Moving vehicles segmentation based on Gaussian motion model
NASA Astrophysics Data System (ADS)
Zhang, Wei; Fang, Xiang Z.; Lin, Wei Y.
2005-07-01
Moving objects segmentation is a challenge in computer vision. This paper focuses on the segmentation of moving vehicles in dynamic scene. We analyses the psychology of human vision and present a framework for segmenting moving vehicles in the highway. The proposed framework consists of two parts. Firstly, we propose an adaptive background update method in which the background is updated according to the change of illumination conditions and thus can adapt to the change of illumination sensitively. Secondly, we construct a Gaussian motion model to segment moving vehicles, in which the motion vectors of the moving pixels are modeled as a Gaussian model and an on-line EM algorithm is used to update the model. The Gaussian distribution of the adaptive model is elevated to determine which moving vectors result from moving vehicles and which from other moving objects such as waving trees. Finally, the pixels with motion vector result from the moving vehicles are segmented. Experimental results of several typical scenes show that the proposed model can detect the moving vehicles correctly and is immune from influence of the moving objects caused by the waving trees and the vibration of camera.
Moving object detection using dynamic motion modelling from UAV aerial images.
Saif, A F M Saifuddin; Prabuwono, Anton Satria; Mahayuddin, Zainal Rasyid
2014-01-01
Motion analysis based moving object detection from UAV aerial image is still an unsolved issue due to inconsideration of proper motion estimation. Existing moving object detection approaches from UAV aerial images did not deal with motion based pixel intensity measurement to detect moving object robustly. Besides current research on moving object detection from UAV aerial images mostly depends on either frame difference or segmentation approach separately. There are two main purposes for this research: firstly to develop a new motion model called DMM (dynamic motion model) and secondly to apply the proposed segmentation approach SUED (segmentation using edge based dilation) using frame difference embedded together with DMM model. The proposed DMM model provides effective search windows based on the highest pixel intensity to segment only specific area for moving object rather than searching the whole area of the frame using SUED. At each stage of the proposed scheme, experimental fusion of the DMM and SUED produces extracted moving objects faithfully. Experimental result reveals that the proposed DMM and SUED have successfully demonstrated the validity of the proposed methodology.
Improved segmentation of occluded and adjoining vehicles in traffic surveillance videos
NASA Astrophysics Data System (ADS)
Juneja, Medha; Grover, Priyanka
2013-12-01
Occlusion in image processing refers to concealment of any part of the object or the whole object from view of an observer. Real time videos captured by static cameras on roads often encounter overlapping and hence, occlusion of vehicles. Occlusion in traffic surveillance videos usually occurs when an object which is being tracked is hidden by another object. This makes it difficult for the object detection algorithms to distinguish all the vehicles efficiently. Also morphological operations tend to join the close proximity vehicles resulting in formation of a single bounding box around more than one vehicle. Such problems lead to errors in further video processing, like counting of vehicles in a video. The proposed system brings forward efficient moving object detection and tracking approach to reduce such errors. The paper uses successive frame subtraction technique for detection of moving objects. Further, this paper implements the watershed algorithm to segment the overlapped and adjoining vehicles. The segmentation results have been improved by the use of noise and morphological operations.
A new user-assisted segmentation and tracking technique for an object-based video editing system
NASA Astrophysics Data System (ADS)
Yu, Hong Y.; Hong, Sung-Hoon; Lee, Mike M.; Choi, Jae-Gark
2004-03-01
This paper presents a semi-automatic segmentation method which can be used to generate video object plane (VOP) for object based coding scheme and multimedia authoring environment. Semi-automatic segmentation can be considered as a user-assisted segmentation technique. A user can initially mark objects of interest around the object boundaries and then the user-guided and selected objects are continuously separated from the unselected areas through time evolution in the image sequences. The proposed segmentation method consists of two processing steps: partially manual intra-frame segmentation and fully automatic inter-frame segmentation. The intra-frame segmentation incorporates user-assistance to define the meaningful complete visual object of interest to be segmentation and decides precise object boundary. The inter-frame segmentation involves boundary and region tracking to obtain temporal coherence of moving object based on the object boundary information of previous frame. The proposed method shows stable efficient results that could be suitable for many digital video applications such as multimedia contents authoring, content based coding and indexing. Based on these results, we have developed objects based video editing system with several convenient editing functions.
A Saccade Based Framework for Real-Time Motion Segmentation Using Event Based Vision Sensors
Mishra, Abhishek; Ghosh, Rohan; Principe, Jose C.; Thakor, Nitish V.; Kukreja, Sunil L.
2017-01-01
Motion segmentation is a critical pre-processing step for autonomous robotic systems to facilitate tracking of moving objects in cluttered environments. Event based sensors are low power analog devices that represent a scene by means of asynchronous information updates of only the dynamic details at high temporal resolution and, hence, require significantly less calculations. However, motion segmentation using spatiotemporal data is a challenging task due to data asynchrony. Prior approaches for object tracking using neuromorphic sensors perform well while the sensor is static or a known model of the object to be followed is available. To address these limitations, in this paper we develop a technique for generalized motion segmentation based on spatial statistics across time frames. First, we create micromotion on the platform to facilitate the separation of static and dynamic elements of a scene, inspired by human saccadic eye movements. Second, we introduce the concept of spike-groups as a methodology to partition spatio-temporal event groups, which facilitates computation of scene statistics and characterize objects in it. Experimental results show that our algorithm is able to classify dynamic objects with a moving camera with maximum accuracy of 92%. PMID:28316563
Real-time detection of moving objects from moving vehicles using dense stereo and optical flow
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Matthies, Larry
2004-01-01
Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include realtime, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify & other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.
Real-time detection of moving objects from moving vehicles using dense stereo and optical flow
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Matthies, Larry
2004-01-01
Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time, dense stereo system to include real-time, dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identity other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6-DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop, computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.
Real-time Detection of Moving Objects from Moving Vehicles Using Dense Stereo and Optical Flow
NASA Technical Reports Server (NTRS)
Talukder, Ashit; Matthies, Larry
2004-01-01
Dynamic scene perception is very important for autonomous vehicles operating around other moving vehicles and humans. Most work on real-time object tracking from moving platforms has used sparse features or assumed flat scene structures. We have recently extended a real-time. dense stereo system to include realtime. dense optical flow, enabling more comprehensive dynamic scene analysis. We describe algorithms to robustly estimate 6-DOF robot egomotion in the presence of moving objects using dense flow and dense stereo. We then use dense stereo and egomotion estimates to identify other moving objects while the robot itself is moving. We present results showing accurate egomotion estimation and detection of moving people and vehicles under general 6DOF motion of the robot and independently moving objects. The system runs at 18.3 Hz on a 1.4 GHz Pentium M laptop. computing 160x120 disparity maps and optical flow fields, egomotion, and moving object segmentation. We believe this is a significant step toward general unconstrained dynamic scene analysis for mobile robots, as well as for improved position estimation where GPS is unavailable.
Generation, recognition, and consistent fusion of partial boundary representations from range images
NASA Astrophysics Data System (ADS)
Kohlhepp, Peter; Hanczak, Andrzej M.; Li, Gang
1994-10-01
This paper presents SOMBRERO, a new system for recognizing and locating 3D, rigid, non- moving objects from range data. The objects may be polyhedral or curved, partially occluding, touching or lying flush with each other. For data collection, we employ 2D time- of-flight laser scanners mounted to a moving gantry robot. By combining sensor and robot coordinates, we obtain 3D cartesian coordinates. Boundary representations (Brep's) provide view independent geometry models that are both efficiently recognizable and derivable automatically from sensor data. SOMBRERO's methods for generating, matching and fusing Brep's are highly synergetic. A split-and-merge segmentation algorithm with dynamic triangular builds a partial (21/2D) Brep from scattered data. The recognition module matches this scene description with a model database and outputs recognized objects, their positions and orientations, and possibly surfaces corresponding to unknown objects. We present preliminary results in scene segmentation and recognition. Partial Brep's corresponding to different range sensors or viewpoints can be merged into a consistent, complete and irredundant 3D object or scene model. This fusion algorithm itself uses the recognition and segmentation methods.
Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor.
Huang, Lvwen; Chen, Siyuan; Zhang, Jianfeng; Cheng, Bang; Liu, Mingqing
2017-08-23
Object tracking is a crucial research subfield in computer vision and it has wide applications in navigation, robotics and military applications and so on. In this paper, the real-time visualization of 3D point clouds data based on the VLP-16 3D Light Detection and Ranging (LiDAR) sensor is achieved, and on the basis of preprocessing, fast ground segmentation, Euclidean clustering segmentation for outliers, View Feature Histogram (VFH) feature extraction, establishing object models and searching matching a moving spherical target, the Kalman filter and adaptive particle filter are used to estimate in real-time the position of a moving spherical target. The experimental results show that the Kalman filter has the advantages of high efficiency while adaptive particle filter has the advantages of high robustness and high precision when tested and validated on three kinds of scenes under the condition of target partial occlusion and interference, different moving speed and different trajectories. The research can be applied in the natural environment of fruit identification and tracking, robot navigation and control and other fields.
Real-Time Motion Tracking for Indoor Moving Sphere Objects with a LiDAR Sensor
Chen, Siyuan; Zhang, Jianfeng; Cheng, Bang; Liu, Mingqing
2017-01-01
Object tracking is a crucial research subfield in computer vision and it has wide applications in navigation, robotics and military applications and so on. In this paper, the real-time visualization of 3D point clouds data based on the VLP-16 3D Light Detection and Ranging (LiDAR) sensor is achieved, and on the basis of preprocessing, fast ground segmentation, Euclidean clustering segmentation for outliers, View Feature Histogram (VFH) feature extraction, establishing object models and searching matching a moving spherical target, the Kalman filter and adaptive particle filter are used to estimate in real-time the position of a moving spherical target. The experimental results show that the Kalman filter has the advantages of high efficiency while adaptive particle filter has the advantages of high robustness and high precision when tested and validated on three kinds of scenes under the condition of target partial occlusion and interference, different moving speed and different trajectories. The research can be applied in the natural environment of fruit identification and tracking, robot navigation and control and other fields. PMID:28832520
Compact Dexterous Robotic Hand
NASA Technical Reports Server (NTRS)
Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)
2001-01-01
A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.
NASA Technical Reports Server (NTRS)
Whitaker, Ross (Inventor); Turner, D. Clark (Inventor)
2016-01-01
Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.
Image Segmentation Analysis for NASA Earth Science Applications
NASA Technical Reports Server (NTRS)
Tilton, James C.
2010-01-01
NASA collects large volumes of imagery data from satellite-based Earth remote sensing sensors. Nearly all of the computerized image analysis of this data is performed pixel-by-pixel, in which an algorithm is applied directly to individual image pixels. While this analysis approach is satisfactory in many cases, it is usually not fully effective in extracting the full information content from the high spatial resolution image data that s now becoming increasingly available from these sensors. The field of object-based image analysis (OBIA) has arisen in recent years to address the need to move beyond pixel-based analysis. The Recursive Hierarchical Segmentation (RHSEG) software developed by the author is being used to facilitate moving from pixel-based image analysis to OBIA. The key unique aspect of RHSEG is that it tightly intertwines region growing segmentation, which produces spatially connected region objects, with region object classification, which groups sets of region objects together into region classes. No other practical, operational image segmentation approach has this tight integration of region growing object finding with region classification This integration is made possible by the recursive, divide-and-conquer implementation utilized by RHSEG, in which the input image data is recursively subdivided until the image data sections are small enough to successfully mitigat the combinatorial explosion caused by the need to compute the dissimilarity between each pair of image pixels. RHSEG's tight integration of region growing object finding and region classification is what enables the high spatial fidelity of the image segmentations produced by RHSEG. This presentation will provide an overview of the RHSEG algorithm and describe how it is currently being used to support OBIA or Earth Science applications such as snow/ice mapping and finding archaeological sites from remotely sensed data.
Motion coherence affects human perception and pursuit similarly.
Beutter, B R; Stone, L S
2000-01-01
Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursuit to perform motion integration by measuring direction judgments and the concomitant eye-movement responses to line-figure parallelograms moving behind stationary rectangular apertures. The apertures were constructed such that only the line segments corresponding to the parallelogram's sides were visible; thus, recovering global motion required the integration of the local segment motion. We investigated several potential motion-integration rules by using stimuli with different object, vector-average, and line-segment terminator-motion directions. We used an oculometric decision rule to directly compare direction discrimination for pursuit and perception. For visible apertures, the percept was a coherent object, and both the pursuit and perceptual performance were close to the object-motion prediction. For invisible apertures, the percept was incoherently moving segments, and both the pursuit and perceptual performance were close to the terminator-motion prediction. Furthermore, both psychometric and oculometric direction thresholds were much higher for invisible apertures than for visible apertures. We constructed a model in which both perception and pursuit are driven by a shared motion-processing stage, with perception having an additional input from an independent static-processing stage. Model simulations were consistent with our perceptual and oculomotor data. Based on these results, we propose the use of pursuit as an objective and continuous measure of perceptual coherence. Our results support the view that pursuit and perception share a common motion-integration stage, perhaps within areas MT or MST.
Motion coherence affects human perception and pursuit similarly
NASA Technical Reports Server (NTRS)
Beutter, B. R.; Stone, L. S.
2000-01-01
Pursuit and perception both require accurate information about the motion of objects. Recovering the motion of objects by integrating the motion of their components is a difficult visual task. Successful integration produces coherent global object motion, while a failure to integrate leaves the incoherent local motions of the components unlinked. We compared the ability of perception and pursuit to perform motion integration by measuring direction judgments and the concomitant eye-movement responses to line-figure parallelograms moving behind stationary rectangular apertures. The apertures were constructed such that only the line segments corresponding to the parallelogram's sides were visible; thus, recovering global motion required the integration of the local segment motion. We investigated several potential motion-integration rules by using stimuli with different object, vector-average, and line-segment terminator-motion directions. We used an oculometric decision rule to directly compare direction discrimination for pursuit and perception. For visible apertures, the percept was a coherent object, and both the pursuit and perceptual performance were close to the object-motion prediction. For invisible apertures, the percept was incoherently moving segments, and both the pursuit and perceptual performance were close to the terminator-motion prediction. Furthermore, both psychometric and oculometric direction thresholds were much higher for invisible apertures than for visible apertures. We constructed a model in which both perception and pursuit are driven by a shared motion-processing stage, with perception having an additional input from an independent static-processing stage. Model simulations were consistent with our perceptual and oculomotor data. Based on these results, we propose the use of pursuit as an objective and continuous measure of perceptual coherence. Our results support the view that pursuit and perception share a common motion-integration stage, perhaps within areas MT or MST.
Small Moving Vehicle Detection in a Satellite Video of an Urban Area
Yang, Tao; Wang, Xiwen; Yao, Bowei; Li, Jing; Zhang, Yanning; He, Zhannan; Duan, Wencheng
2016-01-01
Vehicle surveillance of a wide area allows us to learn much about the daily activities and traffic information. With the rapid development of remote sensing, satellite video has become an important data source for vehicle detection, which provides a broader field of surveillance. The achieved work generally focuses on aerial video with moderately-sized objects based on feature extraction. However, the moving vehicles in satellite video imagery range from just a few pixels to dozens of pixels and exhibit low contrast with respect to the background, which makes it hard to get available appearance or shape information. In this paper, we look into the problem of moving vehicle detection in satellite imagery. To the best of our knowledge, it is the first time to deal with moving vehicle detection from satellite videos. Our approach consists of two stages: first, through foreground motion segmentation and trajectory accumulation, the scene motion heat map is dynamically built. Following this, a novel saliency based background model which intensifies moving objects is presented to segment the vehicles in the hot regions. Qualitative and quantitative experiments on sequence from a recent Skybox satellite video dataset demonstrates that our approach achieves a high detection rate and low false alarm simultaneously. PMID:27657091
Moving object localization using optical flow for pedestrian detection from a moving vehicle.
Hariyono, Joko; Hoang, Van-Dung; Jo, Kang-Hyun
2014-01-01
This paper presents a pedestrian detection method from a moving vehicle using optical flows and histogram of oriented gradients (HOG). A moving object is extracted from the relative motion by segmenting the region representing the same optical flows after compensating the egomotion of the camera. To obtain the optical flow, two consecutive images are divided into grid cells 14 × 14 pixels; then each cell is tracked in the current frame to find corresponding cell in the next frame. Using at least three corresponding cells, affine transformation is performed according to each corresponding cell in the consecutive images, so that conformed optical flows are extracted. The regions of moving object are detected as transformed objects, which are different from the previously registered background. Morphological process is applied to get the candidate human regions. In order to recognize the object, the HOG features are extracted on the candidate region and classified using linear support vector machine (SVM). The HOG feature vectors are used as input of linear SVM to classify the given input into pedestrian/nonpedestrian. The proposed method was tested in a moving vehicle and also confirmed through experiments using pedestrian dataset. It shows a significant improvement compared with original HOG using ETHZ pedestrian dataset.
3D Reasoning from Blocks to Stability.
Zhaoyin Jia; Gallagher, Andrew C; Saxena, Ashutosh; Chen, Tsuhan
2015-05-01
Objects occupy physical space and obey physical laws. To truly understand a scene, we must reason about the space that objects in it occupy, and how each objects is supported stably by each other. In other words, we seek to understand which objects would, if moved, cause other objects to fall. This 3D volumetric reasoning is important for many scene understanding tasks, ranging from segmentation of objects to perception of a rich 3D, physically well-founded, interpretations of the scene. In this paper, we propose a new algorithm to parse a single RGB-D image with 3D block units while jointly reasoning about the segments, volumes, supporting relationships, and object stability. Our algorithm is based on the intuition that a good 3D representation of the scene is one that fits the depth data well, and is a stable, self-supporting arrangement of objects (i.e., one that does not topple). We design an energy function for representing the quality of the block representation based on these properties. Our algorithm fits 3D blocks to the depth values corresponding to image segments, and iteratively optimizes the energy function. Our proposed algorithm is the first to consider stability of objects in complex arrangements for reasoning about the underlying structure of the scene. Experimental results show that our stability-reasoning framework improves RGB-D segmentation and scene volumetric representation.
Modeling heading and path perception from optic flow in the case of independently moving objects
Raudies, Florian; Neumann, Heiko
2013-01-01
Humans are usually accurate when estimating heading or path from optic flow, even in the presence of independently moving objects (IMOs) in an otherwise rigid scene. To invoke significant biases in perceived heading, IMOs have to be large and obscure the focus of expansion (FOE) in the image plane, which is the point of approach. For the estimation of path during curvilinear self-motion no significant biases were found in the presence of IMOs. What makes humans robust in their estimation of heading or path using optic flow? We derive analytical models of optic flow for linear and curvilinear self-motion using geometric scene models. Heading biases of a linear least squares method, which builds upon these analytical models, are large, larger than those reported for humans. This motivated us to study segmentation cues that are available from optic flow. We derive models of accretion/deletion, expansion/contraction, acceleration/deceleration, local spatial curvature, and local temporal curvature, to be used as cues to segment an IMO from the background. Integrating these segmentation cues into our method of estimating heading or path now explains human psychophysical data and extends, as well as unifies, previous investigations. Our analysis suggests that various cues available from optic flow help to segment IMOs and, thus, make humans' heading and path perception robust in the presence of such IMOs. PMID:23554589
Flow detection via sparse frame analysis for suspicious event recognition in infrared imagery
NASA Astrophysics Data System (ADS)
Fernandes, Henrique C.; Batista, Marcos A.; Barcelos, Celia A. Z.; Maldague, Xavier P. V.
2013-05-01
It is becoming increasingly evident that intelligent systems are very bene¯cial for society and that the further development of such systems is necessary to continue to improve society's quality of life. One area that has drawn the attention of recent research is the development of automatic surveillance systems. In our work we outline a system capable of monitoring an uncontrolled area (an outside parking lot) using infrared imagery and recognizing suspicious events in this area. The ¯rst step is to identify moving objects and segment them from the scene's background. Our approach is based on a dynamic background-subtraction technique which robustly adapts detection to illumination changes. It is analyzed only regions where movement is occurring, ignoring in°uence of pixels from regions where there is no movement, to segment moving objects. Regions where movement is occurring are identi¯ed using °ow detection via sparse frame analysis. During the tracking process the objects are classi¯ed into two categories: Persons and Vehicles, based on features such as size and velocity. The last step is to recognize suspicious events that may occur in the scene. Since the objects are correctly segmented and classi¯ed it is possible to identify those events using features such as velocity and time spent motionless in one spot. In this paper we recognize the suspicious event suspicion of object(s) theft from inside a parked vehicle at spot X by a person" and results show that the use of °ow detection increases the recognition of this suspicious event from 78:57% to 92:85%.
A Review of Algorithms for Segmentation of Optical Coherence Tomography from Retina
Kafieh, Raheleh; Rabbani, Hossein; Kermani, Saeed
2013-01-01
Optical coherence tomography (OCT) is a recently established imaging technique to describe different information about the internal structures of an object and to image various aspects of biological tissues. OCT image segmentation is mostly introduced on retinal OCT to localize the intra-retinal boundaries. Here, we review some of the important image segmentation methods for processing retinal OCT images. We may classify the OCT segmentation approaches into five distinct groups according to the image domain subjected to the segmentation algorithm. Current researches in OCT segmentation are mostly based on improving the accuracy and precision, and on reducing the required processing time. There is no doubt that current 3-D imaging modalities are now moving the research projects toward volume segmentation along with 3-D rendering and visualization. It is also important to develop robust methods capable of dealing with pathologic cases in OCT imaging. PMID:24083137
Unsupervised motion-based object segmentation refined by color
NASA Astrophysics Data System (ADS)
Piek, Matthijs C.; Braspenning, Ralph; Varekamp, Chris
2003-06-01
For various applications, such as data compression, structure from motion, medical imaging and video enhancement, there is a need for an algorithm that divides video sequences into independently moving objects. Because our focus is on video enhancement and structure from motion for consumer electronics, we strive for a low complexity solution. For still images, several approaches exist based on colour, but these lack in both speed and segmentation quality. For instance, colour-based watershed algorithms produce a so-called oversegmentation with many segments covering each single physical object. Other colour segmentation approaches exist which somehow limit the number of segments to reduce this oversegmentation problem. However, this often results in inaccurate edges or even missed objects. Most likely, colour is an inherently insufficient cue for real world object segmentation, because real world objects can display complex combinations of colours. For video sequences, however, an additional cue is available, namely the motion of objects. When different objects in a scene have different motion, the motion cue alone is often enough to reliably distinguish objects from one another and the background. However, because of the lack of sufficient resolution of efficient motion estimators, like the 3DRS block matcher, the resulting segmentation is not at pixel resolution, but at block resolution. Existing pixel resolution motion estimators are more sensitive to noise, suffer more from aperture problems or have less correspondence to the true motion of objects when compared to block-based approaches or are too computationally expensive. From its tendency to oversegmentation it is apparent that colour segmentation is particularly effective near edges of homogeneously coloured areas. On the other hand, block-based true motion estimation is particularly effective in heterogeneous areas, because heterogeneous areas improve the chance a block is unique and thus decrease the chance of the wrong position producing a good match. Consequently, a number of methods exist which combine motion and colour segmentation. These methods use colour segmentation as a base for the motion segmentation and estimation or perform an independent colour segmentation in parallel which is in some way combined with the motion segmentation. The presented method uses both techniques to complement each other by first segmenting on motion cues and then refining the segmentation with colour. To our knowledge few methods exist which adopt this approach. One example is te{meshrefine}. This method uses an irregular mesh, which hinders its efficient implementation in consumer electronics devices. Furthermore, the method produces a foreground/background segmentation, while our applications call for the segmentation of multiple objects. NEW METHOD As mentioned above we start with motion segmentation and refine the edges of this segmentation with a pixel resolution colour segmentation method afterwards. There are several reasons for this approach: + Motion segmentation does not produce the oversegmentation which colour segmentation methods normally produce, because objects are more likely to have colour discontinuities than motion discontinuities. In this way, the colour segmentation only has to be done at the edges of segments, confining the colour segmentation to a smaller part of the image. In such a part, it is more likely that the colour of an object is homogeneous. + This approach restricts the computationally expensive pixel resolution colour segmentation to a subset of the image. Together with the very efficient 3DRS motion estimation algorithm, this helps to reduce the computational complexity. + The motion cue alone is often enough to reliably distinguish objects from one another and the background. To obtain the motion vector fields, a variant of the 3DRS block-based motion estimator which analyses three frames of input was used. The 3DRS motion estimator is known for its ability to estimate motion vectors which closely resemble the true motion. BLOCK-BASED MOTION SEGMENTATION As mentioned above we start with a block-resolution segmentation based on motion vectors. The presented method is inspired by the well-known K-means segmentation method te{K-means}. Several other methods (e.g. te{kmeansc}) adapt K-means for connectedness by adding a weighted shape-error. This adds the additional difficulty of finding the correct weights for the shape-parameters. Also, these methods often bias one particular pre-defined shape. The presented method, which we call K-regions, encourages connectedness because only blocks at the edges of segments may be assigned to another segment. This constrains the segmentation method to such a degree that it allows the method to use least squares for the robust fitting of affine motion models for each segment. Contrary to te{parmkm}, the segmentation step still operates on vectors instead of model parameters. To make sure the segmentation is temporally consistent, the segmentation of the previous frame will be used as initialisation for every new frame. We also present a scheme which makes the algorithm independent of the initially chosen amount of segments. COLOUR-BASED INTRA-BLOCK SEGMENTATION The block resolution motion-based segmentation forms the starting point for the pixel resolution segmentation. The pixel resolution segmentation is obtained from the block resolution segmentation by reclassifying pixels only at the edges of clusters. We assume that an edge between two objects can be found in either one of two neighbouring blocks that belong to different clusters. This assumption allows us to do the pixel resolution segmentation on each pair of such neighbouring blocks separately. Because of the local nature of the segmentation, it largely avoids problems with heterogeneously coloured areas. Because no new segments are introduced in this step, it also does not suffer from oversegmentation problems. The presented method has no problems with bifurcations. For the pixel resolution segmentation itself we reclassify pixels such that we optimize an error norm which favour similarly coloured regions and straight edges. SEGMENTATION MEASURE To assist in the evaluation of the proposed algorithm we developed a quality metric. Because the problem does not have an exact specification, we decided to define a ground truth output which we find desirable for a given input. We define the measure for the segmentation quality as being how different the segmentation is from the ground truth. Our measure enables us to evaluate oversegmentation and undersegmentation seperately. Also, it allows us to evaluate which parts of a frame suffer from oversegmentation or undersegmentation. The proposed algorithm has been tested on several typical sequences. CONCLUSIONS In this abstract we presented a new video segmentation method which performs well in the segmentation of multiple independently moving foreground objects from each other and the background. It combines the strong points of both colour and motion segmentation in the way we expected. One of the weak points is that the segmentation method suffers from undersegmentation when adjacent objects display similar motion. In sequences with detailed backgrounds the segmentation will sometimes display noisy edges. Apart from these results, we think that some of the techniques, and in particular the K-regions technique, may be useful for other two-dimensional data segmentation problems.
NASA Astrophysics Data System (ADS)
Nestares, Oscar; Miravet, Carlos; Santamaria, Javier; Fonolla Navarro, Rafael
1999-05-01
Automatic object segmentation in highly noisy image sequences, composed by a translating object over a background having a different motion, is achieved through joint motion-texture analysis. Local motion and/or texture is characterized by the energy of the local spatio-temporal spectrum, as different textures undergoing different translational motions display distinctive features in their 3D (x,y,t) spectra. Measurements of local spectrum energy are obtained using a bank of directional 3rd order Gaussian derivative filters in a multiresolution pyramid in space- time (10 directions, 3 resolution levels). These 30 energy measurements form a feature vector describing texture-motion for every pixel in the sequence. To improve discrimination capability and reduce computational cost, we automatically select those 4 features (channels) that best discriminate object from background, under the assumptions that the object is smaller than the background and has a different velocity or texture. In this way we reject features irrelevant or dominated by noise, that could yield wrong segmentation results. This method has been successfully applied to sequences with extremely low visibility and for objects that are even invisible for the eye in absence of motion.
Moving object detection in top-view aerial videos improved by image stacking
NASA Astrophysics Data System (ADS)
Teutsch, Michael; Krüger, Wolfgang; Beyerer, Jürgen
2017-08-01
Image stacking is a well-known method that is used to improve the quality of images in video data. A set of consecutive images is aligned by applying image registration and warping. In the resulting image stack, each pixel has redundant information about its intensity value. This redundant information can be used to suppress image noise, resharpen blurry images, or even enhance the spatial image resolution as done in super-resolution. Small moving objects in the videos usually get blurred or distorted by image stacking and thus need to be handled explicitly. We use image stacking in an innovative way: image registration is applied to small moving objects only, and image warping blurs the stationary background that surrounds the moving objects. Our video data are coming from a small fixed-wing unmanned aerial vehicle (UAV) that acquires top-view gray-value images of urban scenes. Moving objects are mainly cars but also other vehicles such as motorcycles. The resulting images, after applying our proposed image stacking approach, are used to improve baseline algorithms for vehicle detection and segmentation. We improve precision and recall by up to 0.011, which corresponds to a reduction of the number of false positive and false negative detections by more than 3 per second. Furthermore, we show how our proposed image stacking approach can be implemented efficiently.
Algorithms for detection of objects in image sequences captured from an airborne imaging system
NASA Technical Reports Server (NTRS)
Kasturi, Rangachar; Camps, Octavia; Tang, Yuan-Liang; Devadiga, Sadashiva; Gandhi, Tarak
1995-01-01
This research was initiated as a part of the effort at the NASA Ames Research Center to design a computer vision based system that can enhance the safety of navigation by aiding the pilots in detecting various obstacles on the runway during critical section of the flight such as a landing maneuver. The primary goal is the development of algorithms for detection of moving objects from a sequence of images obtained from an on-board video camera. Image regions corresponding to the independently moving objects are segmented from the background by applying constraint filtering on the optical flow computed from the initial few frames of the sequence. These detected regions are tracked over subsequent frames using a model based tracking algorithm. Position and velocity of the moving objects in the world coordinate is estimated using an extended Kalman filter. The algorithms are tested using the NASA line image sequence with six static trucks and a simulated moving truck and experimental results are described. Various limitations of the currently implemented version of the above algorithm are identified and possible solutions to build a practical working system are investigated.
Approach for counting vehicles in congested traffic flow
NASA Astrophysics Data System (ADS)
Tan, Xiaojun; Li, Jun; Liu, Wei
2005-02-01
More and more image sensors are used in intelligent transportation systems. In practice, occlusion is always a problem when counting vehicles in congested traffic. This paper tries to present an approach to solve the problem. The proposed approach consists of three main procedures. Firstly, a new algorithm of background subtraction is performed. The aim is to segment moving objects from an illumination-variant background. Secondly, object tracking is performed, where the CONDENSATION algorithm is used. This can avoid the problem of matching vehicles in successive frames. Thirdly, an inspecting procedure is executed to count the vehicles. When a bus firstly occludes a car and then the bus moves away a few frames later, the car will appear in the scene. The inspecting procedure should find the "new" car and add it as a tracking object.
Real time automated inspection
Fant, Karl M.; Fundakowski, Richard A.; Levitt, Tod S.; Overland, John E.; Suresh, Bindinganavle R.; Ulrich, Franz W.
1985-01-01
A method and apparatus relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges are segmented out by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections.
Effects of modeling errors on trajectory predictions in air traffic control automation
NASA Technical Reports Server (NTRS)
Jackson, Michael R. C.; Zhao, Yiyuan; Slattery, Rhonda
1996-01-01
Air traffic control automation synthesizes aircraft trajectories for the generation of advisories. Trajectory computation employs models of aircraft performances and weather conditions. In contrast, actual trajectories are flown in real aircraft under actual conditions. Since synthetic trajectories are used in landing scheduling and conflict probing, it is very important to understand the differences between computed trajectories and actual trajectories. This paper examines the effects of aircraft modeling errors on the accuracy of trajectory predictions in air traffic control automation. Three-dimensional point-mass aircraft equations of motion are assumed to be able to generate actual aircraft flight paths. Modeling errors are described as uncertain parameters or uncertain input functions. Pilot or autopilot feedback actions are expressed as equality constraints to satisfy control objectives. A typical trajectory is defined by a series of flight segments with different control objectives for each flight segment and conditions that define segment transitions. A constrained linearization approach is used to analyze trajectory differences caused by various modeling errors by developing a linear time varying system that describes the trajectory errors, with expressions to transfer the trajectory errors across moving segment transitions. A numerical example is presented for a complete commercial aircraft descent trajectory consisting of several flight segments.
Real-time reliability measure-driven multi-hypothesis tracking using 2D and 3D features
NASA Astrophysics Data System (ADS)
Zúñiga, Marcos D.; Brémond, François; Thonnat, Monique
2011-12-01
We propose a new multi-target tracking approach, which is able to reliably track multiple objects even with poor segmentation results due to noisy environments. The approach takes advantage of a new dual object model combining 2D and 3D features through reliability measures. In order to obtain these 3D features, a new classifier associates an object class label to each moving region (e.g. person, vehicle), a parallelepiped model and visual reliability measures of its attributes. These reliability measures allow to properly weight the contribution of noisy, erroneous or false data in order to better maintain the integrity of the object dynamics model. Then, a new multi-target tracking algorithm uses these object descriptions to generate tracking hypotheses about the objects moving in the scene. This tracking approach is able to manage many-to-many visual target correspondences. For achieving this characteristic, the algorithm takes advantage of 3D models for merging dissociated visual evidence (moving regions) potentially corresponding to the same real object, according to previously obtained information. The tracking approach has been validated using video surveillance benchmarks publicly accessible. The obtained performance is real time and the results are competitive compared with other tracking algorithms, with minimal (or null) reconfiguration effort between different videos.
Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder.
Chen, Shuoyang; Xu, Tingfa; Li, Daqun; Zhang, Jizhou; Jiang, Shenwang
2016-10-21
During the process of moving object detection in an intelligent visual surveillance system, a scenario with complex background is sure to appear. The traditional methods, such as "frame difference" and "optical flow", may not able to deal with the problem very well. In such scenarios, we use a modified algorithm to do the background modeling work. In this paper, we use edge detection to get an edge difference image just to enhance the ability of resistance illumination variation. Then we use a "multi-block temporal-analyzing LBP (Local Binary Pattern)" algorithm to do the segmentation. In the end, a connected component is used to locate the object. We also produce a hardware platform, the core of which consists of the DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) platforms and the high-precision intelligent holder.
NASA Astrophysics Data System (ADS)
Gohatre, Umakant Bhaskar; Patil, Venkat P.
2018-04-01
In computer vision application, the multiple object detection and tracking, in real-time operation is one of the important research field, that have gained a lot of attentions, in last few years for finding non stationary entities in the field of image sequence. The detection of object is advance towards following the moving object in video and then representation of object is step to track. The multiple object recognition proof is one of the testing assignment from detection multiple objects from video sequence. The picture enrollment has been for quite some time utilized as a reason for the location the detection of moving multiple objects. The technique of registration to discover correspondence between back to back casing sets in view of picture appearance under inflexible and relative change. The picture enrollment is not appropriate to deal with event occasion that can be result in potential missed objects. In this paper, for address such problems, designs propose novel approach. The divided video outlines utilizing area adjancy diagram of visual appearance and geometric properties. Then it performed between graph sequences by using multi graph matching, then getting matching region labeling by a proposed graph coloring algorithms which assign foreground label to respective region. The plan design is robust to unknown transformation with significant improvement in overall existing work which is related to moving multiple objects detection in real time parameters.
Seed robustness of oriented relative fuzzy connectedness: core computation and its applications
NASA Astrophysics Data System (ADS)
Tavares, Anderson C. M.; Bejar, Hans H. C.; Miranda, Paulo A. V.
2017-02-01
In this work, we present a formal definition and an efficient algorithm to compute the cores of Oriented Relative Fuzzy Connectedness (ORFC), a recent seed-based segmentation technique. The core is a region where the seed can be moved without altering the segmentation, an important aspect for robust techniques and reduction of user effort. We show how ORFC cores can be used to build a powerful hybrid image segmentation approach. We also provide some new theoretical relations between ORFC and Oriented Image Foresting Transform (OIFT), as well as their cores. Experimental results among several methods show that the hybrid approach conserves high accuracy, avoids the shrinking problem and provides robustness to seed placement inside the desired object due to the cores properties.
Study of moving object detecting and tracking algorithm for video surveillance system
NASA Astrophysics Data System (ADS)
Wang, Tao; Zhang, Rongfu
2010-10-01
This paper describes a specific process of moving target detecting and tracking in the video surveillance.Obtain high-quality background is the key to achieving differential target detecting in the video surveillance.The paper is based on a block segmentation method to build clear background,and using the method of background difference to detecing moving target,after a series of treatment we can be extracted the more comprehensive object from original image,then using the smallest bounding rectangle to locate the object.In the video surveillance system, the delay of camera and other reasons lead to tracking lag,the model of Kalman filter based on template matching was proposed,using deduced and estimated capacity of Kalman,the center of smallest bounding rectangle for predictive value,predicted the position in the next moment may appare,followed by template matching in the region as the center of this position,by calculate the cross-correlation similarity of current image and reference image,can determine the best matching center.As narrowed the scope of searching,thereby reduced the searching time,so there be achieve fast-tracking.
Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder
Chen, Shuoyang; Xu, Tingfa; Li, Daqun; Zhang, Jizhou; Jiang, Shenwang
2016-01-01
During the process of moving object detection in an intelligent visual surveillance system, a scenario with complex background is sure to appear. The traditional methods, such as “frame difference” and “optical flow”, may not able to deal with the problem very well. In such scenarios, we use a modified algorithm to do the background modeling work. In this paper, we use edge detection to get an edge difference image just to enhance the ability of resistance illumination variation. Then we use a “multi-block temporal-analyzing LBP (Local Binary Pattern)” algorithm to do the segmentation. In the end, a connected component is used to locate the object. We also produce a hardware platform, the core of which consists of the DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) platforms and the high-precision intelligent holder. PMID:27775671
Psychovisual masks and intelligent streaming RTP techniques for the MPEG-4 standard
NASA Astrophysics Data System (ADS)
Mecocci, Alessandro; Falconi, Francesco
2003-06-01
In today multimedia audio-video communication systems, data compression plays a fundamental role by reducing the bandwidth waste and the costs of the infrastructures and equipments. Among the different compression standards, the MPEG-4 is becoming more and more accepted and widespread. Even if one of the fundamental aspects of this standard is the possibility of separately coding video objects (i.e. to separate moving objects from the background and adapt the coding strategy to the video content), currently implemented codecs work only at the full-frame level. In this way, many advantages of the flexible MPEG-4 syntax are missed. This lack is due both to the difficulties in properly segmenting moving objects in real scenes (featuring an arbitrary motion of the objects and of the acquisition sensor), and to the current use of these codecs, that are mainly oriented towards the market of DVD backups (a full-frame approach is enough for these applications). In this paper we propose a codec for MPEG-4 real-time object streaming, that codes separately the moving objects and the scene background. The proposed codec is capable of adapting its strategy during the transmission, by analysing the video currently transmitted and setting the coder parameters and modalities accordingly. For example, the background can be transmitted as a whole or by dividing it into "slightly-detailed" and "highly detailed" zones that are coded in different ways to reduce the bit-rate while preserving the perceived quality. The coder can automatically switch in real-time, from one modality to the other during the transmission, depending on the current video content. Psychovisual masks and other video-content based measurements have been used as inputs for a Self Learning Intelligent Controller (SLIC) that changes the parameters and the transmission modalities. The current implementation is based on the ISO 14496 standard code that allows Video Objects (VO) transmission (other Open Source Codes like: DivX, Xvid, and Cisco"s Mpeg-4IP, have been analyzed but, as for today, they do not support VO). The original code has been deeply modified to integrate the SLIC and to adapt it for real-time streaming. A personal RTP (Real Time Protocol) has been defined and a Client-Server application has been developed. The viewer can decode and demultiplex the stream in real-time, while adapting to the changing modalities adopted by the Server according to the current video content. The proposed codec works as follows: the image background is separated by means of a segmentation module and it is transmitted by means of a wavelet compression scheme similar to that used in the JPEG2000. The VO are coded separately and multiplexed with the background stream. At the receiver the stream is demultiplexed to obtain the background and the VO that are subsequently pasted together. The final quality depends on many factors, in particular: the quantization parameters, the Group Of Video Object (GOV) length, the GOV structure (i.e. the number of I-P-B VOP), the search area for motion compensation. These factors are strongly related to the following measurement parameters (that have been defined during the development): the Objects Apparent Size (OAS) in the scene, the Video Object Incidence factor (VOI), the temporal correlation (measured through the Normalized Mean SAD, NMSAD). The SLIC module analyzes the currently transmitted video and selects the most appropriate settings by choosing from a predefined set of transmission modalities. For example, in the case of a highly temporal correlated sequence, the number of B-VOP is increased to improve the compression ratio. The strategy for the selection of the number of B-VOP turns out to be very different from those reported in the literature for B-frames (adopted for MPEG-1 and MPEG-2), due to the different behaviour of the temporal correlation when limited only to moving objects. The SLIC module also decides how to transmit the background. In our implementation we adopted the Visual Brain theory i.e. the study of what the "psychic eye" can get from a scene. According to this theory, a Psychomask Image Analysis (PIA) module has been developed to extract the visually homogeneous regions of the background. The PIA module produces two complementary masks one for the visually low variance zones and one for the higly variable zones; these zones are compressed with different strategies and encoded into two multiplexed streams. From practical experiments it turned out that the separate coding is advantageous only if the low variance zones exceed 50% of the whole background area (due to the overhead given by the need of transmitting the zone masks). The SLIC module takes care of deciding the appropriate transmission modality by analyzing the results produced by the PIA module. The main features of this codec are: low bitrate, good image quality and coding speed. The current implementation runs in real-time on standard PC platforms, the major limitation being the fixed position of the acquisition sensor. This limitation is due to the difficulties in separating moving objects from the background when the acquisition sensor moves. Our current real-time segmentation module does not produce suitable results if the acquisition sensor moves (only slight oscillatory movements are tolerated). In any case, the system is particularly suitable for tele surveillance applications at low bit-rates, where the camera is usually fixed or alternates among some predetermined positions (our segmentation module is capable of accurately separate moving objects from the static background when the acquisition sensor stops, even if different scenes are seen as a result of the sensor displacements). Moreover, the proposed architecture is general, in the sense that when real-time, robust segmentation systems (capable of separating objects in real-time from the background while the sensor itself is moving) will be available, they can be easily integrated while leaving the rest of the system unchanged. Experimental results related to real sequences for traffic monitoring and for people tracking and afety control are reported and deeply discussed in the paper. The whole system has been implemented in standard ANSI C code and currently runs on standard PCs under Microsoft Windows operating system (Windows 2000 pro and Windows XP).
Real-time people counting system using a single video camera
NASA Astrophysics Data System (ADS)
Lefloch, Damien; Cheikh, Faouzi A.; Hardeberg, Jon Y.; Gouton, Pierre; Picot-Clemente, Romain
2008-02-01
There is growing interest in video-based solutions for people monitoring and counting in business and security applications. Compared to classic sensor-based solutions the video-based ones allow for more versatile functionalities, improved performance with lower costs. In this paper, we propose a real-time system for people counting based on single low-end non-calibrated video camera. The two main challenges addressed in this paper are: robust estimation of the scene background and the number of real persons in merge-split scenarios. The latter is likely to occur whenever multiple persons move closely, e.g. in shopping centers. Several persons may be considered to be a single person by automatic segmentation algorithms, due to occlusions or shadows, leading to under-counting. Therefore, to account for noises, illumination and static objects changes, a background substraction is performed using an adaptive background model (updated over time based on motion information) and automatic thresholding. Furthermore, post-processing of the segmentation results is performed, in the HSV color space, to remove shadows. Moving objects are tracked using an adaptive Kalman filter, allowing a robust estimation of the objects future positions even under heavy occlusion. The system is implemented in Matlab, and gives encouraging results even at high frame rates. Experimental results obtained based on the PETS2006 datasets are presented at the end of the paper.
Residential roof condition assessment system using deep learning
NASA Astrophysics Data System (ADS)
Wang, Fan; Kerekes, John P.; Xu, Zhuoyi; Wang, Yandong
2018-01-01
The emergence of high resolution (HR) and ultra high resolution (UHR) airborne remote sensing imagery is enabling humans to move beyond traditional land cover analysis applications to the detailed characterization of surface objects. A residential roof condition assessment method using techniques from deep learning is presented. The proposed method operates on individual roofs and divides the task into two stages: (1) roof segmentation, followed by (2) condition classification of the segmented roof regions. As the first step in this process, a self-tuning method is proposed to segment the images into small homogeneous areas. The segmentation is initialized with simple linear iterative clustering followed by deep learned feature extraction and region merging, with the optimal result selected by an unsupervised index, Q. After the segmentation, a pretrained residual network is fine-tuned on the augmented roof segments using a proposed k-pixel extension technique for classification. The effectiveness of the proposed algorithm was demonstrated on both HR and UHR imagery collected by EagleView over different study sites. The proposed algorithm has yielded promising results and has outperformed traditional machine learning methods using hand-crafted features.
A biological hierarchical model based underwater moving object detection.
Shen, Jie; Fan, Tanghuai; Tang, Min; Zhang, Qian; Sun, Zhen; Huang, Fengchen
2014-01-01
Underwater moving object detection is the key for many underwater computer vision tasks, such as object recognizing, locating, and tracking. Considering the super ability in visual sensing of the underwater habitats, the visual mechanism of aquatic animals is generally regarded as the cue for establishing bionic models which are more adaptive to the underwater environments. However, the low accuracy rate and the absence of the prior knowledge learning limit their adaptation in underwater applications. Aiming to solve the problems originated from the inhomogeneous lumination and the unstable background, the mechanism of the visual information sensing and processing pattern from the eye of frogs are imitated to produce a hierarchical background model for detecting underwater objects. Firstly, the image is segmented into several subblocks. The intensity information is extracted for establishing background model which could roughly identify the object and the background regions. The texture feature of each pixel in the rough object region is further analyzed to generate the object contour precisely. Experimental results demonstrate that the proposed method gives a better performance. Compared to the traditional Gaussian background model, the completeness of the object detection is 97.92% with only 0.94% of the background region that is included in the detection results.
A Biological Hierarchical Model Based Underwater Moving Object Detection
Shen, Jie; Fan, Tanghuai; Tang, Min; Zhang, Qian; Sun, Zhen; Huang, Fengchen
2014-01-01
Underwater moving object detection is the key for many underwater computer vision tasks, such as object recognizing, locating, and tracking. Considering the super ability in visual sensing of the underwater habitats, the visual mechanism of aquatic animals is generally regarded as the cue for establishing bionic models which are more adaptive to the underwater environments. However, the low accuracy rate and the absence of the prior knowledge learning limit their adaptation in underwater applications. Aiming to solve the problems originated from the inhomogeneous lumination and the unstable background, the mechanism of the visual information sensing and processing pattern from the eye of frogs are imitated to produce a hierarchical background model for detecting underwater objects. Firstly, the image is segmented into several subblocks. The intensity information is extracted for establishing background model which could roughly identify the object and the background regions. The texture feature of each pixel in the rough object region is further analyzed to generate the object contour precisely. Experimental results demonstrate that the proposed method gives a better performance. Compared to the traditional Gaussian background model, the completeness of the object detection is 97.92% with only 0.94% of the background region that is included in the detection results. PMID:25140194
NASA Astrophysics Data System (ADS)
Sanny, Teuku A.
2017-07-01
The objective of this study is to determine boundary and how to know surrounding area between Lembang Fault and Cimandiri fault. For the detailed study we used three methodologies: (1). Surface deformation modeling by using Boundary Element method and (2) Controlled Source Audiomagneto Telluric (CSAMT). Based on the study by using surface deformation by using Boundary Element Methods (BEM), the direction Lembang fault has a dominant displacement in east direction. The eastward displacement at the nothern fault block is smaller than the eastward displacement at the southern fault block which indicates that each fault block move in left direction relative to each other. From this study we know that Lembang fault in this area has left lateral strike slip component. The western part of the Lembang fault move in west direction different from the eastern part that moves in east direction. Stress distribution map of Lembang fault shows difference between the eastern and western segments of Lembang fault. Displacement distribution map along x-direction and y-direction of Lembang fault shows a linement oriented in northeast-southwest direction right on Tangkuban Perahu Mountain. Displacement pattern of Cimandiri fault indicates that the Cimandiri fault is devided into two segment. Eastern segment has left lateral strike slip component while the western segment has right lateral strike slip component. Based on the displacement distribution map along y-direction, a linement oriented in northwest-southeast direction is observed at the western segment of the Cimandiri fault. The displacement along x-direction and y-direction between the Lembang and Cimandiri fault is nearly equal to zero indicating that the Lembang fault and Cimandiri Fault are not connected to each others. Based on refraction seismic tomography that we know the characteristic of Cimandiri fault as normal fault. Based on CSAMT method th e lembang fault is normal fault that different of dip which formed as graben structure.
Cooperative multisensor system for real-time face detection and tracking in uncontrolled conditions
NASA Astrophysics Data System (ADS)
Marchesotti, Luca; Piva, Stefano; Turolla, Andrea; Minetti, Deborah; Regazzoni, Carlo S.
2005-03-01
The presented work describes an innovative architecture for multi-sensor distributed video surveillance applications. The aim of the system is to track moving objects in outdoor environments with a cooperative strategy exploiting two video cameras. The system also exhibits the capacity of focusing its attention on the faces of detected pedestrians collecting snapshot frames of face images, by segmenting and tracking them over time at different resolution. The system is designed to employ two video cameras in a cooperative client/server structure: the first camera monitors the entire area of interest and detects the moving objects using change detection techniques. The detected objects are tracked over time and their position is indicated on a map representing the monitored area. The objects" coordinates are sent to the server sensor in order to point its zooming optics towards the moving object. The second camera tracks the objects at high resolution. As well as the client camera, this sensor is calibrated and the position of the object detected on the image plane reference system is translated in its coordinates referred to the same area map. In the map common reference system, data fusion techniques are applied to achieve a more precise and robust estimation of the objects" track and to perform face detection and tracking. The work novelties and strength reside in the cooperative multi-sensor approach, in the high resolution long distance tracking and in the automatic collection of biometric data such as a person face clip for recognition purposes.
Brandes, Susanne; Mokhtari, Zeinab; Essig, Fabian; Hünniger, Kerstin; Kurzai, Oliver; Figge, Marc Thilo
2015-02-01
Time-lapse microscopy is an important technique to study the dynamics of various biological processes. The labor-intensive manual analysis of microscopy videos is increasingly replaced by automated segmentation and tracking methods. These methods are often limited to certain cell morphologies and/or cell stainings. In this paper, we present an automated segmentation and tracking framework that does not have these restrictions. In particular, our framework handles highly variable cell shapes and does not rely on any cell stainings. Our segmentation approach is based on a combination of spatial and temporal image variations to detect moving cells in microscopy videos. This method yields a sensitivity of 99% and a precision of 95% in object detection. The tracking of cells consists of different steps, starting from single-cell tracking based on a nearest-neighbor-approach, detection of cell-cell interactions and splitting of cell clusters, and finally combining tracklets using methods from graph theory. The segmentation and tracking framework was applied to synthetic as well as experimental datasets with varying cell densities implying different numbers of cell-cell interactions. We established a validation framework to measure the performance of our tracking technique. The cell tracking accuracy was found to be >99% for all datasets indicating a high accuracy for connecting the detected cells between different time points. Copyright © 2014 Elsevier B.V. All rights reserved.
Optical system for object detection and delineation in space
NASA Astrophysics Data System (ADS)
Handelman, Amir; Shwartz, Shoam; Donitza, Liad; Chaplanov, Loran
2018-01-01
Object recognition and delineation is an important task in many environments, such as in crime scenes and operating rooms. Marking evidence or surgical tools and attracting the attention of the surrounding staff to the marked objects can affect people's lives. We present an optical system comprising a camera, computer, and small laser projector that can detect and delineate objects in the environment. To prove the optical system's concept, we show that it can operate in a hypothetical crime scene in which a pistol is present and automatically recognize and segment it by various computer-vision algorithms. Based on such segmentation, the laser projector illuminates the actual boundaries of the pistol and thus allows the persons in the scene to comfortably locate and measure the pistol without holding any intermediator device, such as an augmented reality handheld device, glasses, or screens. Using additional optical devices, such as diffraction grating and a cylinder lens, the pistol size can be estimated. The exact location of the pistol in space remains static, even after its removal. Our optical system can be fixed or dynamically moved, making it suitable for various applications that require marking of objects in space.
NASA Astrophysics Data System (ADS)
Menze, Moritz; Heipke, Christian; Geiger, Andreas
2018-06-01
This work investigates the estimation of dense three-dimensional motion fields, commonly referred to as scene flow. While great progress has been made in recent years, large displacements and adverse imaging conditions as observed in natural outdoor environments are still very challenging for current approaches to reconstruction and motion estimation. In this paper, we propose a unified random field model which reasons jointly about 3D scene flow as well as the location, shape and motion of vehicles in the observed scene. We formulate the problem as the task of decomposing the scene into a small number of rigidly moving objects sharing the same motion parameters. Thus, our formulation effectively introduces long-range spatial dependencies which commonly employed local rigidity priors are lacking. Our inference algorithm then estimates the association of image segments and object hypotheses together with their three-dimensional shape and motion. We demonstrate the potential of the proposed approach by introducing a novel challenging scene flow benchmark which allows for a thorough comparison of the proposed scene flow approach with respect to various baseline models. In contrast to previous benchmarks, our evaluation is the first to provide stereo and optical flow ground truth for dynamic real-world urban scenes at large scale. Our experiments reveal that rigid motion segmentation can be utilized as an effective regularizer for the scene flow problem, improving upon existing two-frame scene flow methods. At the same time, our method yields plausible object segmentations without requiring an explicitly trained recognition model for a specific object class.
Line grouping using perceptual saliency and structure prediction for car detection in traffic scenes
NASA Astrophysics Data System (ADS)
Denasi, Sandra; Quaglia, Giorgio
1993-08-01
Autonomous and guide assisted vehicles make a heavy use of computer vision techniques to perceive the environment where they move. In this context, the European PROMETHEUS program is carrying on activities in order to develop autonomous vehicle monitoring that assists people to achieve safer driving. Car detection is one of the topics that are faced by the program. Our contribution proposes the development of this task in two stages: the localization of areas of interest and the formulation of object hypotheses. In particular, the present paper proposes a new approach that builds structural descriptions of objects from edge segmentations by using geometrical organization. This approach has been applied to the detection of cars in traffic scenes. We have analyzed images taken from a moving vehicle in order to formulate obstacle hypotheses: preliminary results confirm the efficiency of the method.
Understanding the topological characteristics and flow complexity of urban traffic congestion
NASA Astrophysics Data System (ADS)
Wen, Tzai-Hung; Chin, Wei-Chien-Benny; Lai, Pei-Chun
2017-05-01
For a growing number of developing cities, the capacities of streets cannot meet the rapidly growing demand of cars, causing traffic congestion. Understanding the spatial-temporal process of traffic flow and detecting traffic congestion are important issues associated with developing sustainable urban policies to resolve congestion. Therefore, the objective of this study is to propose a flow-based ranking algorithm for investigating traffic demands in terms of the attractiveness of street segments and flow complexity of the street network based on turning probability. Our results show that, by analyzing the topological characteristics of streets and volume data for a small fraction of street segments in Taipei City, the most congested segments of the city were identified successfully. The identified congested segments are significantly close to the potential congestion zones, including the officially announced most congested streets, the segments with slow moving speeds at rush hours, and the areas near significant landmarks. The identified congested segments also captured congestion-prone areas concentrated in the business districts and industrial areas of the city. Identifying the topological characteristics and flow complexity of traffic congestion provides network topological insights for sustainable urban planning, and these characteristics can be used to further understand congestion propagation.
Segmenting Images for a Better Diagnosis
NASA Technical Reports Server (NTRS)
2004-01-01
NASA's Hierarchical Segmentation (HSEG) software has been adapted by Bartron Medical Imaging, LLC, for use in segmentation feature extraction, pattern recognition, and classification of medical images. Bartron acquired licenses from NASA Goddard Space Flight Center for application of the HSEG concept to medical imaging, from the California Institute of Technology/Jet Propulsion Laboratory to incorporate pattern-matching software, and from Kennedy Space Center for data-mining and edge-detection programs. The Med-Seg[TM] united developed by Bartron provides improved diagnoses for a wide range of medical images, including computed tomography scans, positron emission tomography scans, magnetic resonance imaging, ultrasound, digitized Z-ray, digitized mammography, dental X-ray, soft tissue analysis, and moving object analysis. It also can be used in analysis of soft-tissue slides. Bartron's future plans include the application of HSEG technology to drug development. NASA is advancing it's HSEG software to learn more about the Earth's magnetosphere.
Speed tuning of motion segmentation and discrimination
NASA Technical Reports Server (NTRS)
Masson, G. S.; Mestre, D. R.; Stone, L. S.
1999-01-01
Motion transparency requires that the visual system distinguish different motion vectors and selectively integrate similar motion vectors over space into the perception of multiple surfaces moving through or over each other. Using large-field (7 degrees x 7 degrees) displays containing two populations of random-dots moving in the same (horizontal) direction but at different speeds, we examined speed-based segmentation by measuring the speed difference above which observers can perceive two moving surfaces. We systematically investigated this 'speed-segmentation' threshold as a function of speed and stimulus duration, and found that it increases sharply for speeds above approximately 8 degrees/s. In addition, speed-segmentation thresholds decrease with stimulus duration out to approximately 200 ms. In contrast, under matched conditions, speed-discrimination thresholds stay low at least out to 16 degrees/s and decrease with increasing stimulus duration at a faster rate than for speed segmentation. Thus, motion segmentation and motion discrimination exhibit different speed selectivity and different temporal integration characteristics. Results are discussed in terms of the speed preferences of different neuronal populations within the primate visual cortex.
Tracking cells in Life Cell Imaging videos using topological alignments.
Mosig, Axel; Jäger, Stefan; Wang, Chaofeng; Nath, Sumit; Ersoy, Ilker; Palaniappan, Kannap-pan; Chen, Su-Shing
2009-07-16
With the increasing availability of live cell imaging technology, tracking cells and other moving objects in live cell videos has become a major challenge for bioimage informatics. An inherent problem for most cell tracking algorithms is over- or under-segmentation of cells - many algorithms tend to recognize one cell as several cells or vice versa. We propose to approach this problem through so-called topological alignments, which we apply to address the problem of linking segmentations of two consecutive frames in the video sequence. Starting from the output of a conventional segmentation procedure, we align pairs of consecutive frames through assigning sets of segments in one frame to sets of segments in the next frame. We achieve this through finding maximum weighted solutions to a generalized "bipartite matching" between two hierarchies of segments, where we derive weights from relative overlap scores of convex hulls of sets of segments. For solving the matching task, we rely on an integer linear program. Practical experiments demonstrate that the matching task can be solved efficiently in practice, and that our method is both effective and useful for tracking cells in data sets derived from a so-called Large Scale Digital Cell Analysis System (LSDCAS). The source code of the implementation is available for download from http://www.picb.ac.cn/patterns/Software/topaln.
