs recognition, but the influence of other possible factors is largely unknown. Using familiar objects without a salient axis of elongation, we found that a foreshortened symmetry plane of the object and low familiarity of the viewpoint accounted for the relatively worse recognition for front views and top views, independently of the effect of a foreshortened axis of elongation. We found no evidence that foreshortened front-back axes impaired recognition in front views. These results suggest that the viewpoint dependence of familiar object recognition is not a unitary phenomenon. The possible role of symmetry (either 2-D or 3-D) in familiar object recognition is also discussed.
Automatic anatomy recognition via multiobject oriented active shape models.
Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A
2010-12-01
This paper studies the feasibility of developing an automatic anatomy recognition (AAR) system in clinical radiology and demonstrates its operation on clinical 2D images. The anatomy recognition method described here consists of two main components: (a) multiobject generalization of OASM and (b) object recognition strategies. The OASM algorithm is generalized to multiple objects by including a model for each object and assigning a cost structure specific to each object in the spirit of live wire. The delineation of multiobject boundaries is done in MOASM via a three level dynamic programming algorithm, wherein the first level is at pixel level which aims to find optimal oriented boundary segments between successive landmarks, the second level is at landmark level which aims to find optimal location for the landmarks, and the third level is at the object level which aims to find optimal arrangement of object boundaries over all objects. The object recognition strategy attempts to find that pose vector (consisting of translation, rotation, and scale component) for the multiobject model that yields the smallest total boundary cost for all objects. The delineation and recognition accuracies were evaluated separately utilizing routine clinical chest CT, abdominal CT, and foot MRI data sets. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF and FPVF). The recognition accuracy was assessed (1) in terms of the size of the space of the pose vectors for the model assembly that yielded high delineation accuracy, (2) as a function of the number of objects and objects' distribution and size in the model, (3) in terms of the interdependence between delineation and recognition, and (4) in terms of the closeness of the optimum recognition result to the global optimum. When multiple objects are included in the model, the delineation accuracy in terms of TPVF can be improved to 97%-98% with a low FPVF of 0.1%-0.2%. Typically, a recognition accuracy of > or = 90% yielded a TPVF > or = 95% and FPVF < or = 0.5%. Over the three data sets and over all tested objects, in 97% of the cases, the optimal solutions found by the proposed method constituted the true global optimum. The experimental results showed the feasibility and efficacy of the proposed automatic anatomy recognition system. Increasing the number of objects in the model can significantly improve both recognition and delineation accuracy. More spread out arrangement of objects in the model can lead to improved recognition and delineation accuracy. Including larger objects in the model also improved recognition and delineation. The proposed method almost always finds globally optimum solutions.
Herff, Steffen A; Olsen, Kirk N; Dean, Roger T
2018-05-01
In many memory domains, a decrease in recognition performance between the first and second presentation of an object is observed as the number of intervening items increases. However, this effect is not universal. Within the auditory domain, this form of interference has been demonstrated in word and single-note recognition, but has yet to be substantiated using relatively complex musical material such as a melody. Indeed, it is becoming clear that music shows intriguing properties when it comes to memory. This study investigated how the number of intervening items influences memory for melodies. In Experiments 1, 2 and 3, one melody was presented per trial in a continuous recognition paradigm. After each melody, participants indicated whether they had heard the melody in the experiment before by responding "old" or "new." In Experiment 4, participants rated perceived familiarity for every melody without being told that melodies reoccur. In four experiments using two corpora of music, two different memory tasks, transposed and untransposed melodies and up to 195 intervening melodies, no sign of a disruptive effect from the number of intervening melodies beyond the first was observed. We propose a new "regenerative multiple representations" conjecture to explain why intervening items increase interference in recognition memory for most domains but not music. This conjecture makes several testable predictions and has the potential to strengthen our understanding of domain specificity in human memory, while moving one step closer to explaining the "paradox" that is memory for melody.
DORSAL HIPPOCAMPAL PROGESTERONE INFUSIONS ENHANCE OBJECT RECOGNITION IN YOUNG FEMALE MICE
Orr, Patrick T.; Lewis, Michael C.; Frick, Karyn M.
2009-01-01
The effects of progesterone on memory are not nearly as well studied as the effects of estrogens. Although progesterone can reportedly enhance spatial and/or object recognition in female rodents when given immediately after training, previous studies have injected progesterone systemically, and therefore, the brain regions mediating this enhancement are not clear. As such, this study was designed to determine the role of the dorsal hippocampus in mediating the beneficial effect of progesterone on object recognition. Young ovariectomized C57BL/6 mice were trained in a hippocampal-dependent object recognition task utilizing two identical objects, and then immediately or 2 hrs afterwards, received bilateral dorsal hippocampal infusions of vehicle or 0.01, 0.1, or 1.0 μg/μl water-soluble progesterone. Forty-eight hours later, object recognition memory was tested using a previously explored object and a novel object. Relative to the vehicle group, memory for the familiar object was enhanced in all groups receiving immediate infusions of progesterone. Progesterone infusion delayed 2 hrs after training did not affect object recognition. These data suggest that the dorsal hippocampus may play a critical role in progesterone-induced enhancement of object recognition. PMID:19477194
Interactive object recognition assistance: an approach to recognition starting from target objects
NASA Astrophysics Data System (ADS)
Geisler, Juergen; Littfass, Michael
1999-07-01
Recognition of target objects in remotely sensed imagery required detailed knowledge about the target object domain as well as about mapping properties of the sensing system. The art of object recognition is to combine both worlds appropriately and to provide models of target appearance with respect to sensor characteristics. Common approaches to support interactive object recognition are either driven from the sensor point of view and address the problem of displaying images in a manner adequate to the sensing system. Or they focus on target objects and provide exhaustive encyclopedic information about this domain. Our paper discusses an approach to assist interactive object recognition based on knowledge about target objects and taking into account the significance of object features with respect to characteristics of the sensed imagery, e.g. spatial and spectral resolution. An `interactive recognition assistant' takes the image analyst through the interpretation process by indicating step-by-step the respectively most significant features of objects in an actual set of candidates. The significance of object features is expressed by pregenerated trees of significance, and by the dynamic computation of decision relevance for every feature at each step of the recognition process. In the context of this approach we discuss the question of modeling and storing the multisensorial/multispectral appearances of target objects and object classes as well as the problem of an adequate dynamic human-machine-interface that takes into account various mental models of human image interpretation.
Infant Visual Attention and Object Recognition
Reynolds, Greg D.
2015-01-01
This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. PMID:25596333
Recognition-induced forgetting is not due to category-based set size.
Maxcey, Ashleigh M
2016-01-01
What are the consequences of accessing a visual long-term memory representation? Previous work has shown that accessing a long-term memory representation via retrieval improves memory for the targeted item and hurts memory for related items, a phenomenon called retrieval-induced forgetting. Recently we found a similar forgetting phenomenon with recognition of visual objects. Recognition-induced forgetting occurs when practice recognizing an object during a two-alternative forced-choice task, from a group of objects learned at the same time, leads to worse memory for objects from that group that were not practiced. An alternative explanation of this effect is that category-based set size is inducing forgetting, not recognition practice as claimed by some researchers. This alternative explanation is possible because during recognition practice subjects make old-new judgments in a two-alternative forced-choice task, and are thus exposed to more objects from practiced categories, potentially inducing forgetting due to set-size. Herein I pitted the category-based set size hypothesis against the recognition-induced forgetting hypothesis. To this end, I parametrically manipulated the amount of practice objects received in the recognition-induced forgetting paradigm. If forgetting is due to category-based set size, then the magnitude of forgetting of related objects will increase as the number of practice trials increases. If forgetting is recognition induced, the set size of exemplars from any given category should not be predictive of memory for practiced objects. Consistent with this latter hypothesis, additional practice systematically improved memory for practiced objects, but did not systematically affect forgetting of related objects. These results firmly establish that recognition practice induces forgetting of related memories. Future directions and important real-world applications of using recognition to access our visual memories of previously encountered objects are discussed.
Mechanisms of object recognition: what we have learned from pigeons
Soto, Fabian A.; Wasserman, Edward A.
2014-01-01
Behavioral studies of object recognition in pigeons have been conducted for 50 years, yielding a large body of data. Recent work has been directed toward synthesizing this evidence and understanding the visual, associative, and cognitive mechanisms that are involved. The outcome is that pigeons are likely to be the non-primate species for which the computational mechanisms of object recognition are best understood. Here, we review this research and suggest that a core set of mechanisms for object recognition might be present in all vertebrates, including pigeons and people, making pigeons an excellent candidate model to study the neural mechanisms of object recognition. Behavioral and computational evidence suggests that error-driven learning participates in object category learning by pigeons and people, and recent neuroscientific research suggests that the basal ganglia, which are homologous in these species, may implement error-driven learning of stimulus-response associations. Furthermore, learning of abstract category representations can be observed in pigeons and other vertebrates. Finally, there is evidence that feedforward visual processing, a central mechanism in models of object recognition in the primate ventral stream, plays a role in object recognition by pigeons. We also highlight differences between pigeons and people in object recognition abilities, and propose candidate adaptive specializations which may explain them, such as holistic face processing and rule-based category learning in primates. From a modern comparative perspective, such specializations are to be expected regardless of the model species under study. The fact that we have a good idea of which aspects of object recognition differ in people and pigeons should be seen as an advantage over other animal models. From this perspective, we suggest that there is much to learn about human object recognition from studying the “simple” brains of pigeons. PMID:25352784
Purpura, Giulia; Cioni, Giovanni; Tinelli, Francesca
2018-07-01
Object recognition is a long and complex adaptive process and its full maturation requires combination of many different sensory experiences as well as cognitive abilities to manipulate previous experiences in order to develop new percepts and subsequently to learn from the environment. It is well recognized that the transfer of visual and haptic information facilitates object recognition in adults, but less is known about development of this ability. In this study, we explored the developmental course of object recognition capacity in children using unimodal visual information, unimodal haptic information, and visuo-haptic information transfer in children from 4 years to 10 years and 11 months of age. Participants were tested through a clinical protocol, involving visual exploration of black-and-white photographs of common objects, haptic exploration of real objects, and visuo-haptic transfer of these two types of information. Results show an age-dependent development of object recognition abilities for visual, haptic, and visuo-haptic modalities. A significant effect of time on development of unimodal and crossmodal recognition skills was found. Moreover, our data suggest that multisensory processes for common object recognition are active at 4 years of age. They facilitate recognition of common objects, and, although not fully mature, are significant in adaptive behavior from the first years of age. The study of typical development of visuo-haptic processes in childhood is a starting point for future studies regarding object recognition in impaired populations.
O'Neil, Edward B; Watson, Hilary C; Dhillon, Sonya; Lobaugh, Nancy J; Lee, Andy C H
2015-09-01
Recent work has demonstrated that the perirhinal cortex (PRC) supports conjunctive object representations that aid object recognition memory following visual object interference. It is unclear, however, how these representations interact with other brain regions implicated in mnemonic retrieval and how congruent and incongruent interference influences the processing of targets and foils during object recognition. To address this, multivariate partial least squares was applied to fMRI data acquired during an interference match-to-sample task, in which participants made object or scene recognition judgments after object or scene interference. This revealed a pattern of activity sensitive to object recognition following congruent (i.e., object) interference that included PRC, prefrontal, and parietal regions. Moreover, functional connectivity analysis revealed a common pattern of PRC connectivity across interference and recognition conditions. Examination of eye movements during the same task in a separate study revealed that participants gazed more at targets than foils during correct object recognition decisions, regardless of interference congruency. By contrast, participants viewed foils more than targets for incorrect object memory judgments, but only after congruent interference. Our findings suggest that congruent interference makes object foils appear familiar and that a network of regions, including PRC, is recruited to overcome the effects of interference.
The Role of Perceptual Load in Object Recognition
ERIC Educational Resources Information Center
Lavie, Nilli; Lin, Zhicheng; Zokaei, Nahid; Thoma, Volker
2009-01-01
Predictions from perceptual load theory (Lavie, 1995, 2005) regarding object recognition across the same or different viewpoints were tested. Results showed that high perceptual load reduces distracter recognition levels despite always presenting distracter objects from the same view. They also showed that the levels of distracter recognition were…
The role of movement in the recognition of famous faces.
Lander, K; Christie, F; Bruce, V
1999-11-01
The effects of movement on the recognition of famous faces shown in difficult conditions were investigated. Images were presented as negatives, upside down (inverted), and thresholded. Results indicate that, under all these conditions, moving faces were recognized significantly better than static ones. One possible explanation of this effect could be that a moving sequence contains more static information about the different views and expressions of the face than does a single static image. However, even when the amount of static information was equated (Experiments 3 and 4), there was still an advantage for moving sequences that contained their original dynamic properties. The results suggest that the dynamics of the motion provide additional information, helping to access an established familiar face representation. Both the theoretical and the practical implications for these findings are discussed.
The UBIRIS.v2: a database of visible wavelength iris images captured on-the-move and at-a-distance.
Proença, Hugo; Filipe, Sílvio; Santos, Ricardo; Oliveira, João; Alexandre, Luís A
2010-08-01
The iris is regarded as one of the most useful traits for biometric recognition and the dissemination of nationwide iris-based recognition systems is imminent. However, currently deployed systems rely on heavy imaging constraints to capture near infrared images with enough quality. Also, all of the publicly available iris image databases contain data correspondent to such imaging constraints and therefore are exclusively suitable to evaluate methods thought to operate on these type of environments. The main purpose of this paper is to announce the availability of the UBIRIS.v2 database, a multisession iris images database which singularly contains data captured in the visible wavelength, at-a-distance (between four and eight meters) and on on-the-move. This database is freely available for researchers concerned about visible wavelength iris recognition and will be useful in accessing the feasibility and specifying the constraints of this type of biometric recognition.
Object Recognition and Localization: The Role of Tactile Sensors
Aggarwal, Achint; Kirchner, Frank
2014-01-01
Tactile sensors, because of their intrinsic insensitivity to lighting conditions and water turbidity, provide promising opportunities for augmenting the capabilities of vision sensors in applications involving object recognition and localization. This paper presents two approaches for haptic object recognition and localization for ground and underwater environments. The first approach called Batch Ransac and Iterative Closest Point augmented Particle Filter (BRICPPF) is based on an innovative combination of particle filters, Iterative-Closest-Point algorithm, and a feature-based Random Sampling and Consensus (RANSAC) algorithm for database matching. It can handle a large database of 3D-objects of complex shapes and performs a complete six-degree-of-freedom localization of static objects. The algorithms are validated by experimentation in ground and underwater environments using real hardware. To our knowledge this is the first instance of haptic object recognition and localization in underwater environments. The second approach is biologically inspired, and provides a close integration between exploration and recognition. An edge following exploration strategy is developed that receives feedback from the current state of recognition. A recognition by parts approach is developed which uses the BRICPPF for object sub-part recognition. Object exploration is either directed to explore a part until it is successfully recognized, or is directed towards new parts to endorse the current recognition belief. This approach is validated by simulation experiments. PMID:24553087
Yamashita, Wakayo; Wang, Gang; Tanaka, Keiji
2010-01-01
One usually fails to recognize an unfamiliar object across changes in viewing angle when it has to be discriminated from similar distractor objects. Previous work has demonstrated that after long-term experience in discriminating among a set of objects seen from the same viewing angle, immediate recognition of the objects across 30-60 degrees changes in viewing angle becomes possible. The capability for view-invariant object recognition should develop during the within-viewing-angle discrimination, which includes two kinds of experience: seeing individual views and discriminating among the objects. The aim of the present study was to determine the relative contribution of each factor to the development of view-invariant object recognition capability. Monkeys were first extensively trained in a task that required view-invariant object recognition (Object task) with several sets of objects. The animals were then exposed to a new set of objects over 26 days in one of two preparatory tasks: one in which each object view was seen individually, and a second that required discrimination among the objects at each of four viewing angles. After the preparatory period, we measured the monkeys' ability to recognize the objects across changes in viewing angle, by introducing the object set to the Object task. Results indicated significant view-invariant recognition after the second but not first preparatory task. These results suggest that discrimination of objects from distractors at each of several viewing angles is required for the development of view-invariant recognition of the objects when the distractors are similar to the objects.
Looking for myself: current multisensory input alters self-face recognition.
Tsakiris, Manos
2008-01-01
How do I know the person I see in the mirror is really me? Is it because I know the person simply looks like me, or is it because the mirror reflection moves when I move, and I see it being touched when I feel touch myself? Studies of face-recognition suggest that visual recognition of stored visual features inform self-face recognition. In contrast, body-recognition studies conclude that multisensory integration is the main cue to selfhood. The present study investigates for the first time the specific contribution of current multisensory input for self-face recognition. Participants were stroked on their face while they were looking at a morphed face being touched in synchrony or asynchrony. Before and after the visuo-tactile stimulation participants performed a self-recognition task. The results show that multisensory signals have a significant effect on self-face recognition. Synchronous tactile stimulation while watching another person's face being similarly touched produced a bias in recognizing one's own face, in the direction of the other person included in the representation of one's own face. Multisensory integration can update cognitive representations of one's body, such as the sense of ownership. The present study extends this converging evidence by showing that the correlation of synchronous multisensory signals also updates the representation of one's face. The face is a key feature of our identity, but at the same time is a source of rich multisensory experiences used to maintain or update self-representations.
DOT National Transportation Integrated Search
2009-04-28
A study was conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information, such as electronic charts and moving map displays. The goal of this research is to support t...
NASA Astrophysics Data System (ADS)
Feliu-Talegon, D.; Feliu-Batlle, V.
2017-06-01
Flexible links combined with force and torque sensors can be used to detect obstacles in mobile robotics, as well as for surface and object recognition. These devices, called sensing antennae, perform an active sensing strategy in which a servomotor system moves the link back and forth until it hits an object. At this instant, information of the motor angles combined with force and torque measurements allow calculating the positions of the hitting points, which are valuable information about the object surface. In order to move the antenna fast and accurately, this article proposes a new closed-loop control for driving this flexible link-based sensor. The control strategy is based on combining a feedforward term and a feedback phase-lag compensator of fractional order. We demonstrate that some drawbacks of the control of these sensing devices like the apparition of spillover effects when a very fast positioning of the antenna tip is desired, and actuator saturation caused by high-frequency sensor noise, can be significantly reduced by using our newly proposed fractional-order controllers. We have applied these controllers to the position control of a prototype of sensing antenna and experiments have shown the improvements attained with this technique in the accurate and vibration free motion of its tip (the fractional-order controller reduced ten times the residual vibration obtained with the integer-order controller).
Infant visual attention and object recognition.
Reynolds, Greg D
2015-05-15
This paper explores the role visual attention plays in the recognition of objects in infancy. Research and theory on the development of infant attention and recognition memory are reviewed in three major sections. The first section reviews some of the major findings and theory emerging from a rich tradition of behavioral research utilizing preferential looking tasks to examine visual attention and recognition memory in infancy. The second section examines research utilizing neural measures of attention and object recognition in infancy as well as research on brain-behavior relations in the early development of attention and recognition memory. The third section addresses potential areas of the brain involved in infant object recognition and visual attention. An integrated synthesis of some of the existing models of the development of visual attention is presented which may account for the observed changes in behavioral and neural measures of visual attention and object recognition that occur across infancy. Copyright © 2015 Elsevier B.V. All rights reserved.
Space imaging measurement system based on fixed lens and moving detector
NASA Astrophysics Data System (ADS)
Akiyama, Akira; Doshida, Minoru; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu
2006-08-01
We have developed the Space Imaging Measurement System based on the fixed lens and fast moving detector to the control of the autonomous ground vehicle. The space measurement is the most important task in the development of the autonomous ground vehicle. In this study we move the detector back and forth along the optical axis at the fast rate to measure the three-dimensional image data. This system is just appropriate to the autonomous ground vehicle because this system does not send out any optical energy to measure the distance and keep the safety. And we use the digital camera of the visible ray range. Therefore it gives us the cost reduction of the three-dimensional image data acquisition with respect to the imaging laser system. We can combine many pieces of the narrow space imaging measurement data to construct the wide range three-dimensional data. This gives us the improvement of the image recognition with respect to the object space. To develop the fast movement of the detector, we build the counter mass balance in the mechanical crank system of the Space Imaging Measurement System. And then we set up the duct to prevent the optical noise due to the ray not coming through lens. The object distance is derived from the focus distance which related to the best focused image data. The best focused image data is selected from the image of the maximum standard deviation in the standard deviations of series images.
A comparison of moving object detection methods for real-time moving object detection
NASA Astrophysics Data System (ADS)
Roshan, Aditya; Zhang, Yun
2014-06-01
Moving object detection has a wide variety of applications from traffic monitoring, site monitoring, automatic theft identification, face detection to military surveillance. Many methods have been developed across the globe for moving object detection, but it is very difficult to find one which can work globally in all situations and with different types of videos. The purpose of this paper is to evaluate existing moving object detection methods which can be implemented in software on a desktop or laptop, for real time object detection. There are several moving object detection methods noted in the literature, but few of them are suitable for real time moving object detection. Most of the methods which provide for real time movement are further limited by the number of objects and the scene complexity. This paper evaluates the four most commonly used moving object detection methods as background subtraction technique, Gaussian mixture model, wavelet based and optical flow based methods. The work is based on evaluation of these four moving object detection methods using two (2) different sets of cameras and two (2) different scenes. The moving object detection methods have been implemented using MatLab and results are compared based on completeness of detected objects, noise, light change sensitivity, processing time etc. After comparison, it is observed that optical flow based method took least processing time and successfully detected boundary of moving objects which also implies that it can be implemented for real-time moving object detection.
Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory.
Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto
2015-08-06
Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer's disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.
Appearance-based face recognition and light-fields.
Gross, Ralph; Matthews, Iain; Baker, Simon
2004-04-01
Arguably the most important decision to be made when developing an object recognition algorithm is selecting the scene measurements or features on which to base the algorithm. In appearance-based object recognition, the features are chosen to be the pixel intensity values in an image of the object. These pixel intensities correspond directly to the radiance of light emitted from the object along certain rays in space. The set of all such radiance values over all possible rays is known as the plenoptic function or light-field. In this paper, we develop a theory of appearance-based object recognition from light-fields. This theory leads directly to an algorithm for face recognition across pose that uses as many images of the face as are available, from one upwards. All of the pixels, whichever image they come from, are treated equally and used to estimate the (eigen) light-field of the object. The eigen light-field is then used as the set of features on which to base recognition, analogously to how the pixel intensities are used in appearance-based face and object recognition.
Graf, M; Kaping, D; Bülthoff, H H
2005-03-01
How do observers recognize objects after spatial transformations? Recent neurocomputational models have proposed that object recognition is based on coordinate transformations that align memory and stimulus representations. If the recognition of a misoriented object is achieved by adjusting a coordinate system (or reference frame), then recognition should be facilitated when the object is preceded by a different object in the same orientation. In the two experiments reported here, two objects were presented in brief masked displays that were in close temporal contiguity; the objects were in either congruent or incongruent picture-plane orientations. Results showed that naming accuracy was higher for congruent than for incongruent orientations. The congruency effect was independent of superordinate category membership (Experiment 1) and was found for objects with different main axes of elongation (Experiment 2). The results indicate congruency effects for common familiar objects even when they have dissimilar shapes. These findings are compatible with models in which object recognition is achieved by an adjustment of a perceptual coordinate system.
Measuring the Speed of Newborn Object Recognition in Controlled Visual Worlds
ERIC Educational Resources Information Center
Wood, Justin N.; Wood, Samantha M. W.
2017-01-01
How long does it take for a newborn to recognize an object? Adults can recognize objects rapidly, but measuring object recognition speed in newborns has not previously been possible. Here we introduce an automated controlled-rearing method for measuring the speed of newborn object recognition in controlled visual worlds. We raised newborn chicks…
Deletion of the GluA1 AMPA receptor subunit impairs recency-dependent object recognition memory
Sanderson, David J.; Hindley, Emma; Smeaton, Emily; Denny, Nick; Taylor, Amy; Barkus, Chris; Sprengel, Rolf; Seeburg, Peter H.; Bannerman, David M.
2011-01-01
Deletion of the GluA1 AMPA receptor subunit impairs short-term spatial recognition memory. It has been suggested that short-term recognition depends upon memory caused by the recent presentation of a stimulus that is independent of contextual–retrieval processes. The aim of the present set of experiments was to test whether the role of GluA1 extends to nonspatial recognition memory. Wild-type and GluA1 knockout mice were tested on the standard object recognition task and a context-independent recognition task that required recency-dependent memory. In a first set of experiments it was found that GluA1 deletion failed to impair performance on either of the object recognition or recency-dependent tasks. However, GluA1 knockout mice displayed increased levels of exploration of the objects in both the sample and test phases compared to controls. In contrast, when the time that GluA1 knockout mice spent exploring the objects was yoked to control mice during the sample phase, it was found that GluA1 deletion now impaired performance on both the object recognition and the recency-dependent tasks. GluA1 deletion failed to impair performance on a context-dependent recognition task regardless of whether object exposure in knockout mice was yoked to controls or not. These results demonstrate that GluA1 is necessary for nonspatial as well as spatial recognition memory and plays an important role in recency-dependent memory processes. PMID:21378100
A mobile agent-based moving objects indexing algorithm in location based service
NASA Astrophysics Data System (ADS)
Fang, Zhixiang; Li, Qingquan; Xu, Hong
2006-10-01
This paper will extends the advantages of location based service, specifically using their ability to management and indexing the positions of moving object, Moreover with this objective in mind, a mobile agent-based moving objects indexing algorithm is proposed in this paper to efficiently process indexing request and acclimatize itself to limitation of location based service environment. The prominent feature of this structure is viewing moving object's behavior as the mobile agent's span, the unique mapping between the geographical position of moving objects and span point of mobile agent is built to maintain the close relationship of them, and is significant clue for mobile agent-based moving objects indexing to tracking moving objects.
Lawson, Rebecca
2014-02-01
The limits of generalization of our 3-D shape recognition system to identifying objects by touch was investigated by testing exploration at unusual locations and using untrained effectors. In Experiments 1 and 2, people found identification by hand of real objects, plastic 3-D models of objects, and raised line drawings placed in front of themselves no easier than when exploration was behind their back. Experiment 3 compared one-handed, two-handed, one-footed, and two-footed haptic object recognition of familiar objects. Recognition by foot was slower (7 vs. 13 s) and much less accurate (9 % vs. 47 % errors) than recognition by either one or both hands. Nevertheless, item difficulty was similar across hand and foot exploration, and there was a strong correlation between an individual's hand and foot performance. Furthermore, foot recognition was better with the largest 20 of the 80 items (32 % errors), suggesting that physical limitations hampered exploration by foot. Thus, object recognition by hand generalized efficiently across the spatial location of stimuli, while object recognition by foot seemed surprisingly good given that no prior training was provided. Active touch (haptics) thus efficiently extracts 3-D shape information and accesses stored representations of familiar objects from novel modes of input.
Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C.F.; Cassaday, Helen J.
2015-01-01
Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8 mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24 h later. The same treatments also reduced novel object recognition memory tested 24 h after the sampling phase and when given 15 min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory. PMID:26277743
Cognitive object recognition system (CORS)
NASA Astrophysics Data System (ADS)
Raju, Chaitanya; Varadarajan, Karthik Mahesh; Krishnamurthi, Niyant; Xu, Shuli; Biederman, Irving; Kelley, Troy
2010-04-01
We have developed a framework, Cognitive Object Recognition System (CORS), inspired by current neurocomputational models and psychophysical research in which multiple recognition algorithms (shape based geometric primitives, 'geons,' and non-geometric feature-based algorithms) are integrated to provide a comprehensive solution to object recognition and landmarking. Objects are defined as a combination of geons, corresponding to their simple parts, and the relations among the parts. However, those objects that are not easily decomposable into geons, such as bushes and trees, are recognized by CORS using "feature-based" algorithms. The unique interaction between these algorithms is a novel approach that combines the effectiveness of both algorithms and takes us closer to a generalized approach to object recognition. CORS allows recognition of objects through a larger range of poses using geometric primitives and performs well under heavy occlusion - about 35% of object surface is sufficient. Furthermore, geon composition of an object allows image understanding and reasoning even with novel objects. With reliable landmarking capability, the system improves vision-based robot navigation in GPS-denied environments. Feasibility of the CORS system was demonstrated with real stereo images captured from a Pioneer robot. The system can currently identify doors, door handles, staircases, trashcans and other relevant landmarks in the indoor environment.
Recognition-induced forgetting of faces in visual long-term memory.
Rugo, Kelsi F; Tamler, Kendall N; Woodman, Geoffrey F; Maxcey, Ashleigh M
2017-10-01
Despite more than a century of evidence that long-term memory for pictures and words are different, much of what we know about memory comes from studies using words. Recent research examining visual long-term memory has demonstrated that recognizing an object induces the forgetting of objects from the same category. This recognition-induced forgetting has been shown with a variety of everyday objects. However, unlike everyday objects, faces are objects of expertise. As a result, faces may be immune to recognition-induced forgetting. However, despite excellent memory for such stimuli, we found that faces were susceptible to recognition-induced forgetting. Our findings have implications for how models of human memory account for recognition-induced forgetting as well as represent objects of expertise and consequences for eyewitness testimony and the justice system.
Robust Pedestrian Tracking and Recognition from FLIR Video: A Unified Approach via Sparse Coding
Li, Xin; Guo, Rui; Chen, Chao
2014-01-01
Sparse coding is an emerging method that has been successfully applied to both robust object tracking and recognition in the vision literature. In this paper, we propose to explore a sparse coding-based approach toward joint object tracking-and-recognition and explore its potential in the analysis of forward-looking infrared (FLIR) video to support nighttime machine vision systems. A key technical contribution of this work is to unify existing sparse coding-based approaches toward tracking and recognition under the same framework, so that they can benefit from each other in a closed-loop. On the one hand, tracking the same object through temporal frames allows us to achieve improved recognition performance through dynamical updating of template/dictionary and combining multiple recognition results; on the other hand, the recognition of individual objects facilitates the tracking of multiple objects (i.e., walking pedestrians), especially in the presence of occlusion within a crowded environment. We report experimental results on both the CASIAPedestrian Database and our own collected FLIR video database to demonstrate the effectiveness of the proposed joint tracking-and-recognition approach. PMID:24961216
Object recognition of ladar with support vector machine
NASA Astrophysics Data System (ADS)
Sun, Jian-Feng; Li, Qi; Wang, Qi
2005-01-01
Intensity, range and Doppler images can be obtained by using laser radar. Laser radar can detect much more object information than other detecting sensor, such as passive infrared imaging and synthetic aperture radar (SAR), so it is well suited as the sensor of object recognition. Traditional method of laser radar object recognition is extracting target features, which can be influenced by noise. In this paper, a laser radar recognition method-Support Vector Machine is introduced. Support Vector Machine (SVM) is a new hotspot of recognition research after neural network. It has well performance on digital written and face recognition. Two series experiments about SVM designed for preprocessing and non-preprocessing samples are performed by real laser radar images, and the experiments results are compared.
Exploring the feasibility of traditional image querying tasks for industrial radiographs
NASA Astrophysics Data System (ADS)
Bray, Iliana E.; Tsai, Stephany J.; Jimenez, Edward S.
2015-08-01
Although there have been great strides in object recognition with optical images (photographs), there has been comparatively little research into object recognition for X-ray radiographs. Our exploratory work contributes to this area by creating an object recognition system designed to recognize components from a related database of radiographs. Object recognition for radiographs must be approached differently than for optical images, because radiographs have much less color-based information to distinguish objects, and they exhibit transmission overlap that alters perceived object shapes. The dataset used in this work contained more than 55,000 intermixed radiographs and photographs, all in a compressed JPEG form and with multiple ways of describing pixel information. For this work, a robust and efficient system is needed to combat problems presented by properties of the X-ray imaging modality, the large size of the given database, and the quality of the images contained in said database. We have explored various pre-processing techniques to clean the cluttered and low-quality images in the database, and we have developed our object recognition system by combining multiple object detection and feature extraction methods. We present the preliminary results of the still-evolving hybrid object recognition system.
Feedforward object-vision models only tolerate small image variations compared to human
Ghodrati, Masoud; Farzmahdi, Amirhossein; Rajaei, Karim; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi
2014-01-01
Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modeling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well in image categorization under more complex image variations. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e., briefly presented masked stimuli with complex image variations), human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modeling. We show that this approach is not of significant help in solving the computational crux of object recognition (i.e., invariant object recognition) when the identity-preserving image variations become more complex. PMID:25100986
Development of Face Recognition in Infant Chimpanzees (Pan Troglodytes)
ERIC Educational Resources Information Center
Myowa-Yamakoshi, M.; Yamaguchi, M.K.; Tomonaga, M.; Tanaka, M.; Matsuzawa, T.
2005-01-01
In this paper, we assessed the developmental changes in face recognition by three infant chimpanzees aged 1-18 weeks, using preferential-looking procedures that measured the infants' eye- and head-tracking of moving stimuli. In Experiment 1, we prepared photographs of the mother of each infant and an ''average'' chimpanzee face using…
A Specific Role for Efferent Information in Self-Recognition
ERIC Educational Resources Information Center
Tsakiris, M.; Haggard, P.; Franck, N.; Mainy, N.; Sirigu, A.
2005-01-01
We investigated the specific contribution of efferent information in a self-recognition task. Subjects experienced a passive extension of the right index finger, either as an effect of moving their left hand via a lever ('self-generated action'), or imposed externally by the experimenter ('externally-generated action'). The visual feedback was…
A New Moving Object Detection Method Based on Frame-difference and Background Subtraction
NASA Astrophysics Data System (ADS)
Guo, Jiajia; Wang, Junping; Bai, Ruixue; Zhang, Yao; Li, Yong
2017-09-01
Although many methods of moving object detection have been proposed, moving object extraction is still the core in video surveillance. However, with the complex scene in real world, false detection, missed detection and deficiencies resulting from cavities inside the body still exist. In order to solve the problem of incomplete detection for moving objects, a new moving object detection method combined an improved frame-difference and Gaussian mixture background subtraction is proposed in this paper. To make the moving object detection more complete and accurate, the image repair and morphological processing techniques which are spatial compensations are applied in the proposed method. Experimental results show that our method can effectively eliminate ghosts and noise and fill the cavities of the moving object. Compared to other four moving object detection methods which are GMM, VIBE, frame-difference and a literature's method, the proposed method improve the efficiency and accuracy of the detection.
Automatic anatomy recognition on CT images with pathology
NASA Astrophysics Data System (ADS)
Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.
2016-03-01
Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.
Gerlach, Christian; Starrfelt, Randi
2018-03-20
There has been an increase in studies adopting an individual difference approach to examine visual cognition and in particular in studies trying to relate face recognition performance with measures of holistic processing (the face composite effect and the part-whole effect). In the present study we examine whether global precedence effects, measured by means of non-face stimuli in Navon's paradigm, can also account for individual differences in face recognition and, if so, whether the effect is of similar magnitude for faces and objects. We find evidence that global precedence effects facilitate both face and object recognition, and to a similar extent. Our results suggest that both face and object recognition are characterized by a coarse-to-fine temporal dynamic, where global shape information is derived prior to local shape information, and that the efficiency of face and object recognition is related to the magnitude of the global precedence effect.
Decreased acetylcholine release delays the consolidation of object recognition memory.
De Jaeger, Xavier; Cammarota, Martín; Prado, Marco A M; Izquierdo, Iván; Prado, Vania F; Pereira, Grace S
2013-02-01
Acetylcholine (ACh) is important for different cognitive functions such as learning, memory and attention. The release of ACh depends on its vesicular loading by the vesicular acetylcholine transporter (VAChT). It has been demonstrated that VAChT expression can modulate object recognition memory. However, the role of VAChT expression on object recognition memory persistence still remains to be understood. To address this question we used distinct mouse lines with reduced expression of VAChT, as well as pharmacological manipulations of the cholinergic system. We showed that reduction of cholinergic tone impairs object recognition memory measured at 24h. Surprisingly, object recognition memory, measured at 4 days after training, was impaired by substantial, but not moderate, reduction in VAChT expression. Our results suggest that levels of acetylcholine release strongly modulate object recognition memory consolidation and appear to be of particular importance for memory persistence 4 days after training. Copyright © 2012 Elsevier B.V. All rights reserved.
Sticht, Martin A; Jacklin, Derek L; Mechoulam, Raphael; Parker, Linda A; Winters, Boyer D
2015-03-25
Cannabinoids disrupt learning and memory in human and nonhuman participants. Object recognition memory, which is particularly susceptible to the impairing effects of cannabinoids, relies critically on the perirhinal cortex (PRh); however, to date, the effects of cannabinoids within PRh have not been assessed. In the present study, we evaluated the effects of localized administration of the synthetic cannabinoid, HU210 (0.01, 1.0 μg/hemisphere), into PRh on spontaneous object recognition in Long-Evans rats. Animals received intra-PRh infusions of HU210 before the sample phase, and object recognition memory was assessed at various delays in a subsequent retention test. We found that presample intra-PRh HU210 dose dependently (1.0 μg but not 0.01 μg) interfered with spontaneous object recognition performance, exerting an apparently more pronounced effect when memory demands were increased. These novel findings show that cannabinoid agonists in PRh disrupt object recognition memory. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.
Poth, Christian H; Schneider, Werner X
2016-09-01
Rapid saccadic eye movements bring the foveal region of the eye's retina onto objects for high-acuity vision. Saccades change the location and resolution of objects' retinal images. To perceive objects as visually stable across saccades, correspondence between the objects before and after the saccade must be established. We have previously shown that breaking object correspondence across the saccade causes a decrement in object recognition (Poth, Herwig, & Schneider, 2015). Color and luminance can establish object correspondence, but it is unknown how these surface features contribute to transsaccadic visual processing. Here, we investigated whether changing the surface features color-and-luminance and color alone across saccades impairs postsaccadic object recognition. Participants made saccades to peripheral objects, which either maintained or changed their surface features across the saccade. After the saccade, participants briefly viewed a letter within the saccade target object (terminated by a pattern mask). Postsaccadic object recognition was assessed as participants' accuracy in reporting the letter. Experiment A used the colors green and red with different luminances as surface features, Experiment B blue and yellow with approximately the same luminances. Changing the surface features across the saccade deteriorated postsaccadic object recognition in both experiments. These findings reveal a link between object recognition and object correspondence relying on the surface features colors and luminance, which is currently not addressed in theories of transsaccadic perception. We interpret the findings within a recent theory ascribing this link to visual attention (Schneider, 2013).
Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice.
Lymer, Jennifer; Robinson, Alana; Winters, Boyer D; Choleris, Elena
2017-03-01
Through rapid mechanisms of action, estrogens affect learning and memory processes. It has been shown that 17β-estradiol and an Estrogen Receptor (ER) α agonist enhances performance in social recognition, object recognition, and object placement tasks when administered systemically or infused in the dorsal hippocampus. In contrast, systemic and dorsal hippocampal ERβ activation only promote spatial learning. In addition, 17β-estradiol, the ERα and the G-protein coupled estrogen receptor (GPER) agonists increase dendritic spine density in the CA1 hippocampus. Recently, we have shown that selective systemic activation of the GPER also rapidly facilitated social recognition, object recognition, and object placement learning in female mice. Whether activation the GPER specifically in the dorsal hippocampus can also rapidly improve learning and memory prior to acquisition is unknown. Here, we investigated the rapid effects of infusion of the GPER agonist, G-1 (dose: 50nM, 100nM, 200nM), in the dorsal hippocampus on social recognition, object recognition, and object placement learning tasks in home cage. These paradigms were completed within 40min, which is within the range of rapid estrogenic effects. Dorsal hippocampal administration of G-1 improved social (doses: 50nM, 200nM G-1) and object (dose: 200nM G-1) recognition with no effect on object placement. Additionally, when spatial cues were minimized by testing in a Y-apparatus, G-1 administration promoted social (doses: 100nM, 200nM G-1) and object (doses: 50nM, 100nM, 200nM G-1) recognition. Therefore, like ERα, the GPER in the hippocampus appears to be sufficient for the rapid facilitation of social and object recognition in female mice, but not for the rapid facilitation of object placement learning. Thus, the GPER in the dorsal hippocampus is involved in estrogenic mediation of learning and memory and these effects likely occur through rapid signalling mechanisms. Copyright © 2016 Elsevier Ltd. All rights reserved.
McGugin, Rankin W.; Richler, Jennifer J.; Herzmann, Grit; Speegle, Magen; Gauthier, Isabel
2012-01-01
Individual differences in face recognition are often contrasted with differences in object recognition using a single object category. Likewise, individual differences in perceptual expertise for a given object domain have typically been measured relative to only a single category baseline. In Experiment 1, we present a new test of object recognition, the Vanderbilt Expertise Test (VET), which is comparable in methods to the Cambridge Face Memory Task (CFMT) but uses eight different object categories. Principal component analysis reveals that the underlying structure of the VET can be largely explained by two independent factors, which demonstrate good reliability and capture interesting sex differences inherent in the VET structure. In Experiment 2, we show how the VET can be used to separate domain-specific from domain-general contributions to a standard measure of perceptual expertise. While domain-specific contributions are found for car matching for both men and women and for plane matching in men, women in this sample appear to use more domain-general strategies to match planes. In Experiment 3, we use the VET to demonstrate that holistic processing of faces predicts face recognition independently of general object recognition ability, which has a sex-specific contribution to face recognition. Overall, the results suggest that the VET is a reliable and valid measure of object recognition abilities and can measure both domain-general skills and domain-specific expertise, which were both found to depend on the sex of observers. PMID:22877929
Object, spatial and social recognition testing in a single test paradigm.
Lian, Bin; Gao, Jun; Sui, Nan; Feng, Tingyong; Li, Ming
2018-07-01
Animals have the ability to process information about an object or a conspecific's physical features and location, and alter its behavior when such information is updated. In the laboratory, the object, spatial and social recognition are often studied in separate tasks, making them unsuitable to study the potential dissociations and interactions among various types of recognition memories. The present study introduced a single paradigm to detect the object and spatial recognition, and social recognition of a familiar and novel conspecific. Specifically, male and female Sprague-Dawley adult (>75 days old) or preadolescent (25-28 days old) rats were tested with two objects and one social partner in an open-field arena for four 10-min sessions with a 20-min inter-session interval. After the first sample session, a new object replaced one of the sampled objects in the second session, and the location of one of the old objects was changed in the third session. Finally, a new social partner was introduced in the fourth session and replaced the familiar one. Exploration time with each stimulus was recorded and measures for the three recognitions were calculated based on the discrimination ratio. Overall results show that adult and preadolescent male and female rats spent more time exploring the social partner than the objects, showing a clear preference for social stimulus over nonsocial one. They also did not differ in their abilities to discriminate a new object, a new location and a new social partner from a familiar one, and to recognize a familiar conspecific. Acute administration of MK-801 (a NMDA receptor antagonist, 0.025 and 0.10 mg/kg, i.p.) after the sample session dose-dependently reduced the total time spent on exploring the social partner and objects in the adult rats, and had a significantly larger effect in the females than in the males. MK-801 also dose-dependently increased motor activity. However, it did not alter the object, spatial and social recognitions. These findings indicate that the new triple recognition paradigm is capable of recording the object, spatial location and social recognition together and revealing potential sex and age differences. This paradigm is also useful for the study of object and social exploration concurrently and can be used to evaluate cognition-altering drugs in various stages of recognition memories. Copyright © 2018. Published by Elsevier Inc.
Nie, Haitao; Long, Kehui; Ma, Jun; Yue, Dan; Liu, Jinguo
2015-01-01
Partial occlusions, large pose variations, and extreme ambient illumination conditions generally cause the performance degradation of object recognition systems. Therefore, this paper presents a novel approach for fast and robust object recognition in cluttered scenes based on an improved scale invariant feature transform (SIFT) algorithm and a fuzzy closed-loop control method. First, a fast SIFT algorithm is proposed by classifying SIFT features into several clusters based on several attributes computed from the sub-orientation histogram (SOH), in the feature matching phase only features that share nearly the same corresponding attributes are compared. Second, a feature matching step is performed following a prioritized order based on the scale factor, which is calculated between the object image and the target object image, guaranteeing robust feature matching. Finally, a fuzzy closed-loop control strategy is applied to increase the accuracy of the object recognition and is essential for autonomous object manipulation process. Compared to the original SIFT algorithm for object recognition, the result of the proposed method shows that the number of SIFT features extracted from an object has a significant increase, and the computing speed of the object recognition processes increases by more than 40%. The experimental results confirmed that the proposed method performs effectively and accurately in cluttered scenes. PMID:25714094
HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation
NASA Astrophysics Data System (ADS)
Guo, Shuhang; Wang, Jian; Wang, Tong
2017-09-01
Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.
Post-Training Reversible Inactivation of the Hippocampus Enhances Novel Object Recognition Memory
ERIC Educational Resources Information Center
Oliveira, Ana M. M.; Hawk, Joshua D.; Abel, Ted; Havekes, Robbert
2010-01-01
Research on the role of the hippocampus in object recognition memory has produced conflicting results. Previous studies have used permanent hippocampal lesions to assess the requirement for the hippocampus in the object recognition task. However, permanent hippocampal lesions may impact performance through effects on processes besides memory…
Shape and texture fused recognition of flying targets
NASA Astrophysics Data System (ADS)
Kovács, Levente; Utasi, Ákos; Kovács, Andrea; Szirányi, Tamás
2011-06-01
This paper presents visual detection and recognition of flying targets (e.g. planes, missiles) based on automatically extracted shape and object texture information, for application areas like alerting, recognition and tracking. Targets are extracted based on robust background modeling and a novel contour extraction approach, and object recognition is done by comparisons to shape and texture based query results on a previously gathered real life object dataset. Application areas involve passive defense scenarios, including automatic object detection and tracking with cheap commodity hardware components (CPU, camera and GPS).