Activation of the Human MT Complex by Motion in Depth Induced by a Moving Cast Shadow
Katsuyama, Narumi; Usui, Nobuo; Taira, Masato
2016-01-01
A moving cast shadow is a powerful monocular depth cue for motion perception in depth. For example, when a cast shadow moves away from or toward an object in a two-dimensional plane, the object appears to move toward or away from the observer in depth, respectively, whereas the size and position of the object are constant. Although the cortical mechanisms underlying motion perception in depth by cast shadow are unknown, the human MT complex (hMT+) is likely involved in the process, as it is sensitive to motion in depth represented by binocular depth cues. In the present study, we examined this possibility by using a functional magnetic resonance imaging (fMRI) technique. First, we identified the cortical regions sensitive to the motion of a square in depth represented via binocular disparity. Consistent with previous studies, we observed significant activation in the bilateral hMT+, and defined functional regions of interest (ROIs) there. We then investigated the activity of the ROIs during observation of the following stimuli: 1) a central square that appeared to move back and forth via a moving cast shadow (mCS); 2) a segmented and scrambled cast shadow presented beside the square (sCS); and 3) no cast shadow (nCS). Participants perceived motion of the square in depth in the mCS condition only. The activity of the hMT+ was significantly higher in the mCS compared with the sCS and nCS conditions. Moreover, the hMT+ was activated equally in both hemispheres in the mCS condition, despite presentation of the cast shadow in the bottom-right quadrant of the stimulus. Perception of the square moving in depth across visual hemifields may be reflected in the bilateral activation of the hMT+. We concluded that the hMT+ is involved in motion perception in depth induced by moving cast shadow and by binocular disparity. PMID:27597999
2004-01-30
KENNEDY SPACE CENTER, FLA. - Workers ride the rails along with a container enclosing a segment of a solid rocket booster being moved to the main track. Several segments are being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
The monocular visual imaging technology model applied in the airport surface surveillance
NASA Astrophysics Data System (ADS)
Qin, Zhe; Wang, Jian; Huang, Chao
2013-08-01
At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.
Xiao, Jianbo
2015-01-01
Segmenting visual scenes into distinct objects and surfaces is a fundamental visual function. To better understand the underlying neural mechanism, we investigated how neurons in the middle temporal cortex (MT) of macaque monkeys represent overlapping random-dot stimuli moving transparently in slightly different directions. It has been shown that the neuronal response elicited by two stimuli approximately follows the average of the responses elicited by the constituent stimulus components presented alone. In this scheme of response pooling, the ability to segment two simultaneously presented motion directions is limited by the width of the tuning curve to motion in a single direction. We found that, although the population-averaged neuronal tuning showed response averaging, subgroups of neurons showed distinct patterns of response tuning and were capable of representing component directions that were separated by a small angle—less than the tuning width to unidirectional stimuli. One group of neurons preferentially represented the component direction at a specific side of the bidirectional stimuli, weighting one stimulus component more strongly than the other. Another group of neurons pooled the component responses nonlinearly and showed two separate peaks in their tuning curves even when the average of the component responses was unimodal. We also show for the first time that the direction tuning of MT neurons evolved from initially representing the vector-averaged direction of slightly different stimuli to gradually representing the component directions. Our results reveal important neural processes underlying image segmentation and suggest that information about slightly different stimulus components is computed dynamically and distributed across neurons. SIGNIFICANCE STATEMENT Natural scenes often contain multiple entities. The ability to segment visual scenes into distinct objects and surfaces is fundamental to sensory processing and is crucial for generating the perception of our environment. Because cortical neurons are broadly tuned to a given visual feature, segmenting two stimuli that differ only slightly is a challenge for the visual system. In this study, we discovered that many neurons in the visual cortex are capable of representing individual components of slightly different stimuli by selectively and nonlinearly pooling the responses elicited by the stimulus components. We also show for the first time that the neural representation of individual stimulus components developed over a period of ∼70–100 ms, revealing a dynamic process of image segmentation. PMID:26658869
Keep your eyes on the ball: smooth pursuit eye movements enhance prediction of visual motion.
Spering, Miriam; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R
2011-04-01
Success of motor behavior often depends on the ability to predict the path of moving objects. Here we asked whether tracking a visual object with smooth pursuit eye movements helps to predict its motion direction. We developed a paradigm, "eye soccer," in which observers had to either track or fixate a visual target (ball) and judge whether it would have hit or missed a stationary vertical line segment (goal). Ball and goal were presented briefly for 100-500 ms and disappeared from the screen together before the perceptual judgment was prompted. In pursuit conditions, the ball moved towards the goal; in fixation conditions, the goal moved towards the stationary ball, resulting in similar retinal stimulation during pursuit and fixation. We also tested the condition in which the goal was fixated and the ball moved. Motion direction prediction was significantly better in pursuit than in fixation trials, regardless of whether ball or goal served as fixation target. In both fixation and pursuit trials, prediction performance was better when eye movements were accurate. Performance also increased with shorter ball-goal distance and longer presentation duration. A longer trajectory did not affect performance. During pursuit, an efference copy signal might provide additional motion information, leading to the advantage in motion prediction.
Contrast and assimilation in motion perception and smooth pursuit eye movements.
Spering, Miriam; Gegenfurtner, Karl R
2007-09-01
The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.
Swallow segmentation with artificial neural networks and multi-sensor fusion.
Lee, Joon; Steele, Catriona M; Chau, Tom
2009-11-01
Swallow segmentation is a critical precursory step to the analysis of swallowing signal characteristics. In an effort to automatically segment swallows, we investigated artificial neural networks (ANN) with information from cervical dual-axis accelerometry, submental MMG, and nasal airflow. Our objectives were (1) to investigate the relationship between segmentation performance and the number of signal sources and (2) to identify the signals or signal combinations most useful for swallow segmentation. Signals were acquired from 17 healthy adults in both discrete and continuous swallowing tasks using five stimuli. Training and test feature vectors were constructed with variances from single or multiple signals, estimated within 200 ms moving windows with 50% overlap. Corresponding binary target labels (swallow or non-swallow) were derived by manual segmentation. A separate 3-layer ANN was trained for each participant-signal combination, and all possible signal combinations were investigated. As more signal sources were included, segmentation performance improved in terms of sensitivity, specificity, accuracy, and adjusted accuracy. The combination of all four signal sources achieved the highest mean accuracy and adjusted accuracy of 88.5% and 89.6%, respectively. A-P accelerometry proved to be the most discriminatory source, while the inclusion of MMG or nasal airflow resulted in the least performance improvement. These findings suggest that an ANN, multi-sensor fusion approach to segmentation is worthy of further investigation in swallowing studies.
Spatial vision within egocentric and exocentric frames of reference
NASA Technical Reports Server (NTRS)
Howard, Ian P.
1991-01-01
It is remarkable that we are able to perceive a stable visual world and judge the directions, orientations, and movements of visual objects given that images move on the retina, the eyes move in the head, the head moves on the body, and the body moves in space. An understanding of the mechanisms underlying perceptual stability and spatial judgements requires precise definitions of relevant coordinate systems. An egocentric frame of reference is defined with respect to some part of the observer. There are four principal egocentric frames of reference, a station-point frame associated with the nodal point of the eye, an retinocentric frame associated with the retina, a headcentric frame associated with the head, and a bodycentric frame (torsocentric) associated with the torso. Additional egocentric frames can be identified with respect to any segment of the body. An egocentric task is one in which the position, orientation, or motion of an object is judged with respect to an egocentric frame of reference. A proprioceptive is a special kind of egocentric task in which the object being judged is also part of the body. An example of a proprioceptive task is that of directing the gaze toward the seen or unseen toe. An exocentric frame of reference is external to the observer. Geographical coordinates and the direction of gravity are examples of exocentric frames of reference. These various frames are listed in tabular form, together with examples of judgements of each type.
NASA Astrophysics Data System (ADS)
Taylor, Frederick W.; Bevis, Michael G.; Dalziel, Ian W. D.; Smalley, Robert; Frohlich, Cliff; Kendrick, Eric; Foster, James; Phillips, David; Gudipati, Krishnavikas
2008-04-01
New GPS measurements demonstrate tectonic segmentation of the South Shetland Islands platform, regarded as a microplate separating the Antarctic Peninsula from the oceanic portion of the Antarctic plate. King George, Greenwich, and Livingston islands on the central and largest segment are separating from the Antarctic Peninsula at 7-9 mm/a, moving NNW, roughly perpendicular to the continental margin. Smith and Low islands on the small southwestern segment are moving in the same direction, but at 2.2-3.0 mm/a. The Elephant Island subgroup in the northeast moves at ˜7 mm/a relative to the Peninsula, like the central group, but toward the WNW. This implies that it is presently coupled to the Scotia plate on the northern side of the South Scotia Ridge transform boundary; thus the uplift of these northeasternmost islands may be caused by Scotia-Antarctic plate convergence rather than by subduction of thickened oceanic crust.
Inferring segmented dense motion layers using 5D tensor voting.
Min, Changki; Medioni, Gérard
2008-09-01
We present a novel local spatiotemporal approach to produce motion segmentation and dense temporal trajectories from an image sequence. A common representation of image sequences is a 3D spatiotemporal volume, (x,y,t), and its corresponding mathematical formalism is the fiber bundle. However, directly enforcing the spatiotemporal smoothness constraint is difficult in the fiber bundle representation. Thus, we convert the representation into a new 5D space (x,y,t,vx,vy) with an additional velocity domain, where each moving object produces a separate 3D smooth layer. The smoothness constraint is now enforced by extracting 3D layers using the tensor voting framework in a single step that solves both correspondence and segmentation simultaneously. Motion segmentation is achieved by identifying those layers, and the dense temporal trajectories are obtained by converting the layers back into the fiber bundle representation. We proceed to address three applications (tracking, mosaic, and 3D reconstruction) that are hard to solve from the video stream directly because of the segmentation and dense matching steps, but become straightforward with our framework. The approach does not make restrictive assumptions about the observed scene or camera motion and is therefore generally applicable. We present results on a number of data sets.
Shape regularized active contour based on dynamic programming for anatomical structure segmentation
NASA Astrophysics Data System (ADS)
Yu, Tianli; Luo, Jiebo; Singhal, Amit; Ahuja, Narendra
2005-04-01
We present a method to incorporate nonlinear shape prior constraints into segmenting different anatomical structures in medical images. Kernel space density estimation (KSDE) is used to derive the nonlinear shape statistics and enable building a single model for a class of objects with nonlinearly varying shapes. The object contour is coerced by image-based energy into the correct shape sub-distribution (e.g., left or right lung), without the need for model selection. In contrast to an earlier algorithm that uses a local gradient-descent search (susceptible to local minima), we propose an algorithm that iterates between dynamic programming (DP) and shape regularization. DP is capable of finding an optimal contour in the search space that maximizes a cost function related to the difference between the interior and exterior of the object. To enforce the nonlinear shape prior, we propose two shape regularization methods, global and local regularization. Global regularization is applied after each DP search to move the entire shape vector in the shape space in a gradient descent fashion to the position of probable shapes learned from training. The regularized shape is used as the starting shape for the next iteration. Local regularization is accomplished through modifying the search space of the DP. The modified search space only allows a certain amount of deformation of the local shape from the starting shape. Both regularization methods ensure the consistency between the resulted shape with the training shapes, while still preserving DP"s ability to search over a large range and avoid local minima. Our algorithm was applied to two different segmentation tasks for radiographic images: lung field and clavicle segmentation. Both applications have shown that our method is effective and versatile in segmenting various anatomical structures under prior shape constraints; and it is robust to noise and local minima caused by clutter (e.g., blood vessels) and other similar structures (e.g., ribs). We believe that the proposed algorithm represents a major step in the paradigm shift to object segmentation under nonlinear shape constraints.
Object tracking via background subtraction for monitoring illegal activity in crossroad
NASA Astrophysics Data System (ADS)
Ghimire, Deepak; Jeong, Sunghwan; Park, Sang Hyun; Lee, Joonwhoan
2016-07-01
In the field of intelligent transportation system a great number of vision-based techniques have been proposed to prevent pedestrians from being hit by vehicles. This paper presents a system that can perform pedestrian and vehicle detection and monitoring of illegal activity in zebra crossings. In zebra crossing, according to the traffic light status, to fully avoid a collision, a driver or pedestrian should be warned earlier if they possess any illegal moves. In this research, at first, we detect the traffic light status of pedestrian and monitor the crossroad for vehicle pedestrian moves. The background subtraction based object detection and tracking is performed to detect pedestrian and vehicles in crossroads. Shadow removal, blob segmentation, trajectory analysis etc. are used to improve the object detection and classification performance. We demonstrate the experiment in several video sequences which are recorded in different time and environment such as day time and night time, sunny and raining environment. Our experimental results show that such simple and efficient technique can be used successfully as a traffic surveillance system to prevent accidents in zebra crossings.
LDR structural experiment definition
NASA Technical Reports Server (NTRS)
Russell, Richard A.; Gates, Richard M.
1988-01-01
A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.
Electro-Optic Segment-Segment Sensors for Radio and Optical Telescopes
NASA Technical Reports Server (NTRS)
Abramovici, Alex
2012-01-01
A document discusses an electro-optic sensor that consists of a collimator, attached to one segment, and a quad diode, attached to an adjacent segment. Relative segment-segment motion causes the beam from the collimator to move across the quad diode, thus generating a measureable electric signal. This sensor type, which is relatively inexpensive, can be configured as an edge sensor, or as a remote segment-segment motion sensor.
2004-01-30
KENNEDY SPACE CENTER, FLA. - The red NASA engine moves forward past the Vehicle Assembly Building with its cargo of containers enclosing segments of a solid rocket booster being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
Map generation in unknown environments by AUKF-SLAM using line segment-type and point-type landmarks
NASA Astrophysics Data System (ADS)
Nishihta, Sho; Maeyama, Shoichi; Watanebe, Keigo
2018-02-01
Recently, autonomous mobile robots that collect information at disaster sites are being developed. Since it is difficult to obtain maps in advance in disaster sites, the robots being capable of autonomous movement under unknown environments are required. For this objective, the robots have to build maps, as well as the estimation of self-location. This is called a SLAM problem. In particular, AUKF-SLAM which uses corners in the environment as point-type landmarks has been developed as a solution method so far. However, when the robots move in an environment like a corridor consisting of few point-type features, the accuracy of self-location estimated by the landmark is decreased and it causes some distortions in the map. In this research, we propose AUKF-SLAM which uses walls in the environment as a line segment-type landmark. We demonstrate that the robot can generate maps in unknown environment by AUKF-SLAM, using line segment-type and point-type landmarks.
Software for Alignment of Segments of a Telescope Mirror
NASA Technical Reports Server (NTRS)
Hall, Drew P.; Howard, Richard T.; Ly, William C.; Rakoczy, John M.; Weir, John M.
2006-01-01
The Segment Alignment Maintenance System (SAMS) software is designed to maintain the overall focus and figure of the large segmented primary mirror of the Hobby-Eberly Telescope. This software reads measurements made by sensors attached to the segments of the primary mirror and from these measurements computes optimal control values to send to actuators that move the mirror segments.
LDR structural experiment definition
NASA Technical Reports Server (NTRS)
Russell, R. A.
1988-01-01
A system study to develop the definition of a structural flight experiment for a large precision segmented reflector on the Space Station was accomplished by the Boeing Aerospace Company for NASA's Langley Research Center. The objective of the study was to use a Large Deployable Reflector (LDR) baseline configuration as the basis for focusing an experiment definition, so that the resulting accommodation requirements and interface constraints could be used as part of the mission requirements data base for Space Station. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of an optical bench, thermal shield and primary mirror segments, and alignment of the optical components, would occur on a second experiment. The structure would then be moved to the payload point system for pointing, optical control, and scientific optical measurement for a third experiment. Experiment 1 will deploy the primary support truss while it is attached to the instrument module structure. The ability to adjust the mirror attachment points and to attach several dummy primary mirror segments with a robotic system will also be demonstrated. Experiment 2 will be achieved by adding new components and equipment to experiment one. Experiment 3 will demonstrate advanced control strategies, active adjustment of the primary mirror alignment, and technologies associated with optical sensing.
NASA Technical Reports Server (NTRS)
Mikic, I.; Krucinski, S.; Thomas, J. D.
1998-01-01
This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.
The P4 truss is moved to a workstand in the SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
Suspended by an overhead crane in the Space Station Processing Facility, the International Space Station's P4 truss moves toward a workstand. Below and behind it on the floor is the Multi- Purpose Logistics Module Raffaello, another segment of the Space Station. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.
Maalek, Reza; Lichti, Derek D; Ruwanpura, Janaka Y
2018-03-08
Automated segmentation of planar and linear features of point clouds acquired from construction sites is essential for the automatic extraction of building construction elements such as columns, beams and slabs. However, many planar and linear segmentation methods use scene-dependent similarity thresholds that may not provide generalizable solutions for all environments. In addition, outliers exist in construction site point clouds due to data artefacts caused by moving objects, occlusions and dust. To address these concerns, a novel method for robust classification and segmentation of planar and linear features is proposed. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a new robust clustering method, the robust complete linkage method. A robust method is also proposed to extract the points of flat-slab floors and/or ceilings independent of the aforementioned stages to improve computational efficiency. The applicability of the proposed method is evaluated in eight datasets acquired from a complex laboratory environment and two construction sites at the University of Calgary. The precision, recall, and accuracy of the segmentation at both construction sites were 96.8%, 97.7% and 95%, respectively. These results demonstrate the suitability of the proposed method for robust segmentation of planar and linear features of contaminated datasets, such as those collected from construction sites.
Maalek, Reza; Lichti, Derek D; Ruwanpura, Janaka Y
2018-01-01
Automated segmentation of planar and linear features of point clouds acquired from construction sites is essential for the automatic extraction of building construction elements such as columns, beams and slabs. However, many planar and linear segmentation methods use scene-dependent similarity thresholds that may not provide generalizable solutions for all environments. In addition, outliers exist in construction site point clouds due to data artefacts caused by moving objects, occlusions and dust. To address these concerns, a novel method for robust classification and segmentation of planar and linear features is proposed. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a new robust clustering method, the robust complete linkage method. A robust method is also proposed to extract the points of flat-slab floors and/or ceilings independent of the aforementioned stages to improve computational efficiency. The applicability of the proposed method is evaluated in eight datasets acquired from a complex laboratory environment and two construction sites at the University of Calgary. The precision, recall, and accuracy of the segmentation at both construction sites were 96.8%, 97.7% and 95%, respectively. These results demonstrate the suitability of the proposed method for robust segmentation of planar and linear features of contaminated datasets, such as those collected from construction sites. PMID:29518062
Layered motion segmentation and depth ordering by tracking edges.
Smith, Paul; Drummond, Tom; Cipolla, Roberto
2004-04-01
This paper presents a new Bayesian framework for motion segmentation--dividing a frame from an image sequence into layers representing different moving objects--by tracking edges between frames. Edges are found using the Canny edge detector, and the Expectation-Maximization algorithm is then used to fit motion models to these edges and also to calculate the probabilities of the edges obeying each motion model. The edges are also used to segment the image into regions of similar color. The most likely labeling for these regions is then calculated by using the edge probabilities, in association with a Markov Random Field-style prior. The identification of the relative depth ordering of the different motion layers is also determined, as an integral part of the process. An efficient implementation of this framework is presented for segmenting two motions (foreground and background) using two frames. It is then demonstrated how, by tracking the edges into further frames, the probabilities may be accumulated to provide an even more accurate and robust estimate, and segment an entire sequence. Further extensions are then presented to address the segmentation of more than two motions. Here, a hierarchical method of initializing the Expectation-Maximization algorithm is described, and it is demonstrated that the Minimum Description Length principle may be used to automatically select the best number of motion layers. The results from over 30 sequences (demonstrating both two and three motions) are presented and discussed.
Quick application/release nut with engagement indicator
NASA Technical Reports Server (NTRS)
Wright, Jay M. (Inventor)
1992-01-01
A composite nut is shown which permits a fastener to be inserted or removed from either side with an indicator of fastener engagement. The nut has a plurality of segments, preferably at least three segments, which are internally threaded, spring loaded apart by an internal spring, and has detents on opposite sides which force the nut segments into operative engagements with a threaded member when pushed in and release the segments for quick insertion or removal of the nut when moved out. When the nut is installed, end pressure on one of the detents presses the nut segments into operative engagement with a threaded member where continued rotation locks the structure together with the detents depressed to indicate positive locking engagement of the nut. On removal, counterclockwise rotation of the nut relieves the endwise pressure on the detents, permitting internal springs to force the detents outward and allowing the nut segments to move outward and separate to permit quick removal of the fastener.
NASA Technical Reports Server (NTRS)
Wright, Jay M.
1991-01-01
This is an assembly which permits a fastener to be inserted or removed from either side with an indicator of fastener engagement. The nut has a plurality of segments, preferably at least three segments, which are internally threaded, spring loaded apart by an internal spring, and has detents on opposite sides which force the nut segments into operative engagement with a threaded member when pushed in and release the segments for quick insertion or removal of the fastener when moved out. When the nut is installed, end pressure on the detents presses the nut segments into operative engagement with a threaded member where continued rotation locks the structure together with the detents depressed to indicate positive locking engagement of the nut. On removal, counterclockwise rotation relieves the endwise pressure on the detents, permitting internal springs to force the detents outward, allowing the nut segments to move outward and separate to permit quick removal of the fastener.
A neural model of visual figure-ground segregation from kinetic occlusion.
Barnes, Timothy; Mingolla, Ennio
2013-01-01
Freezing is an effective defense strategy for some prey, because their predators rely on visual motion to distinguish objects from their surroundings. An object moving over a background progressively covers (deletes) and uncovers (accretes) background texture while simultaneously producing discontinuities in the optic flow field. These events unambiguously specify kinetic occlusion and can produce a crisp edge, depth perception, and figure-ground segmentation between identically textured surfaces--percepts which all disappear without motion. Given two abutting regions of uniform random texture with different motion velocities, one region appears to be situated farther away and behind the other (i.e., the ground) if its texture is accreted or deleted at the boundary between the regions, irrespective of region and boundary velocities. Consequently, a region with moving texture appears farther away than a stationary region if the boundary is stationary, but it appears closer (i.e., the figure) if the boundary is moving coherently with the moving texture. A computational model of visual areas V1 and V2 shows how interactions between orientation- and direction-selective cells first create a motion-defined boundary and then signal kinetic occlusion at that boundary. Activation of model occlusion detectors tuned to a particular velocity results in the model assigning the adjacent surface with a matching velocity to the far depth. A weak speed-depth bias brings faster-moving texture regions forward in depth in the absence of occlusion (shearing motion). These processes together reproduce human psychophysical reports of depth ordering for key cases of kinetic occlusion displays. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Tescher, Andrew G. (Editor)
1989-01-01
Various papers on image compression and automatic target recognition are presented. Individual topics addressed include: target cluster detection in cluttered SAR imagery, model-based target recognition using laser radar imagery, Smart Sensor front-end processor for feature extraction of images, object attitude estimation and tracking from a single video sensor, symmetry detection in human vision, analysis of high resolution aerial images for object detection, obscured object recognition for an ATR application, neural networks for adaptive shape tracking, statistical mechanics and pattern recognition, detection of cylinders in aerial range images, moving object tracking using local windows, new transform method for image data compression, quad-tree product vector quantization of images, predictive trellis encoding of imagery, reduced generalized chain code for contour description, compact architecture for a real-time vision system, use of human visibility functions in segmentation coding, color texture analysis and synthesis using Gibbs random fields.
Single-shot three-dimensional reconstruction based on structured light line pattern
NASA Astrophysics Data System (ADS)
Wang, ZhenZhou; Yang, YongMing
2018-07-01
Reconstruction of the object by single-shot is of great importance in many applications, in which the object is moving or its shape is non-rigid and changes irregularly. In this paper, we propose a single-shot structured light 3D imaging technique that calculates the phase map from the distorted line pattern. This technique makes use of the image processing techniques to segment and cluster the projected structured light line pattern from one single captured image. The coordinates of the clustered lines are extracted to form a low-resolution phase matrix which is then transformed to full-resolution phase map by spline interpolation. The 3D shape of the object is computed from the full-resolution phase map and the 2D camera coordinates. Experimental results show that the proposed method was able to reconstruct the three-dimensional shape of the object robustly from one single image.
The P4 truss is moved to a workstand in the SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
After its move across the Space Station Processing Facility, the International Space Station's P4 truss rests in its workstand. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.
Generation of chemical movies: FT-IR spectroscopic imaging of segmented flows.
Chan, K L Andrew; Niu, X; deMello, A J; Kazarian, S G
2011-05-01
We have previously demonstrated that FT-IR spectroscopic imaging can be used as a powerful, label-free detection method for studying laminar flows. However, to date, the speed of image acquisition has been too slow for the efficient detection of moving droplets within segmented flow systems. In this paper, we demonstrate the extraction of fast FT-IR images with acquisition times of 50 ms. This approach allows efficient interrogation of segmented flow systems where aqueous droplets move at a speed of 2.5 mm/s. Consecutive FT-IR images separated by 120 ms intervals allow the generation of chemical movies at eight frames per second. The technique has been applied to the study of microfluidic systems containing moving droplets of water in oil and droplets of protein solution in oil. The presented work demonstrates the feasibility of the use of FT-IR imaging to study dynamic systems with subsecond temporal resolution.
Multi-view video segmentation and tracking for video surveillance
NASA Astrophysics Data System (ADS)
Mohammadi, Gelareh; Dufaux, Frederic; Minh, Thien Ha; Ebrahimi, Touradj
2009-05-01
Tracking moving objects is a critical step for smart video surveillance systems. Despite the complexity increase, multiple camera systems exhibit the undoubted advantages of covering wide areas and handling the occurrence of occlusions by exploiting the different viewpoints. The technical problems in multiple camera systems are several: installation, calibration, objects matching, switching, data fusion, and occlusion handling. In this paper, we address the issue of tracking moving objects in an environment covered by multiple un-calibrated cameras with overlapping fields of view, typical of most surveillance setups. Our main objective is to create a framework that can be used to integrate objecttracking information from multiple video sources. Basically, the proposed technique consists of the following steps. We first perform a single-view tracking algorithm on each camera view, and then apply a consistent object labeling algorithm on all views. In the next step, we verify objects in each view separately for inconsistencies. Correspondent objects are extracted through a Homography transform from one view to the other and vice versa. Having found the correspondent objects of different views, we partition each object into homogeneous regions. In the last step, we apply the Homography transform to find the region map of first view in the second view and vice versa. For each region (in the main frame and mapped frame) a set of descriptors are extracted to find the best match between two views based on region descriptors similarity. This method is able to deal with multiple objects. Track management issues such as occlusion, appearance and disappearance of objects are resolved using information from all views. This method is capable of tracking rigid and deformable objects and this versatility lets it to be suitable for different application scenarios.
Robust vehicle detection in different weather conditions: Using MIPM
Menéndez, José Manuel; Jiménez, David
2018-01-01
Intelligent Transportation Systems (ITS) allow us to have high quality traffic information to reduce the risk of potentially critical situations. Conventional image-based traffic detection methods have difficulties acquiring good images due to perspective and background noise, poor lighting and weather conditions. In this paper, we propose a new method to accurately segment and track vehicles. After removing perspective using Modified Inverse Perspective Mapping (MIPM), Hough transform is applied to extract road lines and lanes. Then, Gaussian Mixture Models (GMM) are used to segment moving objects and to tackle car shadow effects, we apply a chromacity-based strategy. Finally, performance is evaluated through three different video benchmarks: own recorded videos in Madrid and Tehran (with different weather conditions at urban and interurban areas); and two well-known public datasets (KITTI and DETRAC). Our results indicate that the proposed algorithms are robust, and more accurate compared to others, especially when facing occlusions, lighting variations and weather conditions. PMID:29513664
SRB Processing Facilities Media Event
2016-03-01
Members of the news media watch as two cranes are used to lift one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System (SLS) rocket into the vertical position inside the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida. The pathfinder booster segment will be moved to the other end of the RPSF and secured on a test stand. The Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will prepare the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.
Keshner, E A; Kenyon, R V
2000-01-01
We examined the effect of a 3-dimensional stereoscopic scene on segmental stabilization. Eight subjects participated in static sway and locomotion experiments with a visual scene that moved sinusoidally or at constant velocity about the pitch or roll axes. Segmental displacements, Fast Fourier Transforms, and Root Mean Square values were calculated. In both pitch and roll, subjects exhibited greater magnitudes of motion in head and trunk than ankle. Smaller amplitudes and frequent phase reversals suggested control of the ankle by segmental proprioceptive inputs and ground reaction forces rather than by the visual-vestibular signals. Postural controllers may set limits of motion at each body segment rather than be governed solely by a perception of the visual vertical. Two locomotor strategies were also exhibited, implying that some subjects could override the effect of the roll axis optic flow field. Our results demonstrate task dependent differences that argue against using static postural responses to moving visual fields when assessing more dynamic tasks.
Operator-coached machine vision for space telerobotics
NASA Technical Reports Server (NTRS)
Bon, Bruce; Wilcox, Brian; Litwin, Todd; Gennery, Donald B.
1991-01-01
A prototype system for interactive object modeling has been developed and tested. The goal of this effort has been to create a system which would demonstrate the feasibility of high interactive operator-coached machine vision in a realistic task environment, and to provide a testbed for experimentation with various modes of operator interaction. The purpose for such a system is to use human perception where machine vision is difficult, i.e., to segment the scene into objects and to designate their features, and to use machine vision to overcome limitations of human perception, i.e., for accurate measurement of object geometry. The system captures and displays video images from a number of cameras, allows the operator to designate a polyhedral object one edge at a time by moving a 3-D cursor within these images, performs a least-squares fit of the designated edges to edge data detected with a modified Sobel operator, and combines the edges thus detected to form a wire-frame object model that matches the Sobel data.
Shape and Color Features for Object Recognition Search
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Duong, Vu A.; Stubberud, Allen R.
2012-01-01
A bio-inspired shape feature of an object of interest emulates the integration of the saccadic eye movement and horizontal layer in vertebrate retina for object recognition search where a single object can be used one at a time. The optimal computational model for shape-extraction-based principal component analysis (PCA) was also developed to reduce processing time and enable the real-time adaptive system capability. A color feature of the object is employed as color segmentation to empower the shape feature recognition to solve the object recognition in the heterogeneous environment where a single technique - shape or color - may expose its difficulties. To enable the effective system, an adaptive architecture and autonomous mechanism were developed to recognize and adapt the shape and color feature of the moving object. The bio-inspired object recognition based on bio-inspired shape and color can be effective to recognize a person of interest in the heterogeneous environment where the single technique exposed its difficulties to perform effective recognition. Moreover, this work also demonstrates the mechanism and architecture of the autonomous adaptive system to enable the realistic system for the practical use in the future.
Segmented rail linear induction motor
Cowan, Jr., Maynard; Marder, Barry M.
1996-01-01
A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.
Loewe, Christian; Cejna, Manfred; Schoder, Maria; Loewe-Grgurin, Maria; Wolf, Florian; Lammer, Johannes; Thurnher, Siegfried A
2003-09-01
To assess the accuracy of moving-table MR angiography (MRA) in the evaluation of peripheral bypass grafts. There were 39 patients who had had peripheral bypass graft surgery and then subsequently underwent digital subtraction angiography (DSA) and contrast material-enhanced MRA, which was performed with moving-table software on a 1.0-T system before and during administration of 40 mL gadolinium. For evaluation, every bypass graft was divided into three parts and every leg into 14 segments. Disease severity was scored in four categories (0%-29%, 30%-69%, 70%-99%, 100%). Results were compared with those of the DSA. A total of 147 bypass graft segments and 938 vessel segments were classified. In 132 of the assessable 147 bypass segments, disease gradings with both methods were congruent; however, 13 stenoses were misinterpreted by MRA for one grade and two additional lesions by two grades, leading to an accuracy in precise stenoses detection of 89.9%. The sensitivity and specificity values in the detection of bypass graft stenoses >69% (grade 3 + 4 lesions) reached 90.0% and 98.3%, respectively. In 821 of 938 vessel segments the accuracy of MRA in stenoses detection reached 87.5%. The sensitivity and specificity values in the detection of grade 3 + 4 lesions were 95.6% and 94.0% for the native vessels, respectively. Moving-table MRA was as accurate in assessing bypass grafts as it was for the native arteries and showed a great accuracy in stenosis detection compared with DSA. Therefore, MRA is a promising modality for bypass graft surveillance and might be a noninvasive alternative to DSA in this regard.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Workers ride the rails along with a container enclosing a segment of a solid rocket booster being moved to the main track. Several segments are being returned to Utah for testing. The segments were part of the STS-114 stack. It is the first time actual flight segments that had been stacked for flight in the VAB are being returned for testing. They will undergo firing, which will enable inspectors to check the viability of the solid and verify the life expectancy for stacked segments.
A new image segmentation method based on multifractal detrended moving average analysis
NASA Astrophysics Data System (ADS)
Shi, Wen; Zou, Rui-biao; Wang, Fang; Su, Le
2015-08-01
In order to segment and delineate some regions of interest in an image, we propose a novel algorithm based on the multifractal detrended moving average analysis (MF-DMA). In this method, the generalized Hurst exponent h(q) is calculated for every pixel firstly and considered as the local feature of a surface. And then a multifractal detrended moving average spectrum (MF-DMS) D(h(q)) is defined by the idea of box-counting dimension method. Therefore, we call the new image segmentation method MF-DMS-based algorithm. The performance of the MF-DMS-based method is tested by two image segmentation experiments of rapeseed leaf image of potassium deficiency and magnesium deficiency under three cases, namely, backward (θ = 0), centered (θ = 0.5) and forward (θ = 1) with different q values. The comparison experiments are conducted between the MF-DMS method and other two multifractal segmentation methods, namely, the popular MFS-based and latest MF-DFS-based methods. The results show that our MF-DMS-based method is superior to the latter two methods. The best segmentation result for the rapeseed leaf image of potassium deficiency and magnesium deficiency is from the same parameter combination of θ = 0.5 and D(h(- 10)) when using the MF-DMS-based method. An interesting finding is that the D(h(- 10)) outperforms other parameters for both the MF-DMS-based method with centered case and MF-DFS-based algorithms. By comparing the multifractal nature between nutrient deficiency and non-nutrient deficiency areas determined by the segmentation results, an important finding is that the gray value's fluctuation in nutrient deficiency area is much severer than that in non-nutrient deficiency area.
Real-Time Occlusion Handling in Augmented Reality Based on an Object Tracking Approach
Tian, Yuan; Guan, Tao; Wang, Cheng
2010-01-01
To produce a realistic augmentation in Augmented Reality, the correct relative positions of real objects and virtual objects are very important. In this paper, we propose a novel real-time occlusion handling method based on an object tracking approach. Our method is divided into three steps: selection of the occluding object, object tracking and occlusion handling. The user selects the occluding object using an interactive segmentation method. The contour of the selected object is then tracked in the subsequent frames in real-time. In the occlusion handling step, all the pixels on the tracked object are redrawn on the unprocessed augmented image to produce a new synthesized image in which the relative position between the real and virtual object is correct. The proposed method has several advantages. First, it is robust and stable, since it remains effective when the camera is moved through large changes of viewing angles and volumes or when the object and the background have similar colors. Second, it is fast, since the real object can be tracked in real-time. Last, a smoothing technique provides seamless merging between the augmented and virtual object. Several experiments are provided to validate the performance of the proposed method. PMID:22319278
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Saleh, Z; Tang, X
Purpose: Segmentation of prostate CBCT images is an essential step towards real-time adaptive radiotherapy. It is challenging For Calypso patients, as more artifacts are generated by the beacon transponders. We herein propose a novel wavelet-based segmentation algorithm for rectum, bladder, and prostate of CBCT images with implanted Calypso transponders. Methods: Five hypofractionated prostate patients with daily CBCT were studied. Each patient had 3 Calypso transponder beacons implanted, and the patients were setup and treated with Calypso tracking system. Two sets of CBCT images from each patient were studied. The structures (i.e. rectum, bladder, and prostate) were contoured by a trainedmore » expert, and these served as ground truth. For a given CBCT, the moving window-based Double Haar transformation is applied first to obtain the wavelet coefficients. Based on a user defined point in the object of interest, a cluster algorithm based adaptive thresholding is applied to the low frequency components of the wavelet coefficients, and a Lee filter theory based adaptive thresholding is applied to the high frequency components. For the next step, the wavelet reconstruction is applied to the thresholded wavelet coefficients. A binary/segmented image of the object of interest is therefore obtained. DICE, sensitivity, inclusiveness and ΔV were used to evaluate the segmentation result. Results: Considering all patients, the bladder has the DICE, sensitivity, inclusiveness, and ΔV ranges of [0.81–0.95], [0.76–0.99], [0.83–0.94], [0.02–0.21]. For prostate, the ranges are [0.77–0.93], [0.84–0.97], [0.68–0.92], [0.1–0.46]. For rectum, the ranges are [0.72–0.93], [0.57–0.99], [0.73–0.98], [0.03–0.42]. Conclusion: The proposed algorithm appeared effective segmenting prostate CBCT images with the present of the Calypso artifacts. However, it is not robust in two scenarios: 1) rectum with significant amount of gas; 2) prostate with very low contrast. Model based algorithm might improve the segmentation in these two scenarios.« less
Real time automated inspection
Fant, K.M.; Fundakowski, R.A.; Levitt, T.S.; Overland, J.E.; Suresh, B.R.; Ulrich, F.W.
1985-05-21
A method and apparatus are described relating to the real time automatic detection and classification of characteristic type surface imperfections occurring on the surfaces of material of interest such as moving hot metal slabs produced by a continuous steel caster. A data camera transversely scans continuous lines of such a surface to sense light intensities of scanned pixels and generates corresponding voltage values. The voltage values are converted to corresponding digital values to form a digital image of the surface which is subsequently processed to form an edge-enhanced image having scan lines characterized by intervals corresponding to the edges of the image. The edge-enhanced image is thresholded to segment out the edges and objects formed by the edges by interval matching and bin tracking. Features of the objects are derived and such features are utilized to classify the objects into characteristic type surface imperfections. 43 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutschmann, Hannes A.; Schoellnast, Helmut; Portugaller, Horst R.
2006-10-15
Purpose. To compare the diagnostic accuracy of contrast-enhanced (CE) three-dimensional (3D) moving-table magnetic resonance (MR) angiography with that of selective digital subtraction angiography (DSA) for routine clinical investigation in patients with peripheral arterial occlusive disease. Methods. Thirty-eight patients underwent CE 3D moving-table MR angiography of the pelvic and peripheral arteries. A commercially available large-field-of-view adapter and a dedicated peripheral vascular phased-array coil were used. MR angiograms were evaluated for grade of arterial stenosis, diagnostic quality, and presence of artifacts. MR imaging results for each patient were compared with those of selective DSA. Results. Two hundred and twenty-six arterial segments inmore » 38 patients were evaluated by both selective DSA and MR angiography. No complications related to MR angiography were observed. There was agreement in stenosis classification in 204 (90.3%) segments; MR angiography overgraded 16 (7%) segments and undergraded 6 (2.7%) segments. Compared with selective DSA, MR angiography provided high sensitivity and specificity and excellent interobserver agreement for detection of severe stenosis (97% and 95%, {kappa} = 0.9 {+-} 0.03) and moderate stenosis (96.5% and 94.3%, {kappa} = 0.9 {+-} 0.03). Conclusion. Compared with selective DSA, moving-table MR angiography proved to be an accurate, noninvasive method for evaluation of peripheral arterial occlusive disease and may thus serve as an alternative to DSA in clinical routine.« less
Segmented rail linear induction motor
Cowan, M. Jr.; Marder, B.M.
1996-09-03
A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.
Method for targetless tracking subpixel in-plane movements.
Espinosa, Julian; Perez, Jorge; Ferrer, Belen; Mas, David
2015-09-01
We present a targetless motion tracking method for detecting planar movements with subpixel accuracy. This method is based on the computation and tracking of the intersection of two nonparallel straight-line segments in the image of a moving object in a scene. The method is simple and easy to implement because no complex structures have to be detected. It has been tested and validated using a lab experiment consisting of a vibrating object that was recorded with a high-speed camera working at 1000 fps. We managed to track displacements with an accuracy of hundredths of pixel or even of thousandths of pixel in the case of tracking harmonic vibrations. The method is widely applicable because it can be used for distance measuring amplitude and frequency of vibrations with a vision system.
Atmospheric dispersion corrector for the Large Sky Area Multi-Object Fibre Spectroscopic Telescope
NASA Astrophysics Data System (ADS)
Su, Ding-Qiang; Jia, Peng; Liu, Genrong
2012-02-01
The Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST) is the largest, wide field-of-view (FOV) telescope (with an aperture of 4 m), and it is equipped with the highest number (4000) of optical fibres in the world. For the LAMOST North and the LAMOST South, the FOVs are 5° and 3.5°, respectively, and the linear diameters are 1.75 m and 1.22 m, respectively. A new type of atmospheric dispersion corrector (ADC) is put forward and designed for LAMOST. It is a segmented lens, which consists of many lens-prism strips. Although it is very large, its thickness is only 12 mm. Thus, the difficulty of obtaining a large optical glass is avoided, and the aberration caused by the ADC is small. By moving this segmented lens along the optical axis, different dispersions can be obtained. We discuss the effects of ADC's slits on the diffraction energy distribution and on the obstruction of light. We calculate and discuss the aberration caused by the ADC. All these results are acceptable. Such an ADC could also be used for other optical fibre spectroscopic telescopes, especially those which a have very large FOV.
Joint level-set and spatio-temporal motion detection for cell segmentation.
Boukari, Fatima; Makrogiannis, Sokratis
2016-08-10
Cell segmentation is a critical step for quantification and monitoring of cell cycle progression, cell migration, and growth control to investigate cellular immune response, embryonic development, tumorigenesis, and drug effects on live cells in time-lapse microscopy images. In this study, we propose a joint spatio-temporal diffusion and region-based level-set optimization approach for moving cell segmentation. Moving regions are initially detected in each set of three consecutive sequence images by numerically solving a system of coupled spatio-temporal partial differential equations. In order to standardize intensities of each frame, we apply a histogram transformation approach to match the pixel intensities of each processed frame with an intensity distribution model learned from all frames of the sequence during the training stage. After the spatio-temporal diffusion stage is completed, we compute the edge map by nonparametric density estimation using Parzen kernels. This process is followed by watershed-based segmentation and moving cell detection. We use this result as an initial level-set function to evolve the cell boundaries, refine the delineation, and optimize the final segmentation result. We applied this method to several datasets of fluorescence microscopy images with varying levels of difficulty with respect to cell density, resolution, contrast, and signal-to-noise ratio. We compared the results with those produced by Chan and Vese segmentation, a temporally linked level-set technique, and nonlinear diffusion-based segmentation. We validated all segmentation techniques against reference masks provided by the international Cell Tracking Challenge consortium. The proposed approach delineated cells with an average Dice similarity coefficient of 89 % over a variety of simulated and real fluorescent image sequences. It yielded average improvements of 11 % in segmentation accuracy compared to both strictly spatial and temporally linked Chan-Vese techniques, and 4 % compared to the nonlinear spatio-temporal diffusion method. Despite the wide variation in cell shape, density, mitotic events, and image quality among the datasets, our proposed method produced promising segmentation results. These results indicate the efficiency and robustness of this method especially for mitotic events and low SNR imaging, enabling the application of subsequent quantification tasks.
Lian, Yanyun; Song, Zhijian
2014-01-01
Brain tumor segmentation from magnetic resonance imaging (MRI) is an important step toward surgical planning, treatment planning, monitoring of therapy. However, manual tumor segmentation commonly used in clinic is time-consuming and challenging, and none of the existed automated methods are highly robust, reliable and efficient in clinic application. An accurate and automated tumor segmentation method has been developed for brain tumor segmentation that will provide reproducible and objective results close to manual segmentation results. Based on the symmetry of human brain, we employed sliding-window technique and correlation coefficient to locate the tumor position. At first, the image to be segmented was normalized, rotated, denoised, and bisected. Subsequently, through vertical and horizontal sliding-windows technique in turn, that is, two windows in the left and the right part of brain image moving simultaneously pixel by pixel in two parts of brain image, along with calculating of correlation coefficient of two windows, two windows with minimal correlation coefficient were obtained, and the window with bigger average gray value is the location of tumor and the pixel with biggest gray value is the locating point of tumor. At last, the segmentation threshold was decided by the average gray value of the pixels in the square with center at the locating point and 10 pixels of side length, and threshold segmentation and morphological operations were used to acquire the final tumor region. The method was evaluated on 3D FSPGR brain MR images of 10 patients. As a result, the average ratio of correct location was 93.4% for 575 slices containing tumor, the average Dice similarity coefficient was 0.77 for one scan, and the average time spent on one scan was 40 seconds. An fully automated, simple and efficient segmentation method for brain tumor is proposed and promising for future clinic use. Correlation coefficient is a new and effective feature for tumor location.
Identification of uncommon objects in containers
Bremer, Peer-Timo; Kim, Hyojin; Thiagarajan, Jayaraman J.
2017-09-12
A system for identifying in an image an object that is commonly found in a collection of images and for identifying a portion of an image that represents an object based on a consensus analysis of segmentations of the image. The system collects images of containers that contain objects for generating a collection of common objects within the containers. To process the images, the system generates a segmentation of each image. The image analysis system may also generate multiple segmentations for each image by introducing variations in the selection of voxels to be merged into a segment. The system then generates clusters of the segments based on similarity among the segments. Each cluster represents a common object found in the containers. Once the clustering is complete, the system may be used to identify common objects in images of new containers based on similarity between segments of images and the clusters.
Anderson, Jeffrey R; Barrett, Steven F
2009-01-01
Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This interactive approach gives the user the power to make optimal choices in the contrast enhancement parameters.
Data-Driven Multiresolution Camera Using the Foveal Adaptive Pyramid
González, Martin; Sánchez-Pedraza, Antonio; Marfil, Rebeca; Rodríguez, Juan A.; Bandera, Antonio
2016-01-01
There exist image processing applications, such as tracking or pattern recognition, that are not necessarily precise enough to maintain the same resolution across the whole image sensor. In fact, they must only keep it as high as possible in a relatively small region, but covering a wide field of view. This is the aim of foveal vision systems. Briefly, they propose to sense a large field of view at a spatially-variant resolution: one relatively small region, the fovea, is mapped at a high resolution, while the rest of the image is captured at a lower resolution. In these systems, this fovea must be moved, from one region of interest to another one, to scan a visual scene. It is interesting that the part of the scene that is covered by the fovea should not be merely spatial, but closely related to perceptual objects. Segmentation and attention are then intimately tied together: while the segmentation process is responsible for extracting perceptively-coherent entities from the scene (proto-objects), attention can guide segmentation. From this loop, the concept of foveal attention arises. This work proposes a hardware system for mapping a uniformly-sampled sensor to a space-variant one. Furthermore, this mapping is tied with a software-based, foveal attention mechanism that takes as input the stream of generated foveal images. The whole hardware/software architecture has been designed to be embedded within an all programmable system on chip (AP SoC). Our results show the flexibility of the data port for exchanging information between the mapping and attention parts of the architecture and the good performance rates of the mapping procedure. Experimental evaluation also demonstrates that the segmentation method and the attention model provide results comparable to other more computationally-expensive algorithms. PMID:27898029
Data-Driven Multiresolution Camera Using the Foveal Adaptive Pyramid.
González, Martin; Sánchez-Pedraza, Antonio; Marfil, Rebeca; Rodríguez, Juan A; Bandera, Antonio
2016-11-26
There exist image processing applications, such as tracking or pattern recognition, that are not necessarily precise enough to maintain the same resolution across the whole image sensor. In fact, they must only keep it as high as possible in a relatively small region, but covering a wide field of view. This is the aim of foveal vision systems. Briefly, they propose to sense a large field of view at a spatially-variant resolution: one relatively small region, the fovea, is mapped at a high resolution, while the rest of the image is captured at a lower resolution. In these systems, this fovea must be moved, from one region of interest to another one, to scan a visual scene. It is interesting that the part of the scene that is covered by the fovea should not be merely spatial, but closely related to perceptual objects. Segmentation and attention are then intimately tied together: while the segmentation process is responsible for extracting perceptively-coherent entities from the scene (proto-objects), attention can guide segmentation. From this loop, the concept of foveal attention arises. This work proposes a hardware system for mapping a uniformly-sampled sensor to a space-variant one. Furthermore, this mapping is tied with a software-based, foveal attention mechanism that takes as input the stream of generated foveal images. The whole hardware/software architecture has been designed to be embedded within an all programmable system on chip (AP SoC). Our results show the flexibility of the data port for exchanging information between the mapping and attention parts of the architecture and the good performance rates of the mapping procedure. Experimental evaluation also demonstrates that the segmentation method and the attention model provide results comparable to other more computationally-expensive algorithms.
Nogueira, Renato Luiz Maia; Osterne, Rafael Lima Verde; Abreu, Ricardo Teixeira; Araújo, Phelype Maia
2017-07-01
An alternative technique to reconstruct atrophic alveolar vertical bone after implant placement is presented. The technique consists of distraction osteogenesis or direct surgical repositioning of an implant-and-bone block segment after segmental osteotomies that can be used in esthetic or unesthetic cases. Initially, casts indicating the implant position are obtained and the future ideal prosthetic position is determined to guide the model surgery. After the model surgery, a new provisional prosthesis is fabricated, and an occlusal splint, which is used as a surgical guide and a device for distraction osteogenesis, is custom fabricated. Then, the surgery is performed. For mobilization of the implant-and-bone block segment, 2 vertical osteotomies are performed and then joined by a horizontal osteotomy. The implant-and-bone block segment is moved to the planned position. If a small movement is planned, then the implant-and-bone segment is stabilized; for larger movements, the implant-and-bone segment can be gradually moved to the final position by distraction osteogenesis. This technique has good predictability of the final position of the implant-and-bone segment and relatively fast esthetic rehabilitation. It can be considered for dental implants in regions of vertical bone atrophy. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Migration in a segmented labour market.
Gordon, I
1995-01-01
"Current research in migration is moving on from neo-classical and behavioural perspectives to a more structural approach relating to wider processes, issues of power and the particular role of employers. Within this programme a key issue for investigation is the interaction between spatial mobility and the structuring of labour markets. This paper focuses on the significance of labour market segmentation--in terms both of job stability and gender--for migration, both theoretically and through an empirical analysis of data from the UK Labour Force Survey on sponsored and unsponsored moves." excerpt
Aerial vehicles collision avoidance using monocular vision
NASA Astrophysics Data System (ADS)
Balashov, Oleg; Muraviev, Vadim; Strotov, Valery
2016-10-01
In this paper image-based collision avoidance algorithm that provides detection of nearby aircraft and distance estimation is presented. The approach requires a vision system with a single moving camera and additional information about carrier's speed and orientation from onboard sensors. The main idea is to create a multi-step approach based on a preliminary detection, regions of interest (ROI) selection, contour segmentation, object matching and localization. The proposed algorithm is able to detect small targets but unlike many other approaches is designed to work with large-scale objects as well. To localize aerial vehicle position the system of equations relating object coordinates in space and observed image is solved. The system solution gives the current position and speed of the detected object in space. Using this information distance and time to collision can be estimated. Experimental research on real video sequences and modeled data is performed. Video database contained different types of aerial vehicles: aircrafts, helicopters, and UAVs. The presented algorithm is able to detect aerial vehicles from several kilometers under regular daylight conditions.
Segmentation in cinema perception.
Carroll, J M; Bever, T G
1976-03-12
Viewers perceptually segment moving picture sequences into their cinematically defined units: excerpts that follow short film sequences are recognized faster when the excerpt originally came after a structural cinematic break (a cut or change in the action) than when it originally came before the break.
Learning of perceptual grouping for object segmentation on RGB-D data☆
Richtsfeld, Andreas; Mörwald, Thomas; Prankl, Johann; Zillich, Michael; Vincze, Markus
2014-01-01
Object segmentation of unknown objects with arbitrary shape in cluttered scenes is an ambitious goal in computer vision and became a great impulse with the introduction of cheap and powerful RGB-D sensors. We introduce a framework for segmenting RGB-D images where data is processed in a hierarchical fashion. After pre-clustering on pixel level parametric surface patches are estimated. Different relations between patch-pairs are calculated, which we derive from perceptual grouping principles, and support vector machine classification is employed to learn Perceptual Grouping. Finally, we show that object hypotheses generation with Graph-Cut finds a globally optimal solution and prevents wrong grouping. Our framework is able to segment objects, even if they are stacked or jumbled in cluttered scenes. We also tackle the problem of segmenting objects when they are partially occluded. The work is evaluated on publicly available object segmentation databases and also compared with state-of-the-art work of object segmentation. PMID:24478571
Cyclic coordinate descent: A robotics algorithm for protein loop closure.
Canutescu, Adrian A; Dunbrack, Roland L
2003-05-01
In protein structure prediction, it is often the case that a protein segment must be adjusted to connect two fixed segments. This occurs during loop structure prediction in homology modeling as well as in ab initio structure prediction. Several algorithms for this purpose are based on the inverse Jacobian of the distance constraints with respect to dihedral angle degrees of freedom. These algorithms are sometimes unstable and fail to converge. We present an algorithm developed originally for inverse kinematics applications in robotics. In robotics, an end effector in the form of a robot hand must reach for an object in space by altering adjustable joint angles and arm lengths. In loop prediction, dihedral angles must be adjusted to move the C-terminal residue of a segment to superimpose on a fixed anchor residue in the protein structure. The algorithm, referred to as cyclic coordinate descent or CCD, involves adjusting one dihedral angle at a time to minimize the sum of the squared distances between three backbone atoms of the moving C-terminal anchor and the corresponding atoms in the fixed C-terminal anchor. The result is an equation in one variable for the proposed change in each dihedral. The algorithm proceeds iteratively through all of the adjustable dihedral angles from the N-terminal to the C-terminal end of the loop. CCD is suitable as a component of loop prediction methods that generate large numbers of trial structures. It succeeds in closing loops in a large test set 99.79% of the time, and fails occasionally only for short, highly extended loops. It is very fast, closing loops of length 8 in 0.037 sec on average.
Domingo-Almenara, Xavier; Perera, Alexandre; Brezmes, Jesus
2016-11-25
Gas chromatography-mass spectrometry (GC-MS) produces large and complex datasets characterized by co-eluted compounds and at trace levels, and with a distinct compound ion-redundancy as a result of the high fragmentation by the electron impact ionization. Compounds in GC-MS can be resolved by taking advantage of the multivariate nature of GC-MS data by applying multivariate resolution methods. However, multivariate methods have to be applied in small regions of the chromatogram, and therefore chromatograms are segmented prior to the application of the algorithms. The automation of this segmentation process is a challenging task as it implies separating between informative data and noise from the chromatogram. This study demonstrates the capabilities of independent component analysis-orthogonal signal deconvolution (ICA-OSD) and multivariate curve resolution-alternating least squares (MCR-ALS) with an overlapping moving window implementation to avoid the typical hard chromatographic segmentation. Also, after being resolved, compounds are aligned across samples by an automated alignment algorithm. We evaluated the proposed methods through a quantitative analysis of GC-qTOF MS data from 25 serum samples. The quantitative performance of both moving window ICA-OSD and MCR-ALS-based implementations was compared with the quantification of 33 compounds by the XCMS package. Results shown that most of the R 2 coefficients of determination exhibited a high correlation (R 2 >0.90) in both ICA-OSD and MCR-ALS moving window-based approaches. Copyright © 2016 Elsevier B.V. All rights reserved.
Pedestrian detection based on redundant wavelet transform
NASA Astrophysics Data System (ADS)
Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun
2016-10-01
Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.
A Neural-Dynamic Architecture for Concurrent Estimation of Object Pose and Identity
Lomp, Oliver; Faubel, Christian; Schöner, Gregor
2017-01-01
Handling objects or interacting with a human user about objects on a shared tabletop requires that objects be identified after learning from a small number of views and that object pose be estimated. We present a neurally inspired architecture that learns object instances by storing features extracted from a single view of each object. Input features are color and edge histograms from a localized area that is updated during processing. The system finds the best-matching view for the object in a novel input image while concurrently estimating the object’s pose, aligning the learned view with current input. The system is based on neural dynamics, computationally operating in real time, and can handle dynamic scenes directly off live video input. In a scenario with 30 everyday objects, the system achieves recognition rates of 87.2% from a single training view for each object, while also estimating pose quite precisely. We further demonstrate that the system can track moving objects, and that it can segment the visual array, selecting and recognizing one object while suppressing input from another known object in the immediate vicinity. Evaluation on the COIL-100 dataset, in which objects are depicted from different viewing angles, revealed recognition rates of 91.1% on the first 30 objects, each learned from four training views. PMID:28503145
Ashburn, A; Kampshoff, C; Burnett, M; Stack, E; Pickering, R M; Verheyden, G
2014-01-01
Turning round is a routine everyday activity that can often lead to instability. The purpose of this study was to investigate abnormalities of turning among people with Parkinson's disease (PwPD) through the measurement of sequence of body segments and latency response. Participants were asked to turn 180° and whole-body movements were recorded using CODAmotion and Visio Fast eye tracking equipment. Thirty-one independently mobile PwPD and 15 age-matched healthy controls participated in the study. We found that contrary to common belief, the head preceded movement of all other body segments (eyes, shoulders, pelvis, first and second foot). We also found interaction between group and body segment (P=0.005), indicating that overall, PwPD took longer to move from head to second foot than age-matched healthy controls. For PwPD only, interactions were found between disease severity and body segment (P<0.0001), between age group and body segment (P<0.0001) and between gender and body segments (P<0.0001). For each interaction, longer time periods were noted between moving the first foot after the pelvis, and moving the second foot after the first, and this was noted for PwPD in Hoehn and Yahr stage III-IV (in comparison to Hoehn and Yahr stage I-II); for PwPD who were under 70 years (in comparison with 70 years or over); and for ladies (in comparison with men). Our results indicate that in PwPD and healthy elderly, turning-on-the-spot might not follow the top-to-bottom approach we know from previous research. Copyright © 2013. Published by Elsevier B.V.
Three-dimensional rendering of segmented object using matlab - biomed 2010.
Anderson, Jeffrey R; Barrett, Steven F
2010-01-01
The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.
ARIES NDA Robot operators` manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scheer, N.L.; Nelson, D.C.