Mitchnick, Krista A; Wideman, Cassidy E; Huff, Andrew E; Palmer, Daniel; McNaughton, Bruce L; Winters, Boyer D
2018-05-15
The capacity to recognize objects from different view-points or angles, referred to as view-invariance, is an essential process that humans engage in daily. Currently, the ability to investigate the neurobiological underpinnings of this phenomenon is limited, as few ethologically valid view-invariant object recognition tasks exist for rodents. Here, we report two complementary, novel view-invariant object recognition tasks in which rodents physically interact with three-dimensional objects. Prior to experimentation, rats and mice were given extensive experience with a set of 'pre-exposure' objects. In a variant of the spontaneous object recognition task, novelty preference for pre-exposed or new objects was assessed at various angles of rotation (45°, 90° or 180°); unlike control rodents, for whom the objects were novel, rats and mice tested with pre-exposed objects did not discriminate between rotated and un-rotated objects in the choice phase, indicating substantial view-invariant object recognition. Secondly, using automated operant touchscreen chambers, rats were tested on pre-exposed or novel objects in a pairwise discrimination task, where the rewarded stimulus (S+) was rotated (180°) once rats had reached acquisition criterion; rats tested with pre-exposed objects re-acquired the pairwise discrimination following S+ rotation more effectively than those tested with new objects. Systemic scopolamine impaired performance on both tasks, suggesting involvement of acetylcholine at muscarinic receptors in view-invariant object processing. These tasks present novel means of studying the behavioral and neural bases of view-invariant object recognition in rodents. Copyright © 2018 Elsevier B.V. All rights reserved.
Benetti, Fernando; Mello, Pâmela Billig; Bonini, Juliana Sartori; Monteiro, Siomara; Cammarota, Martín; Izquierdo, Iván
2009-02-01
Early postnatal maternal deprivation is known to cause long-lasting neurobiological effects. Here, we investigated whether some of the cognitive aspects of these deficits might be related to a disruption of the cholinergic system. Pregnant Wistar rats were individually housed and maintained on a 12:12h light/dark cycle with food and water freely available. The mothers were separated from their pups for 3h per day from postnatal day 1 (PND-1) to PND-10. To do that, the dams were moved to a different cage and the pups maintained in the original home cage, which was transferred to a different room kept at 32 degrees C. After they reached 120-150 days of age, maternal-deprived and non-deprived animals were either sacrificed for brain acetylcholinesterase measurement, or trained and tested in an object recognition task and in a social recognition task as described by Rossato et al. (2007) [Rossato, J.I., Bevilaqua, L. R.M., Myskiw, J.C., Medina, J.H., Izquierdo, I., Cammarota, M. 2007. On the role hippocampal synthesis in the consolidation and reconsolidation of object recognition memory. Learn. Mem. 14, 36-46] and Lévy et al. (2003) [Lévy, F., Melo. A.I., Galef. B.G. Jr., Madden, M., Fleming. A.S. 2003. Complete maternal deprivation affects social, but not spatial, learning in adult rats. Dev. Psychobiol. 43, 177-191], respectively. There was increased acetylcholinesterase activity in hippocampus and perirhinal cortex of the deprived animals. In addition, they showed a clear impairment in memory of the two recognition tasks measured 24h after training. Oral administration of the acetylcholinesterase inhibitors, donepezil or galantamine (1mg/kg) 30min before training reversed the memory impairments caused by maternal deprivation. The findings suggest that maternal deprivation affects memory processing at adulthood through a change in brain cholinergic systems.
Incidental Memory of Younger and Older Adults for Objects Encountered in a Real World Context
Qin, Xiaoyan; Bochsler, Tiana M.; Aizpurua, Alaitz; Cheong, Allen M. Y.; Koutstaal, Wilma; Legge, Gordon E.
2014-01-01
Effects of context on the perception of, and incidental memory for, real-world objects have predominantly been investigated in younger individuals, under conditions involving a single static viewpoint. We examined the effects of prior object context and object familiarity on both older and younger adults’ incidental memory for real objects encountered while they traversed a conference room. Recognition memory for context-typical and context-atypical objects was compared with a third group of unfamiliar objects that were not readily named and that had no strongly associated context. Both older and younger adults demonstrated a typicality effect, showing significantly lower 2-alternative-forced-choice recognition of context-typical than context-atypical objects; for these objects, the recognition of older adults either significantly exceeded, or numerically surpassed, that of younger adults. Testing-awareness elevated recognition but did not interact with age or with object type. Older adults showed significantly higher recognition for context-atypical objects than for unfamiliar objects that had no prior strongly associated context. The observation of a typicality effect in both age groups is consistent with preserved semantic schemata processing in aging. The incidental recognition advantage of older over younger adults for the context-typical and context-atypical objects may reflect aging-related differences in goal-related processing, with older adults under comparatively more novel circumstances being more likely to direct their attention to the external environment, or age-related differences in top-down effortful distraction regulation, with older individuals’ attention more readily captured by salient objects in the environment. Older adults’ reduced recognition of unfamiliar objects compared to context-atypical objects may reflect possible age differences in contextually driven expectancy violations. The latter finding underscores the theoretical and methodological value of including a third type of objects–that are comparatively neutral with respect to their contextual associations–to help differentiate between contextual integration effects (for schema-consistent objects) and expectancy violations (for schema-inconsistent objects). PMID:24941065
Han, Ren-Wen; Xu, Hong-Jiao; Zhang, Rui-San; Wang, Pei; Chang, Min; Peng, Ya-Li; Deng, Ke-Yu; Wang, Rui
2014-01-01
The noradrenergic activity in the basolateral amygdala (BLA) was reported to be involved in the regulation of object recognition memory. As the BLA expresses high density of receptors for Neuropeptide S (NPS), we investigated whether the BLA is involved in mediating NPS's effects on object recognition memory consolidation and whether such effects require noradrenergic activity. Intracerebroventricular infusion of NPS (1nmol) post training facilitated 24-h memory in a mouse novel object recognition task. The memory-enhancing effect of NPS could be blocked by the β-adrenoceptor antagonist propranolol. Furthermore, post-training intra-BLA infusions of NPS (0.5nmol/side) improved 24-h memory for objects, which was impaired by co-administration of propranolol (0.5μg/side). Taken together, these results indicate that NPS interacts with the BLA noradrenergic system in improving object recognition memory during consolidation. Copyright © 2013 Elsevier Inc. All rights reserved.
Three-dimensional object recognition using similar triangles and decision trees
NASA Technical Reports Server (NTRS)
Spirkovska, Lilly
1993-01-01
A system, TRIDEC, that is capable of distinguishing between a set of objects despite changes in the objects' positions in the input field, their size, or their rotational orientation in 3D space is described. TRIDEC combines very simple yet effective features with the classification capabilities of inductive decision tree methods. The feature vector is a list of all similar triangles defined by connecting all combinations of three pixels in a coarse coded 127 x 127 pixel input field. The classification is accomplished by building a decision tree using the information provided from a limited number of translated, scaled, and rotated samples. Simulation results are presented which show that TRIDEC achieves 94 percent recognition accuracy in the 2D invariant object recognition domain and 98 percent recognition accuracy in the 3D invariant object recognition domain after training on only a small sample of transformed views of the objects.
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-01-01
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions. PMID:28208684
Liu, Kui; Wei, Sixiao; Chen, Zhijiang; Jia, Bin; Chen, Genshe; Ling, Haibin; Sheaff, Carolyn; Blasch, Erik
2017-02-12
This paper presents the first attempt at combining Cloud with Graphic Processing Units (GPUs) in a complementary manner within the framework of a real-time high performance computation architecture for the application of detecting and tracking multiple moving targets based on Wide Area Motion Imagery (WAMI). More specifically, the GPU and Cloud Moving Target Tracking (GC-MTT) system applied a front-end web based server to perform the interaction with Hadoop and highly parallelized computation functions based on the Compute Unified Device Architecture (CUDA©). The introduced multiple moving target detection and tracking method can be extended to other applications such as pedestrian tracking, group tracking, and Patterns of Life (PoL) analysis. The cloud and GPUs based computing provides an efficient real-time target recognition and tracking approach as compared to methods when the work flow is applied using only central processing units (CPUs). The simultaneous tracking and recognition results demonstrate that a GC-MTT based approach provides drastically improved tracking with low frame rates over realistic conditions.
ERIC Educational Resources Information Center
Moss, Peter
2006-01-01
As early childhood services move up the policy agenda, so too does the early childhood workforce. Its members are recognised as the main resource for such services, and there is an increasing recognition that the work is complex and requires enhanced education. But despite this recognition, the situation in many countries--where the early…
Cross, Laura; Brown, Malcolm W; Aggleton, John P; Warburton, E Clea
2012-12-21
In humans recognition memory deficits, a typical feature of diencephalic amnesia, have been tentatively linked to mediodorsal thalamic nucleus (MD) damage. Animal studies have occasionally investigated the role of the MD in single-item recognition, but have not systematically analyzed its involvement in other recognition memory processes. In Experiment 1 rats with bilateral excitotoxic lesions in the MD or the medial prefrontal cortex (mPFC) were tested in tasks that assessed single-item recognition (novel object preference), associative recognition memory (object-in-place), and recency discrimination (recency memory task). Experiment 2 examined the functional importance of the interactions between the MD and mPFC using disconnection techniques. Unilateral excitotoxic lesions were placed in both the MD and the mPFC in either the same (MD + mPFC Ipsi) or opposite hemispheres (MD + mPFC Contra group). Bilateral lesions in the MD or mPFC impaired object-in-place and recency memory tasks, but had no effect on novel object preference. In Experiment 2 the MD + mPFC Contra group was significantly impaired in the object-in-place and recency memory tasks compared with the MD + mPFC Ipsi group, but novel object preference was intact. Thus, connections between the MD and mPFC are critical for recognition memory when the discriminations involve associative or recency information. However, the rodent MD is not necessary for single-item recognition memory.
Varga, Dániel; Herédi, Judit; Kánvási, Zita; Ruszka, Marian; Kis, Zsolt; Ono, Etsuro; Iwamori, Naoki; Iwamori, Tokuko; Takakuwa, Hiroki; Vécsei, László; Toldi, József; Gellért, Levente
2015-01-01
L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice.
Optical system for object detection and delineation in space
NASA Astrophysics Data System (ADS)
Handelman, Amir; Shwartz, Shoam; Donitza, Liad; Chaplanov, Loran
2018-01-01
Object recognition and delineation is an important task in many environments, such as in crime scenes and operating rooms. Marking evidence or surgical tools and attracting the attention of the surrounding staff to the marked objects can affect people's lives. We present an optical system comprising a camera, computer, and small laser projector that can detect and delineate objects in the environment. To prove the optical system's concept, we show that it can operate in a hypothetical crime scene in which a pistol is present and automatically recognize and segment it by various computer-vision algorithms. Based on such segmentation, the laser projector illuminates the actual boundaries of the pistol and thus allows the persons in the scene to comfortably locate and measure the pistol without holding any intermediator device, such as an augmented reality handheld device, glasses, or screens. Using additional optical devices, such as diffraction grating and a cylinder lens, the pistol size can be estimated. The exact location of the pistol in space remains static, even after its removal. Our optical system can be fixed or dynamically moved, making it suitable for various applications that require marking of objects in space.
ERIC Educational Resources Information Center
Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico
2008-01-01
These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…
Peterson, M A; Gibson, B S
1994-11-01
In previous research, replicated here, we found that some object recognition processes influence figure-ground organization. We have proposed that these object recognition processes operate on edges (or contours) detected early in visual processing, rather than on regions. Consistent with this proposal, influences from object recognition on figure-ground organization were previously observed in both pictures and stereograms depicting regions of different luminance, but not in random-dot stereograms, where edges arise late in processing (Peterson & Gibson, 1993). In the present experiments, we examined whether or not two other types of contours--outlines and subjective contours--enable object recognition influences on figure-ground organization. For both types of contours we observed a pattern of effects similar to that originally obtained with luminance edges. The results of these experiments are valuable for distinguishing between alternative views of the mechanisms mediating object recognition influences on figure-ground organization. In addition, in both Experiments 1 and 2, fixated regions were seen as figure longer than nonfixated regions, suggesting that fixation location must be included among the variables relevant to figure-ground organization.
Changes in Visual Object Recognition Precede the Shape Bias in Early Noun Learning
Yee, Meagan; Jones, Susan S.; Smith, Linda B.
2012-01-01
Two of the most formidable skills that characterize human beings are language and our prowess in visual object recognition. They may also be developmentally intertwined. Two experiments, a large sample cross-sectional study and a smaller sample 6-month longitudinal study of 18- to 24-month-olds, tested a hypothesized developmental link between changes in visual object representation and noun learning. Previous findings in visual object recognition indicate that children’s ability to recognize common basic level categories from sparse structural shape representations of object shape emerges between the ages of 18 and 24 months, is related to noun vocabulary size, and is lacking in children with language delay. Other research shows in artificial noun learning tasks that during this same developmental period, young children systematically generalize object names by shape, that this shape bias predicts future noun learning, and is lacking in children with language delay. The two experiments examine the developmental relation between visual object recognition and the shape bias for the first time. The results show that developmental changes in visual object recognition systematically precede the emergence of the shape bias. The results suggest a developmental pathway in which early changes in visual object recognition that are themselves linked to category learning enable the discovery of higher-order regularities in category structure and thus the shape bias in novel noun learning tasks. The proposed developmental pathway has implications for understanding the role of specific experience in the development of both visual object recognition and the shape bias in early noun learning. PMID:23227015
Method of synthesized phase objects for pattern recognition with rotation invariance
NASA Astrophysics Data System (ADS)
Ostroukh, Alexander P.; Butok, Alexander M.; Shvets, Rostislav A.; Yezhov, Pavel V.; Kim, Jin-Tae; Kuzmenko, Alexander V.
2015-11-01
We present a development of the method of synthesized phase objects (SPO-method) [1] for the rotation-invariant pattern recognition. For the standard method of recognition and the SPO-method, the comparison of the parameters of correlation signals for a number of amplitude objects is executed at the realization of a rotation in an optical-digital correlator with the joint Fourier transformation. It is shown that not only the invariance relative to a rotation at a realization of the joint correlation for synthesized phase objects (SP-objects) but also the main advantage of the method of SP-objects over the reference one such as the unified δ-like recognition signal with the largest possible signal-to-noise ratio independent of the type of an object are attained.
Short temporal asynchrony disrupts visual object recognition
Singer, Jedediah M.; Kreiman, Gabriel
2014-01-01
Humans can recognize objects and scenes in a small fraction of a second. The cascade of signals underlying rapid recognition might be disrupted by temporally jittering different parts of complex objects. Here we investigated the time course over which shape information can be integrated to allow for recognition of complex objects. We presented fragments of object images in an asynchronous fashion and behaviorally evaluated categorization performance. We observed that visual recognition was significantly disrupted by asynchronies of approximately 30 ms, suggesting that spatiotemporal integration begins to break down with even small deviations from simultaneity. However, moderate temporal asynchrony did not completely obliterate recognition; in fact, integration of visual shape information persisted even with an asynchrony of 100 ms. We describe the data with a concise model based on the dynamic reduction of uncertainty about what image was presented. These results emphasize the importance of timing in visual processing and provide strong constraints for the development of dynamical models of visual shape recognition. PMID:24819738
Modeling recall memory for emotional objects in Alzheimer's disease.
Sundstrøm, Martin
2011-07-01
To examine whether emotional memory (EM) of objects with self-reference in Alzheimer's disease (AD) can be modeled with binomial logistic regression in a free recall and an object recognition test to predict EM enhancement. Twenty patients with AD and twenty healthy controls were studied. Six objects (three presented as gifts) were shown to each participant. Ten minutes later, a free recall and a recognition test were applied. The recognition test had target-objects mixed with six similar distracter objects. Participants were asked to name any object in the recall test and identify each object in the recognition test as known or unknown. The total of gift objects recalled in AD patients (41.6%) was larger than neutral objects (13.3%) and a significant EM recall effect for gifts was found (Wilcoxon: p < .003). EM was not found for recognition in AD patients due to a ceiling effect. Healthy older adults scored overall higher in recall and recognition but showed no EM enhancement due to a ceiling effect. A logistic regression showed that likelihood of emotional recall memory can be modeled as a function of MMSE score (p < .014) and object status (p < .0001) as gift or non-gift. Recall memory was enhanced in AD patients for emotional objects indicating that EM in mild to moderate AD although impaired can be provoked with strong emotional load. The logistic regression model suggests that EM declines with the progression of AD rather than disrupts and may be a useful tool for evaluating magnitude of emotional load.
Raber, Jacob
2015-05-15
Object recognition is a sensitive cognitive test to detect effects of genetic and environmental factors on cognition in rodents. There are various versions of object recognition that have been used since the original test was reported by Ennaceur and Delacour in 1988. There are nonhuman primate and human primate versions of object recognition as well, allowing cross-species comparisons. As no language is required for test performance, object recognition is a very valuable test for human research studies in distinct parts of the world, including areas where there might be less years of formal education. The main focus of this review is to illustrate how object recognition can be used to assess cognition in humans under normal physiological and neurological conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
There Is Time for Calculation in Speed Chess, and Calculation Accuracy Increases With Expertise.
Chang, Yu-Hsuan A; Lane, David M
2016-01-01
The recognition-action theory of chess skill holds that expertise in chess is due primarily to the ability to recognize familiar patterns of pieces. Despite its widespread acclaim, empirical evidence for this theory is indirect. One source of indirect evidence is that there is a high correlation between speed chess and standard chess. Assuming that there is little or no time for calculation in speed chess, this high correlation implies that calculation is not the primary factor in standard chess. Two studies were conducted analyzing 100 games of speed chess. In Study 1, we examined the distributions of move times, and the key finding was that players often spent considerable time on a few moves. Moreover, stronger players were more likely than weaker players to do so. Study 2 examined skill differences in calculation by examining poor moves. The stronger players made proportionally fewer blunders (moves that a 2-ply search would have revealed to be errors). Overall, the poor moves made by the weaker players would have required a less extensive search to be revealed as poor moves than the poor moves made by the stronger players. Apparently, the stronger players are searching deeper and more accurately. These results are difficult to reconcile with the view that speed chess does not allow players time to calculate extensively and call into question the assertion that the high correlation between speed chess and standard chess supports recognition-action theory.
An Effective 3D Shape Descriptor for Object Recognition with RGB-D Sensors
Liu, Zhong; Zhao, Changchen; Wu, Xingming; Chen, Weihai
2017-01-01
RGB-D sensors have been widely used in various areas of computer vision and graphics. A good descriptor will effectively improve the performance of operation. This article further analyzes the recognition performance of shape features extracted from multi-modality source data using RGB-D sensors. A hybrid shape descriptor is proposed as a representation of objects for recognition. We first extracted five 2D shape features from contour-based images and five 3D shape features over point cloud data to capture the global and local shape characteristics of an object. The recognition performance was tested for category recognition and instance recognition. Experimental results show that the proposed shape descriptor outperforms several common global-to-global shape descriptors and is comparable to some partial-to-global shape descriptors that achieved the best accuracies in category and instance recognition. Contribution of partial features and computational complexity were also analyzed. The results indicate that the proposed shape features are strong cues for object recognition and can be combined with other features to boost accuracy. PMID:28245553
Object Detection Applied to Indoor Environments for Mobile Robot Navigation.
Hernández, Alejandra Carolina; Gómez, Clara; Crespo, Jonathan; Barber, Ramón
2016-07-28
To move around the environment, human beings depend on sight more than their other senses, because it provides information about the size, shape, color and position of an object. The increasing interest in building autonomous mobile systems makes the detection and recognition of objects in indoor environments a very important and challenging task. In this work, a vision system to detect objects considering usual human environments, able to work on a real mobile robot, is developed. In the proposed system, the classification method used is Support Vector Machine (SVM) and as input to this system, RGB and depth images are used. Different segmentation techniques have been applied to each kind of object. Similarly, two alternatives to extract features of the objects are explored, based on geometric shape descriptors and bag of words. The experimental results have demonstrated the usefulness of the system for the detection and location of the objects in indoor environments. Furthermore, through the comparison of two proposed methods for extracting features, it has been determined which alternative offers better performance. The final results have been obtained taking into account the proposed problem and that the environment has not been changed, that is to say, the environment has not been altered to perform the tests.
Object Detection Applied to Indoor Environments for Mobile Robot Navigation
Hernández, Alejandra Carolina; Gómez, Clara; Crespo, Jonathan; Barber, Ramón
2016-01-01
To move around the environment, human beings depend on sight more than their other senses, because it provides information about the size, shape, color and position of an object. The increasing interest in building autonomous mobile systems makes the detection and recognition of objects in indoor environments a very important and challenging task. In this work, a vision system to detect objects considering usual human environments, able to work on a real mobile robot, is developed. In the proposed system, the classification method used is Support Vector Machine (SVM) and as input to this system, RGB and depth images are used. Different segmentation techniques have been applied to each kind of object. Similarly, two alternatives to extract features of the objects are explored, based on geometric shape descriptors and bag of words. The experimental results have demonstrated the usefulness of the system for the detection and location of the objects in indoor environments. Furthermore, through the comparison of two proposed methods for extracting features, it has been determined which alternative offers better performance. The final results have been obtained taking into account the proposed problem and that the environment has not been changed, that is to say, the environment has not been altered to perform the tests. PMID:27483264
Fields, Chris
2011-01-01
The perception of persisting visual objects is mediated by transient intermediate representations, object files, that are instantiated in response to some, but not all, visual trajectories. The standard object file concept does not, however, provide a mechanism sufficient to account for all experimental data on visual object persistence, object tracking, and the ability to perceive spatially disconnected stimuli as continuously existing objects. Based on relevant anatomical, functional, and developmental data, a functional model is constructed that bases visual object individuation on the recognition of temporal sequences of apparent center-of-mass positions that are specifically identified as trajectories by dedicated “trajectory recognition networks” downstream of the medial–temporal motion-detection area. This model is shown to account for a wide range of data, and to generate a variety of testable predictions. Individual differences in the recognition, abstraction, and encoding of trajectory information are expected to generate distinct object persistence judgments and object recognition abilities. Dominance of trajectory information over feature information in stored object tokens during early infancy, in particular, is expected to disrupt the ability to re-identify human and other individuals across perceptual episodes, and lead to developmental outcomes with characteristics of autism spectrum disorders. PMID:21716599
A method of object recognition for single pixel imaging
NASA Astrophysics Data System (ADS)
Li, Boxuan; Zhang, Wenwen
2018-01-01
Computational ghost imaging(CGI), utilizing a single-pixel detector, has been extensively used in many fields. However, in order to achieve a high-quality reconstructed image, a large number of iterations are needed, which limits the flexibility of using CGI in practical situations, especially in the field of object recognition. In this paper, we purpose a method utilizing the feature matching to identify the number objects. In the given system, approximately 90% of accuracy of recognition rates can be achieved, which provides a new idea for the application of single pixel imaging in the field of object recognition
Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish.
Hamilton, Trevor J; Tresguerres, Martin; Kline, David I
2017-07-01
Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish ( Stegastes partitus ) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D 1 -receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Shahbazi, M.; Sattari, M.; Homayouni, S.; Saadatseresht, M.
2012-07-01
Recent advances in positioning techniques have made it possible to develop Mobile Mapping Systems (MMS) for detection and 3D localization of various objects from a moving platform. On the other hand, automatic traffic sign recognition from an equipped mobile platform has recently been a challenging issue for both intelligent transportation and municipal database collection. However, there are several inevitable problems coherent to all the recognition methods completely relying on passive chromatic or grayscale images. This paper presents the implementation and evaluation of an operational MMS. Being distinct from the others, the developed MMS comprises one range camera based on Photonic Mixer Device (PMD) technology and one standard 2D digital camera. The system benefits from certain algorithms to detect, recognize and localize the traffic signs by fusing the shape, color and object information from both range and intensity images. As the calibrating stage, a self-calibration method based on integrated bundle adjustment via joint setup with the digital camera is applied in this study for PMD camera calibration. As the result, an improvement of 83 % in RMS of range error and 72 % in RMS of coordinates residuals for PMD camera, over that achieved with basic calibration is realized in independent accuracy assessments. Furthermore, conventional photogrammetric techniques based on controlled network adjustment are utilized for platform calibration. Likewise, the well-known Extended Kalman Filtering (EKF) is applied to integrate the navigation sensors, namely GPS and INS. The overall acquisition system along with the proposed techniques leads to 90 % true positive recognition and the average of 12 centimetres 3D positioning accuracy.
NASA Astrophysics Data System (ADS)
Shahbazi, M.; Sattari, M.; Homayouni, S.; Saadatseresht, M.
2012-07-01
Recent advances in positioning techniques have made it possible to develop Mobile Mapping Systems (MMS) for detection and 3D localization of various objects from a moving platform. On the other hand, automatic traffic sign recognition from an equipped mobile platform has recently been a challenging issue for both intelligent transportation and municipal database collection. However, there are several inevitable problems coherent to all the recognition methods completely relying on passive chromatic or grayscale images. This paper presents the implementation and evaluation of an operational MMS. Being distinct from the others, the developed MMS comprises one range camera based on Photonic Mixer Device (PMD) technology and one standard 2D digital camera. The system benefits from certain algorithms to detect, recognize and localize the traffic signs by fusing the shape, color and object information from both range and intensity images. As the calibrating stage, a self-calibration method based on integrated bundle adjustment via joint setup with the digital camera is applied in this study for PMD camera calibration. As the result, an improvement of 83% in RMS of range error and 72% in RMS of coordinates residuals for PMD camera, over that achieved with basic calibration is realized in independent accuracy assessments. Furthermore, conventional photogrammetric techniques based on controlled network adjustment are utilized for platform calibration. Likewise, the well-known Extended Kalman Filtering (EKF) is applied to integrate the navigation sensors, namely GPS and INS. The overall acquisition system along with the proposed techniques leads to 90% true positive recognition and the average of 12 centimetres 3D positioning accuracy.
Superior voice recognition in a patient with acquired prosopagnosia and object agnosia.
Hoover, Adria E N; Démonet, Jean-François; Steeves, Jennifer K E
2010-11-01
Anecdotally, it has been reported that individuals with acquired prosopagnosia compensate for their inability to recognize faces by using other person identity cues such as hair, gait or the voice. Are they therefore superior at the use of non-face cues, specifically voices, to person identity? Here, we empirically measure person and object identity recognition in a patient with acquired prosopagnosia and object agnosia. We quantify person identity (face and voice) and object identity (car and horn) recognition for visual, auditory, and bimodal (visual and auditory) stimuli. The patient is unable to recognize faces or cars, consistent with his prosopagnosia and object agnosia, respectively. He is perfectly able to recognize people's voices and car horns and bimodal stimuli. These data show a reverse shift in the typical weighting of visual over auditory information for audiovisual stimuli in a compromised visual recognition system. Moreover, the patient shows selectively superior voice recognition compared to the controls revealing that two different stimulus domains, persons and objects, may not be equally affected by sensory adaptation effects. This also implies that person and object identity recognition are processed in separate pathways. These data demonstrate that an individual with acquired prosopagnosia and object agnosia can compensate for the visual impairment and become quite skilled at using spared aspects of sensory processing. In the case of acquired prosopagnosia it is advantageous to develop a superior use of voices for person identity recognition in everyday life. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.
2015-01-01
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887
Detection and recognition of targets by using signal polarization properties
NASA Astrophysics Data System (ADS)
Ponomaryov, Volodymyr I.; Peralta-Fabi, Ricardo; Popov, Anatoly V.; Babakov, Mikhail F.
1999-08-01
The quality of radar target recognition can be enhanced by exploiting its polarization signatures. A specialized X-band polarimetric radar was used for target recognition in experimental investigations. The following polarization characteristics connected to the object geometrical properties were investigated: the amplitudes of the polarization matrix elements; an anisotropy coefficient; depolarization coefficient; asymmetry coefficient; the energy of a backscattering signal; object shape factor. A large quantity of polarimetric radar data was measured and processed to form a database of different object and different weather conditions. The histograms of polarization signatures were approximated by a Nakagami distribution, then used for real- time target recognition. The Neyman-Pearson criterion was used for the target detection, and the criterion of the maximum of a posterior probability was used for recognition problem. Some results of experimental verification of pattern recognition and detection of objects with different electrophysical and geometrical characteristics urban in clutter are presented in this paper.
Actis-Grosso, Rossana; Bossi, Francesco; Ricciardelli, Paola
2015-01-01
We investigated whether the type of stimulus (pictures of static faces vs. body motion) contributes differently to the recognition of emotions. The performance (accuracy and response times) of 25 Low Autistic Traits (LAT group) young adults (21 males) and 20 young adults (16 males) with either High Autistic Traits or with High Functioning Autism Spectrum Disorder (HAT group) was compared in the recognition of four emotions (Happiness, Anger, Fear, and Sadness) either shown in static faces or conveyed by moving body patch-light displays (PLDs). Overall, HAT individuals were as accurate as LAT ones in perceiving emotions both with faces and with PLDs. Moreover, they correctly described non-emotional actions depicted by PLDs, indicating that they perceived the motion conveyed by the PLDs per se. For LAT participants, happiness proved to be the easiest emotion to be recognized: in line with previous studies we found a happy face advantage for faces, which for the first time was also found for bodies (happy body advantage). Furthermore, LAT participants recognized sadness better by static faces and fear by PLDs. This advantage for motion kinematics in the recognition of fear was not present in HAT participants, suggesting that (i) emotion recognition is not generally impaired in HAT individuals, (ii) the cues exploited for emotion recognition by LAT and HAT groups are not always the same. These findings are discussed against the background of emotional processing in typically and atypically developed individuals. PMID:26557101
Actis-Grosso, Rossana; Bossi, Francesco; Ricciardelli, Paola
2015-01-01
We investigated whether the type of stimulus (pictures of static faces vs. body motion) contributes differently to the recognition of emotions. The performance (accuracy and response times) of 25 Low Autistic Traits (LAT group) young adults (21 males) and 20 young adults (16 males) with either High Autistic Traits or with High Functioning Autism Spectrum Disorder (HAT group) was compared in the recognition of four emotions (Happiness, Anger, Fear, and Sadness) either shown in static faces or conveyed by moving body patch-light displays (PLDs). Overall, HAT individuals were as accurate as LAT ones in perceiving emotions both with faces and with PLDs. Moreover, they correctly described non-emotional actions depicted by PLDs, indicating that they perceived the motion conveyed by the PLDs per se. For LAT participants, happiness proved to be the easiest emotion to be recognized: in line with previous studies we found a happy face advantage for faces, which for the first time was also found for bodies (happy body advantage). Furthermore, LAT participants recognized sadness better by static faces and fear by PLDs. This advantage for motion kinematics in the recognition of fear was not present in HAT participants, suggesting that (i) emotion recognition is not generally impaired in HAT individuals, (ii) the cues exploited for emotion recognition by LAT and HAT groups are not always the same. These findings are discussed against the background of emotional processing in typically and atypically developed individuals.
Parallel and distributed computation for fault-tolerant object recognition
NASA Technical Reports Server (NTRS)
Wechsler, Harry
1988-01-01
The distributed associative memory (DAM) model is suggested for distributed and fault-tolerant computation as it relates to object recognition tasks. The fault-tolerance is with respect to geometrical distortions (scale and rotation), noisy inputs, occulsion/overlap, and memory faults. An experimental system was developed for fault-tolerant structure recognition which shows the feasibility of such an approach. The approach is futher extended to the problem of multisensory data integration and applied successfully to the recognition of colored polyhedral objects.
ERIC Educational Resources Information Center
de la Rosa, Stephan; Choudhery, Rabia N.; Chatziastros, Astros
2011-01-01
Recent evidence suggests that the recognition of an object's presence and its explicit recognition are temporally closely related. Here we re-examined the time course (using a fine and a coarse temporal resolution) and the sensitivity of three possible component processes of visual object recognition. In particular, participants saw briefly…
An ERP Study on Self-Relevant Object Recognition
ERIC Educational Resources Information Center
Miyakoshi, Makoto; Nomura, Michio; Ohira, Hideki
2007-01-01
We performed an event-related potential study to investigate the self-relevance effect in object recognition. Three stimulus categories were prepared: SELF (participant's own objects), FAMILIAR (disposable and public objects, defined as objects with less-self-relevant familiarity), and UNFAMILIAR (others' objects). The participants' task was to…
Aging and solid shape recognition: Vision and haptics.
Norman, J Farley; Cheeseman, Jacob R; Adkins, Olivia C; Cox, Andrea G; Rogers, Connor E; Dowell, Catherine J; Baxter, Michael W; Norman, Hideko F; Reyes, Cecia M
2015-10-01
The ability of 114 younger and older adults to recognize naturally-shaped objects was evaluated in three experiments. The participants viewed or haptically explored six randomly-chosen bell peppers (Capsicum annuum) in a study session and were later required to judge whether each of twelve bell peppers was "old" (previously presented during the study session) or "new" (not presented during the study session). When recognition memory was tested immediately after study, the younger adults' (Experiment 1) performance for vision and haptics was identical when the individual study objects were presented once. Vision became superior to haptics, however, when the individual study objects were presented multiple times. When 10- and 20-min delays (Experiment 2) were inserted in between study and test sessions, no significant differences occurred between vision and haptics: recognition performance in both modalities was comparable. When the recognition performance of older adults was evaluated (Experiment 3), a negative effect of age was found for visual shape recognition (younger adults' overall recognition performance was 60% higher). There was no age effect, however, for haptic shape recognition. The results of the present experiments indicate that the visual recognition of natural object shape is different from haptic recognition in multiple ways: visual shape recognition can be superior to that of haptics and is affected by aging, while haptic shape recognition is less accurate and unaffected by aging. Copyright © 2015 Elsevier Ltd. All rights reserved.
Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D
2016-09-15
Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. Copyright © 2016 Elsevier B.V. All rights reserved.
Zelinsky, Gregory J; Peng, Yifan; Berg, Alexander C; Samaras, Dimitris
2013-10-08
Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery.
Zelinsky, Gregory J.; Peng, Yifan; Berg, Alexander C.; Samaras, Dimitris
2013-01-01
Search is commonly described as a repeating cycle of guidance to target-like objects, followed by the recognition of these objects as targets or distractors. Are these indeed separate processes using different visual features? We addressed this question by comparing observer behavior to that of support vector machine (SVM) models trained on guidance and recognition tasks. Observers searched for a categorically defined teddy bear target in four-object arrays. Target-absent trials consisted of random category distractors rated in their visual similarity to teddy bears. Guidance, quantified as first-fixated objects during search, was strongest for targets, followed by target-similar, medium-similarity, and target-dissimilar distractors. False positive errors to first-fixated distractors also decreased with increasing dissimilarity to the target category. To model guidance, nine teddy bear detectors, using features ranging in biological plausibility, were trained on unblurred bears then tested on blurred versions of the same objects appearing in each search display. Guidance estimates were based on target probabilities obtained from these detectors. To model recognition, nine bear/nonbear classifiers, trained and tested on unblurred objects, were used to classify the object that would be fixated first (based on the detector estimates) as a teddy bear or a distractor. Patterns of categorical guidance and recognition accuracy were modeled almost perfectly by an HMAX model in combination with a color histogram feature. We conclude that guidance and recognition in the context of search are not separate processes mediated by different features, and that what the literature knows as guidance is really recognition performed on blurred objects viewed in the visual periphery. PMID:24105460
Real-time detection of moving objects from moving vehicles using dense stereo and optical flow
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Matthies, Larry
2004-01-01
Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include realtime, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify & other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.
Real-time detection of moving objects from moving vehicles using dense stereo and optical flow
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Matthies, Larry
2004-01-01
Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include real-time, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identity other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.
Real-time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Matthies, Larry
2004-01-01
Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time. dense stereo system to include realtime. dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop. computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.
Representation of 3-Dimenstional Objects by the Rat Perirhinal Cortex
Burke, S.N.; Maurer, A.P.; Hartzell, A.L.; Nematollahi, S.; Uprety, A.; Wallace, J.L.; Barnes, C.A.
2012-01-01
The perirhinal cortex (PRC) is known to play an important role in object recognition. Little is known, however, regarding the activity of PRC neurons during the presentation of stimuli that are commonly used for recognition memory tasks in rodents, that is, 3-dimensional objects. Rats in the present study were exposed to 3-dimensional objects while they traversed a circular track for food reward. Under some behavioral conditions the track contained novel objects, familiar objects, or no objects. Approximately 38% of PRC neurons demonstrated ‘object fields’ (a selective increase in firing at the location of one or more objects). Although the rats spent more time exploring the objects when they were novel compared to familiar, indicating successful recognition memory, the proportion of object fields and the firing rates of PRC neurons were not affected by the rats’ previous experience with the objects. Together these data indicate that the activity of PRC cells is powerfully affected by the presence of objects while animals navigate through an environment, but under these conditions, the firing patterns are not altered by the relative novelty of objects during successful object recognition. PMID:22987680
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-02
... simply route to the exchange with the best priced interest. The Exchange, in recognition of the fact that... exchange with the best priced interest. The Exchange, in recognition of the fact that markets can move... face, would not impose any burden on competition that is not necessary or appropriate in furtherance of...
ERIC Educational Resources Information Center
Miyahara, Motohide; Bray, Anne; Tsujii, Masatsugu; Fujita, Chikako; Sugiyama, Toshiro
2007-01-01
This study used a choice reaction-time paradigm to test the perceived impairment of facial affect recognition in Asperger's disorder. Twenty teenagers with Asperger's disorder and 20 controls were compared with respect to the latency and accuracy of response to happy or disgusted facial expressions, presented in cartoon or real images and in…
Angelone, Bonnie L; Levin, Daniel T; Simons, Daniel J
2003-01-01
Observers typically detect changes to central objects more readily than changes to marginal objects, but they sometimes miss changes to central, attended objects as well. However, even if observers do not report such changes, they may be able to recognize the changed object. In three experiments we explored change detection and recognition memory for several types of changes to central objects in motion pictures. Observers who failed to detect a change still performed at above chance levels on a recognition task in almost all conditions. In addition, observers who detected the change were no more accurate in their recognition than those who did not detect the change. Despite large differences in the detectability of changes across conditions, those observers who missed the change did not vary in their ability to recognize the changing object.
Recognition Of Complex Three Dimensional Objects Using Three Dimensional Moment Invariants
NASA Astrophysics Data System (ADS)
Sadjadi, Firooz A.
1985-01-01
A technique for the recognition of complex three dimensional objects is presented. The complex 3-D objects are represented in terms of their 3-D moment invariants, algebraic expressions that remain invariant independent of the 3-D objects' orientations and locations in the field of view. The technique of 3-D moment invariants has been used successfully for simple 3-D object recognition in the past. In this work we have extended this method for the representation of more complex objects. Two complex objects are represented digitally; their 3-D moment invariants have been calculated, and then the invariancy of these 3-D invariant moment expressions is verified by changing the orientation and the location of the objects in the field of view. The results of this study have significant impact on 3-D robotic vision, 3-D target recognition, scene analysis and artificial intelligence.
A Taxonomy of 3D Occluded Objects Recognition Techniques
NASA Astrophysics Data System (ADS)
Soleimanizadeh, Shiva; Mohamad, Dzulkifli; Saba, Tanzila; Al-ghamdi, Jarallah Saleh
2016-03-01
The overall performances of object recognition techniques under different condition (e.g., occlusion, viewpoint, and illumination) have been improved significantly in recent years. New applications and hardware are shifted towards digital photography, and digital media. This faces an increase in Internet usage requiring object recognition for certain applications; particularly occulded objects. However occlusion is still an issue unhandled, interlacing the relations between extracted feature points through image, research is going on to develop efficient techniques and easy to use algorithms that would help users to source images; this need to overcome problems and issues regarding occlusion. The aim of this research is to review recognition occluded objects algorithms and figure out their pros and cons to solve the occlusion problem features, which are extracted from occluded object to distinguish objects from other co-existing objects by determining the new techniques, which could differentiate the occluded fragment and sections inside an image.
Exogenous temporal cues enhance recognition memory in an object-based manner.
Ohyama, Junji; Watanabe, Katsumi
2010-11-01
Exogenous attention enhances the perception of attended items in both a space-based and an object-based manner. Exogenous attention also improves recognition memory for attended items in the space-based mode. However, it has not been examined whether object-based exogenous attention enhances recognition memory. To address this issue, we examined whether a sudden visual change in a task-irrelevant stimulus (an exogenous cue) would affect participants' recognition memory for items that were serially presented around a cued time. The results showed that recognition accuracy for an item was strongly enhanced when the visual cue occurred at the same location and time as the item (Experiments 1 and 2). The memory enhancement effect occurred when the exogenous visual cue and an item belonged to the same object (Experiments 3 and 4) and even when the cue was counterpredictive of the timing of an item to be asked about (Experiment 5). The present study suggests that an exogenous temporal cue automatically enhances the recognition accuracy for an item that is presented at close temporal proximity to the cue and that recognition memory enhancement occurs in an object-based manner.
Toward a unified model of face and object recognition in the human visual system
Wallis, Guy
2013-01-01
Our understanding of the mechanisms and neural substrates underlying visual recognition has made considerable progress over the past 30 years. During this period, accumulating evidence has led many scientists to conclude that objects and faces are recognised in fundamentally distinct ways, and in fundamentally distinct cortical areas. In the psychological literature, in particular, this dissociation has led to a palpable disconnect between theories of how we process and represent the two classes of object. This paper follows a trend in part of the recognition literature to try to reconcile what we know about these two forms of recognition by considering the effects of learning. Taking a widely accepted, self-organizing model of object recognition, this paper explains how such a system is affected by repeated exposure to specific stimulus classes. In so doing, it explains how many aspects of recognition generally regarded as unusual to faces (holistic processing, configural processing, sensitivity to inversion, the other-race effect, the prototype effect, etc.) are emergent properties of category-specific learning within such a system. Overall, the paper describes how a single model of recognition learning can and does produce the seemingly very different types of representation associated with faces and objects. PMID:23966963
Parts and Relations in Young Children's Shape-Based Object Recognition
ERIC Educational Resources Information Center
Augustine, Elaine; Smith, Linda B.; Jones, Susan S.
2011-01-01
The ability to recognize common objects from sparse information about geometric shape emerges during the same period in which children learn object names and object categories. Hummel and Biederman's (1992) theory of object recognition proposes that the geometric shapes of objects have two components--geometric volumes representing major object…
Huang, Lijie; Song, Yiying; Li, Jingguang; Zhen, Zonglei; Yang, Zetian; Liu, Jia
2014-01-01
In functional magnetic resonance imaging studies, object selectivity is defined as a higher neural response to an object category than other object categories. Importantly, object selectivity is widely considered as a neural signature of a functionally-specialized area in processing its preferred object category in the human brain. However, the behavioral significance of the object selectivity remains unclear. In the present study, we used the individual differences approach to correlate participants' face selectivity in the face-selective regions with their behavioral performance in face recognition measured outside the scanner in a large sample of healthy adults. Face selectivity was defined as the z score of activation with the contrast of faces vs. non-face objects, and the face recognition ability was indexed as the normalized residual of the accuracy in recognizing previously-learned faces after regressing out that for non-face objects in an old/new memory task. We found that the participants with higher face selectivity in the fusiform face area (FFA) and the occipital face area (OFA), but not in the posterior part of the superior temporal sulcus (pSTS), possessed higher face recognition ability. Importantly, the association of face selectivity in the FFA and face recognition ability cannot be accounted for by FFA response to objects or behavioral performance in object recognition, suggesting that the association is domain-specific. Finally, the association is reliable, confirmed by the replication from another independent participant group. In sum, our finding provides empirical evidence on the validity of using object selectivity as a neural signature in defining object-selective regions in the human brain. PMID:25071513
Halliday, Drew W R; MacDonald, Stuart W S; Scherf, K Suzanne; Sherf, Suzanne K; Tanaka, James W
2014-01-01
Although not a core symptom of the disorder, individuals with autism often exhibit selective impairments in their face processing abilities. Importantly, the reciprocal connection between autistic traits and face perception has rarely been examined within the typically developing population. In this study, university participants from the social sciences, physical sciences, and humanities completed a battery of measures that assessed face, object and emotion recognition abilities, general perceptual-cognitive style, and sub-clinical autistic traits (the Autism Quotient (AQ)). We employed separate hierarchical multiple regression analyses to evaluate which factors could predict face recognition scores and AQ scores. Gender, object recognition performance, and AQ scores predicted face recognition behaviour. Specifically, males, individuals with more autistic traits, and those with lower object recognition scores performed more poorly on the face recognition test. Conversely, university major, gender and face recognition performance reliably predicted AQ scores. Science majors, males, and individuals with poor face recognition skills showed more autistic-like traits. These results suggest that the broader autism phenotype is associated with lower face recognition abilities, even among typically developing individuals.
Halliday, Drew W. R.; MacDonald, Stuart W. S.; Sherf, Suzanne K.; Tanaka, James W.
2014-01-01
Although not a core symptom of the disorder, individuals with autism often exhibit selective impairments in their face processing abilities. Importantly, the reciprocal connection between autistic traits and face perception has rarely been examined within the typically developing population. In this study, university participants from the social sciences, physical sciences, and humanities completed a battery of measures that assessed face, object and emotion recognition abilities, general perceptual-cognitive style, and sub-clinical autistic traits (the Autism Quotient (AQ)). We employed separate hierarchical multiple regression analyses to evaluate which factors could predict face recognition scores and AQ scores. Gender, object recognition performance, and AQ scores predicted face recognition behaviour. Specifically, males, individuals with more autistic traits, and those with lower object recognition scores performed more poorly on the face recognition test. Conversely, university major, gender and face recognition performance reliably predicted AQ scores. Science majors, males, and individuals with poor face recognition skills showed more autistic-like traits. These results suggest that the broader autism phenotype is associated with lower face recognition abilities, even among typically developing individuals. PMID:24853862
Mechanisms and neural basis of object and pattern recognition: a study with chess experts.