1998-05-01
The ARIES NDA Robot is an automation device for servicing the material movements for a suite of Non-destructive assay (NDA) instruments. This suite of instruments includes a calorimeter, a gamma isotopic system, a segmented gamma scanner (SGS), and a neutron coincidence counter (NCC). Objects moved by the robot include sample cans, standard cans, and instrument plugs. The robot computer has an RS-232 connection with the NDA Host computer, which coordinates robot movements and instrument measurements. The instruments are expected to perform measurements under the direction of the Host without operator intervention. This user`s manual describes system startup, using the mainmore » menu, manual operation, and error recovery.« less
Multiple Vehicle Detection and Segmentation in Malaysia Traffic Flow
NASA Astrophysics Data System (ADS)
Fariz Hasan, Ahmad; Fikri Che Husin, Mohd; Affendi Rosli, Khairul; Norhafiz Hashim, Mohd; Faiz Zainal Abidin, Amar
2018-03-01
Vision based system are widely used in the field of Intelligent Transportation System (ITS) to extract a large amount of information to analyze traffic scenes. By rapid number of vehicles on the road as well as significant increase on cameras dictated the need for traffic surveillance systems. This system can take over the burden some task was performed by human operator in traffic monitoring centre. The main technique proposed by this paper is concentrated on developing a multiple vehicle detection and segmentation focusing on monitoring through Closed Circuit Television (CCTV) video. The system is able to automatically segment vehicle extracted from heavy traffic scene by optical flow estimation alongside with blob analysis technique in order to detect the moving vehicle. Prior to segmentation, blob analysis technique will compute the area of interest region corresponding to moving vehicle which will be used to create bounding box on that particular vehicle. Experimental validation on the proposed system was performed and the algorithm is demonstrated on various set of traffic scene.
NASA Astrophysics Data System (ADS)
Weber, V. L.
2018-03-01
We statistically analyze the images of the objects of the "light-line" and "half-plane" types which are observed through a randomly irregular air-water interface. The expressions for the correlation function of fluctuations of the image of an object given in the form of a luminous half-plane are found. The possibility of determining the spatial and temporal correlation functions of the slopes of a rough water surface from these relationships is shown. The problem of the probability of intersection of a small arbitrarily oriented line segment by the contour image of a luminous straight line is solved. Using the results of solving this problem, we show the possibility of determining the values of the curvature variances of a rough water surface. A practical method for obtaining an image of a rectilinear luminous object in the light rays reflected from the rough surface is proposed. It is theoretically shown that such an object can be synthesized by temporal accumulation of the image of a point source of light rapidly moving in the horizontal plane with respect to the water surface.
Real-Time Tracking by Double Templates Matching Based on Timed Motion History Image with HSV Feature
Li, Zhiyong; Li, Pengfei; Yu, Xiaoping; Hashem, Mervat
2014-01-01
It is a challenge to represent the target appearance model for moving object tracking under complex environment. This study presents a novel method with appearance model described by double templates based on timed motion history image with HSV color histogram feature (tMHI-HSV). The main components include offline template and online template initialization, tMHI-HSV-based candidate patches feature histograms calculation, double templates matching (DTM) for object location, and templates updating. Firstly, we initialize the target object region and calculate its HSV color histogram feature as offline template and online template. Secondly, the tMHI-HSV is used to segment the motion region and calculate these candidate object patches' color histograms to represent their appearance models. Finally, we utilize the DTM method to trace the target and update the offline template and online template real-timely. The experimental results show that the proposed method can efficiently handle the scale variation and pose change of the rigid and nonrigid objects, even in illumination change and occlusion visual environment. PMID:24592185
Gamifying Video Object Segmentation.
Spampinato, Concetto; Palazzo, Simone; Giordano, Daniela
2017-10-01
Video object segmentation can be considered as one of the most challenging computer vision problems. Indeed, so far, no existing solution is able to effectively deal with the peculiarities of real-world videos, especially in cases of articulated motion and object occlusions; limitations that appear more evident when we compare the performance of automated methods with the human one. However, manually segmenting objects in videos is largely impractical as it requires a lot of time and concentration. To address this problem, in this paper we propose an interactive video object segmentation method, which exploits, on one hand, the capability of humans to identify correctly objects in visual scenes, and on the other hand, the collective human brainpower to solve challenging and large-scale tasks. In particular, our method relies on a game with a purpose to collect human inputs on object locations, followed by an accurate segmentation phase achieved by optimizing an energy function encoding spatial and temporal constraints between object regions as well as human-provided location priors. Performance analysis carried out on complex video benchmarks, and exploiting data provided by over 60 users, demonstrated that our method shows a better trade-off between annotation times and segmentation accuracy than interactive video annotation and automated video object segmentation approaches.
SRB Processing Facilities Media Event
2016-03-01
Members of the news media watch as a crane is used to move one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket to a test stand in the Rotation, Processing and Surge Facility at NASA’s Kennedy Space Center in Florida. Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will prepare the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.
Virtual Surveyor based Object Extraction from Airborne LiDAR data
NASA Astrophysics Data System (ADS)
Habib, Md. Ahsan
Topographic feature detection of land cover from LiDAR data is important in various fields - city planning, disaster response and prevention, soil conservation, infrastructure or forestry. In recent years, feature classification, compliant with Object-Based Image Analysis (OBIA) methodology has been gaining traction in remote sensing and geographic information science (GIS). In OBIA, the LiDAR image is first divided into meaningful segments called object candidates. This results, in addition to spectral values, in a plethora of new information such as aggregated spectral pixel values, morphology, texture, context as well as topology. Traditional nonparametric segmentation methods rely on segmentations at different scales to produce a hierarchy of semantically significant objects. Properly tuned scale parameters are, therefore, imperative in these methods for successful subsequent classification. Recently, some progress has been made in the development of methods for tuning the parameters for automatic segmentation. However, researchers found that it is very difficult to automatically refine the tuning with respect to each object class present in the scene. Moreover, due to the relative complexity of real-world objects, the intra-class heterogeneity is very high, which leads to over-segmentation. Therefore, the method fails to deliver correctly many of the new segment features. In this dissertation, a new hierarchical 3D object segmentation algorithm called Automatic Virtual Surveyor based Object Extracted (AVSOE) is presented. AVSOE segments objects based on their distinct geometric concavity/convexity. This is achieved by strategically mapping the sloping surface, which connects the object to its background. Further analysis produces hierarchical decomposition of objects to its sub-objects at a single scale level. Extensive qualitative and qualitative results are presented to demonstrate the efficacy of this hierarchical segmentation approach.
Segmentation precedes face categorization under suboptimal conditions.
Van Den Boomen, Carlijn; Fahrenfort, Johannes J; Snijders, Tineke M; Kemner, Chantal
2015-01-01
Both categorization and segmentation processes play a crucial role in face perception. However, the functional relation between these subprocesses is currently unclear. The present study investigates the temporal relation between segmentation-related and category-selective responses in the brain, using electroencephalography (EEG). Surface segmentation and category content were both manipulated using texture-defined objects, including faces. This allowed us to study brain activity related to segmentation and to categorization. In the main experiment, participants viewed texture-defined objects for a duration of 800 ms. EEG results revealed that segmentation-related responses precede category-selective responses. Three additional experiments revealed that the presence and timing of categorization depends on stimulus properties and presentation duration. Photographic objects were presented for a long and short (92 ms) duration and evoked fast category-selective responses in both cases. On the other hand, presentation of texture-defined objects for a short duration only evoked segmentation-related but no category-selective responses. Category-selective responses were much slower when evoked by texture-defined than by photographic objects. We suggest that in case of categorization of objects under suboptimal conditions, such as when low-level stimulus properties are not sufficient for fast object categorization, segmentation facilitates the slower categorization process.
Segmentation precedes face categorization under suboptimal conditions
Van Den Boomen, Carlijn; Fahrenfort, Johannes J.; Snijders, Tineke M.; Kemner, Chantal
2015-01-01
Both categorization and segmentation processes play a crucial role in face perception. However, the functional relation between these subprocesses is currently unclear. The present study investigates the temporal relation between segmentation-related and category-selective responses in the brain, using electroencephalography (EEG). Surface segmentation and category content were both manipulated using texture-defined objects, including faces. This allowed us to study brain activity related to segmentation and to categorization. In the main experiment, participants viewed texture-defined objects for a duration of 800 ms. EEG results revealed that segmentation-related responses precede category-selective responses. Three additional experiments revealed that the presence and timing of categorization depends on stimulus properties and presentation duration. Photographic objects were presented for a long and short (92 ms) duration and evoked fast category-selective responses in both cases. On the other hand, presentation of texture-defined objects for a short duration only evoked segmentation-related but no category-selective responses. Category-selective responses were much slower when evoked by texture-defined than by photographic objects. We suggest that in case of categorization of objects under suboptimal conditions, such as when low-level stimulus properties are not sufficient for fast object categorization, segmentation facilitates the slower categorization process. PMID:26074838
Multi-object segmentation using coupled nonparametric shape and relative pose priors
NASA Astrophysics Data System (ADS)
Uzunbas, Mustafa Gökhan; Soldea, Octavian; Çetin, Müjdat; Ünal, Gözde; Erçil, Aytül; Unay, Devrim; Ekin, Ahmet; Firat, Zeynep
2009-02-01
We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using training images in a nonparametric multi-variate kernel density estimation framework. The coupled shape prior is obtained by estimating the joint shape distribution of multiple objects and the inter-shape pose priors are modeled via standard moments. Based on such statistical models, we formulate an optimization problem for segmentation, which we solve by an algorithm based on active contours. Our technique provides significant improvements in the segmentation of weakly contrasted objects in a number of applications. In particular for medical image analysis, we use our method to extract brain Basal Ganglia structures, which are members of a complex multi-object system posing a challenging segmentation problem. We also apply our technique to the problem of handwritten character segmentation. Finally, we use our method to segment cars in urban scenes.
A comparison of moving object detection methods for real-time moving object detection
NASA Astrophysics Data System (ADS)
Roshan, Aditya; Zhang, Yun
2014-06-01
Moving object detection has a wide variety of applications from traffic monitoring, site monitoring, automatic theft identification, face detection to military surveillance. Many methods have been developed across the globe for moving object detection, but it is very difficult to find one which can work globally in all situations and with different types of videos. The purpose of this paper is to evaluate existing moving object detection methods which can be implemented in software on a desktop or laptop, for real time object detection. There are several moving object detection methods noted in the literature, but few of them are suitable for real time moving object detection. Most of the methods which provide for real time movement are further limited by the number of objects and the scene complexity. This paper evaluates the four most commonly used moving object detection methods as background subtraction technique, Gaussian mixture model, wavelet based and optical flow based methods. The work is based on evaluation of these four moving object detection methods using two (2) different sets of cameras and two (2) different scenes. The moving object detection methods have been implemented using MatLab and results are compared based on completeness of detected objects, noise, light change sensitivity, processing time etc. After comparison, it is observed that optical flow based method took least processing time and successfully detected boundary of moving objects which also implies that it can be implemented for real-time moving object detection.
NASA Astrophysics Data System (ADS)
Yeom, Seokwon
2013-05-01
Millimeter waves imaging draws increasing attention in security applications for weapon detection under clothing. In this paper, concealed object segmentation and three-dimensional localization schemes are reviewed. A concealed object is segmented by the k-means algorithm. A feature-based stereo-matching method estimates the longitudinal distance of the concealed object. The distance is estimated by the discrepancy between the corresponding centers of the segmented objects. Experimental results are provided with the analysis of the depth resolution.
A NDVI assisted remote sensing image adaptive scale segmentation method
NASA Astrophysics Data System (ADS)
Zhang, Hong; Shen, Jinxiang; Ma, Yanmei
2018-03-01
Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.
Automatic segmentation of colon glands using object-graphs.
Gunduz-Demir, Cigdem; Kandemir, Melih; Tosun, Akif Burak; Sokmensuer, Cenk
2010-02-01
Gland segmentation is an important step to automate the analysis of biopsies that contain glandular structures. However, this remains a challenging problem as the variation in staining, fixation, and sectioning procedures lead to a considerable amount of artifacts and variances in tissue sections, which may result in huge variances in gland appearances. In this work, we report a new approach for gland segmentation. This approach decomposes the tissue image into a set of primitive objects and segments glands making use of the organizational properties of these objects, which are quantified with the definition of object-graphs. As opposed to the previous literature, the proposed approach employs the object-based information for the gland segmentation problem, instead of using the pixel-based information alone. Working with the images of colon tissues, our experiments demonstrate that the proposed object-graph approach yields high segmentation accuracies for the training and test sets and significantly improves the segmentation performance of its pixel-based counterparts. The experiments also show that the object-based structure of the proposed approach provides more tolerance to artifacts and variances in tissues.
A mobile agent-based moving objects indexing algorithm in location based service
NASA Astrophysics Data System (ADS)
Fang, Zhixiang; Li, Qingquan; Xu, Hong
2006-10-01
This paper will extends the advantages of location based service, specifically using their ability to management and indexing the positions of moving object, Moreover with this objective in mind, a mobile agent-based moving objects indexing algorithm is proposed in this paper to efficiently process indexing request and acclimatize itself to limitation of location based service environment. The prominent feature of this structure is viewing moving object's behavior as the mobile agent's span, the unique mapping between the geographical position of moving objects and span point of mobile agent is built to maintain the close relationship of them, and is significant clue for mobile agent-based moving objects indexing to tracking moving objects.
NASA Astrophysics Data System (ADS)
Abdul-Nasir, Aimi Salihah; Mashor, Mohd Yusoff; Halim, Nurul Hazwani Abd; Mohamed, Zeehaida
2015-05-01
Malaria is a life-threatening parasitic infectious disease that corresponds for nearly one million deaths each year. Due to the requirement of prompt and accurate diagnosis of malaria, the current study has proposed an unsupervised pixel segmentation based on clustering algorithm in order to obtain the fully segmented red blood cells (RBCs) infected with malaria parasites based on the thin blood smear images of P. vivax species. In order to obtain the segmented infected cell, the malaria images are first enhanced by using modified global contrast stretching technique. Then, an unsupervised segmentation technique based on clustering algorithm has been applied on the intensity component of malaria image in order to segment the infected cell from its blood cells background. In this study, cascaded moving k-means (MKM) and fuzzy c-means (FCM) clustering algorithms has been proposed for malaria slide image segmentation. After that, median filter algorithm has been applied to smooth the image as well as to remove any unwanted regions such as small background pixels from the image. Finally, seeded region growing area extraction algorithm has been applied in order to remove large unwanted regions that are still appeared on the image due to their size in which cannot be cleaned by using median filter. The effectiveness of the proposed cascaded MKM and FCM clustering algorithms has been analyzed qualitatively and quantitatively by comparing the proposed cascaded clustering algorithm with MKM and FCM clustering algorithms. Overall, the results indicate that segmentation using the proposed cascaded clustering algorithm has produced the best segmentation performances by achieving acceptable sensitivity as well as high specificity and accuracy values compared to the segmentation results provided by MKM and FCM algorithms.
Multidimensional Assessment of Phonological Similarity within and between Children
ERIC Educational Resources Information Center
Ingram, David; Dubasik, Virginia L.
2011-01-01
Multidimensional analysis involves moving away from one-dimensional analyses such as most articulation tests to comprehensive analyses involving levels of phonological information from the word level down to segments. This article outlines one such approach that looks at four levels from words to segments, using nine phonological measures. It also…
Image Segmentation Using Minimum Spanning Tree
NASA Astrophysics Data System (ADS)
Dewi, M. P.; Armiati, A.; Alvini, S.
2018-04-01
This research aim to segmented the digital image. The process of segmentation is to separate the object from the background. So the main object can be processed for the other purposes. Along with the development of technology in digital image processing application, the segmentation process becomes increasingly necessary. The segmented image which is the result of the segmentation process should accurate due to the next process need the interpretation of the information on the image. This article discussed the application of minimum spanning tree on graph in segmentation process of digital image. This method is able to separate an object from the background and the image will change to be the binary images. In this case, the object that being the focus is set in white, while the background is black or otherwise.
Seo, Kyung-Won; Ahn, Hyo-Won; Kim, Seong-Hun; Chung, Kyu-Rhim; Nelson, Gerald
2014-01-01
This article introduces a binary function of a miniplate with a bendable C-tube head used in corticotomy-assisted segment intrusion. The advantage of the device is that the point of force application can be altered without having to move the miniplate or place an additional anchorage device. Cases for this study were selected from patients who received perisegmental corticotomy with compression osteogenesis (Speedy Surgical Orthodontics) for segmental intrusion. For the skeletal anchorage on patients who received Speedy Surgical Orthodontics for posterior segment intrusion to improve on severe open bite correction, the C-tube was placed on the buccal wall of the maxilla for traction of orthopedic force as a temporary skeletal anchorage. The C-tube head portion is made with titanium grade II, which makes bending easy with a Weingart plier. This adjustment regains distance and range needed to continue intrusion of posterior segment. As an alternative to orthognathic surgery to correct a severe open bite, perisegmental corticotomy combined with orthopedic force application from a temporary skeletal anchorage device can be used. The corticotomy-assisted segment intrusion is a 2-stage procedure: first, the corticotomy is performed in the palate and 2 weeks later in the buccal alveolus. A C-plate was placed in the midpalatal area, and a C-tube was placed apical to the buccal corticotomy site. Elastics were used with orthopedic forces to induce compression osteogenesis. As the intrusion took place, the elastic stretched, and resultant force and range in the buccal segment decreased. The C-tube head was adjusted by bending to gain more distance, reviving the elastic force on the posterior segment until desired intrusion was accomplished. The miniplate with a bendable C-tube head serves for temporary skeletal anchorage of orthopedic traction force to achieve segmental intrusion and has the advantage that the bendable head can be adjusted to improve the force application for intrusion without having to move or place another temporary skeletal anchorage device.
Segmentation of Object Outlines into Parts: A Large-Scale Integrative Study
ERIC Educational Resources Information Center
De Winter, Joeri; Wagemans, Johan
2006-01-01
In this study, a large number of observers (N=201) were asked to segment a collection of outlines derived from line drawings of everyday objects (N=88). This data set was then used as a benchmark to evaluate current models of object segmentation. All of the previously proposed rules of segmentation were found supported in our results. For example,…
Jung, Eunice L.; Zadbood, Asieh; Lee, Sang-Hun; Tomarken, Andrew J.; Blake, Randolph
2013-01-01
We live in a cluttered, dynamic visual environment that poses a challenge for the visual system: for objects, including those that move about, to be perceived, information specifying those objects must be integrated over space and over time. Does a single, omnibus mechanism perform this grouping operation, or does grouping depend on separate processes specialized for different feature aspects of the object? To address this question, we tested a large group of healthy young adults on their abilities to perceive static fragmented figures embedded in noise and to perceive dynamic point-light biological motion figures embedded in dynamic noise. There were indeed substantial individual differences in performance on both tasks, but none of the statistical tests we applied to this data set uncovered a significant correlation between those performance measures. These results suggest that the two tasks, despite their superficial similarity, require different segmentation and grouping processes that are largely unrelated to one another. Whether those processes are embodied in distinct neural mechanisms remains an open question. PMID:24198799
Jung, Eunice L; Zadbood, Asieh; Lee, Sang-Hun; Tomarken, Andrew J; Blake, Randolph
2013-01-01
WE LIVE IN A CLUTTERED, DYNAMIC VISUAL ENVIRONMENT THAT POSES A CHALLENGE FOR THE VISUAL SYSTEM: for objects, including those that move about, to be perceived, information specifying those objects must be integrated over space and over time. Does a single, omnibus mechanism perform this grouping operation, or does grouping depend on separate processes specialized for different feature aspects of the object? To address this question, we tested a large group of healthy young adults on their abilities to perceive static fragmented figures embedded in noise and to perceive dynamic point-light biological motion figures embedded in dynamic noise. There were indeed substantial individual differences in performance on both tasks, but none of the statistical tests we applied to this data set uncovered a significant correlation between those performance measures. These results suggest that the two tasks, despite their superficial similarity, require different segmentation and grouping processes that are largely unrelated to one another. Whether those processes are embodied in distinct neural mechanisms remains an open question.
Constraints in distortion-invariant target recognition system simulation
NASA Astrophysics Data System (ADS)
Iftekharuddin, Khan M.; Razzaque, Md A.
2000-11-01
Automatic target recognition (ATR) is a mature but active research area. In an earlier paper, we proposed a novel ATR approach for recognition of targets varying in fine details, rotation, and translation using a Learning Vector Quantization (LVQ) Neural Network (NN). The proposed approach performed segmentation of multiple objects and the identification of the objects using LVQNN. In this current paper, we extend the previous approach for recognition of targets varying in rotation, translation, scale, and combination of all three distortions. We obtain the analytical results of the system level design to show that the approach performs well with some constraints. The first constraint determines the size of the input images and input filters. The second constraint shows the limits on amount of rotation, translation, and scale of input objects. We present the simulation verification of the constraints using DARPA's Moving and Stationary Target Recognition (MSTAR) images with different depression and pose angles. The simulation results using MSTAR images verify the analytical constraints of the system level design.
Automatic Tracking Algorithm in Coaxial Near-Infrared Laser Ablation Endoscope for Fetus Surgery
NASA Astrophysics Data System (ADS)
Hu, Yan; Yamanaka, Noriaki; Masamune, Ken
2014-07-01
This article reports a stable vessel object tracking method for the treatment of twin-to-twin transfusion syndrome based on our previous 2 DOF endoscope. During the treatment of laser coagulation, it is necessary to focus on the exact position of the target object, however it moves by the mother's respiratory motion and still remains a challenge to obtain and track the position precisely. In this article, an algorithm which uses features from accelerated segment test (FAST) to extract the features and optical flow as the object tracking method, is proposed to deal with above problem. Further, we experimentally simulate the movement due to the mother's respiration, and the results of position errors and similarity verify the effectiveness of the proposed tracking algorithm for laser ablation endoscopy in-vitro and under water considering two influential factors. At average, the errors are about 10 pixels and the similarity over 0.92 are obtained in the experiments.
Monitoring Aircraft Motion at Airports by LIDAR
NASA Astrophysics Data System (ADS)
Toth, C.; Jozkow, G.; Koppanyi, Z.; Young, S.; Grejner-Brzezinska, D.
2016-06-01
Improving sensor performance, combined with better affordability, provides better object space observability, resulting in new applications. Remote sensing systems are primarily concerned with acquiring data of the static components of our environment, such as the topographic surface of the earth, transportation infrastructure, city models, etc. Observing the dynamic component of the object space is still rather rare in the geospatial application field; vehicle extraction and traffic flow monitoring are a few examples of using remote sensing to detect and model moving objects. Deploying a network of inexpensive LiDAR sensors along taxiways and runways can provide both geometrically and temporally rich geospatial data that aircraft body can be extracted from the point cloud, and then, based on consecutive point clouds motion parameters can be estimated. Acquiring accurate aircraft trajectory data is essential to improve aviation safety at airports. This paper reports about the initial experiences obtained by using a network of four Velodyne VLP- 16 sensors to acquire data along a runway segment.
A New Moving Object Detection Method Based on Frame-difference and Background Subtraction
NASA Astrophysics Data System (ADS)
Guo, Jiajia; Wang, Junping; Bai, Ruixue; Zhang, Yao; Li, Yong
2017-09-01
Although many methods of moving object detection have been proposed, moving object extraction is still the core in video surveillance. However, with the complex scene in real world, false detection, missed detection and deficiencies resulting from cavities inside the body still exist. In order to solve the problem of incomplete detection for moving objects, a new moving object detection method combined an improved frame-difference and Gaussian mixture background subtraction is proposed in this paper. To make the moving object detection more complete and accurate, the image repair and morphological processing techniques which are spatial compensations are applied in the proposed method. Experimental results show that our method can effectively eliminate ghosts and noise and fill the cavities of the moving object. Compared to other four moving object detection methods which are GMM, VIBE, frame-difference and a literature's method, the proposed method improve the efficiency and accuracy of the detection.
Walking through doorways causes forgetting: Event structure or updating disruption?
Pettijohn, Kyle A; Radvansky, Gabriel A
2016-11-01
According to event cognition theory, people segment experience into separate event models. One consequence of this segmentation is that when people transport objects from one location to another, memory is worse than if people move across a large location. In two experiments participants navigated through a virtual environment, and recognition memory was tested in either the presence or the absence of a location shift for objects that were recently interacted with (i.e., just picked up or set down). Of particular concern here is whether this location updating effect is due to (a) differences in retention intervals as a result of the navigation process, (b) a temporary disruption in cognitive processing that may occur as a result of the updating processes, or (c) a need to manage multiple event models, as has been suggested in prior research. Experiment 1 explored whether retention interval is driving this effect by recording travel times from the acquisition of an object and the probe time. The results revealed that travel times were similar, thereby rejecting a retention interval explanation. Experiment 2 explored whether a temporary disruption in processing is producing the effect by introducing a 3-second delay prior to the presentation of a memory probe. The pattern of results was not affected by adding a delay, thereby rejecting a temporary disruption account. These results are interpreted in the context of the event horizon model, which suggests that when there are multiple event models that contain common elements there is interference at retrieval, which compromises performance.
Market segmentation and positioning: matching creativity with fiscal responsibility.
Kiener, M E
1989-01-01
This paper describes an approach to continuing professional education (CPE) program development in nursing within a university environment that utilizes the concepts of market segmentation and positioning. Use of these strategies enables the academic CPE enterprise to move beyond traditional needs assessment practices to create more successful and better-managed CPE programs.
Multi-scale image segmentation method with visual saliency constraints and its application
NASA Astrophysics Data System (ADS)
Chen, Yan; Yu, Jie; Sun, Kaimin
2018-03-01
Object-based image analysis method has many advantages over pixel-based methods, so it is one of the current research hotspots. It is very important to get the image objects by multi-scale image segmentation in order to carry out object-based image analysis. The current popular image segmentation methods mainly share the bottom-up segmentation principle, which is simple to realize and the object boundaries obtained are accurate. However, the macro statistical characteristics of the image areas are difficult to be taken into account, and fragmented segmentation (or over-segmentation) results are difficult to avoid. In addition, when it comes to information extraction, target recognition and other applications, image targets are not equally important, i.e., some specific targets or target groups with particular features worth more attention than the others. To avoid the problem of over-segmentation and highlight the targets of interest, this paper proposes a multi-scale image segmentation method with visually saliency graph constraints. Visual saliency theory and the typical feature extraction method are adopted to obtain the visual saliency information, especially the macroscopic information to be analyzed. The visual saliency information is used as a distribution map of homogeneity weight, where each pixel is given a weight. This weight acts as one of the merging constraints in the multi- scale image segmentation. As a result, pixels that macroscopically belong to the same object but are locally different can be more likely assigned to one same object. In addition, due to the constraint of visual saliency model, the constraint ability over local-macroscopic characteristics can be well controlled during the segmentation process based on different objects. These controls will improve the completeness of visually saliency areas in the segmentation results while diluting the controlling effect for non- saliency background areas. Experiments show that this method works better for texture image segmentation than traditional multi-scale image segmentation methods, and can enable us to give priority control to the saliency objects of interest. This method has been used in image quality evaluation, scattered residential area extraction, sparse forest extraction and other applications to verify its validation. All applications showed good results.
2009-08-22
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the upper segment of the transportation canister is moved toward the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft, at left. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett
2009-08-22
CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the upper segment of the transportation canister is moved toward the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft, at bottom left. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett
A layered modulation method for pixel matching in online phase measuring profilometry
NASA Astrophysics Data System (ADS)
Li, Hongru; Feng, Guoying; Bourgade, Thomas; Yang, Peng; Zhou, Shouhuan; Asundi, Anand
2016-10-01
An online phase measuring profilometry with new layered modulation method for pixel matching is presented. In this method and in contrast with previous modulation matching methods, the captured images are enhanced by Retinex theory for better modulation distribution, and all different layer modulation masks are fully used to determine the displacement of a rectilinear moving object. High, medium and low modulation masks are obtained by performing binary segmentation with iterative Otsu method. The final shifting pixels are calculated based on centroid concept, and after that the aligned fringe patterns can be extracted from each frame. After performing Stoilov algorithm and a series of subsequent operations, the object profile on a translation stage is reconstructed. All procedures are carried out automatically, without setting specific parameters in advance. Numerical simulations are detailed and experimental results verify the validity and feasibility of the proposed approach.
A segmentation editing framework based on shape change statistics
NASA Astrophysics Data System (ADS)
Mostapha, Mahmoud; Vicory, Jared; Styner, Martin; Pizer, Stephen
2017-02-01
Segmentation is a key task in medical image analysis because its accuracy significantly affects successive steps. Automatic segmentation methods often produce inadequate segmentations, which require the user to manually edit the produced segmentation slice by slice. Because editing is time-consuming, an editing tool that enables the user to produce accurate segmentations by only drawing a sparse set of contours would be needed. This paper describes such a framework as applied to a single object. Constrained by the additional information enabled by the manually segmented contours, the proposed framework utilizes object shape statistics to transform the failed automatic segmentation to a more accurate version. Instead of modeling the object shape, the proposed framework utilizes shape change statistics that were generated to capture the object deformation from the failed automatic segmentation to its corresponding correct segmentation. An optimization procedure was used to minimize an energy function that consists of two terms, an external contour match term and an internal shape change regularity term. The high accuracy of the proposed segmentation editing approach was confirmed by testing it on a simulated data set based on 10 in-vivo infant magnetic resonance brain data sets using four similarity metrics. Segmentation results indicated that our method can provide efficient and adequately accurate segmentations (Dice segmentation accuracy increase of 10%), with very sparse contours (only 10%), which is promising in greatly decreasing the work expected from the user.
Shot boundary detection and label propagation for spatio-temporal video segmentation
NASA Astrophysics Data System (ADS)
Piramanayagam, Sankaranaryanan; Saber, Eli; Cahill, Nathan D.; Messinger, David
2015-02-01
This paper proposes a two stage algorithm for streaming video segmentation. In the first stage, shot boundaries are detected within a window of frames by comparing dissimilarity between 2-D segmentations of each frame. In the second stage, the 2-D segments are propagated across the window of frames in both spatial and temporal direction. The window is moved across the video to find all shot transitions and obtain spatio-temporal segments simultaneously. As opposed to techniques that operate on entire video, the proposed approach consumes significantly less memory and enables segmentation of lengthy videos. We tested our segmentation based shot detection method on the TRECVID 2007 video dataset and compared it with block-based technique. Cut detection results on the TRECVID 2007 dataset indicate that our algorithm has comparable results to the best of the block-based methods. The streaming video segmentation routine also achieves promising results on a challenging video segmentation benchmark database.
Statistical learning of movement.
Ongchoco, Joan Danielle Khonghun; Uddenberg, Stefan; Chun, Marvin M
2016-12-01
The environment is dynamic, but objects move in predictable and characteristic ways, whether they are a dancer in motion, or a bee buzzing around in flight. Sequences of movement are comprised of simpler motion trajectory elements chained together. But how do we know where one trajectory element ends and another begins, much like we parse words from continuous streams of speech? As a novel test of statistical learning, we explored the ability to parse continuous movement sequences into simpler element trajectories. Across four experiments, we showed that people can robustly parse such sequences from a continuous stream of trajectories under increasingly stringent tests of segmentation ability and statistical learning. Observers viewed a single dot as it moved along simple sequences of paths, and were later able to discriminate these sequences from novel and partial ones shown at test. Observers demonstrated this ability when there were potentially helpful trajectory-segmentation cues such as a common origin for all movements (Experiment 1); when the dot's motions were entirely continuous and unconstrained (Experiment 2); when sequences were tested against partial sequences as a more stringent test of statistical learning (Experiment 3); and finally, even when the element trajectories were in fact pairs of trajectories, so that abrupt directional changes in the dot's motion could no longer signal inter-trajectory boundaries (Experiment 4). These results suggest that observers can automatically extract regularities in movement - an ability that may underpin our capacity to learn more complex biological motions, as in sport or dance.
Nearly automatic motion capture system for tracking octopus arm movements in 3D space.
Zelman, Ido; Galun, Meirav; Akselrod-Ballin, Ayelet; Yekutieli, Yoram; Hochner, Binyamin; Flash, Tamar
2009-08-30
Tracking animal movements in 3D space is an essential part of many biomechanical studies. The most popular technique for human motion capture uses markers placed on the skin which are tracked by a dedicated system. However, this technique may be inadequate for tracking animal movements, especially when it is impossible to attach markers to the animal's body either because of its size or shape or because of the environment in which the animal performs its movements. Attaching markers to an animal's body may also alter its behavior. Here we present a nearly automatic markerless motion capture system that overcomes these problems and successfully tracks octopus arm movements in 3D space. The system is based on three successive tracking and processing stages. The first stage uses a recently presented segmentation algorithm to detect the movement in a pair of video sequences recorded by two calibrated cameras. In the second stage, the results of the first stage are processed to produce 2D skeletal representations of the moving arm. Finally, the 2D skeletons are used to reconstruct the octopus arm movement as a sequence of 3D curves varying in time. Motion tracking, segmentation and reconstruction are especially difficult problems in the case of octopus arm movements because of the deformable, non-rigid structure of the octopus arm and the underwater environment in which it moves. Our successful results suggest that the motion-tracking system presented here may be used for tracking other elongated objects.
Foreground extraction for moving RGBD cameras
NASA Astrophysics Data System (ADS)
Junejo, Imran N.; Ahmed, Naveed
2017-02-01
In this paper, we propose a simple method to perform foreground extraction for a moving RGBD camera. These cameras have now been available for quite some time. Their popularity is primarily due to their low cost and ease of availability. Although the field of foreground extraction or background subtraction has been explored by the computer vision researchers since a long time, the depth-based subtraction is relatively new and has not been extensively addressed as of yet. Most of the current methods make heavy use of geometric reconstruction, making the solutions quite restrictive. In this paper, we make a novel use RGB and RGBD data: from the RGB frame, we extract corner features (FAST) and then represent these features with the histogram of oriented gradients (HoG) descriptor. We train a non-linear SVM on these descriptors. During the test phase, we make used of the fact that the foreground object has distinct depth ordering with respect to the rest of the scene. That is, we use the positively classified FAST features on the test frame to initiate a region growing to obtain the accurate segmentation of the foreground object from just the RGBD data. We demonstrate the proposed method of a synthetic datasets, and demonstrate encouraging quantitative and qualitative results.
A motion compensation technique using sliced blocks and its application to hybrid video coding
NASA Astrophysics Data System (ADS)
Kondo, Satoshi; Sasai, Hisao
2005-07-01
This paper proposes a new motion compensation method using "sliced blocks" in DCT-based hybrid video coding. In H.264 ? MPEG-4 Advance Video Coding, a brand-new international video coding standard, motion compensation can be performed by splitting macroblocks into multiple square or rectangular regions. In the proposed method, on the other hand, macroblocks or sub-macroblocks are divided into two regions (sliced blocks) by an arbitrary line segment. The result is that the shapes of the segmented regions are not limited to squares or rectangles, allowing the shapes of the segmented regions to better match the boundaries between moving objects. Thus, the proposed method can improve the performance of the motion compensation. In addition, adaptive prediction of the shape according to the region shape of the surrounding macroblocks can reduce overheads to describe shape information in the bitstream. The proposed method also has the advantage that conventional coding techniques such as mode decision using rate-distortion optimization can be utilized, since coding processes such as frequency transform and quantization are performed on a macroblock basis, similar to the conventional coding methods. The proposed method is implemented in an H.264-based P-picture codec and an improvement in bit rate of 5% is confirmed in comparison with H.264.
Climbing robot. [caterpillar design
NASA Technical Reports Server (NTRS)
Kerley, James J. (Inventor); May, Edward L. (Inventor); Ecklund, Wayne D. (Inventor)
1993-01-01
A mobile robot for traversing any surface consisting of a number of interconnected segments, each interconnected segment having an upper 'U' frame member, a lower 'U' frame member, a compliant joint between the upper 'U' frame member and the lower 'U' frame member, a number of linear actuators between the two frame members acting to provide relative displacement between the frame members, a foot attached to the lower 'U' frame member for adherence of the segment to the surface, an inter-segment attachment attached to the upper 'U' frame member for interconnecting the segments, a power source connected to the linear actuator, and a computer/controller for independently controlling each linear actuator in each interconnected segment such that the mobile robot moves in a caterpillar like fashion.
Deformable M-Reps for 3D Medical Image Segmentation.
Pizer, Stephen M; Fletcher, P Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z; Fridman, Yonatan; Fritsch, Daniel S; Gash, Graham; Glotzer, John M; Jiroutek, Michael R; Lu, Conglin; Muller, Keith E; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L
2003-11-01
M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models , which define objects at coarse scale by a hierarchy of figures - each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps ), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported.
Deformable M-Reps for 3D Medical Image Segmentation
Pizer, Stephen M.; Fletcher, P. Thomas; Joshi, Sarang; Thall, Andrew; Chen, James Z.; Fridman, Yonatan; Fritsch, Daniel S.; Gash, Graham; Glotzer, John M.; Jiroutek, Michael R.; Lu, Conglin; Muller, Keith E.; Tracton, Gregg; Yushkevich, Paul; Chaney, Edward L.
2013-01-01
M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D solid geometry. They are particularly well suited to model anatomic objects and in particular to capture prior geometric information effectively in deformable models segmentation approaches. The representation is based on figural models, which define objects at coarse scale by a hierarchy of figures – each figure generally a slab representing a solid region and its boundary simultaneously. This paper focuses on the use of single figure models to segment objects of relatively simple structure. A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net, i.e., a mesh or chain, of medial atoms (hence the name m-reps), each atom modeling a solid region via not only a position and a width but also a local figural frame giving figural directions and an object angle between opposing, corresponding positions on the boundary implied by the m-rep. The special capability of an m-rep is to provide spatial and orientational correspondence between an object in two different states of deformation. This ability is central to effective measurement of both geometric typicality and geometry to image match, the two terms of the objective function optimized in segmentation by deformable models. The other ability of m-reps central to effective segmentation is their ability to support segmentation at multiple levels of scale, with successively finer precision. Objects modeled by single figures are segmented first by a similarity transform augmented by object elongation, then by adjustment of each medial atom, and finally by displacing a dense sampling of the m-rep implied boundary. While these models and approaches also exist in 2D, we focus on 3D objects. The segmentation of the kidney from CT and the hippocampus from MRI serve as the major examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice segmentation is reported. PMID:23825898
Model-based video segmentation for vision-augmented interactive games
NASA Astrophysics Data System (ADS)
Liu, Lurng-Kuo
2000-04-01
This paper presents an architecture and algorithms for model based video object segmentation and its applications to vision augmented interactive game. We are especially interested in real time low cost vision based applications that can be implemented in software in a PC. We use different models for background and a player object. The object segmentation algorithm is performed in two different levels: pixel level and object level. At pixel level, the segmentation algorithm is formulated as a maximizing a posteriori probability (MAP) problem. The statistical likelihood of each pixel is calculated and used in the MAP problem. Object level segmentation is used to improve segmentation quality by utilizing the information about the spatial and temporal extent of the object. The concept of an active region, which is defined based on motion histogram and trajectory prediction, is introduced to indicate the possibility of a video object region for both background and foreground modeling. It also reduces the overall computation complexity. In contrast with other applications, the proposed video object segmentation system is able to create background and foreground models on the fly even without introductory background frames. Furthermore, we apply different rate of self-tuning on the scene model so that the system can adapt to the environment when there is a scene change. We applied the proposed video object segmentation algorithms to several prototype virtual interactive games. In our prototype vision augmented interactive games, a player can immerse himself/herself inside a game and can virtually interact with other animated characters in a real time manner without being constrained by helmets, gloves, special sensing devices, or background environment. The potential applications of the proposed algorithms including human computer gesture interface and object based video coding such as MPEG-4 video coding.
Separation of Lift-Generated Vortex Wakes Into Two Diverging Parts
NASA Technical Reports Server (NTRS)
Rossow, Vernon J.; Brown, Anthony P.
2010-01-01
As part of an ongoing study of the spreading rate of lift-generated vortex wakes, the present investigation considers possible reasons as to why segments of lift-generated wakes sometimes depart from the main part of the wake to move rapidly in either an upward or downward direction. It is assumed that deficiencies or enhancements of the lift carry over across the fuselage-shrouded wing are the driving mechanism for departures of wake-segments. The computations presented first indicate that upwardly departing wake segments that were observed and photographed could have been produced by a deficiency in lift carryover across the fuselage-shrouded part of the wing. Computations made of idealized vortex wakes indicate that upward departure of a wake segment requires a centerline reduction in the span loading of 70% or more, whether the engines are at idle or robust thrust. Similarly, it was found that downward departure of wake segments is produced when the lift over the center part of the wing is enhanced. However, it was also found that downward departures do not occur without the presence of robust engine-exhaust streams (i.e., engines must NOT be at idle). In those cases, downward departures of a wake segment occurs when the centerline value of the loading is enhanced by any amount between about 10% to 100%. Observations of condensation trails indicate that downward departure of wake segments is rare. Upward departures of wake segments appears to be more common but still rare. A study to determine the part of the aircraft that causes wake departures has not been carried out. However, even though departures of wake segments rarely occur, some aircraft do regularly shed these wake structures. If aircraft safety is to be assured to a high degree of reliability, and a solution for eliminating them is not implemented, existing guidelines for the avoidance of vortex wakes [1,3] may need to be broadened to include possible increases in wake sizes caused by vertical departures of wake segments. Further study may indicate that it is not possible to modify existing aircraft enough to prevent wake departures. Wake-avoidance guidelines must then be adjusted to provide the desired degree of safety. It appears that steps to avoid upwardly moving wake segments have already been incorporated into the avoidance procedures used for aircraft on approach to runways at the Frankfurt Airport [6,7]. The uncertainty in the prospects for compromises in flight safety caused by rapidly upwardly or downwardly moving wake segments suggest that it be specified that aircraft do not fly above or below each other during operations in the airport vicinity where aircraft are likely to be closely spaced [20].
A Multi-Objective Decision Making Approach for Solving the Image Segmentation Fusion Problem.
Khelifi, Lazhar; Mignotte, Max
2017-08-01
Image segmentation fusion is defined as the set of methods which aim at merging several image segmentations, in a manner that takes full advantage of the complementarity of each one. Previous relevant researches in this field have been impeded by the difficulty in identifying an appropriate single segmentation fusion criterion, providing the best possible, i.e., the more informative, result of fusion. In this paper, we propose a new model of image segmentation fusion based on multi-objective optimization which can mitigate this problem, to obtain a final improved result of segmentation. Our fusion framework incorporates the dominance concept in order to efficiently combine and optimize two complementary segmentation criteria, namely, the global consistency error and the F-measure (precision-recall) criterion. To this end, we present a hierarchical and efficient way to optimize the multi-objective consensus energy function related to this fusion model, which exploits a simple and deterministic iterative relaxation strategy combining the different image segments. This step is followed by a decision making task based on the so-called "technique for order performance by similarity to ideal solution". Results obtained on two publicly available databases with manual ground truth segmentations clearly show that our multi-objective energy-based model gives better results than the classical mono-objective one.
Multiple Hypotheses Image Segmentation and Classification With Application to Dietary Assessment
Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J.; Delp, Edward J.
2016-01-01
We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier’s confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback. PMID:25561457
Multiple hypotheses image segmentation and classification with application to dietary assessment.
Zhu, Fengqing; Bosch, Marc; Khanna, Nitin; Boushey, Carol J; Delp, Edward J
2015-01-01
We propose a method for dietary assessment to automatically identify and locate food in a variety of images captured during controlled and natural eating events. Two concepts are combined to achieve this: a set of segmented objects can be partitioned into perceptually similar object classes based on global and local features; and perceptually similar object classes can be used to assess the accuracy of image segmentation. These ideas are implemented by generating multiple segmentations of an image to select stable segmentations based on the classifier's confidence score assigned to each segmented image region. Automatic segmented regions are classified using a multichannel feature classification system. For each segmented region, multiple feature spaces are formed. Feature vectors in each of the feature spaces are individually classified. The final decision is obtained by combining class decisions from individual feature spaces using decision rules. We show improved accuracy of segmenting food images with classifier feedback.
NASA Astrophysics Data System (ADS)
Mundhenk, T. Nathan; Ni, Kang-Yu; Chen, Yang; Kim, Kyungnam; Owechko, Yuri
2012-01-01
An aerial multiple camera tracking paradigm needs to not only spot unknown targets and track them, but also needs to know how to handle target reacquisition as well as target handoff to other cameras in the operating theater. Here we discuss such a system which is designed to spot unknown targets, track them, segment the useful features and then create a signature fingerprint for the object so that it can be reacquired or handed off to another camera. The tracking system spots unknown objects by subtracting background motion from observed motion allowing it to find targets in motion, even if the camera platform itself is moving. The area of motion is then matched to segmented regions returned by the EDISON mean shift segmentation tool. Whole segments which have common motion and which are contiguous to each other are grouped into a master object. Once master objects are formed, we have a tight bound on which to extract features for the purpose of forming a fingerprint. This is done using color and simple entropy features. These can be placed into a myriad of different fingerprints. To keep data transmission and storage size low for camera handoff of targets, we try several different simple techniques. These include Histogram, Spatiogram and Single Gaussian Model. These are tested by simulating a very large number of target losses in six videos over an interval of 1000 frames each from the DARPA VIVID video set. Since the fingerprints are very simple, they are not expected to be valid for long periods of time. As such, we test the shelf life of fingerprints. This is how long a fingerprint is good for when stored away between target appearances. Shelf life gives us a second metric of goodness and tells us if a fingerprint method has better accuracy over longer periods. In videos which contain multiple vehicle occlusions and vehicles of highly similar appearance we obtain a reacquisition rate for automobiles of over 80% using the simple single Gaussian model compared with the null hypothesis of <20%. Additionally, the performance for fingerprints stays well above the null hypothesis for as much as 800 frames. Thus, a simple and highly compact single Gaussian model is useful for target reacquisition. Since the model is agnostic to view point and object size, it is expected to perform as well on a test of target handoff. Since some of the performance degradation is due to problems with the initial target acquisition and tracking, the simple Gaussian model may perform even better with an improved initial acquisition technique. Also, since the model makes no assumption about the object to be tracked, it should be possible to use it to fingerprint a multitude of objects, not just cars. Further accuracy may be obtained by creating manifolds of objects from multiple samples.
2008-12-17
CAPE CANAVERAL, Fla. -- A solid rocket booster, or SRB, segment from the STS-126 launch is lowered onto a rail car at the NASA Railroad yard at NASA's Kennedy Space Center. The segment will be taken to Utah. After a mission, the spent boosters are recovered, cleaned, disassembled, refurbished and reused for another launch. After the segments are hydrolased inside, they are placed on flatbed trucks and transferred to the NASA Railroad yard. The NASA Railroad locomotive backs up the rail cars and the segments are lowered onto the car. After being covered for the trip, the segments will be moved to Titusville for interchange with Florida East Coast Railway to begin the trip back to Utah. Photo credit: NASA/Kim Shiflett
Time-resolved non-sequential ray-tracing modelling of non-line-of-sight picosecond pulse LIDAR
NASA Astrophysics Data System (ADS)
Sroka, Adam; Chan, Susan; Warburton, Ryan; Gariepy, Genevieve; Henderson, Robert; Leach, Jonathan; Faccio, Daniele; Lee, Stephen T.
2016-05-01
The ability to detect motion and to track a moving object that is hidden around a corner or behind a wall provides a crucial advantage when physically going around the obstacle is impossible or dangerous. One recently demonstrated approach to achieving this goal makes use of non-line-of-sight picosecond pulse laser ranging. This approach has recently become interesting due to the availability of single-photon avalanche diode (SPAD) receivers with picosecond time resolution. We present a time-resolved non-sequential ray-tracing model and its application to indirect line-of-sight detection of moving targets. The model makes use of the Zemax optical design programme's capabilities in stray light analysis where it traces large numbers of rays through multiple random scattering events in a 3D non-sequential environment. Our model then reconstructs the generated multi-segment ray paths and adds temporal analysis. Validation of this model against experimental results is shown. We then exercise the model to explore the limits placed on system design by available laser sources and detectors. In particular we detail the requirements on the laser's pulse energy, duration and repetition rate, and on the receiver's temporal response and sensitivity. These are discussed in terms of the resulting implications for achievable range, resolution and measurement time while retaining eye-safety with this technique. Finally, the model is used to examine potential extensions to the experimental system that may allow for increased localisation of the position of the detected moving object, such as the inclusion of multiple detectors and/or multiple emitters.
NASA Technical Reports Server (NTRS)
Hartz, Leslie
1994-01-01
Tool helps worker grip and move along large, smooth structure with no handgrips or footholds. Adheres to surface but easily released by actuating simple mechanism. Includes handle and segmented contact-adhesive pad. Bulk of pad made of soft plastic foam conforming to surface of structure. Each segment reinforced with rib. In sticking mode, ribs braced by side catches. In peeling mode, side catches retracted, and segmented adhesive pad loses its stiffness. Modified versions useful in inspecting hulls of ships and scaling walls in rescue operations.
Shape-based human detection for threat assessment
NASA Astrophysics Data System (ADS)
Lee, Dah-Jye; Zhan, Pengcheng; Thomas, Aaron; Schoenberger, Robert B.
2004-07-01
Detection of intrusions for early threat assessment requires the capability of distinguishing whether the intrusion is a human, an animal, or other objects. Most low-cost security systems use simple electronic motion detection sensors to monitor motion or the location of objects within the perimeter. Although cost effective, these systems suffer from high rates of false alarm, especially when monitoring open environments. Any moving objects including animals can falsely trigger the security system. Other security systems that utilize video equipment require human interpretation of the scene in order to make real-time threat assessment. Shape-based human detection technique has been developed for accurate early threat assessments for open and remote environment. Potential threats are isolated from the static background scene using differential motion analysis and contours of the intruding objects are extracted for shape analysis. Contour points are simplified by removing redundant points connecting short and straight line segments and preserving only those with shape significance. Contours are represented in tangent space for comparison with shapes stored in database. Power cepstrum technique has been developed to search for the best matched contour in database and to distinguish a human from other objects from different viewing angles and distances.
Segmentation and object-oriented processing of single-season and multi-season Landsat-7 ETM+ data was utilized for the classification of wetlands in a 1560 km2 study area of north central Florida. This segmentation and object-oriented classification outperformed the traditional ...
Unsupervised object segmentation with a hybrid graph model (HGM).
Liu, Guangcan; Lin, Zhouchen; Yu, Yong; Tang, Xiaoou
2010-05-01
In this work, we address the problem of performing class-specific unsupervised object segmentation, i.e., automatic segmentation without annotated training images. Object segmentation can be regarded as a special data clustering problem where both class-specific information and local texture/color similarities have to be considered. To this end, we propose a hybrid graph model (HGM) that can make effective use of both symmetric and asymmetric relationship among samples. The vertices of a hybrid graph represent the samples and are connected by directed edges and/or undirected ones, which represent the asymmetric and/or symmetric relationship between them, respectively. When applied to object segmentation, vertices are superpixels, the asymmetric relationship is the conditional dependence of occurrence, and the symmetric relationship is the color/texture similarity. By combining the Markov chain formed by the directed subgraph and the minimal cut of the undirected subgraph, the object boundaries can be determined for each image. Using the HGM, we can conveniently achieve simultaneous segmentation and recognition by integrating both top-down and bottom-up information into a unified process. Experiments on 42 object classes (9,415 images in total) show promising results.
JACK - ANTHROPOMETRIC MODELING SYSTEM FOR SILICON GRAPHICS WORKSTATIONS
NASA Technical Reports Server (NTRS)
Smith, B.
1994-01-01
JACK is an interactive graphics program developed at the University of Pennsylvania that displays and manipulates articulated geometric figures. JACK is typically used to observe how a human mannequin interacts with its environment and what effects body types will have upon the performance of a task in a simulated environment. Any environment can be created, and any number of mannequins can be placed anywhere in that environment. JACK includes facilities to construct limited geometric objects, position figures, perform a variety of analyses on the figures, describe the motion of the figures and specify lighting and surface property information for rendering high quality images. JACK is supplied with a variety of body types pre-defined and known to the system. There are both male and female bodies, ranging from the 5th to the 95th percentile, based on NASA Standard 3000. Each mannequin is fully articulated and reflects the joint limitations of a normal human. JACK is an editor for manipulating previously defined objects known as "Peabody" objects. Used to describe the figures as well as the internal data structure for representing them, Peabody is a language with a powerful and flexible mechanism for representing connectivity between objects, both the joints between individual segments within a figure and arbitrary connections between different figures. Peabody objects are generally comprised of several individual figures, each one a collection of segments. Each segment has a geometry represented by PSURF files that consist of polygons or curved surface patches. Although JACK does not have the capability to create new objects, objects may be created by other geometric modeling programs and then translated into the PSURF format. Environment files are a collection of figures and attributes that may be dynamically moved under the control of an animation file. The animation facilities allow the user to create a sequence of commands that duplicate the movements of a human figure in an environment. Integrated into JACK is a set of vision tools that allow predictions about visibility and legibility. The program is capable of displaying environment perspectives corresponding to what the mannequin would see while in the environment, indicating potential problems with occlusion and visibility. It is also possible to display view cones emanating from the figure's eyes, indicating field of view. Another feature projects the environment onto retina coordinates which gives clues regarding visual angles, acuity and occlusion by the biological blind spots. A retina editor makes it possible to draw onto the retina and project that into 3-dimensional space. Another facility, Reach, causes the mannequin to move a specific portion of its anatomy to a chosen point in space. The Reach facility helps in analyzing problems associated with operator size and other constraints. The 17-segment torso makes it possible to set a figure into realistic postures, simulating human postures closely. The JACK application software is written in C-language for Silicon Graphics workstations running IRIX versions 4.0.5 or higher and is available only in executable form. Since JACK is a copyrighted program (copyright 1991 University of Pennsylvania), this executable may not be redistributed. The recommended minimum hardware configuration for running the executable includes a floating-point accelerator, an 8-megabyte program memory, a high resolution (1280 x 1024) graphics card, and at least 50Mb of free disk space. JACK's data files take up millions of bytes of storage space, so additional disk space is highly recommended. The standard distribution medium for JACK is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. JACK was originally developed in 1988. Jack v4.8 was released for distribution through COSMIC in 1993.
Mao, Xue Gang; Du, Zi Han; Liu, Jia Qian; Chen, Shu Xin; Hou, Ji Yu
2018-01-01
Traditional field investigation and artificial interpretation could not satisfy the need of forest gaps extraction at regional scale. High spatial resolution remote sensing image provides the possibility for regional forest gaps extraction. In this study, we used object-oriented classification method to segment and classify forest gaps based on QuickBird high resolution optical remote sensing image in Jiangle National Forestry Farm of Fujian Province. In the process of object-oriented classification, 10 scales (10-100, with a step length of 10) were adopted to segment QuickBird remote sensing image; and the intersection area of reference object (RA or ) and intersection area of segmented object (RA os ) were adopted to evaluate the segmentation result at each scale. For segmentation result at each scale, 16 spectral characteristics and support vector machine classifier (SVM) were further used to classify forest gaps, non-forest gaps and others. The results showed that the optimal segmentation scale was 40 when RA or was equal to RA os . The accuracy difference between the maximum and minimum at different segmentation scales was 22%. At optimal scale, the overall classification accuracy was 88% (Kappa=0.82) based on SVM classifier. Combining high resolution remote sensing image data with object-oriented classification method could replace the traditional field investigation and artificial interpretation method to identify and classify forest gaps at regional scale.
Object Detection Applied to Indoor Environments for Mobile Robot Navigation.
Hernández, Alejandra Carolina; Gómez, Clara; Crespo, Jonathan; Barber, Ramón
2016-07-28
To move around the environment, human beings depend on sight more than their other senses, because it provides information about the size, shape, color and position of an object. The increasing interest in building autonomous mobile systems makes the detection and recognition of objects in indoor environments a very important and challenging task. In this work, a vision system to detect objects considering usual human environments, able to work on a real mobile robot, is developed. In the proposed system, the classification method used is Support Vector Machine (SVM) and as input to this system, RGB and depth images are used. Different segmentation techniques have been applied to each kind of object. Similarly, two alternatives to extract features of the objects are explored, based on geometric shape descriptors and bag of words. The experimental results have demonstrated the usefulness of the system for the detection and location of the objects in indoor environments. Furthermore, through the comparison of two proposed methods for extracting features, it has been determined which alternative offers better performance. The final results have been obtained taking into account the proposed problem and that the environment has not been changed, that is to say, the environment has not been altered to perform the tests.
Object Detection Applied to Indoor Environments for Mobile Robot Navigation
Hernández, Alejandra Carolina; Gómez, Clara; Crespo, Jonathan; Barber, Ramón
2016-01-01
To move around the environment, human beings depend on sight more than their other senses, because it provides information about the size, shape, color and position of an object. The increasing interest in building autonomous mobile systems makes the detection and recognition of objects in indoor environments a very important and challenging task. In this work, a vision system to detect objects considering usual human environments, able to work on a real mobile robot, is developed. In the proposed system, the classification method used is Support Vector Machine (SVM) and as input to this system, RGB and depth images are used. Different segmentation techniques have been applied to each kind of object. Similarly, two alternatives to extract features of the objects are explored, based on geometric shape descriptors and bag of words. The experimental results have demonstrated the usefulness of the system for the detection and location of the objects in indoor environments. Furthermore, through the comparison of two proposed methods for extracting features, it has been determined which alternative offers better performance. The final results have been obtained taking into account the proposed problem and that the environment has not been changed, that is to say, the environment has not been altered to perform the tests. PMID:27483264
Tracking Objects with Networked Scattered Directional Sensors
NASA Astrophysics Data System (ADS)
Plarre, Kurt; Kumar, P. R.
2007-12-01
We study the problem of object tracking using highly directional sensors—sensors whose field of vision is a line or a line segment. A network of such sensors monitors a certain region of the plane. Sporadically, objects moving in straight lines and at a constant speed cross the region. A sensor detects an object when it crosses its line of sight, and records the time of the detection. No distance or angle measurements are available. The task of the sensors is to estimate the directions and speeds of the objects, and the sensor lines, which are unknown a priori. This estimation problem involves the minimization of a highly nonconvex cost function. To overcome this difficulty, we introduce an algorithm, which we call "adaptive basis algorithm." This algorithm is divided into three phases: in the first phase, the algorithm is initialized using data from six sensors and four objects; in the second phase, the estimates are updated as data from more sensors and objects are incorporated. The third phase is an optional coordinated transformation. The estimation is done in an "ad-hoc" coordinate system, which we call "adaptive coordinate system." When more information is available, for example, the location of six sensors, the estimates can be transformed to the "real-world" coordinate system. This constitutes the third phase.
Phantom motion after effects--evidence of detectors for the analysis of optic flow.
Snowden, R J; Milne, A B
1997-10-01
Electrophysiological recording from the extrastriate cortex of non-human primates has revealed neurons that have large receptive fields and are sensitive to various components of object or self movement, such as translations, rotations and expansion/contractions. If these mechanisms exist in human vision, they might be susceptible to adaptation that generates motion aftereffects (MAEs). Indeed, it might be possible to adapt the mechanism in one part of the visual field and reveal what we term a 'phantom MAE' in another part. The existence of phantom MAEs was probed by adapting to a pattern that contained motion in only two non-adjacent 'quarter' segments and then testing using patterns that had elements in only the other two segments. We also tested for the more conventional 'concrete' MAE by testing in the same two segments that had adapted. The strength of each MAE was quantified by measuring the percentage of dots that had to be moved in the opposite direction to the MAE in order to nullify it. Four experiments tested rotational motion, expansion/contraction motion, translational motion and a 'rotation' that consisted simply of the two segments that contained only translational motions of opposing direction. Compared to a baseline measurement where no adaptation took place, all subjects in all experiments exhibited both concrete and phantom MAEs, with the size of the latter approximately half that of the former. Adaptation to two segments that contained upward and downward motion induced the perception of leftward and rightward motion in another part of the visual field. This strongly suggests there are mechanisms in human vision that are sensitive to complex motions such as rotations.
Bravo, Ignacio; Mazo, Manuel; Lázaro, José L.; Gardel, Alfredo; Jiménez, Pedro; Pizarro, Daniel
2010-01-01
This paper presents a complete implementation of the Principal Component Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to high rate background segmentation of images. The classical sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization has led to the specific development and implementation in hardware of the different stages of PCA, such as computation of the correlation matrix, matrix diagonalization using the Jacobi method and subspace projections of images. On the application side, the paper presents a motion detection algorithm, also entirely implemented on the FPGA, and based on the developed PCA core. This consists of dynamically thresholding the differences between the input image and the one obtained by expressing the input image using the PCA linear subspace previously obtained as a background model. The proposal achieves a high ratio of processed images (up to 120 frames per second) and high quality segmentation results, with a completely embedded and reliable hardware architecture based on commercial CMOS sensors and FPGA devices. PMID:22163406
Bravo, Ignacio; Mazo, Manuel; Lázaro, José L; Gardel, Alfredo; Jiménez, Pedro; Pizarro, Daniel
2010-01-01
This paper presents a complete implementation of the Principal Component Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to high rate background segmentation of images. The classical sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization has led to the specific development and implementation in hardware of the different stages of PCA, such as computation of the correlation matrix, matrix diagonalization using the Jacobi method and subspace projections of images. On the application side, the paper presents a motion detection algorithm, also entirely implemented on the FPGA, and based on the developed PCA core. This consists of dynamically thresholding the differences between the input image and the one obtained by expressing the input image using the PCA linear subspace previously obtained as a background model. The proposal achieves a high ratio of processed images (up to 120 frames per second) and high quality segmentation results, with a completely embedded and reliable hardware architecture based on commercial CMOS sensors and FPGA devices.
Motion generation of peristaltic mobile robot with particle swarm optimization algorithm
NASA Astrophysics Data System (ADS)
Homma, Takahiro; Kamamichi, Norihiro
2015-03-01
In developments of robots, bio-mimetics is attracting attention, which is a technology for the design of the structure and function inspired from biological system. There are a lot of examples of bio-mimetics in robotics such as legged robots, flapping robots, insect-type robots, fish-type robots. In this study, we focus on the motion of earthworm and aim to develop a peristaltic mobile robot. The earthworm is a slender animal moving in soil. It has a segmented body, and each segment can be shorted and lengthened by muscular actions. It can move forward by traveling expanding motions of each segment backward. By mimicking the structure and motion of the earthworm, we can construct a robot with high locomotive performance against an irregular ground or a narrow space. In this paper, to investigate the motion analytically, a dynamical model is introduced, which consist of a series-connected multi-mass model. Simple periodic patterns which mimic the motions of earthworms are applied in an open-loop fashion, and the moving patterns are verified through numerical simulations. Furthermore, to generate efficient motion of the robot, a particle swarm optimization algorithm, one of the meta-heuristic optimization, is applied. The optimized results are investigated by comparing to simple periodic patterns.
Unsteady Aerodynamic Flow Control of Moving Platforms
2014-05-29
aerodynamic forces and moments effected by fluidic actuation on the flow boundaries of stationary and moving platforms. Aerodynamic forces and...Control is effected fluidically by interactions of azimuthally- and streamwise-segmented individually-addressable synthetic jet actuators with...fundamental flow mechanisms that are associated with transitory aerodynamic forces and moments effected by fluidic actuation on the flow boundaries of
Assessment of Multiresolution Segmentation for Extracting Greenhouses from WORLDVIEW-2 Imagery
NASA Astrophysics Data System (ADS)
Aguilar, M. A.; Aguilar, F. J.; García Lorca, A.; Guirado, E.; Betlej, M.; Cichon, P.; Nemmaoui, A.; Vallario, A.; Parente, C.
2016-06-01
The latest breed of very high resolution (VHR) commercial satellites opens new possibilities for cartographic and remote sensing applications. In this way, object based image analysis (OBIA) approach has been proved as the best option when working with VHR satellite imagery. OBIA considers spectral, geometric, textural and topological attributes associated with meaningful image objects. Thus, the first step of OBIA, referred to as segmentation, is to delineate objects of interest. Determination of an optimal segmentation is crucial for a good performance of the second stage in OBIA, the classification process. The main goal of this work is to assess the multiresolution segmentation algorithm provided by eCognition software for delineating greenhouses from WorldView- 2 multispectral orthoimages. Specifically, the focus is on finding the optimal parameters of the multiresolution segmentation approach (i.e., Scale, Shape and Compactness) for plastic greenhouses. The optimum Scale parameter estimation was based on the idea of local variance of object heterogeneity within a scene (ESP2 tool). Moreover, different segmentation results were attained by using different combinations of Shape and Compactness values. Assessment of segmentation quality based on the discrepancy between reference polygons and corresponding image segments was carried out to identify the optimal setting of multiresolution segmentation parameters. Three discrepancy indices were used: Potential Segmentation Error (PSE), Number-of-Segments Ratio (NSR) and Euclidean Distance 2 (ED2).
Influence of neck postural changes on cervical spine motion and angle during swallowing
Kim, Jun Young; Hong, Jae Taek; Oh, Joo Seon; Jain, Ashish; Kim, Il Sup; Lim, Seong Hoon; Kim, Jun Sung
2017-01-01
Abstract Occipitocervical (OC) fixation in a neck retraction position could be dangerous due to the risk of postoperative dysphagia. No previous study has demonstrated an association between the cervical posture change and cervical spine motion/angle during swallowing. So, we aimed to analyze the influence of neck posture on the cervical spine motion and angle change during swallowing. Thirty-seven asymptomatic volunteers were recruited for participation this study. A videoflurographic swallowing study was performed in the neutral and retracted neck posture. We analyzed the images of the oral and pharyngeal phases of swallowing and compared the angle and the position changes of each cervical segment. In the neutral posture, C1 and C2 were flexed, while C5, C6, and C7 were extended. C3, C4, C5, C6, and C7 moved posteriorly. All cervical levels, except for C5, moved superiorly. In the retraction posture, C0 and C1 were flexed, while C6 was extended during swallowing. All cervical levels moved posteriorly. C1, C2, C3, and C4 moved superiorly. The comparison between 2 postures shows that angle change is significantly different between C0, C2, and C5. Posterior translation change is significantly different in the upper cervical spine (C0, C1, and C2) and C7. Superior movement is significantly different in C0. C0 segment is most significantly different between neutral and retraction posture in terms of angle and position change. These data suggest that C0 segment could be a critical level of compensation that allows swallowing even in the retraction neck posture regarding motion and angle change. So, it is important not to do OC fixation in retraction posture. Also, sparing C0 segment could provide some degree of freedom for the compensatory movement and angle change to avoid dysphagia after OC fixation. PMID:29137075
In Search of Conversational Grain Size: Modelling Semantic Structure Using Moving Stanza Windows
ERIC Educational Resources Information Center
Siebert-Evenstone, Amanda L.; Irgens, Golnaz Arastoopour; Collier, Wesley; Swiecki, Zachari; Ruis, Andrew R.; Shaffer, David Williamson
2017-01-01
Analyses of learning based on student discourse need to account not only for the content of the utterances but also for the ways in which students make connections across turns of talk. This requires segmentation of discourse data to define when connections are likely to be meaningful. In this paper, we present an approach to segmenting data for…
Survey statistics of automated segmentations applied to optical imaging of mammalian cells.
Bajcsy, Peter; Cardone, Antonio; Chalfoun, Joe; Halter, Michael; Juba, Derek; Kociolek, Marcin; Majurski, Michael; Peskin, Adele; Simon, Carl; Simon, Mylene; Vandecreme, Antoine; Brady, Mary
2015-10-15
The goal of this survey paper is to overview cellular measurements using optical microscopy imaging followed by automated image segmentation. The cellular measurements of primary interest are taken from mammalian cells and their components. They are denoted as two- or three-dimensional (2D or 3D) image objects of biological interest. In our applications, such cellular measurements are important for understanding cell phenomena, such as cell counts, cell-scaffold interactions, cell colony growth rates, or cell pluripotency stability, as well as for establishing quality metrics for stem cell therapies. In this context, this survey paper is focused on automated segmentation as a software-based measurement leading to quantitative cellular measurements. We define the scope of this survey and a classification schema first. Next, all found and manually filteredpublications are classified according to the main categories: (1) objects of interests (or objects to be segmented), (2) imaging modalities, (3) digital data axes, (4) segmentation algorithms, (5) segmentation evaluations, (6) computational hardware platforms used for segmentation acceleration, and (7) object (cellular) measurements. Finally, all classified papers are converted programmatically into a set of hyperlinked web pages with occurrence and co-occurrence statistics of assigned categories. The survey paper presents to a reader: (a) the state-of-the-art overview of published papers about automated segmentation applied to optical microscopy imaging of mammalian cells, (b) a classification of segmentation aspects in the context of cell optical imaging, (c) histogram and co-occurrence summary statistics about cellular measurements, segmentations, segmented objects, segmentation evaluations, and the use of computational platforms for accelerating segmentation execution, and (d) open research problems to pursue. The novel contributions of this survey paper are: (1) a new type of classification of cellular measurements and automated segmentation, (2) statistics about the published literature, and (3) a web hyperlinked interface to classification statistics of the surveyed papers at https://isg.nist.gov/deepzoomweb/resources/survey/index.html.
Object Recognition using Feature- and Color-Based Methods
NASA Technical Reports Server (NTRS)
Duong, Tuan; Duong, Vu; Stubberud, Allen
2008-01-01
An improved adaptive method of processing image data in an artificial neural network has been developed to enable automated, real-time recognition of possibly moving objects under changing (including suddenly changing) conditions of illumination and perspective. The method involves a combination of two prior object-recognition methods one based on adaptive detection of shape features and one based on adaptive color segmentation to enable recognition in situations in which either prior method by itself may be inadequate. The chosen prior feature-based method is known as adaptive principal-component analysis (APCA); the chosen prior color-based method is known as adaptive color segmentation (ACOSE). These methods are made to interact with each other in a closed-loop system to obtain an optimal solution of the object-recognition problem in a dynamic environment. One of the results of the interaction is to increase, beyond what would otherwise be possible, the accuracy of the determination of a region of interest (containing an object that one seeks to recognize) within an image. Another result is to provide a minimized adaptive step that can be used to update the results obtained by the two component methods when changes of color and apparent shape occur. The net effect is to enable the neural network to update its recognition output and improve its recognition capability via an adaptive learning sequence. In principle, the improved method could readily be implemented in integrated circuitry to make a compact, low-power, real-time object-recognition system. It has been proposed to demonstrate the feasibility of such a system by integrating a 256-by-256 active-pixel sensor with APCA, ACOSE, and neural processing circuitry on a single chip. It has been estimated that such a system on a chip would have a volume no larger than a few cubic centimeters, could operate at a rate as high as 1,000 frames per second, and would consume in the order of milliwatts of power.
Joint multi-object registration and segmentation of left and right cardiac ventricles in 4D cine MRI
NASA Astrophysics Data System (ADS)
Ehrhardt, Jan; Kepp, Timo; Schmidt-Richberg, Alexander; Handels, Heinz
2014-03-01
The diagnosis of cardiac function based on cine MRI requires the segmentation of cardiac structures in the images, but the problem of automatic cardiac segmentation is still open, due to the imaging characteristics of cardiac MR images and the anatomical variability of the heart. In this paper, we present a variational framework for joint segmentation and registration of multiple structures of the heart. To enable the simultaneous segmentation and registration of multiple objects, a shape prior term is introduced into a region competition approach for multi-object level set segmentation. The proposed algorithm is applied for simultaneous segmentation of the myocardium as well as the left and right ventricular blood pool in short axis cine MRI images. Two experiments are performed: first, intra-patient 4D segmentation with a given initial segmentation for one time-point in a 4D sequence, and second, a multi-atlas segmentation strategy is applied to unseen patient data. Evaluation of segmentation accuracy is done by overlap coefficients and surface distances. An evaluation based on clinical 4D cine MRI images of 25 patients shows the benefit of the combined approach compared to sole registration and sole segmentation.
2008-12-17
CAPE CANAVERAL, Fla. -- A solid rocket booster, or SRB, segment from the STS-126 launch is being lifted from a transporter to transfer it to a rail car at the NASA Railroad yard at NASA's Kennedy Space Center. The segment will be taken to Utah. After a mission, the spent boosters are recovered, cleaned, disassembled, refurbished and reused for another launch. After the segments are hydrolased inside, they are placed on flatbed trucks and transferred to the NASA Railroad yard. The NASA Railroad locomotive backs up the rail cars and the segments are lowered onto the car. After being covered for the trip, the segments will be moved to Titusville for interchange with Florida East Coast Railway to begin the trip back to Utah. Photo credit: NASA/Kim Shiflett
Genesis of multipeaked waves of the esophagus: repetitive contractions or motion artifact?
Sampath, Neha J; Bhargava, Valmik; Mittal, Ravinder K
2010-06-01
Multipeaked waves (MPW) in the distal esophagus occur frequently in patients with esophageal spastic motor disorders and diabetes mellitus and are thought to represent repetitive esophageal contractions. We aimed to investigate whether the relative motion between a stationary pressure sensor and contracted peristaltic esophageal segment that moves with respiration leads to the formation of MPW. We mathematically modeled the effect of relative movement between a moving pressure segment and a fixed pressure sensor on the pressure waveform morphology. We conducted retrospective analysis of 100 swallow-induced esophageal contractions in 10 patients, who demonstrated >30% MPW on high-resolution manometry (HRM) during standardized swallows. Finally, using HRM, we determined the effects of suspended breathing and hyperventilation on the waveform morphology in 10 patients prospectively. Modeling revealed that relative movement between a stationary pressure sensor and a moving contracted segment, contraction duration, contraction amplitude, respiratory frequency, and depth of respiration affects the waveform morphology. Retrospective analysis demonstrated a close temporal association with the onset of second and subsequent contractions in MPW with respiratory phase reversals. Numbers of peaks in MPW and respiratory phase reversals were closely related to the duration of contraction. In the prospective study, suspended breathing and hyperventilation resulted in a significant decrease and increase in the MPW frequency as well as the number of peaks within MPW respectively. We conclude that MPW observed during clinical motility studies are not indicative of repetitive esophageal contraction; rather they represent respiration-related movement of the contracted esophageal segment in relation to the stationary pressure sensor.
Wippelhauser, Gail S.; Sulikowski, James; Zydlewski, Gayle B.; Altenritter, Megan; Kieffer, Micah; Kinnison, Michael T.
2017-01-01
Identification of potential critical habitat, seasonal distributions, and movements within and between river systems is important for protecting the Gulf of Maine (GOM) Distinct Population Segment of Atlantic Sturgeon. To accomplish these objectives, we captured Atlantic Sturgeon in four GOM rivers (Penobscot, Kennebec system, Saco, and Merrimack), and tagged 144 (83.3–217.4 cm TL) internally with uniquely coded acoustic transmitters. Tagged fish were detected between 2006 to 2014 by primary receiver arrays deployed in the four GOM rivers or opportunistically on a secondary group of receivers deployed within the GOM and along the continental shelf. Atlantic Sturgeon tagged in the four rivers were documented at three spawning areas in the Kennebec system in June and July, including one that became accessible in 1999 when the Edwards Dam was removed. After being tagged, the majority (74%) of Atlantic sturgeon were detected in the estuaries of the four GOM rivers, primarily from May through October. Tagged fish spent most of their time in saline water in the Saco River and Merrimack River, moved into brackish water in the Penobscot River, and were found in saline, brackish, and fresh water in the Kennebec system. Approximately 70% of the tagged fish were detected in GOM coastal waters, and aggregated in the Bay of Fundy (May–January), offshore of the Penobscot River (September-February and May), offshore of the Kennebec River (September–February), in Saco Bay and the Scarborough River (July–November), and along the eastern Massachusetts coast between Cape Ann and Cape Cod (April–February). Nine tagged Atlantic sturgeon (7%) left the GOM, three of which moved as far north as Halifax in Canada and six moved as far south as the James River in Virginia. Information from this study will be used to make recommendations to avoid, reduce or mitigate the impacts of in-water projects and on Atlantic sturgeon.
Effects of Implied Motion and Facing Direction on Positional Preferences in Single-Object Pictures.
Palmer, Stephen E; Langlois, Thomas A
2017-07-01
Palmer, Gardner, and Wickens studied aesthetic preferences for pictures of single objects and found a strong inward bias: Right-facing objects were preferred left-of-center and left-facing objects right-of-center. They found no effect of object motion (people and cars showed the same inward bias as chairs and teapots), but the objects were not depicted as moving. Here we measured analogous inward biases with objects depicted as moving with an implied direction and speed by having participants drag-and-drop target objects into the most aesthetically pleasing position. In Experiment 1, human figures were shown diving or falling while moving forward or backward. Aesthetic biases were evident for both inward-facing and inward-moving figures, but the motion-based bias dominated so strongly that backward divers or fallers were preferred moving inward but facing outward. Experiment 2 investigated implied speed effects using images of humans, horses, and cars moving at different speeds (e.g., standing, walking, trotting, and galloping horses). Inward motion or facing biases were again present, and differences in their magnitude due to speed were evident. Unexpectedly, faster moving objects were generally preferred closer to frame center than slower moving objects. These results are discussed in terms of the combined effects of prospective, future-oriented biases, and retrospective, past-oriented biases.
Shuttle plate braiding machine
NASA Technical Reports Server (NTRS)
Huey, Jr., Cecil O. (Inventor)
1994-01-01
A method and apparatus for moving yarn in a selected pattern to form a braided article. The apparatus includes a segmented grid of stationary support elements and a plurality of shuttles configured to carry yarn. The shuttles are supported for movement on the grid assembly and each shuttle includes a retractable plunger for engaging a reciprocating shuttle plate that moves below the grid assembly. Such engagement at selected times causes the shuttles to move about the grid assembly in a selected pattern to form a braided article of a particular geometry.
The effect of input data transformations on object-based image analysis
LIPPITT, CHRISTOPHER D.; COULTER, LLOYD L.; FREEMAN, MARY; LAMANTIA-BISHOP, JEFFREY; PANG, WYSON; STOW, DOUGLAS A.
2011-01-01
The effect of using spectral transform images as input data on segmentation quality and its potential effect on products generated by object-based image analysis are explored in the context of land cover classification in Accra, Ghana. Five image data transformations are compared to untransformed spectral bands in terms of their effect on segmentation quality and final product accuracy. The relationship between segmentation quality and product accuracy is also briefly explored. Results suggest that input data transformations can aid in the delineation of landscape objects by image segmentation, but the effect is idiosyncratic to the transformation and object of interest. PMID:21673829
Human factors analysis for a 2D enroute moving map application
NASA Astrophysics Data System (ADS)
Pschierer, Christian; Wipplinger, Patrick; Schiefele, Jens; Cromer, Scot; Laurin, John; Haffner, Skip
2005-05-01
The paper describes flight trials performed in Centennial, CO with a Piper Cheyenne from Marinvent. Six pilots flew the Cheyenne in twelve enroute segments between Denver Centennial and Colorado Springs. Two different settings (paper chart, enroute moving map) were evaluated with randomized settings. The flight trial goal was to evaluate the objective performance of pilots compared among the different settings. As dependent variables, positional accuracy and situational awareness probe (SAP) were measured. Analysis was conducted by an ANOVA test. In parallel, all pilots answered subjective Cooper-Harper, NASA TLX, situation awareness rating technique (SART), Display Readability Rating and debriefing questionnaires. The tested enroute moving map application has Jeppesen chart compliant symbologies for high-enroute and low-enroute. It has a briefing mode were all information found on today"s enroute paper chart together with a loaded flight plan are displayed in a north-up orientation. The execution mode displays a loaded flight plan routing together with only pertinent flight route relevant information in either a track up or north up orientation. Depiction of an own ship symbol is possible in both modes. All text and symbols are deconflicted. Additional information can be obtained by clicking on symbols. Terrain and obstacle data can be displayed for enhanced situation awareness. The result shows that pilots flying the 2D enroute moving map display perform no worse than pilots with conventional systems. Flight technical error and workload are equivalent or lower, situational awareness is higher than on conventional paper charts.
NASA Astrophysics Data System (ADS)
Liu, Yun; Zhao, Yuejin; Liu, Ming; Dong, Liquan; Hui, Mei; Liu, Xiaohua; Wu, Yijian
2015-09-01
As an important branch of infrared imaging technology, infrared target tracking and detection has a very important scientific value and a wide range of applications in both military and civilian areas. For the infrared image which is characterized by low SNR and serious disturbance of background noise, an innovative and effective target detection algorithm is proposed in this paper, according to the correlation of moving target frame-to-frame and the irrelevance of noise in sequential images based on OpenCV. Firstly, since the temporal differencing and background subtraction are very complementary, we use a combined detection method of frame difference and background subtraction which is based on adaptive background updating. Results indicate that it is simple and can extract the foreground moving target from the video sequence stably. For the background updating mechanism continuously updating each pixel, we can detect the infrared moving target more accurately. It paves the way for eventually realizing real-time infrared target detection and tracking, when transplanting the algorithms on OpenCV to the DSP platform. Afterwards, we use the optimal thresholding arithmetic to segment image. It transforms the gray images to black-white images in order to provide a better condition for the image sequences detection. Finally, according to the relevance of moving objects between different frames and mathematical morphology processing, we can eliminate noise, decrease the area, and smooth region boundaries. Experimental results proves that our algorithm precisely achieve the purpose of rapid detection of small infrared target.
A wavelet-based Bayesian framework for 3D object segmentation in microscopy
NASA Astrophysics Data System (ADS)
Pan, Kangyu; Corrigan, David; Hillebrand, Jens; Ramaswami, Mani; Kokaram, Anil
2012-03-01
In confocal microscopy, target objects are labeled with fluorescent markers in the living specimen, and usually appear with irregular brightness in the observed images. Also, due to the existence of out-of-focus objects in the image, the segmentation of 3-D objects in the stack of image slices captured at different depth levels of the specimen is still heavily relied on manual analysis. In this paper, a novel Bayesian model is proposed for segmenting 3-D synaptic objects from given image stack. In order to solve the irregular brightness and out-offocus problems, the segmentation model employs a likelihood using the luminance-invariant 'wavelet features' of image objects in the dual-tree complex wavelet domain as well as a likelihood based on the vertical intensity profile of the image stack in 3-D. Furthermore, a smoothness 'frame' prior based on the a priori knowledge of the connections of the synapses is introduced to the model for enhancing the connectivity of the synapses. As a result, our model can successfully segment the in-focus target synaptic object from a 3D image stack with irregular brightness.
Antman, Elliott M
2003-10-01
In 2002, the American College of Cardiology and the American Heart Association published an update to their guidelines for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction. These revised guidelines make specific recommendations regarding the use of glycoprotein IIb/IIIa inhibitors. This article briefly reviews the evidence supporting the use of glycoprotein IIb/IIIa inhibitors in unstable angina and non-ST-segment elevation myocardial infarction, before moving on to discuss interpretation of these new guidelines.
Song, Qi; Chen, Mingqing; Bai, Junjie; Sonka, Milan; Wu, Xiaodong
2011-01-01
Multi-object segmentation with mutual interaction is a challenging task in medical image analysis. We report a novel solution to a segmentation problem, in which target objects of arbitrary shape mutually interact with terrain-like surfaces, which widely exists in the medical imaging field. The approach incorporates context information used during simultaneous segmentation of multiple objects. The object-surface interaction information is encoded by adding weighted inter-graph arcs to our graph model. A globally optimal solution is achieved by solving a single maximum flow problem in a low-order polynomial time. The performance of the method was evaluated in robust delineation of lung tumors in megavoltage cone-beam CT images in comparison with an expert-defined independent standard. The evaluation showed that our method generated highly accurate tumor segmentations. Compared with the conventional graph-cut method, our new approach provided significantly better results (p < 0.001). The Dice coefficient obtained by the conventional graph-cut approach (0.76 +/- 0.10) was improved to 0.84 +/- 0.05 when employing our new method for pulmonary tumor segmentation.
Convexities move because they contain matter.
Barenholtz, Elan
2010-09-22
Figure-ground assignment to a contour is a fundamental stage in visual processing. The current paper introduces a novel, highly general dynamic cue to figure-ground assignment: "Convex Motion." Across six experiments, subjects showed a strong preference to assign figure and ground to a dynamically deforming contour such that the moving contour segment was convex rather than concave. Experiments 1 and 2 established the preference across two different kinds of deformational motion. Additional experiments determined that this preference was not due to fixation (Experiment 3) or attentional mechanisms (Experiment 4). Experiment 5 found a similar, but reduced bias for rigid-as opposed to deformational-motion, and Experiment 6 demonstrated that the phenomenon depends on the global motion of the effected contour. An explanation of this phenomenon is presented on the basis of typical natural deformational motion, which tends to involve convex contour projections that contain regions consisting of physical "matter," as opposed to concave contour indentations that contain empty space. These results highlight the fundamental relationship between figure and ground, perceived shape, and the inferred physical properties of an object.
Velazquez-Pupo, Roxana; Sierra-Romero, Alberto; Torres-Roman, Deni; Shkvarko, Yuriy V.; Romero-Delgado, Misael
2018-01-01
This paper presents a high performance vision-based system with a single static camera for traffic surveillance, for moving vehicle detection with occlusion handling, tracking, counting, and One Class Support Vector Machine (OC-SVM) classification. In this approach, moving objects are first segmented from the background using the adaptive Gaussian Mixture Model (GMM). After that, several geometric features are extracted, such as vehicle area, height, width, centroid, and bounding box. As occlusion is present, an algorithm was implemented to reduce it. The tracking is performed with adaptive Kalman filter. Finally, the selected geometric features: estimated area, height, and width are used by different classifiers in order to sort vehicles into three classes: small, midsize, and large. Extensive experimental results in eight real traffic videos with more than 4000 ground truth vehicles have shown that the improved system can run in real time under an occlusion index of 0.312 and classify vehicles with a global detection rate or recall, precision, and F-measure of up to 98.190%, and an F-measure of up to 99.051% for midsize vehicles. PMID:29382078
Fu, Min; Wu, Wenming; Hong, Xiafei; Liu, Qiuhua; Jiang, Jialin; Ou, Yaobin; Zhao, Yupei; Gong, Xinqi
2018-04-24
Efficient computational recognition and segmentation of target organ from medical images are foundational in diagnosis and treatment, especially about pancreas cancer. In practice, the diversity in appearance of pancreas and organs in abdomen, makes detailed texture information of objects important in segmentation algorithm. According to our observations, however, the structures of previous networks, such as the Richer Feature Convolutional Network (RCF), are too coarse to segment the object (pancreas) accurately, especially the edge. In this paper, we extend the RCF, proposed to the field of edge detection, for the challenging pancreas segmentation, and put forward a novel pancreas segmentation network. By employing multi-layer up-sampling structure replacing the simple up-sampling operation in all stages, the proposed network fully considers the multi-scale detailed contexture information of object (pancreas) to perform per-pixel segmentation. Additionally, using the CT scans, we supply and train our network, thus get an effective pipeline. Working with our pipeline with multi-layer up-sampling model, we achieve better performance than RCF in the task of single object (pancreas) segmentation. Besides, combining with multi scale input, we achieve the 76.36% DSC (Dice Similarity Coefficient) value in testing data. The results of our experiments show that our advanced model works better than previous networks in our dataset. On the other words, it has better ability in catching detailed contexture information. Therefore, our new single object segmentation model has practical meaning in computational automatic diagnosis.
Interacting with target tracking algorithms in a gaze-enhanced motion video analysis system
NASA Astrophysics Data System (ADS)
Hild, Jutta; Krüger, Wolfgang; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen
2016-05-01
Motion video analysis is a challenging task, particularly if real-time analysis is required. It is therefore an important issue how to provide suitable assistance for the human operator. Given that the use of customized video analysis systems is more and more established, one supporting measure is to provide system functions which perform subtasks of the analysis. Recent progress in the development of automated image exploitation algorithms allow, e.g., real-time moving target tracking. Another supporting measure is to provide a user interface which strives to reduce the perceptual, cognitive and motor load of the human operator for example by incorporating the operator's visual focus of attention. A gaze-enhanced user interface is able to help here. This work extends prior work on automated target recognition, segmentation, and tracking algorithms as well as about the benefits of a gaze-enhanced user interface for interaction with moving targets. We also propose a prototypical system design aiming to combine both the qualities of the human observer's perception and the automated algorithms in order to improve the overall performance of a real-time video analysis system. In this contribution, we address two novel issues analyzing gaze-based interaction with target tracking algorithms. The first issue extends the gaze-based triggering of a target tracking process, e.g., investigating how to best relaunch in the case of track loss. The second issue addresses the initialization of tracking algorithms without motion segmentation where the operator has to provide the system with the object's image region in order to start the tracking algorithm.
Open-source software platform for medical image segmentation applications
NASA Astrophysics Data System (ADS)
Namías, R.; D'Amato, J. P.; del Fresno, M.
2017-11-01
Segmenting 2D and 3D images is a crucial and challenging problem in medical image analysis. Although several image segmentation algorithms have been proposed for different applications, no universal method currently exists. Moreover, their use is usually limited when detection of complex and multiple adjacent objects of interest is needed. In addition, the continually increasing volumes of medical imaging scans require more efficient segmentation software design and highly usable applications. In this context, we present an extension of our previous segmentation framework which allows the combination of existing explicit deformable models in an efficient and transparent way, handling simultaneously different segmentation strategies and interacting with a graphic user interface (GUI). We present the object-oriented design and the general architecture which consist of two layers: the GUI at the top layer, and the processing core filters at the bottom layer. We apply the framework for segmenting different real-case medical image scenarios on public available datasets including bladder and prostate segmentation from 2D MRI, and heart segmentation in 3D CT. Our experiments on these concrete problems show that this framework facilitates complex and multi-object segmentation goals while providing a fast prototyping open-source segmentation tool.
Multiresolution saliency map based object segmentation
NASA Astrophysics Data System (ADS)
Yang, Jian; Wang, Xin; Dai, ZhenYou
2015-11-01
Salient objects' detection and segmentation are gaining increasing research interest in recent years. A saliency map can be obtained from different models presented in previous studies. Based on this saliency map, the most salient region (MSR) in an image can be extracted. This MSR, generally a rectangle, can be used as the initial parameters for object segmentation algorithms. However, to our knowledge, all of those saliency maps are represented in a unitary resolution although some models have even introduced multiscale principles in the calculation process. Furthermore, some segmentation methods, such as the well-known GrabCut algorithm, need more iteration time or additional interactions to get more precise results without predefined pixel types. A concept of a multiresolution saliency map is introduced. This saliency map is provided in a multiresolution format, which naturally follows the principle of the human visual mechanism. Moreover, the points in this map can be utilized to initialize parameters for GrabCut segmentation by labeling the feature pixels automatically. Both the computing speed and segmentation precision are evaluated. The results imply that this multiresolution saliency map-based object segmentation method is simple and efficient.
McCullough, D P; Gudla, P R; Harris, B S; Collins, J A; Meaburn, K J; Nakaya, M A; Yamaguchi, T P; Misteli, T; Lockett, S J
2008-05-01
Communications between cells in large part drive tissue development and function, as well as disease-related processes such as tumorigenesis. Understanding the mechanistic bases of these processes necessitates quantifying specific molecules in adjacent cells or cell nuclei of intact tissue. However, a major restriction on such analyses is the lack of an efficient method that correctly segments each object (cell or nucleus) from 3-D images of an intact tissue specimen. We report a highly reliable and accurate semi-automatic algorithmic method for segmenting fluorescence-labeled cells or nuclei from 3-D tissue images. Segmentation begins with semi-automatic, 2-D object delineation in a user-selected plane, using dynamic programming (DP) to locate the border with an accumulated intensity per unit length greater that any other possible border around the same object. Then the two surfaces of the object in planes above and below the selected plane are found using an algorithm that combines DP and combinatorial searching. Following segmentation, any perceived errors can be interactively corrected. Segmentation accuracy is not significantly affected by intermittent labeling of object surfaces, diffuse surfaces, or spurious signals away from surfaces. The unique strength of the segmentation method was demonstrated on a variety of biological tissue samples where all cells, including irregularly shaped cells, were accurately segmented based on visual inspection.
Hierarchical layered and semantic-based image segmentation using ergodicity map
NASA Astrophysics Data System (ADS)
Yadegar, Jacob; Liu, Xiaoqing
2010-04-01
Image segmentation plays a foundational role in image understanding and computer vision. Although great strides have been made and progress achieved on automatic/semi-automatic image segmentation algorithms, designing a generic, robust, and efficient image segmentation algorithm is still challenging. Human vision is still far superior compared to computer vision, especially in interpreting semantic meanings/objects in images. We present a hierarchical/layered semantic image segmentation algorithm that can automatically and efficiently segment images into hierarchical layered/multi-scaled semantic regions/objects with contextual topological relationships. The proposed algorithm bridges the gap between high-level semantics and low-level visual features/cues (such as color, intensity, edge, etc.) through utilizing a layered/hierarchical ergodicity map, where ergodicity is computed based on a space filling fractal concept and used as a region dissimilarity measurement. The algorithm applies a highly scalable, efficient, and adaptive Peano- Cesaro triangulation/tiling technique to decompose the given image into a set of similar/homogenous regions based on low-level visual cues in a top-down manner. The layered/hierarchical ergodicity map is built through a bottom-up region dissimilarity analysis. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level of detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanisms for contextual topological object/region relationship generation. Experiments have been conducted within the maritime image environment where the segmented layered semantic objects include the basic level objects (i.e. sky/land/water) and deeper level objects in the sky/land/water surfaces. Experimental results demonstrate the proposed algorithm has the capability to robustly and efficiently segment images into layered semantic objects/regions with contextual topological relationships.
A combined vision-inertial fusion approach for 6-DoF object pose estimation
NASA Astrophysics Data System (ADS)
Li, Juan; Bernardos, Ana M.; Tarrío, Paula; Casar, José R.
2015-02-01
The estimation of the 3D position and orientation of moving objects (`pose' estimation) is a critical process for many applications in robotics, computer vision or mobile services. Although major research efforts have been carried out to design accurate, fast and robust indoor pose estimation systems, it remains as an open challenge to provide a low-cost, easy to deploy and reliable solution. Addressing this issue, this paper describes a hybrid approach for 6 degrees of freedom (6-DoF) pose estimation that fuses acceleration data and stereo vision to overcome the respective weaknesses of single technology approaches. The system relies on COTS technologies (standard webcams, accelerometers) and printable colored markers. It uses a set of infrastructure cameras, located to have the object to be tracked visible most of the operation time; the target object has to include an embedded accelerometer and be tagged with a fiducial marker. This simple marker has been designed for easy detection and segmentation and it may be adapted to different service scenarios (in shape and colors). Experimental results show that the proposed system provides high accuracy, while satisfactorily dealing with the real-time constraints.
Subjective evaluation of HEVC in mobile devices
NASA Astrophysics Data System (ADS)
Garcia, Ray; Kalva, Hari
2013-03-01
Mobile compute environments provide a unique set of user needs and expectations that designers must consider. With increased multimedia use in mobile environments, video encoding methods within the smart phone market segment are key factors that contribute to positive user experience. Currently available display resolutions and expected cellular bandwidth are major factors the designer must consider when determining which encoding methods should be supported. The desired goal is to maximize the consumer experience, reduce cost, and reduce time to market. This paper presents a comparative evaluation of the quality of user experience when HEVC and AVC/H.264 video coding standards were used. The goal of the study was to evaluate any improvements in user experience when using HEVC. Subjective comparisons were made between H.264/AVC and HEVC encoding standards in accordance with Doublestimulus impairment scale (DSIS) as defined by ITU-R BT.500-13. Test environments are based on smart phone LCD resolutions and expected cellular bit rates, such as 200kbps and 400kbps. Subjective feedback shows both encoding methods are adequate at 400kbps constant bit rate. However, a noticeable consumer experience gap was observed for 200 kbps. Significantly less H.264 subjective quality is noticed with video sequences that have multiple objects moving and no single point of visual attraction. Video sequences with single points of visual attraction or few moving objects tended to have higher H.264 subjective quality.
2007-11-27
KENNEDY SPACE CENTER, FLA. -- Workers oversee the placement of a solid rocket booster segment onto a railroad car at the railroad yard at NASA's Kennedy Space Center. The spent segment is part of the booster used to launch space shuttle Discovery in October. The segment will be placed on the car and covered for the long trip back to Utah. After a mission, the spent boosters are recovered, cleaned, disassembled, refurbished and reused after each launch. After hydrolasing the interior of each segment, they are placed on flatbed trucks. The individual booster segments are transferred to a railhead located at the railroad yard at NASA's Kennedy Space Center. The long train of segments is part of the twin solid rocket boosters used to launch space shuttle Discovery in October. The NASA Railroad locomotive backs up the rail cars and the segment is lowered onto the car. The covered segments are moved to Titusville for interchange with Florida East Coast Railway to begin the trip back to Utah. Photo credit: NASA/Amanda Diller
Fast Appearance Modeling for Automatic Primary Video Object Segmentation.
Yang, Jiong; Price, Brian; Shen, Xiaohui; Lin, Zhe; Yuan, Junsong
2016-02-01
Automatic segmentation of the primary object in a video clip is a challenging problem as there is no prior knowledge of the primary object. Most existing techniques thus adapt an iterative approach for foreground and background appearance modeling, i.e., fix the appearance model while optimizing the segmentation and fix the segmentation while optimizing the appearance model. However, these approaches may rely on good initialization and can be easily trapped in local optimal. In addition, they are usually time consuming for analyzing videos. To address these limitations, we propose a novel and efficient appearance modeling technique for automatic primary video object segmentation in the Markov random field (MRF) framework. It embeds the appearance constraint as auxiliary nodes and edges in the MRF structure, and can optimize both the segmentation and appearance model parameters simultaneously in one graph cut. The extensive experimental evaluations validate the superiority of the proposed approach over the state-of-the-art methods, in both efficiency and effectiveness.
Going, Going, Gone: Localizing Abrupt Offsets of Moving Objects
ERIC Educational Resources Information Center
Maus, Gerrit W.; Nijhawan, Romi
2009-01-01
When a moving object abruptly disappears, this profoundly influences its localization by the visual system. In Experiment 1, 2 aligned objects moved across the screen, and 1 of them abruptly disappeared. Observers reported seeing the objects misaligned at the time of the offset, with the continuing object leading. Experiment 2 showed that the…
Extraction of composite visual objects from audiovisual materials
NASA Astrophysics Data System (ADS)
Durand, Gwenael; Thienot, Cedric; Faudemay, Pascal
1999-08-01
An effective analysis of Visual Objects appearing in still images and video frames is required in order to offer fine grain access to multimedia and audiovisual contents. In previous papers, we showed how our method for segmenting still images into visual objects could improve content-based image retrieval and video analysis methods. Visual Objects are used in particular for extracting semantic knowledge about the contents. However, low-level segmentation methods for still images are not likely to extract a complex object as a whole but instead as a set of several sub-objects. For example, a person would be segmented into three visual objects: a face, hair, and a body. In this paper, we introduce the concept of Composite Visual Object. Such an object is hierarchically composed of sub-objects called Component Objects.
No damage to rail cars or SRB segments in derailment
NASA Technical Reports Server (NTRS)
2000-01-01
After being involved in a minor derailment incident during a routine movement on the tracks, rail cars carrying solid rocket booster segments sit idle. The rail cars were being moved as part of a standard operation to '''order''' the cars, placing them into a proper sequence for upcoming segment processing activities. The rear wheels of one car and the front wheels of the car behind it slid off the tracks while passing through a railway switch onto a siding. They were traveling approximately 3 miles per hour at the time, about normal walking speed. No damage occurred to the SRB segments, or to the devices that secure the segments to the rail cars. The incident occurred on KSC property, just north of the NASA Causeway in the KSC Industrial Area.
Segmental maxillary distraction with a novel device for closure of a wide alveolar cleft
Bousdras, Vasilios A.; Liyanage, Chandra; Mars, Michael; Ayliffe, Peter R
2014-01-01
Treatment of a wide alveolar cleft with initial application of segmental distraction osteogenesis is reported, in order to minimise cleft size prior to secondary alveolar bone grafting. The lesser maxillary segment was mobilised with osteotomy at Le Fort I level and, a novel distractor, facilitated horizontal movement of the dental/alveolar segment along the curvature of the maxillary dental arch. Following a latency period of 4 days distraction was applied for 7 days at a rate of 0.5 mm twice daily. Radiographic, ultrasonographic and clinical assessment revealed new bone and soft tissue formation 8 weeks after completion of the distraction phase. Overall the maxillary segment did move minimising the width of the cleft, which allowed successful closure with a secondary alveolar bone graft. PMID:24987601
Segmental maxillary distraction with a novel device for closure of a wide alveolar cleft.
Bousdras, Vasilios A; Liyanage, Chandra; Mars, Michael; Ayliffe, Peter R
2014-01-01
Treatment of a wide alveolar cleft with initial application of segmental distraction osteogenesis is reported, in order to minimise cleft size prior to secondary alveolar bone grafting. The lesser maxillary segment was mobilised with osteotomy at Le Fort I level and, a novel distractor, facilitated horizontal movement of the dental/alveolar segment along the curvature of the maxillary dental arch. Following a latency period of 4 days distraction was applied for 7 days at a rate of 0.5 mm twice daily. Radiographic, ultrasonographic and clinical assessment revealed new bone and soft tissue formation 8 weeks after completion of the distraction phase. Overall the maxillary segment did move minimising the width of the cleft, which allowed successful closure with a secondary alveolar bone graft.
Simultaneous segmentation of the bone and cartilage surfaces of a knee joint in 3D
NASA Astrophysics Data System (ADS)
Yin, Y.; Zhang, X.; Anderson, D. D.; Brown, T. D.; Hofwegen, C. Van; Sonka, M.
2009-02-01
We present a novel framework for the simultaneous segmentation of multiple interacting surfaces belonging to multiple mutually interacting objects. The method is a non-trivial extension of our previously reported optimal multi-surface segmentation. Considering an example application of knee-cartilage segmentation, the framework consists of the following main steps: 1) Shape model construction: Building a mean shape for each bone of the joint (femur, tibia, patella) from interactively segmented volumetric datasets. Using the resulting mean-shape model - identification of cartilage, non-cartilage, and transition areas on the mean-shape bone model surfaces. 2) Presegmentation: Employment of iterative optimal surface detection method to achieve approximate segmentation of individual bone surfaces. 3) Cross-object surface mapping: Detection of inter-bone equidistant separating sheets to help identify corresponding vertex pairs for all interacting surfaces. 4) Multi-object, multi-surface graph construction and final segmentation: Construction of a single multi-bone, multi-surface graph so that two surfaces (bone and cartilage) with zero and non-zero intervening distances can be detected for each bone of the joint, according to whether or not cartilage can be locally absent or present on the bone. To define inter-object relationships, corresponding vertex pairs identified using the separating sheets were interlinked in the graph. The graph optimization algorithm acted on the entire multiobject, multi-surface graph to yield a globally optimal solution. The segmentation framework was tested on 16 MR-DESS knee-joint datasets from the Osteoarthritis Initiative database. The average signed surface positioning error for the 6 detected surfaces ranged from 0.00 to 0.12 mm. When independently initialized, the signed reproducibility error of bone and cartilage segmentation ranged from 0.00 to 0.26 mm. The results showed that this framework provides robust, accurate, and reproducible segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multi-object segmentation problems.
Moya, Nikolas; Falcão, Alexandre X; Ciesielski, Krzysztof C; Udupa, Jayaram K
2014-01-01
Graph-cut algorithms have been extensively investigated for interactive binary segmentation, when the simultaneous delineation of multiple objects can save considerable user's time. We present an algorithm (named DRIFT) for 3D multiple object segmentation based on seed voxels and Differential Image Foresting Transforms (DIFTs) with relaxation. DRIFT stands behind efficient implementations of some state-of-the-art methods. The user can add/remove markers (seed voxels) along a sequence of executions of the DRIFT algorithm to improve segmentation. Its first execution takes linear time with the image's size, while the subsequent executions for corrections take sublinear time in practice. At each execution, DRIFT first runs the DIFT algorithm, then it applies diffusion filtering to smooth boundaries between objects (and background) and, finally, it corrects possible objects' disconnection occurrences with respect to their seeds. We evaluate DRIFT in 3D CT-images of the thorax for segmenting the arterial system, esophagus, left pleural cavity, right pleural cavity, trachea and bronchi, and the venous system.
Mining moving object trajectories in location-based services for spatio-temporal database update
NASA Astrophysics Data System (ADS)
Guo, Danhuai; Cui, Weihong
2008-10-01
Advances in wireless transmission and mobile technology applied to LBS (Location-based Services) flood us with amounts of moving objects data. Vast amounts of gathered data from position sensors of mobile phones, PDAs, or vehicles hide interesting and valuable knowledge and describe the behavior of moving objects. The correlation between temporal moving patterns of moving objects and geo-feature spatio-temporal attribute was ignored, and the value of spatio-temporal trajectory data was not fully exploited too. Urban expanding or frequent town plan change bring about a large amount of outdated or imprecise data in spatial database of LBS, and they cannot be updated timely and efficiently by manual processing. In this paper we introduce a data mining approach to movement pattern extraction of moving objects, build a model to describe the relationship between movement patterns of LBS mobile objects and their environment, and put up with a spatio-temporal database update strategy in LBS database based on trajectories spatiotemporal mining. Experimental evaluation reveals excellent performance of the proposed model and strategy. Our original contribution include formulation of model of interaction between trajectory and its environment, design of spatio-temporal database update strategy based on moving objects data mining, and the experimental application of spatio-temporal database update by mining moving objects trajectories.
A shape-based segmentation method for mobile laser scanning point clouds
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Dong, Zhen
2013-07-01
Segmentation of mobile laser point clouds of urban scenes into objects is an important step for post-processing (e.g., interpretation) of point clouds. Point clouds of urban scenes contain numerous objects with significant size variability, complex and incomplete structures, and holes or variable point densities, raising great challenges for the segmentation of mobile laser point clouds. This paper addresses these challenges by proposing a shape-based segmentation method. The proposed method first calculates the optimal neighborhood size of each point to derive the geometric features associated with it, and then classifies the point clouds according to geometric features using support vector machines (SVMs). Second, a set of rules are defined to segment the classified point clouds, and a similarity criterion for segments is proposed to overcome over-segmentation. Finally, the segmentation output is merged based on topological connectivity into a meaningful geometrical abstraction. The proposed method has been tested on point clouds of two urban scenes obtained by different mobile laser scanners. The results show that the proposed method segments large-scale mobile laser point clouds with good accuracy and computationally effective time cost, and that it segments pole-like objects particularly well.
Rigid shape matching by segmentation averaging.
Wang, Hongzhi; Oliensis, John
2010-04-01
We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking.
Detection and Tracking of Moving Objects with Real-Time Onboard Vision System
NASA Astrophysics Data System (ADS)
Erokhin, D. Y.; Feldman, A. B.; Korepanov, S. E.
2017-05-01
Detection of moving objects in video sequence received from moving video sensor is a one of the most important problem in computer vision. The main purpose of this work is developing set of algorithms, which can detect and track moving objects in real time computer vision system. This set includes three main parts: the algorithm for estimation and compensation of geometric transformations of images, an algorithm for detection of moving objects, an algorithm to tracking of the detected objects and prediction their position. The results can be claimed to create onboard vision systems of aircraft, including those relating to small and unmanned aircraft.
Spider monkey ranging patterns in Mexican subtropical forest: do travel routes reflect planning?
Valero, Alejandra; Byrne, Richard W
2007-07-01
Although it is well known that frugivorous spider monkeys (Ateles geoffroyi yucatanensis) occupy large home ranges, travelling long distances to reach highly productive resources, little is known of how they move between feeding sites. A 11 month study of spider monkey ranging patterns was carried out at the Otochma'ax Yetel Kooh reserve, Yucatán, Mexico. We followed single individuals for as long as possible each day and recorded the routes travelled with the help of a GPS (Global Positioning System) device; the 11 independently moving individuals of a group were targeted as focal subjects. Travel paths were composed of highly linear segments, each typically ending at a place where some resource was exploited. Linearity of segments did not differ between individuals, and most of the highly linear paths that led to food resources were much longer than the estimate visibility in the woodland canopy. Monkeys do not generally continue in the same ranging direction after exploiting a resource: travel paths are likely to deviate at the site of resource exploitation rather than between such sites. However, during the harshest months of the year consecutive route segments were more likely to retain the same direction of overall movement. Together, these findings suggest that while moving between feeding sites, spider monkeys use spatial memory to guide travel, and even plan more than one resource site in advance.
Motor imagery of body movements that can't be executed on Earth.
Kalicinski, Michael; Bock, Otmar; Schott, Nadja
2017-01-01
Before participating in a space mission, astronauts undergo parabolic-flight and underwater training to facilitate their subsequent adaptation to weightlessness. A quick, simple and inexpensive alternative could be training by motor imagery (MI). An important prerequisite for this training approach is that humans are able to imagine movements which are unfamiliar, since they can't be performed in the presence of gravity. Our study addresses this prerequisite. 68 young subjects completed a modified version of the CMI test (Schott, 2013). With eyes closed, subjects were asked to imagine moving their body according to six consecutive verbal instructions. After the sixth instruction, subjects opened their eyes and arranged the segments of a manikin into the assumed final body configuration. In a first condition, subjects received instructions only for moving individual body segments (CMIground). In a second condition, subjects received instructions for moving body segments or their full body (CMIfloat). After each condition, subjects were asked to rate their subjective visual and kinesthetic vividness of MI. Condition differences emerged for the CMI scores and for the duration of correct trials with better performance in the CMIground condition. Condition differences were also represented for the subjective MI performance. Motor imagery is possible but degraded when subjects are asked to imagine body movements while floating. This confirms that preflight training of MI while floating might be beneficial for astronauts' mission performance.
A-Track: Detecting Moving Objects in FITS images
NASA Astrophysics Data System (ADS)
Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.
2017-04-01
A-Track is a fast, open-source, cross-platform pipeline for detecting moving objects (asteroids and comets) in sequential telescope images in FITS format. The moving objects are detected using a modified line detection algorithm.
NASA Astrophysics Data System (ADS)
Xu, Chao; Zhou, Dongxiang; Zhai, Yongping; Liu, Yunhui
2015-12-01
This paper realizes the automatic segmentation and classification of Mycobacterium tuberculosis with conventional light microscopy. First, the candidate bacillus objects are segmented by the marker-based watershed transform. The markers are obtained by an adaptive threshold segmentation based on the adaptive scale Gaussian filter. The scale of the Gaussian filter is determined according to the color model of the bacillus objects. Then the candidate objects are extracted integrally after region merging and contaminations elimination. Second, the shape features of the bacillus objects are characterized by the Hu moments, compactness, eccentricity, and roughness, which are used to classify the single, touching and non-bacillus objects. We evaluated the logistic regression, random forest, and intersection kernel support vector machines classifiers in classifying the bacillus objects respectively. Experimental results demonstrate that the proposed method yields to high robustness and accuracy. The logistic regression classifier performs best with an accuracy of 91.68%.
Smolka, M O
1992-01-01
The data used were derived from the IPPUR/ITBI/IPTU archive, which contains approximately 2 million annual real estate transactions for the period 1968-88 and more for 1990 for the city of Rio de Janeiro. These registers are maintained for levying taxes and they describe the property, the objective of the transaction, the type, location, size, value as well as participation in the financial system of residency (SFH). This information allows the construction of intraurban mobility matrices, first between 96 neighborhoods of the city and then for 24 administrative regions (RAs) of Rio de Janeiro. Problems were abundant: only 1483 (29%) of 5089 transactions for 1985-88 were used, and 35% for 1990 because of poor data quality. The determinants of intraurban mobility were: 1) demographic (life cycle of families), 2) socioeconomic (changes of employment), and 3) environmental and cultural (dilapidation, violence, pollution, and life style). Mobility trends demonstrated that 46.2% of changes were downward moves and only 33.1% were upward moves. Among upward changes 16.8% involved the acquisition of a new apartment, while among downward moves this constituted only 8.9%. SFH financially assisted the purchase of 14% of upward moves vs. 12.9% of downward moves. Among upward deals in the 6 most favored residential areas, 45.3% of transactions occurred in the city. The moves did not indicate a strong segmentation of the market reaffirming the process of residential segregation between rich and poor people. More than half of real estate acquisitions were realized by families residing in the same RA or in the adjacent RA. More than 75% of transactions for residents of 6 RAs were carried out in the same RA or in adjacent ones. The 10 most important moves (1.74% of all potential moves) involved 21.17% of transactions in the city. The most important moves affected the 3 RAs of Barra da Tijuca of the southern zone, which represented 57.1% of all transactions that occurred in the RA, epitomizing upward mobility of the newly rich.
Mishra, Ajay; Aloimonos, Yiannis
2009-01-01
The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary.We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach.
Belgiu, Mariana; Dr Guţ, Lucian
2014-10-01
Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea that classification is dependent on segmentation is challenged by our unexpected results, casting doubt on the value of pursuing 'optimal segmentation'. Our results rather suggest that as long as under-segmentation remains at acceptable levels, imperfections in segmentation can be ruled out, so that a high level of classification accuracy can still be achieved.
Image Segmentation Method Using Fuzzy C Mean Clustering Based on Multi-Objective Optimization
NASA Astrophysics Data System (ADS)
Chen, Jinlin; Yang, Chunzhi; Xu, Guangkui; Ning, Li
2018-04-01
Image segmentation is not only one of the hottest topics in digital image processing, but also an important part of computer vision applications. As one kind of image segmentation algorithms, fuzzy C-means clustering is an effective and concise segmentation algorithm. However, the drawback of FCM is that it is sensitive to image noise. To solve the problem, this paper designs a novel fuzzy C-mean clustering algorithm based on multi-objective optimization. We add a parameter λ to the fuzzy distance measurement formula to improve the multi-objective optimization. The parameter λ can adjust the weights of the pixel local information. In the algorithm, the local correlation of neighboring pixels is added to the improved multi-objective mathematical model to optimize the clustering cent. Two different experimental results show that the novel fuzzy C-means approach has an efficient performance and computational time while segmenting images by different type of noises.
Binding and segmentation via a neural mass model trained with Hebbian and anti-Hebbian mechanisms.
Cona, Filippo; Zavaglia, Melissa; Ursino, Mauro
2012-04-01
Synchronization of neural activity in the gamma band, modulated by a slower theta rhythm, is assumed to play a significant role in binding and segmentation of multiple objects. In the present work, a recent neural mass model of a single cortical column is used to analyze the synaptic mechanisms which can warrant synchronization and desynchronization of cortical columns, during an autoassociation memory task. The model considers two distinct layers communicating via feedforward connections. The first layer receives the external input and works as an autoassociative network in the theta band, to recover a previously memorized object from incomplete information. The second realizes segmentation of different objects in the gamma band. To this end, units within both layers are connected with synapses trained on the basis of previous experience to store objects. The main model assumptions are: (i) recovery of incomplete objects is realized by excitatory synapses from pyramidal to pyramidal neurons in the same object; (ii) binding in the gamma range is realized by excitatory synapses from pyramidal neurons to fast inhibitory interneurons in the same object. These synapses (both at points i and ii) have a few ms dynamics and are trained with a Hebbian mechanism. (iii) Segmentation is realized with faster AMPA synapses, with rise times smaller than 1 ms, trained with an anti-Hebbian mechanism. Results show that the model, with the previous assumptions, can correctly reconstruct and segment three simultaneous objects, starting from incomplete knowledge. Segmentation of more objects is possible but requires an increased ratio between the theta and gamma periods.
Object-oriented approach to the automatic segmentation of bones from pediatric hand radiographs
NASA Astrophysics Data System (ADS)
Shim, Hyeonjoon; Liu, Brent J.; Taira, Ricky K.; Hall, Theodore R.
1997-04-01
The purpose of this paper is to develop a robust and accurate method that automatically segments phalangeal and epiphyseal bones from digital pediatric hand radiographs exhibiting various stages of growth. The development of this system draws principles from object-oriented design, model- guided analysis, and feedback control. A system architecture called 'the object segmentation machine' was implemented incorporating these design philosophies. The system is aided by a knowledge base where all model contours and other information such as age, race, and sex, are stored. These models include object structure models, shape models, 1-D wrist profiles, and gray level histogram models. Shape analysis is performed first by using an arc-length orientation transform to break down a given contour into elementary segments and curves. Then an interpretation tree is used as an inference engine to map known model contour segments to data contour segments obtained from the transform. Spatial and anatomical relationships among contour segments work as constraints from shape model. These constraints aid in generating a list of candidate matches. The candidate match with the highest confidence is chosen to be the current intermediate result. Verification of intermediate results are perform by a feedback control loop.
NASA Astrophysics Data System (ADS)
Yin, Y.; Sonka, M.
2010-03-01
A novel method is presented for definition of search lines in a variety of surface segmentation approaches. The method is inspired by properties of electric field direction lines and is applicable to general-purpose n-D shapebased image segmentation tasks. Its utility is demonstrated in graph construction and optimal segmentation of multiple mutually interacting objects. The properties of the electric field-based graph construction guarantee that inter-object graph connecting lines are non-intersecting and inherently covering the entire object-interaction space. When applied to inter-object cross-surface mapping, our approach generates one-to-one and all-to-all vertex correspondent pairs between the regions of mutual interaction. We demonstrate the benefits of the electric field approach in several examples ranging from relatively simple single-surface segmentation to complex multiobject multi-surface segmentation of femur-tibia cartilage. The performance of our approach is demonstrated in 60 MR images from the Osteoarthritis Initiative (OAI), in which our approach achieved a very good performance as judged by surface positioning errors (average of 0.29 and 0.59 mm for signed and unsigned cartilage positioning errors, respectively).
Zook, Chris; Allen, James
2003-12-01
Growth in an adjacent market is tougher than it looks; three-quarters of the time, the effort fails. But companies can change those odds dramatically. Results from a five-year study of corporate growth conducted by Bain & Company reveal that adjacency expansion succeeds only when built around strong core businesses that have the potential to become market leaders. And the best place to look for adjacency opportunities is inside a company's strongest customers. The study also found that the most successful companies were able to consistently, profitably outgrow their rivals by developing a formula for pushing out the boundaries of their core businesses in predictable, repeatable ways. Companies use their repeatability formulas to expand into any number of adjacencies. Some companies make repeated geographic moves, as Vodafone has done in expanding from one geographic market to another over the past 13 years, building revenues from $1 billion in 1990 to $48 billion in 2003. Others apply a superior business model to new segments. Dell, for example, has repeatedly adapted its direct-to-customer model to new customer segments and new product categories. In other cases, companies develop hybrid approaches. Nike executed a series of different types of adjacency moves: it expanded into adjacent customer segments, introduced new products, developed new distribution channels, and then moved into adjacent geographic markets. The successful repeaters in the study had two common characteristics. First, they were extraordinarily disciplined, applying rigorous screens before they made an adjacency move. This discipline paid off in the form of learning curve benefits, increased speed, and lower complexity. And second, in almost all cases, they developed their repeatable formulas by studying their customers and their customers' economics very, very carefully.