Bilalić, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang
2010-11-01
Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and novices performing chess-related and -unrelated (visual) search tasks. As expected, the superiority of experts was limited to the chess-specific task, as there were no differences in a control task that used the same chess stimuli but did not require chess-specific recognition. The analysis of eye movements showed that experts immediately and exclusively focused on the relevant aspects in the chess task, whereas novices also examined irrelevant aspects. With random chess positions, when pattern knowledge could not be used to guide perception, experts nevertheless maintained an advantage. Experts' superior domain-specific parafoveal vision, a consequence of their knowledge about individual domain-specific symbols, enabled improved object recognition. Functional magnetic resonance imaging corroborated this differentiation between object and pattern recognition and showed that chess-specific object recognition was accompanied by bilateral activation of the occipitotemporal junction, whereas chess-specific pattern recognition was related to bilateral activations in the middle part of the collateral sulci. Using the expertise approach together with carefully chosen controls and multiple dependent measures, we identified object and pattern recognition as two essential cognitive processes in expert visual cognition, which may also help to explain the mechanisms of everyday perception.
Acoustic Event Detection and Classification
NASA Astrophysics Data System (ADS)
Temko, Andrey; Nadeu, Climent; Macho, Dušan; Malkin, Robert; Zieger, Christian; Omologo, Maurizio
The human activity that takes place in meeting rooms or classrooms is reflected in a rich variety of acoustic events (AE), produced either by the human body or by objects handled by humans, so the determination of both the identity of sounds and their position in time may help to detect and describe that human activity. Indeed, speech is usually the most informative sound, but other kinds of AEs may also carry useful information, for example, clapping or laughing inside a speech, a strong yawn in the middle of a lecture, a chair moving or a door slam when the meeting has just started. Additionally, detection and classification of sounds other than speech may be useful to enhance the robustness of speech technologies like automatic speech recognition.
ERIC Educational Resources Information Center
Collin, Charles A.; Liu, Chang Hong; Troje, Nikolaus F.; McMullen, Patricia A.; Chaudhuri, Avi
2004-01-01
Previous studies have suggested that face identification is more sensitive to variations in spatial frequency content than object recognition, but none have compared how sensitive the 2 processes are to variations in spatial frequency overlap (SFO). The authors tested face and object matching accuracy under varying SFO conditions. Their results…
ERIC Educational Resources Information Center
Kuusikko-Gauffin, Sanna; Jansson-Verkasalo, Eira; Carter, Alice; Pollock-Wurman, Rachel; Jussila, Katja; Mattila, Marja-Leena; Rahko, Jukka; Ebeling, Hanna; Pauls, David; Moilanen, Irma
2011-01-01
Children with Autism Spectrum Disorders (ASDs) have reported to have impairments in face, recognition and face memory, but intact object recognition and object memory. Potential abnormalities, in these fields at the family level of high-functioning children with ASD remains understudied despite, the ever-mounting evidence that ASDs are genetic and…
NASA Astrophysics Data System (ADS)
Buryi, E. V.
1998-05-01
The main problems in the synthesis of an object recognition system, based on the principles of operation of neuron networks, are considered. Advantages are demonstrated of a hierarchical structure of the recognition algorithm. The use of reading of the amplitude spectrum of signals as information tags is justified and a method is developed for determination of the dimensionality of the tag space. Methods are suggested for ensuring the stability of object recognition in the optical range. It is concluded that it should be possible to recognise perspectives of complex objects.
Lateral entorhinal cortex is necessary for associative but not nonassociative recognition memory
Wilson, David IG; Watanabe, Sakurako; Milner, Helen; Ainge, James A
2013-01-01
The lateral entorhinal cortex (LEC) provides one of the two major input pathways to the hippocampus and has been suggested to process the nonspatial contextual details of episodic memory. Combined with spatial information from the medial entorhinal cortex it is hypothesised that this contextual information is used to form an integrated spatially selective, context-specific response in the hippocampus that underlies episodic memory. Recently, we reported that the LEC is required for recognition of objects that have been experienced in a specific context (Wilson et al. (2013) Hippocampus 23:352-366). Here, we sought to extend this work to assess the role of the LEC in recognition of all associative combinations of objects, places and contexts within an episode. Unlike controls, rats with excitotoxic lesions of the LEC showed no evidence of recognizing familiar combinations of object in place, place in context, or object in place and context. However, LEC lesioned rats showed normal recognition of objects and places independently from each other (nonassociative recognition). Together with our previous findings, these data suggest that the LEC is critical for associative recognition memory and may bind together information relating to objects, places, and contexts needed for episodic memory formation. PMID:23836525
Coordinate Transformations in Object Recognition
ERIC Educational Resources Information Center
Graf, Markus
2006-01-01
A basic problem of visual perception is how human beings recognize objects after spatial transformations. Three central classes of findings have to be accounted for: (a) Recognition performance varies systematically with orientation, size, and position; (b) recognition latencies are sequentially additive, suggesting analogue transformation…
Effects of Implied Motion and Facing Direction on Positional Preferences in Single-Object Pictures.
Palmer, Stephen E; Langlois, Thomas A
2017-07-01
Palmer, Gardner, and Wickens studied aesthetic preferences for pictures of single objects and found a strong inward bias: Right-facing objects were preferred left-of-center and left-facing objects right-of-center. They found no effect of object motion (people and cars showed the same inward bias as chairs and teapots), but the objects were not depicted as moving. Here we measured analogous inward biases with objects depicted as moving with an implied direction and speed by having participants drag-and-drop target objects into the most aesthetically pleasing position. In Experiment 1, human figures were shown diving or falling while moving forward or backward. Aesthetic biases were evident for both inward-facing and inward-moving figures, but the motion-based bias dominated so strongly that backward divers or fallers were preferred moving inward but facing outward. Experiment 2 investigated implied speed effects using images of humans, horses, and cars moving at different speeds (e.g., standing, walking, trotting, and galloping horses). Inward motion or facing biases were again present, and differences in their magnitude due to speed were evident. Unexpectedly, faster moving objects were generally preferred closer to frame center than slower moving objects. These results are discussed in terms of the combined effects of prospective, future-oriented biases, and retrospective, past-oriented biases.
NASA Astrophysics Data System (ADS)
El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno
2015-10-01
This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The infrastructure analysis mode pursues the goal to analyze the function of the infrastructure. The image analyst extracts visually certain target object signatures, assigns them to corresponding object features and is finally able to recognize the object type. The system offers him the possibility to assign the image signatures to features given by sample images. The underlying data set contains a wide range of objects features and object types for different domains like ships or land vehicles. Each domain has its own feature tree developed by aerial image analyst experts. By selecting the corresponding features, the possible solution set of objects is automatically reduced and matches only the objects that contain the selected features. Moreover, we give an outlook of current research in the field of ground target analysis in which we deal with partly automated methods to extract image signatures and assign them to the corresponding features. This research includes methods for automatically determining the orientation of an object and geometric features like width and length of the object. This step enables to reduce automatically the possible object types offered to the image analyst by the interactive recognition assistance system.
Assessment of Homomorphic Analysis for Human Activity Recognition from Acceleration Signals.
Vanrell, Sebastian Rodrigo; Milone, Diego Humberto; Rufiner, Hugo Leonardo
2017-07-03
Unobtrusive activity monitoring can provide valuable information for medical and sports applications. In recent years, human activity recognition has moved to wearable sensors to deal with unconstrained scenarios. Accelerometers are the preferred sensors due to their simplicity and availability. Previous studies have examined several \\azul{classic} techniques for extracting features from acceleration signals, including time-domain, time-frequency, frequency-domain, and other heuristic features. Spectral and temporal features are the preferred ones and they are generally computed from acceleration components, leaving the acceleration magnitude potential unexplored. In this study, based on homomorphic analysis, a new type of feature extraction stage is proposed in order to exploit discriminative activity information present in acceleration signals. Homomorphic analysis can isolate the information about whole body dynamics and translate it into a compact representation, called cepstral coefficients. Experiments have explored several configurations of the proposed features, including size of representation, signals to be used, and fusion with other features. Cepstral features computed from acceleration magnitude obtained one of the highest recognition rates. In addition, a beneficial contribution was found when time-domain and moving pace information was included in the feature vector. Overall, the proposed system achieved a recognition rate of 91.21% on the publicly available SCUT-NAA dataset. To the best of our knowledge, this is the highest recognition rate on this dataset.
Semantic and visual determinants of face recognition in a prosopagnosic patient.
Dixon, M J; Bub, D N; Arguin, M
1998-05-01
Prosopagnosia is the neuropathological inability to recognize familiar people by their faces. It can occur in isolation or can coincide with recognition deficits for other nonface objects. Often, patients whose prosopagnosia is accompanied by object recognition difficulties have more trouble identifying certain categories of objects relative to others. In previous research, we demonstrated that objects that shared multiple visual features and were semantically close posed severe recognition difficulties for a patient with temporal lobe damage. We now demonstrate that this patient's face recognition is constrained by these same parameters. The prosopagnosic patient ELM had difficulties pairing faces to names when the faces shared visual features and the names were semantically related (e.g., Tonya Harding, Nancy Kerrigan, and Josee Chouinard -three ice skaters). He made tenfold fewer errors when the exact same faces were associated with semantically unrelated people (e.g., singer Celine Dion, actress Betty Grable, and First Lady Hillary Clinton). We conclude that prosopagnosia and co-occurring category-specific recognition problems both stem from difficulties disambiguating the stored representations of objects that share multiple visual features and refer to semantically close identities or concepts.
An automated data exploitation system for airborne sensors
NASA Astrophysics Data System (ADS)
Chen, Hai-Wen; McGurr, Mike
2014-06-01
Advanced wide area persistent surveillance (WAPS) sensor systems on manned or unmanned airborne vehicles are essential for wide-area urban security monitoring in order to protect our people and our warfighter from terrorist attacks. Currently, human (imagery) analysts process huge data collections from full motion video (FMV) for data exploitation and analysis (real-time and forensic), providing slow and inaccurate results. An Automated Data Exploitation System (ADES) is urgently needed. In this paper, we present a recently developed ADES for airborne vehicles under heavy urban background clutter conditions. This system includes four processes: (1) fast image registration, stabilization, and mosaicking; (2) advanced non-linear morphological moving target detection; (3) robust multiple target (vehicles, dismounts, and human) tracking (up to 100 target tracks); and (4) moving or static target/object recognition (super-resolution). Test results with real FMV data indicate that our ADES can reliably detect, track, and recognize multiple vehicles under heavy urban background clutters. Furthermore, our example shows that ADES as a baseline platform can provide capability for vehicle abnormal behavior detection to help imagery analysts quickly trace down potential threats and crimes.
Examining object recognition and object-in-Place memory in plateau zokors, Eospalax baileyi.
Hegab, Ibrahim M; Tan, Yuchen; Wang, Chan; Yao, Baohui; Wang, Haifang; Ji, Weihong; Su, Junhu
2018-01-01
Recognition memory is important for the survival and fitness of subterranean rodents due to the barren underground conditions that require avoiding the burden of higher energy costs or possible conflict with conspecifics. Our study aims to examine the object and object/place recognition memories in plateau zokors (Eospalax baileyi) and test whether their underground life exerts sex-specific differences in memory functions using Novel Object Recognition (NOR) and Object-in-Place (OiP) paradigms. Animals were tested in the NOR with short (10min) and long-term (24h) inter-trial intervals (ITI) and in the OiP for a 30-min ITI between the familiarization and testing sessions. Plateau zokors showed a strong preference for novel objects manifested by a longer exploration time for the novel object after 10min ITI but failed to remember the familiar object when tested after 24h, suggesting a lack of long-term memory. In the OiP test, zokors effectively formed an association between the objects and the place where they were formerly encountered, resulting in a higher duration of exploration to the switched objects. However, both sexes showed equivalent results in exploration time during the NOR and OiP tests, which eliminates the possibility of discovering sex-specific variations in memory performance. Taken together, our study illustrates robust novelty preference and an effective short-term recognition memory without marked sex-specific differences, which might elucidate the dynamics of recognition memory formation and retrieval in plateau zokors. Copyright © 2017 Elsevier B.V. All rights reserved.
Implicit and Explicit Contributions to Object Recognition: Evidence from Rapid Perceptual Learning
Hassler, Uwe; Friese, Uwe; Gruber, Thomas
2012-01-01
The present study investigated implicit and explicit recognition processes of rapidly perceptually learned objects by means of steady-state visual evoked potentials (SSVEP). Participants were initially exposed to object pictures within an incidental learning task (living/non-living categorization). Subsequently, degraded versions of some of these learned pictures were presented together with degraded versions of unlearned pictures and participants had to judge, whether they recognized an object or not. During this test phase, stimuli were presented at 15 Hz eliciting an SSVEP at the same frequency. Source localizations of SSVEP effects revealed for implicit and explicit processes overlapping activations in orbito-frontal and temporal regions. Correlates of explicit object recognition were additionally found in the superior parietal lobe. These findings are discussed to reflect facilitation of object-specific processing areas within the temporal lobe by an orbito-frontal top-down signal as proposed by bi-directional accounts of object recognition. PMID:23056558
Crowding by Invisible Flankers
Ho, Cristy; Cheung, Sing-Hang
2011-01-01
Background Human object recognition degrades sharply as the target object moves from central vision into peripheral vision. In particular, one's ability to recognize a peripheral target is severely impaired by the presence of flanking objects, a phenomenon known as visual crowding. Recent studies on how visual awareness of flanker existence influences crowding had shown mixed results. More importantly, it is not known whether conscious awareness of the existence of both the target and flankers are necessary for crowding to occur. Methodology/Principal Findings Here we show that crowding persists even when people are completely unaware of the flankers, which are rendered invisible through the continuous flash suppression technique. Contrast threshold for identifying the orientation of a grating pattern was elevated in the flanked condition, even when the subjects reported that they were unaware of the perceptually suppressed flankers. Moreover, we find that orientation-specific adaptation is attenuated by flankers even when both the target and flankers are invisible. Conclusions These findings complement the suggested correlation between crowding and visual awareness. What's more, our results demonstrate that conscious awareness and attention are not prerequisite for crowding. PMID:22194919
Single prolonged stress impairs social and object novelty recognition in rats.
Eagle, Andrew L; Fitzpatrick, Chris J; Perrine, Shane A
2013-11-01
Posttraumatic stress disorder (PTSD) results from exposure to a traumatic event and manifests as re-experiencing, arousal, avoidance, and negative cognition/mood symptoms. Avoidant symptoms, as well as the newly defined negative cognitions/mood, are a serious complication leading to diminished interest in once important or positive activities, such as social interaction; however, the basis of these symptoms remains poorly understood. PTSD patients also exhibit impaired object and social recognition, which may underlie the avoidance and symptoms of negative cognition, such as social estrangement or diminished interest in activities. Previous studies have demonstrated that single prolonged stress (SPS), models PTSD phenotypes, including impairments in learning and memory. Therefore, it was hypothesized that SPS would impair social and object recognition memory. Male Sprague Dawley rats were exposed to SPS then tested in the social choice test (SCT) or novel object recognition test (NOR). These tests measure recognition of novelty over familiarity, a natural preference of rodents. Results show that SPS impaired preference for both social and object novelty. In addition, SPS impairment in social recognition may be caused by impaired behavioral flexibility, or an inability to shift behavior during the SCT. These results demonstrate that traumatic stress can impair social and object recognition memory, which may underlie certain avoidant symptoms or negative cognition in PTSD and be related to impaired behavioral flexibility. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Babayan, Pavel; Smirnov, Sergey; Strotov, Valery
2017-10-01
This paper describes the aerial object recognition algorithm for on-board and stationary vision system. Suggested algorithm is intended to recognize the objects of a specific kind using the set of the reference objects defined by 3D models. The proposed algorithm based on the outer contour descriptor building. The algorithm consists of two stages: learning and recognition. Learning stage is devoted to the exploring of reference objects. Using 3D models we can build the database containing training images by rendering the 3D model from viewpoints evenly distributed on a sphere. Sphere points distribution is made by the geosphere principle. Gathered training image set is used for calculating descriptors, which will be used in the recognition stage of the algorithm. The recognition stage is focusing on estimating the similarity of the captured object and the reference objects by matching an observed image descriptor and the reference object descriptors. The experimental research was performed using a set of the models of the aircraft of the different types (airplanes, helicopters, UAVs). The proposed orientation estimation algorithm showed good accuracy in all case studies. The real-time performance of the algorithm in FPGA-based vision system was demonstrated.
Affective and contextual values modulate spatial frequency use in object recognition
Caplette, Laurent; West, Gregory; Gomot, Marie; Gosselin, Frédéric; Wicker, Bruno
2014-01-01
Visual object recognition is of fundamental importance in our everyday interaction with the environment. Recent models of visual perception emphasize the role of top-down predictions facilitating object recognition via initial guesses that limit the number of object representations that need to be considered. Several results suggest that this rapid and efficient object processing relies on the early extraction and processing of low spatial frequencies (LSF). The present study aimed to investigate the SF content of visual object representations and its modulation by contextual and affective values of the perceived object during a picture-name verification task. Stimuli consisted of pictures of objects equalized in SF content and categorized as having low or high affective and contextual values. To access the SF content of stored visual representations of objects, SFs of each image were then randomly sampled on a trial-by-trial basis. Results reveal that intermediate SFs between 14 and 24 cycles per object (2.3–4 cycles per degree) are correlated with fast and accurate identification for all categories of objects. Moreover, there was a significant interaction between affective and contextual values over the SFs correlating with fast recognition. These results suggest that affective and contextual values of a visual object modulate the SF content of its internal representation, thus highlighting the flexibility of the visual recognition system. PMID:24904514
The Art of Empathy: A Mixed Methods Case Study of a Critical Place-Based Art Education Program
ERIC Educational Resources Information Center
Bertling, Joy G.
2015-01-01
Bowers (2001) described how our ecological crisis is marked by metaphors of difference and separation. By adopting an ecological paradigm, students have the opportunity to move past harmful distinctions that have characterized relations with the earth. Instead, students can move to a deep recognition of the interconnectedness of living things.…
Neural-Network Object-Recognition Program
NASA Technical Reports Server (NTRS)
Spirkovska, L.; Reid, M. B.
1993-01-01
HONTIOR computer program implements third-order neural network exhibiting invariance under translation, change of scale, and in-plane rotation. Invariance incorporated directly into architecture of network. Only one view of each object needed to train network for two-dimensional-translation-invariant recognition of object. Also used for three-dimensional-transformation-invariant recognition by training network on only set of out-of-plane rotated views. Written in C language.
Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J
2015-09-30
To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.
Liang, Zhongwei; Zhou, Liang; Liu, Xiaochu; Wang, Xiaogang
2014-01-01
It is obvious that tablet image tracking exerts a notable influence on the efficiency and reliability of high-speed drug mass production, and, simultaneously, it also emerges as a big difficult problem and targeted focus during production monitoring in recent years, due to the high similarity shape and random position distribution of those objectives to be searched for. For the purpose of tracking tablets accurately in random distribution, through using surface fitting approach and transitional vector determination, the calibrated surface of light intensity reflective energy can be established, describing the shape topology and topography details of objective tablet. On this basis, the mathematical properties of these established surfaces have been proposed, and thereafter artificial neural network (ANN) has been employed for classifying those moving targeted tablets by recognizing their different surface properties; therefore, the instantaneous coordinate positions of those drug tablets on one image frame can then be determined. By repeating identical pattern recognition on the next image frame, the real-time movements of objective tablet templates were successfully tracked in sequence. This paper provides reliable references and new research ideas for the real-time objective tracking in the case of drug production practices. PMID:25143781
Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.
2011-01-01
Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation required for long-term memory. Several studies have shown that CBP and histone acetylation are necessary for hippocampus-dependent long-term memory and hippocampal long-term potentiation (LTP). Importantly, every genetically modified Cbp mutant mouse exhibits long-term memory impairments in object recognition. However, the role of the hippocampus in object recognition is controversial. To better understand how chromatin-modifying enzymes modulate long-term memory for object recognition, we first examined the role of the hippocampus in retrieval of long-term memory for object recognition or object location. Muscimol inactivation of the dorsal hippocampus prior to retrieval had no effect on long-term memory for object recognition, but completely blocked long-term memory for object location. This was consistent with experiments showing that muscimol inactivation of the hippocampus had no effect on long-term memory for the object itself, supporting the idea that the hippocampus encodes spatial information about an object (such as location or context), whereas cortical areas (such as the perirhinal or insular cortex) encode information about the object itself. Using location-dependent object recognition tasks that engage the hippocampus, we demonstrate that CBP is essential for the modulation of long-term memory via HDAC inhibition. Together, these results indicate that HDAC inhibition modulates memory in the hippocampus via CBP and that different brain regions utilize different chromatin-modifying enzymes to regulate learning and memory. PMID:21224411
NASA Astrophysics Data System (ADS)
Yan, Fengxia; Udupa, Jayaram K.; Tong, Yubing; Xu, Guoping; Odhner, Dewey; Torigian, Drew A.
2018-03-01
The recently developed body-wide Automatic Anatomy Recognition (AAR) methodology depends on fuzzy modeling of individual objects, hierarchically arranging objects, constructing an anatomy ensemble of these models, and a dichotomous object recognition-delineation process. The parent-to-offspring spatial relationship in the object hierarchy is crucial in the AAR method. We have found this relationship to be quite complex, and as such any improvement in capturing this relationship information in the anatomy model will improve the process of recognition itself. Currently, the method encodes this relationship based on the layout of the geometric centers of the objects. Motivated by the concept of virtual landmarks (VLs), this paper presents a new one-shot AAR recognition method that utilizes the VLs to learn object relationships by training a neural network to predict the pose and the VLs of an offspring object given the VLs of the parent object in the hierarchy. We set up two neural networks for each parent-offspring object pair in a body region, one for predicting the VLs and another for predicting the pose parameters. The VL-based learning/prediction method is evaluated on two object hierarchies involving 14 objects. We utilize 54 computed tomography (CT) image data sets of head and neck cancer patients and the associated object contours drawn by dosimetrists for routine radiation therapy treatment planning. The VL neural network method is found to yield more accurate object localization than the currently used simple AAR method.
Tran, Dominic M D; Westbrook, R Frederick
2018-05-31
Exposure to a high-fat high-sugar (HFHS) diet rapidly impairs novel-place- but not novel-object-recognition memory in rats (Tran & Westbrook, 2015, 2017). Three experiments sought to investigate the generality of diet-induced cognitive deficits by examining whether there are conditions under which object-recognition memory is impaired. Experiments 1 and 3 tested the strength of short- and long-term object-memory trace, respectively, by varying the interval of time between object familiarization and subsequent novel object test. Experiment 2 tested the effect of increasing working memory load on object-recognition memory by interleaving additional object exposures between familiarization and test in an n-back style task. Experiments 1-3 failed to detect any differences in object recognition between HFHS and control rats. Experiment 4 controlled for object novelty by separately familiarizing both objects presented at test, which included one remote-familiar and one recent-familiar object. Under these conditions, when test objects differed in their relative recency, HFHS rats showed a weaker memory trace for the remote object compared to chow rats. This result suggests that the diet leaves intact recollection judgments, but impairs familiarity judgments. We speculate that the HFHS diet adversely affects "where" memories as well as the quality of "what" memories, and discuss these effects in relation to recollection and familiarity memory models, hippocampal-dependent functions, and episodic food memories. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Motion Imagery Processing and Exploitation (MIPE)
2013-01-01
facial recognition —i.e., the identification of a specific person.37 Object detection is often (but not always) considered a prerequisite for instance...The goal of segmentation is to distinguish objects and identify boundaries in images. Some of the earliest approaches to facial recognition involved...methods of instance recognition are at varying levels of maturity. Facial recognition methods are arguably the most mature; the technology is well
Perirhinal Cortex Lesions in Rats: Novelty Detection and Sensitivity to Interference
2015-01-01
Rats with perirhinal cortex lesions received multiple object recognition trials within a continuous session to examine whether they show false memories. Experiment 1 focused on exploration patterns during the first object recognition test postsurgery, in which each trial contained 1 novel and 1 familiar object. The perirhinal cortex lesions reduced time spent exploring novel objects, but did not affect overall time spent exploring the test objects (novel plus familiar). Replications with subsequent cohorts of rats (Experiments 2, 3, 4.1) repeated this pattern of results. When all recognition memory data were combined (Experiments 1–4), giving totals of 44 perirhinal lesion rats and 40 surgical sham controls, the perirhinal cortex lesions caused a marginal reduction in total exploration time. That decrease in time with novel objects was often compensated by increased exploration of familiar objects. Experiment 4 also assessed the impact of proactive interference on recognition memory. Evidence emerged that prior object experience could additionally impair recognition performance in rats with perirhinal cortex lesions. Experiment 5 examined exploration levels when rats were just given pairs of novel objects to explore. Despite their perirhinal cortex lesions, exploration levels were comparable with those of control rats. While the results of Experiment 4 support the notion that perirhinal lesions can increase sensitivity to proactive interference, the overall findings question whether rats lacking a perirhinal cortex typically behave as if novel objects are familiar, that is, show false recognition. Rather, the rats retain a signal of novelty but struggle to discriminate the identity of that signal. PMID:26030425
Running Improves Pattern Separation during Novel Object Recognition.
Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef
2015-10-09
Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.
Brown, M.W.; Barker, G.R.I.; Aggleton, J.P.; Warburton, E.C.
2012-01-01
Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty/familiarity). PMID:22841990
Barker, Gareth R I; Warburton, Elizabeth Clea
2018-03-28
Recognition memory for single items requires the perirhinal cortex (PRH), whereas recognition of an item and its associated location requires a functional interaction among the PRH, hippocampus (HPC), and medial prefrontal cortex (mPFC). Although the precise mechanisms through which these interactions are effected are unknown, the nucleus reuniens (NRe) has bidirectional connections with each regions and thus may play a role in recognition memory. Here we investigated, in male rats, whether specific manipulations of NRe function affected performance of recognition memory for single items, object location, or object-in-place associations. Permanent lesions in the NRe significantly impaired long-term, but not short-term, object-in-place associative recognition memory, whereas single item recognition memory and object location memory were unaffected. Temporary inactivation of the NRe during distinct phases of the object-in-place task revealed its importance in both the encoding and retrieval stages of long-term associative recognition memory. Infusions of specific receptor antagonists showed that encoding was dependent on muscarinic and nicotinic cholinergic neurotransmission, whereas NMDA receptor neurotransmission was not required. Finally, we found that long-term object-in-place memory required protein synthesis within the NRe. These data reveal a specific role for the NRe in long-term associative recognition memory through its interactions with the HPC and mPFC, but not the PRH. The delay-dependent involvement of the NRe suggests that it is not a simple relay station between brain regions, but, rather, during high mnemonic demand, facilitates interactions between the mPFC and HPC, a process that requires both cholinergic neurotransmission and protein synthesis. SIGNIFICANCE STATEMENT Recognizing an object and its associated location, which is fundamental to our everyday memory, requires specific hippocampal-cortical interactions, potentially facilitated by the nucleus reuniens (NRe) of the thalamus. However, the role of the NRe itself in associative recognition memory is unknown. Here, we reveal the crucial role of the NRe in encoding and retrieval of long-term object-in-place memory, but not for remembrance of an individual object or individual location and such involvement is cholinergic receptor and protein synthesis dependent. This is the first demonstration that the NRe is a key node within an associative recognition memory network and is not just a simple relay for information within the network. Rather, we argue, the NRe actively modulates information processing during long-term associative memory formation. Copyright © 2018 the authors 0270-6474/18/383208-10$15.00/0.
Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor
2013-08-01
Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently. Copyright © 2013 Elsevier B.V. All rights reserved.
Going, Going, Gone: Localizing Abrupt Offsets of Moving Objects
ERIC Educational Resources Information Center
Maus, Gerrit W.; Nijhawan, Romi
2009-01-01
When a moving object abruptly disappears, this profoundly influences its localization by the visual system. In Experiment 1, 2 aligned objects moved across the screen, and 1 of them abruptly disappeared. Observers reported seeing the objects misaligned at the time of the offset, with the continuing object leading. Experiment 2 showed that the…
1989-10-01
weight based on how powerful the corresponding feature is for object recognition and discrimination. For example, consider an arbitrary weight, denoted...quality of the segmentation, how powerful the features and spatial constraints in the knowledge base are (as far as object recognition is concern...that are powerful for object recognition and discrimination. At this point, this selection is performed heuristically through trial-and-error. As a
1988-04-30
side it necessary and Identify’ by’ block n~nmbot) haptic hand, touch , vision, robot, object recognition, categorization 20. AGSTRPACT (Continue an...established that the haptic system has remarkable capabilities for object recognition. We define haptics as purposive touch . The basic tactual system...gathered ratings of the importance of dimensions for categorizing common objects by touch . Texture and hardness ratings strongly co-vary, which is
High speed optical object recognition processor with massive holographic memory
NASA Technical Reports Server (NTRS)
Chao, T.; Zhou, H.; Reyes, G.
2002-01-01
Real-time object recognition using a compact grayscale optical correlator will be introduced. A holographic memory module for storing a large bank of optimum correlation filters, to accommodate the large data throughput rate needed for many real-world applications, has also been developed. System architecture of the optical processor and the holographic memory will be presented. Application examples of this object recognition technology will also be demonstrated.
On the facilitative effects of face motion on face recognition and its development
Xiao, Naiqi G.; Perrotta, Steve; Quinn, Paul C.; Wang, Zhe; Sun, Yu-Hao P.; Lee, Kang
2014-01-01
For the past century, researchers have extensively studied human face processing and its development. These studies have advanced our understanding of not only face processing, but also visual processing in general. However, most of what we know about face processing was investigated using static face images as stimuli. Therefore, an important question arises: to what extent does our understanding of static face processing generalize to face processing in real-life contexts in which faces are mostly moving? The present article addresses this question by examining recent studies on moving face processing to uncover the influence of facial movements on face processing and its development. First, we describe evidence on the facilitative effects of facial movements on face recognition and two related theoretical hypotheses: the supplementary information hypothesis and the representation enhancement hypothesis. We then highlight several recent studies suggesting that facial movements optimize face processing by activating specific face processing strategies that accommodate to task requirements. Lastly, we review the influence of facial movements on the development of face processing in the first year of life. We focus on infants' sensitivity to facial movements and explore the facilitative effects of facial movements on infants' face recognition performance. We conclude by outlining several future directions to investigate moving face processing and emphasize the importance of including dynamic aspects of facial information to further understand face processing in real-life contexts. PMID:25009517
Combining heterogenous features for 3D hand-held object recognition
NASA Astrophysics Data System (ADS)
Lv, Xiong; Wang, Shuang; Li, Xiangyang; Jiang, Shuqiang
2014-10-01
Object recognition has wide applications in the area of human-machine interaction and multimedia retrieval. However, due to the problem of visual polysemous and concept polymorphism, it is still a great challenge to obtain reliable recognition result for the 2D images. Recently, with the emergence and easy availability of RGB-D equipment such as Kinect, this challenge could be relieved because the depth channel could bring more information. A very special and important case of object recognition is hand-held object recognition, as hand is a straight and natural way for both human-human interaction and human-machine interaction. In this paper, we study the problem of 3D object recognition by combining heterogenous features with different modalities and extraction techniques. For hand-craft feature, although it reserves the low-level information such as shape and color, it has shown weakness in representing hiconvolutionalgh-level semantic information compared with the automatic learned feature, especially deep feature. Deep feature has shown its great advantages in large scale dataset recognition but is not always robust to rotation or scale variance compared with hand-craft feature. In this paper, we propose a method to combine hand-craft point cloud features and deep learned features in RGB and depth channle. First, hand-held object segmentation is implemented by using depth cues and human skeleton information. Second, we combine the extracted hetegerogenous 3D features in different stages using linear concatenation and multiple kernel learning (MKL). Then a training model is used to recognize 3D handheld objects. Experimental results validate the effectiveness and gerneralization ability of the proposed method.
General object recognition is specific: Evidence from novel and familiar objects.
Richler, Jennifer J; Wilmer, Jeremy B; Gauthier, Isabel
2017-09-01
In tests of object recognition, individual differences typically correlate modestly but nontrivially across familiar categories (e.g. cars, faces, shoes, birds, mushrooms). In theory, these correlations could reflect either global, non-specific mechanisms, such as general intelligence (IQ), or more specific mechanisms. Here, we introduce two separate methods for effectively capturing category-general performance variation, one that uses novel objects and one that uses familiar objects. In each case, we show that category-general performance variance is unrelated to IQ, thereby implicating more specific mechanisms. The first approach examines three newly developed novel object memory tests (NOMTs). We predicted that NOMTs would exhibit more shared, category-general variance than familiar object memory tests (FOMTs) because novel objects, unlike familiar objects, lack category-specific environmental influences (e.g. exposure to car magazines or botany classes). This prediction held, and remarkably, virtually none of the substantial shared variance among NOMTs was explained by IQ. Also, while NOMTs correlated nontrivially with two FOMTs (faces, cars), these correlations were smaller than among NOMTs and no larger than between the face and car tests themselves, suggesting that the category-general variance captured by NOMTs is specific not only relative to IQ, but also, to some degree, relative to both face and car recognition. The second approach averaged performance across multiple FOMTs, which we predicted would increase category-general variance by averaging out category-specific factors. This prediction held, and as with NOMTs, virtually none of the shared variance among FOMTs was explained by IQ. Overall, these results support the existence of object recognition mechanisms that, though category-general, are specific relative to IQ and substantially separable from face and car recognition. They also add sensitive, well-normed NOMTs to the tools available to study object recognition. Copyright © 2017 Elsevier B.V. All rights reserved.
Yamada, Kazuo; Arai, Misaki; Suenaga, Toshiko; Ichitani, Yukio
2017-07-28
The hippocampus is thought to be involved in object location recognition memory, yet the contribution of hippocampal NMDA receptors to the memory processes, such as encoding, retention and retrieval, is unknown. First, we confirmed that hippocampal infusion of a competitive NMDA receptor antagonist, AP5 (2-amino-5-phosphonopentanoic acid, 20-40nmol), impaired performance of spontaneous object location recognition test but not that of novel object recognition test in Wistar rats. Next, the effects of hippocampal AP5 treatment on each process of object location recognition memory were examined with three different injection times using a 120min delay-interposed test: 15min before the sample phase (Time I), immediately after the sample phase (Time II), and 15min before the test phase (Time III). The blockade of hippocampal NMDA receptors before and immediately after the sample phase, but not before the test phase, markedly impaired performance of object location recognition test, suggesting that hippocampal NMDA receptors play an important role in encoding and consolidation/retention, but not retrieval, of spontaneous object location memory. Copyright © 2017 Elsevier B.V. All rights reserved.
Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.
NASA Technical Reports Server (NTRS)
Leonard, Desiree M.
1991-01-01
Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.
The Last Meter: Blind Visual Guidance to a Target.
Manduchi, Roberto; Coughlan, James M
2014-01-01
Smartphone apps can use object recognition software to provide information to blind or low vision users about objects in the visual environment. A crucial challenge for these users is aiming the camera properly to take a well-framed picture of the desired target object. We investigate the effects of two fundamental constraints of object recognition - frame rate and camera field of view - on a blind person's ability to use an object recognition smartphone app. The app was used by 18 blind participants to find visual targets beyond arm's reach and approach them to within 30 cm. While we expected that a faster frame rate or wider camera field of view should always improve search performance, our experimental results show that in many cases increasing the field of view does not help, and may even hurt, performance. These results have important implications for the design of object recognition systems for blind users.
Li, Heng; Su, Xiaofan; Wang, Jing; Kan, Han; Han, Tingting; Zeng, Yajie; Chai, Xinyu
2018-01-01
Current retinal prostheses can only generate low-resolution visual percepts constituted of limited phosphenes which are elicited by an electrode array and with uncontrollable color and restricted grayscale. Under this visual perception, prosthetic recipients can just complete some simple visual tasks, but more complex tasks like face identification/object recognition are extremely difficult. Therefore, it is necessary to investigate and apply image processing strategies for optimizing the visual perception of the recipients. This study focuses on recognition of the object of interest employing simulated prosthetic vision. We used a saliency segmentation method based on a biologically plausible graph-based visual saliency model and a grabCut-based self-adaptive-iterative optimization framework to automatically extract foreground objects. Based on this, two image processing strategies, Addition of Separate Pixelization and Background Pixel Shrink, were further utilized to enhance the extracted foreground objects. i) The results showed by verification of psychophysical experiments that under simulated prosthetic vision, both strategies had marked advantages over Direct Pixelization in terms of recognition accuracy and efficiency. ii) We also found that recognition performance under two strategies was tied to the segmentation results and was affected positively by the paired-interrelated objects in the scene. The use of the saliency segmentation method and image processing strategies can automatically extract and enhance foreground objects, and significantly improve object recognition performance towards recipients implanted a high-density implant. Copyright © 2017 Elsevier B.V. All rights reserved.
Object recognition with severe spatial deficits in Williams syndrome: sparing and breakdown.
Landau, Barbara; Hoffman, James E; Kurz, Nicole
2006-07-01
Williams syndrome (WS) is a rare genetic disorder that results in severe visual-spatial cognitive deficits coupled with relative sparing in language, face recognition, and certain aspects of motion processing. Here, we look for evidence for sparing or impairment in another cognitive system-object recognition. Children with WS, normal mental-age (MA) and chronological age-matched (CA) children, and normal adults viewed pictures of a large range of objects briefly presented under various conditions of degradation, including canonical and unusual orientations, and clear or blurred contours. Objects were shown as either full-color views (Experiment 1) or line drawings (Experiment 2). Across both experiments, WS and MA children performed similarly in all conditions while CA children performed better than both WS group and MA groups with unusual views. This advantage, however, was eliminated when images were also blurred. The error types and relative difficulty of different objects were similar across all participant groups. The results indicate selective sparing of basic mechanisms of object recognition in WS, together with developmental delay or arrest in recognition of objects from unusual viewpoints. These findings are consistent with the growing literature on brain abnormalities in WS which points to selective impairment in the parietal areas of the brain. As a whole, the results lend further support to the growing literature on the functional separability of object recognition mechanisms from other spatial functions, and raise intriguing questions about the link between genetic deficits and cognition.
Mining moving object trajectories in location-based services for spatio-temporal database update
NASA Astrophysics Data System (ADS)
Guo, Danhuai; Cui, Weihong
2008-10-01
Advances in wireless transmission and mobile technology applied to LBS (Location-based Services) flood us with amounts of moving objects data. Vast amounts of gathered data from position sensors of mobile phones, PDAs, or vehicles hide interesting and valuable knowledge and describe the behavior of moving objects. The correlation between temporal moving patterns of moving objects and geo-feature spatio-temporal attribute was ignored, and the value of spatio-temporal trajectory data was not fully exploited too. Urban expanding or frequent town plan change bring about a large amount of outdated or imprecise data in spatial database of LBS, and they cannot be updated timely and efficiently by manual processing. In this paper we introduce a data mining approach to movement pattern extraction of moving objects, build a model to describe the relationship between movement patterns of LBS mobile objects and their environment, and put up with a spatio-temporal database update strategy in LBS database based on trajectories spatiotemporal mining. Experimental evaluation reveals excellent performance of the proposed model and strategy. Our original contribution include formulation of model of interaction between trajectory and its environment, design of spatio-temporal database update strategy based on moving objects data mining, and the experimental application of spatio-temporal database update by mining moving objects trajectories.
Central administration of angiotensin IV rapidly enhances novel object recognition among mice.
Paris, Jason J; Eans, Shainnel O; Mizrachi, Elisa; Reilley, Kate J; Ganno, Michelle L; McLaughlin, Jay P
2013-07-01
Angiotensin IV (Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) has demonstrated potential cognitive-enhancing effects. The present investigation assessed and characterized: (1) dose-dependency of angiotensin IV's cognitive enhancement in a C57BL/6J mouse model of novel object recognition, (2) the time-course for these effects, (3) the identity of residues in the hexapeptide important to these effects and (4) the necessity of actions at angiotensin IV receptors for procognitive activity. Assessment of C57BL/6J mice in a novel object recognition task demonstrated that prior administration of angiotensin IV (0.1, 1.0, or 10.0, but not 0.01 nmol, i.c.v.) significantly enhanced novel object recognition in a dose-dependent manner. These effects were time dependent, with improved novel object recognition observed when angiotensin IV (0.1 nmol, i.c.v.) was administered 10 or 20, but not 30 min prior to the onset of the novel object recognition testing. An alanine scan of the angiotensin IV peptide revealed that replacement of the Val(1), Ile(3), His(4), or Phe(6) residues with Ala attenuated peptide-induced improvements in novel object recognition, whereas Tyr(2) or Pro(5) replacement did not significantly affect performance. Administration of the angiotensin IV receptor antagonist, divalinal-Ang IV (20 nmol, i.c.v.), reduced (but did not abolish) novel object recognition; however, this antagonist completely blocked the procognitive effects of angiotensin IV (0.1 nmol, i.c.v.) in this task. Rotorod testing demonstrated no locomotor effects with any angiotensin IV or divalinal-Ang IV dose tested. These data demonstrate that angiotensin IV produces a rapid enhancement of associative learning and memory performance in a mouse model that was dependent on the angiotensin IV receptor. Copyright © 2013 Elsevier Ltd. All rights reserved.
Central administration of angiotensin IV rapidly enhances novel object recognition among mice
Paris, Jason J.; Eans, Shainnel O.; Mizrachi, Elisa; Reilley, Kate J.; Ganno, Michelle L.; McLaughlin, Jay P.
2013-01-01
Angiotensin IV (Val1-Tyr2-Ile3-His4-Pro5-Phe6) has demonstrated potential cognitive-enhancing effects. The present investigation assessed and characterized: (1) dose-dependency of angiotensin IV's cognitive enhancement in a C57BL/6J mouse model of novel object recognition, (2) the time-course for these effects, (3) the identity of residues in the hexapeptide important to these effects and (4) the necessity of actions at angiotensin IV receptors for pro-cognitive activity. Assessment of C57BL/6J mice in a novel object recognition task demonstrated that prior administration of angiotensin IV (0.1, 1.0, or 10.0, but not 0.01, nmol, i.c.v.) significantly enhanced novel object recognition in a dose-dependent manner. These effects were time dependent, with improved novel object recognition observed when angiotensin IV (0.1 nmol, i.c.v.) was administered 10 or 20, but not 30, min prior to the onset of the novel object recognition testing. An alanine scan of the angiotensin IV peptide revealed that replacement of the Val1, Ile3, His4, or Phe6 residues with Ala attenuated peptide-induced improvements in novel object recognition, whereas Tyr2 or Pro5 replacement did not significantly affect performance. Administration of the angiotensin IV receptor antagonist, divalinal-Ang IV (20 nmol, i.c.v.), reduced (but did not abolish) novel object recognition; however, this antagonist completely blocked the pro-cognitive effects of angiotensin IV (0.1 nmol, i.c.v.) in this task. Rotorod testing demonstrated no locomotor effects for any angiotensin IV or divalinal-Ang IV dose tested. These data demonstrate that angiotensin IV produces a rapid enhancement of associative learning and memory performance in a mouse model that was dependent on the angiotensin IV receptor. PMID:23416700
1992-12-23
predominance of structural models of recognition, of which a recent example is the Recognition By Components (RBC) theory ( Biederman , 1987 ). Structural...related to recent statistical theory (Huber, 1985; Friedman, 1987 ) and is derived from a biologically motivated computational theory (Bienenstock et...dimensional object recognition (Intrator and Gold, 1991). The method is related to recent statistical theory (Huber, 1985; Friedman, 1987 ) and is derived
Object Recognition Memory and the Rodent Hippocampus
ERIC Educational Resources Information Center
Broadbent, Nicola J.; Gaskin, Stephane; Squire, Larry R.; Clark, Robert E.
2010-01-01
In rodents, the novel object recognition task (NOR) has become a benchmark task for assessing recognition memory. Yet, despite its widespread use, a consensus has not developed about which brain structures are important for task performance. We assessed both the anterograde and retrograde effects of hippocampal lesions on performance in the NOR…
Self-Recognition in Autistic Children.
ERIC Educational Resources Information Center
Dawson, Geraldine; McKissick, Fawn Celeste
1984-01-01
Fifteen autistic children (four to six years old) were assessed for visual self-recognition ability, as well as for object permanence and gestural imitation. It was found that 13 of 15 autistic children showed evidence of self-recognition. Consistent relationships were suggested between self-cognition and object permanence but not between…
Developmental Commonalities between Object and Face Recognition in Adolescence
Jüttner, Martin; Wakui, Elley; Petters, Dean; Davidoff, Jules
2016-01-01
In the visual perception literature, the recognition of faces has often been contrasted with that of non-face objects, in terms of differences with regard to the role of parts, part relations and holistic processing. However, recent evidence from developmental studies has begun to blur this sharp distinction. We review evidence for a protracted development of object recognition that is reminiscent of the well-documented slow maturation observed for faces. The prolonged development manifests itself in a retarded processing of metric part relations as opposed to that of individual parts and offers surprising parallels to developmental accounts of face recognition, even though the interpretation of the data is less clear with regard to holistic processing. We conclude that such results might indicate functional commonalities between the mechanisms underlying the recognition of faces and non-face objects, which are modulated by different task requirements in the two stimulus domains. PMID:27014176
Detection and Tracking of Moving Objects with Real-Time Onboard Vision System
NASA Astrophysics Data System (ADS)
Erokhin, D. Y.; Feldman, A. B.; Korepanov, S. E.
2017-05-01
Detection of moving objects in video sequence received from moving video sensor is a one of the most important problem in computer vision. The main purpose of this work is developing set of algorithms, which can detect and track moving objects in real time computer vision system. This set includes three main parts: the algorithm for estimation and compensation of geometric transformations of images, an algorithm for detection of moving objects, an algorithm to tracking of the detected objects and prediction their position. The results can be claimed to create onboard vision systems of aircraft, including those relating to small and unmanned aircraft.