Interaction between a railway track and uniformly moving tandem wheels
NASA Astrophysics Data System (ADS)
Belotserkovskiy, P. M.
2006-12-01
Interaction among loaded wheels via railway track is studied. The vertical parametric oscillations of an infinite row of identical equally spaced wheels, bearing constant load and uniformly moving over a railway track, are calculated by means of Fourier series technique. If the distance between two consecutive wheels is big enough, then one can disregard their interaction via the railway track and consider every wheel as a single one. In this case, however, the Fourier series technique represents an appropriate computation time-saving approximation to a Fourier integral transformation technique that describes the oscillations of a single moving wheel. Two schemes are considered. In the first scheme, every wheel bears the same load. In the second one, consecutive wheels bear contrarily directed loads of the same magnitude. The second scheme leads to simpler calculations and so is recommended to model the wheel-track interaction. The railway track periodicity due to sleeper spacing is taken into account. Each period is the track segment between two adjacent sleepers. A partial differential equation with constant coefficients governs the vertical oscillations of each segment. Boundary conditions bind the oscillations of two neighbour segments and provide periodicity to the track. The shear deformation in the rail cross-section strongly influences the parametric oscillations. It also causes discontinuity of the rail centre-line slope at any point, where a concentrated transverse force is applied. Therefore, Timoshenko beam properties with respect to the topic of this paper are discussed. Interaction between a railway track and a bogie moving at moderate speed is studied. The study points to influence of the bogie frame oscillations on variation in the wheel-rail contact force over the sleeper span. The simplified bogie model considered includes only the primary suspension. A static load applied to the bogie frame centre presents the vehicle body.
Object Segmentation Methods for Online Model Acquisition to Guide Robotic Grasping
NASA Astrophysics Data System (ADS)
Ignakov, Dmitri
A vision system is an integral component of many autonomous robots. It enables the robot to perform essential tasks such as mapping, localization, or path planning. A vision system also assists with guiding the robot's grasping and manipulation tasks. As an increased demand is placed on service robots to operate in uncontrolled environments, advanced vision systems must be created that can function effectively in visually complex and cluttered settings. This thesis presents the development of segmentation algorithms to assist in online model acquisition for guiding robotic manipulation tasks. Specifically, the focus is placed on localizing door handles to assist in robotic door opening, and on acquiring partial object models to guide robotic grasping. First, a method for localizing a door handle of unknown geometry based on a proposed 3D segmentation method is presented. Following segmentation, localization is performed by fitting a simple box model to the segmented handle. The proposed method functions without requiring assumptions about the appearance of the handle or the door, and without a geometric model of the handle. Next, an object segmentation algorithm is developed, which combines multiple appearance (intensity and texture) and geometric (depth and curvature) cues. The algorithm is able to segment objects without utilizing any a priori appearance or geometric information in visually complex and cluttered environments. The segmentation method is based on the Conditional Random Fields (CRF) framework, and the graph cuts energy minimization technique. A simple and efficient method for initializing the proposed algorithm which overcomes graph cuts' reliance on user interaction is also developed. Finally, an improved segmentation algorithm is developed which incorporates a distance metric learning (DML) step as a means of weighing various appearance and geometric segmentation cues, allowing the method to better adapt to the available data. The improved method also models the distribution of 3D points in space as a distribution of algebraic distances from an ellipsoid fitted to the object, improving the method's ability to predict which points are likely to belong to the object or the background. Experimental validation of all methods is performed. Each method is evaluated in a realistic setting, utilizing scenarios of various complexities. Experimental results have demonstrated the effectiveness of the handle localization method, and the object segmentation methods.
1999-10-07
KENNEDY SPACE CENTER, FLA. -- At the Shuttle Landing Facility, the S1 truss, a segment of the International Space Station, is moved away from the Super Guppy that brought it to KSC from Marshall Space Flight Center. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is being transferred to the Operations and Checkout Building
Local and global evaluation for remote sensing image segmentation
NASA Astrophysics Data System (ADS)
Su, Tengfei; Zhang, Shengwei
2017-08-01
In object-based image analysis, how to produce accurate segmentation is usually a very important issue that needs to be solved before image classification or target recognition. The study for segmentation evaluation method is key to solving this issue. Almost all of the existent evaluation strategies only focus on the global performance assessment. However, these methods are ineffective for the situation that two segmentation results with very similar overall performance have very different local error distributions. To overcome this problem, this paper presents an approach that can both locally and globally quantify segmentation incorrectness. In doing so, region-overlapping metrics are utilized to quantify each reference geo-object's over and under-segmentation error. These quantified error values are used to produce segmentation error maps which have effective illustrative power to delineate local segmentation error patterns. The error values for all of the reference geo-objects are aggregated through using area-weighted summation, so that global indicators can be derived. An experiment using two scenes of very different high resolution images showed that the global evaluation part of the proposed approach was almost as effective as other two global evaluation methods, and the local part was a useful complement to comparing different segmentation results.
Mijatović, Antonija; La Scaleia, Barbara; Mercuri, Nicola; Lacquaniti, Francesco; Zago, Myrka
2014-12-01
Familiarity with the visual environment affects our expectations about the objects in a scene, aiding in recognition and interaction. Here we tested whether the familiarity with the specific trajectory followed by a moving target facilitates the interpretation of the effects of underlying physical forces. Participants intercepted a target sliding down either an inclined plane or a tautochrone. Gravity accelerated the target by the same amount in both cases, but the inclined plane represented a familiar trajectory whereas the tautochrone was unfamiliar to the participants. In separate sessions, the gravity field was consistent with either natural gravity or artificial reversed gravity. Target motion was occluded from view over the last segment. We found that the responses in the session with unnatural forces were systematically delayed relative to those with natural forces, but only for the inclined plane. The time shift is consistent with a bias for natural gravity, in so far as it reflects an a priori expectation that a target not affected by natural forces will arrive later than one accelerated downwards by gravity. Instead, we did not find any significant time shift with unnatural forces in the case of the tautochrone. We argue that interception of a moving target relies on the integration of the high-level cue of trajectory familiarity with low-level cues related to target kinematics.
Segmentation of touching mycobacterium tuberculosis from Ziehl-Neelsen stained sputum smear images
NASA Astrophysics Data System (ADS)
Xu, Chao; Zhou, Dongxiang; Liu, Yunhui
2015-12-01
Touching Mycobacterium tuberculosis objects in the Ziehl-Neelsen stained sputum smear images present different shapes and invisible boundaries in the adhesion areas, which increases the difficulty in objects recognition and counting. In this paper, we present a segmentation method of combining the hierarchy tree analysis with gradient vector flow snake to address this problem. The skeletons of the objects are used for structure analysis based on the hierarchy tree. The gradient vector flow snake is used to estimate the object edge. Experimental results show that the single objects composing the touching objects are successfully segmented by the proposed method. This work will improve the accuracy and practicability of the computer-aided diagnosis of tuberculosis.
Hydraulic drill string breakdown and bleed off unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeringue, F.J. Jr.
1987-02-17
An apparatus is described for use within an oil well rig for decoupling a tubing string into pipe segments comprising, in combination: rotary tong means for applying an unthreading torque to a first, upper pipe segment within the tubing string; torque resisting means for securing a second, lower pipe segment within the tubing string against the unthreading torque; containing means, intermediate the rotary tong means and the torque resisting means, enclosing a threaded joint of the tubing string, adapted for containing pressurized gases, liquids, and particulates, released from the threaded joint upon the decoupling; fluid communicating means for allowing fluidmore » communication between the containing means and a receiving point adapted for receiving the pressurized gases, liquids, and particulates; means for moving the rotary tong means, the torque resisting means and the containing means between a closed, engaging position with the tubing string and an open position; and means for horizontally moving the rotary tong means, the torque resisting means and the containing means between a position adjacent the tubing string and a position away from the tubing string.« less
Global Radius of Curvature Estimation and Control System for Segmented Mirrors
NASA Technical Reports Server (NTRS)
Rakoczy, John M. (Inventor)
2006-01-01
An apparatus controls positions of plural mirror segments in a segmented mirror with an edge sensor system and a controller. Current mirror segment edge sensor measurements and edge sensor reference measurements are compared with calculated edge sensor bias measurements representing a global radius of curvature. Accumulated prior actuator commands output from an edge sensor control unit are combined with an estimator matrix to form the edge sensor bias measurements. An optimal control matrix unit then accumulates the plurality of edge sensor error signals calculated by the summation unit and outputs the corresponding plurality of actuator commands. The plural mirror actuators respond to the actuator commands by moving respective positions of the mixor segments. A predetermined number of boundary conditions, corresponding to a plurality of hexagonal mirror locations, are removed to afford mathematical matrix calculation.
Dokka, Kalpana; DeAngelis, Gregory C.
2015-01-01
Humans and animals are fairly accurate in judging their direction of self-motion (i.e., heading) from optic flow when moving through a stationary environment. However, an object moving independently in the world alters the optic flow field and may bias heading perception if the visual system cannot dissociate object motion from self-motion. We investigated whether adding vestibular self-motion signals to optic flow enhances the accuracy of heading judgments in the presence of a moving object. Macaque monkeys were trained to report their heading (leftward or rightward relative to straight-forward) when self-motion was specified by vestibular, visual, or combined visual-vestibular signals, while viewing a display in which an object moved independently in the (virtual) world. The moving object induced significant biases in perceived heading when self-motion was signaled by either visual or vestibular cues alone. However, this bias was greatly reduced when visual and vestibular cues together signaled self-motion. In addition, multisensory heading discrimination thresholds measured in the presence of a moving object were largely consistent with the predictions of an optimal cue integration strategy. These findings demonstrate that multisensory cues facilitate the perceptual dissociation of self-motion and object motion, consistent with computational work that suggests that an appropriate decoding of multisensory visual-vestibular neurons can estimate heading while discounting the effects of object motion. SIGNIFICANCE STATEMENT Objects that move independently in the world alter the optic flow field and can induce errors in perceiving the direction of self-motion (heading). We show that adding vestibular (inertial) self-motion signals to optic flow almost completely eliminates the errors in perceived heading induced by an independently moving object. Furthermore, this increased accuracy occurs without a substantial loss in the precision. Our results thus demonstrate that vestibular signals play a critical role in dissociating self-motion from object motion. PMID:26446214
Wavefront Compensation Segmented Mirror Sensing and Control
NASA Technical Reports Server (NTRS)
Redding, David C.; Lou, John Z.; Kissil, Andrew; Bradford, Charles M.; Woody, David; Padin, Stephen
2012-01-01
The primary mirror of very large submillimeter-wave telescopes will necessarily be segmented into many separate mirror panels. These panels must be continuously co-phased to keep the telescope wavefront error less than a small fraction of a wavelength, to ten microns RMS (root mean square) or less. This performance must be maintained continuously across the full aperture of the telescope, in all pointing conditions, and in a variable thermal environment. A wavefront compensation segmented mirror sensing and control system, consisting of optical edge sensors, Wavefront Compensation Estimator/Controller Soft ware, and segment position actuators is proposed. Optical edge sensors are placed two per each segment-to-segment edge to continuously measure changes in segment state. Segment position actuators (three per segment) are used to move the panels. A computer control system uses the edge sensor measurements to estimate the state of all of the segments and to predict the wavefront error; segment actuator commands are computed that minimize the wavefront error. Translational or rotational motions of one segment relative to the other cause lateral displacement of the light beam, which is measured by the imaging sensor. For high accuracy, the collimator uses a shaped mask, such as one or more slits, so that the light beam forms a pattern on the sensor that permits sensing accuracy of better than 0.1 micron in two axes: in the z or local surface normal direction, and in the y direction parallel to the mirror surface and perpendicular to the beam direction. Using a co-aligned pair of sensors, with the location of the detector and collimated light source interchanged, four degrees of freedom can be sensed: transverse x and y displacements, as well as two bending angles (pitch and yaw). In this approach, each optical edge sensor head has a collimator and an imager, placing one sensor head on each side of a segment gap, with two parallel light beams crossing the gap. Two sets of optical edge sensors are used per segment-to-segment edge, separated by a finite distance along the segment edge, for four optical heads, each with an imager and a collimator. By orienting the beam direction of one edge sensor pair to be +45 away from the segment edge direction, and the other sensor pair to be oriented -45 away from the segment edge direction, all six degrees of freedom of relative motion between the segments can be measured with some redundancy. The software resides in a computer that receives each of the optical edge sensor signals, as well as telescope pointing commands. It feeds back the edge sensor signals to keep the primary mirror figure within specification. It uses a feed-forward control to compensate for global effects such as decollimation of the primary and secondary mirrors due to gravity sag as the telescope pointing changes to track science objects. Three segment position actuators will be provided per segment to enable controlled motions in the piston, tip, and tilt degrees of freedom. These actuators are driven by the software, providing the optical changes needed to keep the telescope phased.
NASA Astrophysics Data System (ADS)
Lee, Joohwi; Kim, Sun Hyung; Styner, Martin
2016-03-01
The delineation of rodent brain structures is challenging due to low-contrast multiple cortical and subcortical organs that are closely interfacing to each other. Atlas-based segmentation has been widely employed due to its ability to delineate multiple organs at the same time via image registration. The use of multiple atlases and subsequent label fusion techniques has further improved the robustness and accuracy of atlas-based segmentation. However, the accuracy of atlas-based segmentation is still prone to registration errors; for example, the segmentation of in vivo MR images can be less accurate and robust against image artifacts than the segmentation of post mortem images. In order to improve the accuracy and robustness of atlas-based segmentation, we propose a multi-object, model-based, multi-atlas segmentation method. We first establish spatial correspondences across atlases using a set of dense pseudo-landmark particles. We build a multi-object point distribution model using those particles in order to capture inter- and intra- subject variation among brain structures. The segmentation is obtained by fitting the model into a subject image, followed by label fusion process. Our result shows that the proposed method resulted in greater accuracy than comparable segmentation methods, including a widely used ANTs registration tool.
Improvement and Extension of Shape Evaluation Criteria in Multi-Scale Image Segmentation
NASA Astrophysics Data System (ADS)
Sakamoto, M.; Honda, Y.; Kondo, A.
2016-06-01
From the last decade, the multi-scale image segmentation is getting a particular interest and practically being used for object-based image analysis. In this study, we have addressed the issues on multi-scale image segmentation, especially, in improving the performances for validity of merging and variety of derived region's shape. Firstly, we have introduced constraints on the application of spectral criterion which could suppress excessive merging between dissimilar regions. Secondly, we have extended the evaluation for smoothness criterion by modifying the definition on the extent of the object, which was brought for controlling the shape's diversity. Thirdly, we have developed new shape criterion called aspect ratio. This criterion helps to improve the reproducibility on the shape of object to be matched to the actual objectives of interest. This criterion provides constraint on the aspect ratio in the bounding box of object by keeping properties controlled with conventional shape criteria. These improvements and extensions lead to more accurate, flexible, and diverse segmentation results according to the shape characteristics of the target of interest. Furthermore, we also investigated a technique for quantitative and automatic parameterization in multi-scale image segmentation. This approach is achieved by comparing segmentation result with training area specified in advance by considering the maximization of the average area in derived objects or satisfying the evaluation index called F-measure. Thus, it has been possible to automate the parameterization that suited the objectives especially in the view point of shape's reproducibility.
Medical Image Segmentation by Combining Graph Cut and Oriented Active Appearance Models
Chen, Xinjian; Udupa, Jayaram K.; Bağcı, Ulaş; Zhuge, Ying; Yao, Jianhua
2017-01-01
In this paper, we propose a novel 3D segmentation method based on the effective combination of the active appearance model (AAM), live wire (LW), and graph cut (GC). The proposed method consists of three main parts: model building, initialization, and segmentation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the initialization part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW method, resulting in Oriented AAM (OAAM). A multi-object strategy is utilized to help in object initialization. We employ a pseudo-3D initialization strategy, and segment the organs slice by slice via multi-object OAAM method. For the segmentation part, a 3D shape constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT dataset and also tested on the MICCAI 2007 grand challenge for liver segmentation training dataset. The results show the following: (a) An overall segmentation accuracy of true positive volume fraction (TPVF) > 94.3%, false positive volume fraction (FPVF) < 0.2% can be achieved. (b) The initialization performance can be improved by combining AAM and LW. (c) The multi-object strategy greatly facilitates the initialization. (d) Compared to the traditional 3D AAM method, the pseudo 3D OAAM method achieves comparable performance while running 12 times faster. (e) The performance of proposed method is comparable to the state of the art liver segmentation algorithm. The executable version of 3D shape constrained GC with user interface can be downloaded from website http://xinjianchen.wordpress.com/research/. PMID:22311862
SLS Pathfinder Segments Car Train Departure
2016-03-02
An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, departs from NASA’s Kennedy Space Center in Florida, with two containers on railcars for transport to the Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.
2008-12-17
CAPE CANAVERAL, Fla. -- Solid rocket booster, or SRB, segments from the STS-126 launch are being taken to the NASA Railroad yard at NASA's Kennedy Space Center. There they will be transferred to a rail car and taken to Utah. After a mission, the spent boosters are recovered, cleaned, disassembled, refurbished and reused for another launch. After the segments are hydrolased inside, they are placed on flatbed trucks and transferred to the NASA Railroad yard. The NASA Railroad locomotive backs up the rail cars and the segments are lowered onto the car. After being covered for the trip, the segments will be moved to Titusville for interchange with Florida East Coast Railway to begin the trip back to Utah. Photo credit: NASA/Kim Shiflett
2000-07-20
After being involved in a minor derailment incident during a routine movement on the tracks, rail cars carrying solid rocket booster segments sit idle. The rail cars were being moved as part of a standard operation to “order” the cars, placing them into a proper sequence for upcoming segment processing activities. The rear wheels of one car and the front wheels of the car behind it slid off the tracks while passing through a railway switch onto a siding. They were traveling approximately 3 miles per hour at the time, about normal walking speed. No damage occurred to the SRB segments, or to the devices that secure the segments to the rail cars. The incident occurred on KSC property, just north of the NASA Causeway in the KSC Industrial Area
2000-07-20
After being involved in a minor derailment incident during a routine movement on the tracks, rail cars carrying solid rocket booster segments sit idle. The rail cars were being moved as part of a standard operation to “order” the cars, placing them into a proper sequence for upcoming segment processing activities. The rear wheels of one car and the front wheels of the car behind it slid off the tracks while passing through a railway switch onto a siding. They were traveling approximately 3 miles per hour at the time, about normal walking speed. No damage occurred to the SRB segments, or to the devices that secure the segments to the rail cars. The incident occurred on KSC property, just north of the NASA Causeway in the KSC Industrial Area
SLS Pathfinder Segments Car Train Departure
2016-03-02
An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, departs from the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida, with two containers on railcars for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the RPSF. Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.
A Motion Detection Algorithm Using Local Phase Information
Lazar, Aurel A.; Ukani, Nikul H.; Zhou, Yiyin
2016-01-01
Previous research demonstrated that global phase alone can be used to faithfully represent visual scenes. Here we provide a reconstruction algorithm by using only local phase information. We also demonstrate that local phase alone can be effectively used to detect local motion. The local phase-based motion detector is akin to models employed to detect motion in biological vision, for example, the Reichardt detector. The local phase-based motion detection algorithm introduced here consists of two building blocks. The first building block measures/evaluates the temporal change of the local phase. The temporal derivative of the local phase is shown to exhibit the structure of a second order Volterra kernel with two normalized inputs. We provide an efficient, FFT-based algorithm for implementing the change of the local phase. The second processing building block implements the detector; it compares the maximum of the Radon transform of the local phase derivative with a chosen threshold. We demonstrate examples of applying the local phase-based motion detection algorithm on several video sequences. We also show how the locally detected motion can be used for segmenting moving objects in video scenes and compare our local phase-based algorithm to segmentation achieved with a widely used optic flow algorithm. PMID:26880882
Learning-Based Object Identification and Segmentation Using Dual-Energy CT Images for Security.
Martin, Limor; Tuysuzoglu, Ahmet; Karl, W Clem; Ishwar, Prakash
2015-11-01
In recent years, baggage screening at airports has included the use of dual-energy X-ray computed tomography (DECT), an advanced technology for nondestructive evaluation. The main challenge remains to reliably find and identify threat objects in the bag from DECT data. This task is particularly hard due to the wide variety of objects, the high clutter, and the presence of metal, which causes streaks and shading in the scanner images. Image noise and artifacts are generally much more severe than in medical CT and can lead to splitting of objects and inaccurate object labeling. The conventional approach performs object segmentation and material identification in two decoupled processes. Dual-energy information is typically not used for the segmentation, and object localization is not explicitly used to stabilize the material parameter estimates. We propose a novel learning-based framework for joint segmentation and identification of objects directly from volumetric DECT images, which is robust to streaks, noise and variability due to clutter. We focus on segmenting and identifying a small set of objects of interest with characteristics that are learned from training images, and consider everything else as background. We include data weighting to mitigate metal artifacts and incorporate an object boundary field to reduce object splitting. The overall formulation is posed as a multilabel discrete optimization problem and solved using an efficient graph-cut algorithm. We test the method on real data and show its potential for producing accurate labels of the objects of interest without splits in the presence of metal and clutter.
Wolowodiuk, W.; Anelli, J.; Dawson, B.E.
1974-01-01
A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)
ERIC Educational Resources Information Center
Damonte, Kathleen
2004-01-01
One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…
Allen, Vivian; Paxton, Heather; Hutchinson, John R
2009-09-01
Inertial properties of animal bodies and segments are critical input parameters for biomechanical analysis of standing and moving, and thus are important for paleobiological inquiries into the broader behaviors, ecology and evolution of extinct taxa such as dinosaurs. But how accurately can these be estimated? Computational modeling was used to estimate the inertial properties including mass, density, and center of mass (COM) for extant crocodiles (adult and juvenile Crocodylus johnstoni) and birds (Gallus gallus; junglefowl and broiler chickens), to identify the chief sources of variation and methodological errors, and their significance. High-resolution computed tomography scans were segmented into 3D objects and imported into inertial property estimation software that allowed for the examination of variable body segment densities (e.g., air spaces such as lungs, and deformable body outlines). Considerable biological variation of inertial properties was found within groups due to ontogenetic changes as well as evolutionary changes between chicken groups. COM positions shift in variable directions during ontogeny in different groups. Our method was repeatable and the resolution was sufficient for accurate estimations of mass and density in particular. However, we also found considerable potential methodological errors for COM related to (1) assumed body segment orientation, (2) what frames of reference are used to normalize COM for size-independent comparisons among animals, and (3) assumptions about tail shape. Methods and assumptions are suggested to minimize these errors in the future and thereby improve estimation of inertial properties for extant and extinct animals. In the best cases, 10%-15% errors in these estimates are unavoidable, but particularly for extinct taxa errors closer to 50% should be expected, and therefore, cautiously investigated. Nonetheless in the best cases these methods allow rigorous estimation of inertial properties. (c) 2009 Wiley-Liss, Inc.
3D TEM reconstruction and segmentation process of laminar bio-nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iturrondobeitia, M., E-mail: maider.iturrondobeitia@ehu.es; Okariz, A.; Fernandez-Martinez, R.
2015-03-30
The microstructure of laminar bio-nanocomposites (Poly (lactic acid)(PLA)/clay) depends on the amount of clay platelet opening after integration with the polymer matrix and determines the final properties of the material. Transmission electron microscopy (TEM) technique is the only one that can provide a direct observation of the layer dispersion and the degree of exfoliation. However, the orientation of the clay platelets, which affects the final properties, is practically immeasurable from a single 2D TEM image. This issue can be overcome using transmission electron tomography (ET), a technique that allows the complete 3D characterization of the structure, including the measurement ofmore » the orientation of clay platelets, their morphology and their 3D distribution. ET involves a 3D reconstruction of the study volume and a subsequent segmentation of the study object. Currently, accurate segmentation is performed manually, which is inefficient and tedious. The aim of this work is to propose an objective/automated segmentation methodology process of a 3D TEM tomography reconstruction. In this method the segmentation threshold is optimized by minimizing the variation of the dimensions of the segmented objects and matching the segmented V{sub clay} (%) and the actual one. The method is first validated using a fictitious set of objects, and then applied on a nanocomposite.« less
Segmentation of overweight Americans and opportunities for social marketing
Kolodinsky, Jane; Reynolds, Travis
2009-01-01
Background The food industry uses market segmentation to target products toward specific groups of consumers with similar attitudinal, demographic, or lifestyle characteristics. Our aims were to identify distinguishable segments within the US overweight population to be targeted with messages and media aimed at moving Americans toward more healthy weights. Methods Cluster analysis was used to identify segments of consumers based on both food and lifestyle behaviors related to unhealthy weights. Drawing from Social Learning Theory, the Health Belief Model, and existing market segmentation literature, the study identified five distinct, recognizable market segments based on knowledge and behavioral and environmental factors. Implications for social marketing campaigns designed to move Americans toward more healthy weights were explored. Results The five clusters identified were: Highest Risk (19%); At Risk (22%); Right Behavior/Wrong Results (33%); Getting Best Results (13%); and Doing OK (12%). Ninety-nine percent of those in the Highest Risk cluster were overweight; members watched the most television and exercised the least. Fifty-five percent of those in the At Risk cluster were overweight; members logged the most computer time and almost half rarely or never read food labels. Sixty-six percent of those in the Right Behavior/Wrong Results cluster were overweight; however, 95% of them were familiar with the food pyramid. Members reported eating a low percentage of fast food meals (8%) compared to other groups but a higher percentage of other restaurant meals (15%). Less than six percent of those in the Getting Best Results cluster were overweight; every member read food labels and 75% of members' meals were "made from scratch." Eighteen percent of those in the Doing OK cluster were overweight; members watched the least television and reported eating 78% of their meals "made from scratch." Conclusion This study demonstrated that five distinct market segments can be identified for social marketing efforts aimed at addressing the obesity epidemic. Through the identification of these five segments, social marketing campaigns can utilize selected channels and messages that communicate the most relevant and important information. The results of this study offer insight into how segmentation strategies and social marketing messages may improve public health. PMID:19267936
Segmentation of overweight Americans and opportunities for social marketing.
Kolodinsky, Jane; Reynolds, Travis
2009-03-08
The food industry uses market segmentation to target products toward specific groups of consumers with similar attitudinal, demographic, or lifestyle characteristics. Our aims were to identify distinguishable segments within the US overweight population to be targeted with messages and media aimed at moving Americans toward more healthy weights. Cluster analysis was used to identify segments of consumers based on both food and lifestyle behaviors related to unhealthy weights. Drawing from Social Learning Theory, the Health Belief Model, and existing market segmentation literature, the study identified five distinct, recognizable market segments based on knowledge and behavioral and environmental factors. Implications for social marketing campaigns designed to move Americans toward more healthy weights were explored. The five clusters identified were: Highest Risk (19%); At Risk (22%); Right Behavior/Wrong Results (33%); Getting Best Results (13%); and Doing OK (12%). Ninety-nine percent of those in the Highest Risk cluster were overweight; members watched the most television and exercised the least. Fifty-five percent of those in the At Risk cluster were overweight; members logged the most computer time and almost half rarely or never read food labels. Sixty-six percent of those in the Right Behavior/Wrong Results cluster were overweight; however, 95% of them were familiar with the food pyramid. Members reported eating a low percentage of fast food meals (8%) compared to other groups but a higher percentage of other restaurant meals (15%). Less than six percent of those in the Getting Best Results cluster were overweight; every member read food labels and 75% of members' meals were "made from scratch." Eighteen percent of those in the Doing OK cluster were overweight; members watched the least television and reported eating 78% of their meals "made from scratch." This study demonstrated that five distinct market segments can be identified for social marketing efforts aimed at addressing the obesity epidemic. Through the identification of these five segments, social marketing campaigns can utilize selected channels and messages that communicate the most relevant and important information. The results of this study offer insight into how segmentation strategies and social marketing messages may improve public health.
A method of plane geometry primitive presentation
NASA Astrophysics Data System (ADS)
Jiao, Anbo; Luo, Haibo; Chang, Zheng; Hui, Bin
2014-11-01
Point feature and line feature are basic elements in object feature sets, and they play an important role in object matching and recognition. On one hand, point feature is sensitive to noise; on the other hand, there are usually a huge number of point features in an image, which makes it complex for matching. Line feature includes straight line segment and curve. One difficulty in straight line segment matching is the uncertainty of endpoint location, the other is straight line segment fracture problem or short straight line segments joined to form long straight line segment. While for the curve, in addition to the above problems, there is another difficulty in how to quantitatively describe the shape difference between curves. Due to the problems of point feature and line feature, the robustness and accuracy of target description will be affected; in this case, a method of plane geometry primitive presentation is proposed to describe the significant structure of an object. Firstly, two types of primitives are constructed, they are intersecting line primitive and blob primitive. Secondly, a line segment detector (LSD) is applied to detect line segment, and then intersecting line primitive is extracted. Finally, robustness and accuracy of the plane geometry primitive presentation method is studied. This method has a good ability to obtain structural information of the object, even if there is rotation or scale change of the object in the image. Experimental results verify the robustness and accuracy of this method.
Reproducibility of Heart Rate Variability Is Parameter and Sleep Stage Dependent.
Herzig, David; Eser, Prisca; Omlin, Ximena; Riener, Robert; Wilhelm, Matthias; Achermann, Peter
2017-01-01
Objective: Measurements of heart rate variability (HRV) during sleep have become increasingly popular as sleep could provide an optimal state for HRV assessments. While sleep stages have been reported to affect HRV, the effect of sleep stages on the variance of HRV parameters were hardly investigated. We aimed to assess the variance of HRV parameters during the different sleep stages. Further, we tested the accuracy of an algorithm using HRV to identify a 5-min segment within an episode of slow wave sleep (SWS, deep sleep). Methods: Polysomnographic (PSG) sleep recordings of 3 nights of 15 healthy young males were analyzed. Sleep was scored according to conventional criteria. HRV parameters of consecutive 5-min segments were analyzed within the different sleep stages. The total variance of HRV parameters was partitioned into between-subjects variance, between-nights variance, and between-segments variance and compared between the different sleep stages. Intra-class correlation coefficients of all HRV parameters were calculated for all sleep stages. To identify an SWS segment based on HRV, Pearson correlation coefficients of consecutive R-R intervals (rRR) of moving 5-min windows (20-s steps). The linear trend was removed from the rRR time series and the first segment with rRR values 0.1 units below the mean rRR for at least 10 min was identified. A 5-min segment was placed in the middle of such an identified segment and the corresponding sleep stage was used to assess the accuracy of the algorithm. Results: Good reproducibility within and across nights was found for heart rate in all sleep stages and for high frequency (HF) power in SWS. Reproducibility of low frequency (LF) power and of LF/HF was poor in all sleep stages. Of all the 5-min segments selected based on HRV data, 87% were accurately located within SWS. Conclusions: SWS, a stable state that, in contrast to waking, is unaffected by internal and external factors, is a reproducible state that allows reliable determination of heart rate, and HF power, and can satisfactorily be detected based on R-R intervals, without the need of full PSG. Sleep may not be an optimal condition to assess LF power and LF/HF power ratio.
Reproducibility of Heart Rate Variability Is Parameter and Sleep Stage Dependent
Herzig, David; Eser, Prisca; Omlin, Ximena; Riener, Robert; Wilhelm, Matthias; Achermann, Peter
2018-01-01
Objective: Measurements of heart rate variability (HRV) during sleep have become increasingly popular as sleep could provide an optimal state for HRV assessments. While sleep stages have been reported to affect HRV, the effect of sleep stages on the variance of HRV parameters were hardly investigated. We aimed to assess the variance of HRV parameters during the different sleep stages. Further, we tested the accuracy of an algorithm using HRV to identify a 5-min segment within an episode of slow wave sleep (SWS, deep sleep). Methods: Polysomnographic (PSG) sleep recordings of 3 nights of 15 healthy young males were analyzed. Sleep was scored according to conventional criteria. HRV parameters of consecutive 5-min segments were analyzed within the different sleep stages. The total variance of HRV parameters was partitioned into between-subjects variance, between-nights variance, and between-segments variance and compared between the different sleep stages. Intra-class correlation coefficients of all HRV parameters were calculated for all sleep stages. To identify an SWS segment based on HRV, Pearson correlation coefficients of consecutive R-R intervals (rRR) of moving 5-min windows (20-s steps). The linear trend was removed from the rRR time series and the first segment with rRR values 0.1 units below the mean rRR for at least 10 min was identified. A 5-min segment was placed in the middle of such an identified segment and the corresponding sleep stage was used to assess the accuracy of the algorithm. Results: Good reproducibility within and across nights was found for heart rate in all sleep stages and for high frequency (HF) power in SWS. Reproducibility of low frequency (LF) power and of LF/HF was poor in all sleep stages. Of all the 5-min segments selected based on HRV data, 87% were accurately located within SWS. Conclusions: SWS, a stable state that, in contrast to waking, is unaffected by internal and external factors, is a reproducible state that allows reliable determination of heart rate, and HF power, and can satisfactorily be detected based on R-R intervals, without the need of full PSG. Sleep may not be an optimal condition to assess LF power and LF/HF power ratio. PMID:29367845
Meissner, Oliver A; Verrel, Frauke; Tató, Federico; Siebert, Uwe; Ramirez, Heldin; Ruppert, Volker; Schoenberg, Stefan O; Reiser, Maximilian
2004-11-01
The danger of limb loss as a consequence of acute occlusion of infrapopliteal bypasses underscores the requirement for careful patient follow-up. The objective of this study was to determine the agreement and accuracy of contrast material-enhanced moving-table magnetic resonance (MR) angiography and duplex ultrasonography (US) in the assessment of failing bypass grafts. In cases of discrepancy, digital subtraction angiography (DSA) served as the reference standard. MR angiography was performed in 24 consecutive patients with 26 femorotibial or femoropedal bypass grafts. Each revascularized limb was divided into five segments--(i) native arteries proximal to the graft; (ii) proximal anastomosis; (iii) graft course; (iv) distal anastomosis; and (v) native arteries distal to the graft-resulting in 130 vascular segments. Three readers evaluated all MR angiograms for image quality and the presence of failing grafts. The degree of stenosis was compared to the findings of duplex US, and in case of discrepancy, to DSA findings. Two separate analyses were performed with use of DSA only and a combined diagnostic endpoint as the reference standard. Image quality was rated excellent or intermediate in 119 of 130 vascular segments (92%). Venous overlay was encountered in 26 of 130 segments (20%). In only two segments was evaluation of the outflow region not feasible. One hundred seventeen of 130 vascular segments were available for quantitative analysis. In 109 of 117 segments (93%), MR angiography and duplex US showed concordant findings. In the eight discordant segments in seven patients, duplex US overlooked four high-grade stenoses that were correctly identified by MR angiography and confirmed by DSA. Percutaneous transluminal angioplasty was performed in these cases. In no case did MR angiography miss an area of stenosis of sufficient severity to require treatment. Total accuracy for duplex US ranged from 0.90 to 0.97 depending on the reference standard used, whereas MR angiography was completely accurate (1.00) regardless of the standard definition. Our data strongly suggest that the accuracy of MR angiography for identifying failing grafts in the infrapopliteal circulation is equal to that of duplex US and superior to that of duplex US in cases of complex revascularization. MR angiography should be included in routine follow-up of patients undergoing infrapopliteal bypass surgery.
Semantic Image Segmentation with Contextual Hierarchical Models.
Seyedhosseini, Mojtaba; Tasdizen, Tolga
2016-05-01
Semantic segmentation is the problem of assigning an object label to each pixel. It unifies the image segmentation and object recognition problems. The importance of using contextual information in semantic segmentation frameworks has been widely realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual information in a hierarchical framework for semantic segmentation. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. Our model then incorporates the resulting multi-resolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. Contextual hierarchical model is purely based on the input image patches and does not make use of any fragments or shape examples. Hence, it is applicable to a variety of problems such as object segmentation and edge detection. We demonstrate that CHM performs at par with state-of-the-art on Stanford background and Weizmann horse datasets. It also outperforms state-of-the-art edge detection methods on NYU depth dataset and achieves state-of-the-art on Berkeley segmentation dataset (BSDS 500).
Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.
Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta
2010-01-01
This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.
Detection of bone disease by hybrid SST-watershed x-ray image segmentation
NASA Astrophysics Data System (ADS)
Sanei, Saeid; Azron, Mohammad; Heng, Ong Sim
2001-07-01
Detection of diagnostic features from X-ray images is favorable due to the low cost of these images. Accurate detection of the bone metastasis region greatly assists physicians to monitor the treatment and to remove the cancerous tissue by surgery. A hybrid SST-watershed algorithm, here, efficiently detects the boundary of the diseased regions. Shortest Spanning Tree (SST), based on graph theory, is one of the most powerful tools in grey level image segmentation. The method converts the images into arbitrary-shape closed segments of distinct grey levels. To do that, the image is initially mapped to a tree. Then using RSST algorithm the image is segmented to a certain number of arbitrary-shaped regions. However, in fine segmentation, over-segmentation causes loss of objects of interest. In coarse segmentation, on the other hand, SST-based method suffers from merging the regions belonged to different objects. By applying watershed algorithm, the large segments are divided into the smaller regions based on the number of catchment's basins for each segment. The process exploits bi-level watershed concept to separate each multi-lobe region into a number of areas each corresponding to an object (in our case a cancerous region of the bone,) disregarding their homogeneity in grey level.
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme. PMID:27362762
Zhu, Hongchun; Cai, Lijie; Liu, Haiying; Huang, Wei
2016-01-01
Multi-scale image segmentation and the selection of optimal segmentation parameters are the key processes in the object-oriented information extraction of high-resolution remote sensing images. The accuracy of remote sensing special subject information depends on this extraction. On the basis of WorldView-2 high-resolution data, the optimal segmentation parameters methodof object-oriented image segmentation and high-resolution image information extraction, the following processes were conducted in this study. Firstly, the best combination of the bands and weights was determined for the information extraction of high-resolution remote sensing image. An improved weighted mean-variance method was proposed andused to calculatethe optimal segmentation scale. Thereafter, the best shape factor parameter and compact factor parameters were computed with the use of the control variables and the combination of the heterogeneity and homogeneity indexes. Different types of image segmentation parameters were obtained according to the surface features. The high-resolution remote sensing images were multi-scale segmented with the optimal segmentation parameters. Ahierarchical network structure was established by setting the information extraction rules to achieve object-oriented information extraction. This study presents an effective and practical method that can explain expert input judgment by reproducible quantitative measurements. Furthermore the results of this procedure may be incorporated into a classification scheme.
Objective measurements to evaluate glottal space segmentation from laryngeal images.
Gutiérrez-Arriola, J M; Osma-Ruiz, V; Sáenz-Lechón, N; Godino-Llorente, J I; Fraile, R; Arias-Londoño, J D
2012-01-01
Objective evaluation of the results of medical image segmentation is a known problem. Applied to the task of automatically detecting the glottal area from laryngeal images, this paper proposes a new objective measurement to evaluate the quality of a segmentation algorithm by comparing with the results given by a human expert. The new figure of merit is called Area Index, and its effectiveness is compared with one of the most used figures of merit found in the literature: the Pratt Index. Results over 110 laryngeal images presented high correlations between both indexes, demonstrating that the proposed measure is comparable to the Pratt Index and it is a good indicator of the segmentation quality.
3D noise-resistant segmentation and tracking of unknown and occluded objects using integral imaging
NASA Astrophysics Data System (ADS)
Aloni, Doron; Jung, Jae-Hyun; Yitzhaky, Yitzhak
2017-10-01
Three dimensional (3D) object segmentation and tracking can be useful in various computer vision applications, such as: object surveillance for security uses, robot navigation, etc. We present a method for 3D multiple-object tracking using computational integral imaging, based on accurate 3D object segmentation. The method does not employ object detection by motion analysis in a video as conventionally performed (such as background subtraction or block matching). This means that the movement properties do not significantly affect the detection quality. The object detection is performed by analyzing static 3D image data obtained through computational integral imaging With regard to previous works that used integral imaging data in such a scenario, the proposed method performs the 3D tracking of objects without prior information about the objects in the scene, and it is found efficient under severe noise conditions.
2009-04-27
CAPE CANAVERAL, Fla. –– The fifth segment simulator segments of the Ares I-X rocket have been moved to the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The stacking operations with other segments in the VAB in June. Ares I-X is the flight test for the Ares I. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, which is part of the Constellation Program to return men to the moon and beyond. Launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Jack Pfaller
2009-04-27
CAPE CANAVERAL, Fla. –– The fifth segment simulator segments of the Ares I-X rocket have been moved to the transfer aisle of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida. The stacking operations with other segments in the VAB in June. Ares I-X is the flight test for the Ares I. The I-X flight will provide NASA an early opportunity to test and prove hardware, facilities and ground operations associated with Ares I, which is part of the Constellation Program to return men to the moon and beyond. Launch of the Ares I-X flight test is targeted for August 2009. Photo credit: NASA/Jack Pfaller
Shea, C H; Wulf, G; Whitacre, C A; Park, J H
2001-08-01
Implicit learning was investigated in two experiments involving a complex motor task. Participants were required to balance on a stabilometer and to move the platform on which they were standing to match a constantly changing target position. Experiment 1 examined whether a segment (middle third) that was repeated on each trial would be learned without participants becoming aware of the repetitions (i.e., implicitly). The purpose of Experiment 2 was to determine the relative effectiveness of explicit versus implicit learning. Here, two identical segments were presented on each trial (first and last thirds), with participants only being informed that one segment (either first or last) was repeated. The acquisition results from both experiments indicated large improvements in performance across 4 days of practice, with performance on the repeated segments being generally superior to that on the non-repeated segment. On the retention tests on Day 5, errors on the repeated segment(s) were smaller than those on the random segment(s). Furthermore, in Experiment 2, the errors on the repeated-known segment, although smaller than those on the random segment, were larger than those on the repeated-unknown segment. Interview results indicated that participants were not consciously aware that a segment was repeated unless they were informed. These results suggest that implicit learning can occur for relatively complex motor tasks and that withholding information concerning the regularities is more beneficial than providing this information.
Seal Investigations of an Active Clearance Control System Concept
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Taylor, Shawn; Oswald, Jay; DeCastro, Jonathan A.
2006-01-01
In an effort to improve upon current thermal active clearance control methods, a first generation, fast-acting mechanically actuated, active clearance control system has been designed and installed into a non-rotating test rig. In order to harvest the benefit of tighter blade tip clearances, low-leakage seals are required for the actuated carrier segments of the seal shroud to prevent excessive leakage of compressor discharge (P3) cooling air. The test rig was designed and fabricated to facilitate the evaluation of these types of seals, identify seal leakage sources, and test other active clearance control system concepts. The objective of this paper is to present both experimental and analytical investigations into the nature of the face-seal to seal-carrier interface. Finite element analyses were used to examine face seal contact pressures and edge-loading under multiple loading conditions, varied E-seal positions and two new face seal heights. The analyses indicated that moving the E-seal inward radially and reducing face seal height would lead to more uniform contact conditions between the face seal and the carriers. Lab testing confirmed that moving the balance diameter inward radially caused a decrease in overall system leakage.
Evaluation of a MMW active through-the-wall surveillance system
NASA Astrophysics Data System (ADS)
Currie, Nicholas C.; Stiefvater, Kenneth
2002-08-01
This paper discusses the TWS data collected with a state-of- the-art 100 GHz radar imager developed for law enforcement use by Millivision, PPC. The system collects a cube of data consisting of 16 azimuth elements by 16 elevation elements by 256 range elements. The cube represents 11 degrees by 11 degrees by 25 m of coverage. The relatively narrow field-of- view (fov) was extended by physically moving the antenna in 11 degree segments and collecting data which is stitched together into larger images, e.g. a 3X3 stitched image represents 33 degrees by 33 degrees by 26 m of coverage. Unfortunately, this stitching process required up to 5 minutes to collect a single (3X3) stitched image. Thus, motion had to be simulated. The paper will discuss the phenomenology of the MMW radar return from various objects including walls, wall-corners, desks and other furniture, and persons simulating walking. Successive frames from a simulated move of a man and woman walking will be presented, and the actual movie shown at the presentation. Comments will be offered as to the practicality of active MMW imaging for TWS application.
The P4 truss is moved to a workstand in the SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, workers get ready to lower the International Space Station's P4 truss onto a workstand. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.
Segmentation of vessels cluttered with cells using a physics based model.
Schmugge, Stephen J; Keller, Steve; Nguyen, Nhat; Souvenir, Richard; Huynh, Toan; Clemens, Mark; Shin, Min C
2008-01-01
Segmentation of vessels in biomedical images is important as it can provide insight into analysis of vascular morphology, topology and is required for kinetic analysis of flow velocity and vessel permeability. Intravital microscopy is a powerful tool as it enables in vivo imaging of both vasculature and circulating cells. However, the analysis of vasculature in those images is difficult due to the presence of cells and their image gradient. In this paper, we provide a novel method of segmenting vessels with a high level of cell related clutter. A set of virtual point pairs ("vessel probes") are moved reacting to forces including Vessel Vector Flow (VVF) and Vessel Boundary Vector Flow (VBVF) forces. Incorporating the cell detection, the VVF force attracts the probes toward the vessel, while the VBVF force attracts the virtual points of the probes to localize the vessel boundary without being distracted by the image features of the cells. The vessel probes are moved according to Newtonian Physics reacting to the net of forces applied on them. We demonstrate the results on a set of five real in vivo images of liver vasculature cluttered by white blood cells. When compared against the ground truth prepared by the technician, the Root Mean Squared Error (RMSE) of segmentation with VVF and VBVF was 55% lower than the method without VVF and VBVF.
1999-10-06
KENNEDY SPACE CENTER, FLA. -- NASA's Super Guppy airplane, with the International Space Station's (ISS) S1 truss aboard, arrives at KSC's Shuttle Landing Facility from Marshall Space Flight Center. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the ISS is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001. The Super Guppy, with its 25-foot diameter fuselage designed to handle oversized loads, is well prepared to transport the truss and other ISS segments. Loading the Guppy is easy because of the unique "fold-away" nose of the aircraft that opens 110 degrees for cargo loading. A system of rails in the cargo compartment, used with either Guppy pallets or fixtures designed for specific cargo, makes cargo loading simple and efficient. Rollers mounted in the rails allow pallets or fixtures to be moved by an electric winch mounted beneath the cargo floor. Automatic hydraulic lock pins in each rail secure the pallet for flight. The truss is to be moved to the Operations and Checkout Building
NASA Astrophysics Data System (ADS)
Botter Martins, Samuel; Vallin Spina, Thiago; Yasuda, Clarissa; Falcão, Alexandre X.
2017-02-01
Statistical Atlases have played an important role towards automated medical image segmentation. However, a challenge has been to make the atlas more adaptable to possible errors in deformable registration of anomalous images, given that the body structures of interest for segmentation might present significant differences in shape and texture. Recently, deformable registration errors have been accounted by a method that locally translates the statistical atlas over the test image, after registration, and evaluates candidate objects from a delineation algorithm in order to choose the best one as final segmentation. In this paper, we improve its delineation algorithm and extend the model to be a multi-object statistical atlas, built from control images and adaptable to anomalous images, by incorporating a texture classifier. In order to provide a first proof of concept, we instantiate the new method for segmenting, object-by-object and all objects simultaneously, the left and right brain hemispheres, and the cerebellum, without the brainstem, and evaluate it on MRT1-images of epilepsy patients before and after brain surgery, which removed portions of the temporal lobe. The results show efficiency gain with statistically significant higher accuracy, using the mean Average Symmetric Surface Distance, with respect to the original approach.
The Pop out of Scene-Relative Object Movement against Retinal Motion Due to Self-Movement
ERIC Educational Resources Information Center
Rushton, Simon K.; Bradshaw, Mark F.; Warren, Paul A.
2007-01-01
An object that moves is spotted almost effortlessly; it "pops out." When the observer is stationary, a moving object is uniquely identified by retinal motion. This is not so when the observer is also moving; as the eye travels through space all scene objects change position relative to the eye producing a complicated field of retinal motion.…
Hierarchical extraction of urban objects from mobile laser scanning data
NASA Astrophysics Data System (ADS)
Yang, Bisheng; Dong, Zhen; Zhao, Gang; Dai, Wenxia
2015-01-01
Point clouds collected in urban scenes contain a huge number of points (e.g., billions), numerous objects with significant size variability, complex and incomplete structures, and variable point densities, raising great challenges for the automated extraction of urban objects in the field of photogrammetry, computer vision, and robotics. This paper addresses these challenges by proposing an automated method to extract urban objects robustly and efficiently. The proposed method generates multi-scale supervoxels from 3D point clouds using the point attributes (e.g., colors, intensities) and spatial distances between points, and then segments the supervoxels rather than individual points by combining graph based segmentation with multiple cues (e.g., principal direction, colors) of the supervoxels. The proposed method defines a set of rules for merging segments into meaningful units according to types of urban objects and forms the semantic knowledge of urban objects for the classification of objects. Finally, the proposed method extracts and classifies urban objects in a hierarchical order ranked by the saliency of the segments. Experiments show that the proposed method is efficient and robust for extracting buildings, streetlamps, trees, telegraph poles, traffic signs, cars, and enclosures from mobile laser scanning (MLS) point clouds, with an overall accuracy of 92.3%.
No damage to rail cars or SRB segments in derailment
NASA Technical Reports Server (NTRS)
2000-01-01
One of two solid rocket booster rail cars is off the track after being involved in a minor derailment incident during a routine movement on the tracks. The rail cars were being moved as part of a standard operation to '''order''' the cars, placing them into a proper sequence for upcoming segment processing activities. The rear wheels of one car and the front wheels of the car behind it slid off the tracks while passing through a railway switch onto a siding. They were traveling approximately 3 miles per hour at the time, about normal walking speed. No damage occurred to the SRB segments, or to the devices that secure the segments to the rail cars. The incident occurred on KSC property, just north of the NASA Causeway in the KSC Industrial Area.
NASA Astrophysics Data System (ADS)
Chen, Hao; Zhang, Xinggan; Bai, Yechao; Tang, Lan
2017-01-01
In inverse synthetic aperture radar (ISAR) imaging, the migration through resolution cells (MTRCs) will occur when the rotation angle of the moving target is large, thereby degrading image resolution. To solve this problem, an ISAR imaging method based on segmented preprocessing is proposed. In this method, the echoes of large rotating target are divided into several small segments, and every segment can generate a low-resolution image without MTRCs. Then, each low-resolution image is rotated back to the original position. After image registration and phase compensation, a high-resolution image can be obtained. Simulation and real experiments show that the proposed algorithm can deal with the radar system with different range and cross-range resolutions and significantly compensate the MTRCs.
SLS Pathfinder Segments Car Train Departure
2016-03-02
An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, travels along the NASA railroad bridge over the Indian River north of Kennedy Space Center, carrying one of two containers on a railcar for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.
SLS Pathfinder Segments Car Train Departure
2016-03-02
An Iowa Northern locomotive, conracted by Goodloe Transportation of Chicago, travels along the NASA railroad bridge over the Indian River north of Kennedy Space Center, with two containers on railcars for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.
SLS Pathfinder Segments Car Train Departure
2016-03-02
An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, approaches the raised span of the NASA railroad bridge to continue over the Indian River north of Kennedy Space Center with two containers on railcars for storage at the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.
SLS Pathfinder Segments Car Train Departure
2016-03-02
An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, travels along the NASA railroad bridge over the Indian River north of Kennedy Space Center, carrying one of two containers on a railcar for transport to the NASA Jay Jay railroad yard near the center. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.
SLS Pathfinder Segments Car Train Departure
2016-03-02
An Iowa Northern locomotive, contracted by Goodloe Transportation of Chicago, continues along the NASA railroad bridge over the Indian River north of Kennedy Space Center, carrying one of two containers on a railcar for transport to the NASA Jay Jay railroad yard. The containers held two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket that were delivered to the Rotation, Processing and Surge Facility (RPSF). Inside the RPSF, the Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, will conduct a series of lifts, moves and stacking operations using the booster segments, which are inert, to prepare for Exploration Mission-1, deep-space missions and the journey to Mars. The pathfinder booster segments are from Orbital ATK in Utah.
Hansen, Eva; Grimme, Britta; Reimann, Hendrik; Schöner, Gregor
2018-05-01
In a sequence of arm movements, any given segment could be influenced by its predecessors (carry-over coarticulation) and by its successor (anticipatory coarticulation). To study the interdependence of movement segments, we asked participants to move an object from an initial position to a first and then on to a second target location. The task involved ten joint angles controlling the three-dimensional spatial path of the object and hand. We applied the principle of the uncontrolled manifold (UCM) to analyze the difference between joint trajectories that either affect (non-motor equivalent) or do not affect (motor equivalent) the hand's trajectory in space. We found evidence for anticipatory coarticulation that was distributed equally in the two directions in joint space. We also found strong carry-over coarticulation, which showed clear structure in joint space: More of the difference between joint configurations observed for different preceding movements lies in directions in joint space that leaves the hand's path in space invariant than in orthogonal directions in joint space that varies the hand's path in space. We argue that the findings are consistent with anticipatory coarticulation reflecting processes of movement planning that lie at the level of the hand's trajectory in space. Carry-over coarticulation may reflect primarily processes of motor control that are governed by the principle of the UCM, according to which changes that do not affect the hand's trajectory in space are not actively delimited. Two follow-up experiments zoomed in on anticipatory coarticulation. These experiments strengthened evidence for anticipatory coarticulation. Anticipatory coarticulation was motor-equivalent when visual information supported the steering of the object to its first target, but was not motor equivalent when that information was removed. The experiments showed that visual updating of the hand's path in space when the object approaches the first target only affected the component of the joint difference vector orthogonal to the UCM, consistent with the UCM principle.
Figure-ground segmentation based on class-independent shape priors
NASA Astrophysics Data System (ADS)
Li, Yang; Liu, Yang; Liu, Guojun; Guo, Maozu
2018-01-01
We propose a method to generate figure-ground segmentation by incorporating shape priors into the graph-cuts algorithm. Given an image, we first obtain a linear representation of an image and then apply directional chamfer matching to generate class-independent, nonparametric shape priors, which provide shape clues for the graph-cuts algorithm. We then enforce shape priors in a graph-cuts energy function to produce object segmentation. In contrast to previous segmentation methods, the proposed method shares shape knowledge for different semantic classes and does not require class-specific model training. Therefore, the approach obtains high-quality segmentation for objects. We experimentally validate that the proposed method outperforms previous approaches using the challenging PASCAL VOC 2010/2012 and Berkeley (BSD300) segmentation datasets.
NASA Astrophysics Data System (ADS)
Grippa, Tais; Georganos, Stefanos; Lennert, Moritz; Vanhuysse, Sabine; Wolff, Eléonore
2017-10-01
Mapping large heterogeneous urban areas using object-based image analysis (OBIA) remains challenging, especially with respect to the segmentation process. This could be explained both by the complex arrangement of heterogeneous land-cover classes and by the high diversity of urban patterns which can be encountered throughout the scene. In this context, using a single segmentation parameter to obtain satisfying segmentation results for the whole scene can be impossible. Nonetheless, it is possible to subdivide the whole city into smaller local zones, rather homogeneous according to their urban pattern. These zones can then be used to optimize the segmentation parameter locally, instead of using the whole image or a single representative spatial subset. This paper assesses the contribution of a local approach for the optimization of segmentation parameter compared to a global approach. Ouagadougou, located in sub-Saharan Africa, is used as case studies. First, the whole scene is segmented using a single globally optimized segmentation parameter. Second, the city is subdivided into 283 local zones, homogeneous in terms of building size and building density. Each local zone is then segmented using a locally optimized segmentation parameter. Unsupervised segmentation parameter optimization (USPO), relying on an optimization function which tends to maximize both intra-object homogeneity and inter-object heterogeneity, is used to select the segmentation parameter automatically for both approaches. Finally, a land-use/land-cover classification is performed using the Random Forest (RF) classifier. The results reveal that the local approach outperforms the global one, especially by limiting confusions between buildings and their bare-soil neighbors.
Real-time object detection and semantic segmentation for autonomous driving
NASA Astrophysics Data System (ADS)
Li, Baojun; Liu, Shun; Xu, Weichao; Qiu, Wei
2018-02-01
In this paper, we proposed a Highly Coupled Network (HCNet) for joint objection detection and semantic segmentation. It follows that our method is faster and performs better than the previous approaches whose decoder networks of different tasks are independent. Besides, we present multi-scale loss architecture to learn better representation for different scale objects, but without extra time in the inference phase. Experiment results show that our method achieves state-of-the-art results on the KITTI datasets. Moreover, it can run at 35 FPS on a GPU and thus is a practical solution to object detection and semantic segmentation for autonomous driving.
NASA Astrophysics Data System (ADS)
Li, Mengmeng; Bijker, Wietske; Stein, Alfred
2015-04-01
Two main challenges are faced when classifying urban land cover from very high resolution satellite images: obtaining an optimal image segmentation and distinguishing buildings from other man-made objects. For optimal segmentation, this work proposes a hierarchical representation of an image by means of a Binary Partition Tree (BPT) and an unsupervised evaluation of image segmentations by energy minimization. For building extraction, we apply fuzzy sets to create a fuzzy landscape of shadows which in turn involves a two-step procedure. The first step is a preliminarily image classification at a fine segmentation level to generate vegetation and shadow information. The second step models the directional relationship between building and shadow objects to extract building information at the optimal segmentation level. We conducted the experiments on two datasets of Pléiades images from Wuhan City, China. To demonstrate its performance, the proposed classification is compared at the optimal segmentation level with Maximum Likelihood Classification and Support Vector Machine classification. The results show that the proposed classification produced the highest overall accuracies and kappa coefficients, and the smallest over-classification and under-classification geometric errors. We conclude first that integrating BPT with energy minimization offers an effective means for image segmentation. Second, we conclude that the directional relationship between building and shadow objects represented by a fuzzy landscape is important for building extraction.
Automatic 3D kidney segmentation based on shape constrained GC-OAAM
NASA Astrophysics Data System (ADS)
Chen, Xinjian; Summers, Ronald M.; Yao, Jianhua
2011-03-01
The kidney can be classified into three main tissue types: renal cortex, renal medulla and renal pelvis (or collecting system). Dysfunction of different renal tissue types may cause different kidney diseases. Therefore, accurate and efficient segmentation of kidney into different tissue types plays a very important role in clinical research. In this paper, we propose an automatic 3D kidney segmentation method which segments the kidney into the three different tissue types: renal cortex, medulla and pelvis. The proposed method synergistically combines active appearance model (AAM), live wire (LW) and graph cut (GC) methods, GC-OAAM for short. Our method consists of two main steps. First, a pseudo 3D segmentation method is employed for kidney initialization in which the segmentation is performed slice-by-slice via a multi-object oriented active appearance model (OAAM) method. An improved iterative model refinement algorithm is proposed for the AAM optimization, which synergistically combines the AAM and LW method. Multi-object strategy is applied to help the object initialization. The 3D model constraints are applied to the initialization result. Second, the object shape information generated from the initialization step is integrated into the GC cost computation. A multi-label GC method is used to segment the kidney into cortex, medulla and pelvis. The proposed method was tested on 19 clinical arterial phase CT data sets. The preliminary results showed the feasibility and efficiency of the proposed method.