Muñoz, Pablo C; Aspé, Mauricio A; Contreras, Luis S; Palacios, Adrián G
2010-01-01
Object recognition memory allows discrimination between novel and familiar objects. This kind of memory consists of two components: recollection, which depends on the hippocampus, and familiarity, which depends on the perirhinal cortex (Pcx). The importance of brain-derived neurotrophic factor (BDNF) for recognition memory has already been recognized. Recent evidence suggests that DNA methylation regulates the expression of BDNF and memory. Behavioral and molecular approaches were used to understand the potential contribution of DNA methylation to recognition memory. To that end, rats were tested for their ability to distinguish novel from familiar objects by using a spontaneous object recognition task. Furthermore, the level of DNA methylation was estimated after trials with a methyl-sensitive PCR. We found a significant correlation between performance on the novel object task and the expression of BDNF, negatively in hippocampal slices and positively in perirhinal cortical slices. By contrast, methylation of DNA in CpG island 1 in the promoter of exon 1 in BDNF only correlated in hippocampal slices, but not in the Pxc cortical slices from trained animals. These results suggest that DNA methylation may be involved in the regulation of the BDNF gene during recognition memory, at least in the hippocampus.
A-Track: Detecting Moving Objects in FITS images
NASA Astrophysics Data System (ADS)
Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.
2017-04-01
A-Track is a fast, open-source, cross-platform pipeline for detecting moving objects (asteroids and comets) in sequential telescope images in FITS format. The moving objects are detected using a modified line detection algorithm.
Moving object detection using dynamic motion modelling from UAV aerial images.
Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid
2014-01-01
Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.
Rolls, Edmund T; Mills, W Patrick C
2018-05-01
When objects transform into different views, some properties are maintained, such as whether the edges are convex or concave, and these non-accidental properties are likely to be important in view-invariant object recognition. The metric properties, such as the degree of curvature, may change with different views, and are less likely to be useful in object recognition. It is shown that in a model of invariant visual object recognition in the ventral visual stream, VisNet, non-accidental properties are encoded much more than metric properties by neurons. Moreover, it is shown how with the temporal trace rule training in VisNet, non-accidental properties of objects become encoded by neurons, and how metric properties are treated invariantly. We also show how VisNet can generalize between different objects if they have the same non-accidental property, because the metric properties are likely to overlap. VisNet is a 4-layer unsupervised model of visual object recognition trained by competitive learning that utilizes a temporal trace learning rule to implement the learning of invariance using views that occur close together in time. A second crucial property of this model of object recognition is, when neurons in the level corresponding to the inferior temporal visual cortex respond selectively to objects, whether neurons in the intermediate layers can respond to combinations of features that may be parts of two or more objects. In an investigation using the four sides of a square presented in every possible combination, it was shown that even though different layer 4 neurons are tuned to encode each feature or feature combination orthogonally, neurons in the intermediate layers can respond to features or feature combinations present is several objects. This property is an important part of the way in which high capacity can be achieved in the four-layer ventral visual cortical pathway. These findings concerning non-accidental properties and the use of neurons in intermediate layers of the hierarchy help to emphasise fundamental underlying principles of the computations that may be implemented in the ventral cortical visual stream used in object recognition. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Nelson, Charles A.; Horowitz, Frances Degen
1983-01-01
Holograms of faces were used to study two- and five-month-old infants' discriminations of changes in facial expression and pose when the stimulus was seen to move or to remain stationary. While no evidence was found suggesting that infants preferred the moving face, evidence indicated that motion contrasts facilitate face recognition. (Author/RH)
Sensor agnostic object recognition using a map seeking circuit
NASA Astrophysics Data System (ADS)
Overman, Timothy L.; Hart, Michael
2012-05-01
Automatic object recognition capabilities are traditionally tuned to exploit the specific sensing modality they were designed to. Their successes (and shortcomings) are tied to object segmentation from the background, they typically require highly skilled personnel to train them, and they become cumbersome with the introduction of new objects. In this paper we describe a sensor independent algorithm based on the biologically inspired technology of map seeking circuits (MSC) which overcomes many of these obstacles. In particular, the MSC concept offers transparency in object recognition from a common interface to all sensor types, analogous to a USB device. It also provides a common core framework that is independent of the sensor and expandable to support high dimensionality decision spaces. Ease in training is assured by using commercially available 3D models from the video game community. The search time remains linear no matter how many objects are introduced, ensuring rapid object recognition. Here, we report results of an MSC algorithm applied to object recognition and pose estimation from high range resolution radar (1D), electrooptical imagery (2D), and LIDAR point clouds (3D) separately. By abstracting the sensor phenomenology from the underlying a prior knowledge base, MSC shows promise as an easily adaptable tool for incorporating additional sensor inputs.
Calderone, Daniel J.; Hoptman, Matthew J.; Martínez, Antígona; Nair-Collins, Sangeeta; Mauro, Cristina J.; Bar, Moshe; Javitt, Daniel C.; Butler, Pamela D.
2013-01-01
Patients with schizophrenia exhibit cognitive and sensory impairment, and object recognition deficits have been linked to sensory deficits. The “frame and fill” model of object recognition posits that low spatial frequency (LSF) information rapidly reaches the prefrontal cortex (PFC) and creates a general shape of an object that feeds back to the ventral temporal cortex to assist object recognition. Visual dysfunction findings in schizophrenia suggest a preferential loss of LSF information. This study used functional magnetic resonance imaging (fMRI) and resting state functional connectivity (RSFC) to investigate the contribution of visual deficits to impaired object “framing” circuitry in schizophrenia. Participants were shown object stimuli that were intact or contained only LSF or high spatial frequency (HSF) information. For controls, fMRI revealed preferential activation to LSF information in precuneus, superior temporal, and medial and dorsolateral PFC areas, whereas patients showed a preference for HSF information or no preference. RSFC revealed a lack of connectivity between early visual areas and PFC for patients. These results demonstrate impaired processing of LSF information during object recognition in schizophrenia, with patients instead displaying increased processing of HSF information. This is consistent with findings of a preference for local over global visual information in schizophrenia. PMID:22735157
Identifiable piezoelectric security system design
NASA Astrophysics Data System (ADS)
Li, Zhenyu; Zhang, Xiaoming
2017-10-01
Directing at the disadvantages of low environmental suitability, inferior anti-interference ability and being easy to be found and destroyed in existing security product, a kind of identifiable piezoelectric security system based on piezoelectric cable is designed. The present system gathers vibration signals of different moving bodies, such as human, vehicles, animals and so on, with piezoelectric cable buried under -ground and distinguishes the different moving bodies through recognition algorithm and thus giving an alarm. As is shown in experiments, the present system has the features of good concealment and high accuracy in distinguishing moving bodies.
Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control
Feliu-Batlle, Vicente; Feliu-Talegon, Daniel; Castillo-Berrio, Claudia Fernanda
2017-01-01
Some insects or mammals use antennae or whiskers to detect by the sense of touch obstacles or recognize objects in environments in which other senses like vision cannot work. Artificial flexible antennae can be used in robotics to mimic this sense of touch in these recognition tasks. We have designed and built a two-degree of freedom (2DOF) flexible antenna sensor device to perform robot navigation tasks. This device is composed of a flexible beam, two servomotors that drive the beam and a load cell sensor that detects the contact of the beam with an object. It is found that the efficiency of such a device strongly depends on the speed and accuracy achieved by the antenna positioning system. These issues are severely impaired by the vibrations that appear in the antenna during its movement. However, these antennae are usually moved without taking care of these undesired vibrations. This article proposes a new closed-loop control schema that cancels vibrations and improves the free movements of the antenna. Moreover, algorithms to estimate the 3D beam position and the instant and point of contact with an object are proposed. Experiments are reported that illustrate the efficiency of these proposed algorithms and the improvements achieved in object detection tasks using a control system that cancels beam vibrations. PMID:28406449
Improved Object Detection Using a Robotic Sensing Antenna with Vibration Damping Control.
Feliu-Batlle, Vicente; Feliu-Talegon, Daniel; Castillo-Berrio, Claudia Fernanda
2017-04-13
Some insects or mammals use antennae or whiskers to detect by the sense of touch obstacles or recognize objects in environments in which other senses like vision cannot work. Artificial flexible antennae can be used in robotics to mimic this sense of touch in these recognition tasks. We have designed and built a two-degree of freedom (2DOF) flexible antenna sensor device to perform robot navigation tasks. This device is composed of a flexible beam, two servomotors that drive the beam and a load cell sensor that detects the contact of the beam with an object. It is found that the efficiency of such a device strongly depends on the speed and accuracy achieved by the antenna positioning system. These issues are severely impaired by the vibrations that appear in the antenna during its movement. However, these antennae are usually moved without taking care of these undesired vibrations. This article proposes a new closed-loop control schema that cancels vibrations and improves the free movements of the antenna. Moreover, algorithms to estimate the 3D beam position and the instant and point of contact with an object are proposed. Experiments are reported that illustrate the efficiency of these proposed algorithms and the improvements achieved in object detection tasks using a control system that cancels beam vibrations.
ERIC Educational Resources Information Center
Richler, Jennifer J.; Gauthier, Isabel; Palmeri, Thomas J.
2011-01-01
Are there consequences of calling objects by their names? Lupyan (2008) suggested that overtly labeling objects impairs subsequent recognition memory because labeling shifts stored memory representations of objects toward the category prototype (representational shift hypothesis). In Experiment 1, we show that processing objects at the basic…
Contini, Erika W; Wardle, Susan G; Carlson, Thomas A
2017-10-01
Visual object recognition is a complex, dynamic process. Multivariate pattern analysis methods, such as decoding, have begun to reveal how the brain processes complex visual information. Recently, temporal decoding methods for EEG and MEG have offered the potential to evaluate the temporal dynamics of object recognition. Here we review the contribution of M/EEG time-series decoding methods to understanding visual object recognition in the human brain. Consistent with the current understanding of the visual processing hierarchy, low-level visual features dominate decodable object representations early in the time-course, with more abstract representations related to object category emerging later. A key finding is that the time-course of object processing is highly dynamic and rapidly evolving, with limited temporal generalisation of decodable information. Several studies have examined the emergence of object category structure, and we consider to what degree category decoding can be explained by sensitivity to low-level visual features. Finally, we evaluate recent work attempting to link human behaviour to the neural time-course of object processing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Markman, Adam; Shen, Xin; Hua, Hong; Javidi, Bahram
2016-01-15
An augmented reality (AR) smartglass display combines real-world scenes with digital information enabling the rapid growth of AR-based applications. We present an augmented reality-based approach for three-dimensional (3D) optical visualization and object recognition using axially distributed sensing (ADS). For object recognition, the 3D scene is reconstructed, and feature extraction is performed by calculating the histogram of oriented gradients (HOG) of a sliding window. A support vector machine (SVM) is then used for classification. Once an object has been identified, the 3D reconstructed scene with the detected object is optically displayed in the smartglasses allowing the user to see the object, remove partial occlusions of the object, and provide critical information about the object such as 3D coordinates, which are not possible with conventional AR devices. To the best of our knowledge, this is the first report on combining axially distributed sensing with 3D object visualization and recognition for applications to augmented reality. The proposed approach can have benefits for many applications, including medical, military, transportation, and manufacturing.
Formal implementation of a performance evaluation model for the face recognition system.
Shin, Yong-Nyuo; Kim, Jason; Lee, Yong-Jun; Shin, Woochang; Choi, Jin-Young
2008-01-01
Due to usability features, practical applications, and its lack of intrusiveness, face recognition technology, based on information, derived from individuals' facial features, has been attracting considerable attention recently. Reported recognition rates of commercialized face recognition systems cannot be admitted as official recognition rates, as they are based on assumptions that are beneficial to the specific system and face database. Therefore, performance evaluation methods and tools are necessary to objectively measure the accuracy and performance of any face recognition system. In this paper, we propose and formalize a performance evaluation model for the biometric recognition system, implementing an evaluation tool for face recognition systems based on the proposed model. Furthermore, we performed evaluations objectively by providing guidelines for the design and implementation of a performance evaluation system, formalizing the performance test process.
Recognition vs Reverse Engineering in Boolean Concepts Learning
ERIC Educational Resources Information Center
Shafat, Gabriel; Levin, Ilya
2012-01-01
This paper deals with two types of logical problems--recognition problems and reverse engineering problems, and with the interrelations between these types of problems. The recognition problems are modeled in the form of a visual representation of various objects in a common pattern, with a composition of represented objects in the pattern.…
Incidents Prediction in Road Junctions Using Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Hajji, Tarik; Alami Hassani, Aicha; Ouazzani Jamil, Mohammed
2018-05-01
The implementation of an incident detection system (IDS) is an indispensable operation in the analysis of the road traffics. However the IDS may, in no case, represent an alternative to the classical monitoring system controlled by the human eye. The aim of this work is to increase detection and prediction probability of incidents in camera-monitored areas. Knowing that, these areas are monitored by multiple cameras and few supervisors. Our solution is to use Artificial Neural Networks (ANN) to analyze moving objects trajectories on captured images. We first propose a modelling of the trajectories and their characteristics, after we develop a learning database for valid and invalid trajectories, and then we carry out a comparative study to find the artificial neural network architecture that maximizes the rate of valid and invalid trajectories recognition.
Power-Efficient Beacon Recognition Method Based on Periodic Wake-Up for Industrial Wireless Devices.
Song, Soonyong; Lee, Donghun; Jang, Ingook; Choi, Jinchul; Son, Youngsung
2018-04-17
Energy harvester-integrated wireless devices are attractive for generating semi-permanent power from wasted energy in industrial environments. The energy-harvesting wireless devices may have difficulty in their communication with access points due to insufficient power supply for beacon recognition during network initialization. In this manuscript, we propose a novel method of beacon recognition based on wake-up control to reduce instantaneous power consumption in the initialization procedure. The proposed method applies a moving window for the periodic wake-up of the wireless devices. For unsynchronized wireless devices, beacons are always located in the same positions within each beacon interval even though the starting offsets are unknown. Using these characteristics, the moving window checks the existence of the beacon associated withspecified resources in a beacon interval, checks again for neighboring resources at the next beacon interval, and so on. This method can reduce instantaneous power and generates a surplus of charging time. Thus, the proposed method alleviates the problems of power insufficiency in the network initialization. The feasibility of the proposed method is evaluated using computer simulations of power shortage in various energy-harvesting conditions.
Mijatović, Antonija; La Scaleia, Barbara; Mercuri, Nicola; Lacquaniti, Francesco; Zago, Myrka
2014-12-01
Familiarity with the visual environment affects our expectations about the objects in a scene, aiding in recognition and interaction. Here we tested whether the familiarity with the specific trajectory followed by a moving target facilitates the interpretation of the effects of underlying physical forces. Participants intercepted a target sliding down either an inclined plane or a tautochrone. Gravity accelerated the target by the same amount in both cases, but the inclined plane represented a familiar trajectory whereas the tautochrone was unfamiliar to the participants. In separate sessions, the gravity field was consistent with either natural gravity or artificial reversed gravity. Target motion was occluded from view over the last segment. We found that the responses in the session with unnatural forces were systematically delayed relative to those with natural forces, but only for the inclined plane. The time shift is consistent with a bias for natural gravity, in so far as it reflects an a priori expectation that a target not affected by natural forces will arrive later than one accelerated downwards by gravity. Instead, we did not find any significant time shift with unnatural forces in the case of the tautochrone. We argue that interception of a moving target relies on the integration of the high-level cue of trajectory familiarity with low-level cues related to target kinematics.
Ball-scale based hierarchical multi-object recognition in 3D medical images
NASA Astrophysics Data System (ADS)
Bağci, Ulas; Udupa, Jayaram K.; Chen, Xinjian
2010-03-01
This paper investigates, using prior shape models and the concept of ball scale (b-scale), ways of automatically recognizing objects in 3D images without performing elaborate searches or optimization. That is, the goal is to place the model in a single shot close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. This is achieved via the following set of key ideas: (a) A semi-automatic way of constructing a multi-object shape model assembly. (b) A novel strategy of encoding, via b-scale, the pose relationship between objects in the training images and their intensity patterns captured in b-scale images. (c) A hierarchical mechanism of positioning the model, in a one-shot way, in a given image from a knowledge of the learnt pose relationship and the b-scale image of the given image to be segmented. The evaluation results on a set of 20 routine clinical abdominal female and male CT data sets indicate the following: (1) Incorporating a large number of objects improves the recognition accuracy dramatically. (2) The recognition algorithm can be thought as a hierarchical framework such that quick replacement of the model assembly is defined as coarse recognition and delineation itself is known as finest recognition. (3) Scale yields useful information about the relationship between the model assembly and any given image such that the recognition results in a placement of the model close to the actual pose without doing any elaborate searches or optimization. (4) Effective object recognition can make delineation most accurate.
Critical object recognition in millimeter-wave images with robustness to rotation and scale.
Mohammadzade, Hoda; Ghojogh, Benyamin; Faezi, Sina; Shabany, Mahdi
2017-06-01
Locating critical objects is crucial in various security applications and industries. For example, in security applications, such as in airports, these objects might be hidden or covered under shields or secret sheaths. Millimeter-wave images can be utilized to discover and recognize the critical objects out of the hidden cases without any health risk due to their non-ionizing features. However, millimeter-wave images usually have waves in and around the detected objects, making object recognition difficult. Thus, regular image processing and classification methods cannot be used for these images and additional pre-processings and classification methods should be introduced. This paper proposes a novel pre-processing method for canceling rotation and scale using principal component analysis. In addition, a two-layer classification method is introduced and utilized for recognition. Moreover, a large dataset of millimeter-wave images is collected and created for experiments. Experimental results show that a typical classification method such as support vector machines can recognize 45.5% of a type of critical objects at 34.2% false alarm rate (FAR), which is a drastically poor recognition. The same method within the proposed recognition framework achieves 92.9% recognition rate at 0.43% FAR, which indicates a highly significant improvement. The significant contribution of this work is to introduce a new method for analyzing millimeter-wave images based on machine vision and learning approaches, which is not yet widely noted in the field of millimeter-wave image analysis.
Integration trumps selection in object recognition.
Saarela, Toni P; Landy, Michael S
2015-03-30
Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several "cues" (color, luminance, texture, etc.), and humans can integrate sensory cues to improve detection and recognition [1-3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue invariance by responding to a given shape independent of the visual cue defining it [5-8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10, 11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11, 12], imaging [13-16], and single-cell and neural population recordings [17, 18]. Besides single features, attention can select whole objects [19-21]. Objects are among the suggested "units" of attention because attention to a single feature of an object causes the selection of all of its features [19-21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Integration trumps selection in object recognition
Saarela, Toni P.; Landy, Michael S.
2015-01-01
Summary Finding and recognizing objects is a fundamental task of vision. Objects can be defined by several “cues” (color, luminance, texture etc.), and humans can integrate sensory cues to improve detection and recognition [1–3]. Cortical mechanisms fuse information from multiple cues [4], and shape-selective neural mechanisms can display cue-invariance by responding to a given shape independent of the visual cue defining it [5–8]. Selective attention, in contrast, improves recognition by isolating a subset of the visual information [9]. Humans can select single features (red or vertical) within a perceptual dimension (color or orientation), giving faster and more accurate responses to items having the attended feature [10,11]. Attention elevates neural responses and sharpens neural tuning to the attended feature, as shown by studies in psychophysics and modeling [11,12], imaging [13–16], and single-cell and neural population recordings [17,18]. Besides single features, attention can select whole objects [19–21]. Objects are among the suggested “units” of attention because attention to a single feature of an object causes the selection of all of its features [19–21]. Here, we pit integration against attentional selection in object recognition. We find, first, that humans can integrate information near-optimally from several perceptual dimensions (color, texture, luminance) to improve recognition. They cannot, however, isolate a single dimension even when the other dimensions provide task-irrelevant, potentially conflicting information. For object recognition, it appears that there is mandatory integration of information from multiple dimensions of visual experience. The advantage afforded by this integration, however, comes at the expense of attentional selection. PMID:25802154
ERIC Educational Resources Information Center
Acres, K.; Taylor, K. I.; Moss, H. E.; Stamatakis, E. A.; Tyler, L. K.
2009-01-01
Cognitive neuroscientific research proposes complementary hemispheric asymmetries in naming and recognising visual objects, with a left temporal lobe advantage for object naming and a right temporal lobe advantage for object recognition. Specifically, it has been proposed that the left inferior temporal lobe plays a mediational role linking…
Priming Contour-Deleted Images: Evidence for Immediate Representations in Visual Object Recognition.
ERIC Educational Resources Information Center
Biederman, Irving; Cooper, Eric E.
1991-01-01
Speed and accuracy of identification of pictures of objects are facilitated by prior viewing. Contributions of image features, convex or concave components, and object models in a repetition priming task were explored in 2 studies involving 96 college students. Results provide evidence of intermediate representations in visual object recognition.…
Electrophysiological evidence for effects of color knowledge in object recognition.
Lu, Aitao; Xu, Guiping; Jin, Hua; Mo, Lei; Zhang, Jijia; Zhang, John X
2010-01-29
Knowledge about the typical colors associated with familiar everyday objects (i.e., strawberries are red) is well-known to be represented in the conceptual semantic system. Evidence that such knowledge may also play a role in early perceptual processes for object recognition is scant. In the present ERP study, participants viewed a list of object pictures and detected infrequent stimulus repetitions. Results show that shortly after stimulus onset, ERP components indexing early perceptual processes, including N1, P2, and N2, differentiated between objects in their appropriate or congruent color from these objects in an inappropriate or incongruent color. Such congruence effect also occurred in N3 associated with semantic processing of pictures but not in N4 for domain-general semantic processing. Our results demonstrate a clear effect of color knowledge in early object recognition stages and support the following proposal-color as a surface property is stored in a multiple-memory system where pre-semantic perceptual and semantic conceptual representations interact during object recognition. (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Coding of visual object features and feature conjunctions in the human brain.
Martinovic, Jasna; Gruber, Thomas; Müller, Matthias M
2008-01-01
Object recognition is achieved through neural mechanisms reliant on the activity of distributed coordinated neural assemblies. In the initial steps of this process, an object's features are thought to be coded very rapidly in distinct neural assemblies. These features play different functional roles in the recognition process--while colour facilitates recognition, additional contours and edges delay it. Here, we selectively varied the amount and role of object features in an entry-level categorization paradigm and related them to the electrical activity of the human brain. We found that early synchronizations (approx. 100 ms) increased quantitatively when more image features had to be coded, without reflecting their qualitative contribution to the recognition process. Later activity (approx. 200-400 ms) was modulated by the representational role of object features. These findings demonstrate that although early synchronizations may be sufficient for relatively crude discrimination of objects in visual scenes, they cannot support entry-level categorization. This was subserved by later processes of object model selection, which utilized the representational value of object features such as colour or edges to select the appropriate model and achieve identification.
Gerasimenko, N Iu; Slavutskaia, A V; Kalinin, S A; Kulikov, M A; Mikhaĭlova, E S
2013-01-01
In 38 healthy subjects accuracy and response time were examined during recognition of two categories of images--animals andnonliving objects--under forward masking. We revealed new data that masking effects depended of categorical similarity of target and masking stimuli. The recognition accuracy was the lowest and the response time was the most slow, when the target and masking stimuli belongs to the same category, that was combined with high dispersion of response times. The revealed effects were more clear in the task of animal recognition in comparison with the recognition of nonliving objects. We supposed that the revealed effects connected with interference between cortical representations of the target and masking stimuli and discussed our results in context of cortical interference and negative priming.
Multi-resolution analysis for ear recognition using wavelet features
NASA Astrophysics Data System (ADS)
Shoaib, M.; Basit, A.; Faye, I.
2016-11-01
Security is very important and in order to avoid any physical contact, identification of human when they are moving is necessary. Ear biometric is one of the methods by which a person can be identified using surveillance cameras. Various techniques have been proposed to increase the ear based recognition systems. In this work, a feature extraction method for human ear recognition based on wavelet transforms is proposed. The proposed features are approximation coefficients and specific details of level two after applying various types of wavelet transforms. Different wavelet transforms are applied to find the suitable wavelet. Minimum Euclidean distance is used as a matching criterion. Results achieved by the proposed method are promising and can be used in real time ear recognition system.
Track Everything: Limiting Prior Knowledge in Online Multi-Object Recognition.
Wong, Sebastien C; Stamatescu, Victor; Gatt, Adam; Kearney, David; Lee, Ivan; McDonnell, Mark D
2017-10-01
This paper addresses the problem of online tracking and classification of multiple objects in an image sequence. Our proposed solution is to first track all objects in the scene without relying on object-specific prior knowledge, which in other systems can take the form of hand-crafted features or user-based track initialization. We then classify the tracked objects with a fast-learning image classifier, that is based on a shallow convolutional neural network architecture and demonstrate that object recognition improves when this is combined with object state information from the tracking algorithm. We argue that by transferring the use of prior knowledge from the detection and tracking stages to the classification stage, we can design a robust, general purpose object recognition system with the ability to detect and track a variety of object types. We describe our biologically inspired implementation, which adaptively learns the shape and motion of tracked objects, and apply it to the Neovision2 Tower benchmark data set, which contains multiple object types. An experimental evaluation demonstrates that our approach is competitive with the state-of-the-art video object recognition systems that do make use of object-specific prior knowledge in detection and tracking, while providing additional practical advantages by virtue of its generality.
An interactive VR system based on full-body tracking and gesture recognition
NASA Astrophysics Data System (ADS)
Zeng, Xia; Sang, Xinzhu; Chen, Duo; Wang, Peng; Guo, Nan; Yan, Binbin; Wang, Kuiru
2016-10-01
Most current virtual reality (VR) interactions are realized with the hand-held input device which leads to a low degree of presence. There is other solutions using sensors like Leap Motion to recognize the gestures of users in order to interact in a more natural way, but the navigation in these systems is still a problem, because they fail to map the actual walking to virtual walking only with a partial body of the user represented in the synthetic environment. Therefore, we propose a system in which users can walk around in the virtual environment as a humanoid model, selecting menu items and manipulating with the virtual objects using natural hand gestures. With a Kinect depth camera, the system tracks the joints of the user, mapping them to a full virtual body which follows the move of the tracked user. The movements of the feet can be detected to determine whether the user is in walking state, so that the walking of model in the virtual world can be activated and stopped by means of animation control in Unity engine. This method frees the hands of users comparing to traditional navigation way using hand-held device. We use the point cloud data getting from Kinect depth camera to recognize the gestures of users, such as swiping, pressing and manipulating virtual objects. Combining the full body tracking and gestures recognition using Kinect, we achieve our interactive VR system in Unity engine with a high degree of presence.
Harris, Jill D; Cutmore, Tim R H; O'Gorman, John; Finnigan, Simon; Shum, David
2009-02-01
The aim of this study was to identify ERP correlates of perceptual object priming that are insensitive to factors affecting explicit, episodic memory. EEG was recorded from 21 participants while they performed a visual object recognition test on a combination of unstudied items and old items that were previously encountered during either a 'deep' or 'shallow' levels-of-processing (LOP) study task. The results demonstrated a midline P150 old/new effect which was sensitive only to objects' old/new status and not to the accuracy of recognition responses to old items, or to the LOP manipulation. Similar outcomes were observed for the subsequent P200 and N400 effects, the former of which had a parietal scalp maximum and the latter, a broadly distributed topography. In addition an LPC old/new effect typical of those reported in past ERP recognition studies was observed. These outcomes support the proposal that the P150 effect is reflective of perceptual object priming and moreover, provide novel evidence that this and the P200 effect are independent of explicit recognition memory process(es).
Dokka, Kalpana; DeAngelis, Gregory C.
2015-01-01
Humans and animals are fairly accurate in judging their direction of self-motion (i.e., heading) from optic flow when moving through a stationary environment. However, an object moving independently in the world alters the optic flow field and may bias heading perception if the visual system cannot dissociate object motion from self-motion. We investigated whether adding vestibular self-motion signals to optic flow enhances the accuracy of heading judgments in the presence of a moving object. Macaque monkeys were trained to report their heading (leftward or rightward relative to straight-forward) when self-motion was specified by vestibular, visual, or combined visual-vestibular signals, while viewing a display in which an object moved independently in the (virtual) world. The moving object induced significant biases in perceived heading when self-motion was signaled by either visual or vestibular cues alone. However, this bias was greatly reduced when visual and vestibular cues together signaled self-motion. In addition, multisensory heading discrimination thresholds measured in the presence of a moving object were largely consistent with the predictions of an optimal cue integration strategy. These findings demonstrate that multisensory cues facilitate the perceptual dissociation of self-motion and object motion, consistent with computational work that suggests that an appropriate decoding of multisensory visual-vestibular neurons can estimate heading while discounting the effects of object motion. SIGNIFICANCE STATEMENT Objects that move independently in the world alter the optic flow field and can induce errors in perceiving the direction of self-motion (heading). We show that adding vestibular (inertial) self-motion signals to optic flow almost completely eliminates the errors in perceived heading induced by an independently moving object. Furthermore, this increased accuracy occurs without a substantial loss in the precision. Our results thus demonstrate that vestibular signals play a critical role in dissociating self-motion from object motion. PMID:26446214
GEBR-7b, a novel PDE4D selective inhibitor that improves memory in rodents at non-emetic doses.
Bruno, O; Fedele, E; Prickaerts, J; Parker, L A; Canepa, E; Brullo, C; Cavallero, A; Gardella, E; Balbi, A; Domenicotti, C; Bollen, E; Gijselaers, H J M; Vanmierlo, T; Erb, K; Limebeer, C L; Argellati, F; Marinari, U M; Pronzato, M A; Ricciarelli, R
2011-12-01
Strategies designed to enhance cerebral cAMP have been proposed as symptomatic treatments to counteract cognitive deficits. However, pharmacological therapies aimed at reducing PDE4, the main class of cAMP catabolizing enzymes in the brain, produce severe emetic side effects. We have recently synthesized a 3-cyclopentyloxy-4-methoxybenzaldehyde derivative, structurally related to rolipram, and endowed with selective PDE4D inhibitory activity. The aim of the present study was to investigate the effect of the new drug, namely GEBR-7b, on memory performance, nausea, hippocampal cAMP and amyloid-β (Aβ) levels. To measure memory performance, we performed object recognition tests on rats and mice treated with GEBR-7b or rolipram. The emetic potential of the drug, again compared with rolipram, was evaluated in rats using the taste reactivity test and in mice using the xylazine/ketamine anaesthesia test. Extracellular hippocampal cAMP was evaluated by intracerebral microdialysis in freely moving rats. Levels of soluble Aβ peptides were measured in hippocampal tissues and cultured N2a cells by elisa. GEBR-7b increased hippocampal cAMP, did not influence Aβ levels and improved spatial, as well as object memory performance in the object recognition tests. The effect of GEBR-7b on memory was 3 to 10 times more potent than that of rolipram, and its effective doses had no effect on surrogate measures of emesis in rodents. Our results demonstrate that GEBR-7b enhances memory functions at doses that do not cause emesis-like behaviour in rodents, thus offering a promising pharmacological perspective for the treatment of memory impairment. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
A validated set of tool pictures with matched objects and non-objects for laterality research.
Verma, Ark; Brysbaert, Marc
2015-01-01
Neuropsychological and neuroimaging research has established that knowledge related to tool use and tool recognition is lateralized to the left cerebral hemisphere. Recently, behavioural studies with the visual half-field technique have confirmed the lateralization. A limitation of this research was that different sets of stimuli had to be used for the comparison of tools to other objects and objects to non-objects. Therefore, we developed a new set of stimuli containing matched triplets of tools, other objects and non-objects. With the new stimulus set, we successfully replicated the findings of no visual field advantage for objects in an object recognition task combined with a significant right visual field advantage for tools in a tool recognition task. The set of stimuli is available as supplemental data to this article.
2011-05-04
Nations General Assembly. China looks to secure the support and votes of these African states to help influence international politics moving forward. 1S...support and votes of th~se African states to help influence international politics moving forward. . . Conclusion: China’s declaration of their... international focus with the recognition of a new advei·sary. The attack on the World Trade Center brought telTorism to the forefront of the natiohal security
NASA Astrophysics Data System (ADS)
Watanabe, Eriko; Ishikawa, Mami; Ohta, Maiko; Murakami, Yasuo; Kodate, Kashiko
2006-01-01
Medical errors and patient safety have always received a great deal of attention, as they can be critically life-threatening and significant matters. Hospitals and medical personnel are trying their utmost to avoid these errors. Currently in the medical field, patients' record is identified through their PIN numbers and ID cards. However, for patients who cannot speak or move, or who suffer from memory disturbances, alternative methods would be more desirable, and necessary in some cases. The authors previously proposed and fabricated a specially-designed correlator called FARCO (Fast Face Recognition Optical Correlator) based on the Vanderlugt Correlator1, which operates at the speed of 1000 faces/s 2,3,4. Combined with high-speed display devices, the four-channel processing could achieve such high operational speed as 4000 faces/s. Running trial experiments on a 1-to-N identification basis using the optical parallel correlator, we succeeded in acquiring low error rates of 1 % FMR and 2.3 % FNMR. In this paper, we propose a robust face recognition system using the FARCO for focusing on the safety and security of the medical field. We apply our face recognition system to registration of inpatients, in particular children and infants, before and after medical treatments or operations. The proposed system has recorded a higher recognition rate by multiplexing both input and database facial images from moving images. The system was also tested and evaluated for further practical use, leaving excellent results. Hence, our face recognition system could function effectively as an integral part of medical system, meeting these essential requirements of safety, security and privacy.
2016-08-01
AWARD NUMBER: W81XWH-15-2-0030 TITLE: Robotic Surgery Readiness (RSR): A Prospective Randomized Skills Decay Recognition and Prevention Study...20164. TITLE AND SUBTITLE Robotic Surgery Readiness (RSR): A Prospective Randomized Skills Decay 5a. CONTRACT NUMBER R ognition and Prevention Study...be recruited and many have completed the proficiency phase of this project and will be moving on to AIM 1. 15. SUBJECT TERMS Robotic Surgery
ERIC Educational Resources Information Center
Wolk, D.A.; Coslett, H.B.; Glosser, G.
2005-01-01
The role of sensory-motor representations in object recognition was investigated in experiments involving AD, a patient with mild visual agnosia who was impaired in the recognition of visually presented living as compared to non-living entities. AD named visually presented items for which sensory-motor information was available significantly more…
Use of Authentic-Speech Technique for Teaching Sound Recognition to EFL Students
ERIC Educational Resources Information Center
Sersen, William J.
2011-01-01
The main objective of this research was to test an authentic-speech technique for improving the sound-recognition skills of EFL (English as a foreign language) students at Roi-Et Rajabhat University. The secondary objective was to determine the correlation, if any, between students' self-evaluation of sound-recognition progress and the actual…
ERIC Educational Resources Information Center
Damonte, Kathleen
2004-01-01
One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…
Binary optical filters for scale invariant pattern recognition
NASA Technical Reports Server (NTRS)
Reid, Max B.; Downie, John D.; Hine, Butler P.
1992-01-01
Binary synthetic discriminant function (BSDF) optical filters which are invariant to scale changes in the target object of more than 50 percent are demonstrated in simulation and experiment. Efficient databases of scale invariant BSDF filters can be designed which discriminate between two very similar objects at any view scaled over a factor of 2 or more. The BSDF technique has considerable advantages over other methods for achieving scale invariant object recognition, as it also allows determination of the object's scale. In addition to scale, the technique can be used to design recognition systems invariant to other geometric distortions.
Combining color and shape information for illumination-viewpoint invariant object recognition.
Diplaros, Aristeidis; Gevers, Theo; Patras, Ioannis
2006-01-01
In this paper, we propose a new scheme that merges color- and shape-invariant information for object recognition. To obtain robustness against photometric changes, color-invariant derivatives are computed first. Color invariance is an important aspect of any object recognition scheme, as color changes considerably with the variation in illumination, object pose, and camera viewpoint. These color invariant derivatives are then used to obtain similarity invariant shape descriptors. Shape invariance is equally important as, under a change in camera viewpoint and object pose, the shape of a rigid object undergoes a perspective projection on the image plane. Then, the color and shape invariants are combined in a multidimensional color-shape context which is subsequently used as an index. As the indexing scheme makes use of a color-shape invariant context, it provides a high-discriminative information cue robust against varying imaging conditions. The matching function of the color-shape context allows for fast recognition, even in the presence of object occlusion and cluttering. From the experimental results, it is shown that the method recognizes rigid objects with high accuracy in 3-D complex scenes and is robust against changing illumination, camera viewpoint, object pose, and noise.
Eye Movements to Pictures Reveal Transient Semantic Activation during Spoken Word Recognition
ERIC Educational Resources Information Center
Yee, Eiling; Sedivy, Julie C.
2006-01-01
Two experiments explore the activation of semantic information during spoken word recognition. Experiment 1 shows that as the name of an object unfolds (e.g., lock), eye movements are drawn to pictorial representations of both the named object and semantically related objects (e.g., key). Experiment 2 shows that objects semantically related to an…
It's all connected: Pathways in visual object recognition and early noun learning.
Smith, Linda B
2013-11-01
A developmental pathway may be defined as the route, or chain of events, through which a new structure or function forms. For many human behaviors, including object name learning and visual object recognition, these pathways are often complex and multicausal and include unexpected dependencies. This article presents three principles of development that suggest the value of a developmental psychology that explicitly seeks to trace these pathways and uses empirical evidence on developmental dependencies among motor development, action on objects, visual object recognition, and object name learning in 12- to 24-month-old infants to make the case. The article concludes with a consideration of the theoretical implications of this approach. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Development of a sonar-based object recognition system
NASA Astrophysics Data System (ADS)
Ecemis, Mustafa Ihsan
2001-02-01
Sonars are used extensively in mobile robotics for obstacle detection, ranging and avoidance. However, these range-finding applications do not exploit the full range of information carried in sonar echoes. In addition, mobile robots need robust object recognition systems. Therefore, a simple and robust object recognition system using ultrasonic sensors may have a wide range of applications in robotics. This dissertation develops and analyzes an object recognition system that uses ultrasonic sensors of the type commonly found on mobile robots. Three principal experiments are used to test the sonar recognition system: object recognition at various distances, object recognition during unconstrained motion, and softness discrimination. The hardware setup, consisting of an inexpensive Polaroid sonar and a data acquisition board, is described first. The software for ultrasound signal generation, echo detection, data collection, and data processing is then presented. Next, the dissertation describes two methods to extract information from the echoes, one in the frequency domain and the other in the time domain. The system uses the fuzzy ARTMAP neural network to recognize objects on the basis of the information content of their echoes. In order to demonstrate that the performance of the system does not depend on the specific classification method being used, the K- Nearest Neighbors (KNN) Algorithm is also implemented. KNN yields a test accuracy similar to fuzzy ARTMAP in all experiments. Finally, the dissertation describes a method for extracting features from the envelope function in order to reduce the dimension of the input vector used by the classifiers. Decreasing the size of the input vectors reduces the memory requirements of the system and makes it run faster. It is shown that this method does not affect the performance of the system dramatically and is more appropriate for some tasks. The results of these experiments demonstrate that sonar can be used to develop a low-cost, low-computation system for real-time object recognition tasks on mobile robots. This system differs from all previous approaches in that it is relatively simple, robust, fast, and inexpensive.
The roles of perceptual and conceptual information in face recognition.
Schwartz, Linoy; Yovel, Galit
2016-11-01
The representation of familiar objects is comprised of perceptual information about their visual properties as well as the conceptual knowledge that we have about them. What is the relative contribution of perceptual and conceptual information to object recognition? Here, we examined this question by designing a face familiarization protocol during which participants were either exposed to rich perceptual information (viewing each face in different angles and illuminations) or with conceptual information (associating each face with a different name). Both conditions were compared with single-view faces presented with no labels. Recognition was tested on new images of the same identities to assess whether learning generated a view-invariant representation. Results showed better recognition of novel images of the learned identities following association of a face with a name label, but no enhancement following exposure to multiple face views. Whereas these findings may be consistent with the role of category learning in object recognition, face recognition was better for labeled faces only when faces were associated with person-related labels (name, occupation), but not with person-unrelated labels (object names or symbols). These findings suggest that association of meaningful conceptual information with an image shifts its representation from an image-based percept to a view-invariant concept. They further indicate that the role of conceptual information should be considered to account for the superior recognition that we have for familiar faces and objects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Acoustic data transmission through a drill string
Drumheller, D.S.
1988-04-21
Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.
Progestogens’ effects and mechanisms for object recognition memory across the lifespan
Walf, Alicia A.; Koonce, Carolyn J.; Frye, Cheryl A.
2016-01-01
This review explores the effects of female reproductive hormones, estrogens and progestogens, with a focus on progesterone and allopregnanolone, on object memory. Progesterone and its metabolites, in particular allopregnanolone, exert various effects on both cognitive and non-mnemonic functions in females. The well-known object recognition task is a valuable experimental paradigm that can be used to determine the effects and mechanisms of progestogens for mnemonic effects across the lifespan, which will be discussed herein. In this task there is little test-decay when different objects are used as targets and baseline valance for objects is controlled. This allows repeated testing, within-subjects designs, and longitudinal assessments, which aid understanding of changes in hormonal milieu. Objects are not aversive or food-based, which are hormone-sensitive factors. This review focuses on published data from our laboratory, and others, using the object recognition task in rodents to assess the role and mechanisms of progestogens throughout the lifespan. Improvements in object recognition performance of rodents are often associated with higher hormone levels in the hippocampus and prefrontal cortex during natural cycles, with hormone replacement following ovariectomy in young animals, or with aging. The capacity for reversal of age- and reproductive senescence-related decline in cognitive performance, and changes in neural plasticity that may be dissociated from peripheral effects with such decline, are discussed. The focus here will be on the effects of brain-derived factors, such as the neurosteroid, allopregnanolone, and other hormones, for enhancing object recognition across the lifespan. PMID:26235328
Face Perception and Test Reliabilities in Congenital Prosopagnosia in Seven Tests
Esins, Janina; Schultz, Johannes; Stemper, Claudia; Kennerknecht, Ingo
2016-01-01
Congenital prosopagnosia, the innate impairment in recognizing faces, is a very heterogeneous disorder with different phenotypical manifestations. To investigate the nature of prosopagnosia in more detail, we tested 16 prosopagnosics and 21 controls with an extended test battery addressing various aspects of face recognition. Our results show that prosopagnosics exhibited significant impairments in several face recognition tasks: impaired holistic processing (they were tested amongst others with the Cambridge Face Memory Test (CFMT)) as well as reduced processing of configural information of faces. This test battery also revealed some new findings. While controls recognized moving faces better than static faces, prosopagnosics did not exhibit this effect. Furthermore, prosopagnosics had significantly impaired gender recognition—which is shown on a groupwise level for the first time in our study. There was no difference between groups in the automatic extraction of face identity information or in object recognition as tested with the Cambridge Car Memory Test. In addition, a methodological analysis of the tests revealed reduced reliability for holistic face processing tests in prosopagnosics. To our knowledge, this is the first study to show that prosopagnosics showed a significantly reduced reliability coefficient (Cronbach’s alpha) in the CFMT compared to the controls. We suggest that compensatory strategies employed by the prosopagnosics might be the cause for the vast variety of response patterns revealed by the reduced test reliability. This finding raises the question whether classical face tests measure the same perceptual processes in controls and prosopagnosics. PMID:27482369
Rapid detection and identification of pedestrian impacts using a distributed sensor network
NASA Astrophysics Data System (ADS)
Kim, Andrew C.; Chang, Fu-Kuo
2005-05-01
Pedestrian fatalities from automobile accidents often occur as a result of head injuries suffered from impacts with an automobile front end. Active pedestrian protection systems with proper pedestrian recognition algorithms can protect pedestrians from such head trauma. An investigation was conducted to assess the feasibility of using a network of piezoelectric sensors mounted on the front bumper beam of an automobile to discriminate between impacts with "pedestrian" and "non-pedestrian" objects. This information would be used to activate a safety device (e.g., external airbag or pop-up hood) to provide protection for the vulnerable pedestrian. An analytical foundation for the object-bumper impact problem will be presented, as well as the classical beam impact theory. The mechanical waves that propagate in the structure from an external impact contain a wealth of information about the specifics of a particular impact -- object mass, size, impact speed, etc. -- but most notably the object stiffness, which identifies the impacted object. Using the frequency content of the sensor signals, it can be shown that impacts with a "pedestrian" object of varying size, weight, and speed can be easily differentiated from impacts with other "non-pedestrian" objects. Simulation results will illustrate this phenomenon, and experimental tests will verify the results. A comprehensive series of impact tests were performed for validation, using both a stationary front bumper with a drop-pendulum impactor and a moving car with stationary impact objects. Results from both tests will be presented.
Poth, Christian H.; Schneider, Werner X.
2016-01-01
Human vision is organized in discrete processing episodes (e.g., eye fixations or task-steps). Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM), which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of 10 letters and reported as many as possible after a retention interval (whole report). Next, participants viewed a probe letter and indicated whether it had been one of the 10 letters (probe recognition). In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters) compared with non-encoded letters (non-reported letters). Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2, participants reported only one of 10 letters (partial report) and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM. PMID:27713722
Poth, Christian H; Schneider, Werner X
2016-01-01
Human vision is organized in discrete processing episodes (e.g., eye fixations or task-steps). Object information must be transmitted across episodes to enable episodic short-term recognition: recognizing whether a current object has been seen in a previous episode. We ask whether episodic short-term recognition presupposes that objects have been encoded into capacity-limited visual working memory (VWM), which retains visual information for report. Alternatively, it could rely on the activation of visual features or categories that occurs before encoding into VWM. We assessed the dependence of episodic short-term recognition on VWM by a new paradigm combining letter report and probe recognition. Participants viewed displays of 10 letters and reported as many as possible after a retention interval (whole report). Next, participants viewed a probe letter and indicated whether it had been one of the 10 letters (probe recognition). In Experiment 1, probe recognition was more accurate for letters that had been encoded into VWM (reported letters) compared with non-encoded letters (non-reported letters). Interestingly, those letters that participants reported in their whole report had been near to one another within the letter displays. This suggests that the encoding into VWM proceeded in a spatially clustered manner. In Experiment 2, participants reported only one of 10 letters (partial report) and probes either referred to this letter, to letters that had been near to it, or far from it. Probe recognition was more accurate for near than for far letters, although none of these letters had to be reported. These findings indicate that episodic short-term recognition is constrained to a small number of simultaneously presented objects that have been encoded into VWM.