Anderst, William; Baillargeon, Emma; Donaldson, William; Lee, Joon; Kang, James
2013-01-01
Study Design Case-control. Objective To characterize the motion path of the instant center of rotation (ICR) at each cervical motion segment from C2 to C7 during dynamic flexion-extension in asymptomatic subjects. To compare asymptomatic and single-level arthrodesis patient ICR paths. Summary of Background Data The ICR has been proposed as an alternative to range of motion (ROM) for evaluating the quality of spine movement and for identifying abnormal midrange kinematics. The motion path of the ICR during dynamic motion has not been reported. Methods 20 asymptomatic controls, 12 C5/C6 and 5 C6/C7 arthrodesis patients performed full ROM flexion-extension while biplane radiographs were collected at 30 Hz. A previously validated tracking process determined three-dimensional vertebral position with sub-millimeter accuracy. The finite helical axis method was used to calculate the ICR between adjacent vertebrae. A linear mixed-model analysis identified differences in the ICR path among motion segments and between controls and arthrodesis patients. Results From C2/C3 to C6/C7, the mean ICR location moved superior for each successive motion segment (p < .001). The AP change in ICR location per degree of flexion-extension decreased from the C2/C3 motion segment to the C6/C7 motion segment (p < .001). Asymptomatic subject variability (95% CI) in the ICR location averaged ±1.2 mm in the SI direction and ±1.9 mm in the AP direction over all motion segments and flexion-extension angles. Asymptomatic and arthrodesis groups were not significantly different in terms of average ICR position (all p ≥ .091) or in terms of the change in ICR location per degree of flexion-extension (all p ≥ .249). Conclusions To replicate asymptomatic in vivo cervical motion, disc replacements should account for level-specific differences in the location and motion path of ICR. Single-level anterior arthrodesis does not appear to affect cervical motion quality during flexion-extension. PMID:23429677
Maxillary anterior segmental distraction osteogenesis with 2 different types of distractors.
Choi, Hye-Young; Hwang, Chung-Ju; Kim, Hee-Jin; Yu, Hyung-Seog; Cha, Jung-Yul
2012-05-01
Maxillary anterior segmental distraction osteogenesis (DO) has been the alternative treatment option for patients with midfacial retrusion. To investigate a potentially more effective maxillary anterior segmental DO, a newly designed intraoral alveolar distractor was applied. The objectives of this study were to investigate the skeletal and dental effects of maxillary anterior segmental DO and the relapse pattern. The study was carried out for 8 patients with unilateral cleft lip and palate (mean age, 16 years 7 months). Four patients were treated with an intraoral appliance (IA), and the remaining with a rigid external distractor (RED). Dental and skeletal measurements were obtained for both groups. These measurements were compared for different time points including pre-DO (T1), post-DO (T2), postconsolidation (T3), and 1-year follow-up (T4). Horizontal change of A point was significantly larger after distraction period (T2) in the RED group (mean, 11.0 mm; median, 10.1 mm) than in the IA group (mean, 6.6 mm; median, 7.4 mm) (P < 0.05). Relapse of A point was observed in both RED (mean, -2.3 mm; median, -2.3 mm) and IA groups (mean, -2.6 mm; median, -1.5 mm) at T4. The vertical position of the anterior nasal spine was found to have moved downward in the RED group (mean, 5.5 mm; median, 4.9 mm) but upward in the IA group (mean, -2.5 mm; median, -2.7 mm) after distraction, showing a significant difference between groups (P < 0.05). Axis of upper incisor increased at T2 in the IA group (mean, 10.4 degrees; median, 11.3 degrees), but decreased in the RED group (mean, -10.2 degrees; median, -9.0 degrees) (P < 0.05). It recovered in the RED group at T4. Maxillary anterior segmental DO is effective for the treatment of patients with cleft lip and palate. The alveolar space is regained, and the facial profile is improved without velopharyngeal problems. Superior results are obtained using the RED appliance for maxillary anterior segmental DO relative to the use of the intraoral distractor appliance.
Object class segmentation of RGB-D video using recurrent convolutional neural networks.
Pavel, Mircea Serban; Schulz, Hannes; Behnke, Sven
2017-04-01
Object class segmentation is a computer vision task which requires labeling each pixel of an image with the class of the object it belongs to. Deep convolutional neural networks (DNN) are able to learn and take advantage of local spatial correlations required for this task. They are, however, restricted by their small, fixed-sized filters, which limits their ability to learn long-range dependencies. Recurrent Neural Networks (RNN), on the other hand, do not suffer from this restriction. Their iterative interpretation allows them to model long-range dependencies by propagating activity. This property is especially useful when labeling video sequences, where both spatial and temporal long-range dependencies occur. In this work, a novel RNN architecture for object class segmentation is presented. We investigate several ways to train such a network. We evaluate our models on the challenging NYU Depth v2 dataset for object class segmentation and obtain competitive results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yao, Jincao; Yu, Huimin; Hu, Roland
2017-01-01
This paper introduces a new implicit-kernel-sparse-shape-representation-based object segmentation framework. Given an input object whose shape is similar to some of the elements in the training set, the proposed model can automatically find a cluster of implicit kernel sparse neighbors to approximately represent the input shape and guide the segmentation. A distance-constrained probabilistic definition together with a dualization energy term is developed to connect high-level shape representation and low-level image information. We theoretically prove that our model not only derives from two projected convex sets but is also equivalent to a sparse-reconstruction-error-based representation in the Hilbert space. Finally, a "wake-sleep"-based segmentation framework is applied to drive the evolutionary curve to recover the original shape of the object. We test our model on two public datasets. Numerical experiments on both synthetic images and real applications show the superior capabilities of the proposed framework.
An object-based visual attention model for robotic applications.
Yu, Yuanlong; Mann, George K I; Gosine, Raymond G
2010-10-01
By extending integrated competition hypothesis, this paper presents an object-based visual attention model, which selects one object of interest using low-dimensional features, resulting that visual perception starts from a fast attentional selection procedure. The proposed attention model involves seven modules: learning of object representations stored in a long-term memory (LTM), preattentive processing, top-down biasing, bottom-up competition, mediation between top-down and bottom-up ways, generation of saliency maps, and perceptual completion processing. It works in two phases: learning phase and attending phase. In the learning phase, the corresponding object representation is trained statistically when one object is attended. A dual-coding object representation consisting of local and global codings is proposed. Intensity, color, and orientation features are used to build the local coding, and a contour feature is employed to constitute the global coding. In the attending phase, the model preattentively segments the visual field into discrete proto-objects using Gestalt rules at first. If a task-specific object is given, the model recalls the corresponding representation from LTM and deduces the task-relevant feature(s) to evaluate top-down biases. The mediation between automatic bottom-up competition and conscious top-down biasing is then performed to yield a location-based saliency map. By combination of location-based saliency within each proto-object, the proto-object-based saliency is evaluated. The most salient proto-object is selected for attention, and it is finally put into the perceptual completion processing module to yield a complete object region. This model has been applied into distinct tasks of robots: detection of task-specific stationary and moving objects. Experimental results under different conditions are shown to validate this model.
Objects Grouping for Segmentation of Roads Network in High Resolution Images of Urban Areas
NASA Astrophysics Data System (ADS)
Maboudi, M.; Amini, J.; Hahn, M.
2016-06-01
Updated road databases are required for many purposes such as urban planning, disaster management, car navigation, route planning, traffic management and emergency handling. In the last decade, the improvement in spatial resolution of VHR civilian satellite sensors - as the main source of large scale mapping applications - was so considerable that GSD has become finer than size of common urban objects of interest such as building, trees and road parts. This technological advancement pushed the development of "Object-based Image Analysis (OBIA)" as an alternative to pixel-based image analysis methods. Segmentation as one of the main stages of OBIA provides the image objects on which most of the following processes will be applied. Therefore, the success of an OBIA approach is strongly affected by the segmentation quality. In this paper, we propose a purpose-dependent refinement strategy in order to group road segments in urban areas using maximal similarity based region merging. For investigations with the proposed method, we use high resolution images of some urban sites. The promising results suggest that the proposed approach is applicable in grouping of road segments in urban areas.
Flexible pipe crawling device having articulated two axis coupling
Zollinger, William T.
1994-01-01
An apparatus for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in "inchworm" fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend.
Non-rigid estimation of cell motion in calcium time-lapse images
NASA Astrophysics Data System (ADS)
Hachi, Siham; Lucumi Moreno, Edinson; Desmet, An-Sofie; Vanden Berghe, Pieter; Fleming, Ronan M. T.
2016-03-01
Calcium imaging is a widely used technique in neuroscience permitting the simultaneous monitoring of electro- physiological activity of hundreds of neurons at single cell resolution. Identification of neuronal activity requires rapid and reliable image analysis techniques, especially when neurons fire and move simultaneously over time. Traditionally, image segmentation is performed to extract individual neurons in the first frame of a calcium sequence. Thereafter, the mean intensity is calculated from the same region of interest in each frame to infer calcium signals. However, when cells move, deform and fire, this segmentation on its own generates artefacts and therefore biased neuronal activity. Therefore, there is a pressing need to develop a more efficient cell tracking technique. We hereby present a novel vision-based cell tracking scheme using a thin-plate spline deformable model. The thin-plate spline warping is based on control points detected using the Fast from Accelerated Segment Test descriptor and tracked using the Lucas-Kanade optical flow. Our method is able to track neurons in calcium time-series, even when there are large changes in intensity, such as during a firing event. The robustness and efficiency of the proposed approach is validated on real calcium time-lapse images of a neuronal population.
Flexible pipe crawling device having articulated two axis coupling
Zollinger, W.T.
1994-05-10
An apparatus is described for moving through the linear and non-linear segments of piping systems. The apparatus comprises a front leg assembly, a rear leg assembly, a mechanism for extension and retraction of the front and rear leg assembles with respect to each other, such as an air cylinder, and a pivoting joint. One end of the flexible joint attaches to the front leg assembly and the other end to the air cylinder, which is also connected to the rear leg assembly. The air cylinder allows the front and rear leg assemblies to progress through a pipe in inchworm' fashion, while the joint provides the flexibility necessary for the pipe crawler to negotiate non-linear piping segments. The flexible connecting joint is coupled with a spring-force suspension system that urges alignment of the front and rear leg assemblies with respect to each other. The joint and suspension system cooperate to provide a firm yet flexible connection between the front and rear leg assemblies to allow the pivoting of one with respect to the other while moving around a non-linear pipe segment, but restoring proper alignment coming out of the pipe bend. 4 figures.
Vision-based control for flight relative to dynamic environments
NASA Astrophysics Data System (ADS)
Causey, Ryan Scott
The concept of autonomous systems has been considered an enabling technology for a diverse group of military and civilian applications. The current direction for autonomous systems is increased capabilities through more advanced systems that are useful for missions that require autonomous avoidance, navigation, tracking, and docking. To facilitate this level of mission capability, passive sensors, such as cameras, and complex software are added to the vehicle. By incorporating an on-board camera, visual information can be processed to interpret the surroundings. This information allows decision making with increased situational awareness without the cost of a sensor signature, which is critical in military applications. The concepts presented in this dissertation facilitate the issues inherent to vision-based state estimation of moving objects for a monocular camera configuration. The process consists of several stages involving image processing such as detection, estimation, and modeling. The detection algorithm segments the motion field through a least-squares approach and classifies motions not obeying the dominant trend as independently moving objects. An approach to state estimation of moving targets is derived using a homography approach. The algorithm requires knowledge of the camera motion, a reference motion, and additional feature point geometry for both the target and reference objects. The target state estimates are then observed over time to model the dynamics using a probabilistic technique. The effects of uncertainty on state estimation due to camera calibration are considered through a bounded deterministic approach. The system framework focuses on an aircraft platform of which the system dynamics are derived to relate vehicle states to image plane quantities. Control designs using standard guidance and navigation schemes are then applied to the tracking and homing problems using the derived state estimation. Four simulations are implemented in MATLAB that build on the image concepts present in this dissertation. The first two simulations deal with feature point computations and the effects of uncertainty. The third simulation demonstrates the open-loop estimation of a target ground vehicle in pursuit whereas the four implements a homing control design for the Autonomous Aerial Refueling (AAR) using target estimates as feedback.
Colour image segmentation using unsupervised clustering technique for acute leukemia images
NASA Astrophysics Data System (ADS)
Halim, N. H. Abd; Mashor, M. Y.; Nasir, A. S. Abdul; Mustafa, N.; Hassan, R.
2015-05-01
Colour image segmentation has becoming more popular for computer vision due to its important process in most medical analysis tasks. This paper proposes comparison between different colour components of RGB(red, green, blue) and HSI (hue, saturation, intensity) colour models that will be used in order to segment the acute leukemia images. First, partial contrast stretching is applied on leukemia images to increase the visual aspect of the blast cells. Then, an unsupervised moving k-means clustering algorithm is applied on the various colour components of RGB and HSI colour models for the purpose of segmentation of blast cells from the red blood cells and background regions in leukemia image. Different colour components of RGB and HSI colour models have been analyzed in order to identify the colour component that can give the good segmentation performance. The segmented images are then processed using median filter and region growing technique to reduce noise and smooth the images. The results show that segmentation using saturation component of HSI colour model has proven to be the best in segmenting nucleus of the blast cells in acute leukemia image as compared to the other colour components of RGB and HSI colour models.
Hesse, Janis K; Tsao, Doris Y
2016-11-02
Segmentation and recognition of objects in a visual scene are two problems that are hard to solve separately from each other. When segmenting an ambiguous scene, it is helpful to already know the present objects and their shapes. However, for recognizing an object in clutter, one would like to consider its isolated segment alone to avoid confounds from features of other objects. Border-ownership cells (Zhou et al., 2000) appear to play an important role in segmentation, as they signal the side-of-figure of artificial stimuli. The present work explores the role of border-ownership cells in dorsal macaque visual areas V2 and V3 in the segmentation of natural object stimuli and locally ambiguous stimuli. We report two major results. First, compared with previous estimates, we found a smaller percentage of cells that were consistent across artificial stimuli used previously. Second, we found that the average response of those neurons that did respond consistently to the side-of-figure of artificial stimuli also consistently signaled, as a population, the side-of-figure for borders of single faces, occluding faces and, with higher latencies, even stimuli with illusory contours, such as Mooney faces and natural faces completely missing local edge information. In contrast, the local edge or the outlines of the face alone could not always evoke a significant border-ownership signal. Our results underscore that border ownership is coded by a population of cells, and indicate that these cells integrate a variety of cues, including low-level features and global object context, to compute the segmentation of the scene. To distinguish different objects in a natural scene, the brain must segment the image into regions corresponding to objects. The so-called "border-ownership" cells appear to be dedicated to this task, as they signal for a given edge on which side the object is that owns it. Here, we report that individual border-ownership cells are unreliable when tested across a battery of artificial stimuli used previously but can signal border-ownership consistently as a population. We show that these border-ownership population signals are also suited for signaling border-ownership for natural objects and at longer latency, even for stimuli without local edge information. Our results suggest that border-ownership cells integrate both local, low-level and global, high-level cues to segment the scene. Copyright © 2016 the authors 0270-6474/16/3611338-12$15.00/0.
Evaluation of methods for freeway operational analysis.
DOT National Transportation Integrated Search
2001-10-01
The ability to estimate accurately the operational performance of roadway segments has become increasingly critical as we move from a period of new construction into one of operations, maintenance, and, in some cases, reconstruction. In addition to m...
NASA Astrophysics Data System (ADS)
Bialas, James; Oommen, Thomas; Rebbapragada, Umaa; Levin, Eugene
2016-07-01
Object-based approaches in the segmentation and classification of remotely sensed images yield more promising results compared to pixel-based approaches. However, the development of an object-based approach presents challenges in terms of algorithm selection and parameter tuning. Subjective methods are often used, but yield less than optimal results. Objective methods are warranted, especially for rapid deployment in time-sensitive applications, such as earthquake damage assessment. Herein, we used a systematic approach in evaluating object-based image segmentation and machine learning algorithms for the classification of earthquake damage in remotely sensed imagery. We tested a variety of algorithms and parameters on post-event aerial imagery for the 2011 earthquake in Christchurch, New Zealand. Results were compared against manually selected test cases representing different classes. In doing so, we can evaluate the effectiveness of the segmentation and classification of different classes and compare different levels of multistep image segmentations. Our classifier is compared against recent pixel-based and object-based classification studies for postevent imagery of earthquake damage. Our results show an improvement against both pixel-based and object-based methods for classifying earthquake damage in high resolution, post-event imagery.
2009-04-01
CAPE CANAVERAL, Fla. – In High Bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, a large crane moves the Ares I-X upper stage simulator service module/service adapter segment toward a stand. Other segments are placed and stacked on the floor around it. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Kim Shiflett
The P4 truss is moved to a workstand in the SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, workers oversee the removal of the P4 truss from the truck that transported it from Tulsa, Okla. Part of the 10-truss, girder-like structure that will ultimately extend the length of a football field on the International Space Station, the P4 is the second port truss segment that will attach to the first port truss segment (P1 truss). The P4 is scheduled for mission 12A in September 2002.
Best Merge Region Growing Segmentation with Integrated Non-Adjacent Region Object Aggregation
NASA Technical Reports Server (NTRS)
Tilton, James C.; Tarabalka, Yuliya; Montesano, Paul M.; Gofman, Emanuel
2012-01-01
Best merge region growing normally produces segmentations with closed connected region objects. Recognizing that spectrally similar objects often appear in spatially separate locations, we present an approach for tightly integrating best merge region growing with non-adjacent region object aggregation, which we call Hierarchical Segmentation or HSeg. However, the original implementation of non-adjacent region object aggregation in HSeg required excessive computing time even for moderately sized images because of the required intercomparison of each region with all other regions. This problem was previously addressed by a recursive approximation of HSeg, called RHSeg. In this paper we introduce a refined implementation of non-adjacent region object aggregation in HSeg that reduces the computational requirements of HSeg without resorting to the recursive approximation. In this refinement, HSeg s region inter-comparisons among non-adjacent regions are limited to regions of a dynamically determined minimum size. We show that this refined version of HSeg can process moderately sized images in about the same amount of time as RHSeg incorporating the original HSeg. Nonetheless, RHSeg is still required for processing very large images due to its lower computer memory requirements and amenability to parallel processing. We then note a limitation of RHSeg with the original HSeg for high spatial resolution images, and show how incorporating the refined HSeg into RHSeg overcomes this limitation. The quality of the image segmentations produced by the refined HSeg is then compared with other available best merge segmentation approaches. Finally, we comment on the unique nature of the hierarchical segmentations produced by HSeg.
Acoustic facilitation of object movement detection during self-motion
Calabro, F. J.; Soto-Faraco, S.; Vaina, L. M.
2011-01-01
In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a flow-parsing mechanism to estimate and subtract self-motion from the optic flow field. We investigated whether concurrent acoustic cues for motion can facilitate visual flow parsing, thereby enhancing the detection of moving objects during simulated self-motion. Participants identified an object (the target) that moved either forward or backward within a visual scene containing nine identical textured objects simulating forward observer translation. We found that spatially co-localized, directionally congruent, moving auditory stimuli enhanced object motion detection. Interestingly, subjects who performed poorly on the visual-only task benefited more from the addition of moving auditory stimuli. When auditory stimuli were not co-localized to the visual target, improvements in detection rates were weak. Taken together, these results suggest that parsing object motion from self-motion-induced optic flow can operate on multisensory object representations. PMID:21307050
Medical image segmentation using 3D MRI data
NASA Astrophysics Data System (ADS)
Voronin, V.; Marchuk, V.; Semenishchev, E.; Cen, Yigang; Agaian, S.
2017-05-01
Precise segmentation of three-dimensional (3D) magnetic resonance imaging (MRI) image can be a very useful computer aided diagnosis (CAD) tool in clinical routines. Accurate automatic extraction a 3D component from images obtained by magnetic resonance imaging (MRI) is a challenging segmentation problem due to the small size objects of interest (e.g., blood vessels, bones) in each 2D MRA slice and complex surrounding anatomical structures. Our objective is to develop a specific segmentation scheme for accurately extracting parts of bones from MRI images. In this paper, we use a segmentation algorithm to extract the parts of bones from Magnetic Resonance Imaging (MRI) data sets based on modified active contour method. As a result, the proposed method demonstrates good accuracy in a comparison between the existing segmentation approaches on real MRI data.
Self-motion impairs multiple-object tracking.
Thomas, Laura E; Seiffert, Adriane E
2010-10-01
Investigations of multiple-object tracking aim to further our understanding of how people perform common activities such as driving in traffic. However, tracking tasks in the laboratory have overlooked a crucial component of much real-world object tracking: self-motion. We investigated the hypothesis that keeping track of one's own movement impairs the ability to keep track of other moving objects. Participants attempted to track multiple targets while either moving around the tracking area or remaining in a fixed location. Participants' tracking performance was impaired when they moved to a new location during tracking, even when they were passively moved and when they did not see a shift in viewpoint. Self-motion impaired multiple-object tracking in both an immersive virtual environment and a real-world analog, but did not interfere with a difficult non-spatial tracking task. These results suggest that people use a common mechanism to track changes both to the location of moving objects around them and to keep track of their own location. Copyright 2010 Elsevier B.V. All rights reserved.
Social discourses of healthy eating. A market segmentation approach.
Chrysochou, Polymeros; Askegaard, Søren; Grunert, Klaus G; Kristensen, Dorthe Brogård
2010-10-01
This paper proposes a framework of discourses regarding consumers' healthy eating as a useful conceptual scheme for market segmentation purposes. The objectives are: (a) to identify the appropriate number of health-related segments based on the underlying discursive subject positions of the framework, (b) to validate and further describe the segments based on their socio-demographic characteristics and attitudes towards healthy eating, and (c) to explore differences across segments in types of associations with food and health, as well as perceptions of food healthfulness.316 Danish consumers participated in a survey that included measures of the underlying subject positions of the proposed framework, followed by a word association task that aimed to explore types of associations with food and health, and perceptions of food healthfulness. A latent class clustering approach revealed three consumer segments: the Common, the Idealists and the Pragmatists. Based on the addressed objectives, differences across the segments are described and implications of findings are discussed.
ERIC Educational Resources Information Center
Cohen, Jerome; Han, Xue; Matei, Anca; Parameswaran, Varakini; Zuniga, Robert; Hlynka, Myron
2010-01-01
When rats had to find new (jackpot) objects for rewards from among previously sampled baited objects, increasing the number of objects in the sample (study) segment of a trial from 3 to 5 and then to 7 (Experiment 1) or from 3 to 6 and 9 (Experiments 2 and 3) or from 6 to 9 and 12 (Experiment 4) did not reduce rats' test segment performance.…
Structure preserving clustering-object tracking via subgroup motion pattern segmentation
NASA Astrophysics Data System (ADS)
Fan, Zheyi; Zhu, Yixuan; Jiang, Jiao; Weng, Shuqin; Liu, Zhiwen
2018-01-01
Tracking clustering objects with similar appearances simultaneously in collective scenes is a challenging task in the field of collective motion analysis. Recent work on clustering-object tracking often suffers from poor tracking accuracy and terrible real-time performance due to the neglect or the misjudgment of the motion differences among objects. To address this problem, we propose a subgroup motion pattern segmentation framework based on a multilayer clustering structure and establish spatial constraints only among objects in the same subgroup, which entails having consistent motion direction and close spatial position. In addition, the subgroup segmentation results are updated dynamically because crowd motion patterns are changeable and affected by objects' destinations and scene structures. The spatial structure information combined with the appearance similarity information is used in the structure preserving object tracking framework to track objects. Extensive experiments conducted on several datasets containing multiple real-world crowd scenes validate the accuracy and the robustness of the presented algorithm for tracking objects in collective scenes.
FPGA implementation for real-time background subtraction based on Horprasert model.
Rodriguez-Gomez, Rafael; Fernandez-Sanchez, Enrique J; Diaz, Javier; Ros, Eduardo
2012-01-01
Background subtraction is considered the first processing stage in video surveillance systems, and consists of determining objects in movement in a scene captured by a static camera. It is an intensive task with a high computational cost. This work proposes an embedded novel architecture on FPGA which is able to extract the background on resource-limited environments and offers low degradation (produced because of the hardware-friendly model modification). In addition, the original model is extended in order to detect shadows and improve the quality of the segmentation of the moving objects. We have analyzed the resource consumption and performance in Spartan3 Xilinx FPGAs and compared to others works available on the literature, showing that the current architecture is a good trade-off in terms of accuracy, performance and resources utilization. With less than a 65% of the resources utilization of a XC3SD3400 Spartan-3A low-cost family FPGA, the system achieves a frequency of 66.5 MHz reaching 32.8 fps with resolution 1,024 × 1,024 pixels, and an estimated power consumption of 5.76 W.
Motion video analysis using planar parallax
NASA Astrophysics Data System (ADS)
Sawhney, Harpreet S.
1994-04-01
Motion and structure analysis in video sequences can lead to efficient descriptions of objects and their motions. Interesting events in videos can be detected using such an analysis--for instance independent object motion when the camera itself is moving, figure-ground segregation based on the saliency of a structure compared to its surroundings. In this paper we present a method for 3D motion and structure analysis that uses a planar surface in the environment as a reference coordinate system to describe a video sequence. The motion in the video sequence is described as the motion of the reference plane, and the parallax motion of all the non-planar components of the scene. It is shown how this method simplifies the otherwise hard general 3D motion analysis problem. In addition, a natural coordinate system in the environment is used to describe the scene which can simplify motion based segmentation. This work is a part of an ongoing effort in our group towards video annotation and analysis for indexing and retrieval. Results from a demonstration system being developed are presented.
FPGA Implementation for Real-Time Background Subtraction Based on Horprasert Model
Rodriguez-Gomez, Rafael; Fernandez-Sanchez, Enrique J.; Diaz, Javier; Ros, Eduardo
2012-01-01
Background subtraction is considered the first processing stage in video surveillance systems, and consists of determining objects in movement in a scene captured by a static camera. It is an intensive task with a high computational cost. This work proposes an embedded novel architecture on FPGA which is able to extract the background on resource-limited environments and offers low degradation (produced because of the hardware-friendly model modification). In addition, the original model is extended in order to detect shadows and improve the quality of the segmentation of the moving objects. We have analyzed the resource consumption and performance in Spartan3 Xilinx FPGAs and compared to others works available on the literature, showing that the current architecture is a good trade-off in terms of accuracy, performance and resources utilization. With less than a 65% of the resources utilization of a XC3SD3400 Spartan-3A low-cost family FPGA, the system achieves a frequency of 66.5 MHz reaching 32.8 fps with resolution 1,024 × 1,024 pixels, and an estimated power consumption of 5.76 W. PMID:22368487
SRB Processing Facilities Media Event
2016-03-01
Members of the news media view the high bay inside the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida. Kerry Chreist, with Jacobs Engineering on the Test and Operations Support Contract, talks with a reporter about the booster segments for NASA’s Space Launch System (SLS) rocket. In the far corner, in the vertical position, is one of two pathfinders, or test versions, of solid rocket booster segments for the SLS rocket. The Ground Systems Development and Operations Program and Jacobs are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.
2009-03-26
CAPE CANAVERAL, Fla. – In the Rotation, Processing and Surge Facility at NASA's Kennedy Space Center in Florida, the rail car cover is moved away from the first Ares I-X motor segment. It is one of four reusable motor segments and nozzle exit cone shipped by the Ares I first-stage prime contractor Alliant Techsystems Inc. for final processing and integration in the facility. The booster used for the Ares I-X launch is being modified by adding new forward structures and a fifth segment simulator. The motor is the final hardware needed for the rocket's upcoming flight test this summer. The stacking operations are scheduled to begin in the Vehicle Assembly Building in April. Photo credit: NASA/Jim Grossmann
1999-10-07
KENNEDY SPACE CENTER, FLA. -- A KSC transporter moves the Guppy cargo carrier encasing the S1 truss into the Operations and Checkout Building. Manufactured by the Boeing Co. in Huntington Beach, Calif., this component of the International Space Station is the first starboard (right-side) truss segment, whose main job is providing structural support for the orbiting research facility's radiator panels that cool the Space Station's complex power system. The S1 truss segment also will house communications systems, external experiment positions and other subsystems. Primarily constructed of aluminum, the truss segment is 45 feet long, 15 feet wide and 6 feet tall. When fully outfitted, it will weigh 31,137 pounds. The truss is slated for flight in 2001
NASA Technical Reports Server (NTRS)
Zhang, Will
2010-01-01
X-ray optics is an essential and enabling technology for x-ray astronomy. This slide presentation presents the authors views on the requirements for x-ray optics as progress is made toward building IXO and preparing for the 2020's. The presentation reviews the status of several technologies that are being developed and outlines the steps that we as a community needs to take to move toward x-ray optics meeting the five key requirements: (1) high angular resolution, (2) large effective area, (3) low mass, (4) fast production, and (5) low cost. There is discussion of segmentation vs full shell, size of the mirror segment, mirror segment frabrication, post-slumping figure improvement, and characterization of coating quality.
DOT National Transportation Integrated Search
2002-02-26
This document, the Introduction to the Enhanced Logistics Intratheater Support Tool (ELIST) Mission Application and its Segments, satisfies the following objectives: : It identifies the mission application, known in brief as ELIST, and all seven ...
Active mask segmentation of fluorescence microscope images.
Srinivasa, Gowri; Fickus, Matthew C; Guo, Yusong; Linstedt, Adam D; Kovacević, Jelena
2009-08-01
We propose a new active mask algorithm for the segmentation of fluorescence microscope images of punctate patterns. It combines the (a) flexibility offered by active-contour methods, (b) speed offered by multiresolution methods, (c) smoothing offered by multiscale methods, and (d) statistical modeling offered by region-growing methods into a fast and accurate segmentation tool. The framework moves from the idea of the "contour" to that of "inside and outside," or masks, allowing for easy multidimensional segmentation. It adapts to the topology of the image through the use of multiple masks. The algorithm is almost invariant under initialization, allowing for random initialization, and uses a few easily tunable parameters. Experiments show that the active mask algorithm matches the ground truth well and outperforms the algorithm widely used in fluorescence microscopy, seeded watershed, both qualitatively, as well as quantitatively.
3D Clumped Cell Segmentation Using Curvature Based Seeded Watershed.
Atta-Fosu, Thomas; Guo, Weihong; Jeter, Dana; Mizutani, Claudia M; Stopczynski, Nathan; Sousa-Neves, Rui
2016-12-01
Image segmentation is an important process that separates objects from the background and also from each other. Applied to cells, the results can be used for cell counting which is very important in medical diagnosis and treatment, and biological research that is often used by scientists and medical practitioners. Segmenting 3D confocal microscopy images containing cells of different shapes and sizes is still challenging as the nuclei are closely packed. The watershed transform provides an efficient tool in segmenting such nuclei provided a reasonable set of markers can be found in the image. In the presence of low-contrast variation or excessive noise in the given image, the watershed transform leads to over-segmentation (a single object is overly split into multiple objects). The traditional watershed uses the local minima of the input image and will characteristically find multiple minima in one object unless they are specified (marker-controlled watershed). An alternative to using the local minima is by a supervised technique called seeded watershed, which supplies single seeds to replace the minima for the objects. Consequently, the accuracy of a seeded watershed algorithm relies on the accuracy of the predefined seeds. In this paper, we present a segmentation approach based on the geometric morphological properties of the 'landscape' using curvatures. The curvatures are computed as the eigenvalues of the Shape matrix, producing accurate seeds that also inherit the original shape of their respective cells. We compare with some popular approaches and show the advantage of the proposed method.
Effects of a Moving Distractor Object on Time-to-Contact Judgments
ERIC Educational Resources Information Center
Oberfeld, Daniel; Hecht, Heiko
2008-01-01
The effects of moving task-irrelevant objects on time-to-contact (TTC) judgments were examined in 5 experiments. Observers viewed a directly approaching target in the presence of a distractor object moving in parallel with the target. In Experiments 1 to 4, observers decided whether the target would have collided with them earlier or later than a…
Remote sensing using MIMO systems
Bikhazi, Nicolas; Young, William F; Nguyen, Hung D
2015-04-28
A technique for sensing a moving object within a physical environment using a MIMO communication link includes generating a channel matrix based upon channel state information of the MIMO communication link. The physical environment operates as a communication medium through which communication signals of the MIMO communication link propagate between a transmitter and a receiver. A spatial information variable is generated for the MIMO communication link based on the channel matrix. The spatial information variable includes spatial information about the moving object within the physical environment. A signature for the moving object is generated based on values of the spatial information variable accumulated over time. The moving object is identified based upon the signature.
Perceptual impressions of causality are affected by common fate.
White, Peter A
2017-03-24
Many studies of perceptual impressions of causality have used a stimulus in which a moving object (the launcher) contacts a stationary object (the target) and the latter then moves off. Such stimuli give rise to an impression that the launcher makes the target move. In the present experiments, instead of a single target object, an array of four vertically aligned objects was used. The launcher contacted none of them, but stopped at a point between the two central objects. The four objects then moved with similar motion properties, exhibiting the Gestalt property of common fate. Strong impressions of causality were reported for this stimulus. It is argued that the array of four objects was perceived, by the likelihood principle, as a single object with some parts unseen, that the launcher was perceived as contacting one of the unseen parts of this object, and that the causal impression resulted from that. Supporting that argument, stimuli in which kinematic features were manipulated so as to weaken or eliminate common fate yielded weaker impressions of causality.
NASA Astrophysics Data System (ADS)
Lisitsa, Y. V.; Yatskou, M. M.; Apanasovich, V. V.; Apanasovich, T. V.
2015-09-01
We have developed an algorithm for segmentation of cancer cell nuclei in three-channel luminescent images of microbiological specimens. The algorithm is based on using a correlation between fluorescence signals in the detection channels for object segmentation, which permits complete automation of the data analysis procedure. We have carried out a comparative analysis of the proposed method and conventional algorithms implemented in the CellProfiler and ImageJ software packages. Our algorithm has an object localization uncertainty which is 2-3 times smaller than for the conventional algorithms, with comparable segmentation accuracy.
Moving Object Localization Based on UHF RFID Phase and Laser Clustering
Fu, Yulu; Wang, Changlong; Liang, Gaoli; Zhang, Hua; Ur Rehman, Shafiq
2018-01-01
RFID (Radio Frequency Identification) offers a way to identify objects without any contact. However, positioning accuracy is limited since RFID neither provides distance nor bearing information about the tag. This paper proposes a new and innovative approach for the localization of moving object using a particle filter by incorporating RFID phase and laser-based clustering from 2d laser range data. First of all, we calculate phase-based velocity of the moving object based on RFID phase difference. Meanwhile, we separate laser range data into different clusters, and compute the distance-based velocity and moving direction of these clusters. We then compute and analyze the similarity between two velocities, and select K clusters having the best similarity score. We predict the particles according to the velocity and moving direction of laser clusters. Finally, we update the weights of the particles based on K clusters and achieve the localization of moving objects. The feasibility of this approach is validated on a Scitos G5 service robot and the results prove that we have successfully achieved a localization accuracy up to 0.25 m. PMID:29522458
Integration across Time Determines Path Deviation Discrimination for Moving Objects
Whitaker, David; Levi, Dennis M.; Kennedy, Graeme J.
2008-01-01
Background Human vision is vital in determining our interaction with the outside world. In this study we characterize our ability to judge changes in the direction of motion of objects–a common task which can allow us either to intercept moving objects, or else avoid them if they pose a threat. Methodology/Principal Findings Observers were presented with objects which moved across a computer monitor on a linear path until the midline, at which point they changed their direction of motion, and observers were required to judge the direction of change. In keeping with the variety of objects we encounter in the real world, we varied characteristics of the moving stimuli such as velocity, extent of motion path and the object size. Furthermore, we compared performance for moving objects with the ability of observers to detect a deviation in a line which formed the static trace of the motion path, since it has been suggested that a form of static memory trace may form the basis for these types of judgment. The static line judgments were well described by a ‘scale invariant’ model in which any two stimuli which possess the same two-dimensional geometry (length/width) result in the same level of performance. Performance for the moving objects was entirely different. Irrespective of the path length, object size or velocity of motion, path deviation thresholds depended simply upon the duration of the motion path in seconds. Conclusions/Significance Human vision has long been known to integrate information across space in order to solve spatial tasks such as judgment of orientation or position. Here we demonstrate an intriguing mechanism which integrates direction information across time in order to optimize the judgment of path deviation for moving objects. PMID:18414653
Come together, right now: dynamic overwriting of an object's history through common fate.
Luria, Roy; Vogel, Edward K
2014-08-01
The objects around us constantly move and interact, and the perceptual system needs to monitor on-line these interactions and to update the object's status accordingly. Gestalt grouping principles, such as proximity and common fate, play a fundamental role in how we perceive and group these objects. Here, we investigated situations in which the initial object representation as a separate item was updated by a subsequent Gestalt grouping cue (i.e., proximity or common fate). We used a version of the color change detection paradigm, in which the objects started to move separately, then met and stayed stationary, or moved separately, met, and then continued to move together. We monitored the object representations on-line using the contralateral delay activity (CDA; an ERP component indicative of the number of maintained objects), during their movement, and after the objects disappeared and became working memory representations. The results demonstrated that the objects' representations (as indicated by the CDA amplitude) persisted as being separate, even after a Gestalt proximity cue (when the objects "met" and remained stationary on the same position). Only a strong common fate Gestalt cue (when the objects not just met but also moved together) was able to override the objects' initial separate status, creating an integrated representation. These results challenge the view that Gestalt principles cause reflexive grouping. Instead, the object initial representation plays an important role that can override even powerful grouping cues.
A mathematical analysis to address the 6 degree-of-freedom segmental power imbalance.
Ebrahimi, Anahid; Collins, John D; Kepple, Thomas M; Takahashi, Kota Z; Higginson, Jill S; Stanhope, Steven J
2018-01-03
Segmental power is used in human movement analyses to indicate the source and net rate of energy transfer between the rigid bodies of biomechanical models. Segmental power calculations are performed using segment endpoint dynamics (kinetic method). A theoretically equivalent method is to measure the rate of change in a segment's mechanical energy state (kinematic method). However, these two methods have not produced experimentally equivalent results for segments proximal to the foot, with the difference in methods deemed the "power imbalance." In a 6 degree-of-freedom model, segments move independently, resulting in relative segment endpoint displacement and non-equivalent segment endpoint velocities at a joint. In the kinetic method, a segment's distal end translational velocity may be defined either at the anatomical end of the segment or at the location of the joint center (defined here as the proximal end of the adjacent distal segment). Our mathematical derivations revealed the power imbalance between the kinetic method using the anatomical definition and the kinematic method can be explained by power due to relative segment endpoint displacement. In this study, we tested this analytical prediction through experimental gait data from nine healthy subjects walking at a typical speed. The average absolute segmental power imbalance was reduced from 0.023 to 0.046 W/kg using the anatomical definition to ≤0.001 W/kg using the joint center definition in the kinetic method (95.56-98.39% reduction). Power due to relative segment endpoint displacement in segmental power analyses is substantial and should be considered in analyzing energetic flow into and between segments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multi-object segmentation framework using deformable models for medical imaging analysis.
Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel
2016-08-01
Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed framework has a wide range of applications especially in the presence of adjacent structures of interest or under intra-structure inhomogeneities giving excellent quantitative results.
Matsushita, Kazuhiro; Inoue, Nobuo; Yamaguchi, Hiro-o; Ooi, Kazuhiro; Totsuka, Yasunori
2011-09-01
Alveolar distraction is mainly used to increase height and width of the alveolar crest. This technique, however, is not typically used for lengthening the perimeter of the dental arch or improving teeth axes. We applied alveolar distraction in a tooth-borne manner in the second stage of our original method and obtained favorable results. We therefore present an outline of this method. Genioplasty was first performed to create an infrastructure for sequential advancement of the subapical alveolar segment. After bone union, anterior subapical alveolar osteotomy was performed. The stump of the osteotomized dentate segment was moved forward without changing the incisal edge position, and a box-type bioabsorbable plate with four holes was fixed only onto the dentate segment using two screws. After a latency period, two distraction devices were placed bilaterally to the brackets and activated at 1.0 mm/day. After reaching the desired position, the distractor was immobilized, and then replaced by resin temporary teeth to retain the created space. After the consolidation period, orthodontic treatment was restarted and teeth moved into the newly created space. Bimaxillary surgery was performed after completing pre-surgical orthodontic treatment. Finally, both desirable occlusion and functional masticatory function were obtained. This tooth-borne distraction system is one applicable method for patients with skeletal class II and crowding of lower anterior teeth, achieving good results particularly in combination with our original method.
Semantic Segmentation of Building Elements Using Point Cloud Hashing
NASA Astrophysics Data System (ADS)
Chizhova, M.; Gurianov, A.; Hess, M.; Luhmann, T.; Brunn, A.; Stilla, U.
2018-05-01
For the interpretation of point clouds, the semantic definition of extracted segments from point clouds or images is a common problem. Usually, the semantic of geometrical pre-segmented point cloud elements are determined using probabilistic networks and scene databases. The proposed semantic segmentation method is based on the psychological human interpretation of geometric objects, especially on fundamental rules of primary comprehension. Starting from these rules the buildings could be quite well and simply classified by a human operator (e.g. architect) into different building types and structural elements (dome, nave, transept etc.), including particular building parts which are visually detected. The key part of the procedure is a novel method based on hashing where point cloud projections are transformed into binary pixel representations. A segmentation approach released on the example of classical Orthodox churches is suitable for other buildings and objects characterized through a particular typology in its construction (e.g. industrial objects in standardized enviroments with strict component design allowing clear semantic modelling).
New mathematical definition and calculation of axial rotation of anatomical joints.
Miyazaki, S; Ishida, A
1991-08-01
In the field of joint kinematics, clinical terms such as internal-external, or medical-lateral, rotations are commonly used to express the rotation of a body segment about its own long axis. However, these terms are not defined in a strict mathematical sense. In this paper, a new mathematical definition of axial rotation is proposed and methods to calculate it from the measured Euler angles are given. The definition and methods to calculate it from the measured Euler angles are given. The definition is based on the integration of the component of the angular velocity vector projected onto the long axis of the body segment. First, the absolute axial rotation of a body segment with respect to the stationary coordinate system is defined. This definition is then generalized to give the relative axial rotation of one body segment with respect to the other body segment where the two segments are moving in the three-dimensional space. The well-known Codman's paradox is cited as an example to make clear the difference between the definition so far proposed by other researchers and the new one.
2007-05-15
KENNEDY SPACE CENTER, FLA. -- The final rail car carrying solid rocket booster motor segments moves its cargo into the Rotation, Processing and Surge Facility (RPSF) in Kennedy Space Center's Launch Complex 39 Area. The RPSF is used for solid rocket motor receiving, rotation and inspection, and supports aft booster buildup. When live solid rocket motor segments arrive at the processing facility, they are positioned under one of the cranes. Handling slings are then attached to and remove the railcar cover. The segment is inspected while it remains horizontal. The two overhead cranes hoist the segment, rotate it to a vertical position and place it on a fixed stand. The aft handling ring is then removed. The segment is hoisted again and lowered onto a transportation and storage pallet, and the forward handling ring is removed to allow inspections. It is then transported to one of the surge buildings and temporarily stored until it is needed for booster stacking in the VAB. While enroute, solid rocket motor segments were involved in a derailment in Alabama. The rail cars carrying these segments remained upright and were undamaged. An inspection determined these segment cars could continue on to Florida. The segments themselves will undergo further evaluation at Kennedy before they are cleared for flight. Other segments involved in the derailment will be returned to a plant in Utah for further evaluation. Photo credit: NASA/George Shelton
Research on measurement method of optical camouflage effect of moving object
NASA Astrophysics Data System (ADS)
Wang, Juntang; Xu, Weidong; Qu, Yang; Cui, Guangzhen
2016-10-01
Camouflage effectiveness measurement as an important part of the camouflage technology, which testing and measuring the camouflage effect of the target and the performance of the camouflage equipment according to the tactical and technical requirements. The camouflage effectiveness measurement of current optical band is mainly aimed at the static target which could not objectively reflect the dynamic camouflage effect of the moving target. This paper synthetical used technology of dynamic object detection and camouflage effect detection, the digital camouflage of the moving object as the research object, the adaptive background update algorithm of Surendra was improved, a method of optical camouflage effect detection using Lab-color space in the detection of moving-object was presented. The binary image of moving object is extracted by this measurement technology, in the sequence diagram, the characteristic parameters such as the degree of dispersion, eccentricity, complexity and moment invariants are constructed to construct the feature vector space. The Euclidean distance of moving target which through digital camouflage was calculated, the results show that the average Euclidean distance of 375 frames was 189.45, which indicated that the degree of dispersion, eccentricity, complexity and moment invariants of the digital camouflage graphics has a great difference with the moving target which not spray digital camouflage. The measurement results showed that the camouflage effect was good. Meanwhile with the performance evaluation module, the correlation coefficient of the dynamic target image range 0.1275 from 0.0035, and presented some ups and down. Under the dynamic condition, the adaptability of target and background was reflected. In view of the existing infrared camouflage technology, the next step, we want to carry out the camouflage effect measurement technology of the moving target based on infrared band.
Robust visual object tracking with interleaved segmentation
NASA Astrophysics Data System (ADS)
Abel, Peter; Kieritz, Hilke; Becker, Stefan; Arens, Michael
2017-10-01
In this paper we present a new approach for tracking non-rigid, deformable objects by means of merging an on-line boosting-based tracker and a fast foreground background segmentation. We extend an on-line boosting- based tracker, which uses axes-aligned bounding boxes with fixed aspect-ratio as tracking states. By constructing a confidence map from the on-line boosting-based tracker and unifying this map with a confidence map, which is obtained from a foreground background segmentation algorithm, we build a superior confidence map. For constructing a rough confidence map of a new frame based on on-line boosting, we employ the responses of the strong classifier as well as the single weak classifier responses that were built before during the updating step. This confidence map provides a rough estimation of the object's position and dimension. In order to refine this confidence map, we build a fine, pixel-wisely segmented confidence map and merge both maps together. Our segmentation method is color-histogram-based and provides a fine and fast image segmentation. By means of back-projection and the Bayes' rule, we obtain a confidence value for every pixel. The rough and the fine confidence maps are merged together by building an adaptively weighted sum of both maps. The weights are obtained by utilizing the variances of both confidence maps. Further, we apply morphological operators in the merged confidence map in order to reduce the noise. In the resulting map we estimate the object localization and dimension via continuous adaptive mean shift. Our approach provides a rotated rectangle as tracking states, which enables a more precise description of non-rigid, deformable objects than axes-aligned bounding boxes. We evaluate our tracker on the visual object tracking (VOT) benchmark dataset 2016.
Lee, Won-Ho; Lee, Se-Hee; Lee, Sangyoup; Lee, Jong-Chul
2018-09-01
Nanoparticles and nanofluids have been implemented in energy harvesting devices, and energy harvesting based on magnetic nanofluid flow was recently achieved by using a layer-built magnet and micro-bubble injection to induce a voltage on the order of 10-1 mV. However, this is not yet suitable for some commercial purpose. In order to further increase the amount of electric voltage and current from this energy harvesting the air bubbles must be segmented in the base fluid, and the magnetic flux of the segmented flow should be materially altered over time. The focus of this research is on the development of a segmented ferrofluid flow linear generator that would scavenge electrical power from waste heat. Experiments were conducted to obtain the induced voltage, which was generated by moving a ferrofluid-filled capsule inside a multi-turn coil. Computations were then performed to explain the fundamental physical basis of the motion of the segmented flow of the ferrofluids and the air-layers.
Sgaier, Sema K; Eletskaya, Maria; Engl, Elisabeth; Mugurungi, Owen; Tambatamba, Bushimbwa; Ncube, Gertrude; Xaba, Sinokuthemba; Nanga, Alice; Gogolina, Svetlana; Odawo, Patrick; Gumede-Moyo, Sehlulekile; Kretschmer, Steve
2017-09-13
Public health programs are starting to recognize the need to move beyond a one-size-fits-all approach in demand generation, and instead tailor interventions to the heterogeneity underlying human decision making. Currently, however, there is a lack of methods to enable such targeting. We describe a novel hybrid behavioral-psychographic segmentation approach to segment stakeholders on potential barriers to a target behavior. We then apply the method in a case study of demand generation for voluntary medical male circumcision (VMMC) among 15-29 year-old males in Zambia and Zimbabwe. Canonical correlations and hierarchical clustering techniques were applied on representative samples of men in each country who were differentiated by their underlying reasons for their propensity to get circumcised. We characterized six distinct segments of men in Zimbabwe, and seven segments in Zambia, according to their needs, perceptions, attitudes and behaviors towards VMMC, thus highlighting distinct reasons for a failure to engage in the desired behavior.
Eletskaya, Maria; Engl, Elisabeth; Mugurungi, Owen; Tambatamba, Bushimbwa; Ncube, Gertrude; Xaba, Sinokuthemba; Nanga, Alice; Gogolina, Svetlana; Odawo, Patrick; Gumede-Moyo, Sehlulekile; Kretschmer, Steve
2017-01-01
Public health programs are starting to recognize the need to move beyond a one-size-fits-all approach in demand generation, and instead tailor interventions to the heterogeneity underlying human decision making. Currently, however, there is a lack of methods to enable such targeting. We describe a novel hybrid behavioral-psychographic segmentation approach to segment stakeholders on potential barriers to a target behavior. We then apply the method in a case study of demand generation for voluntary medical male circumcision (VMMC) among 15–29 year-old males in Zambia and Zimbabwe. Canonical correlations and hierarchical clustering techniques were applied on representative samples of men in each country who were differentiated by their underlying reasons for their propensity to get circumcised. We characterized six distinct segments of men in Zimbabwe, and seven segments in Zambia, according to their needs, perceptions, attitudes and behaviors towards VMMC, thus highlighting distinct reasons for a failure to engage in the desired behavior. PMID:28901285
NASA Astrophysics Data System (ADS)
Maalek, R.; Lichti, D. D.; Ruwanpura, J.
2015-08-01
The application of terrestrial laser scanners (TLSs) on construction sites for automating construction progress monitoring and controlling structural dimension compliance is growing markedly. However, current research in construction management relies on the planned building information model (BIM) to assign the accumulated point clouds to their corresponding structural elements, which may not be reliable in cases where the dimensions of the as-built structure differ from those of the planned model and/or the planned model is not available with sufficient detail. In addition outliers exist in construction site datasets due to data artefacts caused by moving objects, occlusions and dust. In order to overcome the aforementioned limitations, a novel method for robust classification and segmentation of planar and linear features is proposed to reduce the effects of outliers present in the LiDAR data collected from construction sites. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a robust clustering method. A method is also proposed to robustly extract the points belonging to the flat-slab floors and/or ceilings without performing the aforementioned stages in order to preserve computational efficiency. The applicability of the proposed method is investigated in two scenarios, namely, a laboratory with 30 million points and an actual construction site with over 150 million points. The results obtained by the two experiments validate the suitability of the proposed method for robust segmentation of planar and linear features in contaminated datasets, such as those collected from construction sites.
Local variance for multi-scale analysis in geomorphometry.
Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas
2011-07-15
Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements.
Local variance for multi-scale analysis in geomorphometry
Drăguţ, Lucian; Eisank, Clemens; Strasser, Thomas
2011-01-01
Increasing availability of high resolution Digital Elevation Models (DEMs) is leading to a paradigm shift regarding scale issues in geomorphometry, prompting new solutions to cope with multi-scale analysis and detection of characteristic scales. We tested the suitability of the local variance (LV) method, originally developed for image analysis, for multi-scale analysis in geomorphometry. The method consists of: 1) up-scaling land-surface parameters derived from a DEM; 2) calculating LV as the average standard deviation (SD) within a 3 × 3 moving window for each scale level; 3) calculating the rate of change of LV (ROC-LV) from one level to another, and 4) plotting values so obtained against scale levels. We interpreted peaks in the ROC-LV graphs as markers of scale levels where cells or segments match types of pattern elements characterized by (relatively) equal degrees of homogeneity. The proposed method has been applied to LiDAR DEMs in two test areas different in terms of roughness: low relief and mountainous, respectively. For each test area, scale levels for slope gradient, plan, and profile curvatures were produced at constant increments with either resampling (cell-based) or image segmentation (object-based). Visual assessment revealed homogeneous areas that convincingly associate into patterns of land-surface parameters well differentiated across scales. We found that the LV method performed better on scale levels generated through segmentation as compared to up-scaling through resampling. The results indicate that coupling multi-scale pattern analysis with delineation of morphometric primitives is possible. This approach could be further used for developing hierarchical classifications of landform elements. PMID:21779138
Scale-based fuzzy connectivity: a novel image segmentation methodology and its validation
NASA Astrophysics Data System (ADS)
Saha, Punam K.; Udupa, Jayaram K.
1999-05-01
This paper extends a previously reported theory and algorithms for fuzzy connected object definition. It introduces `object scale' for determining the neighborhood size for defining affinity, the degree of local hanging togetherness between image elements. Object scale allows us to use a varying neighborhood size in different parts of the image. This paper argues that scale-based fuzzy connectivity is natural in object definition and demonstrates that this leads to a more effective object segmentation than without using scale in fuzzy concentrations. Affinity is described as consisting of a homogeneity-based and an object-feature- based component. Families of non scale-based and scale-based affinity relations are constructed. An effective method for giving a rough estimate of scale at different locations in the image is presented. The original theoretical and algorithmic framework remains more-or-less the same but considerably improved segmentations result. A quantitative statistical comparison between the non scale-based and the scale-based methods was made based on phantom images generated from patient MR brain studies by first segmenting the objects, and then by adding noise and blurring, and background component. Both the statistical and the subjective tests clearly indicate the superiority of scale- based method in capturing details and in robustness to noise.
Hakuno, Yoko; Omori, Takahide; Yamamoto, Jun-Ichi; Minagawa, Yasuyo
2017-08-01
In natural settings, infants learn spoken language with the aid of a caregiver who explicitly provides social signals. Although previous studies have demonstrated that young infants are sensitive to these signals that facilitate language development, the impact of real-life interactions on early word segmentation and word-object mapping remains elusive. We tested whether infants aged 5-6 months and 9-10 months could segment a word from continuous speech and acquire a word-object relation in an ecologically valid setting. In Experiment 1, infants were exposed to a live tutor, while in Experiment 2, another group of infants were exposed to a televised tutor. Results indicate that both younger and older infants were capable of segmenting a word and learning a word-object association only when the stimuli were derived from a live tutor in a natural manner, suggesting that real-life interaction enhances the learning of spoken words in preverbal infants. Copyright © 2017 Elsevier Inc. All rights reserved.
A novel approach to segmentation and measurement of medical image using level set methods.
Chen, Yao-Tien
2017-06-01
The study proposes a novel approach for segmentation and visualization plus value-added surface area and volume measurements for brain medical image analysis. The proposed method contains edge detection and Bayesian based level set segmentation, surface and volume rendering, and surface area and volume measurements for 3D objects of interest (i.e., brain tumor, brain tissue, or whole brain). Two extensions based on edge detection and Bayesian level set are first used to segment 3D objects. Ray casting and a modified marching cubes algorithm are then adopted to facilitate volume and surface visualization of medical-image dataset. To provide physicians with more useful information for diagnosis, the surface area and volume of an examined 3D object are calculated by the techniques of linear algebra and surface integration. Experiment results are finally reported in terms of 3D object extraction, surface and volume rendering, and surface area and volume measurements for medical image analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Error analysis of speed of sound reconstruction in ultrasound limited angle transmission tomography.
Jintamethasawat, Rungroj; Lee, Won-Mean; Carson, Paul L; Hooi, Fong Ming; Fowlkes, J Brian; Goodsitt, Mitchell M; Sampson, Richard; Wenisch, Thomas F; Wei, Siyuan; Zhou, Jian; Chakrabarti, Chaitali; Kripfgans, Oliver D
2018-04-07
We have investigated limited angle transmission tomography to estimate speed of sound (SOS) distributions for breast cancer detection. That requires both accurate delineations of major tissues, in this case by segmentation of prior B-mode images, and calibration of the relative positions of the opposed transducers. Experimental sensitivity evaluation of the reconstructions with respect to segmentation and calibration errors is difficult with our current system. Therefore, parametric studies of SOS errors in our bent-ray reconstructions were simulated. They included mis-segmentation of an object of interest or a nearby object, and miscalibration of relative transducer positions in 3D. Close correspondence of reconstruction accuracy was verified in the simplest case, a cylindrical object in homogeneous background with induced segmentation and calibration inaccuracies. Simulated mis-segmentation in object size and lateral location produced maximum SOS errors of 6.3% within 10 mm diameter change and 9.1% within 5 mm shift, respectively. Modest errors in assumed transducer separation produced the maximum SOS error from miscalibrations (57.3% within 5 mm shift), still, correction of this type of error can easily be achieved in the clinic. This study should aid in designing adequate transducer mounts and calibration procedures, and in specification of B-mode image quality and segmentation algorithms for limited angle transmission tomography relying on ray tracing algorithms. Copyright © 2018 Elsevier B.V. All rights reserved.
Collaborative real-time motion video analysis by human observer and image exploitation algorithms
NASA Astrophysics Data System (ADS)
Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen
2015-05-01
Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.
Volumetric segmentation of range images for printed circuit board inspection
NASA Astrophysics Data System (ADS)
Van Dop, Erik R.; Regtien, Paul P. L.
1996-10-01
Conventional computer vision approaches towards object recognition and pose estimation employ 2D grey-value or color imaging. As a consequence these images contain information about projections of a 3D scene only. The subsequent image processing will then be difficult, because the object coordinates are represented with just image coordinates. Only complicated low-level vision modules like depth from stereo or depth from shading can recover some of the surface geometry of the scene. Recent advances in fast range imaging have however paved the way towards 3D computer vision, since range data of the scene can now be obtained with sufficient accuracy and speed for object recognition and pose estimation purposes. This article proposes the coded-light range-imaging method together with superquadric segmentation to approach this task. Superquadric segments are volumetric primitives that describe global object properties with 5 parameters, which provide the main features for object recognition. Besides, the principle axes of a superquadric segment determine the phase of an object in the scene. The volumetric segmentation of a range image can be used to detect missing, false or badly placed components on assembled printed circuit boards. Furthermore, this approach will be useful to recognize and extract valuable or toxic electronic components on printed circuit boards scrap that currently burden the environment during electronic waste processing. Results on synthetic range images with errors constructed according to a verified noise model illustrate the capabilities of this approach.
Fuzzy object models for newborn brain MR image segmentation
NASA Astrophysics Data System (ADS)
Kobashi, Syoji; Udupa, Jayaram K.
2013-03-01
Newborn brain MR image segmentation is a challenging problem because of variety of size, shape and MR signal although it is the fundamental study for quantitative radiology in brain MR images. Because of the large difference between the adult brain and the newborn brain, it is difficult to directly apply the conventional methods for the newborn brain. Inspired by the original fuzzy object model introduced by Udupa et al. at SPIE Medical Imaging 2011, called fuzzy shape object model (FSOM) here, this paper introduces fuzzy intensity object model (FIOM), and proposes a new image segmentation method which combines the FSOM and FIOM into fuzzy connected (FC) image segmentation. The fuzzy object models are built from training datasets in which the cerebral parenchyma is delineated by experts. After registering FSOM with the evaluating image, the proposed method roughly recognizes the cerebral parenchyma region based on a prior knowledge of location, shape, and the MR signal given by the registered FSOM and FIOM. Then, FC image segmentation delineates the cerebral parenchyma using the fuzzy object models. The proposed method has been evaluated using 9 newborn brain MR images using the leave-one-out strategy. The revised age was between -1 and 2 months. Quantitative evaluation using false positive volume fraction (FPVF) and false negative volume fraction (FNVF) has been conducted. Using the evaluation data, a FPVF of 0.75% and FNVF of 3.75% were achieved. More data collection and testing are underway.
Ursino, Mauro; Magosso, Elisa; La Cara, Giuseppe-Emiliano; Cuppini, Cristiano
2006-09-01
Object recognition requires the solution of the binding and segmentation problems, i.e., grouping different features to achieve a coherent representation. Synchronization of neural activity in the gamma-band, associated with gestalt perception, has often been proposed as a putative mechanism to solve these problems, not only as to low-level processing, but also in higher cortical functions. In the present work, a network of Wilson-Cowan oscillators is used to segment simultaneous objects, and recover an object from partial or corrupted information, by implementing two gestalt rules: similarity and prior knowledge. The network consists of H different areas, each devoted to representation of a particular feature of the object, according to a topological organization. The similarity law is realized via lateral intra-area connections, arranged as a "Mexican-hat". Prior knowledge is realized via inter-area connections, which link properties belonging to a previously memorized object. A global inhibitor allows segmentation of several objects avoiding interference. Simulation results, performed using three simultaneous input objects, show that the network is able to detect an object even in difficult conditions (i.e., when some features are absent or shifted with respect to the original one). Moreover, the trade-off between sensitivity (capacity to detect true positives) and specificity (capacity to reject false positives) can be controlled acting on the extension of lateral synapses (i.e., on the level of accepted similarity). Finally, the network can also deal with correlated objects, i.e., objects which have some common features. Simulations performed using a different number of objects (2, 3, 4 or 5) suggest that the network is able to segment and recall up to four objects, but the oscillation frequency must increase, the lower the number of objects simultaneously present. The model, although quite simpler compared with neurophysiology, may represent a theoretical framework for the analysis of the relationships between object representation, memory, learning, and gamma-band activity. In particular, it extends previous studies on autoassociative memory since it exploits not only oscillatory dynamics, but also a topological organization of features.
BlobContours: adapting Blobworld for supervised color- and texture-based image segmentation
NASA Astrophysics Data System (ADS)
Vogel, Thomas; Nguyen, Dinh Quyen; Dittmann, Jana
2006-01-01
Extracting features is the first and one of the most crucial steps in recent image retrieval process. While the color features and the texture features of digital images can be extracted rather easily, the shape features and the layout features depend on reliable image segmentation. Unsupervised image segmentation, often used in image analysis, works on merely syntactical basis. That is, what an unsupervised segmentation algorithm can segment is only regions, but not objects. To obtain high-level objects, which is desirable in image retrieval, human assistance is needed. Supervised image segmentations schemes can improve the reliability of segmentation and segmentation refinement. In this paper we propose a novel interactive image segmentation technique that combines the reliability of a human expert with the precision of automated image segmentation. The iterative procedure can be considered a variation on the Blobworld algorithm introduced by Carson et al. from EECS Department, University of California, Berkeley. Starting with an initial segmentation as provided by the Blobworld framework, our algorithm, namely BlobContours, gradually updates it by recalculating every blob, based on the original features and the updated number of Gaussians. Since the original algorithm has hardly been designed for interactive processing we had to consider additional requirements for realizing a supervised segmentation scheme on the basis of Blobworld. Increasing transparency of the algorithm by applying usercontrolled iterative segmentation, providing different types of visualization for displaying the segmented image and decreasing computational time of segmentation are three major requirements which are discussed in detail.
The temporal dynamics of heading perception in the presence of moving objects
Fajen, Brett R.
2015-01-01
Many forms of locomotion rely on the ability to accurately perceive one's direction of locomotion (i.e., heading) based on optic flow. Although accurate in rigid environments, heading judgments may be biased when independently moving objects are present. The aim of this study was to systematically investigate the conditions in which moving objects influence heading perception, with a focus on the temporal dynamics and the mechanisms underlying this bias. Subjects viewed stimuli simulating linear self-motion in the presence of a moving object and judged their direction of heading. Experiments 1 and 2 revealed that heading perception is biased when the object crosses or almost crosses the observer's future path toward the end of the trial, but not when the object crosses earlier in the trial. Nonetheless, heading perception is not based entirely on the instantaneous optic flow toward the end of the trial. This was demonstrated in Experiment 3 by varying the portion of the earlier part of the trial leading up to the last frame that was presented to subjects. When the stimulus duration was long enough to include the part of the trial before the moving object crossed the observer's path, heading judgments were less biased. The findings suggest that heading perception is affected by the temporal evolution of optic flow. The time course of dorsal medial superior temporal area (MSTd) neuron responses may play a crucial role in perceiving heading in the presence of moving objects, a property not captured by many existing models. PMID:26510765
Modeling and query the uncertainty of network constrained moving objects based on RFID data
NASA Astrophysics Data System (ADS)
Han, Liang; Xie, Kunqing; Ma, Xiujun; Song, Guojie
2007-06-01
The management of network constrained moving objects is more and more practical, especially in intelligent transportation system. In the past, the location information of moving objects on network is collected by GPS, which cost high and has the problem of frequent update and privacy. The RFID (Radio Frequency IDentification) devices are used more and more widely to collect the location information. They are cheaper and have less update. And they interfere in the privacy less. They detect the id of the object and the time when moving object passed by the node of the network. They don't detect the objects' exact movement in side the edge, which lead to a problem of uncertainty. How to modeling and query the uncertainty of the network constrained moving objects based on RFID data becomes a research issue. In this paper, a model is proposed to describe the uncertainty of network constrained moving objects. A two level index is presented to provide efficient access to the network and the data of movement. The processing of imprecise time-slice query and spatio-temporal range query are studied in this paper. The processing includes four steps: spatial filter, spatial refinement, temporal filter and probability calculation. Finally, some experiments are done based on the simulated data. In the experiments the performance of the index is studied. The precision and recall of the result set are defined. And how the query arguments affect the precision and recall of the result set is also discussed.
Robot environment expert system
NASA Technical Reports Server (NTRS)
Potter, J. L.
1985-01-01
The Robot Environment Expert System uses a hexidecimal tree data structure to model a complex robot environment where not only the robot arm moves, but also the robot itself and other objects may move. The hextree model allows dynamic updating, collision avoidance and path planning over time, to avoid moving objects.
Dong, Ming-Ming; Wang, Cheng-Wei; Wu, Zheng-Xiang; Zhang, Yang; Pan, Huai-Hai; Zhao, Quan-Zhong
2013-07-01
We report on the fabrication of stress-induced optical channel waveguides and waveguide splitters with laser-depressed cladding by femtosecond laser. The laser beam was focused into neodymium doped phosphate glass by an objective producing a destructive filament. By moving the sample along an enclosed routine in the horizontal plane followed by a minor descent less than the filament length in the vertical direction, a cylinder with rarified periphery and densified center region was fabricated. Lining up the segments in partially overlapping sequence enabled waveguiding therein. The refractive-index contrast, near- and far-field mode distribution and confocal microscope fluorescence image of the waveguide were obtained. 1-to-2, 1-to-3 and 1-to-4 splitters were also machined with adjustable splitting ratio. Compared with traditional femtosecond laser writing methods, waveguides prepared by this approach showed controllable mode conduction, strong field confinement, large numerical aperture, low propagation loss and intact core region.
Crack image segmentation based on improved DBC method
NASA Astrophysics Data System (ADS)
Cao, Ting; Yang, Nan; Wang, Fengping; Gao, Ting; Wang, Weixing
2017-11-01
With the development of computer vision technology, crack detection based on digital image segmentation method arouses global attentions among researchers and transportation ministries. Since the crack always exhibits the random shape and complex texture, it is still a challenge to accomplish reliable crack detection results. Therefore, a novel crack image segmentation method based on fractal DBC (differential box counting) is introduced in this paper. The proposed method can estimate every pixel fractal feature based on neighborhood information which can consider the contribution from all possible direction in the related block. The block moves just one pixel every time so that it could cover all the pixels in the crack image. Unlike the classic DBC method which only describes fractal feature for the related region, this novel method can effectively achieve crack image segmentation according to the fractal feature of every pixel. The experiment proves the proposed method can achieve satisfactory results in crack detection.
Gland segmentation in prostate histopathological images
Singh, Malay; Kalaw, Emarene Mationg; Giron, Danilo Medina; Chong, Kian-Tai; Tan, Chew Lim; Lee, Hwee Kuan
2017-01-01
Abstract. Glandular structural features are important for the tumor pathologist in the assessment of cancer malignancy of prostate tissue slides. The varying shapes and sizes of glands combined with the tedious manual observation task can result in inaccurate assessment. There are also discrepancies and low-level agreement among pathologists, especially in cases of Gleason pattern 3 and pattern 4 prostate adenocarcinoma. An automated gland segmentation system can highlight various glandular shapes and structures for further analysis by the pathologist. These objective highlighted patterns can help reduce the assessment variability. We propose an automated gland segmentation system. Forty-three hematoxylin and eosin-stained images were acquired from prostate cancer tissue slides and were manually annotated for gland, lumen, periacinar retraction clefting, and stroma regions. Our automated gland segmentation system was trained using these manual annotations. It identifies these regions using a combination of pixel and object-level classifiers by incorporating local and spatial information for consolidating pixel-level classification results into object-level segmentation. Experimental results show that our method outperforms various texture and gland structure-based gland segmentation algorithms in the literature. Our method has good performance and can be a promising tool to help decrease interobserver variability among pathologists. PMID:28653016
The Analysis of Image Segmentation Hierarchies with a Graph-based Knowledge Discovery System
NASA Technical Reports Server (NTRS)
Tilton, James C.; Cooke, diane J.; Ketkar, Nikhil; Aksoy, Selim
2008-01-01
Currently available pixel-based analysis techniques do not effectively extract the information content from the increasingly available high spatial resolution remotely sensed imagery data. A general consensus is that object-based image analysis (OBIA) is required to effectively analyze this type of data. OBIA is usually a two-stage process; image segmentation followed by an analysis of the segmented objects. We are exploring an approach to OBIA in which hierarchical image segmentations provided by the Recursive Hierarchical Segmentation (RHSEG) software developed at NASA GSFC are analyzed by the Subdue graph-based knowledge discovery system developed by a team at Washington State University. In this paper we discuss out initial approach to representing the RHSEG-produced hierarchical image segmentations in a graphical form understandable by Subdue, and provide results on real and simulated data. We also discuss planned improvements designed to more effectively and completely convey the hierarchical segmentation information to Subdue and to improve processing efficiency.
The Canadian SSRMS is moved to test stand in the SSPF
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility help guide the Canadian Space Agency's Space Station Remote Manipulator System (SSRMS) suspended from an overhead crane. The SSRMS is being moved to a test stand where it will be mated to its payload carrier. This pallet will later be installed into the payload bay of Space Shuttle Endeavour for launch to the International Space Station on STS-100 in April 2001. The 56-foot-long arm will be the primary means of transferring payloads between the orbiter payload bay and the Station. Its three segments comprise seven joints for highly flexible land precise movement, making it capable of moving around the Station's exterior like an inchworm.
SRB Processing Facilities Media Event
2016-03-01
Members of the news media view the high bay inside the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida. Kerry Chreist, with Jacobs Engineering on the Test and Operations Support Contract, explains the various test stands and how they will be used to prepare booster segments for NASA’s Space Launch System (SLS) rocket. In the far corner, in the vertical position, is one of two pathfinders, or test versions, of solid rocket booster segments for the SLS rocket. The Ground Systems Development and Operations Program and Jacobs are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.
2009-04-01
CAPE CANAVERAL, Fla. – In High Bay 4 of the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, the Ares I-X upper stage simulator service module/service adapter segment (foreground) is being prepared for its move to a stand. Other segments are placed and stacked on the floor around it. Ares I-X is the test vehicle for the Ares I, which is part of the Constellation Program to return men to the moon and beyond. The Ares I-X is targeted for launch in July 2009. Photo credit: NASA/Kim Shiflett
1998-11-06
Workers in the Space Station Processing Facility watch the Passive Common Berthing Mechanism (PCBM) lifted high to move it over to the Z1 integrated truss structure at right. It will be mated to the Z1 truss, a component of the International Space Station (ISS). The Z1 truss will be used for the temporary installation of the P6 truss segment to the Unity connecting module. The P6 truss segment contains the solar arrays and batteries which will provide early station power. The truss is scheduled to be launched aboard STS-92 in late 1999
SRB Processing Facilities Media Event
2016-03-01
At the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida, members of the news media photograph the process as cranes are used to lift one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket. The Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.
SRB Processing Facilities Media Event
2016-03-01
At the Rotation, Processing and Surge Facility (RPSF) at NASA’s Kennedy Space Center in Florida, members of the news media watch as cranes are used to lift one of two pathfinders, or test versions, of solid rocket booster segments for NASA’s Space Launch System rocket. The Ground Systems Development and Operations Program and Jacobs Engineering, on the Test and Operations Support Contract, are preparing the booster segments, which are inert, for a series of lifts, moves and stacking operations to prepare for Exploration Mission-1, deep-space missions and the journey to Mars.
NASA Astrophysics Data System (ADS)
Rab, George T.
1988-02-01
Three-dimensional human motion analysis has been used for complex kinematic description of abnormal gait in children with neuromuscular disease. Multiple skin markers estimate skeletal segment position, and a sorting and smoothing routine provides marker trajectories. The position and orientation of the moving skeleton in space are derived mathematically from the marker positions, and joint motions are calculated from the Eulerian transformation matrix between linked proximal and distal skeletal segments. Reproduceability has been excellent, and the technique has proven to be a useful adjunct to surgical planning.
Review of automatic detection of pig behaviours by using image analysis
NASA Astrophysics Data System (ADS)
Han, Shuqing; Zhang, Jianhua; Zhu, Mengshuai; Wu, Jianzhai; Kong, Fantao
2017-06-01
Automatic detection of lying, moving, feeding, drinking, and aggressive behaviours of pigs by means of image analysis can save observation input by staff. It would help staff make early detection of diseases or injuries of pigs during breeding and improve management efficiency of swine industry. This study describes the progress of pig behaviour detection based on image analysis and advancement in image segmentation of pig body, segmentation of pig adhesion and extraction of pig behaviour characteristic parameters. Challenges for achieving automatic detection of pig behaviours were summarized.
More About The Farley Three-Dimensional Braider
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1993-01-01
Farley three-dimensional braider, undergoing development, is machine for automatic fabrication of three-dimensional braided structures. Incorporates yarns into structure at arbitrary braid angles to produce complicated shape. Braiding surface includes movable braiding segments containing pivot points, along which yarn carriers travel during braiding process. Yarn carrier travels along sequence of pivot points as braiding segments move. Combined motions position yarns for braiding onto preform. Intended for use in making fiber preforms for fiber/matrix composite parts, such as multiblade propellers. Machine also described in "Farley Three-Dimensional Braiding Machine" (LAR-13911).
Real-time object detection, tracking and occlusion reasoning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divakaran, Ajay; Yu, Qian; Tamrakar, Amir
A system for object detection and tracking includes technologies to, among other things, detect and track moving objects, such as pedestrians and/or vehicles, in a real-world environment, handle static and dynamic occlusions, and continue tracking moving objects across the fields of view of multiple different cameras.
USDA-ARS?s Scientific Manuscript database
Segmentation is the first step in image analysis to subdivide an image into meaningful regions. The segmentation result directly affects the subsequent image analysis. The objective of the research was to develop an automatic adjustable algorithm for segmentation of color images, using linear suppor...
48 CFR 9904.410-50 - Techniques for application.
Code of Federal Regulations, 2012 CFR
2012-10-01
... segment incurred by another segment shall be removed from the incurring segment's G&A expense pool. They... whole, shall be included in the receiving segment's G&A expense pool. (2) Any separate allocation of the... from the G&A expense pool required by 9904.410-40(a), and the particular final cost objective's cost...
48 CFR 9904.410-50 - Techniques for application.
Code of Federal Regulations, 2014 CFR
2014-10-01
... segment incurred by another segment shall be removed from the incurring segment's G&A expense pool. They... whole, shall be included in the receiving segment's G&A expense pool. (2) Any separate allocation of the... from the G&A expense pool required by 9904.410-40(a), and the particular final cost objective's cost...
48 CFR 9904.410-50 - Techniques for application.
Code of Federal Regulations, 2013 CFR
2013-10-01
... segment incurred by another segment shall be removed from the incurring segment's G&A expense pool. They... whole, shall be included in the receiving segment's G&A expense pool. (2) Any separate allocation of the... from the G&A expense pool required by 9904.410-40(a), and the particular final cost objective's cost...
Haga, Yoshihiro; Chida, Koichi; Inaba, Yohei; Kaga, Yuji; Meguro, Taiichiro; Zuguchi, Masayuki
2016-02-01
As the use of diagnostic X-ray equipment with flat panel detectors (FPDs) has increased, so has the importance of proper management of FPD systems. To ensure quality control (QC) of FPD system, an easy method for evaluating FPD imaging performance for both stationary and moving objects is required. Until now, simple rotatable QC phantoms have not been available for the easy evaluation of the performance (spatial resolution and dynamic range) of FPD in imaging moving objects. We developed a QC phantom for this purpose. It consists of three thicknesses of copper and a rotatable test pattern of piano wires of various diameters. Initial tests confirmed its stable performance. Our moving phantom is very useful for QC of FPD images of moving objects because it enables visual evaluation of image performance (spatial resolution and dynamic range) easily.
Distance estimation and collision prediction for on-line robotic motion planning
NASA Technical Reports Server (NTRS)
Kyriakopoulos, K. J.; Saridis, G. N.
1991-01-01
An efficient method for computing the minimum distance and predicting collisions between moving objects is presented. This problem has been incorporated in the framework of an in-line motion planning algorithm to satisfy collision avoidance between a robot and moving objects modeled as convex polyhedra. In the beginning the deterministic problem, where the information about the objects is assumed to be certain is examined. If instead of the Euclidean norm, L(sub 1) or L(sub infinity) norms are used to represent distance, the problem becomes a linear programming problem. The stochastic problem is formulated, where the uncertainty is induced by sensing and the unknown dynamics of the moving obstacles. Two problems are considered: (1) filtering of the minimum distance between the robot and the moving object, at the present time; and (2) prediction of the minimum distance in the future, in order to predict possible collisions with the moving obstacles and estimate the collision time.
Yang, Zhen; Bogovic, John A; Carass, Aaron; Ye, Mao; Searson, Peter C; Prince, Jerry L
2013-03-13
With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. This method addresses several challenges through a combination of ideas. 1) It realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To deal with different defects in the fluorescence images, the cell junctions are enhanced by applying an order-statistic filter and principal curvature based image operator. 3) The final segmentation using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and gaps between neighboring cells. The automatic segmentation results are compared with manually delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.
Market research for Idaho Transportation Department linear referencing system.
DOT National Transportation Integrated Search
2009-09-02
For over 30 years, the Idaho Transportation Department (ITD) has had an LRS called MACS : (MilePoint And Coded Segment), which is being implemented on a mainframe using a : COBOL/CICS platform. As ITD began embracing newer technologies and moving tow...
ERIC Educational Resources Information Center
Kemp, Andrew
2005-01-01
Everything moves. Even apparently stationary objects such as houses, roads, or mountains are moving because they sit on a spinning planet orbiting the Sun. Not surprisingly, the concepts of motion and the forces that affect moving objects are an integral part of the middle school science curriculum. However, middle school students are often taught…
ERIC Educational Resources Information Center
Houlrik, Jens Madsen
2009-01-01
The Lorentz transformation applies directly to the kinematics of moving particles viewed as geometric points. Wave propagation, on the other hand, involves moving planes which are extended objects defined by simultaneity. By treating a plane wave as a geometric object moving at the phase velocity, novel results are obtained that illustrate the…
SpArcFiRe: Scalable automated detection of spiral galaxy arm segments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Darren R.; Hayes, Wayne B., E-mail: drdavis@uci.edu, E-mail: whayes@uci.edu
Given an approximately centered image of a spiral galaxy, we describe an entirely automated method that finds, centers, and sizes the galaxy (possibly masking nearby stars and other objects if necessary in order to isolate the galaxy itself) and then automatically extracts structural information about the spiral arms. For each arm segment found, we list the pixels in that segment, allowing image analysis on a per-arm-segment basis. We also perform a least-squares fit of a logarithmic spiral arc to the pixels in that segment, giving per-arc parameters, such as the pitch angle, arm segment length, location, etc. The algorithm takesmore » about one minute per galaxies, and can easily be scaled using parallelism. We have run it on all ∼644,000 Sloan objects that are larger than 40 pixels across and classified as 'galaxies'. We find a very good correlation between our quantitative description of a spiral structure and the qualitative description provided by Galaxy Zoo humans. Our objective, quantitative measures of structure demonstrate the difficulty in defining exactly what constitutes a spiral 'arm', leading us to prefer the term 'arm segment'. We find that pitch angle often varies significantly segment-to-segment in a single spiral galaxy, making it difficult to define the pitch angle for a single galaxy. We demonstrate how our new database of arm segments can be queried to find galaxies satisfying specific quantitative visual criteria. For example, even though our code does not explicitly find rings, a good surrogate is to look for galaxies having one long, low-pitch-angle arm—which is how our code views ring galaxies. SpArcFiRe is available at http://sparcfire.ics.uci.edu.« less
Trapped in Place? Segmented Resilience to Hurricanes in the Gulf Coast, 1970-2005.
Logan, John R; Issar, Sukriti; Xu, Zengwang
2016-10-01
Hurricanes pose a continuing hazard to populations in coastal regions. This study estimates the impact of hurricanes on population change in the years 1970-2005 in the U.S. Gulf Coast region. Geophysical models are used to construct a unique data set that simulates the spatial extent and intensity of wind damage and storm surge from the 32 hurricanes that struck the region in this period. Multivariate spatial time-series models are used to estimate the impacts of hurricanes on population change. Population growth is found to be reduced significantly for up to three successive years after counties experience wind damage, particularly at higher levels of damage. Storm surge is associated with reduced population growth in the year after the hurricane. Model extensions show that change in the white and young adult population is more immediately and strongly affected than is change for blacks and elderly residents. Negative effects on population are stronger in counties with lower poverty rates. The differentiated impact of hurricanes on different population groups is interpreted as segmented withdrawal-a form of segmented resilience in which advantaged population groups are more likely to move out of or avoid moving into harm's way while socially vulnerable groups have fewer choices.
Trapped in Place? Segmented Resilience to Hurricanes in the Gulf Coast, 1970–2005
Logan, John R.; Issar, Sukriti; Xu, Zengwang
2016-01-01
Hurricanes pose a continuing hazard to populations in coastal regions. This study estimates the impact of hurricanes on population change in the years 1970–2005 in the U.S. Gulf Coast region. Geophysical models are used to construct a unique data set that simulates the spatial extent and intensity of wind damage and storm surge from the 32 hurricanes that struck the region in this period. Multivariate spatial time-series models are used to estimate the impacts of hurricanes on population change. Population growth is found to be reduced significantly for up to three successive years after counties experience wind damage, particularly at higher levels of damage. Storm surge is associated with reduced population growth in the year after the hurricane. Model extensions show that change in the white and young adult population is more immediately and strongly affected than is change for blacks and elderly residents. Negative effects on population are stronger in counties with lower poverty rates. The differentiated impact of hurricanes on different population groups is interpreted as segmented withdrawal—a form of segmented resilience in which advantaged population groups are more likely to move out of or avoid moving into harm’s way while socially vulnerable groups have fewer choices. PMID:27531504
3D Texture Features Mining for MRI Brain Tumor Identification
NASA Astrophysics Data System (ADS)
Rahim, Mohd Shafry Mohd; Saba, Tanzila; Nayer, Fatima; Syed, Afraz Zahra
2014-03-01
Medical image segmentation is a process to extract region of interest and to divide an image into its individual meaningful, homogeneous components. Actually, these components will have a strong relationship with the objects of interest in an image. For computer-aided diagnosis and therapy process, medical image segmentation is an initial mandatory step. Medical image segmentation is a sophisticated and challenging task because of the sophisticated nature of the medical images. Indeed, successful medical image analysis heavily dependent on the segmentation accuracy. Texture is one of the major features to identify region of interests in an image or to classify an object. 2D textures features yields poor classification results. Hence, this paper represents 3D features extraction using texture analysis and SVM as segmentation technique in the testing methodologies.
A Bayesian Approach for Image Segmentation with Shape Priors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Hang; Yang, Qing; Parvin, Bahram
2008-06-20
Color and texture have been widely used in image segmentation; however, their performance is often hindered by scene ambiguities, overlapping objects, or missingparts. In this paper, we propose an interactive image segmentation approach with shape prior models within a Bayesian framework. Interactive features, through mouse strokes, reduce ambiguities, and the incorporation of shape priors enhances quality of the segmentation where color and/or texture are not solely adequate. The novelties of our approach are in (i) formulating the segmentation problem in a well-de?ned Bayesian framework with multiple shape priors, (ii) ef?ciently estimating parameters of the Bayesian model, and (iii) multi-object segmentationmore » through user-speci?ed priors. We demonstrate the effectiveness of our method on a set of natural and synthetic images.« less
A Manual Segmentation Tool for Three-Dimensional Neuron Datasets.
Magliaro, Chiara; Callara, Alejandro L; Vanello, Nicola; Ahluwalia, Arti
2017-01-01
To date, automated or semi-automated software and algorithms for segmentation of neurons from three-dimensional imaging datasets have had limited success. The gold standard for neural segmentation is considered to be the manual isolation performed by an expert. To facilitate the manual isolation of complex objects from image stacks, such as neurons in their native arrangement within the brain, a new Manual Segmentation Tool (ManSegTool) has been developed. ManSegTool allows user to load an image stack, scroll down the images and to manually draw the structures of interest stack-by-stack. Users can eliminate unwanted regions or split structures (i.e., branches from different neurons that are too close each other, but, to the experienced eye, clearly belong to a unique cell), to view the object in 3D and save the results obtained. The tool can be used for testing the performance of a single-neuron segmentation algorithm or to extract complex objects, where the available automated methods still fail. Here we describe the software's main features and then show an example of how ManSegTool can be used to segment neuron images acquired using a confocal microscope. In particular, expert neuroscientists were asked to segment different neurons from which morphometric variables were subsequently extracted as a benchmark for precision. In addition, a literature-defined index for evaluating the goodness of segmentation was used as a benchmark for accuracy. Neocortical layer axons from a DIADEM challenge dataset were also segmented with ManSegTool and compared with the manual "gold-standard" generated for the competition.
Multilevel analysis of sports video sequences
NASA Astrophysics Data System (ADS)
Han, Jungong; Farin, Dirk; de With, Peter H. N.
2006-01-01
We propose a fully automatic and flexible framework for analysis and summarization of tennis broadcast video sequences, using visual features and specific game-context knowledge. Our framework can analyze a tennis video sequence at three levels, which provides a broad range of different analysis results. The proposed framework includes novel pixel-level and object-level tennis video processing algorithms, such as a moving-player detection taking both the color and the court (playing-field) information into account, and a player-position tracking algorithm based on a 3-D camera model. Additionally, we employ scene-level models for detecting events, like service, base-line rally and net-approach, based on a number real-world visual features. The system can summarize three forms of information: (1) all court-view playing frames in a game, (2) the moving trajectory and real-speed of each player, as well as relative position between the player and the court, (3) the semantic event segments in a game. The proposed framework is flexible in choosing the level of analysis that is desired. It is effective because the framework makes use of several visual cues obtained from the real-world domain to model important events like service, thereby increasing the accuracy of the scene-level analysis. The paper presents attractive experimental results highlighting the system efficiency and analysis capabilities.
Spectral Skyline Separation: Extended Landmark Databases and Panoramic Imaging
Differt, Dario; Möller, Ralf
2016-01-01
Evidence from behavioral experiments suggests that insects use the skyline as a cue for visual navigation. However, changes of lighting conditions, over hours, days or possibly seasons, significantly affect the appearance of the sky and ground objects. One possible solution to this problem is to extract the “skyline” by an illumination-invariant classification of the environment into two classes, ground objects and sky. In a previous study (Insect models of illumination-invariant skyline extraction from UV (ultraviolet) and green channels), we examined the idea of using two different color channels available for many insects (UV and green) to perform this segmentation. We found out that for suburban scenes in temperate zones, where the skyline is dominated by trees and artificial objects like houses, a “local” UV segmentation with adaptive thresholds applied to individual images leads to the most reliable classification. Furthermore, a “global” segmentation with fixed thresholds (trained on an image dataset recorded over several days) using UV-only information is only slightly worse compared to using both the UV and green channel. In this study, we address three issues: First, to enhance the limited range of environments covered by the dataset collected in the previous study, we gathered additional data samples of skylines consisting of minerals (stones, sand, earth) as ground objects. We could show that also for mineral-rich environments, UV-only segmentation achieves a quality comparable to multi-spectral (UV and green) segmentation. Second, we collected a wide variety of ground objects to examine their spectral characteristics under different lighting conditions. On the one hand, we found that the special case of diffusely-illuminated minerals increases the difficulty to reliably separate ground objects from the sky. On the other hand, the spectral characteristics of this collection of ground objects covers well with the data collected in the skyline databases, increasing, due to the increased variety of ground objects, the validity of our findings for novel environments. Third, we collected omnidirectional images, as often used for visual navigation tasks, of skylines using an UV-reflective hyperbolic mirror. We could show that “local” separation techniques can be adapted to the use of panoramic images by splitting the image into segments and finding individual thresholds for each segment. Contrarily, this is not possible for ‘global’ separation techniques. PMID:27690053
Real Objects Can Impede Conditional Reasoning but Augmented Objects Do Not.
Sato, Yuri; Sugimoto, Yutaro; Ueda, Kazuhiro
2018-03-01
In this study, Knauff and Johnson-Laird's (2002) visual impedance hypothesis (i.e., mental representations with irrelevant visual detail can impede reasoning) is applied to the domain of external representations and diagrammatic reasoning. We show that the use of real objects and augmented real (AR) objects can control human interpretation and reasoning about conditionals. As participants made inferences (e.g., an invalid one from "if P then Q" to "P"), they also moved objects corresponding to premises. Participants who moved real objects made more invalid inferences than those who moved AR objects and those who did not manipulate objects (there was no significant difference between the last two groups). Our results showed that real objects impeded conditional reasoning, but AR objects did not. These findings are explained by the fact that real objects may over-specify a single state that exists, while AR objects suggest multiple possibilities. Copyright © 2017 Cognitive Science Society, Inc.
A Regions of Confidence Based Approach to Enhance Segmentation with Shape Priors.
Appia, Vikram V; Ganapathy, Balaji; Abufadel, Amer; Yezzi, Anthony; Faber, Tracy
2010-01-18
We propose an improved region based segmentation model with shape priors that uses labels of confidence/interest to exclude the influence of certain regions in the image that may not provide useful information for segmentation. These could be regions in the image which are expected to have weak, missing or corrupt edges or they could be regions in the image which the user is not interested in segmenting, but are part of the object being segmented. In the training datasets, along with the manual segmentations we also generate an auxiliary map indicating these regions of low confidence/interest. Since, all the training images are acquired under similar conditions, we can train our algorithm to estimate these regions as well. Based on this training we will generate a map which indicates the regions in the image that are likely to contain no useful information for segmentation. We then use a parametric model to represent the segmenting curve as a combination of shape priors obtained by representing the training data as a collection of signed distance functions. We evolve an objective energy functional to evolve the global parameters that are used to represent the curve. We vary the influence each pixel has on the evolution of these parameters based on the confidence/interest label. When we use these labels to indicate the regions with low confidence; the regions containing accurate edges will have a dominant role in the evolution of the curve and the segmentation in the low confidence regions will be approximated based on the training data. Since our model evolves global parameters, it improves the segmentation even in the regions with accurate edges. This is because we eliminate the influence of the low confidence regions which may mislead the final segmentation. Similarly when we use the labels to indicate the regions which are not of importance, we will get a better segmentation of the object in the regions we are interested in.
Bilayer segmentation of webcam videos using tree-based classifiers.
Yin, Pei; Criminisi, Antonio; Winn, John; Essa, Irfan
2011-01-01
This paper presents an automatic segmentation algorithm for video frames captured by a (monocular) webcam that closely approximates depth segmentation from a stereo camera. The frames are segmented into foreground and background layers that comprise a subject (participant) and other objects and individuals. The algorithm produces correct segmentations even in the presence of large background motion with a nearly stationary foreground. This research makes three key contributions: First, we introduce a novel motion representation, referred to as "motons," inspired by research in object recognition. Second, we propose estimating the segmentation likelihood from the spatial context of motion. The estimation is efficiently learned by random forests. Third, we introduce a general taxonomy of tree-based classifiers that facilitates both theoretical and experimental comparisons of several known classification algorithms and generates new ones. In our bilayer segmentation algorithm, diverse visual cues such as motion, motion context, color, contrast, and spatial priors are fused by means of a conditional random field (CRF) model. Segmentation is then achieved by binary min-cut. Experiments on many sequences of our videochat application demonstrate that our algorithm, which requires no initialization, is effective in a variety of scenes, and the segmentation results are comparable to those obtained by stereo systems.
Sparse intervertebral fence composition for 3D cervical vertebra segmentation
NASA Astrophysics Data System (ADS)
Liu, Xinxin; Yang, Jian; Song, Shuang; Cong, Weijian; Jiao, Peifeng; Song, Hong; Ai, Danni; Jiang, Yurong; Wang, Yongtian
2018-06-01
Statistical shape models are capable of extracting shape prior information, and are usually utilized to assist the task of segmentation of medical images. However, such models require large training datasets in the case of multi-object structures, and it also is difficult to achieve satisfactory results for complex shapes. This study proposed a novel statistical model for cervical vertebra segmentation, called sparse intervertebral fence composition (SiFC), which can reconstruct the boundary between adjacent vertebrae by modeling intervertebral fences. The complex shape of the cervical spine is replaced by a simple intervertebral fence, which considerably reduces the difficulty of cervical segmentation. The final segmentation results are obtained by using a 3D active contour deformation model without shape constraint, which substantially enhances the recognition capability of the proposed method for objects with complex shapes. The proposed segmentation framework is tested on a dataset with CT images from 20 patients. A quantitative comparison against corresponding reference vertebral segmentation yields an overall mean absolute surface distance of 0.70 mm and a dice similarity index of 95.47% for cervical vertebral segmentation. The experimental results show that the SiFC method achieves competitive cervical vertebral segmentation performances, and completely eliminates inter-process overlap.
Shadow detection of moving objects based on multisource information in Internet of things
NASA Astrophysics Data System (ADS)
Ma, Zhen; Zhang, De-gan; Chen, Jie; Hou, Yue-xian
2017-05-01
Moving object detection is an important part in intelligent video surveillance under the banner of Internet of things. The detection of moving target's shadow is also an important step in moving object detection. On the accuracy of shadow detection will affect the detection results of the object directly. Based on the variety of shadow detection method, we find that only using one feature can't make the result of detection accurately. Then we present a new method for shadow detection which contains colour information, the invariance of optical and texture feature. Through the comprehensive analysis of the detecting results of three kinds of information, the shadow was effectively determined. It gets ideal effect in the experiment when combining advantages of various methods.
Automatically tracking neurons in a moving and deforming brain
Nguyen, Jeffrey P.; Linder, Ashley N.; Plummer, George S.; Shaevitz, Joshua W.
2017-01-01
Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal’s brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches. PMID:28545068
Automatically tracking neurons in a moving and deforming brain.
Nguyen, Jeffrey P; Linder, Ashley N; Plummer, George S; Shaevitz, Joshua W; Leifer, Andrew M
2017-05-01
Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal's brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.
Localized Segment Based Processing for Automatic Building Extraction from LiDAR Data
NASA Astrophysics Data System (ADS)
Parida, G.; Rajan, K. S.
2017-05-01
The current methods of object segmentation and extraction and classification of aerial LiDAR data is manual and tedious task. This work proposes a technique for object segmentation out of LiDAR data. A bottom-up geometric rule based approach was used initially to devise a way to segment buildings out of the LiDAR datasets. For curved wall surfaces, comparison of localized surface normals was done to segment buildings. The algorithm has been applied to both synthetic datasets as well as real world dataset of Vaihingen, Germany. Preliminary results show successful segmentation of the buildings objects from a given scene in case of synthetic datasets and promissory results in case of real world data. The advantages of the proposed work is non-dependence on any other form of data required except LiDAR. It is an unsupervised method of building segmentation, thus requires no model training as seen in supervised techniques. It focuses on extracting the walls of the buildings to construct the footprint, rather than focussing on roof. The focus on extracting the wall to reconstruct the buildings from a LiDAR scene is crux of the method proposed. The current segmentation approach can be used to get 2D footprints of the buildings, with further scope to generate 3D models. Thus, the proposed method can be used as a tool to get footprints of buildings in urban landscapes, helping in urban planning and the smart cities endeavour.
A Fully Automated Method to Detect and Segment a Manufactured Object in an Underwater Color Image
NASA Astrophysics Data System (ADS)
Barat, Christian; Phlypo, Ronald
2010-12-01
We propose a fully automated active contours-based method for the detection and the segmentation of a moored manufactured object in an underwater image. Detection of objects in underwater images is difficult due to the variable lighting conditions and shadows on the object. The proposed technique is based on the information contained in the color maps and uses the visual attention method, combined with a statistical approach for the detection and an active contour for the segmentation of the object to overcome the above problems. In the classical active contour method the region descriptor is fixed and the convergence of the method depends on the initialization. With our approach, this dependence is overcome with an initialization using the visual attention results and a criterion to select the best region descriptor. This approach improves the convergence and the processing time while providing the advantages of a fully automated method.
Unsupervised segmentation with dynamical units.
Rao, A Ravishankar; Cecchi, Guillermo A; Peck, Charles C; Kozloski, James R
2008-01-01
In this paper, we present a novel network to separate mixtures of inputs that have been previously learned. A significant capability of the network is that it segments the components of each input object that most contribute to its classification. The network consists of amplitude-phase units that can synchronize their dynamics, so that separation is determined by the amplitude of units in an output layer, and segmentation by phase similarity between input and output layer units. Learning is unsupervised and based on a Hebbian update, and the architecture is very simple. Moreover, efficient segmentation can be achieved even when there is considerable superposition of the inputs. The network dynamics are derived from an objective function that rewards sparse coding in the generalized amplitude-phase variables. We argue that this objective function can provide a possible formal interpretation of the binding problem and that the implementation of the network architecture and dynamics is biologically plausible.
1992-02-16
3 0 B. Cost Accounting Standard 418 ..................................................... 3 1 1. D efinitio n s ...objective" as an activity for which a separate measurement of cost is desired. C. Horngren , Cost Accounting . A Managerial Emphasis 21 (5th ed. 1982...Segments and Business Unit General and Administrative Expenses to Final Cost Objectives 6. AUTHOR( S ) Stephen Thomas Lynch, Major 7. PERFORMING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worm, Esben S., E-mail: esbeworm@rm.dk; Department of Medical Physics, Aarhus University Hospital, Aarhus; Hoyer, Morten
2012-05-01
Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensionalmore » marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of trajectory estimation from CBCT projections for precise setup in stereotactic body radiotherapy was demonstrated. Uncertainty in the conventional CBCT-based setup procedure was eliminated with the new method.« less
Localization and tracking of moving objects in two-dimensional space by echolocation.
Matsuo, Ikuo
2013-02-01
Bats use frequency-modulated echolocation to identify and capture moving objects in real three-dimensional space. Experimental evidence indicates that bats are capable of locating static objects with a range accuracy of less than 1 μs. A previously introduced model estimates ranges of multiple, static objects using linear frequency modulation (LFM) sound and Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates. The delay time for a single object was estimated with an accuracy of about 1.3 μs by measuring the echo at a low signal-to-noise ratio (SNR). The range accuracy was dependent not only on the SNR but also the Doppler shift, which was dependent on the movements. However, it was unclear whether this model could estimate the moving object range at each timepoint. In this study, echoes were measured from the rotating pole at two receiving points by intermittently emitting LFM sounds. The model was shown to localize moving objects in two-dimensional space by accurately estimating the object's range at each timepoint.
Interactive tele-radiological segmentation systems for treatment and diagnosis.
Zimeras, S; Gortzis, L G
2012-01-01
Telehealth is the exchange of health information and the provision of health care services through electronic information and communications technology, where participants are separated by geographic, time, social and cultural barriers. The shift of telemedicine from desktop platforms to wireless and mobile technologies is likely to have a significant impact on healthcare in the future. It is therefore crucial to develop a general information exchange e-medical system to enables its users to perform online and offline medical consultations through diagnosis. During the medical diagnosis, image analysis techniques combined with doctor's opinions could be useful for final medical decisions. Quantitative analysis of digital images requires detection and segmentation of the borders of the object of interest. In medical images, segmentation has traditionally been done by human experts. Even with the aid of image processing software (computer-assisted segmentation tools), manual segmentation of 2D and 3D CT images is tedious, time-consuming, and thus impractical, especially in cases where a large number of objects must be specified. Substantial computational and storage requirements become especially acute when object orientation and scale have to be considered. Therefore automated or semi-automated segmentation techniques are essential if these software applications are ever to gain widespread clinical use. The main purpose of this work is to analyze segmentation techniques for the definition of anatomical structures under telemedical systems.
High Tech High School Interns Develop a Mid-Ocean Ridge Database for Research and Education
NASA Astrophysics Data System (ADS)
Staudigel, D.; Delaney, R.; Staudigel, H.; Koppers, A. A.; Miller, S. P.
2004-12-01
Mid-ocean ridges (MOR) represent one of the most important geographical and geological features on planet Earth. MORs are the locations where plates spread apart, they are the locations of the majority of the Earths' volcanoes that harbor some of the most extreme life forms. These concepts attract much research, but mid-ocean ridges are still effectively underrepresented in the Earth science class rooms. As two High Tech High School students, we began an internship at Scripps to develop a database for mid-ocean ridges as a resource for science and education. This Ridge Catalog will be accessible via http://earthref.org/databases/RC/ and applies a similar structure, design and data archival principle as the Seamount Catalog under EarthRef.org. Major research goals of this project include the development of (1) an archival structure for multibeam and sidescan data, standard bathymetric maps (including ODP-DSDP drill site and dredge locations) or any other arbitrary digital objects relating to MORs, and (2) to compile a global data set for some of the most defining characteristics of every ridge segment including ridge segment length, depth and azimuth and half spreading rates. One of the challenges included the need of making MOR data useful to the scientist as well as the teacher in the class room. Since the basic structure follows the design of the Seamount Catalog closely, we could move our attention to the basic data population of the database. We have pulled together multibeam data for the MOR segments from various public archives (SIOExplorer, SIO-GDC, NGDC, Lamont), and pre-processed it for public use. In particular, we have created individual bathymetric maps for each ridge segment, while merging the multibeam data with global satellite bathymetry data from Smith & Sandwell (1997). The global scale of this database will give it the ability to be used for any number of applications, from cruise planning to data
Numerical Predictions of Sonic Boom Signatures for a Straight Line Segmented Leading Edge Model
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa A.; Wilcox, Floyd J.; Cliff, Susan; Thomas, Scott
2012-01-01
A sonic boom wind tunnel test was conducted on a straight-line segmented leading edge (SLSLE) model in the NASA Langley 4- by 4- Foot Unitary Plan Wind Tunnel (UPWT). The purpose of the test was to determine whether accurate sonic boom measurements could be obtained while continuously moving the SLSLE model past a conical pressure probe. Sonic boom signatures were also obtained using the conventional move-pause data acquisition method for comparison. The continuous data acquisition approach allows for accurate signatures approximately 15 times faster than a move-pause technique. These successful results provide an incentive for future testing with greatly increased efficiency using the continuous model translation technique with the single probe to measure sonic boom signatures. Two widely used NASA codes, USM3D (Navier-Stokes) and CART3D-AERO (Euler, adjoint-based adaptive mesh), were used to compute off-body sonic boom pressure signatures of the SLSLE model at several different altitudes below the model at Mach 2.0. The computed pressure signatures compared well with wind tunnel data. The effect of the different altitude for signature extraction was evaluated by extrapolating the near field signatures to the ground and comparing pressure signatures and sonic boom loudness levels.
Kokki, Tommi; Sipilä, Hannu T; Teräs, Mika; Noponen, Tommi; Durand-Schaefer, Nicolas; Klén, Riku; Knuuti, Juhani
2010-01-01
In PET imaging respiratory and cardiac contraction motions interfere the imaging of heart. The aim was to develop and evaluate dual gating method for improving the detection of small targets of the heart. The method utilizes two independent triggers which are sent periodically into list mode data based on respiratory and ECG cycles. An algorithm for generating dual gated segments from list mode data was developed. The test measurements showed that rotational and axial movements of point source can be separated spatially to different segments with well-defined borders. The effect of dual gating on detection of small moving targets was tested with a moving heart phantom. Dual gated images showed 51% elimination (3.6 mm out of 7.0 mm) of contraction motion of hot spot (diameter 3 mm) and 70% elimination (14 mm out of 20 mm) of respiratory motion. Averaged activity value of hot spot increases by 89% when comparing to non-gated images. Patient study of suspected cardiac sarcoidosis shows sharper spatial myocardial uptake profile and improved detection of small myocardial structures such as papillary muscles. The dual gating method improves detection of small moving targets in a phantom and it is feasible in clinical situations.
Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging.
Bavo, A M; Pouch, A M; Degroote, J; Vierendeels, J; Gorman, J H; Gorman, R C; Segers, P
2016-09-09
The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics.
Come Together, Right Now: Dynamic Overwriting of an Object’s History through Common Fate
Luria, Roy; Vogel, Edward K.
2015-01-01
The objects around us constantly move and interact, and the perceptual system needs to monitor on-line these interactions and to update the object’s status accordingly. Gestalt grouping principles, such as proximity and common fate, play a fundamental role in how we perceive and group these objects. Here, we investigated situations in which the initial object representation as a separate item was updated by a subsequent Gestalt grouping cue (i.e., proximity or common fate). We used a version of the color change detection paradigm, in which the objects started to move separately, then met and stayed stationary, or moved separately, met, and then continued to move together. We monitored the object representations on-line using the contralateral delay activity (CDA; an ERP component indicative of the number of maintained objects), during their movement, and after the objects disappeared and became working memory representations. The results demonstrated that the objects’ representations (as indicated by the CDA amplitude) persisted as being separate, even after a Gestalt proximity cue (when the objects “met” and remained stationary on the same position). Only a strong common fate Gestalt cue (when the objects not just met but also moved together) was able to override the objects’ initial separate status, creating an integrated representation. These results challenge the view that Gestalt principles cause reflexive grouping. Instead, the object initial representation plays an important role that can override even powerful grouping cues. PMID:24564468
A knowledge-based object recognition system for applications in the space station
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.
1988-01-01
A knowledge-based three-dimensional (3D) object recognition system is being developed. The system uses primitive-based hierarchical relational and structural matching for the recognition of 3D objects in the two-dimensional (2D) image for interpretation of the 3D scene. At present, the pre-processing, low-level preliminary segmentation, rule-based segmentation, and the feature extraction are completed. The data structure of the primitive viewing knowledge-base (PVKB) is also completed. Algorithms and programs based on attribute-trees matching for decomposing the segmented data into valid primitives were developed. The frame-based structural and relational descriptions of some objects were created and stored in a knowledge-base. This knowledge-base of the frame-based descriptions were developed on the MICROVAX-AI microcomputer in LISP environment. The simulated 3D scene of simple non-overlapping objects as well as real camera data of images of 3D objects of low-complexity have been successfully interpreted.
Biophysics of object segmentation in a collision-detecting neuron
Dewell, Richard Burkett
2018-01-01
Collision avoidance is critical for survival, including in humans, and many species possess visual neurons exquisitely sensitive to objects approaching on a collision course. Here, we demonstrate that a collision-detecting neuron can detect the spatial coherence of a simulated impending object, thereby carrying out a computation akin to object segmentation critical for proper escape behavior. At the cellular level, object segmentation relies on a precise selection of the spatiotemporal pattern of synaptic inputs by dendritic membrane potential-activated channels. One channel type linked to dendritic computations in many neural systems, the hyperpolarization-activated cation channel, HCN, plays a central role in this computation. Pharmacological block of HCN channels abolishes the neuron's spatial selectivity and impairs the generation of visually guided escape behaviors, making it directly relevant to survival. Additionally, our results suggest that the interaction of HCN and inactivating K+ channels within active dendrites produces neuronal and behavioral object specificity by discriminating between complex spatiotemporal synaptic activation patterns. PMID:29667927
Automatic segmentation of bones from digital hand radiographs
NASA Astrophysics Data System (ADS)
Liu, Brent J.; Taira, Ricky K.; Shim, Hyeonjoon; Keaton, Patricia
1995-05-01
The purpose of this paper is to develop a robust and accurate method that automatically segments phalangeal and epiphyseal bones from digital pediatric hand radiographs exhibiting various stages of growth. The algorithm uses an object-oriented approach comprising several stages beginning with the most general objects to be segmented, such as the outline of the hand from background, and proceeding in a succession of stages to the most specific object, such as a specific phalangeal bone from a digit of the hand. Each stage carries custom operators unique to the needs of that specific stage which will aid in more accurate results. The method is further aided by a knowledge base where all model contours and other information such as age, race, and sex, are stored. Shape models, 1-D wrist profiles, as well as an interpretation tree are used to map model and data contour segments. Shape analysis is performed using an arc-length orientation transform. The method is tested on close to 340 phalangeal and epiphyseal objects to be segmented from 17 cases of pediatric hand images obtained from our clinical PACS. Patient age ranges from 2 - 16 years. A pediatric radiologist preliminarily assessed the results of the object contours and were found to be accurate to within 95% for cases with non-fused bones and to within 85% for cases with fused bones. With accurate and robust results, the method can be applied toward areas such as the determination of bone age, the development of a normal hand atlas, and the characterization of many congenital and acquired growth diseases. Furthermore, this method's architecture can be applied to other image segmentation problems.
Moving Object Detection on a Vehicle Mounted Back-Up Camera
Kim, Dong-Sun; Kwon, Jinsan
2015-01-01
In the detection of moving objects from vision sources one usually assumes that the scene has been captured by stationary cameras. In case of backing up a vehicle, however, the camera mounted on the vehicle moves according to the vehicle’s movement, resulting in ego-motions on the background. This results in mixed motion in the scene, and makes it difficult to distinguish between the target objects and background motions. Without further treatments on the mixed motion, traditional fixed-viewpoint object detection methods will lead to many false-positive detection results. In this paper, we suggest a procedure to be used with the traditional moving object detection methods relaxing the stationary cameras restriction, by introducing additional steps before and after the detection. We also decribe the implementation as a FPGA platform along with the algorithm. The target application of this suggestion is use with a road vehicle’s rear-view camera systems. PMID:26712761
Li, Heng; Su, Xiaofan; Wang, Jing; Kan, Han; Han, Tingting; Zeng, Yajie; Chai, Xinyu
2018-01-01
Current retinal prostheses can only generate low-resolution visual percepts constituted of limited phosphenes which are elicited by an electrode array and with uncontrollable color and restricted grayscale. Under this visual perception, prosthetic recipients can just complete some simple visual tasks, but more complex tasks like face identification/object recognition are extremely difficult. Therefore, it is necessary to investigate and apply image processing strategies for optimizing the visual perception of the recipients. This study focuses on recognition of the object of interest employing simulated prosthetic vision. We used a saliency segmentation method based on a biologically plausible graph-based visual saliency model and a grabCut-based self-adaptive-iterative optimization framework to automatically extract foreground objects. Based on this, two image processing strategies, Addition of Separate Pixelization and Background Pixel Shrink, were further utilized to enhance the extracted foreground objects. i) The results showed by verification of psychophysical experiments that under simulated prosthetic vision, both strategies had marked advantages over Direct Pixelization in terms of recognition accuracy and efficiency. ii) We also found that recognition performance under two strategies was tied to the segmentation results and was affected positively by the paired-interrelated objects in the scene. The use of the saliency segmentation method and image processing strategies can automatically extract and enhance foreground objects, and significantly improve object recognition performance towards recipients implanted a high-density implant. Copyright © 2017 Elsevier B.V. All rights reserved.
Fast automated segmentation of multiple objects via spatially weighted shape learning
NASA Astrophysics Data System (ADS)
Chandra, Shekhar S.; Dowling, Jason A.; Greer, Peter B.; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart
2016-11-01
Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice’s similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.
Fast automated segmentation of multiple objects via spatially weighted shape learning.
Chandra, Shekhar S; Dowling, Jason A; Greer, Peter B; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart
2016-11-21
Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice's similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.
Video segmentation using keywords
NASA Astrophysics Data System (ADS)
Ton-That, Vinh; Vong, Chi-Tai; Nguyen-Dao, Xuan-Truong; Tran, Minh-Triet
2018-04-01
At DAVIS-2016 Challenge, many state-of-art video segmentation methods achieve potential results, but they still much depend on annotated frames to distinguish between background and foreground. It takes a lot of time and efforts to create these frames exactly. In this paper, we introduce a method to segment objects from video based on keywords given by user. First, we use a real-time object detection system - YOLOv2 to identify regions containing objects that have labels match with the given keywords in the first frame. Then, for each region identified from the previous step, we use Pyramid Scene Parsing Network to assign each pixel as foreground or background. These frames can be used as input frames for Object Flow algorithm to perform segmentation on entire video. We conduct experiments on a subset of DAVIS-2016 dataset in half the size of its original size, which shows that our method can handle many popular classes in PASCAL VOC 2012 dataset with acceptable accuracy, about 75.03%. We suggest widely testing by combining other methods to improve this result in the future.
NASA Astrophysics Data System (ADS)
Baumann, Sebastian; Robl, Jörg; Wendt, Lorenz; Willingshofer, Ernst; Hilberg, Sylke
2016-04-01
Automated lineament analysis on remotely sensed data requires two general process steps: The identification of neighboring pixels showing high contrast and the conversion of these domains into lines. The target output is the lineaments' position, extent and orientation. We developed a lineament extraction tool programmed in R using digital elevation models as input data to generate morphological lineaments defined as follows: A morphological lineament represents a zone of high relief roughness, whose length significantly exceeds the width. As relief roughness any deviation from a flat plane, defined by a roughness threshold, is considered. In our novel approach a multi-directional and multi-scale roughness filter uses moving windows of different neighborhood sizes to identify threshold limited rough domains on digital elevation models. Surface roughness is calculated as the vertical elevation difference between the center cell and the different orientated straight lines connecting two edge cells of a neighborhood, divided by the horizontal distance of the edge cells. Thus multiple roughness values depending on the neighborhood sizes and orientations of the edge connecting lines are generated for each cell and their maximum and minimum values are extracted. Thereby negative signs of the roughness parameter represent concave relief structures as valleys, positive signs convex relief structures as ridges. A threshold defines domains of high relief roughness. These domains are thinned to a representative point pattern by a 3x3 neighborhood filter, highlighting maximum and minimum roughness peaks, and representing the center points of lineament segments. The orientation and extent of the lineament segments are calculated within the roughness domains, generating a straight line segment in the direction of least roughness differences. We tested our algorithm on digital elevation models of multiple sources and scales and compared the results visually with shaded relief map of these digital elevation models. The lineament segments trace the relief structure to a great extent and the calculated roughness parameter represents the physical geometry of the digital elevation model. Modifying the threshold for the surface roughness value highlights different distinct relief structures. Also the neighborhood size at which lineament segments are detected correspond with the width of the surface structure and may be a useful additional parameter for further analysis. The discrimination of concave and convex relief structures perfectly matches with valleys and ridges of the surface.
System and method for moving a probe to follow movements of tissue
NASA Technical Reports Server (NTRS)
Feldstein, C.; Andrews, T. W.; Crawford, D. W.; Cole, M. A. (Inventor)
1981-01-01
An apparatus is described for moving a probe that engages moving living tissue such as a heart or an artery that is penetrated by the probe, which moves the probe in synchronism with the tissue to maintain the probe at a constant location with respect to the tissue. The apparatus includes a servo positioner which moves a servo member to maintain a constant distance from a sensed object while applying very little force to the sensed object, and a follower having a stirrup at one end resting on a surface of the living tissue and another end carrying a sensed object adjacent to the servo member. A probe holder has one end mounted on the servo member and another end which holds the probe.
Color Improves Speed of Processing But Not Perception in a Motion Illusion
Perry, Carolyn J.; Fallah, Mazyar
2012-01-01
When two superimposed surfaces of dots move in different directions, the perceived directions are shifted away from each other. This perceptual illusion has been termed direction repulsion and is thought to be due to mutual inhibition between the representations of the two directions. It has further been shown that a speed difference between the two surfaces attenuates direction repulsion. As speed and direction are both necessary components of representing motion, the reduction in direction repulsion can be attributed to the additional motion information strengthening the representations of the two directions and thus reducing the mutual inhibition. We tested whether bottom-up attention and top-down task demands, in the form of color differences between the two surfaces, would also enhance motion processing, reducing direction repulsion. We found that the addition of color differences did not improve direction discrimination and reduce direction repulsion. However, we did find that adding a color difference improved performance on the task. We hypothesized that the performance differences were due to the limited presentation time of the stimuli. We tested this in a follow-up experiment where we varied the time of presentation to determine the duration needed to successfully perform the task with and without the color difference. As we expected, color segmentation reduced the amount of time needed to process and encode both directions of motion. Thus we find a dissociation between the effects of attention on the speed of processing and conscious perception of direction. We propose four potential mechanisms wherein color speeds figure-ground segmentation of an object, attentional switching between objects, direction discrimination and/or the accumulation of motion information for decision-making, without affecting conscious perception of the direction. Potential neural bases are also explored. PMID:22479255
Color improves speed of processing but not perception in a motion illusion.
Perry, Carolyn J; Fallah, Mazyar
2012-01-01
When two superimposed surfaces of dots move in different directions, the perceived directions are shifted away from each other. This perceptual illusion has been termed direction repulsion and is thought to be due to mutual inhibition between the representations of the two directions. It has further been shown that a speed difference between the two surfaces attenuates direction repulsion. As speed and direction are both necessary components of representing motion, the reduction in direction repulsion can be attributed to the additional motion information strengthening the representations of the two directions and thus reducing the mutual inhibition. We tested whether bottom-up attention and top-down task demands, in the form of color differences between the two surfaces, would also enhance motion processing, reducing direction repulsion. We found that the addition of color differences did not improve direction discrimination and reduce direction repulsion. However, we did find that adding a color difference improved performance on the task. We hypothesized that the performance differences were due to the limited presentation time of the stimuli. We tested this in a follow-up experiment where we varied the time of presentation to determine the duration needed to successfully perform the task with and without the color difference. As we expected, color segmentation reduced the amount of time needed to process and encode both directions of motion. Thus we find a dissociation between the effects of attention on the speed of processing and conscious perception of direction. We propose four potential mechanisms wherein color speeds figure-ground segmentation of an object, attentional switching between objects, direction discrimination and/or the accumulation of motion information for decision-making, without affecting conscious perception of the direction. Potential neural bases are also explored.