Bimodal Benefits on Objective and Subjective Outcomes for Adult Cochlear Implant Users
Heo, Ji-Hye; Lee, Won-Sang
2013-01-01
Background and Objectives Given that only a few studies have focused on the bimodal benefits on objective and subjective outcomes and emphasized the importance of individual data, the present study aimed to measure the bimodal benefits on the objective and subjective outcomes for adults with cochlear implant. Subjects and Methods Fourteen listeners with bimodal devices were tested on the localization and recognition abilities using environmental sounds, 1-talker, and 2-talker speech materials. The localization ability was measured through an 8-loudspeaker array. For the recognition measures, listeners were asked to repeat the sentences or say the environmental sounds the listeners heard. As a subjective questionnaire, three domains of Korean-version of Speech, Spatial, Qualities of Hearing scale (K-SSQ) were used to explore any relationships between objective and subjective outcomes. Results Based on the group-mean data, the bimodal hearing enhanced both localization and recognition regardless of test material. However, the inter- and intra-subject variability appeared to be large across test materials for both localization and recognition abilities. Correlation analyses revealed that the relationships were not always consistent between the objective outcomes and the subjective self-reports with bimodal devices. Conclusions Overall, this study supports significant bimodal advantages on localization and recognition measures, yet the large individual variability in bimodal benefits should be considered carefully for the clinical assessment as well as counseling. The discrepant relations between objective and subjective results suggest that the bimodal benefits in traditional localization or recognition measures might not necessarily correspond to the self-reported subjective advantages in everyday listening environments. PMID:24653909
Akirav, Irit; Maroun, Mouna
2006-12-01
Once consolidated, a long-term memory item could regain susceptibility to consolidation blockers, that is, reconsolidate, upon its reactivation. Both consolidation and reconsolidation require protein synthesis, but it is not yet known how similar these processes are in terms of molecular, cellular, and neural circuit mechanisms. Whereas most previous studies focused on aversive conditioning in the amygdala and the hippocampus, here we examine the role of the ventromedial prefrontal cortex (vmPFC) in consolidation and reconsolidation of object recognition memory. Object recognition memory is the ability to discriminate the familiarity of previously encountered objects. We found that microinfusion of the protein synthesis inhibitor anisomycin or the N-methyl-D-aspartate (NMDA) receptor antagonist D,L-2-amino-5-phosphonovaleric acid (APV) into the vmPFC, immediately after training, resulted in impairment of long-term (24 h) but not short-term (3 h) recognition memory. Similarly, microinfusion of anisomycin or APV into the vmPFC immediately after reactivation of the long-term memory impaired recognition memory 24 h, but not 3 h, post-reactivation. These results indicate that both protein synthesis and NMDA receptors are required for consolidation and reconsolidation of recognition memory in the vmPFC.
Bimodal benefits on objective and subjective outcomes for adult cochlear implant users.
Heo, Ji-Hye; Lee, Jae-Hee; Lee, Won-Sang
2013-09-01
Given that only a few studies have focused on the bimodal benefits on objective and subjective outcomes and emphasized the importance of individual data, the present study aimed to measure the bimodal benefits on the objective and subjective outcomes for adults with cochlear implant. Fourteen listeners with bimodal devices were tested on the localization and recognition abilities using environmental sounds, 1-talker, and 2-talker speech materials. The localization ability was measured through an 8-loudspeaker array. For the recognition measures, listeners were asked to repeat the sentences or say the environmental sounds the listeners heard. As a subjective questionnaire, three domains of Korean-version of Speech, Spatial, Qualities of Hearing scale (K-SSQ) were used to explore any relationships between objective and subjective outcomes. Based on the group-mean data, the bimodal hearing enhanced both localization and recognition regardless of test material. However, the inter- and intra-subject variability appeared to be large across test materials for both localization and recognition abilities. Correlation analyses revealed that the relationships were not always consistent between the objective outcomes and the subjective self-reports with bimodal devices. Overall, this study supports significant bimodal advantages on localization and recognition measures, yet the large individual variability in bimodal benefits should be considered carefully for the clinical assessment as well as counseling. The discrepant relations between objective and subjective results suggest that the bimodal benefits in traditional localization or recognition measures might not necessarily correspond to the self-reported subjective advantages in everyday listening environments.
Ultra-fast Object Recognition from Few Spikes
2005-07-06
Computer Science and Artificial Intelligence Laboratory Ultra-fast Object Recognition from Few Spikes Chou Hung, Gabriel Kreiman , Tomaso Poggio...neural code for different kinds of object-related information. *The authors, Chou Hung and Gabriel Kreiman , contributed equally to this work...Supplementary Material is available at http://ramonycajal.mit.edu/ kreiman /resources/ultrafast
The Neural Regions Sustaining Episodic Encoding and Recognition of Objects
ERIC Educational Resources Information Center
Hofer, Alex; Siedentopf, Christian M.; Ischebeck, Anja; Rettenbacher, Maria A.; Widschwendter, Christian G.; Verius, Michael; Golaszewski, Stefan M.; Koppelstaetter, Florian; Felber, Stephan; Wolfgang Fleischhacker, W.
2007-01-01
In this functional MRI experiment, encoding of objects was associated with activation in left ventrolateral prefrontal/insular and right dorsolateral prefrontal and fusiform regions as well as in the left putamen. By contrast, correct recognition of previously learned objects (R judgments) produced activation in left superior frontal, bilateral…
Implications of Animal Object Memory Research for Human Amnesia
ERIC Educational Resources Information Center
Winters, Boyer D.; Saksida, Lisa M.; Bussey, Timothy J.
2010-01-01
Damage to structures in the human medial temporal lobe causes severe memory impairment. Animal object recognition tests gained prominence from attempts to model "global" human medial temporal lobe amnesia, such as that observed in patient HM. These tasks, such as delayed nonmatching-to-sample and spontaneous object recognition, for assessing…
Crowded and Sparse Domains in Object Recognition: Consequences for Categorization and Naming
ERIC Educational Resources Information Center
Gale, Tim M.; Laws, Keith R.; Foley, Kerry
2006-01-01
Some models of object recognition propose that items from structurally crowded categories (e.g., living things) permit faster access to superordinate semantic information than structurally dissimilar categories (e.g., nonliving things), but slower access to individual object information when naming items. We present four experiments that utilize…
Automatic anatomy recognition in whole-body PET/CT images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huiqian; Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Odhner, Dewey
Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity ofmore » anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process, to bring performance to the level achieved on diagnostic CT and MR images in body-region-wise approaches. The intermodality approach fosters the use of already existing fuzzy models, previously created from diagnostic CT images, on PET/CT and other derived images, thus truly separating the modality-independent object assembly anatomy from modality-specific tissue property portrayal in the image. Results: Key ways of combining the above three basic ideas lead them to 15 different strategies for recognizing objects in PET/CT images. Utilizing 50 diagnostic CT image data sets from the thoracic and abdominal body regions and 16 whole-body PET/CT image data sets, the authors compare the recognition performance among these 15 strategies on 18 objects from the thorax, abdomen, and pelvis in object localization error and size estimation error. Particularly on texture membership images, object localization is within three voxels on whole-body low-dose CT images and 2 voxels on body-region-wise low-dose images of known true locations. Surprisingly, even on direct body-region-wise PET images, localization error within 3 voxels seems possible. Conclusions: The previous body-region-wise approach can be extended to whole-body torso with similar object localization performance. Combined use of image texture and intensity property yields the best object localization accuracy. In both body-region-wise and whole-body approaches, recognition performance on low-dose CT images reaches levels previously achieved on diagnostic CT images. The best object recognition strategy varies among objects; the proposed framework however allows employing a strategy that is optimal for each object.« less
Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L.; Schwandt, Melanie; Heilig, Markus
2010-01-01
Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9–15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. PMID:20849966
Intelligent data processing of an ultrasonic sensor system for pattern recognition improvements
NASA Astrophysics Data System (ADS)
Na, Seung You; Park, Min-Sang; Hwang, Won-Gul; Kee, Chang-Doo
1999-05-01
Though conventional time-of-flight ultrasonic sensor systems are popular due to the advantages of low cost and simplicity, the usage of the sensors is rather narrowly restricted within object detection and distance readings. There is a strong need to enlarge the amount of environmental information for mobile applications to provide intelligent autonomy. Wide sectors of such neighboring object recognition problems can be satisfactorily handled with coarse vision data such as sonar maps instead of accurate laser or optic measurements. For the usage of object pattern recognition, ultrasonic senors have inherent shortcomings of poor directionality and specularity which result in low spatial resolution and indistinctiveness of object patterns. To resolve these problems an array of increased number of sensor elements has been used for large objects. In this paper we propose a method of sensor array system with improved recognition capability using electronic circuits accompanying the sensor array and neuro-fuzzy processing of data fusion. The circuit changes transmitter output voltages of array elements in several steps. Relying upon the known sensor characteristics, a set of different return signals from neighboring senors is manipulated to provide an enhanced pattern recognition in the aspects of inclination angle, size and shift as well as distance of objects. The results show improved resolution of the measurements for smaller targets.
ERIC Educational Resources Information Center
Lawson, Rebecca
2009-01-01
A sequential matching task was used to compare how the difficulty of shape discrimination influences the achievement of object constancy for depth rotations across haptic and visual object recognition. Stimuli were nameable, 3-dimensional plastic models of familiar objects (e.g., bed, chair) and morphs midway between these endpoint shapes (e.g., a…
On the three-quarter view advantage of familiar object recognition.
Nonose, Kohei; Niimi, Ryosuke; Yokosawa, Kazuhiko
2016-11-01
A three-quarter view, i.e., an oblique view, of familiar objects often leads to a higher subjective goodness rating when compared with other orientations. What is the source of the high goodness for oblique views? First, we confirmed that object recognition performance was also best for oblique views around 30° view, even when the foreshortening disadvantage of front- and side-views was minimized (Experiments 1 and 2). In Experiment 3, we measured subjective ratings of view goodness and two possible determinants of view goodness: familiarity of view, and subjective impression of three-dimensionality. Three-dimensionality was measured as the subjective saliency of visual depth information. The oblique views were rated best, most familiar, and as approximating greatest three-dimensionality on average; however, the cluster analyses showed that the "best" orientation systematically varied among objects. We found three clusters of objects: front-preferred objects, oblique-preferred objects, and side-preferred objects. Interestingly, recognition performance and the three-dimensionality rating were higher for oblique views irrespective of the clusters. It appears that recognition efficiency is not the major source of the three-quarter view advantage. There are multiple determinants and variability among objects. This study suggests that the classical idea that a canonical view has a unique advantage in object perception requires further discussion.
Single-pixel non-imaging object recognition by means of Fourier spectrum acquisition
NASA Astrophysics Data System (ADS)
Chen, Huichao; Shi, Jianhong; Liu, Xialin; Niu, Zhouzhou; Zeng, Guihua
2018-04-01
Single-pixel imaging has emerged over recent years as a novel imaging technique, which has significant application prospects. In this paper, we propose and experimentally demonstrate a scheme that can achieve single-pixel non-imaging object recognition by acquiring the Fourier spectrum. In an experiment, a four-step phase-shifting sinusoid illumination light is used to irradiate the object image, the value of the light intensity is measured with a single-pixel detection unit, and the Fourier coefficients of the object image are obtained by a differential measurement. The Fourier coefficients are first cast into binary numbers to obtain the hash value. We propose a new method of perceptual hashing algorithm, which is combined with a discrete Fourier transform to calculate the hash value. The hash distance is obtained by calculating the difference of the hash value between the object image and the contrast images. By setting an appropriate threshold, the object image can be quickly and accurately recognized. The proposed scheme realizes single-pixel non-imaging perceptual hashing object recognition by using fewer measurements. Our result might open a new path for realizing object recognition with non-imaging.
Lateral Entorhinal Cortex is Critical for Novel Object-Context Recognition
Wilson, David IG; Langston, Rosamund F; Schlesiger, Magdalene I; Wagner, Monica; Watanabe, Sakurako; Ainge, James A
2013-01-01
Episodic memory incorporates information about specific events or occasions including spatial locations and the contextual features of the environment in which the event took place. It has been modeled in rats using spontaneous exploration of novel configurations of objects, their locations, and the contexts in which they are presented. While we have a detailed understanding of how spatial location is processed in the brain relatively little is known about where the nonspatial contextual components of episodic memory are processed. Initial experiments measured c-fos expression during an object-context recognition (OCR) task to examine which networks within the brain process contextual features of an event. Increased c-fos expression was found in the lateral entorhinal cortex (LEC; a major hippocampal afferent) during OCR relative to control conditions. In a subsequent experiment it was demonstrated that rats with lesions of LEC were unable to recognize object-context associations yet showed normal object recognition and normal context recognition. These data suggest that contextual features of the environment are integrated with object identity in LEC and demonstrate that recognition of such object-context associations requires the LEC. This is consistent with the suggestion that contextual features of an event are processed in LEC and that this information is combined with spatial information from medial entorhinal cortex to form episodic memory in the hippocampus. © 2013 Wiley Periodicals, Inc. PMID:23389958
NASA Astrophysics Data System (ADS)
Yu, Francis T. S.; Jutamulia, Suganda
2008-10-01
Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Editor)
1988-01-01
The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.
Faillace, M P; Pisera-Fuster, A; Medrano, M P; Bejarano, A C; Bernabeu, R O
2017-03-01
Zebrafish have a sophisticated color- and shape-sensitive visual system, so we examined color cue-based novel object recognition in zebrafish. We evaluated preference in the absence or presence of drugs that affect attention and memory retention in rodents: nicotine and the histone deacetylase inhibitor (HDACi) phenylbutyrate (PhB). The objective of this study was to evaluate whether nicotine and PhB affect innate preferences of zebrafish for familiar and novel objects after short- and long-retention intervals. We developed modified object recognition (OR) tasks using neutral novel and familiar objects in different colors. We also tested objects which differed with respect to the exploratory behavior they elicited from naïve zebrafish. Zebrafish showed an innate preference for exploring red or green objects rather than yellow or blue objects. Zebrafish were better at discriminating color changes than changes in object shape or size. Nicotine significantly enhanced or changed short-term innate novel object preference whereas PhB had similar effects when preference was assessed 24 h after training. Analysis of other zebrafish behaviors corroborated these results. Zebrafish were innately reluctant or prone to explore colored novel objects, so drug effects on innate preference for objects can be evaluated changing the color of objects with a simple geometry. Zebrafish exhibited recognition memory for novel objects with similar innate significance. Interestingly, nicotine and PhB significantly modified innate object preference.
Does object view influence the scene consistency effect?
Sastyin, Gergo; Niimi, Ryosuke; Yokosawa, Kazuhiko
2015-04-01
Traditional research on the scene consistency effect only used clearly recognizable object stimuli to show mutually interactive context effects for both the object and background components on scene perception (Davenport & Potter in Psychological Science, 15, 559-564, 2004). However, in real environments, objects are viewed from multiple viewpoints, including an accidental, hard-to-recognize one. When the observers named target objects in scenes (Experiments 1a and 1b, object recognition task), we replicated the scene consistency effect (i.e., there was higher accuracy for the objects with consistent backgrounds). However, there was a significant interaction effect between consistency and object viewpoint, which indicated that the scene consistency effect was more important for identifying objects in the accidental view condition than in the canonical view condition. Therefore, the object recognition system may rely more on the scene context when the object is difficult to recognize. In Experiment 2, the observers identified the background (background recognition task) while the scene consistency and object views were manipulated. The results showed that object viewpoint had no effect, while the scene consistency effect was observed. More specifically, the canonical and accidental views both equally provided contextual information for scene perception. These findings suggested that the mechanism for conscious recognition of objects could be dissociated from the mechanism for visual analysis of object images that were part of a scene. The "context" that the object images provided may have been derived from its view-invariant, relatively low-level visual features (e.g., color), rather than its semantic information.
Three-dimensional object recognition based on planar images
NASA Astrophysics Data System (ADS)
Mital, Dinesh P.; Teoh, Eam-Khwang; Au, K. C.; Chng, E. K.
1993-01-01
This paper presents the development and realization of a robotic vision system for the recognition of 3-dimensional (3-D) objects. The system can recognize a single object from among a group of known regular convex polyhedron objects that is constrained to lie on a calibrated flat platform. The approach adopted comprises a series of image processing operations on a single 2-dimensional (2-D) intensity image to derive an image line drawing. Subsequently, a feature matching technique is employed to determine 2-D spatial correspondences of the image line drawing with the model in the database. Besides its identification ability, the system can also provide important position and orientation information of the recognized object. The system was implemented on an IBM-PC AT machine executing at 8 MHz without the 80287 Maths Co-processor. In our overall performance evaluation based on a 600 recognition cycles test, the system demonstrated an accuracy of above 80% with recognition time well within 10 seconds. The recognition time is, however, indirectly dependent on the number of models in the database. The reliability of the system is also affected by illumination conditions which must be clinically controlled as in any industrial robotic vision system.
Health Insurance in the Public Sector.
ERIC Educational Resources Information Center
Rubin, Richard S.
1980-01-01
In general, this survey of six midwest states revealed that health insurance plans for state government employees have moved toward employer funding, comprehensive benefits, and some recognition of the advantages of prepaid group practice plans. (Author/IRT)
The Pop out of Scene-Relative Object Movement against Retinal Motion Due to Self-Movement
ERIC Educational Resources Information Center
Rushton, Simon K.; Bradshaw, Mark F.; Warren, Paul A.
2007-01-01
An object that moves is spotted almost effortlessly; it "pops out." When the observer is stationary, a moving object is uniquely identified by retinal motion. This is not so when the observer is also moving; as the eye travels through space all scene objects change position relative to the eye producing a complicated field of retinal motion.…
Bennetts, Rachel J; Mole, Joseph; Bate, Sarah
2017-09-01
Face recognition abilities vary widely. While face recognition deficits have been reported in children, it is unclear whether superior face recognition skills can be encountered during development. This paper presents O.B., a 14-year-old female with extraordinary face recognition skills: a "super-recognizer" (SR). O.B. demonstrated exceptional face-processing skills across multiple tasks, with a level of performance that is comparable to adult SRs. Her superior abilities appear to be specific to face identity: She showed an exaggerated face inversion effect and her superior abilities did not extend to object processing or non-identity aspects of face recognition. Finally, an eye-movement task demonstrated that O.B. spent more time than controls examining the nose - a pattern previously reported in adult SRs. O.B. is therefore particularly skilled at extracting and using identity-specific facial cues, indicating that face and object recognition are dissociable during development, and that super recognition can be detected in adolescence.
Preserved Haptic Shape Processing after Bilateral LOC Lesions.
Snow, Jacqueline C; Goodale, Melvyn A; Culham, Jody C
2015-10-07
The visual and haptic perceptual systems are understood to share a common neural representation of object shape. A region thought to be critical for recognizing visual and haptic shape information is the lateral occipital complex (LOC). We investigated whether LOC is essential for haptic shape recognition in humans by studying behavioral responses and brain activation for haptically explored objects in a patient (M.C.) with bilateral lesions of the occipitotemporal cortex, including LOC. Despite severe deficits in recognizing objects using vision, M.C. was able to accurately recognize objects via touch. M.C.'s psychophysical response profile to haptically explored shapes was also indistinguishable from controls. Using fMRI, M.C. showed no object-selective visual or haptic responses in LOC, but her pattern of haptic activation in other brain regions was remarkably similar to healthy controls. Although LOC is routinely active during visual and haptic shape recognition tasks, it is not essential for haptic recognition of object shape. The lateral occipital complex (LOC) is a brain region regarded to be critical for recognizing object shape, both in vision and in touch. However, causal evidence linking LOC with haptic shape processing is lacking. We studied recognition performance, psychophysical sensitivity, and brain response to touched objects, in a patient (M.C.) with extensive lesions involving LOC bilaterally. Despite being severely impaired in visual shape recognition, M.C. was able to identify objects via touch and she showed normal sensitivity to a haptic shape illusion. M.C.'s brain response to touched objects in areas of undamaged cortex was also very similar to that observed in neurologically healthy controls. These results demonstrate that LOC is not necessary for recognizing objects via touch. Copyright © 2015 the authors 0270-6474/15/3513745-16$15.00/0.
Ding, Fang; Zheng, Limin; Liu, Min; Chen, Rongfa; Leung, L Stan; Luo, Tao
2016-08-01
Exposure to volatile anesthetics has been reported to cause temporary or sustained impairments in learning and memory in pre-clinical studies. The selective antagonists of the histamine H3 receptors (H3R) are considered to be a promising group of novel therapeutic agents for the treatment of cognitive disorders. The aim of this study was to evaluate the effect of H3R antagonist ciproxifan on isoflurane-induced deficits in an object recognition task. Adult C57BL/6 J mice were exposed to isoflurane (1.3 %) or vehicle gas for 2 h. The object recognition tests were carried at 24 h or 7 days after exposure to anesthesia to exploit the tendency of mice to prefer exploring novel objects in an environment when a familiar object is also present. During the training phase, two identical objects were placed in two defined sites of the chamber. During the test phase, performed 1 or 24 h after the training phase, one of the objects was replaced by a new object with a different shape. The time spent exploring each object was recorded. A robust deficit in object recognition memory occurred 1 day after exposure to isoflurane anesthesia. Isoflurane-treated mice spent significantly less time exploring a novel object at 1 h but not at 24 h after the training phase. The deficit in short-term memory was reversed by the administration of ciproxifan 30 min before behavioral training. Isoflurane exposure induces reversible deficits in object recognition memory. Ciproxifan appears to be a potential therapeutic agent for improving post-anesthesia cognitive memory performance.
Amesz, Sarah; Tessari, Alessia; Ottoboni, Giovanni; Marsden, Jon
2016-01-01
To explore the relationship between laterality recognition after stroke and impairments in attention, 3D object rotation and functional ability. Observational cross-sectional study. Acute care teaching hospital. Thirty-two acute and sub-acute people with stroke and 36 healthy, age-matched controls. Laterality recognition, attention and mental rotation of objects. Within the stroke group, the relationship between laterality recognition and functional ability, neglect, hemianopia and dyspraxia were further explored. People with stroke were significantly less accurate (69% vs 80%) and showed delayed reaction times (3.0 vs 1.9 seconds) when determining the laterality of a pictured hand. Deficits either in accuracy or reaction times were seen in 53% of people with stroke. The accuracy of laterality recognition was associated with reduced functional ability (R(2) = 0.21), less accurate mental rotation of objects (R(2) = 0.20) and dyspraxia (p = 0.03). Implicit motor imagery is affected in a significant number of patients after stroke with these deficits related to lesions to the motor networks as well as other deficits seen after stroke. This research provides new insights into how laterality recognition is related to a number of other deficits after stroke, including the mental rotation of 3D objects, attention and dyspraxia. Further research is required to determine if treatment programmes can improve deficits in laterality recognition and impact functional outcomes after stroke.
Dissociated active and passive tactile shape recognition: a case study of pure tactile apraxia.
Valenza, N; Ptak, R; Zimine, I; Badan, M; Lazeyras, F; Schnider, A
2001-11-01
Disorders of tactile object recognition (TOR) may result from primary motor or sensory deficits or higher cognitive impairment of tactile shape representations or semantic memory. Studies with healthy participants suggest the existence of exploratory motor procedures directly linked to the extraction of specific properties of objects. A pure deficit of these procedures without concomitant gnostic disorders has never been described in a brain-damaged patient. Here, we present a patient with a right hemispheric infarction who, in spite of intact sensorimotor functions, had impaired TOR with the left hand. Recognition of 2D shapes and objects was severely deficient under the condition of spontaneous exploration. Tactile exploration of shapes was disorganized and exploratory procedures, such as the contour-following strategy, which is necessary to identify the precise shape of an object, were severely disturbed. However, recognition of 2D shapes under manually or verbally guided exploration and the recognition of shapes traced on the skin were intact, indicating a dissociation in shape recognition between active and passive touch. Functional MRI during sensory stimulation of the left hand showed preserved activation of the spared primary sensory cortex in the right hemisphere. We interpret the deficit of our patient as a pure tactile apraxia without tactile agnosia, i.e. a specific inability to use tactile feedback to generate the exploratory procedures necessary for tactile shape recognition.
USDA-ARS?s Scientific Manuscript database
Objective Previously, four months of a blueberry-enriched (BB) antioxidant diet prevented impaired object recognition memory in aged rats. Experiment 1 determined whether one and two-month BB diets would have a similar effect and whether the benefits would disappear promptly after terminating the d...
Qualitative Differences in the Representation of Spatial Relations for Different Object Classes
ERIC Educational Resources Information Center
Cooper, Eric E.; Brooks, Brian E.
2004-01-01
Two experiments investigated whether the representations used for animal, produce, and object recognition code spatial relations in a similar manner. Experiment 1 tested the effects of planar rotation on the recognition of animals and nonanimal objects. Response times for recognizing animals followed an inverted U-shaped function, whereas those…
Object memory and change detection: dissociation as a function of visual and conceptual similarity.
Yeh, Yei-Yu; Yang, Cheng-Ta
2008-01-01
People often fail to detect a change between two visual scenes, a phenomenon referred to as change blindness. This study investigates how a post-change object's similarity to the pre-change object influences memory of the pre-change object and affects change detection. The results of Experiment 1 showed that similarity lowered detection sensitivity but did not affect the speed of identifying the pre-change object, suggesting that similarity between the pre- and post-change objects does not degrade the pre-change representation. Identification speed for the pre-change object was faster than naming the new object regardless of detection accuracy. Similarity also decreased detection sensitivity in Experiment 2 but improved the recognition of the pre-change object under both correct detection and detection failure. The similarity effect on recognition was greatly reduced when 20% of each pre-change stimulus was masked by random dots in Experiment 3. Together the results suggest that the level of pre-change representation under detection failure is equivalent to the level under correct detection and that the pre-change representation is almost complete. Similarity lowers detection sensitivity but improves explicit access in recognition. Dissociation arises between recognition and change detection as the two judgments rely on the match-to-mismatch signal and mismatch-to-match signal, respectively.
Gomes, Karin M; Souza, Renan P; Valvassori, Samira S; Réus, Gislaine Z; Inácio, Cecília G; Martins, Márcio R; Comim, Clarissa M; Quevedo, João
2009-11-01
In this study age-, circadian rhythm- and methylphenidate administration- effect on open field habituation and object recognition were analyzed. Young and adult male Wistar rats were treated with saline or methylphenidate 2.0 mg/kg for 28 days. Experiments were performed during the light and the dark cycle. Locomotor activity was significantly altered by circadian cycle and methylphenidate treatment during the training session and by drug treatment during the testing session. Exploratory activity was significantly modulated by age during the training session and by age and drug treatment during the testing session. Object recognition memory was altered by cycle at the training session; by age 1.5 h later and by cycle and age 24 h after the training session. These results show that methylphenidate treatment was the major modulator factor on open-field test while cycle and age had an important effect on object recognition experiment.
Two speed factors of visual recognition independently correlated with fluid intelligence.
Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki
2014-01-01
Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one's IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR).
Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun
2018-01-01
Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition. PMID:29786665
Chen, Yibing; Ogata, Taiki; Ueyama, Tsuyoshi; Takada, Toshiyuki; Ota, Jun
2018-05-22
Machine vision is playing an increasingly important role in industrial applications, and the automated design of image recognition systems has been a subject of intense research. This study has proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination strength and the parameters in a recognition algorithm. We formulated the design problem as an optimisation problem and used an experiment based on a hierarchical algorithm to solve it. The evaluation experiments using translucent plastics objects showed that the use of the proposed system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and 0.4° maximal positional and angular errors when all the RGB (red, green and blue) for illumination and R channel image for recognition were used. Though all the RGB illumination and grey scale images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full recognition was not achieved by using only G illumination and a grey-scale image. The results showed that the proposed method can automatically design the FOV, illumination and parameters in the recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel or grey-scale images are used for recognition.
NASA Astrophysics Data System (ADS)
Millán, María S.
2012-10-01
On the verge of the 50th anniversary of Vander Lugt’s formulation for pattern matching based on matched filtering and optical correlation, we acknowledge the very intense research activity developed in the field of correlation-based pattern recognition during this period of time. The paper reviews some domains that appeared as emerging fields in the last years of the 20th century and have been developed later on in the 21st century. Such is the case of three-dimensional (3D) object recognition, biometric pattern matching, optical security and hybrid optical-digital processors. 3D object recognition is a challenging case of multidimensional image recognition because of its implications in the recognition of real-world objects independent of their perspective. Biometric recognition is essentially pattern recognition for which the personal identification is based on the authentication of a specific physiological characteristic possessed by the subject (e.g. fingerprint, face, iris, retina, and multifactor combinations). Biometric recognition often appears combined with encryption-decryption processes to secure information. The optical implementations of correlation-based pattern recognition processes still rely on the 4f-correlator, the joint transform correlator, or some of their variants. But the many applications developed in the field have been pushing the systems for a continuous improvement of their architectures and algorithms, thus leading towards merged optical-digital solutions.
Power-Efficient Beacon Recognition Method Based on Periodic Wake-Up for Industrial Wireless Devices
Lee, Donghun; Jang, Ingook; Choi, Jinchul; Son, Youngsung
2018-01-01
Energy harvester-integrated wireless devices are attractive for generating semi-permanent power from wasted energy in industrial environments. The energy-harvesting wireless devices may have difficulty in their communication with access points due to insufficient power supply for beacon recognition during network initialization. In this manuscript, we propose a novel method of beacon recognition based on wake-up control to reduce instantaneous power consumption in the initialization procedure. The proposed method applies a moving window for the periodic wake-up of the wireless devices. For unsynchronized wireless devices, beacons are always located in the same positions within each beacon interval even though the starting offsets are unknown. Using these characteristics, the moving window checks the existence of the beacon associated withspecified resources in a beacon interval, checks again for neighboring resources at the next beacon interval, and so on. This method can reduce instantaneous power and generates a surplus of charging time. Thus, the proposed method alleviates the problems of power insufficiency in the network initialization. The feasibility of the proposed method is evaluated using computer simulations of power shortage in various energy-harvesting conditions. PMID:29673206
Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition
Cui, Zhiming; Zhao, Pengpeng
2014-01-01
A motion trajectory is an intuitive representation form in time-space domain for a micromotion behavior of moving target. Trajectory analysis is an important approach to recognize abnormal behaviors of moving targets. Against the complexity of vehicle trajectories, this paper first proposed a trajectory pattern learning method based on dynamic time warping (DTW) and spectral clustering. It introduced the DTW distance to measure the distances between vehicle trajectories and determined the number of clusters automatically by a spectral clustering algorithm based on the distance matrix. Then, it clusters sample data points into different clusters. After the spatial patterns and direction patterns learned from the clusters, a recognition method for detecting vehicle abnormal behaviors based on mixed pattern matching was proposed. The experimental results show that the proposed technical scheme can recognize main types of traffic abnormal behaviors effectively and has good robustness. The real-world application verified its feasibility and the validity. PMID:24605045
Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L; Schwandt, Melanie; Heilig, Markus
2010-11-01
Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9-15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. Copyright © 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Dong, Zhen; Liu, Yuan; Liang, Fuxun; Wang, Yongjun
2017-04-01
In recent years, updating the inventory of road infrastructures based on field work is labor intensive, time consuming, and costly. Fortunately, vehicle-based mobile laser scanning (MLS) systems provide an efficient solution to rapidly capture three-dimensional (3D) point clouds of road environments with high flexibility and precision. However, robust recognition of road facilities from huge volumes of 3D point clouds is still a challenging issue because of complicated and incomplete structures, occlusions and varied point densities. Most existing methods utilize point or object based features to recognize object candidates, and can only extract limited types of objects with a relatively low recognition rate, especially for incomplete and small objects. To overcome these drawbacks, this paper proposes a semantic labeling framework by combing multiple aggregation levels (point-segment-object) of features and contextual features to recognize road facilities, such as road surfaces, road boundaries, buildings, guardrails, street lamps, traffic signs, roadside-trees, power lines, and cars, for highway infrastructure inventory. The proposed method first identifies ground and non-ground points, and extracts road surfaces facilities from ground points. Non-ground points are segmented into individual candidate objects based on the proposed multi-rule region growing method. Then, the multiple aggregation levels of features and the contextual features (relative positions, relative directions, and spatial patterns) associated with each candidate object are calculated and fed into a SVM classifier to label the corresponding candidate object. The recognition performance of combining multiple aggregation levels and contextual features was compared with single level (point, segment, or object) based features using large-scale highway scene point clouds. Comparative studies demonstrated that the proposed semantic labeling framework significantly improves road facilities recognition precision (90.6%) and recall (91.2%), particularly for incomplete and small objects.
Neurocomputational bases of object and face recognition.
Biederman, I; Kalocsai, P
1997-01-01
A number of behavioural phenomena distinguish the recognition of faces and objects, even when members of a set of objects are highly similar. Because faces have the same parts in approximately the same relations, individuation of faces typically requires specification of the metric variation in a holistic and integral representation of the facial surface. The direct mapping of a hypercolumn-like pattern of activation onto a representation layer that preserves relative spatial filter values in a two-dimensional (2D) coordinate space, as proposed by C. von der Malsburg and his associates, may account for many of the phenomena associated with face recognition. An additional refinement, in which each column of filters (termed a 'jet') is centred on a particular facial feature (or fiducial point), allows selectivity of the input into the holistic representation to avoid incorporation of occluding or nearby surfaces. The initial hypercolumn representation also characterizes the first stage of object perception, but the image variation for objects at a given location in a 2D coordinate space may be too great to yield sufficient predictability directly from the output of spatial kernels. Consequently, objects can be represented by a structural description specifying qualitative (typically, non-accidental) characterizations of an object's parts, the attributes of the parts, and the relations among the parts, largely based on orientation and depth discontinuities (as shown by Hummel & Biederman). A series of experiments on the name priming or physical matching of complementary images (in the Fourier domain) of objects and faces documents that whereas face recognition is strongly dependent on the original spatial filter values, evidence from object recognition indicates strong invariance to these values, even when distinguishing among objects that are as similar as faces. PMID:9304687
Genetic specificity of face recognition.
Shakeshaft, Nicholas G; Plomin, Robert
2015-10-13
Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities.
Genetic specificity of face recognition
Shakeshaft, Nicholas G.; Plomin, Robert
2015-01-01
Specific cognitive abilities in diverse domains are typically found to be highly heritable and substantially correlated with general cognitive ability (g), both phenotypically and genetically. Recent twin studies have found the ability to memorize and recognize faces to be an exception, being similarly heritable but phenotypically substantially uncorrelated both with g and with general object recognition. However, the genetic relationships between face recognition and other abilities (the extent to which they share a common genetic etiology) cannot be determined from phenotypic associations. In this, to our knowledge, first study of the genetic associations between face recognition and other domains, 2,000 18- and 19-year-old United Kingdom twins completed tests assessing their face recognition, object recognition, and general cognitive abilities. Results confirmed the substantial heritability of face recognition (61%), and multivariate genetic analyses found that most of this genetic influence is unique and not shared with other cognitive abilities. PMID:26417086
Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.
Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo
2011-01-25
The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.
Deficits in Long-Term Recognition Memory Reveal Dissociated Subtypes in Congenital Prosopagnosia
Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo
2011-01-01
The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception. PMID:21283572
Figure-ground organization and object recognition processes: an interactive account.
Vecera, S P; O'Reilly, R C
1998-04-01
Traditional bottom-up models of visual processing assume that figure-ground organization precedes object recognition. This assumption seems logically necessary: How can object recognition occur before a region is labeled as figure? However, some behavioral studies find that familiar regions are more likely to be labeled figure than less familiar regions, a problematic finding for bottom-up models. An interactive account is proposed in which figure-ground processes receive top-down input from object representations in a hierarchical system. A graded, interactive computational model is presented that accounts for behavioral results in which familiarity effects are found. The interactive model offers an alternative conception of visual processing to bottom-up models.
Acoustic facilitation of object movement detection during self-motion
Calabro, F. J.; Soto-Faraco, S.; Vaina, L. M.
2011-01-01
In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow-parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target) that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that parsing object motion from self-motion-induced optic flow can operate on multisensory object representations. PMID:21307050
Orientation estimation of anatomical structures in medical images for object recognition
NASA Astrophysics Data System (ADS)
Bağci, Ulaş; Udupa, Jayaram K.; Chen, Xinjian
2011-03-01
Recognition of anatomical structures is an important step in model based medical image segmentation. It provides pose estimation of objects and information about "where" roughly the objects are in the image and distinguishing them from other object-like entities. In,1 we presented a general method of model-based multi-object recognition to assist in segmentation (delineation) tasks. It exploits the pose relationship that can be encoded, via the concept of ball scale (b-scale), between the binary training objects and their associated grey images. The goal was to place the model, in a single shot, close to the right pose (position, orientation, and scale) in a given image so that the model boundaries fall in the close vicinity of object boundaries in the image. Unlike position and scale parameters, we observe that orientation parameters require more attention when estimating the pose of the model as even small differences in orientation parameters can lead to inappropriate recognition. Motivated from the non-Euclidean nature of the pose information, we propose in this paper the use of non-Euclidean metrics to estimate orientation of the anatomical structures for more accurate recognition and segmentation. We statistically analyze and evaluate the following metrics for orientation estimation: Euclidean, Log-Euclidean, Root-Euclidean, Procrustes Size-and-Shape, and mean Hermitian metrics. The results show that mean Hermitian and Cholesky decomposition metrics provide more accurate orientation estimates than other Euclidean and non-Euclidean metrics.
Cultural differences in visual object recognition in 3-year-old children
Kuwabara, Megumi; Smith, Linda B.
2016-01-01
Recent research indicates that culture penetrates fundamental processes of perception and cognition (e.g. Nisbett & Miyamoto, 2005). Here, we provide evidence that these influences begin early and influence how preschool children recognize common objects. The three tasks (n=128) examined the degree to which nonface object recognition by 3 year olds was based on individual diagnostic features versus more configural and holistic processing. Task 1 used a 6-alternative forced choice task in which children were asked to find a named category in arrays of masked objects in which only 3 diagnostic features were visible for each object. U.S. children outperformed age-matched Japanese children. Task 2 presented pictures of objects to children piece by piece. U.S. children recognized the objects given fewer pieces than Japanese children and likelihood of recognition increased for U.S., but not Japanese children when the piece added was rated by both U.S. and Japanese adults as highly defining. Task 3 used a standard measure of configural progressing, asking the degree to which recognition of matching pictures was disrupted by the rotation of one picture. Japanese children’s recognition was more disrupted by inversion than was that of U.S. children, indicating more configural processing by Japanese than U.S. children. The pattern suggests early cross-cultural differences in visual processing; findings that raise important questions about how visual experiences differ across cultures and about universal patterns of cognitive development. PMID:26985576
Cultural differences in visual object recognition in 3-year-old children.
Kuwabara, Megumi; Smith, Linda B
2016-07-01
Recent research indicates that culture penetrates fundamental processes of perception and cognition. Here, we provide evidence that these influences begin early and influence how preschool children recognize common objects. The three tasks (N=128) examined the degree to which nonface object recognition by 3-year-olds was based on individual diagnostic features versus more configural and holistic processing. Task 1 used a 6-alternative forced choice task in which children were asked to find a named category in arrays of masked objects where only three diagnostic features were visible for each object. U.S. children outperformed age-matched Japanese children. Task 2 presented pictures of objects to children piece by piece. U.S. children recognized the objects given fewer pieces than Japanese children, and the likelihood of recognition increased for U.S. children, but not Japanese children, when the piece added was rated by both U.S. and Japanese adults as highly defining. Task 3 used a standard measure of configural progressing, asking the degree to which recognition of matching pictures was disrupted by the rotation of one picture. Japanese children's recognition was more disrupted by inversion than was that of U.S. children, indicating more configural processing by Japanese than U.S. children. The pattern suggests early cross-cultural differences in visual processing; findings that raise important questions about how visual experiences differ across cultures and about universal patterns of cognitive development. Copyright © 2016 Elsevier Inc. All rights reserved.
Associative (prosop)agnosia without (apparent) perceptual deficits: a case-study.
Anaki, David; Kaufman, Yakir; Freedman, Morris; Moscovitch, Morris
2007-04-09
In associative agnosia early perceptual processing of faces or objects are considered to be intact, while the ability to access stored semantic information about the individual face or object is impaired. Recent claims, however, have asserted that associative agnosia is also characterized by deficits at the perceptual level, which are too subtle to be detected by current neuropsychological tests. Thus, the impaired identification of famous faces or common objects in associative agnosia stems from difficulties in extracting the minute perceptual details required to identify a face or an object. In the present study, we report the case of a patient DBO with a left occipital infarct, who shows impaired object and famous face recognition. Despite his disability, he exhibits a face inversion effect, and is able to select a famous face from among non-famous distractors. In addition, his performance is normal in an immediate and delayed recognition memory for faces, whose external features were deleted. His deficits in face recognition are apparent only when he is required to name a famous face, or select two faces from among a triad of famous figures based on their semantic relationships (a task which does not require access to names). The nature of his deficits in object perception and recognition are similar to his impairments in the face domain. This pattern of behavior supports the notion that apperceptive and associative agnosia reflect distinct and dissociated deficits, which result from damage to different stages of the face and object recognition process.
Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory.
Hall, Jessica H; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Harwood, John L; Good, Mark A
2016-04-01
The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mice was confirmed using APP overexpressing mice that showed the opposite pattern of object memory deficits. In contrast to object memory, Tc1 mice showed no deficit in either immediate or long-term memory for object-in-place information. Similarly, Tc1 mice showed no deficit in short-term memory for object-location information. The latter result indicates that Tc1 mice were able to detect and react to spatial novelty at the same delay interval that was sensitive to an object novelty recognition impairment. These results demonstrate (1) that novelty detection per se and (2) the encoding of visuo-spatial information was not disrupted in adult Tc1 mice. The authors conclude that the task specific nature of the short-term recognition memory deficit suggests that the trisomy of genes on human chromosome 21 in Tc1 mice impacts on (perirhinal) cortical systems supporting short-term object and olfactory recognition memory. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Multi-objects recognition for distributed intelligent sensor networks
NASA Astrophysics Data System (ADS)
He, Haibo; Chen, Sheng; Cao, Yuan; Desai, Sachi; Hohil, Myron E.
2008-04-01
This paper proposes an innovative approach for multi-objects recognition for homeland security and defense based intelligent sensor networks. Unlike the conventional way of information analysis, data mining in such networks is typically characterized with high information ambiguity/uncertainty, data redundancy, high dimensionality and real-time constrains. Furthermore, since a typical military based network normally includes multiple mobile sensor platforms, ground forces, fortified tanks, combat flights, and other resources, it is critical to develop intelligent data mining approaches to fuse different information resources to understand dynamic environments, to support decision making processes, and finally to achieve the goals. This paper aims to address these issues with a focus on multi-objects recognition. Instead of classifying a single object as in the traditional image classification problems, the proposed method can automatically learn multiple objectives simultaneously. Image segmentation techniques are used to identify the interesting regions in the field, which correspond to multiple objects such as soldiers or tanks. Since different objects will come with different feature sizes, we propose a feature scaling method to represent each object in the same number of dimensions. This is achieved by linear/nonlinear scaling and sampling techniques. Finally, support vector machine (SVM) based learning algorithms are developed to learn and build the associations for different objects, and such knowledge will be adaptively accumulated for objects recognition in the testing stage. We test the effectiveness of proposed method in different simulated military environments.
Behavioral model of visual perception and recognition
NASA Astrophysics Data System (ADS)
Rybak, Ilya A.; Golovan, Alexander V.; Gusakova, Valentina I.
1993-09-01
In the processes of visual perception and recognition human eyes actively select essential information by way of successive fixations at the most informative points of the image. A behavioral program defining a scanpath of the image is formed at the stage of learning (object memorizing) and consists of sequential motor actions, which are shifts of attention from one to another point of fixation, and sensory signals expected to arrive in response to each shift of attention. In the modern view of the problem, invariant object recognition is provided by the following: (1) separated processing of `what' (object features) and `where' (spatial features) information at high levels of the visual system; (2) mechanisms of visual attention using `where' information; (3) representation of `what' information in an object-based frame of reference (OFR). However, most recent models of vision based on OFR have demonstrated the ability of invariant recognition of only simple objects like letters or binary objects without background, i.e. objects to which a frame of reference is easily attached. In contrast, we use not OFR, but a feature-based frame of reference (FFR), connected with the basic feature (edge) at the fixation point. This has provided for our model, the ability for invariant representation of complex objects in gray-level images, but demands realization of behavioral aspects of vision described above. The developed model contains a neural network subsystem of low-level vision which extracts a set of primary features (edges) in each fixation, and high- level subsystem consisting of `what' (Sensory Memory) and `where' (Motor Memory) modules. The resolution of primary features extraction decreases with distances from the point of fixation. FFR provides both the invariant representation of object features in Sensor Memory and shifts of attention in Motor Memory. Object recognition consists in successive recall (from Motor Memory) and execution of shifts of attention and successive verification of the expected sets of features (stored in Sensory Memory). The model shows the ability of recognition of complex objects (such as faces) in gray-level images invariant with respect to shift, rotation, and scale.
Comparison of Object Recognition Behavior in Human and Monkey
Rajalingham, Rishi; Schmidt, Kailyn
2015-01-01
Although the rhesus monkey is used widely as an animal model of human visual processing, it is not known whether invariant visual object recognition behavior is quantitatively comparable across monkeys and humans. To address this question, we systematically compared the core object recognition behavior of two monkeys with that of human subjects. To test true object recognition behavior (rather than image matching), we generated several thousand naturalistic synthetic images of 24 basic-level objects with high variation in viewing parameters and image background. Monkeys were trained to perform binary object recognition tasks on a match-to-sample paradigm. Data from 605 human subjects performing the same tasks on Mechanical Turk were aggregated to characterize “pooled human” object recognition behavior, as well as 33 separate Mechanical Turk subjects to characterize individual human subject behavior. Our results show that monkeys learn each new object in a few days, after which they not only match mean human performance but show a pattern of object confusion that is highly correlated with pooled human confusion patterns and is statistically indistinguishable from individual human subjects. Importantly, this shared human and monkey pattern of 3D object confusion is not shared with low-level visual representations (pixels, V1+; models of the retina and primary visual cortex) but is shared with a state-of-the-art computer vision feature representation. Together, these results are consistent with the hypothesis that rhesus monkeys and humans share a common neural shape representation that directly supports object perception. SIGNIFICANCE STATEMENT To date, several mammalian species have shown promise as animal models for studying the neural mechanisms underlying high-level visual processing in humans. In light of this diversity, making tight comparisons between nonhuman and human primates is particularly critical in determining the best use of nonhuman primates to further the goal of the field of translating knowledge gained from animal models to humans. To the best of our knowledge, this study is the first systematic attempt at comparing a high-level visual behavior of humans and macaque monkeys. PMID:26338324
Visual environment recognition for robot path planning using template matched filters
NASA Astrophysics Data System (ADS)
Orozco-Rosas, Ulises; Picos, Kenia; Díaz-Ramírez, Víctor H.; Montiel, Oscar; Sepúlveda, Roberto
2017-08-01
A visual approach in environment recognition for robot navigation is proposed. This work includes a template matching filtering technique to detect obstacles and feasible paths using a single camera to sense a cluttered environment. In this problem statement, a robot can move from the start to the goal by choosing a single path between multiple possible ways. In order to generate an efficient and safe path for mobile robot navigation, the proposal employs a pseudo-bacterial potential field algorithm to derive optimal potential field functions using evolutionary computation. Simulation results are evaluated in synthetic and real scenes in terms of accuracy of environment recognition and efficiency of path planning computation.
Self-motion impairs multiple-object tracking.
Thomas, Laura E; Seiffert, Adriane E
2010-10-01
Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement impairs the ability to keep track of other moving objects. Participants attempted to track multiple targets while either moving around the tracking area or remaining in a fixed location. Participants' tracking performance was impaired when they moved to a new location during tracking, even when they were passively moved and when they did not see a shift in viewpoint. Self-motion impaired multiple-object tracking in both an immersive virtual environment and a real-world analog, but did not interfere with a difficult non-spatial tracking task. These results suggest that people use a common mechanism to track changes both to the location of moving objects around them and to keep track of their own location. Copyright 2010 Elsevier B.V. All rights reserved.
Recognition memory in tree shrew (Tupaia belangeri) after repeated familiarization sessions.
Khani, Abbas; Rainer, Gregor
2012-07-01
Recognition memories are formed during perceptual experience and allow subsequent recognition of previously encountered objects as well as their distinction from novel objects. As a consequence, novel objects are generally explored longer than familiar objects by many species. This novelty preference has been documented in rodents using the novel object recognition (NOR) test, as well is in primates including humans using preferential looking time paradigms. Here, we examine novelty preference using the NOR task in tree shrew, a small animal species that is considered to be an intermediary between rodents and primates. Our paradigm consisted of three phases: arena familiarization, object familiarization sessions with two identical objects in the arena and finally a test session following a 24-h retention period with a familiar and a novel object in the arena. We employed two different object familiarization durations: one and three sessions on consecutive days. After three object familiarization sessions, tree shrews exhibited robust preference for novel objects on the test day. This was accompanied by significant reduction in familiar object exploration time, occurring largely between the first and second day of object familiarization. By contrast, tree shrews did not show a significant preference for the novel object after a one-session object familiarization. Nonetheless, they spent significantly less time exploring the familiar object on the test day compared to the object familiarization day, indicating that they did maintain a memory trace for the familiar object. Our study revealed different time courses for familiar object habituation and emergence of novelty preference, suggesting that novelty preference is dependent on well-consolidated memory of the competing familiar object. Taken together, our results demonstrate robust novelty preference of tree shrews, in general similarity to previous findings in rodents and primates. Copyright © 2012 Elsevier B.V. All rights reserved.
Grouping in object recognition: the role of a Gestalt law in letter identification.
Pelli, Denis G; Majaj, Najib J; Raizman, Noah; Christian, Christopher J; Kim, Edward; Palomares, Melanie C
2009-02-01
The Gestalt psychologists reported a set of laws describing how vision groups elements to recognize objects. The Gestalt laws "prescribe for us what we are to recognize 'as one thing'" (Kohler, 1920). Were they right? Does object recognition involve grouping? Tests of the laws of grouping have been favourable, but mostly assessed only detection, not identification, of the compound object. The grouping of elements seen in the detection experiments with lattices and "snakes in the grass" is compelling, but falls far short of the vivid everyday experience of recognizing a familiar, meaningful, named thing, which mediates the ordinary identification of an object. Thus, after nearly a century, there is hardly any evidence that grouping plays a role in ordinary object recognition. To assess grouping in object recognition, we made letters out of grating patches and measured threshold contrast for identifying these letters in visual noise as a function of perturbation of grating orientation, phase, and offset. We define a new measure, "wiggle", to characterize the degree to which these various perturbations violate the Gestalt law of good continuation. We find that efficiency for letter identification is inversely proportional to wiggle and is wholly determined by wiggle, independent of how the wiggle was produced. Thus the effects of three different kinds of shape perturbation on letter identifiability are predicted by a single measure of goodness of continuation. This shows that letter identification obeys the Gestalt law of good continuation and may be the first confirmation of the original Gestalt claim that object recognition involves grouping.
Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.
Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum
2014-09-01
Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.
Grouping in object recognition: The role of a Gestalt law in letter identification
Pelli, Denis G.; Majaj, Najib J.; Raizman, Noah; Christian, Christopher J.; Kim, Edward; Palomares, Melanie C.
2009-01-01
The Gestalt psychologists reported a set of laws describing how vision groups elements to recognize objects. The Gestalt laws “prescribe for us what we are to recognize ‘as one thing’” (Köhler, 1920). Were they right? Does object recognition involve grouping? Tests of the laws of grouping have been favourable, but mostly assessed only detection, not identification, of the compound object. The grouping of elements seen in the detection experiments with lattices and “snakes in the grass” is compelling, but falls far short of the vivid everyday experience of recognizing a familiar, meaningful, named thing, which mediates the ordinary identification of an object. Thus, after nearly a century, there is hardly any evidence that grouping plays a role in ordinary object recognition. To assess grouping in object recognition, we made letters out of grating patches and measured threshold contrast for identifying these letters in visual noise as a function of perturbation of grating orientation, phase, and offset. We define a new measure, “wiggle”, to characterize the degree to which these various perturbations violate the Gestalt law of good continuation. We find that efficiency for letter identification is inversely proportional to wiggle and is wholly determined by wiggle, independent of how the wiggle was produced. Thus the effects of three different kinds of shape perturbation on letter identifiability are predicted by a single measure of goodness of continuation. This shows that letter identification obeys the Gestalt law of good continuation and may be the first confirmation of the original Gestalt claim that object recognition involves grouping. PMID:19424881
Pitsikas, Nikolaos; Sakellaridis, Nikolaos
2007-10-01
The effects of the non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist memantine on recognition memory were investigated in the rat by using the object recognition task. In addition, a possible interaction between memantine and the nitric oxide (NO) donor molsidomine in antagonizing extinction of recognition memory was also evaluated utilizing the same behavioral procedure. In a first dose-response study, post-training administration of memantine (10 and 20, but not 3 mg/kg) antagonized recognition memory deficits in the rat, suggesting that memantine modulates storage and/or retrieval of information. In a subsequent study, combination of sub-threshold doses of memantine (3 mg/kg) and the NO donor molsidomine (1 mg/kg) counteracted delay-dependent impairments in the same task. Neither memantine (3 mg/kg) nor molsidomine (1 mg/kg) alone reduced object recognition performance deficits. The present findings indicate a) that memantine is involved in recognition memory and b) support a functional interaction between memantine and molsidomine on recognition memory mechanisms.
NASA Astrophysics Data System (ADS)
Neulist, Joerg; Armbruster, Walter
2005-05-01
Model-based object recognition in range imagery typically involves matching the image data to the expected model data for each feasible model and pose hypothesis. Since the matching procedure is computationally expensive, the key to efficient object recognition is the reduction of the set of feasible hypotheses. This is particularly important for military vehicles, which may consist of several large moving parts such as the hull, turret, and gun of a tank, and hence require an eight or higher dimensional pose space to be searched. The presented paper outlines techniques for reducing the set of feasible hypotheses based on an estimation of target dimensions and orientation. Furthermore, the presence of a turret and a main gun and their orientations are determined. The vehicle parts dimensions as well as their error estimates restrict the number of model hypotheses whereas the position and orientation estimates and their error bounds reduce the number of pose hypotheses needing to be verified. The techniques are applied to several hundred laser radar images of eight different military vehicles with various part classifications and orientations. On-target resolution in azimuth, elevation and range is about 30 cm. The range images contain up to 20% dropouts due to atmospheric absorption. Additionally some target retro-reflectors produce outliers due to signal crosstalk. The presented algorithms are extremely robust with respect to these and other error sources. The hypothesis space for hull orientation is reduced to about 5 degrees as is the error for turret rotation and gun elevation, provided the main gun is visible.
Tian, Moqian; Grill-Spector, Kalanit
2015-01-01
Recognizing objects is difficult because it requires both linking views of an object that can be different and distinguishing objects with similar appearance. Interestingly, people can learn to recognize objects across views in an unsupervised way, without feedback, just from the natural viewing statistics. However, there is intense debate regarding what information during unsupervised learning is used to link among object views. Specifically, researchers argue whether temporal proximity, motion, or spatiotemporal continuity among object views during unsupervised learning is beneficial. Here, we untangled the role of each of these factors in unsupervised learning of novel three-dimensional (3-D) objects. We found that after unsupervised training with 24 object views spanning a 180° view space, participants showed significant improvement in their ability to recognize 3-D objects across rotation. Surprisingly, there was no advantage to unsupervised learning with spatiotemporal continuity or motion information than training with temporal proximity. However, we discovered that when participants were trained with just a third of the views spanning the same view space, unsupervised learning via spatiotemporal continuity yielded significantly better recognition performance on novel views than learning via temporal proximity. These results suggest that while it is possible to obtain view-invariant recognition just from observing many views of an object presented in temporal proximity, spatiotemporal information enhances performance by producing representations with broader view tuning than learning via temporal association. Our findings have important implications for theories of object recognition and for the development of computational algorithms that learn from examples. PMID:26024454
Multiple degree of freedom optical pattern recognition
NASA Technical Reports Server (NTRS)
Casasent, D.
1987-01-01
Three general optical approaches to multiple degree of freedom object pattern recognition (where no stable object rest position exists) are advanced. These techniques include: feature extraction, correlation, and artificial intelligence. The details of the various processors are advanced together with initial results.
Products recognition on shop-racks from local scale-invariant features
NASA Astrophysics Data System (ADS)
Zawistowski, Jacek; Kurzejamski, Grzegorz; Garbat, Piotr; Naruniec, Jacek
2016-04-01
This paper presents a system designed for the multi-object detection purposes and adjusted for the application of product search on the market shelves. System uses well known binary keypoint detection algorithms for finding characteristic points in the image. One of the main idea is object recognition based on Implicit Shape Model method. Authors of the article proposed many improvements of the algorithm. Originally fiducial points are matched with a very simple function. This leads to the limitations in the number of objects parts being success- fully separated, while various methods of classification may be validated in order to achieve higher performance. Such an extension implies research on training procedure able to deal with many objects categories. Proposed solution opens a new possibilities for many algorithms demanding fast and robust multi-object recognition.
Branstetter, Brian K; DeLong, Caroline M; Dziedzic, Brandon; Black, Amy; Bakhtiari, Kimberly
2016-01-01
Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin's (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin's ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin's acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition.
Branstetter, Brian K.; DeLong, Caroline M.; Dziedzic, Brandon; Black, Amy; Bakhtiari, Kimberly
2016-01-01
Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin’s (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin’s ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin’s acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition. PMID:26863519
The effect of colour congruency on shape discriminations of novel objects.
Nicholson, Karen G; Humphrey, G Keith
2004-01-01
Although visual object recognition is primarily shape driven, colour assists the recognition of some objects. It is unclear, however, just how colour information is coded with respect to shape in long-term memory and how the availability of colour in the visual image facilitates object recognition. We examined the role of colour in the recognition of novel, 3-D objects by manipulating the congruency of object colour across the study and test phases, using an old/new shape-identification task. In experiment 1, we found that participants were faster at correctly identifying old objects on the basis of shape information when these objects were presented in their original colour, rather than in a different colour. In experiments 2 and 3, we found that participants were faster at correctly identifying old objects on the basis of shape information when these objects were presented with their original part-colour conjunctions, rather than in different or in reversed part-colour conjunctions. In experiment 4, we found that participants were quite poor at the verbal recall of part-colour conjunctions for correctly identified old objects, presented as grey-scale images at test. In experiment 5, we found that participants were significantly slower at correctly identifying old objects when object colour was incongruent across study and test, than when background colour was incongruent across study and test. The results of these experiments suggest that both shape and colour information are stored as part of the long-term representation of these novel objects. Results are discussed in terms of how colour might be coded with respect to shape in stored object representations.
3 CFR 8902 - Proclamation 8902 of November 7, 2012. Veterans Day, 2012
Code of Federal Regulations, 2013 CFR
2013-01-01
... face, there is no challenge we cannot overcome, and our best days are still ahead. This year, we marked... our country moving forward. With respect for and in recognition of the contributions our service...
Effects of a Moving Distractor Object on Time-to-Contact Judgments
ERIC Educational Resources Information Center
Oberfeld, Daniel; Hecht, Heiko
2008-01-01
The effects of moving task-irrelevant objects on time-to-contact (TTC) judgments were examined in 5 experiments. Observers viewed a directly approaching target in the presence of a distractor object moving in parallel with the target. In Experiments 1 to 4, observers decided whether the target would have collided with them earlier or later than a…
Remote sensing using MIMO systems
Bikhazi, Nicolas; Young, William F; Nguyen, Hung D
2015-04-28
A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.
Dashniani, M G; Burjanadze, M A; Naneishvili, T L; Chkhikvishvili, N C; Beselia, G V; Kruashvili, L B; Pochkhidze, N O; Chighladze, M R
2015-01-01
In the present study, the effect of the medial septal (MS) lesions on exploratory activity in the open field and the spatial and object recognition memory has been investigated. This experiment compares three types of MS lesions: electrolytic lesions that destroy cells and fibers of passage, neurotoxic - ibotenic acid lesions that spare fibers of passage but predominantly affect the septal noncholinergic neurons, and immunotoxin - 192 IgG-saporin infusions that only eliminate cholinergic neurons. The main results are: the MS electrolytic lesioned rats were impaired in habituating to the environment in the repeated spatial environment, but rats with immuno- or neurotoxic lesions of the MS did not differ from control ones; the MS electrolytic and ibotenic acid lesioned rats showed an increase in their exploratory activity to the objects and were impaired in habituating to the objects in the repeated spatial environment; rats with immunolesions of the MS did not differ from control rats; electrolytic lesions of the MS disrupt spatial recognition memory; rats with immuno- or neurotoxic lesions of the MS were normal in detecting spatial novelty; all of the MS-lesioned and control rats clearly reacted to the object novelty by exploring the new object more than familiar ones. Results observed across lesion techniques indicate that: (i) the deficits after nonselective damage of MS are limited to a subset of cognitive processes dependent on the hippocampus, (ii) MS is substantial for spatial, but not for object recognition memory - the object recognition memory can be supported outside the septohippocampal system; (iii) the selective loss of septohippocampal cholinergic or noncholinergic projections does not disrupt the function of the hippocampus to a sufficient extent to impair spatial recognition memory; (iv) there is dissociation between the two major components (cholinergic and noncholinergic) of the septohippocampal pathway in exploratory behavior assessed in the open field - the memory exhibited by decrements in exploration of repeated object presentations is affected by either electrolytic or ibotenic lesions, but not saporin.
Picture object recognition in an American black bear (Ursus americanus).
Johnson-Ulrich, Zoe; Vonk, Jennifer; Humbyrd, Mary; Crowley, Marilyn; Wojtkowski, Ela; Yates, Florence; Allard, Stephanie
2016-11-01
Many animals have been tested for conceptual discriminations using two-dimensional images as stimuli, and many of these species appear to transfer knowledge from 2D images to analogous real life objects. We tested an American black bear for picture-object recognition using a two alternative forced choice task. She was presented with four unique sets of objects and corresponding pictures. The bear showed generalization from both objects to pictures and pictures to objects; however, her transfer was superior when transferring from real objects to pictures, suggesting that bears can recognize visual features from real objects within photographic images during discriminations.
Hub, Andreas; Hartter, Tim; Kombrink, Stefan; Ertl, Thomas
2008-01-01
PURPOSE.: This study describes the development of a multi-functional assistant system for the blind which combines localisation, real and virtual navigation within modelled environments and the identification and tracking of fixed and movable objects. The approximate position of buildings is determined with a global positioning sensor (GPS), then the user establishes exact position at a specific landmark, like a door. This location initialises indoor navigation, based on an inertial sensor, a step recognition algorithm and map. Tracking of movable objects is provided by another inertial sensor and a head-mounted stereo camera, combined with 3D environmental models. This study developed an algorithm based on shape and colour to identify objects and used a common face detection algorithm to inform the user of the presence and position of others. The system allows blind people to determine their position with approximately 1 metre accuracy. Virtual exploration of the environment can be accomplished by moving one's finger on a touch screen of a small portable tablet PC. The name of rooms, building features and hazards, modelled objects and their positions are presented acoustically or in Braille. Given adequate environmental models, this system offers blind people the opportunity to navigate independently and safely, even within unknown environments. Additionally, the system facilitates education and rehabilitation by providing, in several languages, object names, features and relative positions.
Gesture Based Control and EMG Decomposition
NASA Technical Reports Server (NTRS)
Wheeler, Kevin R.; Chang, Mindy H.; Knuth, Kevin H.
2005-01-01
This paper presents two probabilistic developments for use with Electromyograms (EMG). First described is a new-electric interface for virtual device control based on gesture recognition. The second development is a Bayesian method for decomposing EMG into individual motor unit action potentials. This more complex technique will then allow for higher resolution in separating muscle groups for gesture recognition. All examples presented rely upon sampling EMG data from a subject's forearm. The gesture based recognition uses pattern recognition software that has been trained to identify gestures from among a given set of gestures. The pattern recognition software consists of hidden Markov models which are used to recognize the gestures as they are being performed in real-time from moving averages of EMG. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard. Moving averages of EMG do not provide easy distinction between fine muscle groups. To better distinguish between different fine motor skill muscle groups we present a Bayesian algorithm to separate surface EMG into representative motor unit action potentials. The algorithm is based upon differential Variable Component Analysis (dVCA) [l], [2] which was originally developed for Electroencephalograms. The algorithm uses a simple forward model representing a mixture of motor unit action potentials as seen across multiple channels. The parameters of this model are iteratively optimized for each component. Results are presented on both synthetic and experimental EMG data. The synthetic case has additive white noise and is compared with known components. The experimental EMG data was obtained using a custom linear electrode array designed for this study.
Perceptual impressions of causality are affected by common fate.
White, Peter A
2017-03-24
Many studies of perceptual impressions of causality have used a stimulus in which a moving object (the launcher) contacts a stationary object (the target) and the latter then moves off. Such stimuli give rise to an impression that the launcher makes the target move. In the present experiments, instead of a single target object, an array of four vertically aligned objects was used. The launcher contacted none of them, but stopped at a point between the two central objects. The four objects then moved with similar motion properties, exhibiting the Gestalt property of common fate. Strong impressions of causality were reported for this stimulus. It is argued that the array of four objects was perceived, by the likelihood principle, as a single object with some parts unseen, that the launcher was perceived as contacting one of the unseen parts of this object, and that the causal impression resulted from that. Supporting that argument, stimuli in which kinematic features were manipulated so as to weaken or eliminate common fate yielded weaker impressions of causality.
Moving vehicles segmentation based on Gaussian motion model
NASA Astrophysics Data System (ADS)
Zhang, Wei; Fang, Xiang Z.; Lin, Wei Y.
2005-07-01
Moving objects segmentation is a challenge in computer vision. This paper focuses on the segmentation of moving vehicles in dynamic scene. We analyses the psychology of human vision and present a framework for segmenting moving vehicles in the highway. The proposed framework consists of two parts. Firstly, we propose an adaptive background update method in which the background is updated according to the change of illumination conditions and thus can adapt to the change of illumination sensitively. Secondly, we construct a Gaussian motion model to segment moving vehicles, in which the motion vectors of the moving pixels are modeled as a Gaussian model and an on-line EM algorithm is used to update the model. The Gaussian distribution of the adaptive model is elevated to determine which moving vectors result from moving vehicles and which from other moving objects such as waving trees. Finally, the pixels with motion vector result from the moving vehicles are segmented. Experimental results of several typical scenes show that the proposed model can detect the moving vehicles correctly and is immune from influence of the moving objects caused by the waving trees and the vibration of camera.
Object recognition with hierarchical discriminant saliency networks.
Han, Sunhyoung; Vasconcelos, Nuno
2014-01-01
The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency. As a model of neural computation, the HDSN has two possible implementations. In a biologically plausible implementation, all layers comply with the standard neurophysiological model of visual cortex, with sub-layers of simple and complex units that implement a combination of filtering, divisive normalization, pooling, and non-linearities. In a convolutional neural network implementation, all layers are convolutional and implement a combination of filtering, rectification, and pooling. The rectification is performed with a parametric extension of the now popular rectified linear units (ReLUs), whose parameters can be tuned for the detection of target object classes. This enables a number of functional enhancements over neural network models that lack a connection to saliency, including optimal feature denoising mechanisms for recognition, modulation of saliency responses by the discriminant power of the underlying features, and the ability to detect both feature presence and absence. In either implementation, each layer has a precise statistical interpretation, and all parameters are tuned by statistical learning. Each saliency detection layer learns more discriminant saliency templates than its predecessors and higher layers have larger pooling fields. This enables the HDSN to simultaneously achieve high selectivity to target object classes and invariance. The performance of the network in saliency and object recognition tasks is compared to those of models from the biological and computer vision literatures. This demonstrates benefits for all the functional enhancements of the HDSN, the class tuning inherent to discriminant saliency, and saliency layers based on templates of increasing target selectivity and invariance. Altogether, these experiments suggest that there are non-trivial benefits in integrating attention and recognition.
Lawson, Rebecca
2004-10-01
In two experiments, the identification of novel 3-D objects was worse for depth-rotated and mirror-reflected views, compared with the study view in an implicit affective preference memory task, as well as in an explicit recognition memory task. In Experiment 1, recognition was worse and preference was lower when depth-rotated views of an object were paired with an unstudied object relative to trials when the study view of that object was shown. There was a similar trend for mirror-reflected views. In Experiment 2, the study view of an object was both recognized and preferred above chance when it was paired with either depth-rotated or mirror-reflected views of that object. These results suggest that view-sensitive representations of objects mediate performance in implicit, as well as explicit, memory tasks. The findings do not support the claim that separate episodic and structural description representations underlie performance in implicit and explicit memory tasks, respectively.
Moving Object Localization Based on UHF RFID Phase and Laser Clustering
Fu, Yulu; Wang, Changlong; Liang, Gaoli; Zhang, Hua; Ur Rehman, Shafiq
2018-01-01
RFID (Radio Frequency Identification) offers a way to identify objects without any contact. However, positioning accuracy is limited since RFID neither provides distance nor bearing information about the tag. This paper proposes a new and innovative approach for the localization of moving object using a particle filter by incorporating RFID phase and laser-based clustering from 2d laser range data. First of all, we calculate phase-based velocity of the moving object based on RFID phase difference. Meanwhile, we separate laser range data into different clusters, and compute the distance-based velocity and moving direction of these clusters. We then compute and analyze the similarity between two velocities, and select K clusters having the best similarity score. We predict the particles according to the velocity and moving direction of laser clusters. Finally, we update the weights of the particles based on K clusters and achieve the localization of moving objects. The feasibility of this approach is validated on a Scitos G5 service robot and the results prove that we have successfully achieved a localization accuracy up to 0.25 m. PMID:29522458
Computational cameras for moving iris recognition
NASA Astrophysics Data System (ADS)
McCloskey, Scott; Venkatesha, Sharath
2015-05-01
Iris-based biometric identification is increasingly used for facility access and other security applications. Like all methods that exploit visual information, however, iris systems are limited by the quality of captured images. Optical defocus due to a small depth of field (DOF) is one such challenge, as is the acquisition of sharply-focused iris images from subjects in motion. This manuscript describes the application of computational motion-deblurring cameras to the problem of moving iris capture, from the underlying theory to system considerations and performance data.
Integration across Time Determines Path Deviation Discrimination for Moving Objects
Whitaker, David; Levi, Dennis M.; Kennedy, Graeme J.
2008-01-01
Background Human vision is vital in determining our interaction with the outside world. In this study we characterize our ability to judge changes in the direction of motion of objects–a common task which can allow us either to intercept moving objects, or else avoid them if they pose a threat. Methodology/Principal Findings Observers were presented with objects which moved across a computer monitor on a linear path until the midline, at which point they changed their direction of motion, and observers were required to judge the direction of change. In keeping with the variety of objects we encounter in the real world, we varied characteristics of the moving stimuli such as velocity, extent of motion path and the object size. Furthermore, we compared performance for moving objects with the ability of observers to detect a deviation in a line which formed the static trace of the motion path, since it has been suggested that a form of static memory trace may form the basis for these types of judgment. The static line judgments were well described by a ‘scale invariant’ model in which any two stimuli which possess the same two-dimensional geometry (length/width) result in the same level of performance. Performance for the moving objects was entirely different. Irrespective of the path length, object size or velocity of motion, path deviation thresholds depended simply upon the duration of the motion path in seconds. Conclusions/Significance Human vision has long been known to integrate information across space in order to solve spatial tasks such as judgment of orientation or position. Here we demonstrate an intriguing mechanism which integrates direction information across time in order to optimize the judgment of path deviation for moving objects. PMID:18414653
Hilbig, Benjamin E; Pohl, Rüdiger F
2009-09-01
According to part of the adaptive toolbox notion of decision making known as the recognition heuristic (RH), the decision process in comparative judgments-and its duration-is determined by whether recognition discriminates between objects. By contrast, some recently proposed alternative models predict that choices largely depend on the amount of evidence speaking for each of the objects and that decision times thus depend on the evidential difference between objects, or the degree of conflict between options. This article presents 3 experiments that tested predictions derived from the RH against those from alternative models. All experiments used naturally recognized objects without teaching participants any information and thus provided optimal conditions for application of the RH. However, results supported the alternative, evidence-based models and often conflicted with the RH. Recognition was not the key determinant of decision times, whereas differences between objects with respect to (both positive and negative) evidence predicted effects well. In sum, alternative models that allow for the integration of different pieces of information may well provide a better account of comparative judgments. (c) 2009 APA, all rights reserved.
Using Prosopagnosia to Test and Modify Visual Recognition Theory.
O'Brien, Alexander M
2018-02-01
Biederman's contemporary theory of basic visual object recognition (Recognition-by-Components) is based on structural descriptions of objects and presumes 36 visual primitives (geons) people can discriminate, but there has been no empirical test of the actual use of these 36 geons to visually distinguish objects. In this study, we tested for the actual use of these geons in basic visual discrimination by comparing object discrimination performance patterns (when distinguishing varied stimuli) of an acquired prosopagnosia patient (LB) and healthy control participants. LB's prosopagnosia left her heavily reliant on structural descriptions or categorical object differences in visual discrimination tasks versus the control participants' additional ability to use face recognition or coordinate systems (Coordinate Relations Hypothesis). Thus, when LB performed comparably to control participants with a given stimulus, her restricted reliance on basic or categorical discriminations meant that the stimuli must be distinguishable on the basis of a geon feature. By varying stimuli in eight separate experiments and presenting all 36 geons, we discerned that LB coded only 12 (vs. 36) distinct visual primitives (geons), apparently reflective of human visual systems generally.
What Three-Year-Olds Remember from Their Past: Long-Term Memory for Persons, Objects, and Actions
ERIC Educational Resources Information Center
Hirte, Monika; Graf, Frauke; Kim, Ziyon; Knopf, Monika
2017-01-01
From birth on, infants show long-term recognition memory for persons. Furthermore, infants from six months onwards are able to store and retrieve demonstrated actions over long-term intervals in deferred imitation tasks. Thus, information about the model demonstrating the object-related actions is stored and recognition memory for the objects as…
Representations of Shape in Object Recognition and Long-Term Visual Memory
1993-02-11
in anything other than linguistic terms ( Biederman , 1987 , for example). STATUS 1. Viewpoint-Dependent Features in Object Representation Tarr and...is object- based orientation-independent representations sufficient for "basic-level" categorization ( Biederman , 1987 ; Corballis, 1988). Alternatively...space. REFERENCES Biederman , I. ( 1987 ). Recognition-by-components: A theory of human image understanding. Psychological Review, 94,115-147. Cooper, L
The Dark Side of Context: Context Reinstatement Can Distort Memory.
Doss, Manoj K; Picart, Jamila K; Gallo, David A
2018-04-01
It is widely assumed that context reinstatement benefits memory, but our experiments revealed that context reinstatement can systematically distort memory. Participants viewed pictures of objects superimposed over scenes, and we later tested their ability to differentiate these old objects from similar new objects. Context reinstatement was manipulated by presenting objects on the reinstated or switched scene at test. Not only did context reinstatement increase correct recognition of old objects, but it also consistently increased incorrect recognition of similar objects as old ones. This false recognition effect was robust, as it was found in several experiments, occurred after both immediate and delayed testing, and persisted with high confidence even after participants were warned to avoid the distorting effects of context. To explain this memory illusion, we propose that context reinstatement increases the likelihood of confusing conceptual and perceptual information, potentially in medial temporal brain regions that integrate this information.
Impaired recognition of faces and objects in dyslexia: Evidence for ventral stream dysfunction?
Sigurdardottir, Heida Maria; Ívarsson, Eysteinn; Kristinsdóttir, Kristjana; Kristjánsson, Árni
2015-09-01
The objective of this study was to establish whether or not dyslexics are impaired at the recognition of faces and other complex nonword visual objects. This would be expected based on a meta-analysis revealing that children and adult dyslexics show functional abnormalities within the left fusiform gyrus, a brain region high up in the ventral visual stream, which is thought to support the recognition of words, faces, and other objects. 20 adult dyslexics (M = 29 years) and 20 matched typical readers (M = 29 years) participated in the study. One dyslexic-typical reader pair was excluded based on Adult Reading History Questionnaire scores and IS-FORM reading scores. Performance was measured on 3 high-level visual processing tasks: the Cambridge Face Memory Test, the Vanderbilt Holistic Face Processing Test, and the Vanderbilt Expertise Test. People with dyslexia are impaired in their recognition of faces and other visually complex objects. Their holistic processing of faces appears to be intact, suggesting that dyslexics may instead be specifically impaired at part-based processing of visual objects. The difficulty that people with dyslexia experience with reading might be the most salient manifestation of a more general high-level visual deficit. (c) 2015 APA, all rights reserved).
Chao, Owen Y; Huston, Joseph P; Li, Jay-Shake; Wang, An-Li; de Souza Silva, Maria A
2016-05-01
The prefrontal cortex directly projects to the lateral entorhinal cortex (LEC), an important substrate for engaging item-associated information and relaying the information to the hippocampus. Here we ask to what extent the communication between the prefrontal cortex and LEC is critically involved in the processing of episodic-like memory. We applied a disconnection procedure to test whether the interaction between the medial prefrontal cortex (mPFC) and LEC is essential for the expression of recognition memory. It was found that male rats that received unilateral NMDA lesions of the mPFC and LEC in the same hemisphere, exhibited intact episodic-like (what-where-when) and object-recognition memories. When these lesions were placed in the opposite hemispheres (disconnection), episodic-like and associative memories for object identity, location and context were impaired. However, the disconnection did not impair the components of episodic memory, namely memory for novel object (what), object place (where) and temporal order (when), per se. Thus, the present findings suggest that the mPFC and LEC are a critical part of a neural circuit that underlies episodic-like and associative object-recognition memory. © 2015 Wiley Periodicals, Inc.
ViCoMo: visual context modeling for scene understanding in video surveillance
NASA Astrophysics Data System (ADS)
Creusen, Ivo M.; Javanbakhti, Solmaz; Loomans, Marijn J. H.; Hazelhoff, Lykele B.; Roubtsova, Nadejda; Zinger, Svitlana; de With, Peter H. N.
2013-10-01
The use of contextual information can significantly aid scene understanding of surveillance video. Just detecting people and tracking them does not provide sufficient information to detect situations that require operator attention. We propose a proof-of-concept system that uses several sources of contextual information to improve scene understanding in surveillance video. The focus is on two scenarios that represent common video surveillance situations, parking lot surveillance and crowd monitoring. In the first scenario, a pan-tilt-zoom (PTZ) camera tracking system is developed for parking lot surveillance. Context is provided by the traffic sign recognition system to localize regular and handicapped parking spot signs as well as license plates. The PTZ algorithm has the ability to selectively detect and track persons based on scene context. In the second scenario, a group analysis algorithm is introduced to detect groups of people. Contextual information is provided by traffic sign recognition and region labeling algorithms and exploited for behavior understanding. In both scenarios, decision engines are used to interpret and classify the output of the subsystems and if necessary raise operator alerts. We show that using context information enables the automated analysis of complicated scenarios that were previously not possible using conventional moving object classification techniques.
Fontan, Lionel; Ferrané, Isabelle; Farinas, Jérôme; Pinquier, Julien; Tardieu, Julien; Magnen, Cynthia; Gaillard, Pascal; Aumont, Xavier; Füllgrabe, Christian
2017-09-18
The purpose of this article is to assess speech processing for listeners with simulated age-related hearing loss (ARHL) and to investigate whether the observed performance can be replicated using an automatic speech recognition (ASR) system. The long-term goal of this research is to develop a system that will assist audiologists/hearing-aid dispensers in the fine-tuning of hearing aids. Sixty young participants with normal hearing listened to speech materials mimicking the perceptual consequences of ARHL at different levels of severity. Two intelligibility tests (repetition of words and sentences) and 1 comprehension test (responding to oral commands by moving virtual objects) were administered. Several language models were developed and used by the ASR system in order to fit human performances. Strong significant positive correlations were observed between human and ASR scores, with coefficients up to .99. However, the spectral smearing used to simulate losses in frequency selectivity caused larger declines in ASR performance than in human performance. Both intelligibility and comprehension scores for listeners with simulated ARHL are highly correlated with the performances of an ASR-based system. In the future, it needs to be determined if the ASR system is similarly successful in predicting speech processing in noise and by older people with ARHL.
Nicotine Administration Attenuates Methamphetamine-Induced Novel Object Recognition Deficits
Vieira-Brock, Paula L.; McFadden, Lisa M.; Nielsen, Shannon M.; Smith, Misty D.; Hanson, Glen R.
2015-01-01
Background: Previous studies have demonstrated that methamphetamine abuse leads to memory deficits and these are associated with relapse. Furthermore, extensive evidence indicates that nicotine prevents and/or improves memory deficits in different models of cognitive dysfunction and these nicotinic effects might be mediated by hippocampal or cortical nicotinic acetylcholine receptors. The present study investigated whether nicotine attenuates methamphetamine-induced novel object recognition deficits in rats and explored potential underlying mechanisms. Methods: Adolescent or adult male Sprague-Dawley rats received either nicotine water (10–75 μg/mL) or tap water for several weeks. Methamphetamine (4×7.5mg/kg/injection) or saline was administered either before or after chronic nicotine exposure. Novel object recognition was evaluated 6 days after methamphetamine or saline. Serotonin transporter function and density and α4β2 nicotinic acetylcholine receptor density were assessed on the following day. Results: Chronic nicotine intake via drinking water beginning during either adolescence or adulthood attenuated the novel object recognition deficits caused by a high-dose methamphetamine administration. Similarly, nicotine attenuated methamphetamine-induced deficits in novel object recognition when administered after methamphetamine treatment. However, nicotine did not attenuate the serotonergic deficits caused by methamphetamine in adults. Conversely, nicotine attenuated methamphetamine-induced deficits in α4β2 nicotinic acetylcholine receptor density in the hippocampal CA1 region. Furthermore, nicotine increased α4β2 nicotinic acetylcholine receptor density in the hippocampal CA3, dentate gyrus and perirhinal cortex in both saline- and methamphetamine-treated rats. Conclusions: Overall, these findings suggest that nicotine-induced increases in α4β2 nicotinic acetylcholine receptors in the hippocampus and perirhinal cortex might be one mechanism by which novel object recognition deficits are attenuated by nicotine in methamphetamine-treated rats. PMID:26164716
Hopkins, Michael E.; Bucci, David J.
2010-01-01
Physical exercise induces widespread neurobiological adaptations and improves learning and memory. Most research in this field has focused on hippocampus-based spatial tasks and changes in brain-derived neurotrophic factor (BDNF) as a putative substrate underlying exercise-induced cognitive improvements. Chronic exercise can also be anxiolytic and causes adaptive changes in stress reactivity. The present study employed a perirhinal cortex-dependent object recognition task as well as the elevated plus maze to directly test for interactions between the cognitive and anxiolytic effects of exercise in male Long Evans rats. Hippocampal and perirhinal cortex tissue was collected to determine whether the relationship between BDNF and cognitive performance extends to this non-spatial and non-hippocampal-dependent task. We also examined whether the cognitive improvements persisted once the exercise regimen was terminated. Our data indicate that 4 weeks of voluntary exercise every-other-day improved object recognition memory. Importantly, BDNF expression in the perirhinal cortex of exercising rats was strongly correlated with object recognition memory. Exercise also decreased anxiety-like behavior, however there was no evidence to support a relationship between anxiety-like behavior and performance on the novel object recognition task. There was a trend for a negative relationship between anxiety-like behavior and hippocampal BDNF. Neither the cognitive improvements nor the relationship between cognitive function and perirhinal BDNF levels persisted after 2 weeks of inactivity. These are the first data demonstrating that region-specific changes in BDNF protein levels are correlated with exercise-induced improvements in non-spatial memory, mediated by structures outside the hippocampus and are consistent with the theory that, with regard to object recognition, the anxiolytic and cognitive effects of exercise may be mediated through separable mechanisms. PMID:20601027
Zhao, Zaorui; Fan, Lu; Fortress, Ashley M.; Boulware, Marissa I.; Frick, Karyn M.
2012-01-01
Histone acetylation has recently been implicated in learning and memory processes, yet necessity of histone acetylation for such processes has not been demonstrated using pharmacological inhibitors of histone acetyltransferases (HATs). As such, the present study tested whether garcinol, a potent HAT inhibitor in vitro, could impair hippocampal memory consolidation and block the memory-enhancing effects of the modulatory hormone 17β-estradiol (E2). We first showed that bilateral infusion of garcinol (0.1, 1, or 10 μg/side) into the dorsal hippocampus (DH) immediately after training impaired object recognition memory consolidation in ovariectomized female mice. A behaviorally effective dose of garcinol (10 μg/side) also significantly decreased DH HAT activity. We next examined whether DH infusion of a behaviorally subeffective dose of garcinol (1 ng/side) could block the effects of DH E2 infusion on object recognition and epigenetic processes. Immediately after training, ovariectomized female mice received bilateral DH infusions of vehicle, E2 (5 μg/side), garcinol (1 ng/side), or E2 plus garcinol. Forty-eight hours later, garcinol blocked the memory-enhancing effects of E2. Garcinol also reversed the E2-induced increase in DH histone H3 acetylation, HAT activity, and levels of the de novo methyltransferase DNMT3B, as well as the E2-induced decrease in levels of the memory repressor protein histone deacetylase 2 (HDAC2). Collectively, these findings suggest that histone acetylation is critical for object recognition memory consolidation and the beneficial effects of E2 on object recognition. Importantly, this work demonstrates that the role of histone acetylation in memory processes can be studied using a HAT inhibitor. PMID:22396409
Image-based automatic recognition of larvae
NASA Astrophysics Data System (ADS)
Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai
2010-08-01
As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.
NASA Astrophysics Data System (ADS)
Syryamkim, V. I.; Kuznetsov, D. N.; Kuznetsova, A. S.
2018-05-01
Image recognition is an information process implemented by some information converter (intelligent information channel, recognition system) having input and output. The input of the system is fed with information about the characteristics of the objects being presented. The output of the system displays information about which classes (generalized images) the recognized objects are assigned to. When creating and operating an automated system for pattern recognition, a number of problems are solved, while for different authors the formulations of these tasks, and the set itself, do not coincide, since it depends to a certain extent on the specific mathematical model on which this or that recognition system is based. This is the task of formalizing the domain, forming a training sample, learning the recognition system, reducing the dimensionality of space.
Come together, right now: dynamic overwriting of an object's history through common fate.
Luria, Roy; Vogel, Edward K
2014-08-01
The objects around us constantly move and interact, and the perceptual system needs to monitor on-line these interactions and to update the object's status accordingly. Gestalt grouping principles, such as proximity and common fate, play a fundamental role in how we perceive and group these objects. Here, we investigated situations in which the initial object representation as a separate item was updated by a subsequent Gestalt grouping cue (i.e., proximity or common fate). We used a version of the color change detection paradigm, in which the objects started to move separately, then met and stayed stationary, or moved separately, met, and then continued to move together. We monitored the object representations on-line using the contralateral delay activity (CDA; an ERP component indicative of the number of maintained objects), during their movement, and after the objects disappeared and became working memory representations. The results demonstrated that the objects' representations (as indicated by the CDA amplitude) persisted as being separate, even after a Gestalt proximity cue (when the objects "met" and remained stationary on the same position). Only a strong common fate Gestalt cue (when the objects not just met but also moved together) was able to override the objects' initial separate status, creating an integrated representation. These results challenge the view that Gestalt principles cause reflexive grouping. Instead, the object initial representation plays an important role that can override even powerful grouping cues.
Art critic: Multisignal vision and speech interaction system in a gaming context.
Reale, Michael J; Liu, Peng; Yin, Lijun; Canavan, Shaun
2013-12-01
True immersion of a player within a game can only occur when the world simulated looks and behaves as close to reality as possible. This implies that the game must correctly read and understand, among other things, the player's focus, attitude toward the objects/persons in focus, gestures, and speech. In this paper, we proposed a novel system that integrates eye gaze estimation, head pose estimation, facial expression recognition, speech recognition, and text-to-speech components for use in real-time games. Both the eye gaze and head pose components utilize underlying 3-D models, and our novel head pose estimation algorithm uniquely combines scene flow with a generic head model. The facial expression recognition module uses the local binary patterns with three orthogonal planes approach on the 2-D shape index domain rather than the pixel domain, resulting in improved classification. Our system has also been extended to use a pan-tilt-zoom camera driven by the Kinect, allowing us to track a moving player. A test game, Art Critic, is also presented, which not only demonstrates the utility of our system but also provides a template for player/non-player character (NPC) interaction in a gaming context. The player alters his/her view of the 3-D world using head pose, looks at paintings/NPCs using eye gaze, and makes an evaluation based on the player's expression and speech. The NPC artist will respond with facial expression and synthetic speech based on its personality. Both qualitative and quantitative evaluations of the system are performed to illustrate the system's effectiveness.
Two Speed Factors of Visual Recognition Independently Correlated with Fluid Intelligence
Tachibana, Ryosuke; Namba, Yuri; Noguchi, Yasuki
2014-01-01
Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one’s IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR). PMID:24825574
Nilakantan, Aneesha S; Voss, Joel L; Weintraub, Sandra; Mesulam, M-Marsel; Rogalski, Emily J
2017-06-01
Primary progressive aphasia (PPA) is clinically defined by an initial loss of language function and preservation of other cognitive abilities, including episodic memory. While PPA primarily affects the left-lateralized perisylvian language network, some clinical neuropsychological tests suggest concurrent initial memory loss. The goal of this study was to test recognition memory of objects and words in the visual and auditory modality to separate language-processing impairments from retentive memory in PPA. Individuals with non-semantic PPA had longer reaction times and higher false alarms for auditory word stimuli compared to visual object stimuli. Moreover, false alarms for auditory word recognition memory were related to cortical thickness within the left inferior frontal gyrus and left temporal pole, while false alarms for visual object recognition memory was related to cortical thickness within the right-temporal pole. This pattern of results suggests that specific vulnerability in processing verbal stimuli can hinder episodic memory in PPA, and provides evidence for differential contributions of the left and right temporal poles in word and object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hierarchical Context Modeling for Video Event Recognition.
Wang, Xiaoyang; Ji, Qiang
2016-10-11
Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.
Size-Sensitive Perceptual Representations Underlie Visual and Haptic Object Recognition
Craddock, Matt; Lawson, Rebecca
2009-01-01
A variety of similarities between visual and haptic object recognition suggests that the two modalities may share common representations. However, it is unclear whether such common representations preserve low-level perceptual features or whether transfer between vision and haptics is mediated by high-level, abstract representations. Two experiments used a sequential shape-matching task to examine the effects of size changes on unimodal and crossmodal visual and haptic object recognition. Participants felt or saw 3D plastic models of familiar objects. The two objects presented on a trial were either the same size or different sizes and were the same shape or different but similar shapes. Participants were told to ignore size changes and to match on shape alone. In Experiment 1, size changes on same-shape trials impaired performance similarly for both visual-to-visual and haptic-to-haptic shape matching. In Experiment 2, size changes impaired performance on both visual-to-haptic and haptic-to-visual shape matching and there was no interaction between the cost of size changes and direction of transfer. Together the unimodal and crossmodal matching results suggest that the same, size-specific perceptual representations underlie both visual and haptic object recognition, and indicate that crossmodal memory for objects must be at least partly based on common perceptual representations. PMID:19956685
Pattern recognition of the targets with help of polarization properties of the signal
NASA Astrophysics Data System (ADS)
Ponomaryov, Volodymyr I.; de Rivera, Luis N.; Castellanos, Aldo B.; Popov, Anatoly V.
1999-10-01
We proposed to use the possibility of recognition of the targets on background of the scattering from the surface, weather objects with the help of polarimetric 3-cm radar. It has been investigated such polarization characteristics: the amplitudes of the polarization matrix elements; an anisotropy coefficient; depolarization coefficient; asymmetry coefficient; the energy section was less than 1 dB at ranges up to 15 km and less than 1.5 dB at ranges up to 100 km. During the experiments urban objects and 6 various ships of small displacement having the closest values of the backscattering cross-section were used. The analysis has shown: the factor of the polarization selection for anisotropy objects and weather objects had the values about 0.02-0.08 Isotropy had the values of polarimetric correlation factor for hydrometers about 0.7-0.8, for earth surface about 0.8-0.9, for sea surface - from 0.33 to 0.7. The results of the work of recognition algorithm of a class 'concrete objects', and 'metal objects' are submitted as example in the paper. The result of experiments have shown that the probability of correct recognition of the identified objects was in the limits from 0.93 to 0.97.
Research on measurement method of optical camouflage effect of moving object
NASA Astrophysics Data System (ADS)
Wang, Juntang; Xu, Weidong; Qu, Yang; Cui, Guangzhen
2016-10-01
Camouflage effectiveness measurement as an important part of the camouflage technology, which testing and measuring the camouflage effect of the target and the performance of the camouflage equipment according to the tactical and technical requirements. The camouflage effectiveness measurement of current optical band is mainly aimed at the static target which could not objectively reflect the dynamic camouflage effect of the moving target. This paper synthetical used technology of dynamic object detection and camouflage effect detection, the digital camouflage of the moving object as the research object, the adaptive background update algorithm of Surendra was improved, a method of optical camouflage effect detection using Lab-color space in the detection of moving-object was presented. The binary image of moving object is extracted by this measurement technology, in the sequence diagram, the characteristic parameters such as the degree of dispersion, eccentricity, complexity and moment invariants are constructed to construct the feature vector space. The Euclidean distance of moving target which through digital camouflage was calculated, the results show that the average Euclidean distance of 375 frames was 189.45, which indicated that the degree of dispersion, eccentricity, complexity and moment invariants of the digital camouflage graphics has a great difference with the moving target which not spray digital camouflage. The measurement results showed that the camouflage effect was good. Meanwhile with the performance evaluation module, the correlation coefficient of the dynamic target image range 0.1275 from 0.0035, and presented some ups and down. Under the dynamic condition, the adaptability of target and background was reflected. In view of the existing infrared camouflage technology, the next step, we want to carry out the camouflage effect measurement technology of the moving target based on infrared band.
The Functional Architecture of Visual Object Recognition
1991-07-01
different forms of agnosia can provide clues to the representations underlying normal object recognition (Farah, 1990). For example, the pair-wise...patterns of deficit and sparing occur. In a review of 99 published cases of agnosia , the observed patterns of co- occurrence implicated two underlying
Real-Time pedestrian detection : layered object recognition system for pedestrian collision sensing.
DOT National Transportation Integrated Search
2010-01-01
In 2005 alone, 64,000 pedestrians were injured and 4,882 were killed in the United States, with pedestrians accounting for 11 percent of all traffic fatalities and 2 percent of injuries. The focus of "Layered Object Recognition System for Pedestrian ...
Evaluating structural pattern recognition for handwritten math via primitive label graphs
NASA Astrophysics Data System (ADS)
Zanibbi, Richard; MoucheÌre, Harold; Viard-Gaudin, Christian
2013-01-01
Currently, structural pattern recognizer evaluations compare graphs of detected structure to target structures (i.e. ground truth) using recognition rates, recall and precision for object segmentation, classification and relationships. In document recognition, these target objects (e.g. symbols) are frequently comprised of multiple primitives (e.g. connected components, or strokes for online handwritten data), but current metrics do not characterize errors at the primitive level, from which object-level structure is obtained. Primitive label graphs are directed graphs defined over primitives and primitive pairs. We define new metrics obtained by Hamming distances over label graphs, which allow classification, segmentation and parsing errors to be characterized separately, or using a single measure. Recall and precision for detected objects may also be computed directly from label graphs. We illustrate the new metrics by comparing a new primitive-level evaluation to the symbol-level evaluation performed for the CROHME 2012 handwritten math recognition competition. A Python-based set of utilities for evaluating, visualizing and translating label graphs is publicly available.
Visual working memory is more tolerant than visual long-term memory.
Schurgin, Mark W; Flombaum, Jonathan I
2018-05-07
Human visual memory is tolerant, meaning that it supports object recognition despite variability across encounters at the image level. Tolerant object recognition remains one capacity in which artificial intelligence trails humans. Typically, tolerance is described as a property of human visual long-term memory (VLTM). In contrast, visual working memory (VWM) is not usually ascribed a role in tolerant recognition, with tests of that system usually demanding discriminatory power-identifying changes, not sameness. There are good reasons to expect that VLTM is more tolerant; functionally, recognition over the long-term must accommodate the fact that objects will not be viewed under identical conditions; and practically, the passive and massive nature of VLTM may impose relatively permissive criteria for thinking that two inputs are the same. But empirically, tolerance has never been compared across working and long-term visual memory. We therefore developed a novel paradigm for equating encoding and test across different memory types. In each experiment trial, participants saw two objects, memory for one tested immediately (VWM) and later for the other (VLTM). VWM performance was better than VLTM and remained robust despite the introduction of image and object variability. In contrast, VLTM performance suffered linearly as more variability was introduced into test stimuli. Additional experiments excluded interference effects as causes for the observed differences. These results suggest the possibility of a previously unidentified role for VWM in the acquisition of tolerant representations for object recognition. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Mesa-Gresa, Patricia; Pérez-Martinez, Asunción; Redolat, Rosa
2013-01-01
Environmental enrichment (EE) is an experimental paradigm in which rodents are housed in complex environments containing objects that provide stimulation, the effects of which are expected to improve the welfare of these subjects. EE has been shown to considerably improve learning and memory in rodents. However, knowledge about the effects of EE on social interaction is generally limited and rather controversial. Thus, our aim was to evaluate both novel object recognition and agonistic behavior in NMRI mice receiving EE, hypothesizing enhanced cognition and slightly enhanced agonistic interaction upon EE rearing. During a 4-week period half the mice (n = 16) were exposed to EE and the other half (n = 16) remained in a standard environment (SE). On PND 56-57, animals performed the object recognition test, in which recognition memory was measured using a discrimination index. The social interaction test consisted of an encounter between an experimental animal and a standard opponent. Results indicated that EE mice explored the new object for longer periods than SE animals (P < .05). During social encounters, EE mice devoted more time to sociability and agonistic behavior (P < .05) than their non-EE counterparts. In conclusion, EE has been shown to improve object recognition and increase agonistic behavior in adolescent/early adulthood mice. In the future we intend to extend this study on a longitudinal basis in order to assess in more depth the effect of EE and the consistency of the above-mentioned observations in NMRI mice. Copyright © 2013 Wiley Periodicals, Inc.
Paris, Jason J; Frye, Cheryl A
2008-01-01
Ovarian hormone elevations are associated with enhanced learning/memory. During behavioral estrus or pregnancy, progestins, such as progesterone (P4) and its metabolite 5α-pregnan-3α-ol-20-one (3α,5α-THP), are elevated due, in part, to corpora luteal and placental secretion. During ‘pseudopregnancy’, the induction of corpora luteal functioning results in a hormonal milieu analogous to pregnancy, which ceases after about 12 days, due to the lack of placental formation. Multiparity is also associated with enhanced learning/memory, perhaps due to prior steroid exposure during pregnancy. Given evidence that progestins and/or parity may influence cognition, we investigated how natural alterations in the progestin milieu influence cognitive performance. In Experiment 1, virgin rats (nulliparous) or rats with two prior pregnancies (multiparous) were assessed on the object placement and recognition tasks, when in high-estrogen/P4 (behavioral estrus) or low-estrogen/P4 (diestrus) phases of the estrous cycle. In Experiment 2, primiparous or multiparous rats were tested in the object placement and recognition tasks when not pregnant, pseudopregnant, or pregnant (between gestational days (GDs) 6 and 12). In Experiment 3, pregnant primiparous or multiparous rats were assessed daily in the object placement or recognition tasks. Females in natural states associated with higher endogenous progestins (behavioral estrus, pregnancy, multiparity) outperformed rats in low progestin states (diestrus, non-pregnancy, nulliparity) on the object placement and recognition tasks. In earlier pregnancy, multiparous, compared with primiparous, rats had a lower corticosterone, but higher estrogen levels, concomitant with better object placement performance. From GD 13 until post partum, primiparous rats had higher 3α,5α-THP levels and improved object placement performance compared with multiparous rats. PMID:18390689
A new method of edge detection for object recognition
Maddox, Brian G.; Rhew, Benjamin
2004-01-01
Traditional edge detection systems function by returning every edge in an input image. This can result in a large amount of clutter and make certain vectorization algorithms less accurate. Accuracy problems can then have a large impact on automated object recognition systems that depend on edge information. A new method of directed edge detection can be used to limit the number of edges returned based on a particular feature. This results in a cleaner image that is easier for vectorization. Vectorized edges from this process could then feed an object recognition system where the edge data would also contain information as to what type of feature it bordered.
Spatiotemporal dynamics underlying object completion in human ventral visual cortex.
Tang, Hanlin; Buia, Calin; Madhavan, Radhika; Crone, Nathan E; Madsen, Joseph R; Anderson, William S; Kreiman, Gabriel
2014-08-06
Natural vision often involves recognizing objects from partial information. Recognition of objects from parts presents a significant challenge for theories of vision because it requires spatial integration and extrapolation from prior knowledge. Here we recorded intracranial field potentials of 113 visually selective electrodes from epilepsy patients in response to whole and partial objects. Responses along the ventral visual stream, particularly the inferior occipital and fusiform gyri, remained selective despite showing only 9%-25% of the object areas. However, these visually selective signals emerged ∼100 ms later for partial versus whole objects. These processing delays were particularly pronounced in higher visual areas within the ventral stream. This latency difference persisted when controlling for changes in contrast, signal amplitude, and the strength of selectivity. These results argue against a purely feedforward explanation of recognition from partial information, and provide spatiotemporal constraints on theories of object recognition that involve recurrent processing. Copyright © 2014 Elsevier Inc. All rights reserved.
3D visual mechinism by neural networkings
NASA Astrophysics Data System (ADS)
Sugiyama, Shigeki
2007-04-01
There are some computer vision systems that are available on a market but those are quite far from a real usage of our daily life in a sense of security guard or in a sense of a usage of recognition of a target object behaviour. Because those surroundings' sensing might need to recognize a detail description of an object, like "the distance to an object" and "an object detail figure" and "its figure of edging", which are not possible to have a clear picture of the mechanisms of them with the present recognition system. So for doing this, here studies on mechanisms of how a pair of human eyes can recognize a distance apart, an object edging, and an object in order to get basic essences of vision mechanisms. And those basic mechanisms of object recognition are simplified and are extended logically for applying to a computer vision system. Some of the results of these studies are introduced on this paper.
Towards NIRS-based hand movement recognition.
Paleari, Marco; Luciani, Riccardo; Ariano, Paolo
2017-07-01
This work reports on preliminary results about on hand movement recognition with Near InfraRed Spectroscopy (NIRS) and surface ElectroMyoGraphy (sEMG). Either basing on physical contact (touchscreens, data-gloves, etc.), vision techniques (Microsoft Kinect, Sony PlayStation Move, etc.), or other modalities, hand movement recognition is a pervasive function in today environment and it is at the base of many gaming, social, and medical applications. Albeit, in recent years, the use of muscle information extracted by sEMG has spread out from the medical applications to contaminate the consumer world, this technique still falls short when dealing with movements of the hand. We tested NIRS as a technique to get another point of view on the muscle phenomena and proved that, within a specific movements selection, NIRS can be used to recognize movements and return information regarding muscles at different depths. Furthermore, we propose here three different multimodal movement recognition approaches and compare their performances.
Artificially intelligent recognition of Arabic speaker using voice print-based local features
NASA Astrophysics Data System (ADS)
Mahmood, Awais; Alsulaiman, Mansour; Muhammad, Ghulam; Akram, Sheeraz
2016-11-01
Local features for any pattern recognition system are based on the information extracted locally. In this paper, a local feature extraction technique was developed. This feature was extracted in the time-frequency plain by taking the moving average on the diagonal directions of the time-frequency plane. This feature captured the time-frequency events producing a unique pattern for each speaker that can be viewed as a voice print of the speaker. Hence, we referred to this technique as voice print-based local feature. The proposed feature was compared to other features including mel-frequency cepstral coefficient (MFCC) for speaker recognition using two different databases. One of the databases used in the comparison is a subset of an LDC database that consisted of two short sentences uttered by 182 speakers. The proposed feature attained 98.35% recognition rate compared to 96.7% for MFCC using the LDC subset.
Comparing object recognition from binary and bipolar edge images for visual prostheses.
Jung, Jae-Hyun; Pu, Tian; Peli, Eli
2016-11-01
Visual prostheses require an effective representation method due to the limited display condition which has only 2 or 3 levels of grayscale in low resolution. Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary (black and white) edge images have been used to represent features to convey essential information. However, in scenes with a complex cluttered background, the recognition rate of the binary edge images by human observers is limited and additional information is required. The polarity of edges and cusps (black or white features on a gray background) carries important additional information; the polarity may provide shape from shading information missing in the binary edge image. This depth information may be restored by using bipolar edges. We compared object recognition rates from 16 binary edge images and bipolar edge images by 26 subjects to determine the possible impact of bipolar filtering in visual prostheses with 3 or more levels of grayscale. Recognition rates were higher with bipolar edge images and the improvement was significant in scenes with complex backgrounds. The results also suggest that erroneous shape from shading interpretation of bipolar edges resulting from pigment rather than boundaries of shape may confound the recognition.
Neural network application for thermal image recognition of low-resolution objects
NASA Astrophysics Data System (ADS)
Fang, Yi-Chin; Wu, Bo-Wen
2007-02-01
In the ever-changing situation on a battle field, accurate recognition of a distant object is critical to a commander's decision-making and the general public's safety. Efficiently distinguishing between an enemy's armoured vehicles and ordinary civilian houses under all weather conditions has become an important research topic. This study presents a system for recognizing an armoured vehicle by distinguishing marks and contours. The characteristics of 12 different shapes and 12 characters are used to explore thermal image recognition under the circumstance of long distance and low resolution. Although the recognition capability of human eyes is superior to that of artificial intelligence under normal conditions, it tends to deteriorate substantially under long-distance and low-resolution scenarios. This study presents an effective method for choosing features and processing images. The artificial neural network technique is applied to further improve the probability of accurate recognition well beyond the limit of the recognition capability of human eyes.
Warmth of familiarity and chill of error: affective consequences of recognition decisions.
Chetverikov, Andrey
2014-04-01
The present research aimed to assess the effect of recognition decision on subsequent affective evaluations of recognised and non-recognised objects. Consistent with the proposed account of post-decisional preferences, results showed that the effect of recognition on preferences depends upon objective familiarity. If stimuli are recognised, liking ratings are positively associated with exposure frequency; if stimuli are not recognised, this link is either absent (Experiment 1) or negative (Experiments 2 and 3). This interaction between familiarity and recognition exists even when recognition accuracy is at chance level and the "mere exposure" effect is absent. Finally, data obtained from repeated measurements of preferences and using manipulations of task order confirm that recognition decisions have a causal influence on preferences. The findings suggest that affective evaluation can provide fine-grained access to the efficacy of cognitive processing even in simple cognitive tasks.
NASA Astrophysics Data System (ADS)
Josephy, Richard
1986-07-01
For some years there has been a growing recognition of the need for changes in assessment patterns in school science. These changes include a move towards criterion-based assessment linking to objectives and an increased emphasis on the assessment of practical and experimental skills. These changes are, to a significant extent, embodied in the new GCSE assessment schemes and will thus affect all students and teachers of physics from September (1986). At least 20% of the total assessment in GCSE physics examinations must be of practical and experimental skills, and at least half of this must be carried out in the laboratory environment. One development which addresses the needs and problems outlined above is the science component of OCEA, the Oxford Certificate of Educational Achievement. Because this covers a much wider field than assessment of practical and experimental skills in physics, a brief description of the whole project is given.
Segmenting Images for a Better Diagnosis
NASA Technical Reports Server (NTRS)
2004-01-01
NASA's Hierarchical Segmentation (HSEG) software has been adapted by Bartron Medical Imaging, LLC, for use in segmentation feature extraction, pattern recognition, and classification of medical images. Bartron acquired licenses from NASA Goddard Space Flight Center for application of the HSEG concept to medical imaging, from the California Institute of Technology/Jet Propulsion Laboratory to incorporate pattern-matching software, and from Kennedy Space Center for data-mining and edge-detection programs. The Med-Seg[TM] united developed by Bartron provides improved diagnoses for a wide range of medical images, including computed tomography scans, positron emission tomography scans, magnetic resonance imaging, ultrasound, digitized Z-ray, digitized mammography, dental X-ray, soft tissue analysis, and moving object analysis. It also can be used in analysis of soft-tissue slides. Bartron's future plans include the application of HSEG technology to drug development. NASA is advancing it's HSEG software to learn more about the Earth's magnetosphere.
Aniracetam restores object recognition impaired by age, scopolamine, and nucleus basalis lesions.
Bartolini, L; Casamenti, F; Pepeu, G
1996-02-01
Object recognition was investigated in adult and aging male rats in a two-trials, unrewarded, test that assessed a form of working-episodic memory. Exploration time in the first trial, in which two copies of the same object were presented, was recorded. In the second trial, in which one of the familiar objects and a new object were presented, the time spent exploring the two objects was separately recorded and a discrimination index was calculated. Adult rats explored the new object longer than the familiar object when the intertrial time ranged from 1 to 60 min. Rats older than 20 months of age did not discriminate between familiar and new objects. Object discrimination was lost in adult rats after scopolamine (0.2 mg/kg SC) administration and with lesions of the nucleus basalis, resulting in a 40% decrease in cortical ChAT activity. Both aniracetam (25, 50, 100 mg/kg os) and oxiracetam (50 mg/kg os) restored object recognition in aging rats, in rats treated with scopolamine, and with lesions of the nucleus basalis. In the rat, object discrimination appears to depend on the integrity of the cholinergic system, and nootropic drugs can correct its disruption.
Agnosic vision is like peripheral vision, which is limited by crowding.
Strappini, Francesca; Pelli, Denis G; Di Pace, Enrico; Martelli, Marialuisa
2017-04-01
Visual agnosia is a neuropsychological impairment of visual object recognition despite near-normal acuity and visual fields. A century of research has provided only a rudimentary account of the functional damage underlying this deficit. We find that the object-recognition ability of agnosic patients viewing an object directly is like that of normally-sighted observers viewing it indirectly, with peripheral vision. Thus, agnosic vision is like peripheral vision. We obtained 14 visual-object-recognition tests that are commonly used for diagnosis of visual agnosia. Our "standard" normal observer took these tests at various eccentricities in his periphery. Analyzing the published data of 32 apperceptive agnosia patients and a group of 14 posterior cortical atrophy (PCA) patients on these tests, we find that each patient's pattern of object recognition deficits is well characterized by one number, the equivalent eccentricity at which our standard observer's peripheral vision is like the central vision of the agnosic patient. In other words, each agnosic patient's equivalent eccentricity is conserved across tests. Across patients, equivalent eccentricity ranges from 4 to 40 deg, which rates severity of the visual deficit. In normal peripheral vision, the required size to perceive a simple image (e.g., an isolated letter) is limited by acuity, and that for a complex image (e.g., a face or a word) is limited by crowding. In crowding, adjacent simple objects appear unrecognizably jumbled unless their spacing exceeds the crowding distance, which grows linearly with eccentricity. Besides conservation of equivalent eccentricity across object-recognition tests, we also find conservation, from eccentricity to agnosia, of the relative susceptibility of recognition of ten visual tests. These findings show that agnosic vision is like eccentric vision. Whence crowding? Peripheral vision, strabismic amblyopia, and possibly apperceptive agnosia are all limited by crowding, making it urgent to know what drives crowding. Acuity does not (Song et al., 2014), but neural density might: neurons per deg 2 in the crowding-relevant cortical area. Copyright © 2017 Elsevier Ltd. All rights reserved.
The temporal dynamics of heading perception in the presence of moving objects
Fajen, Brett R.
2015-01-01
Many forms of locomotion rely on the ability to accurately perceive one's direction of locomotion (i.e., heading) based on optic flow. Although accurate in rigid environments, heading judgments may be biased when independently moving objects are present. The aim of this study was to systematically investigate the conditions in which moving objects influence heading perception, with a focus on the temporal dynamics and the mechanisms underlying this bias. Subjects viewed stimuli simulating linear self-motion in the presence of a moving object and judged their direction of heading. Experiments 1 and 2 revealed that heading perception is biased when the object crosses or almost crosses the observer's future path toward the end of the trial, but not when the object crosses earlier in the trial. Nonetheless, heading perception is not based entirely on the instantaneous optic flow toward the end of the trial. This was demonstrated in Experiment 3 by varying the portion of the earlier part of the trial leading up to the last frame that was presented to subjects. When the stimulus duration was long enough to include the part of the trial before the moving object crossed the observer's path, heading judgments were less biased. The findings suggest that heading perception is affected by the temporal evolution of optic flow. The time course of dorsal medial superior temporal area (MSTd) neuron responses may play a crucial role in perceiving heading in the presence of moving objects, a property not captured by many existing models. PMID:26510765
Modeling and query the uncertainty of network constrained moving objects based on RFID data
NASA Astrophysics Data System (ADS)
Han, Liang; Xie, Kunqing; Ma, Xiujun; Song, Guojie
2007-06-01
The management of network constrained moving objects is more and more practical, especially in intelligent transportation system. In the past, the location information of moving objects on network is collected by GPS, which cost high and has the problem of frequent update and privacy. The RFID (Radio Frequency IDentification) devices are used more and more widely to collect the location information. They are cheaper and have less update. And they interfere in the privacy less. They detect the id of the object and the time when moving object passed by the node of the network. They don't detect the objects' exact movement in side the edge, which lead to a problem of uncertainty. How to modeling and query the uncertainty of the network constrained moving objects based on RFID data becomes a research issue. In this paper, a model is proposed to describe the uncertainty of network constrained moving objects. A two level index is presented to provide efficient access to the network and the data of movement. The processing of imprecise time-slice query and spatio-temporal range query are studied in this paper. The processing includes four steps: spatial filter, spatial refinement, temporal filter and probability calculation. Finally, some experiments are done based on the simulated data. In the experiments the performance of the index is studied. The precision and recall of the result set are defined. And how the query arguments affect the precision and recall of the result set is also discussed.
Robot environment expert system
NASA Technical Reports Server (NTRS)
Potter, J. L.
1985-01-01
The Robot Environment Expert System uses a hexidecimal tree data structure to model a complex robot environment where not only the robot arm moves, but also the robot itself and other objects may move. The hextree model allows dynamic updating, collision avoidance and path planning over time, to avoid moving objects.
One-Reason Decision Making Unveiled: A Measurement Model of the Recognition Heuristic
ERIC Educational Resources Information Center
Hilbig, Benjamin E.; Erdfelder, Edgar; Pohl, Rudiger F.
2010-01-01
The fast-and-frugal recognition heuristic (RH) theory provides a precise process description of comparative judgments. It claims that, in suitable domains, judgments between pairs of objects are based on recognition alone, whereas further knowledge is ignored. However, due to the confound between recognition and further knowledge, previous…
The Teaching Profession in Europe.
ERIC Educational Resources Information Center
Archer, E. G.; Peck, B. T.
This volume discusses the changing face of Europe and examines dimensions of the teaching profession in different countries. Matters related to recruitment, training, recognition and status, probation, teaching conditions, career advancement, and inservice opportunities are identified and developed. Teachers who contemplate moving from one country…
The memory state heuristic: A formal model based on repeated recognition judgments.
Castela, Marta; Erdfelder, Edgar
2017-02-01
The recognition heuristic (RH) theory predicts that, in comparative judgment tasks, if one object is recognized and the other is not, the recognized one is chosen. The memory-state heuristic (MSH) extends the RH by assuming that choices are not affected by recognition judgments per se, but by the memory states underlying these judgments (i.e., recognition certainty, uncertainty, or rejection certainty). Specifically, the larger the discrepancy between memory states, the larger the probability of choosing the object in the higher state. The typical RH paradigm does not allow estimation of the underlying memory states because it is unknown whether the objects were previously experienced or not. Therefore, we extended the paradigm by repeating the recognition task twice. In line with high threshold models of recognition, we assumed that inconsistent recognition judgments result from uncertainty whereas consistent judgments most likely result from memory certainty. In Experiment 1, we fitted 2 nested multinomial models to the data: an MSH model that formalizes the relation between memory states and binary choices explicitly and an approximate model that ignores the (unlikely) possibility of consistent guesses. Both models provided converging results. As predicted, reliance on recognition increased with the discrepancy in the underlying memory states. In Experiment 2, we replicated these results and found support for choice consistency predictions of the MSH. Additionally, recognition and choice latencies were in agreement with the MSH in both experiments. Finally, we validated critical parameters of our MSH model through a cross-validation method and a third experiment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Cultural differences in self-recognition: the early development of autonomous and related selves?
Ross, Josephine; Yilmaz, Mandy; Dale, Rachel; Cassidy, Rose; Yildirim, Iraz; Suzanne Zeedyk, M
2017-05-01
Fifteen- to 18-month-old infants from three nationalities were observed interacting with their mothers and during two self-recognition tasks. Scottish interactions were characterized by distal contact, Zambian interactions by proximal contact, and Turkish interactions by a mixture of contact strategies. These culturally distinct experiences may scaffold different perspectives on self. In support, Scottish infants performed best in a task requiring recognition of the self in an individualistic context (mirror self-recognition), whereas Zambian infants performed best in a task requiring recognition of the self in a less individualistic context (body-as-obstacle task). Turkish infants performed similarly to Zambian infants on the body-as-obstacle task, but outperformed Zambians on the mirror self-recognition task. Verbal contact (a distal strategy) was positively related to mirror self-recognition and negatively related to passing the body-as-obstacle task. Directive action and speech (proximal strategies) were negatively related to mirror self-recognition. Self-awareness performance was best predicted by cultural context; autonomous settings predicted success in mirror self-recognition, and related settings predicted success in the body-as-obstacle task. These novel data substantiate the idea that cultural factors may play a role in the early expression of self-awareness. More broadly, the results highlight the importance of moving beyond the mark test, and designing culturally sensitive tests of self-awareness. © 2016 John Wiley & Sons Ltd.
Rotation And Scale Invariant Object Recognition Using A Distributed Associative Memory
NASA Astrophysics Data System (ADS)
Wechsler, Harry; Zimmerman, George Lee
1988-04-01
This paper describes an approach to 2-dimensional object recognition. Complex-log conformal mapping is combined with a distributed associative memory to create a system which recognizes objects regardless of changes in rotation or scale. Recalled information from the memorized database is used to classify an object, reconstruct the memorized version of the object, and estimate the magnitude of changes in scale or rotation. The system response is resistant to moderate amounts of noise and occlusion. Several experiments, using real, gray scale images, are presented to show the feasibility of our approach.
Real-time object detection, tracking and occlusion reasoning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divakaran, Ajay; Yu, Qian; Tamrakar, Amir
A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.
CIFAR10-DVS: An Event-Stream Dataset for Object Classification
Li, Hongmin; Liu, Hanchao; Ji, Xiangyang; Li, Guoqi; Shi, Luping
2017-01-01
Neuromorphic vision research requires high-quality and appropriately challenging event-stream datasets to support continuous improvement of algorithms and methods. However, creating event-stream datasets is a time-consuming task, which needs to be recorded using the neuromorphic cameras. Currently, there are limited event-stream datasets available. In this work, by utilizing the popular computer vision dataset CIFAR-10, we converted 10,000 frame-based images into 10,000 event streams using a dynamic vision sensor (DVS), providing an event-stream dataset of intermediate difficulty in 10 different classes, named as “CIFAR10-DVS.” The conversion of event-stream dataset was implemented by a repeated closed-loop smooth (RCLS) movement of frame-based images. Unlike the conversion of frame-based images by moving the camera, the image movement is more realistic in respect of its practical applications. The repeated closed-loop image movement generates rich local intensity changes in continuous time which are quantized by each pixel of the DVS camera to generate events. Furthermore, a performance benchmark in event-driven object classification is provided based on state-of-the-art classification algorithms. This work provides a large event-stream dataset and an initial benchmark for comparison, which may boost algorithm developments in even-driven pattern recognition and object classification. PMID:28611582
CIFAR10-DVS: An Event-Stream Dataset for Object Classification.
Li, Hongmin; Liu, Hanchao; Ji, Xiangyang; Li, Guoqi; Shi, Luping
2017-01-01
Neuromorphic vision research requires high-quality and appropriately challenging event-stream datasets to support continuous improvement of algorithms and methods. However, creating event-stream datasets is a time-consuming task, which needs to be recorded using the neuromorphic cameras. Currently, there are limited event-stream datasets available. In this work, by utilizing the popular computer vision dataset CIFAR-10, we converted 10,000 frame-based images into 10,000 event streams using a dynamic vision sensor (DVS), providing an event-stream dataset of intermediate difficulty in 10 different classes, named as "CIFAR10-DVS." The conversion of event-stream dataset was implemented by a repeated closed-loop smooth (RCLS) movement of frame-based images. Unlike the conversion of frame-based images by moving the camera, the image movement is more realistic in respect of its practical applications. The repeated closed-loop image movement generates rich local intensity changes in continuous time which are quantized by each pixel of the DVS camera to generate events. Furthermore, a performance benchmark in event-driven object classification is provided based on state-of-the-art classification algorithms. This work provides a large event-stream dataset and an initial benchmark for comparison, which may boost algorithm developments in even-driven pattern recognition and object classification.
Haga, Yoshihiro; Chida, Koichi; Inaba, Yohei; Kaga, Yuji; Meguro, Taiichiro; Zuguchi, Masayuki
2016-02-01
As the use of diagnostic X-ray equipment with flat panel detectors (FPDs) has increased, so has the importance of proper management of FPD systems. To ensure quality control (QC) of FPD system, an easy method for evaluating FPD imaging performance for both stationary and moving objects is required. Until now, simple rotatable QC phantoms have not been available for the easy evaluation of the performance (spatial resolution and dynamic range) of FPD in imaging moving objects. We developed a QC phantom for this purpose. It consists of three thicknesses of copper and a rotatable test pattern of piano wires of various diameters. Initial tests confirmed its stable performance. Our moving phantom is very useful for QC of FPD images of moving objects because it enables visual evaluation of image performance (spatial resolution and dynamic range) easily.
Distance estimation and collision prediction for on-line robotic motion planning
NASA Technical Reports Server (NTRS)
Kyriakopoulos, K. J.; Saridis, G. N.
1991-01-01
An efficient method for computing the minimum distance and predicting collisions between moving objects is presented. This problem has been incorporated in the framework of an in-line motion planning algorithm to satisfy collision avoidance between a robot and moving objects modeled as convex polyhedra. In the beginning the deterministic problem, where the information about the objects is assumed to be certain is examined. If instead of the Euclidean norm, L(sub 1) or L(sub infinity) norms are used to represent distance, the problem becomes a linear programming problem. The stochastic problem is formulated, where the uncertainty is induced by sensing and the unknown dynamics of the moving obstacles. Two problems are considered: (1) filtering of the minimum distance between the robot and the moving object, at the present time; and (2) prediction of the minimum distance in the future, in order to predict possible collisions with the moving obstacles and estimate the collision time.
Cultural Diversity and Civic Education: Two Versions of the Fragmentation Objection
ERIC Educational Resources Information Center
Shorten, Andrew
2010-01-01
According to the "fragmentation objection" to multiculturalism, practices of cultural recognition undermine political stability, and this counts as a reason to be sceptical about the public recognition of minority cultures, as well as about multiculturalism construed more broadly as a public policy. Civic education programmes, designed to promote…
Multimedia Security System for Security and Medical Applications
ERIC Educational Resources Information Center
Zhou, Yicong
2010-01-01
This dissertation introduces a new multimedia security system for the performance of object recognition and multimedia encryption in security and medical applications. The system embeds an enhancement and multimedia encryption process into the traditional recognition system in order to improve the efficiency and accuracy of object detection and…
ERIC Educational Resources Information Center
Kemp, Andrew
2005-01-01
Everything moves. Even apparently stationary objects such as houses, roads, or mountains are moving because they sit on a spinning planet orbiting the Sun. Not surprisingly, the concepts of motion and the forces that affect moving objects are an integral part of the middle school science curriculum. However, middle school students are often taught…
ERIC Educational Resources Information Center
Houlrik, Jens Madsen
2009-01-01
The Lorentz transformation applies directly to the kinematics of moving particles viewed as geometric points. Wave propagation, on the other hand, involves moving planes which are extended objects defined by simultaneity. By treating a plane wave as a geometric object moving at the phase velocity, novel results are obtained that illustrate the…
ERIC Educational Resources Information Center
McNulty, Susan E.; Barrett, Ruth M.; Vogel-Ciernia, Annie; Malvaez, Melissa; Hernandez, Nicole; Davatolhagh, M. Felicia; Matheos, Dina P.; Schiffman, Aaron; Wood, Marcelo A.
2012-01-01
"Nr4a1" and "Nr4a2" are transcription factors and immediate early genes belonging to the nuclear receptor Nr4a family. In this study, we examine their role in long-term memory formation for object location and object recognition. Using siRNA to block expression of either "Nr4a1" or "Nr4a2", we found that "Nr4a2" is necessary for both long-term…
Auditory-visual object recognition time suggests specific processing for animal sounds.
Suied, Clara; Viaud-Delmon, Isabelle
2009-01-01
Recognizing an object requires binding together several cues, which may be distributed across different sensory modalities, and ignoring competing information originating from other objects. In addition, knowledge of the semantic category of an object is fundamental to determine how we should react to it. Here we investigate the role of semantic categories in the processing of auditory-visual objects. We used an auditory-visual object-recognition task (go/no-go paradigm). We compared recognition times for two categories: a biologically relevant one (animals) and a non-biologically relevant one (means of transport). Participants were asked to react as fast as possible to target objects, presented in the visual and/or the auditory modality, and to withhold their response for distractor objects. A first main finding was that, when participants were presented with unimodal or bimodal congruent stimuli (an image and a sound from the same object), similar reaction times were observed for all object categories. Thus, there was no advantage in the speed of recognition for biologically relevant compared to non-biologically relevant objects. A second finding was that, in the presence of a biologically relevant auditory distractor, the processing of a target object was slowed down, whether or not it was itself biologically relevant. It seems impossible to effectively ignore an animal sound, even when it is irrelevant to the task. These results suggest a specific and mandatory processing of animal sounds, possibly due to phylogenetic memory and consistent with the idea that hearing is particularly efficient as an alerting sense. They also highlight the importance of taking into account the auditory modality when investigating the way object concepts of biologically relevant categories are stored and retrieved.
Sully, K; Sonuga-Barke, E J S; Fairchild, G
2015-07-01
There is accumulating evidence of impairments in facial emotion recognition in adolescents with conduct disorder (CD). However, the majority of studies in this area have only been able to demonstrate an association, rather than a causal link, between emotion recognition deficits and CD. To move closer towards understanding the causal pathways linking emotion recognition problems with CD, we studied emotion recognition in the unaffected first-degree relatives of CD probands, as well as those with a diagnosis of CD. Using a family-based design, we investigated facial emotion recognition in probands with CD (n = 43), their unaffected relatives (n = 21), and healthy controls (n = 38). We used the Emotion Hexagon task, an alternative forced-choice task using morphed facial expressions depicting the six primary emotions, to assess facial emotion recognition accuracy. Relative to controls, the CD group showed impaired recognition of anger, fear, happiness, sadness and surprise (all p < 0.005). Similar to probands with CD, unaffected relatives showed deficits in anger and happiness recognition relative to controls (all p < 0.008), with a trend toward a deficit in fear recognition. There were no significant differences in performance between the CD probands and the unaffected relatives following correction for multiple comparisons. These results suggest that facial emotion recognition deficits are present in adolescents who are at increased familial risk for developing antisocial behaviour, as well as those who have already developed CD. Consequently, impaired emotion recognition appears to be a viable familial risk marker or candidate endophenotype for CD.
Real Objects Can Impede Conditional Reasoning but Augmented Objects Do Not.
Sato, Yuri; Sugimoto, Yutaro; Ueda, Kazuhiro
2018-03-01
In this study, Knauff and Johnson-Laird's (2002) visual impedance hypothesis (i.e., mental representations with irrelevant visual detail can impede reasoning) is applied to the domain of external representations and diagrammatic reasoning. We show that the use of real objects and augmented real (AR) objects can control human interpretation and reasoning about conditionals. As participants made inferences (e.g., an invalid one from "if P then Q" to "P"), they also moved objects corresponding to premises. Participants who moved real objects made more invalid inferences than those who moved AR objects and those who did not manipulate objects (there was no significant difference between the last two groups). Our results showed that real objects impeded conditional reasoning, but AR objects did not. These findings are explained by the fact that real objects may over-specify a single state that exists, while AR objects suggest multiple possibilities. Copyright © 2017 Cognitive Science Society, Inc.
Remembering the snake in the grass: Threat enhances recognition but not source memory.
Meyer, Miriam Magdalena; Bell, Raoul; Buchner, Axel
2015-12-01
Research on the influence of emotion on source memory has yielded inconsistent findings. The object-based framework (Mather, 2007) predicts that negatively arousing stimuli attract attention, resulting in enhanced within-object binding, and, thereby, enhanced source memory for intrinsic context features of emotional stimuli. To test this prediction, we presented pictures of threatening and harmless animals, the color of which had been experimentally manipulated. In a memory test, old-new recognition for the animals and source memory for their color was assessed. In all 3 experiments, old-new recognition was better for the more threatening material, which supports previous reports of an emotional memory enhancement. This recognition advantage was due to the emotional properties of the stimulus material, and not specific for snake stimuli. However, inconsistent with the prediction of the object-based framework, intrinsic source memory was not affected by emotion. (c) 2015 APA, all rights reserved).
Change blindness and visual memory: visual representations get rich and act poor.
Varakin, D Alexander; Levin, Daniel T
2006-02-01
Change blindness is often taken as evidence that visual representations are impoverished, while successful recognition of specific objects is taken as evidence that they are richly detailed. In the current experiments, participants performed cover tasks that required each object in a display to be attended. Change detection trials were unexpectedly introduced and surprise recognition tests were given for nonchanging displays. For both change detection and recognition, participants had to distinguish objects from the same basic-level category, making it likely that specific visual information had to be used for successful performance. Although recognition was above chance, incidental change detection usually remained at floor. These results help reconcile demonstrations of poor change detection with demonstrations of good memory because they suggest that the capability to store visual information in memory is not reflected by the visual system's tendency to utilize these representations for purposes of detecting unexpected changes.
Identification and location of catenary insulator in complex background based on machine vision
NASA Astrophysics Data System (ADS)
Yao, Xiaotong; Pan, Yingli; Liu, Li; Cheng, Xiao
2018-04-01
It is an important premise to locate insulator precisely for fault detection. Current location algorithms for insulator under catenary checking images are not accurate, a target recognition and localization method based on binocular vision combined with SURF features is proposed. First of all, because of the location of the insulator in complex environment, using SURF features to achieve the coarse positioning of target recognition; then Using binocular vision principle to calculate the 3D coordinates of the object which has been coarsely located, realization of target object recognition and fine location; Finally, Finally, the key is to preserve the 3D coordinate of the object's center of mass, transfer to the inspection robot to control the detection position of the robot. Experimental results demonstrate that the proposed method has better recognition efficiency and accuracy, can successfully identify the target and has a define application value.
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-01-01
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain. PMID:27282108
Cichy, Radoslaw Martin; Khosla, Aditya; Pantazis, Dimitrios; Torralba, Antonio; Oliva, Aude
2016-06-10
The complex multi-stage architecture of cortical visual pathways provides the neural basis for efficient visual object recognition in humans. However, the stage-wise computations therein remain poorly understood. Here, we compared temporal (magnetoencephalography) and spatial (functional MRI) visual brain representations with representations in an artificial deep neural network (DNN) tuned to the statistics of real-world visual recognition. We showed that the DNN captured the stages of human visual processing in both time and space from early visual areas towards the dorsal and ventral streams. Further investigation of crucial DNN parameters revealed that while model architecture was important, training on real-world categorization was necessary to enforce spatio-temporal hierarchical relationships with the brain. Together our results provide an algorithmically informed view on the spatio-temporal dynamics of visual object recognition in the human visual brain.
Shadow detection of moving objects based on multisource information in Internet of things
NASA Astrophysics Data System (ADS)
Ma, Zhen; Zhang, De-gan; Chen, Jie; Hou, Yue-xian
2017-05-01
Moving object detection is an important part in intelligent video surveillance under the banner of Internet of things. The detection of moving target's shadow is also an important step in moving object detection. On the accuracy of shadow detection will affect the detection results of the object directly. Based on the variety of shadow detection method, we find that only using one feature can't make the result of detection accurately. Then we present a new method for shadow detection which contains colour information, the invariance of optical and texture feature. Through the comprehensive analysis of the detecting results of three kinds of information, the shadow was effectively determined. It gets ideal effect in the experiment when combining advantages of various methods.
NASA Astrophysics Data System (ADS)
Menze, Moritz; Heipke, Christian; Geiger, Andreas
2018-06-01
This work investigates the estimation of dense three-dimensional motion fields, commonly referred to as scene flow. While great progress has been made in recent years, large displacements and adverse imaging conditions as observed in natural outdoor environments are still very challenging for current approaches to reconstruction and motion estimation. In this paper, we propose a unified random field model which reasons jointly about 3D scene flow as well as the location, shape and motion of vehicles in the observed scene. We formulate the problem as the task of decomposing the scene into a small number of rigidly moving objects sharing the same motion parameters. Thus, our formulation effectively introduces long-range spatial dependencies which commonly employed local rigidity priors are lacking. Our inference algorithm then estimates the association of image segments and object hypotheses together with their three-dimensional shape and motion. We demonstrate the potential of the proposed approach by introducing a novel challenging scene flow benchmark which allows for a thorough comparison of the proposed scene flow approach with respect to various baseline models. In contrast to previous benchmarks, our evaluation is the first to provide stereo and optical flow ground truth for dynamic real-world urban scenes at large scale. Our experiments reveal that rigid motion segmentation can be utilized as an effective regularizer for the scene flow problem, improving upon existing two-frame scene flow methods. At the same time, our method yields plausible object segmentations without requiring an explicitly trained recognition model for a specific object class.
The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex
Leibo, Joel Z.; Liao, Qianli; Anselmi, Fabio; Poggio, Tomaso
2015-01-01
Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to new objects that share properties with the old, then the recognition system’s optimal organization must be one containing specialized modules for different object classes. Our analysis starts from a premise we call the invariance hypothesis: that the computational goal of the ventral stream is to compute an invariant-to-transformations and discriminative signature for recognition. The key condition enabling approximate transfer of invariance without sacrificing discriminability turns out to be that the learned and novel objects transform similarly. This implies that the optimal recognition system must contain subsystems trained only with data from similarly-transforming objects and suggests a novel interpretation of domain-specific regions like the fusiform face area (FFA). Furthermore, we can define an index of transformation-compatibility, computable from videos, that can be combined with information about the statistics of natural vision to yield predictions for which object categories ought to have domain-specific regions in agreement with the available data. The result is a unifying account linking the large literature on view-based recognition with the wealth of experimental evidence concerning domain-specific regions. PMID:26496457
Gandarias, Juan M; Gómez-de-Gabriel, Jesús M; García-Cerezo, Alfonso J
2018-02-26
The use of tactile perception can help first response robotic teams in disaster scenarios, where visibility conditions are often reduced due to the presence of dust, mud, or smoke, distinguishing human limbs from other objects with similar shapes. Here, the integration of the tactile sensor in adaptive grippers is evaluated, measuring the performance of an object recognition task based on deep convolutional neural networks (DCNNs) using a flexible sensor mounted in adaptive grippers. A total of 15 classes with 50 tactile images each were trained, including human body parts and common environment objects, in semi-rigid and flexible adaptive grippers based on the fin ray effect. The classifier was compared against the rigid configuration and a support vector machine classifier (SVM). Finally, a two-level output network has been proposed to provide both object-type recognition and human/non-human classification. Sensors in adaptive grippers have a higher number of non-null tactels (up to 37% more), with a lower mean of pressure values (up to 72% less) than when using a rigid sensor, with a softer grip, which is needed in physical human-robot interaction (pHRI). A semi-rigid implementation with 95.13% object recognition rate was chosen, even though the human/non-human classification had better results (98.78%) with a rigid sensor.
A Novel Locally Linear KNN Method With Applications to Visual Recognition.
Liu, Qingfeng; Liu, Chengjun
2017-09-01
A locally linear K Nearest Neighbor (LLK) method is presented in this paper with applications to robust visual recognition. Specifically, the concept of an ideal representation is first presented, which improves upon the traditional sparse representation in many ways. The objective function based on a host of criteria for sparsity, locality, and reconstruction is then optimized to derive a novel representation, which is an approximation to the ideal representation. The novel representation is further processed by two classifiers, namely, an LLK-based classifier and a locally linear nearest mean-based classifier, for visual recognition. The proposed classifiers are shown to connect to the Bayes decision rule for minimum error. Additional new theoretical analysis is presented, such as the nonnegative constraint, the group regularization, and the computational efficiency of the proposed LLK method. New methods such as a shifted power transformation for improving reliability, a coefficients' truncating method for enhancing generalization, and an improved marginal Fisher analysis method for feature extraction are proposed to further improve visual recognition performance. Extensive experiments are implemented to evaluate the proposed LLK method for robust visual recognition. In particular, eight representative data sets are applied for assessing the performance of the LLK method for various visual recognition applications, such as action recognition, scene recognition, object recognition, and face recognition.
Newborn chickens generate invariant object representations at the onset of visual object experience
Wood, Justin N.
2013-01-01
To recognize objects quickly and accurately, mature visual systems build invariant object representations that generalize across a range of novel viewing conditions (e.g., changes in viewpoint). To date, however, the origins of this core cognitive ability have not yet been established. To examine how invariant object recognition develops in a newborn visual system, I raised chickens from birth for 2 weeks within controlled-rearing chambers. These chambers provided complete control over all visual object experiences. In the first week of life, subjects’ visual object experience was limited to a single virtual object rotating through a 60° viewpoint range. In the second week of life, I examined whether subjects could recognize that virtual object from novel viewpoints. Newborn chickens were able to generate viewpoint-invariant representations that supported object recognition across large, novel, and complex changes in the object’s appearance. Thus, newborn visual systems can begin building invariant object representations at the onset of visual object experience. These abstract representations can be generated from sparse data, in this case from a visual world containing a single virtual object seen from a limited range of viewpoints. This study shows that powerful, robust, and invariant object recognition machinery is an inherent feature of the newborn brain. PMID:23918372
A role for the CAMKK pathway in visual object recognition memory.
Tinsley, Chris J; Narduzzo, Katherine E; Brown, Malcolm W; Warburton, E Clea
2012-03-01
The role of the CAMKK pathway in object recognition memory was investigated. Rats' performance in a preferential object recognition test was examined after local infusion into the perirhinal cortex of the CAMKK inhibitor STO-609. STO-609 infused either before or immediately after acquisition impaired memory tested after a 24 h but not a 20-min delay. Memory was not impaired when STO-609 was infused 20 min after acquisition. The expression of a downstream reaction product of CAMKK was measured by immunohistochemical staining for phospho-CAMKI(Thr177) at 10, 40, 70, and 100 min following the viewing of novel and familiar images of objects. Processing familiar images resulted in more pCAMKI stained neurons in the perirhinal cortex than processing novel images at the 10- and 40-min delays. Prior infusion of STO-609 caused a reduction in pCAMKI stained neurons in response to viewing either novel or familiar images, consistent with its role as an inhibitor of CAMKK. The results establish that the CAMKK pathway within the perirhinal cortex is important for the consolidation of object recognition memory. The activation of pCAMKI after acquisition is earlier than previously reported for pCAMKII. Copyright © 2011 Wiley Periodicals, Inc.
Huberle, Elisabeth; Karnath, Hans-Otto
2006-01-01
Simultanagnosia is a rare deficit that impairs individuals in perceiving several objects at the same time. It is usually observed following bilateral parieto-occipital brain damage. Despite the restrictions in perceiving the global aspect of a scene, processing of individual objects remains unaffected. The mechanisms underlying simultanagnosia are not well understood. Previous findings indicated that the integration of multiple objects into a holistic representation of the environment is not impossible per se, but might depend on the spatial relationship between individual objects. The present study examined the influence of inter-element distances between individual objects on the recognition of global shapes in two patients with simultanagnosia. We presented Navon hierarchical letter stimuli with different inter-element distances between letters at the Local Scale. Improved recognition at the Global Scale was observed in both patients by reducing the inter-element distance. Global shape recognition in simultanagnosia thus seems to be modulated by the spatial distance of local elements and does not appear to be an all-or-nothing phenomenon depending on spatial continuity. The findings seem to argue against a deficit in visual working memory capacity as the primary deficit in simultanagnosia. However, further research is necessary to investigate alternative interpretations.
Bidirectional Modulation of Recognition Memory
Ho, Jonathan W.; Poeta, Devon L.; Jacobson, Tara K.; Zolnik, Timothy A.; Neske, Garrett T.; Connors, Barry W.
2015-01-01
Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects. For example, animals and humans with perirhinal damage are unable to distinguish familiar from novel objects in recognition memory tasks. In the normal brain, perirhinal neurons respond to novelty and familiarity by increasing or decreasing firing rates. Recent work also implicates oscillatory activity in the low-beta and low-gamma frequency bands in sensory detection, perception, and recognition. Using optogenetic methods in a spontaneous object exploration (SOR) task, we altered recognition memory performance in rats. In the SOR task, normal rats preferentially explore novel images over familiar ones. We modulated exploratory behavior in this task by optically stimulating channelrhodopsin-expressing perirhinal neurons at various frequencies while rats looked at novel or familiar 2D images. Stimulation at 30–40 Hz during looking caused rats to treat a familiar image as if it were novel by increasing time looking at the image. Stimulation at 30–40 Hz was not effective in increasing exploration of novel images. Stimulation at 10–15 Hz caused animals to treat a novel image as familiar by decreasing time looking at the image, but did not affect looking times for images that were already familiar. We conclude that optical stimulation of PER at different frequencies can alter visual recognition memory bidirectionally. SIGNIFICANCE STATEMENT Recognition of novelty and familiarity are important for learning, memory, and decision making. Perirhinal cortex (PER) has a well established role in the familiarity-based recognition of individual items and objects, but how novelty and familiarity are encoded and transmitted in the brain is not known. Perirhinal neurons respond to novelty and familiarity by changing firing rates, but recent work suggests that brain oscillations may also be important for recognition. In this study, we showed that stimulation of the PER could increase or decrease exploration of novel and familiar images depending on the frequency of stimulation. Our findings suggest that optical stimulation of PER at specific frequencies can predictably alter recognition memory. PMID:26424881
Nguyen, Dat Tien; Park, Kang Ryoung
2016-07-21
With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images.
Nguyen, Dat Tien; Park, Kang Ryoung
2016-01-01
With higher demand from users, surveillance systems are currently being designed to provide more information about the observed scene, such as the appearance of objects, types of objects, and other information extracted from detected objects. Although the recognition of gender of an observed human can be easily performed using human perception, it remains a difficult task when using computer vision system images. In this paper, we propose a new human gender recognition method that can be applied to surveillance systems based on quality assessment of human areas in visible light and thermal camera images. Our research is novel in the following two ways: First, we utilize the combination of visible light and thermal images of the human body for a recognition task based on quality assessment. We propose a quality measurement method to assess the quality of image regions so as to remove the effects of background regions in the recognition system. Second, by combining the features extracted using the histogram of oriented gradient (HOG) method and the measured qualities of image regions, we form a new image features, called the weighted HOG (wHOG), which is used for efficient gender recognition. Experimental results show that our method produces more accurate estimation results than the state-of-the-art recognition method that uses human body images. PMID:27455264
Fazl, Arash; Grossberg, Stephen; Mingolla, Ennio
2009-02-01
How does the brain learn to recognize an object from multiple viewpoints while scanning a scene with eye movements? How does the brain avoid the problem of erroneously classifying parts of different objects together? How are attention and eye movements intelligently coordinated to facilitate object learning? A neural model provides a unified mechanistic explanation of how spatial and object attention work together to search a scene and learn what is in it. The ARTSCAN model predicts how an object's surface representation generates a form-fitting distribution of spatial attention, or "attentional shroud". All surface representations dynamically compete for spatial attention to form a shroud. The winning shroud persists during active scanning of the object. The shroud maintains sustained activity of an emerging view-invariant category representation while multiple view-specific category representations are learned and are linked through associative learning to the view-invariant object category. The shroud also helps to restrict scanning eye movements to salient features on the attended object. Object attention plays a role in controlling and stabilizing the learning of view-specific object categories. Spatial attention hereby coordinates the deployment of object attention during object category learning. Shroud collapse releases a reset signal that inhibits the active view-invariant category in the What cortical processing stream. Then a new shroud, corresponding to a different object, forms in the Where cortical processing stream, and search using attention shifts and eye movements continues to learn new objects throughout a scene. The model mechanistically clarifies basic properties of attention shifts (engage, move, disengage) and inhibition of return. It simulates human reaction time data about object-based spatial attention shifts, and learns with 98.1% accuracy and a compression of 430 on a letter database whose letters vary in size, position, and orientation. The model provides a powerful framework for unifying many data about spatial and object attention, and their interactions during perception, cognition, and action.
How landmark suitability shapes recognition memory signals for objects in the medial temporal lobes.
Martin, Chris B; Sullivan, Jacqueline A; Wright, Jessey; Köhler, Stefan
2018-02-01
A role of perirhinal cortex (PrC) in recognition memory for objects has been well established. Contributions of parahippocampal cortex (PhC) to this function, while documented, remain less well understood. Here, we used fMRI to examine whether the organization of item-based recognition memory signals across these two structures is shaped by object category, independent of any difference in representing episodic context. Guided by research suggesting that PhC plays a critical role in processing landmarks, we focused on three categories of objects that differ from each other in their landmark suitability as confirmed with behavioral ratings (buildings > trees > aircraft). Participants made item-based recognition-memory decisions for novel and previously studied objects from these categories, which were matched in accuracy. Multi-voxel pattern classification revealed category-specific item-recognition memory signals along the long axis of PrC and PhC, with no sharp functional boundaries between these structures. Memory signals for buildings were observed in the mid to posterior extent of PhC, signals for trees in anterior to posterior segments of PhC, and signals for aircraft in mid to posterior aspects of PrC and the anterior extent of PhC. Notably, item-based memory signals for the category with highest landmark suitability ratings were observed only in those posterior segments of PhC that also allowed for classification of landmark suitability of objects when memory status was held constant. These findings provide new evidence in support of the notion that item-based memory signals for objects are not limited to PrC, and that the organization of these signals along the longitudinal axis that crosses PrC and PhC can be captured with reference to landmark suitability. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Marra, Kyle; Graham, Brett; Carouso, Samantha; Cox, David
2012-02-01
While the application of local cortical cooling has recently become a focus of neurological research, extended localized deactivation deep within brain structures is still unexplored. Using a wirelessly controlled thermoelectric (Peltier) device and water-based heat sink, we have achieved inactivating temperatures (<20 C) at greater depths (>8 mm) than previously reported. After implanting the device into Long Evans rats' basolateral amygdala (BLA), an inhibitory brain center that controls anxiety and fear, we ran an open field test during which anxiety-driven behavioral tendencies were observed to decrease during cooling, thus confirming the device's effect on behavior. Our device will next be implanted in the rats' temporal association cortex (TeA) and recordings from our signal-tracing multichannel microelectrodes will measure and compare activated and deactivated neuronal activity so as to isolate and study the TeA signals responsible for object recognition. Having already achieved a top performing computational face-recognition system, the lab will utilize this TeA activity data to generalize its computational efforts of face recognition to achieve general object recognition.
Shi, Hai-Shui; Yin, Xi; Song, Li; Guo, Qing-Jun; Luo, Xiang-Heng
2012-02-01
Accumulating evidence has implicated neuropeptides in modulating recognition, learning and memory. However, to date, no study has investigated the effects of neuropeptide Trefoil factor 3 (TFF3) on the process of learning and memory. In the present study, we evaluated the acute effects of TFF3 administration (0.1 and 0.5mg/kg, i.p.) on the acquisition and retention of object recognition memory in mice. We found that TFF3 administration significantly enhanced both short-term and long-term memory during the retention test, conducted 90 min and 24h after training respectively. Remarkably, acute TFF3 administration transformed a learning event that would not normally result in long-term memory into an event retained for a long-term period and produced no effect on locomotor activity in mice. In conclusion, the present results provide an important role of TFF3 in improving object recognition memory and reserving it for a longer time, which suggests a potential therapeutic application for diseases with recognition and memory impairment. Copyright © 2011 Elsevier B.V. All rights reserved.
Drury, Vicki; Francis, Karen; Chapman, Ysanne
2008-10-01
This study describes the third phase of a constructivist grounded theory titled becoming a registered nurse. The study identifies that mature-aged students experience three phases in their university journey. These phases or subcategories are called taking the first step, keeping going and, finally letting go and moving forward. In this article mature students' experiences of letting go and moving forward are explicated. Data gathered through semi-structured interviews and focus groups with mature students from two rural university campuses in Australia are used to illustrate this construct. Grounded theory methods of concurrent data generation and analysis, coding, developing categories and memoing were used. It was found that mature students experienced anxiety as they transitioned out of university and into employment. Despite reports of a nursing crisis in rural Australia some students were unable to find employment in their local rural areas. These students allege that it is not the nursing shortage but rather a shortage of money to pay more nurses that is the real issue. Furthermore mature students did not have a sense of termination of their university studies as there was no formal recognition that they had completed at the time, rather the formal recognition, university graduation, occurred some months after completion.
A knowledge-based object recognition system for applications in the space station
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.
1988-01-01
A knowledge-based three-dimensional (3D) object recognition system is being developed. The system uses primitive-based hierarchical relational and structural matching for the recognition of 3D objects in the two-dimensional (2D) image for interpretation of the 3D scene. At present, the pre-processing, low-level preliminary segmentation, rule-based segmentation, and the feature extraction are completed. The data structure of the primitive viewing knowledge-base (PVKB) is also completed. Algorithms and programs based on attribute-trees matching for decomposing the segmented data into valid primitives were developed. The frame-based structural and relational descriptions of some objects were created and stored in a knowledge-base. This knowledge-base of the frame-based descriptions were developed on the MICROVAX-AI microcomputer in LISP environment. The simulated 3D scene of simple non-overlapping objects as well as real camera data of images of 3D objects of low-complexity have been successfully interpreted.
Localization and tracking of moving objects in two-dimensional space by echolocation.
Matsuo, Ikuo
2013-02-01
Bats use frequency-modulated echolocation to identify and capture moving objects in real three-dimensional space. Experimental evidence indicates that bats are capable of locating static objects with a range accuracy of less than 1 μs. A previously introduced model estimates ranges of multiple, static objects using linear frequency modulation (LFM) sound and Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates. The delay time for a single object was estimated with an accuracy of about 1.3 μs by measuring the echo at a low signal-to-noise ratio (SNR). The range accuracy was dependent not only on the SNR but also the Doppler shift, which was dependent on the movements. However, it was unclear whether this model could estimate the moving object range at each timepoint. In this study, echoes were measured from the rotating pole at two receiving points by intermittently emitting LFM sounds. The model was shown to localize moving objects in two-dimensional space by accurately estimating the object's range at each timepoint.
Fleming, Stephen A; Dilger, Ryan N
2017-03-15
Novelty preference paradigms have been widely used to study recognition memory and its neural substrates. The piglet model continues to advance the study of neurodevelopment, and as such, tasks that use novelty preference will serve especially useful due to their translatable nature to humans. However, there has been little use of this behavioral paradigm in the pig, and previous studies using the novel object recognition paradigm in piglets have yielded inconsistent results. The current study was conducted to determine if piglets were capable of displaying a novelty preference. Herein a series of experiments were conducted using novel object recognition or location in 3- and 4-week-old piglets. In the novel object recognition task, piglets were able to discriminate between novel and sample objects after delays of 2min, 1h, 1 day, and 2 days (all P<0.039) at both ages. Performance was sex-dependent, as females could perform both 1- and 2-day delays (P<0.036) and males could perform the 2-day delay (P=0.008) but not the 1-day delay (P=0.347). Furthermore, 4-week-old piglets and females tended to exhibit greater exploratory behavior compared with males. Such performance did not extend to novel location recognition tasks, as piglets were only able to discriminate between novel and sample locations after a short delay (P>0.046). In conclusion, this study determined that piglets are able to perform the novel object and location recognition tasks at 3-to-4 weeks of age, however performance was dependent on sex, age, and delay. Copyright © 2016 Elsevier B.V. All rights reserved.
Sparse aperture 3D passive image sensing and recognition
NASA Astrophysics Data System (ADS)
Daneshpanah, Mehdi
The way we perceive, capture, store, communicate and visualize the world has greatly changed in the past century Novel three dimensional (3D) imaging and display systems are being pursued both in academic and industrial settings. In many cases, these systems have revolutionized traditional approaches and/or enabled new technologies in other disciplines including medical imaging and diagnostics, industrial metrology, entertainment, robotics as well as defense and security. In this dissertation, we focus on novel aspects of sparse aperture multi-view imaging systems and their application in quantum-limited object recognition in two separate parts. In the first part, two concepts are proposed. First a solution is presented that involves a generalized framework for 3D imaging using randomly distributed sparse apertures. Second, a method is suggested to extract the profile of objects in the scene through statistical properties of the reconstructed light field. In both cases, experimental results are presented that demonstrate the feasibility of the techniques. In the second part, the application of 3D imaging systems in sensing and recognition of objects is addressed. In particular, we focus on the scenario in which only 10s of photons reach the sensor from the object of interest, as opposed to hundreds of billions of photons in normal imaging conditions. At this level, the quantum limited behavior of light will dominate and traditional object recognition practices may fail. We suggest a likelihood based object recognition framework that incorporates the physics of sensing at quantum-limited conditions. Sensor dark noise has been modeled and taken into account. This framework is applied to 3D sensing of thermal objects using visible spectrum detectors. Thermal objects as cold as 250K are shown to provide enough signature photons to be sensed and recognized within background and dark noise with mature, visible band, image forming optics and detector arrays. The results suggest that one might not need to venture into exotic and expensive detector arrays and associated optics for sensing room-temperature thermal objects in complete darkness.
Come Together, Right Now: Dynamic Overwriting of an Object’s History through Common Fate
Luria, Roy; Vogel, Edward K.
2015-01-01
The objects around us constantly move and interact, and the perceptual system needs to monitor on-line these interactions and to update the object’s status accordingly. Gestalt grouping principles, such as proximity and common fate, play a fundamental role in how we perceive and group these objects. Here, we investigated situations in which the initial object representation as a separate item was updated by a subsequent Gestalt grouping cue (i.e., proximity or common fate). We used a version of the color change detection paradigm, in which the objects started to move separately, then met and stayed stationary, or moved separately, met, and then continued to move together. We monitored the object representations on-line using the contralateral delay activity (CDA; an ERP component indicative of the number of maintained objects), during their movement, and after the objects disappeared and became working memory representations. The results demonstrated that the objects’ representations (as indicated by the CDA amplitude) persisted as being separate, even after a Gestalt proximity cue (when the objects “met” and remained stationary on the same position). Only a strong common fate Gestalt cue (when the objects not just met but also moved together) was able to override the objects’ initial separate status, creating an integrated representation. These results challenge the view that Gestalt principles cause reflexive grouping. Instead, the object initial representation plays an important role that can override even powerful grouping cues. PMID:24564468
Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts
ERIC Educational Resources Information Center
Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang
2010-01-01
Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…
Ultra-FDst Object Recognition from Few Spikes
2005-07-01
Ultra-fast Object Recognition from Few Spikes Chou Hung, Gabriel Kreiman , Tomaso Poggio & James J. DiCarlo AI Memo 2005-022 July 2005 CBCL Memo 253...authors, Chou Hung and Gabriel Kreiman , contributed equally to this work. Supplementary Material is available at http://ramonycajal.mit.edu... kreiman /resources/ultrafast/. _____________________________________________________________________________ This report describes research done at
Orientation-Invariant Object Recognition: Evidence from Repetition Blindness
ERIC Educational Resources Information Center
Harris, Irina M.; Dux, Paul E.
2005-01-01
The question of whether object recognition is orientation-invariant or orientation-dependent was investigated using a repetition blindness (RB) paradigm. In RB, the second occurrence of a repeated stimulus is less likely to be reported, compared to the occurrence of a different stimulus, if it occurs within a short time of the first presentation.…
Computing with Connections in Visual Recognition of Origami Objects.
ERIC Educational Resources Information Center
Sabbah, Daniel
1985-01-01
Summarizes an initial foray in tackling artificial intelligence problems using a connectionist approach. The task chosen is visual recognition of Origami objects, and the questions answered are how to construct a connectionist network to represent and recognize projected Origami line drawings and the advantages such an approach would have. (30…
Developmental Trajectories of Part-Based and Configural Object Recognition in Adolescence
ERIC Educational Resources Information Center
Juttner, Martin; Wakui, Elley; Petters, Dean; Kaur, Surinder; Davidoff, Jules
2013-01-01
Three experiments assessed the development of children's part and configural (part-relational) processing in object recognition during adolescence. In total, 312 school children aged 7-16 years and 80 adults were tested in 3-alternative forced choice (3-AFC) tasks. They judged the correct appearance of upright and inverted presented familiar…
View Combination: A Generalization Mechanism for Visual Recognition
ERIC Educational Resources Information Center
Friedman, Alinda; Waller, David; Thrash, Tyler; Greenauer, Nathan; Hodgson, Eric
2011-01-01
We examined whether view combination mechanisms shown to underlie object and scene recognition can integrate visual information across views that have little or no three-dimensional information at either the object or scene level. In three experiments, people learned four "views" of a two dimensional visual array derived from a three-dimensional…
Developmental Changes in Visual Object Recognition between 18 and 24 Months of Age
ERIC Educational Resources Information Center
Pereira, Alfredo F.; Smith, Linda B.
2009-01-01
Two experiments examined developmental changes in children's visual recognition of common objects during the period of 18 to 24 months. Experiment 1 examined children's ability to recognize common category instances that presented three different kinds of information: (1) richly detailed and prototypical instances that presented both local and…
Word-to-picture recognition is a function of motor components mappings at the stage of retrieval.
Brouillet, Denis; Brouillet, Thibaut; Milhau, Audrey; Heurley, Loïc; Vagnot, Caroline; Brunel, Lionel
2016-10-01
Embodied approaches of cognition argue that retrieval involves the re-enactment of both sensory and motor components of the desired remembering. In this study, we investigated the effect of motor action performed to produce the response in a recognition task when this action is compatible with the affordance of the objects that have to be recognised. In our experiment, participants were first asked to learn a list of words referring to graspable objects, and then told to make recognition judgements on pictures. The pictures represented objects where the graspable part was either pointing to the same or to the opposite side of the "Yes" response key. Results show a robust effect of compatibility between objects affordance and response hand. Moreover, this compatibility improves participants' ability of discrimination, suggesting that motor components are relevant cue for memory judgement at the stage of retrieval in a recognition task. More broadly, our data highlight that memory judgements are a function of motor components mappings at the stage of retrieval. © 2015 International Union of Psychological Science.
Soulé, Jonathan; Penke, Zsuzsa; Kanhema, Tambudzai; Alme, Maria Nordheim; Laroche, Serge; Bramham, Clive R.
2008-01-01
Long-term recognition memory requires protein synthesis, but little is known about the coordinate regulation of specific genes. Here, we examined expression of the plasticity-associated immediate early genes (Arc, Zif268, and Narp) in the dentate gyrus following long-term object-place recognition learning in rats. RT-PCR analysis from dentate gyrus tissue collected shortly after training did not reveal learning-specific changes in Arc mRNA expression. In situ hybridization and immunohistochemistry were therefore used to assess possible sparse effects on gene expression. Learning about objects increased the density of granule cells expressing Arc, and to a lesser extent Narp, specifically in the dorsal blade of the dentate gyrus, while Zif268 expression was elevated across both blades. Thus, object-place recognition triggers rapid, blade-specific upregulation of plasticity-associated immediate early genes. Furthermore, Western blot analysis of dentate gyrus homogenates demonstrated concomitant upregulation of three postsynaptic density proteins (Arc, PSD-95, and α-CaMKII) with key roles in long-term synaptic plasticity and long-term memory. PMID:19190776
Transfer Learning with Convolutional Neural Networks for SAR Ship Recognition
NASA Astrophysics Data System (ADS)
Zhang, Di; Liu, Jia; Heng, Wang; Ren, Kaijun; Song, Junqiang
2018-03-01
Ship recognition is the backbone of marine surveillance systems. Recent deep learning methods, e.g. Convolutional Neural Networks (CNNs), have shown high performance for optical images. Learning CNNs, however, requires a number of annotated samples to estimate numerous model parameters, which prevents its application to Synthetic Aperture Radar (SAR) images due to the limited annotated training samples. Transfer learning has been a promising technique for applications with limited data. To this end, a novel SAR ship recognition method based on CNNs with transfer learning has been developed. In this work, we firstly start with a CNNs model that has been trained in advance on Moving and Stationary Target Acquisition and Recognition (MSTAR) database. Next, based on the knowledge gained from this image recognition task, we fine-tune the CNNs on a new task to recognize three types of ships in the OpenSARShip database. The experimental results show that our proposed approach can obviously increase the recognition rate comparing with the result of merely applying CNNs. In addition, compared to existing methods, the proposed method proves to be very competitive and can learn discriminative features directly from training data instead of requiring pre-specification or pre-selection manually.
Moving Object Detection on a Vehicle Mounted Back-Up Camera
Kim, Dong-Sun; Kwon, Jinsan
2015-01-01
In the detection of moving objects from vision sources one usually assumes that the scene has been captured by stationary cameras. In case of backing up a vehicle, however, the camera mounted on the vehicle moves according to the vehicle’s movement, resulting in ego-motions on the background. This results in mixed motion in the scene, and makes it difficult to distinguish between the target objects and background motions. Without further treatments on the mixed motion, traditional fixed-viewpoint object detection methods will lead to many false-positive detection results. In this paper, we suggest a procedure to be used with the traditional moving object detection methods relaxing the stationary cameras restriction, by introducing additional steps before and after the detection. We also decribe the implementation as a FPGA platform along with the algorithm. The target application of this suggestion is use with a road vehicle’s rear-view camera systems. PMID:26712761
Identification of a novel dynamic red blindness in human by event-related brain potentials.
Zhang, Jiahua; Kong, Weijia; Yang, Zhongle
2010-12-01
Dynamic color is an important carrier that takes information in some special occupations. However, up to the present, there are no available and objective tests to evaluate dynamic color processing. To investigate the characteristics of dynamic color processing, we adopted two patterns of visual stimulus called "onset-offset" which reflected static color stimuli and "sustained moving" without abrupt mode which reflected dynamic color stimuli to evoke event-related brain potentials (ERPs) in primary color amblyopia patients (abnormal group) and subjects with normal color recognition ability (normal group). ERPs were recorded by Neuroscan system. The results showed that in the normal group, ERPs in response to the dynamic red stimulus showed frontal positive amplitudes with a latency of about 180 ms, a negative peak at about 240 ms and a peak latency of the late positive potential (LPP) in a time window between 290 and 580 ms. In the abnormal group, ERPs in response to the dynamic red stimulus were fully lost and characterized by vanished amplitudes between 0 and 800 ms. No significant difference was noted in ERPs in response to the dynamic green and blue stimulus between the two groups (P>0.05). ERPs of the two groups in response to the static red, green and blue stimulus were not much different, showing a transient negative peak at about 170 ms and a peak latency of LPP in a time window between 350 and 650 ms. Our results first revealed that some subjects who were not identified as color blindness under static color recognition could not completely apperceive a sort of dynamic red stimulus by ERPs, which was called "dynamic red blindness". Furthermore, these results also indicated that low-frequency ERPs induced by "sustained moving" may be a good and new method to test dynamic color perception competence.
Moreno, Hayarelis C; de Brugada, Isabel; Carias, Diamela; Gallo, Milagros
2013-11-01
Choline is an essential nutrient required for early development. Previous studies have shown that prenatal choline availability influences adult memory abilities depending on the medial temporal lobe integrity. The relevance of prenatal choline availability on object recognition memory was assessed in adult Wistar rats. Three groups of pregnant Wistar rats were fed from E12 to E18 with choline-deficient (0 g/kg choline chloride), standard (1.1 g/kg choline chloride), or choline-supplemented (5 g/kg choline chloride) diets. The offspring was cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of 3 months in an object recognition memory task applying retention tests 24 and 48 hours after acquisition. Although no significant differences have been found in the performance of the three groups during the first retention test, the supplemented group exhibited improved memory compared with both the standard and the deficient group in the second retention test, 48 hours after acquisition. In addition, at the second retention test the deficient group did not differ from chance. Taken together, the results support the notion of a long-lasting beneficial effect of prenatal choline supplementation on object recognition memory which is evident when the rats reach adulthood. The results are discussed in terms of their relevance for improving the understanding of the cholinergic involvement in object recognition memory and the implications of the importance of maternal diet for lifelong cognitive abilities.
Three-dimensional model-based object recognition and segmentation in cluttered scenes.
Mian, Ajmal S; Bennamoun, Mohammed; Owens, Robyn
2006-10-01
Viewpoint independent recognition of free-form objects and their segmentation in the presence of clutter and occlusions is a challenging task. We present a novel 3D model-based algorithm which performs this task automatically and efficiently. A 3D model of an object is automatically constructed offline from its multiple unordered range images (views). These views are converted into multidimensional table representations (which we refer to as tensors). Correspondences are automatically established between these views by simultaneously matching the tensors of a view with those of the remaining views using a hash table-based voting scheme. This results in a graph of relative transformations used to register the views before they are integrated into a seamless 3D model. These models and their tensor representations constitute the model library. During online recognition, a tensor from the scene is simultaneously matched with those in the library by casting votes. Similarity measures are calculated for the model tensors which receive the most votes. The model with the highest similarity is transformed to the scene and, if it aligns accurately with an object in the scene, that object is declared as recognized and is segmented. This process is repeated until the scene is completely segmented. Experiments were performed on real and synthetic data comprised of 55 models and 610 scenes and an overall recognition rate of 95 percent was achieved. Comparison with the spin images revealed that our algorithm is superior in terms of recognition rate and efficiency.
Three-dimensional passive sensing photon counting for object classification
NASA Astrophysics Data System (ADS)
Yeom, Seokwon; Javidi, Bahram; Watson, Edward
2007-04-01
In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.
Viewpoint-Specific Representations in Three-Dimensional Object Recognition
1990-08-01
for useful suggestions and illuminating discuc- sions, and Ellen Hildreth for her comments on a draft of this repcrt. References [1] 1. Biederman ...1982. [24] I. Rock and J. DiVita. A case of viewer-centered object perception. Cognitive Psychology, 19:280-293, 1987 . [25] I. Rock, D. Wheeler, and...Raleigh, NC, 1987 . [30] S. Ullman. Aligning pictorial descriptions: an approach to object recognition. Cognition, 32:193-254, 1989. [31] S. UUman and R
HOTS: A Hierarchy of Event-Based Time-Surfaces for Pattern Recognition.
Lagorce, Xavier; Orchard, Garrick; Galluppi, Francesco; Shi, Bertram E; Benosman, Ryad B
2017-07-01
This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.This paper describes novel event-based spatio-temporal features called time-surfaces and how they can be used to create a hierarchical event-based pattern recognition architecture. Unlike existing hierarchical architectures for pattern recognition, the presented model relies on a time oriented approach to extract spatio-temporal features from the asynchronously acquired dynamics of a visual scene. These dynamics are acquired using biologically inspired frameless asynchronous event-driven vision sensors. Similarly to cortical structures, subsequent layers in our hierarchy extract increasingly abstract features using increasingly large spatio-temporal windows. The central concept is to use the rich temporal information provided by events to create contexts in the form of time-surfaces which represent the recent temporal activity within a local spatial neighborhood. We demonstrate that this concept can robustly be used at all stages of an event-based hierarchical model. First layer feature units operate on groups of pixels, while subsequent layer feature units operate on the output of lower level feature units. We report results on a previously published 36 class character recognition task and a four class canonical dynamic card pip task, achieving near 100 percent accuracy on each. We introduce a new seven class moving face recognition task, achieving 79 percent accuracy.
Further insight into self-face recognition in schizophrenia patients: Why ambiguity matters.
Bortolon, Catherine; Capdevielle, Delphine; Salesse, Robin N; Raffard, Stephane
2016-03-01
Although some studies reported specifically self-face processing deficits in patients with schizophrenia disorder (SZ), it remains unclear whether these deficits rather reflect a more global face processing deficit. Contradictory results are probably due to the different methodologies employed and the lack of control of other confounding factors. Moreover, no study has so far evaluated possible daily life self-face recognition difficulties in SZ. Therefore, our primary objective was to investigate self-face recognition in patients suffering from SZ compared to healthy controls (HC) using an "objective measure" (reaction time and accuracy) and a "subjective measure" (self-report of daily self-face recognition difficulties). Twenty-four patients with SZ and 23 HC performed a self-face recognition task and completed a questionnaire evaluating daily difficulties in self-face recognition. Recognition task material consisted in three different faces (the own, a famous and an unknown) being morphed in steps of 20%. Results showed that SZ were overall slower than HC regardless of the face identity, but less accurate only for the faces containing 60%-40% morphing. Moreover, SZ and HC reported a similar amount of daily problems with self/other face recognition. No significant correlations were found between objective and subjective measures (p > 0.05). The small sample size and relatively mild severity of psychopathology does not allow us to generalize our results. These results suggest that: (1) patients with SZ are as capable of recognizing their own face as HC, although they are susceptible to ambiguity; (2) there are far less self recognition deficits in schizophrenia patients than previously postulated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kopp, Franziska; Lindenberger, Ulman
2011-07-01
Joint attention develops during the first year of life but little is known about its effects on long-term memory. We investigated whether joint attention modulates long-term memory in 9-month-old infants. Infants were familiarized with visually presented objects in either of two conditions that differed in the degree of joint attention (high versus low). EEG indicators in response to old and novel objects were probed directly after the familiarization phase (immediate recognition), and following a 1-week delay (delayed recognition). In immediate recognition, the amplitude of positive slow-wave activity was modulated by joint attention. In the delayed recognition, the amplitude of the Pb component differentiated between high and low joint attention. In addition, the positive slow-wave amplitude during immediate and delayed recognition correlated with the frequency of infants' looks to the experimenter during familiarization. Under both high- and low-joint-attention conditions, the processing of unfamiliar objects was associated with an enhanced Nc component. Our results show that the degree of joint attention modulates EEG during immediate and delayed recognition. We conclude that joint attention affects long-term memory processing in 9-month-old infants by enhancing the relevance of attended items. © 2010 Blackwell Publishing Ltd.
Comparing object recognition from binary and bipolar edge images for visual prostheses
Jung, Jae-Hyun; Pu, Tian; Peli, Eli
2017-01-01
Visual prostheses require an effective representation method due to the limited display condition which has only 2 or 3 levels of grayscale in low resolution. Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary (black and white) edge images have been used to represent features to convey essential information. However, in scenes with a complex cluttered background, the recognition rate of the binary edge images by human observers is limited and additional information is required. The polarity of edges and cusps (black or white features on a gray background) carries important additional information; the polarity may provide shape from shading information missing in the binary edge image. This depth information may be restored by using bipolar edges. We compared object recognition rates from 16 binary edge images and bipolar edge images by 26 subjects to determine the possible impact of bipolar filtering in visual prostheses with 3 or more levels of grayscale. Recognition rates were higher with bipolar edge images and the improvement was significant in scenes with complex backgrounds. The results also suggest that erroneous shape from shading interpretation of bipolar edges resulting from pigment rather than boundaries of shape may confound the recognition. PMID:28458481
Multiple degree of freedom object recognition using optical relational graph decision nets
NASA Technical Reports Server (NTRS)
Casasent, David P.; Lee, Andrew J.
1988-01-01
Multiple-degree-of-freedom object recognition concerns objects with no stable rest position with all scale, rotation, and aspect distortions possible. It is assumed that the objects are in a fairly benign background, so that feature extractors are usable. In-plane distortion invariance is provided by use of a polar-log coordinate transform feature space, and out-of-plane distortion invariance is provided by linear discriminant function design. Relational graph decision nets are considered for multiple-degree-of-freedom pattern recognition. The design of Fisher (1936) linear discriminant functions and synthetic discriminant function for use at the nodes of binary and multidecision nets is discussed. Case studies are detailed for two-class and multiclass problems. Simulation results demonstrate the robustness of the processors to quantization of the filter coefficients and to noise.
Language comprehenders retain implied shape and orientation of objects.
Pecher, Diane; van Dantzig, Saskia; Zwaan, Rolf A; Zeelenberg, René
2009-06-01
According to theories of embodied cognition, language comprehenders simulate sensorimotor experiences to represent the meaning of what they read. Previous studies have shown that picture recognition is better if the object in the picture matches the orientation or shape implied by a preceding sentence. In order to test whether strategic imagery may explain previous findings, language comprehenders first read a list of sentences in which objects were mentioned. Only once the complete list had been read was recognition memory tested with pictures. Recognition performance was better if the orientation or shape of the object matched that implied by the sentence, both immediately after reading the complete list of sentences and after a 45-min delay. These results suggest that previously found match effects were not due to strategic imagery and show that details of sensorimotor simulations are retained over longer periods.
System and method for moving a probe to follow movements of tissue
NASA Technical Reports Server (NTRS)
Feldstein, C.; Andrews, T. W.; Crawford, D. W.; Cole, M. A. (Inventor)
1981-01-01
An apparatus is described for moving a probe that engages moving living tissue such as a heart or an artery that is penetrated by the probe, which moves the probe in synchronism with the tissue to maintain the probe at a constant location with respect to the tissue. The apparatus includes a servo positioner which moves a servo member to maintain a constant distance from a sensed object while applying very little force to the sensed object, and a follower having a stirrup at one end resting on a surface of the living tissue and another end carrying a sensed object adjacent to the servo member. A probe holder has one end mounted on the servo member and another end which holds the probe.
Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro
2013-11-01
Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Detecting and Analyzing Multiple Moving Objects in Crowded Environments with Coherent Motion Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheriyadat, Anil M.
Understanding the world around us from large-scale video data requires vision systems that can perform automatic interpretation. While human eyes can unconsciously perceive independent objects in crowded scenes and other challenging operating environments, automated systems have difficulty detecting, counting, and understanding their behavior in similar scenes. Computer scientists at ORNL have a developed a technology termed as "Coherent Motion Region Detection" that invloves identifying multiple indepedent moving objects in crowded scenes by aggregating low-level motion cues extracted from moving objects. Humans and other species exploit such low-level motion cues seamlessely to perform perceptual grouping for visual understanding. The algorithm detectsmore » and tracks feature points on moving objects resulting in partial trajectories that span coherent 3D region in the space-time volume defined by the video. In the case of multi-object motion, many possible coherent motion regions can be constructed around the set of trajectories. The unique approach in the algorithm is to identify all possible coherent motion regions, then extract a subset of motion regions based on an innovative measure to automatically locate moving objects in crowded environments.The software reports snapshot of the object, count, and derived statistics ( count over time) from input video streams. The software can directly process videos streamed over the internet or directly from a hardware device (camera).« less
Jung, HaRim; Song, MoonBae; Youn, Hee Yong; Kim, Ung Mo
2015-01-01
A content-matched (CM) range monitoring query over moving objects continually retrieves the moving objects (i) whose non-spatial attribute values are matched to given non-spatial query values; and (ii) that are currently located within a given spatial query range. In this paper, we propose a new query indexing structure, called the group-aware query region tree (GQR-tree) for efficient evaluation of CM range monitoring queries. The primary role of the GQR-tree is to help the server leverage the computational capabilities of moving objects in order to improve the system performance in terms of the wireless communication cost and server workload. Through a series of comprehensive simulations, we verify the superiority of the GQR-tree method over the existing methods. PMID:26393613
Real-time optical multiple object recognition and tracking system and method
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Liu, Hua Kuang (Inventor)
1987-01-01
The invention relates to an apparatus and associated methods for the optical recognition and tracking of multiple objects in real time. Multiple point spatial filters are employed that pre-define the objects to be recognized at run-time. The system takes the basic technology of a Vander Lugt filter and adds a hololens. The technique replaces time, space and cost-intensive digital techniques. In place of multiple objects, the system can also recognize multiple orientations of a single object. This later capability has potential for space applications where space and weight are at a premium.
Moving object detection and tracking in videos through turbulent medium
NASA Astrophysics Data System (ADS)
Halder, Kalyan Kumar; Tahtali, Murat; Anavatti, Sreenatha G.
2016-06-01
This paper addresses the problem of identifying and tracking moving objects in a video sequence having a time-varying background. This is a fundamental task in many computer vision applications, though a very challenging one because of turbulence that causes blurring and spatiotemporal movements of the background images. Our proposed approach involves two major steps. First, a moving object detection algorithm that deals with the detection of real motions by separating the turbulence-induced motions using a two-level thresholding technique is used. In the second step, a feature-based generalized regression neural network is applied to track the detected objects throughout the frames in the video sequence. The proposed approach uses the centroid and area features of the moving objects and creates the reference regions instantly by selecting the objects within a circle. Simulation experiments are carried out on several turbulence-degraded video sequences and comparisons with an earlier method confirms that the proposed approach provides a more effective tracking of the targets.
Exploiting range imagery: techniques and applications
NASA Astrophysics Data System (ADS)
Armbruster, Walter
2009-07-01
Practically no applications exist for which automatic processing of 2D intensity imagery can equal human visual perception. This is not the case for range imagery. The paper gives examples of 3D laser radar applications, for which automatic data processing can exceed human visual cognition capabilities and describes basic processing techniques for attaining these results. The examples are drawn from the fields of helicopter obstacle avoidance, object detection in surveillance applications, object recognition at high range, multi-object-tracking, and object re-identification in range image sequences. Processing times and recognition performances are summarized. The techniques used exploit the bijective continuity of the imaging process as well as its independence of object reflectivity, emissivity and illumination. This allows precise formulations of the probability distributions involved in figure-ground segmentation, feature-based object classification and model based object recognition. The probabilistic approach guarantees optimal solutions for single images and enables Bayesian learning in range image sequences. Finally, due to recent results in 3D-surface completion, no prior model libraries are required for recognizing and re-identifying objects of quite general object categories, opening the way to unsupervised learning and fully autonomous cognitive systems.
New technique for real-time distortion-invariant multiobject recognition and classification
NASA Astrophysics Data System (ADS)
Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan
2001-04-01
A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.
A biologically inspired neural network model to transformation invariant object recognition
NASA Astrophysics Data System (ADS)
Iftekharuddin, Khan M.; Li, Yaqin; Siddiqui, Faraz
2007-09-01
Transformation invariant image recognition has been an active research area due to its widespread applications in a variety of fields such as military operations, robotics, medical practices, geographic scene analysis, and many others. The primary goal for this research is detection of objects in the presence of image transformations such as changes in resolution, rotation, translation, scale and occlusion. We investigate a biologically-inspired neural network (NN) model for such transformation-invariant object recognition. In a classical training-testing setup for NN, the performance is largely dependent on the range of transformation or orientation involved in training. However, an even more serious dilemma is that there may not be enough training data available for successful learning or even no training data at all. To alleviate this problem, a biologically inspired reinforcement learning (RL) approach is proposed. In this paper, the RL approach is explored for object recognition with different types of transformations such as changes in scale, size, resolution and rotation. The RL is implemented in an adaptive critic design (ACD) framework, which approximates the neuro-dynamic programming of an action network and a critic network, respectively. Two ACD algorithms such as Heuristic Dynamic Programming (HDP) and Dual Heuristic dynamic Programming (DHP) are investigated to obtain transformation invariant object recognition. The two learning algorithms are evaluated statistically using simulated transformations in images as well as with a large-scale UMIST face database with pose variations. In the face database authentication case, the 90° out-of-plane rotation of faces from 20 different subjects in the UMIST database is used. Our simulations show promising results for both designs for transformation-invariant object recognition and authentication of faces. Comparing the two algorithms, DHP outperforms HDP in learning capability, as DHP takes fewer steps to perform a successful recognition task in general. Further, the residual critic error in DHP is generally smaller than that of HDP, and DHP achieves a 100% success rate more frequently than HDP for individual objects/subjects. On the other hand, HDP is more robust than the DHP as far as success rate across the database is concerned when applied in a stochastic and uncertain environment, and the computational time involved in DHP is more.
The New Environment for Development Evaluation
ERIC Educational Resources Information Center
Picciotto, Robert
2007-01-01
The millennium development goals have created new challenges for development evaluation. The main unit of account has shifted to the country level. Evaluation ownership must move from donor agencies to developing countries. The recognition that rich countries have development obligations is opening up evaluation frontiers beyond aid. A…
Educational Master Planning: Creative or Cathartic?
ERIC Educational Resources Information Center
Rossmeier, Joseph G.
Recently, Northern Virginia Community College has moved into a new era of institutional development, whereby primary attention to facility planning and increasing enrollments has given way to a comprehensive, program-based, and strategic planning process which transcends all elements of the institution. Recognition is given to the integral…
Intelligent Classification in Huge Heterogeneous Data Sets
2015-06-01
Competencies DoD Department of Defense GMTI Ground Moving Target Indicator ISR Intelligence, Surveillance and Reconnaissance NCD Noncoherent Change...Detection OCR Optical Character Recognition PCA Principal Component Analysis SAR Synthetic Aperture Radar SVD Singular Value Decomponsition USPS United States Postal Service 8 Approved for Public Release; Distribution Unlimited.
Online phase measuring profilometry for rectilinear moving object by image correction
NASA Astrophysics Data System (ADS)
Yuan, Han; Cao, Yi-Ping; Chen, Chen; Wang, Ya-Pin
2015-11-01
In phase measuring profilometry (PMP), the object must be static for point-to-point reconstruction with the captured deformed patterns. While the object is rectilinearly moving online, the size and pixel position differences of the object in different captured deformed patterns do not meet the point-to-point requirement. We propose an online PMP based on image correction to measure the three-dimensional shape of the rectilinear moving object. In the proposed method, the deformed patterns captured by a charge-coupled diode camera are reprojected from the oblique view to an aerial view first and then translated based on the feature points of the object. This method makes the object appear stationary in the deformed patterns. Experimental results show the feasibility and efficiency of the proposed method.
Moving object localization using optical flow for pedestrian detection from a moving vehicle.
Hariyono, Joko; Hoang, Van-Dung; Jo, Kang-Hyun
2014-01-01
This paper presents a pedestrian detection method from a moving vehicle using optical flows and histogram of oriented gradients (HOG). A moving object is extracted from the relative motion by segmenting the region representing the same optical flows after compensating the egomotion of the camera. To obtain the optical flow, two consecutive images are divided into grid cells 14 × 14 pixels; then each cell is tracked in the current frame to find corresponding cell in the next frame. Using at least three corresponding cells, affine transformation is performed according to each corresponding cell in the consecutive images, so that conformed optical flows are extracted. The regions of moving object are detected as transformed objects, which are different from the previously registered background. Morphological process is applied to get the candidate human regions. In order to recognize the object, the HOG features are extracted on the candidate region and classified using linear support vector machine (SVM). The HOG feature vectors are used as input of linear SVM to classify the given input into pedestrian/nonpedestrian. The proposed method was tested in a moving vehicle and also confirmed through experiments using pedestrian dataset. It shows a significant improvement compared with original HOG using ETHZ pedestrian dataset.