NASA Astrophysics Data System (ADS)
Lato, M. J.; Frauenfelder, R.; Bühler, Y.
2012-09-01
Snow avalanches in mountainous areas pose a significant threat to infrastructure (roads, railways, energy transmission corridors), personal property (homes) and recreational areas as well as for lives of people living and moving in alpine terrain. The impacts of snow avalanches range from delays and financial loss through road and railway closures, destruction of property and infrastructure, to loss of life. Avalanche warnings today are mainly based on meteorological information, snow pack information, field observations, historically recorded avalanche events as well as experience and expert knowledge. The ability to automatically identify snow avalanches using Very High Resolution (VHR) optical remote sensing imagery has the potential to assist in the development of accurate, spatially widespread, detailed maps of zones prone to avalanches as well as to build up data bases of past avalanche events in poorly accessible regions. This would provide decision makers with improved knowledge of the frequency and size distributions of avalanches in such areas. We used an object-oriented image interpretation approach, which employs segmentation and classification methodologies, to detect recent snow avalanche deposits within VHR panchromatic optical remote sensing imagery. This produces avalanche deposit maps, which can be integrated with other spatial mapping and terrain data. The object-oriented approach has been tested and validated against manually generated maps in which avalanches are visually recognized and digitized. The accuracy (both users and producers) are over 0.9 with errors of commission less than 0.05. Future research is directed to widespread testing of the algorithm on data generated by various sensors and improvement of the algorithm in high noise regions as well as the mapping of avalanche paths alongside their deposits.
Detecting and Analyzing Multiple Moving Objects in Crowded Environments with Coherent Motion Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheriyadat, Anil M.
Understanding the world around us from large-scale video data requires vision systems that can perform automatic interpretation. While human eyes can unconsciously perceive independent objects in crowded scenes and other challenging operating environments, automated systems have difficulty detecting, counting, and understanding their behavior in similar scenes. Computer scientists at ORNL have a developed a technology termed as "Coherent Motion Region Detection" that invloves identifying multiple indepedent moving objects in crowded scenes by aggregating low-level motion cues extracted from moving objects. Humans and other species exploit such low-level motion cues seamlessely to perform perceptual grouping for visual understanding. The algorithm detectsmore » and tracks feature points on moving objects resulting in partial trajectories that span coherent 3D region in the space-time volume defined by the video. In the case of multi-object motion, many possible coherent motion regions can be constructed around the set of trajectories. The unique approach in the algorithm is to identify all possible coherent motion regions, then extract a subset of motion regions based on an innovative measure to automatically locate moving objects in crowded environments.The software reports snapshot of the object, count, and derived statistics ( count over time) from input video streams. The software can directly process videos streamed over the internet or directly from a hardware device (camera).« less
Jung, HaRim; Song, MoonBae; Youn, Hee Yong; Kim, Ung Mo
2015-01-01
A content-matched (CM) range monitoring query over moving objects continually retrieves the moving objects (i) whose non-spatial attribute values are matched to given non-spatial query values; and (ii) that are currently located within a given spatial query range. In this paper, we propose a new query indexing structure, called the group-aware query region tree (GQR-tree) for efficient evaluation of CM range monitoring queries. The primary role of the GQR-tree is to help the server leverage the computational capabilities of moving objects in order to improve the system performance in terms of the wireless communication cost and server workload. Through a series of comprehensive simulations, we verify the superiority of the GQR-tree method over the existing methods. PMID:26393613
Moving object detection and tracking in videos through turbulent medium
NASA Astrophysics Data System (ADS)
Halder, Kalyan Kumar; Tahtali, Murat; Anavatti, Sreenatha G.
2016-06-01
This paper addresses the problem of identifying and tracking moving objects in a video sequence having a time-varying background. This is a fundamental task in many computer vision applications, though a very challenging one because of turbulence that causes blurring and spatiotemporal movements of the background images. Our proposed approach involves two major steps. First, a moving object detection algorithm that deals with the detection of real motions by separating the turbulence-induced motions using a two-level thresholding technique is used. In the second step, a feature-based generalized regression neural network is applied to track the detected objects throughout the frames in the video sequence. The proposed approach uses the centroid and area features of the moving objects and creates the reference regions instantly by selecting the objects within a circle. Simulation experiments are carried out on several turbulence-degraded video sequences and comparisons with an earlier method confirms that the proposed approach provides a more effective tracking of the targets.
Online phase measuring profilometry for rectilinear moving object by image correction
NASA Astrophysics Data System (ADS)
Yuan, Han; Cao, Yi-Ping; Chen, Chen; Wang, Ya-Pin
2015-11-01
In phase measuring profilometry (PMP), the object must be static for point-to-point reconstruction with the captured deformed patterns. While the object is rectilinearly moving online, the size and pixel position differences of the object in different captured deformed patterns do not meet the point-to-point requirement. We propose an online PMP based on image correction to measure the three-dimensional shape of the rectilinear moving object. In the proposed method, the deformed patterns captured by a charge-coupled diode camera are reprojected from the oblique view to an aerial view first and then translated based on the feature points of the object. This method makes the object appear stationary in the deformed patterns. Experimental results show the feasibility and efficiency of the proposed method.
NASA Astrophysics Data System (ADS)
Chien, Kuang-Che Chang; Tu, Han-Yen; Hsieh, Ching-Huang; Cheng, Chau-Jern; Chang, Chun-Yen
2018-01-01
This study proposes a regional fringe analysis (RFA) method to detect the regions of a target object in captured shifted images to improve depth measurement in phase-shifting fringe projection profilometry (PS-FPP). In the RFA method, region-based segmentation is exploited to segment the de-fringed image of a target object, and a multi-level fuzzy-based classification with five presented features is used to analyze and discriminate the regions of an object from the segmented regions, which were associated with explicit fringe information. Then, in the experiment, the performance of the proposed method is tested and evaluated on 26 test cases made of five types of materials. The qualitative and quantitative results demonstrate that the proposed RFA method can effectively detect the desired regions of an object to improve depth measurement in the PS-FPP system.
Brain Activation during Spatial Updating and Attentive Tracking of Moving Targets
ERIC Educational Resources Information Center
Jahn, Georg; Wendt, Julia; Lotze, Martin; Papenmeier, Frank; Huff, Markus
2012-01-01
Keeping aware of the locations of objects while one is moving requires the updating of spatial representations. As long as the objects are visible, attentional tracking is sufficient, but knowing where objects out of view went in relation to one's own body involves an updating of spatial working memory. Here, multiple object tracking was employed…
NASA Astrophysics Data System (ADS)
Pipaud, Isabel; Lehmkuhl, Frank
2017-09-01
In the field of geomorphology, automated extraction and classification of landforms is one of the most active research areas. Until the late 2000s, this task has primarily been tackled using pixel-based approaches. As these methods consider pixels and pixel neighborhoods as the sole basic entities for analysis, they cannot account for the irregular boundaries of real-world objects. Object-based analysis frameworks emerging from the field of remote sensing have been proposed as an alternative approach, and were successfully applied in case studies falling in the domains of both general and specific geomorphology. In this context, the a-priori selection of scale parameters or bandwidths is crucial for the segmentation result, because inappropriate parametrization will either result in over-segmentation or insufficient segmentation. In this study, we describe a novel supervised method for delineation and classification of alluvial fans, and assess its applicability using a SRTM 1‧‧ DEM scene depicting a section of the north-eastern Mongolian Altai, located in northwest Mongolia. The approach is premised on the application of mean-shift segmentation and the use of a one-class support vector machine (SVM) for classification. To consider variability in terms of alluvial fan dimension and shape, segmentation is performed repeatedly for different weightings of the incorporated morphometric parameters as well as different segmentation bandwidths. The final classification layer is obtained by selecting, for each real-world object, the most appropriate segmentation result according to fuzzy membership values derived from the SVM classification. Our results show that mean-shift segmentation and SVM-based classification provide an effective framework for delineation and classification of a particular landform. Variable bandwidths and terrain parameter weightings were identified as being crucial for consideration of intra-class variability, and, in turn, for a constantly high segmentation quality. Our analysis further reveals that incorporation of morphometric parameters quantifying specific morphological aspects of a landform is indispensable for developing an accurate classification scheme. Alluvial fans exhibiting accentuated composite morphologies were identified as a major challenge for automatic delineation, as they cannot be fully captured by a single segmentation run. There is, however, a high probability that this shortcoming can be overcome by enhancing the presented approach with a routine merging fan sub-entities based on their spatial relationships.
BOSS: context-enhanced search for biomedical objects
2012-01-01
Background There exist many academic search solutions and most of them can be put on either ends of spectrum: general-purpose search and domain-specific "deep" search systems. The general-purpose search systems, such as PubMed, offer flexible query interface, but churn out a list of matching documents that users have to go through the results in order to find the answers to their queries. On the other hand, the "deep" search systems, such as PPI Finder and iHOP, return the precompiled results in a structured way. Their results, however, are often found only within some predefined contexts. In order to alleviate these problems, we introduce a new search engine, BOSS, Biomedical Object Search System. Methods Unlike the conventional search systems, BOSS indexes segments, rather than documents. A segment refers to a Maximal Coherent Semantic Unit (MCSU) such as phrase, clause or sentence that is semantically coherent in the given context (e.g., biomedical objects or their relations). For a user query, BOSS finds all matching segments, identifies the objects appearing in those segments, and aggregates the segments for each object. Finally, it returns the ranked list of the objects along with their matching segments. Results The working prototype of BOSS is available at http://boss.korea.ac.kr. The current version of BOSS has indexed abstracts of more than 20 million articles published during last 16 years from 1996 to 2011 across all science disciplines. Conclusion BOSS fills the gap between either ends of the spectrum by allowing users to pose context-free queries and by returning a structured set of results. Furthermore, BOSS exhibits the characteristic of good scalability, just as with conventional document search engines, because it is designed to use a standard document-indexing model with minimal modifications. Considering the features, BOSS notches up the technological level of traditional solutions for search on biomedical information. PMID:22595092
Efficient threshold for volumetric segmentation
NASA Astrophysics Data System (ADS)
Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel
2015-07-01
Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.
Comparison of segmentation algorithms for fluorescence microscopy images of cells.
Dima, Alden A; Elliott, John T; Filliben, James J; Halter, Michael; Peskin, Adele; Bernal, Javier; Kociolek, Marcin; Brady, Mary C; Tang, Hai C; Plant, Anne L
2011-07-01
The analysis of fluorescence microscopy of cells often requires the determination of cell edges. This is typically done using segmentation techniques that separate the cell objects in an image from the surrounding background. This study compares segmentation results from nine different segmentation techniques applied to two different cell lines and five different sets of imaging conditions. Significant variability in the results of segmentation was observed that was due solely to differences in imaging conditions or applications of different algorithms. We quantified and compared the results with a novel bivariate similarity index metric that evaluates the degree of underestimating or overestimating a cell object. The results show that commonly used threshold-based segmentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy varies with imaging conditions that determine the sharpness of cell edges and with geometric features of a cell. Based on this observation, we propose a method that quantifies cell edge character to provide an estimate of how accurately an algorithm will perform. The results of this study will assist the development of criteria for evaluating interlaboratory comparability. Published 2011 Wiley-Liss, Inc.
2017-03-01
A Low- Power Wireless Image Sensor Node with Noise-Robust Moving Object Detection and a Region-of-Interest Based Rate Controller Jong Hwan Ko...Atlanta, GA 30332 USA Contact Author Email: jonghwan.ko@gatech.edu Abstract: This paper presents a low- power wireless image sensor node for...present a low- power wireless image sensor node with a noise-robust moving object detection and region-of-interest based rate controller [Fig. 1]. The
Aksiuta, E F; Ostashev, A V; Sergeev, E V; Aksiuta, V E
1997-01-01
The methods of the information (entropy) error theory were used to make a metrological analysis of the well-known commercial measuring systems for timing an anticipative reaction (AR) to the position of a moving object, which is based on the electromechanical, gas-discharge, and electron principles. The required accuracy of measurement was ascertained to be achieved only by using the systems based on the electron principle of moving object simulation and AR measurement.
Tracking with occlusions via graph cuts.
Papadakis, Nicolas; Bugeau, Aurélie
2011-01-01
This work presents a new method for tracking and segmenting along time-interacting objects within an image sequence. One major contribution of the paper is the formalization of the notion of visible and occluded parts. For each object, we aim at tracking these two parts. Assuming that the velocity of each object is driven by a dynamical law, predictions can be used to guide the successive estimations. Separating these predicted areas into good and bad parts with respect to the final segmentation and representing the objects with their visible and occluded parts permit handling partial and complete occlusions. To achieve this tracking, a label is assigned to each object and an energy function representing the multilabel problem is minimized via a graph cuts optimization. This energy contains terms based on image intensities which enable segmenting and regularizing the visible parts of the objects. It also includes terms dedicated to the management of the occluded and disappearing areas, which are defined on the areas of prediction of the objects. The results on several challenging sequences prove the strength of the proposed approach.
Man-Made Object Extraction from Remote Sensing Imagery by Graph-Based Manifold Ranking
NASA Astrophysics Data System (ADS)
He, Y.; Wang, X.; Hu, X. Y.; Liu, S. H.
2018-04-01
The automatic extraction of man-made objects from remote sensing imagery is useful in many applications. This paper proposes an algorithm for extracting man-made objects automatically by integrating a graph model with the manifold ranking algorithm. Initially, we estimate a priori value of the man-made objects with the use of symmetric and contrast features. The graph model is established to represent the spatial relationships among pre-segmented superpixels, which are used as the graph nodes. Multiple characteristics, namely colour, texture and main direction, are used to compute the weights of the adjacent nodes. Manifold ranking effectively explores the relationships among all the nodes in the feature space as well as initial query assignment; thus, it is applied to generate a ranking map, which indicates the scores of the man-made objects. The man-made objects are then segmented on the basis of the ranking map. Two typical segmentation algorithms are compared with the proposed algorithm. Experimental results show that the proposed algorithm can extract man-made objects with high recognition rate and low omission rate.
Make the First Move: How Infants Learn about Self-Propelled Objects
ERIC Educational Resources Information Center
Rakison, David H.
2006-01-01
In 3 experiments, the author investigated 16- to 20-month-old infants' attention to dynamic and static parts in learning about self-propelled objects. In Experiment 1, infants were habituated to simple noncausal events in which a geometric figure with a single moving part started to move without physical contact from an identical geometric figure…
Locomotion on the water surface: hydrodynamic constraints on rowing velocity require a gait change
Suter; Wildman
1999-10-01
Fishing spiders, Dolomedes triton (Araneae, Pisauridae), propel themselves across the water surface using two gaits: they row with four legs at sustained velocities below 0.2 m s(-)(1) and they gallop with six legs at sustained velocities above 0.3 m s(-)(1). Because, during rowing, most of the horizontal thrust is provided by the drag of the leg and its associated dimple as both move across the water surface, the integrity of the dimple is crucial. We used a balance, incorporating a biaxial clinometer as the transducer, to measure the horizontal thrust forces on a leg segment subjected to water moving past it in non-turbulent flow. Changes in the horizontal forces reflected changes in the status of the dimple and showed that a stable dimple could exist only under conditions that combined low flow velocity, shallow leg-segment depth and a long perimeter of the interface between the leg segment and the water. Once the dimple disintegrated, leaving the leg segment submerged, less drag was generated. Therefore, the disintegration of the dimple imposes a limit on the efficacy of rowing with four legs. The limited degrees of freedom in the leg joints (the patellar joints move freely in the vertical plane but allow only limited flexion in other planes) impose a further constraint on rowing by restricting the maximum leg-tip velocity (to approximately 33 % of that attained by the same legs during galloping). This confines leg-tip velocities to a range at which maintenance of the dimple is particularly important. The weight of the spider also imposes constraints on the efficacy of rowing: because the drag encountered by the leg-cum-dimple is proportional to the depth of the dimple and because dimple depth is proportional to the supported weight, only spiders with a mass exceeding 0.48 g can have access to the full range of hydrodynamically possible dimple depths during rowing. Finally, the maximum velocity attainable during rowing is constrained by the substantial drag experienced by the spider during the glide interval between power strokes, drag that is negligible for a galloping spider because, for most of each inter-stroke interval, the spider is airborne. We conclude that both hydrodynamic and anatomical constraints confine rowing spiders to sustained velocities lower than 0.3 m s(-)(1), and that galloping allows spiders to move considerably faster because galloping is free of these constraints.
On the evaluation of segmentation editing tools
Heckel, Frank; Moltz, Jan H.; Meine, Hans; Geisler, Benjamin; Kießling, Andreas; D’Anastasi, Melvin; dos Santos, Daniel Pinto; Theruvath, Ashok Joseph; Hahn, Horst K.
2014-01-01
Abstract. Efficient segmentation editing tools are important components in the segmentation process, as no automatic methods exist that always generate sufficient results. Evaluating segmentation editing algorithms is challenging, because their quality depends on the user’s subjective impression. So far, no established methods for an objective, comprehensive evaluation of such tools exist and, particularly, intermediate segmentation results are not taken into account. We discuss the evaluation of editing algorithms in the context of tumor segmentation in computed tomography. We propose a rating scheme to qualitatively measure the accuracy and efficiency of editing tools in user studies. In order to objectively summarize the overall quality, we propose two scores based on the subjective rating and the quantified segmentation quality over time. Finally, a simulation-based evaluation approach is discussed, which allows a more reproducible evaluation without the need for human input. This automated evaluation complements user studies, allowing a more convincing evaluation, particularly during development, where frequent user studies are not possible. The proposed methods have been used to evaluate two dedicated editing algorithms on 131 representative tumor segmentations. We show how the comparison of editing algorithms benefits from the proposed methods. Our results also show the correlation of the suggested quality score with the qualitative ratings. PMID:26158063
2000-07-20
One of two solid rocket booster rail cars is off the track after being involved in a minor derailment incident during a routine movement on the tracks. The rail cars were being moved as part of a standard operation to “order” the cars, placing them into a proper sequence for upcoming segment processing activities. The rear wheels of one car and the front wheels of the car behind it slid off the tracks while passing through a railway switch onto a siding. They were traveling approximately 3 miles per hour at the time, about normal walking speed. No damage occurred to the SRB segments, or to the devices that secure the segments to the rail cars. The incident occurred on KSC property, just north of the NASA Causeway in the KSC Industrial Area
2000-07-20
One of two solid rocket booster rail cars is off the track after being involved in a minor derailment incident during a routine movement on the tracks. The rail cars were being moved as part of a standard operation to “order” the cars, placing them into a proper sequence for upcoming segment processing activities. The rear wheels of one car and the front wheels of the car behind it slid off the tracks while passing through a railway switch onto a siding. They were traveling approximately 3 miles per hour at the time, about normal walking speed. No damage occurred to the SRB segments, or to the devices that secure the segments to the rail cars. The incident occurred on KSC property, just north of the NASA Causeway in the KSC Industrial Area
Binocular Perception of 2D Lateral Motion and Guidance of Coordinated Motor Behavior.
Fath, Aaron J; Snapp-Childs, Winona; Kountouriotis, Georgios K; Bingham, Geoffrey P
2016-04-01
Zannoli, Cass, Alais, and Mamassian (2012) found greater audiovisual lag between a tone and disparity-defined stimuli moving laterally (90-170 ms) than for disparity-defined stimuli moving in depth or luminance-defined stimuli moving laterally or in depth (50-60 ms). We tested if this increased lag presents an impediment to visually guided coordination with laterally moving objects. Participants used a joystick to move a virtual object in several constant relative phases with a laterally oscillating stimulus. Both the participant-controlled object and the target object were presented using a disparity-defined display that yielded information through changes in disparity over time (CDOT) or using a luminance-defined display that additionally provided information through monocular motion and interocular velocity differences (IOVD). Performance was comparable for both disparity-defined and luminance-defined displays in all relative phases. This suggests that, despite lag, perception of lateral motion through CDOT is generally sufficient to guide coordinated motor behavior.
Hu, Jonathan K.; Morishita, Yuichiro; Montgomery, Scott R.; Hymanson, Henry; Taghavi, Cyrus E.; Do, Duc; Wang, Jeff C.
2011-01-01
Degenerative disc disease and disc bulge in the lumbar spine are common sources of lower back pain. Little is known regarding disc bulge migration and lumbar segmental mobility as the lumbar spine moves from flexion to extension. In this study, 329 symptomatic (low back pain with or without neurological symptoms) patients with an average age of 43.5 years with varying degrees of disc degeneration were examined to characterize the kinematics of the lumbar intervertebral discs through flexion, neutral, and extension weight-bearing positions. In this population, disc bulge migration associated with dynamic motion of the lumbar spine significantly increased with increased grade of disk degeneration. Although no obvious trends relating the migration of disc bulge and angular segmental mobility were seen, translational segmental mobility tended to increase with disc bulge migration in all of the degenerative disc states. It appears that many factors, both static (intervertebral disc degeneration or disc height) and dynamic (lumbar segmental mobility), affect the mechanisms of lumbar disc bulge migration. PMID:24353937
Continuous EEG signal analysis for asynchronous BCI application.
Hsu, Wei-Yen
2011-08-01
In this study, we propose a two-stage recognition system for continuous analysis of electroencephalogram (EEG) signals. An independent component analysis (ICA) and correlation coefficient are used to automatically eliminate the electrooculography (EOG) artifacts. Based on the continuous wavelet transform (CWT) and Student's two-sample t-statistics, active segment selection then detects the location of active segment in the time-frequency domain. Next, multiresolution fractal feature vectors (MFFVs) are extracted with the proposed modified fractal dimension from wavelet data. Finally, the support vector machine (SVM) is adopted for the robust classification of MFFVs. The EEG signals are continuously analyzed in 1-s segments, and every 0.5 second moves forward to simulate asynchronous BCI works in the two-stage recognition architecture. The segment is first recognized as lifted or not in the first stage, and then is classified as left or right finger lifting at stage two if the segment is recognized as lifting in the first stage. Several statistical analyses are used to evaluate the performance of the proposed system. The results indicate that it is a promising system in the applications of asynchronous BCI work.
Copy-move forgery detection utilizing Fourier-Mellin transform log-polar features
NASA Astrophysics Data System (ADS)
Dixit, Rahul; Naskar, Ruchira
2018-03-01
In this work, we address the problem of region duplication or copy-move forgery detection in digital images, along with detection of geometric transforms (rotation and rescale) and postprocessing-based attacks (noise, blur, and brightness adjustment). Detection of region duplication, following conventional techniques, becomes more challenging when an intelligent adversary brings about such additional transforms on the duplicated regions. In this work, we utilize Fourier-Mellin transform with log-polar mapping and a color-based segmentation technique using K-means clustering, which help us to achieve invariance to all the above forms of attacks in copy-move forgery detection of digital images. Our experimental results prove the efficiency of the proposed method and its superiority to the current state of the art.
Object segmentation using graph cuts and active contours in a pyramidal framework
NASA Astrophysics Data System (ADS)
Subudhi, Priyambada; Mukhopadhyay, Susanta
2018-03-01
Graph cuts and active contours are two very popular interactive object segmentation techniques in the field of computer vision and image processing. However, both these approaches have their own well-known limitations. Graph cut methods perform efficiently giving global optimal segmentation result for smaller images. However, for larger images, huge graphs need to be constructed which not only takes an unacceptable amount of memory but also increases the time required for segmentation to a great extent. On the other hand, in case of active contours, initial contour selection plays an important role in the accuracy of the segmentation. So a proper selection of initial contour may improve the complexity as well as the accuracy of the result. In this paper, we have tried to combine these two approaches to overcome their above-mentioned drawbacks and develop a fast technique of object segmentation. Here, we have used a pyramidal framework and applied the mincut/maxflow algorithm on the lowest resolution image with the least number of seed points possible which will be very fast due to the smaller size of the image. Then, the obtained segmentation contour is super-sampled and and worked as the initial contour for the next higher resolution image. As the initial contour is very close to the actual contour, so fewer number of iterations will be required for the convergence of the contour. The process is repeated for all the high-resolution images and experimental results show that our approach is faster as well as memory efficient as compare to both graph cut or active contour segmentation alone.
NASA Technical Reports Server (NTRS)
Tarabalka, Y.; Tilton, J. C.; Benediktsson, J. A.; Chanussot, J.
2012-01-01
The Hierarchical SEGmentation (HSEG) algorithm, which combines region object finding with region object clustering, has given good performances for multi- and hyperspectral image analysis. This technique produces at its output a hierarchical set of image segmentations. The automated selection of a single segmentation level is often necessary. We propose and investigate the use of automatically selected markers for this purpose. In this paper, a novel Marker-based HSEG (M-HSEG) method for spectral-spatial classification of hyperspectral images is proposed. Two classification-based approaches for automatic marker selection are adapted and compared for this purpose. Then, a novel constrained marker-based HSEG algorithm is applied, resulting in a spectral-spatial classification map. Three different implementations of the M-HSEG method are proposed and their performances in terms of classification accuracies are compared. The experimental results, presented for three hyperspectral airborne images, demonstrate that the proposed approach yields accurate segmentation and classification maps, and thus is attractive for remote sensing image analysis.
Robot Evolutionary Localization Based on Attentive Visual Short-Term Memory
Vega, Julio; Perdices, Eduardo; Cañas, José M.
2013-01-01
Cameras are one of the most relevant sensors in autonomous robots. However, two of their challenges are to extract useful information from captured images, and to manage the small field of view of regular cameras. This paper proposes implementing a dynamic visual memory to store the information gathered from a moving camera on board a robot, followed by an attention system to choose where to look with this mobile camera, and a visual localization algorithm that incorporates this visual memory. The visual memory is a collection of relevant task-oriented objects and 3D segments, and its scope is wider than the current camera field of view. The attention module takes into account the need to reobserve objects in the visual memory and the need to explore new areas. The visual memory is useful also in localization tasks, as it provides more information about robot surroundings than the current instantaneous image. This visual system is intended as underlying technology for service robot applications in real people's homes. Several experiments have been carried out, both with simulated and real Pioneer and Nao robots, to validate the system and each of its components in office scenarios. PMID:23337333
Beck, Cornelia; Ognibeni, Thilo; Neumann, Heiko
2008-01-01
Background Optic flow is an important cue for object detection. Humans are able to perceive objects in a scene using only kinetic boundaries, and can perform the task even when other shape cues are not provided. These kinetic boundaries are characterized by the presence of motion discontinuities in a local neighbourhood. In addition, temporal occlusions appear along the boundaries as the object in front covers the background and the objects that are spatially behind it. Methodology/Principal Findings From a technical point of view, the detection of motion boundaries for segmentation based on optic flow is a difficult task. This is due to the problem that flow detected along such boundaries is generally not reliable. We propose a model derived from mechanisms found in visual areas V1, MT, and MSTl of human and primate cortex that achieves robust detection along motion boundaries. It includes two separate mechanisms for both the detection of motion discontinuities and of occlusion regions based on how neurons respond to spatial and temporal contrast, respectively. The mechanisms are embedded in a biologically inspired architecture that integrates information of different model components of the visual processing due to feedback connections. In particular, mutual interactions between the detection of motion discontinuities and temporal occlusions allow a considerable improvement of the kinetic boundary detection. Conclusions/Significance A new model is proposed that uses optic flow cues to detect motion discontinuities and object occlusion. We suggest that by combining these results for motion discontinuities and object occlusion, object segmentation within the model can be improved. This idea could also be applied in other models for object segmentation. In addition, we discuss how this model is related to neurophysiological findings. The model was successfully tested both with artificial and real sequences including self and object motion. PMID:19043613
Distance estimation and collision prediction for on-line robotic motion planning
NASA Technical Reports Server (NTRS)
Kyriakopoulos, K. J.; Saridis, G. N.
1992-01-01
An efficient method for computing the minimum distance and predicting collisions between moving objects is presented. This problem is incorporated into the framework of an in-line motion-planning algorithm to satisfy collision avoidance between a robot and moving objects modeled as convex polyhedra. In the beginning, the deterministic problem where the information about the objects is assumed to be certain is examined. L(1) or L(infinity) norms are used to represent distance and the problem becomes a linear programming problem. The stochastic problem is formulated where the uncertainty is induced by sensing and the unknown dynamics of the moving obstacles. Two problems are considered: First, filtering of the distance between the robot and the moving object at the present time. Second, prediction of the minimum distance in the future in order to predict the collision time.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Zhang, Qian; Zheng, Chi; Qiu, Guoping
2018-04-01
Video foreground segmentation is one of the key problems in video processing. In this paper, we proposed a novel and fully unsupervised approach for foreground object co-localization and segmentation of unconstrained videos. We firstly compute both the actual edges and motion boundaries of the video frames, and then align them by their HOG feature maps. Then, by filling the occlusions generated by the aligned edges, we obtained more precise masks about the foreground object. Such motion-based masks could be derived as the motion-based likelihood. Moreover, the color-base likelihood is adopted for the segmentation process. Experimental Results show that our approach outperforms most of the State-of-the-art algorithms.
Biased figure-ground assignment affects conscious object recognition in spatial neglect.
Eramudugolla, Ranmalee; Driver, Jon; Mattingley, Jason B
2010-09-01
Unilateral spatial neglect is a disorder of attention and spatial representation, in which early visual processes such as figure-ground segmentation have been assumed to be largely intact. There is evidence, however, that the spatial attention bias underlying neglect can bias the segmentation of a figural region from its background. Relatively few studies have explicitly examined the effect of spatial neglect on processing the figures that result from such scene segmentation. Here, we show that a neglect patient's bias in figure-ground segmentation directly influences his conscious recognition of these figures. By varying the relative salience of figural and background regions in static, two-dimensional displays, we show that competition between elements in such displays can modulate a neglect patient's ability to recognise parsed figures in a scene. The findings provide insight into the interaction between scene segmentation, explicit object recognition, and attention.
The Spiral Arm Segments of the Galaxy within 3 kpc from the Sun: A Statistical Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griv, Evgeny; Jiang, Ing-Guey; Hou, Li-Gang, E-mail: griv@bgu.ac.il
As can be reasonably expected, upcoming large-scale APOGEE, GAIA, GALAH, LAMOST, and WEAVE stellar spectroscopic surveys will yield rather noisy Galactic distributions of stars. In view of the possibility of employing these surveys, our aim is to present a statistical method to extract information about the spiral structure of the Galaxy from currently available data, and to demonstrate the effectiveness of this method. The model differs from previous works studying how objects are distributed in space in its calculation of the statistical significance of the hypothesis that some of the objects are actually concentrated in a spiral. A statistical analysismore » of the distribution of cold dust clumps within molecular clouds, H ii regions, Cepheid stars, and open clusters in the nearby Galactic disk within 3 kpc from the Sun is carried out. As an application of the method, we obtain distances between the Sun and the centers of the neighboring Sagittarius arm segment, the Orion arm segment in which the Sun is located, and the Perseus arm segment. Pitch angles of the logarithmic spiral segments and their widths are also estimated. The hypothesis that the collected objects accidentally form spirals is refuted with almost 100% statistical confidence. We show that these four independent distributions of young objects lead to essentially the same results. We also demonstrate that our newly deduced values of the mean distances and pitch angles for the segments are not too far from those found recently by Reid et al. using VLBI-based trigonometric parallaxes of massive star-forming regions.« less
Self-Moving Catalytic Nanomotors
2013-12-11
which anodic and cathodic reactions are catalyzed at separate locations on a segmented nanorod (or patterned micro-gear) (Figure 1). In this case the...concentration (green triangle). (The Cu-Pt nanorods 3 were synthesized by electrodepositing copper at -3 mA/cm2 for 10 min, and then platinum at -1 mA/cm2
Searching for moving objects in HSC-SSP: Pipeline and preliminary results
NASA Astrophysics Data System (ADS)
Chen, Ying-Tung; Lin, Hsing-Wen; Alexandersen, Mike; Lehner, Matthew J.; Wang, Shiang-Yu; Wang, Jen-Hung; Yoshida, Fumi; Komiyama, Yutaka; Miyazaki, Satoshi
2018-01-01
The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is currently the deepest wide-field survey in progress. The 8.2 m aperture of the Subaru telescope is very powerful in detecting faint/small moving objects, including near-Earth objects, asteroids, centaurs and Tran-Neptunian objects (TNOs). However, the cadence and dithering pattern of the HSC-SSP are not designed for detecting moving objects, making it difficult to do so systematically. In this paper, we introduce a new pipeline for detecting moving objects (specifically TNOs) in a non-dedicated survey. The HSC-SSP catalogs are sliced into HEALPix partitions. Then, the stationary detections and false positives are removed with a machine-learning algorithm to produce a list of moving object candidates. An orbit linking algorithm and visual inspections are executed to generate the final list of detected TNOs. The preliminary results of a search for TNOs using this new pipeline on data from the first HSC-SSP data release (2014 March to 2015 November) present 231 TNO/Centaurs candidates. The bright candidates with Hr < 7.7 and i > 5 show that the best-fitting slope of a single power law to absolute magnitude distribution is 0.77. The g - r color distribution of hot HSC-SSP TNOs indicates a bluer peak at g - r = 0.9, which is consistent with the bluer peak of the bimodal color distribution in literature.
Conci, Markus; Müller, Hermann J; von Mühlenen, Adrian
2013-07-09
In visual search, detection of a target is faster when it is presented within a spatial layout of repeatedly encountered nontarget items, indicating that contextual invariances can guide selective attention (contextual cueing; Chun & Jiang, 1998). However, perceptual regularities may interfere with contextual learning; for instance, no contextual facilitation occurs when four nontargets form a square-shaped grouping, even though the square location predicts the target location (Conci & von Mühlenen, 2009). Here, we further investigated potential causes for this interference-effect: We show that contextual cueing can reliably occur for targets located within the region of a segmented object, but not for targets presented outside of the object's boundaries. Four experiments demonstrate an object-based facilitation in contextual cueing, with a modulation of context-based learning by relatively subtle grouping cues including closure, symmetry, and spatial regularity. Moreover, the lack of contextual cueing for targets located outside the segmented region was due to an absence of (latent) learning of contextual layouts, rather than due to an attentional bias towards the grouped region. Taken together, these results indicate that perceptual segmentation provides a basic structure within which contextual scene regularities are acquired. This in turn argues that contextual learning is constrained by object-based selection.
Memory-Based Multiagent Coevolution Modeling for Robust Moving Object Tracking
Wang, Yanjiang; Qi, Yujuan; Li, Yongping
2013-01-01
The three-stage human brain memory model is incorporated into a multiagent coevolutionary process for finding the best match of the appearance of an object, and a memory-based multiagent coevolution algorithm for robust tracking the moving objects is presented in this paper. Each agent can remember, retrieve, or forget the appearance of the object through its own memory system by its own experience. A number of such memory-based agents are randomly distributed nearby the located object region and then mapped onto a 2D lattice-like environment for predicting the new location of the object by their coevolutionary behaviors, such as competition, recombination, and migration. Experimental results show that the proposed method can deal with large appearance changes and heavy occlusions when tracking a moving object. It can locate the correct object after the appearance changed or the occlusion recovered and outperforms the traditional particle filter-based tracking methods. PMID:23843739
Memory-based multiagent coevolution modeling for robust moving object tracking.
Wang, Yanjiang; Qi, Yujuan; Li, Yongping
2013-01-01
The three-stage human brain memory model is incorporated into a multiagent coevolutionary process for finding the best match of the appearance of an object, and a memory-based multiagent coevolution algorithm for robust tracking the moving objects is presented in this paper. Each agent can remember, retrieve, or forget the appearance of the object through its own memory system by its own experience. A number of such memory-based agents are randomly distributed nearby the located object region and then mapped onto a 2D lattice-like environment for predicting the new location of the object by their coevolutionary behaviors, such as competition, recombination, and migration. Experimental results show that the proposed method can deal with large appearance changes and heavy occlusions when tracking a moving object. It can locate the correct object after the appearance changed or the occlusion recovered and outperforms the traditional particle filter-based tracking methods.
Method and apparatus for hybrid position/force control of multi-arm cooperating robots
NASA Technical Reports Server (NTRS)
Hayati, Samad A. (Inventor)
1989-01-01
Two or more robotic arms having end effectors rigidly attached to an object to be moved are disclosed. A hybrid position/force control system is provided for driving each of the robotic arms. The object to be moved is represented as having a total mass that consists of the actual mass of the object to be moved plus the mass of the moveable arms that are rigidly attached to the moveable object. The arms are driven in a positive way by the hybrid control system to assure that each arm shares in the position/force applied to the object. The burden of actuation is shared by each arm in a non-conflicting way as the arm independently control the position of, and force upon, a designated point on the object.
Line segment confidence region-based string matching method for map conflation
NASA Astrophysics Data System (ADS)
Huh, Yong; Yang, Sungchul; Ga, Chillo; Yu, Kiyun; Shi, Wenzhong
2013-04-01
In this paper, a method to detect corresponding point pairs between polygon object pairs with a string matching method based on a confidence region model of a line segment is proposed. The optimal point edit sequence to convert the contour of a target object into that of a reference object was found by the string matching method which minimizes its total error cost, and the corresponding point pairs were derived from the edit sequence. Because a significant amount of apparent positional discrepancies between corresponding objects are caused by spatial uncertainty and their confidence region models of line segments are therefore used in the above matching process, the proposed method obtained a high F-measure for finding matching pairs. We applied this method for built-up area polygon objects in a cadastral map and a topographical map. Regardless of their different mapping and representation rules and spatial uncertainties, the proposed method with a confidence level at 0.95 showed a matching result with an F-measure of 0.894.
The objects of visuospatial short-term memory: Perceptual organization and change detection.
Nikolova, Atanaska; Macken, Bill
2016-01-01
We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy.
The objects of visuospatial short-term memory: Perceptual organization and change detection
Nikolova, Atanaska; Macken, Bill
2016-01-01
We used a colour change-detection paradigm where participants were required to remember colours of six equally spaced circles. Items were superimposed on a background so as to perceptually group them within (a) an intact ring-shaped object, (b) a physically segmented but perceptually completed ring-shaped object, or (c) a corresponding background segmented into three arc-shaped objects. A nonpredictive cue at the location of one of the circles was followed by the memory items, which in turn were followed by a test display containing a probe indicating the circle to be judged same/different. Reaction times for correct responses revealed a same-object advantage; correct responses were faster to probes on the same object as the cue than to equidistant probes on a segmented object. This same-object advantage was identical for physically and perceptually completed objects, but was only evident in reaction times, and not in accuracy measures. Not only, therefore, is it important to consider object-level perceptual organization of stimulus elements when assessing the influence of a range of factors (e.g., number and complexity of elements) in visuospatial short-term memory, but a more detailed picture of the structure of information in memory may be revealed by measuring speed as well as accuracy. PMID:26286369
Research on moving object detection based on frog's eyes
NASA Astrophysics Data System (ADS)
Fu, Hongwei; Li, Dongguang; Zhang, Xinyuan
2008-12-01
On the basis of object's information processing mechanism with frog's eyes, this paper discussed a bionic detection technology which suitable for object's information processing based on frog's vision. First, the bionics detection theory by imitating frog vision is established, it is an parallel processing mechanism which including pick-up and pretreatment of object's information, parallel separating of digital image, parallel processing, and information synthesis. The computer vision detection system is described to detect moving objects which has special color, special shape, the experiment indicates that it can scheme out the detecting result in the certain interfered background can be detected. A moving objects detection electro-model by imitating biologic vision based on frog's eyes is established, the video simulative signal is digital firstly in this system, then the digital signal is parallel separated by FPGA. IN the parallel processing, the video information can be caught, processed and displayed in the same time, the information fusion is taken by DSP HPI ports, in order to transmit the data which processed by DSP. This system can watch the bigger visual field and get higher image resolution than ordinary monitor systems. In summary, simulative experiments for edge detection of moving object with canny algorithm based on this system indicate that this system can detect the edge of moving objects in real time, the feasibility of bionic model was fully demonstrated in the engineering system, and it laid a solid foundation for the future study of detection technology by imitating biologic vision.
NASA Astrophysics Data System (ADS)
Castilla, G.
2004-09-01
Landcover maps typically represent the territory as a mosaic of contiguous units "polygons- that are assumed to correspond to geographic entities" like e.g. lakes, forests or villages-. They may also be viewed as representing a particular level of a landscape hierarchy where each polygon is a holon - an object made of subobjects and part of a superobject. The focal level portrayed in the map is distinguished from other levels by the average size of objects compounding it. Moreover, the focal level is bounded by the minimum size that objects of this level are supposed to have. Based on this framework, we have developed a segmentation method that defines a partition on a multiband image such that i) the mean size of segments is close to the one specified; ii) each segment exceeds the required minimum size; and iii) the internal homogeneity of segments is maximal given the size constraints. This paper briefly describes the method, focusing on its region merging stage. The most distinctive feature of the latter is that while the merging sequence is ordered by increasing dissimilarity as in conventional methods, there is no need to define a threshold on the dissimilarity measure between adjacent segments.
Altenburger, Andreas
2016-01-01
Kinorhynchs are ecdysozoan animals with a phylogenetic position close to priapulids and loriciferans. To understand the nature of segmentation within Kinorhyncha and to infer a probable ancestry of segmentation within the last common ancestor of Ecdysozoa, the musculature and the nervous system of the allomalorhagid kinorhynch Pycnophyes kielensis were investigated by use of immunohistochemistry, confocal laser scanning microscopy, and 3D reconstruction software. The kinorhynch body plan comprises 11 trunk segments. Trunk musculature consists of paired ventral and dorsal longitudinal muscles in segments 1-10 as well as dorsoventral muscles in segments 1-11. Dorsal and ventral longitudinal muscles insert on apodemes of the cuticle inside the animal within each segment. Strands of longitudinal musculature extend over segment borders in segments 1-6. In segments 7-10, the trunk musculature is confined to the segments. Musculature of the digestive system comprises a strong pharyngeal bulb with attached mouth cone muscles as well as pharyngeal bulb protractors and retractors. The musculature of the digestive system shows no sign of segmentation. Judged by the size of the pharyngeal bulb protractors and retractors, the pharyngeal bulb, as well as the introvert, is moved passively by internal pressure caused by concerted action of the dorsoventral muscles. The nervous system comprises a neuropil ring anterior to the pharyngeal bulb. Associated with the neuropil ring are flask-shaped serotonergic somata extending anteriorly and posteriorly. A ventral nerve cord is connected to the neuropil ring and runs toward the anterior until an attachment point in segment 1, and from there toward the posterior with one ganglion in segment 6. Segmentation within Kinorhyncha likely evolved from an unsegmented ancestor. This conclusion is supported by continuous trunk musculature in the anterior segments 1-6, continuous pharyngeal bulb protractors and retractors throughout the anterior segments, no sign of segmentation within the digestive system, and the absence of ganglia in most segments. The musculature shows evidence of segmentation that fit the definition of an anteroposteriorly repeated body unit only in segments 7-10.
Vision System for Coarsely Estimating Motion Parameters for Unknown Fast Moving Objects in Space
Chen, Min; Hashimoto, Koichi
2017-01-01
Motivated by biological interests in analyzing navigation behaviors of flying animals, we attempt to build a system measuring their motion states. To do this, in this paper, we build a vision system to detect unknown fast moving objects within a given space, calculating their motion parameters represented by positions and poses. We proposed a novel method to detect reliable interest points from images of moving objects, which can be hardly detected by general purpose interest point detectors. 3D points reconstructed using these interest points are then grouped and maintained for detected objects, according to a careful schedule, considering appearance and perspective changes. In the estimation step, a method is introduced to adapt the robust estimation procedure used for dense point set to the case for sparse set, reducing the potential risk of greatly biased estimation. Experiments are conducted against real scenes, showing the capability of the system of detecting multiple unknown moving objects and estimating their positions and poses. PMID:29206189
Early Knowledge of Object Motion: Continuity and Inertia.
ERIC Educational Resources Information Center
Spelke, Elizabeth; And Others
1994-01-01
Investigated whether infants infer that a hidden, freely moving object will move continuously and smoothly. Six- to 10- month olds inferred that the object's path would be connected and unobstructed, in accord with continuity. Younger infants did not infer this, in accord with inertia. At 8 and 10 months, knowledge of inertia emerged but remained…
Lee, Young-Sook; Chung, Wan-Young
2012-01-01
Vision-based abnormal event detection for home healthcare systems can be greatly improved using visual sensor-based techniques able to detect, track and recognize objects in the scene. However, in moving object detection and tracking processes, moving cast shadows can be misclassified as part of objects or moving objects. Shadow removal is an essential step for developing video surveillance systems. The goal of the primary is to design novel computer vision techniques that can extract objects more accurately and discriminate between abnormal and normal activities. To improve the accuracy of object detection and tracking, our proposed shadow removal algorithm is employed. Abnormal event detection based on visual sensor by using shape features variation and 3-D trajectory is presented to overcome the low fall detection rate. The experimental results showed that the success rate of detecting abnormal events was 97% with a false positive rate of 2%. Our proposed algorithm can allow distinguishing diverse fall activities such as forward falls, backward falls, and falling asides from normal activities. PMID:22368486
1980-12-01
Commun- ications Corporation, Palo Alto, CA (March 1978). g. [Walter at al. 74] Walter, K.G. et al., " Primitive Models for Computer .. Security", ESD-TR...discussion is followed by a presenta- tion of the Kernel primitive operations upon these objects. All Kernel objects shall be referenced by a common...set of sizes. All process segments, regardless of domain, shall be manipulated by the same set of Kernel segment primitives . User domain segments
48 CFR 9904.420-50 - Techniques for application.
Code of Federal Regulations, 2010 CFR
2010-10-01
... shall be excluded from the IR&D and B&P cost pools to be allocated to other segments and the base data... final cost objectives and the particular final cost objective's base data shall be excluded from the... costs of all other IR&D and B&P projects shall be allocated among all segments by means of the same base...
ERIC Educational Resources Information Center
Floccia, Caroline; Nazzi, Thierry; Austin, Keith; Arreckx, Frederique; Goslin, Jeremy
2011-01-01
To investigate the interaction between segmental and supra-segmental stress-related information in early word learning, two experiments were conducted with 20- to 24-month-old English-learning children. In an adaptation of the object categorization study designed by Nazzi and Gopnik (2001), children were presented with pairs of novel objects whose…
Motor contagion during human-human and human-robot interaction.
Bisio, Ambra; Sciutti, Alessandra; Nori, Francesco; Metta, Giorgio; Fadiga, Luciano; Sandini, Giulio; Pozzo, Thierry
2014-01-01
Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of "mutual understanding" that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot). After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner.
NASA Astrophysics Data System (ADS)
Cai, Lei; Wang, Lin; Li, Bo; Zhang, Libao; Lv, Wen
2017-06-01
Vehicle tracking technology is currently one of the most active research topics in machine vision. It is an important part of intelligent transportation system. However, in theory and technology, it still faces many challenges including real-time and robustness. In video surveillance, the targets need to be detected in real-time and to be calculated accurate position for judging the motives. The contents of video sequence images and the target motion are complex, so the objects can't be expressed by a unified mathematical model. Object-tracking is defined as locating the interest moving target in each frame of a piece of video. The current tracking technology can achieve reliable results in simple environment over the target with easy identified characteristics. However, in more complex environment, it is easy to lose the target because of the mismatch between the target appearance and its dynamic model. Moreover, the target usually has a complex shape, but the tradition target tracking algorithm usually represents the tracking results by simple geometric such as rectangle or circle, so it cannot provide accurate information for the subsequent upper application. This paper combines a traditional object-tracking technology, Mean-Shift algorithm, with a kind of image segmentation algorithm, Active-Contour model, to get the outlines of objects while the tracking process and automatically handle topology changes. Meanwhile, the outline information is used to aid tracking algorithm to improve it.
Motor Contagion during Human-Human and Human-Robot Interaction
Bisio, Ambra; Sciutti, Alessandra; Nori, Francesco; Metta, Giorgio; Fadiga, Luciano; Sandini, Giulio; Pozzo, Thierry
2014-01-01
Motor resonance mechanisms are known to affect humans' ability to interact with others, yielding the kind of “mutual understanding” that is the basis of social interaction. However, it remains unclear how the partner's action features combine or compete to promote or prevent motor resonance during interaction. To clarify this point, the present study tested whether and how the nature of the visual stimulus and the properties of the observed actions influence observer's motor response, being motor contagion one of the behavioral manifestations of motor resonance. Participants observed a humanoid robot and a human agent move their hands into a pre-specified final position or put an object into a container at various velocities. Their movements, both in the object- and non-object- directed conditions, were characterized by either a smooth/curvilinear or a jerky/segmented trajectory. These trajectories were covered with biological or non-biological kinematics (the latter only by the humanoid robot). After action observation, participants were requested to either reach the indicated final position or to transport a similar object into another container. Results showed that motor contagion appeared for both the interactive partner except when the humanoid robot violated the biological laws of motion. These findings suggest that the observer may transiently match his/her own motor repertoire to that of the observed agent. This matching might mediate the activation of motor resonance, and modulate the spontaneity and the pleasantness of the interaction, whatever the nature of the communication partner. PMID:25153990
Schmid, Anita M.; Victor, Jonathan D.
2014-01-01
When analyzing a visual image, the brain has to achieve several goals quickly. One crucial goal is to rapidly detect parts of the visual scene that might be behaviorally relevant, while another one is to segment the image into objects, to enable an internal representation of the world. Both of these processes can be driven by local variations in any of several image attributes such as luminance, color, and texture. Here, focusing on texture defined by local orientation, we propose that the two processes are mediated by separate mechanisms that function in parallel. More specifically, differences in orientation can cause an object to “pop out” and attract visual attention, if its orientation differs from that of the surrounding objects. Differences in orientation can also signal a boundary between objects and therefore provide useful information for image segmentation. We propose that contextual response modulations in primary visual cortex (V1) are responsible for orientation pop-out, while a different kind of receptive field nonlinearity in secondary visual cortex (V2) is responsible for orientation-based texture segmentation. We review a recent experiment that led us to put forward this hypothesis along with other research literature relevant to this notion. PMID:25064441
Zhang, Xiangmin; Williams, Rachel; Wu, Xiaodong; Anderson, Donald D.; Sonka, Milan
2011-01-01
A novel method for simultaneous segmentation of multiple interacting surfaces belonging to multiple interacting objects, called LOGISMOS (layered optimal graph image segmentation of multiple objects and surfaces), is reported. The approach is based on the algorithmic incorporation of multiple spatial inter-relationships in a single n-dimensional graph, followed by graph optimization that yields a globally optimal solution. The LOGISMOS method’s utility and performance are demonstrated on a bone and cartilage segmentation task in the human knee joint. Although trained on only a relatively small number of nine example images, this system achieved good performance. Judged by dice similarity coefficients (DSC) using a leave-one-out test, DSC values of 0.84 ± 0.04, 0.80 ± 0.04 and 0.80 ± 0.04 were obtained for the femoral, tibial, and patellar cartilage regions, respectively. These are excellent DSC values, considering the narrow-sheet character of the cartilage regions. Similarly, low signed mean cartilage thickness errors were obtained when compared to a manually-traced independent standard in 60 randomly selected 3-D MR image datasets from the Osteoarthritis Initiative database—0.11 ± 0.24, 0.05 ± 0.23, and 0.03 ± 0.17 mm for the femoral, tibial, and patellar cartilage thickness, respectively. The average signed surface positioning errors for the six detected surfaces ranged from 0.04 ± 0.12 mm to 0.16 ± 0.22 mm. The reported LOGISMOS framework provides robust and accurate segmentation of the knee joint bone and cartilage surfaces of the femur, tibia, and patella. As a general segmentation tool, the developed framework can be applied to a broad range of multiobject multisurface segmentation problems. PMID:20643602
- and Graph-Based Point Cloud Segmentation of 3d Scenes Using Perceptual Grouping Laws
NASA Astrophysics Data System (ADS)
Xu, Y.; Hoegner, L.; Tuttas, S.; Stilla, U.
2017-05-01
Segmentation is the fundamental step for recognizing and extracting objects from point clouds of 3D scene. In this paper, we present a strategy for point cloud segmentation using voxel structure and graph-based clustering with perceptual grouping laws, which allows a learning-free and completely automatic but parametric solution for segmenting 3D point cloud. To speak precisely, two segmentation methods utilizing voxel and supervoxel structures are reported and tested. The voxel-based data structure can increase efficiency and robustness of the segmentation process, suppressing the negative effect of noise, outliers, and uneven points densities. The clustering of voxels and supervoxel is carried out using graph theory on the basis of the local contextual information, which commonly conducted utilizing merely pairwise information in conventional clustering algorithms. By the use of perceptual laws, our method conducts the segmentation in a pure geometric way avoiding the use of RGB color and intensity information, so that it can be applied to more general applications. Experiments using different datasets have demonstrated that our proposed methods can achieve good results, especially for complex scenes and nonplanar surfaces of objects. Quantitative comparisons between our methods and other representative segmentation methods also confirms the effectiveness and efficiency of our proposals.
Acoustic system for material transport
NASA Technical Reports Server (NTRS)
Barmatz, M. B.; Trinh, E. H.; Wang, T. G.; Elleman, D. D.; Jacobi, N. (Inventor)
1983-01-01
An object within a chamber is acoustically moved by applying wavelengths of different modes to the chamber to move the object between pressure wells formed by the modes. In one system, the object is placed in one end of the chamber while a resonant mode, applied along the length of the chamber, produces a pressure well at the location. The frequency is then switched to a second mode that produces a pressure well at the center of the chamber, to draw the object. When the object reaches the second pressure well and is still traveling towards the second end of the chamber, the acoustic frequency is again shifted to a third mode (which may equal the first model) that has a pressure well in the second end portion of the chamber, to draw the object. A heat source may be located near the second end of the chamber to heat the sample, and after the sample is heated it can be cooled by moving it in a corresponding manner back to the first end of the chamber. The transducers for levitating and moving the object may be all located at the cool first end of the chamber.
Fish tracking by combining motion based segmentation and particle filtering
NASA Astrophysics Data System (ADS)
Bichot, E.; Mascarilla, L.; Courtellemont, P.
2006-01-01
In this paper, we suggest a new importance sampling scheme to improve a particle filtering based tracking process. This scheme relies on exploitation of motion segmentation. More precisely, we propagate hypotheses from particle filtering to blobs of similar motion to target. Hence, search is driven toward regions of interest in the state space and prediction is more accurate. We also propose to exploit segmentation to update target model. Once the moving target has been identified, a representative model is learnt from its spatial support. We refer to this model in the correction step of the tracking process. The importance sampling scheme and the strategy to update target model improve the performance of particle filtering in complex situations of occlusions compared to a simple Bootstrap approach as shown by our experiments on real fish tank sequences.
Segmentation, modeling and classification of the compact objects in a pile
NASA Technical Reports Server (NTRS)
Gupta, Alok; Funka-Lea, Gareth; Wohn, Kwangyoen
1990-01-01
The problem of interpreting dense range images obtained from the scene of a heap of man-made objects is discussed. A range image interpretation system consisting of segmentation, modeling, verification, and classification procedures is described. First, the range image is segmented into regions and reasoning is done about the physical support of these regions. Second, for each region several possible three-dimensional interpretations are made based on various scenarios of the objects physical support. Finally each interpretation is tested against the data for its consistency. The superquadric model is selected as the three-dimensional shape descriptor, plus tapering deformations along the major axis. Experimental results obtained from some complex range images of mail pieces are reported to demonstrate the soundness and the robustness of our approach.
MEMS temperature scanner: principles, advances, and applications
NASA Astrophysics Data System (ADS)
Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas
2010-02-01
Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.
Region growing using superpixels with learned shape prior
NASA Astrophysics Data System (ADS)
Borovec, Jiří; Kybic, Jan; Sugimoto, Akihiro
2017-11-01
Region growing is a classical image segmentation method based on hierarchical region aggregation using local similarity rules. Our proposed method differs from classical region growing in three important aspects. First, it works on the level of superpixels instead of pixels, which leads to a substantial speed-up. Second, our method uses learned statistical shape properties that encourage plausible shapes. In particular, we use ray features to describe the object boundary. Third, our method can segment multiple objects and ensure that the segmentations do not overlap. The problem is represented as an energy minimization and is solved either greedily or iteratively using graph cuts. We demonstrate the performance of the proposed method and compare it with alternative approaches on the task of segmenting individual eggs in microscopy images of Drosophila ovaries.
Contextually guided very-high-resolution imagery classification with semantic segments
NASA Astrophysics Data System (ADS)
Zhao, Wenzhi; Du, Shihong; Wang, Qiao; Emery, William J.
2017-10-01
Contextual information, revealing relationships and dependencies between image objects, is one of the most important information for the successful interpretation of very-high-resolution (VHR) remote sensing imagery. Over the last decade, geographic object-based image analysis (GEOBIA) technique has been widely used to first divide images into homogeneous parts, and then to assign semantic labels according to the properties of image segments. However, due to the complexity and heterogeneity of VHR images, segments without semantic labels (i.e., semantic-free segments) generated with low-level features often fail to represent geographic entities (such as building roofs usually be partitioned into chimney/antenna/shadow parts). As a result, it is hard to capture contextual information across geographic entities when using semantic-free segments. In contrast to low-level features, "deep" features can be used to build robust segments with accurate labels (i.e., semantic segments) in order to represent geographic entities at higher levels. Based on these semantic segments, semantic graphs can be constructed to capture contextual information in VHR images. In this paper, semantic segments were first explored with convolutional neural networks (CNN) and a conditional random field (CRF) model was then applied to model the contextual information between semantic segments. Experimental results on two challenging VHR datasets (i.e., the Vaihingen and Beijing scenes) indicate that the proposed method is an improvement over existing image classification techniques in classification performance (overall accuracy ranges from 82% to 96%).
Visual context modulates potentiation of grasp types during semantic object categorization.
Kalénine, Solène; Shapiro, Allison D; Flumini, Andrea; Borghi, Anna M; Buxbaum, Laurel J
2014-06-01
Substantial evidence suggests that conceptual processing of manipulable objects is associated with potentiation of action. Such data have been viewed as evidence that objects are recognized via access to action features. Many objects, however, are associated with multiple actions. For example, a kitchen timer may be clenched with a power grip to move it but pinched with a precision grip to use it. The present study tested the hypothesis that action evocation during conceptual object processing is responsive to the visual scene in which objects are presented. Twenty-five healthy adults were asked to categorize object pictures presented in different naturalistic visual contexts that evoke either move- or use-related actions. Categorization judgments (natural vs. artifact) were performed by executing a move- or use-related action (clench vs. pinch) on a response device, and response times were assessed as a function of contextual congruence. Although the actions performed were irrelevant to the categorization judgment, responses were significantly faster when actions were compatible with the visual context. This compatibility effect was largely driven by faster pinch responses when objects were presented in use-compatible, as compared with move-compatible, contexts. The present study is the first to highlight the influence of visual scene on stimulus-response compatibility effects during semantic object processing. These data support the hypothesis that action evocation during conceptual object processing is biased toward context-relevant actions.
Visual context modulates potentiation of grasp types during semantic object categorization
Kalénine, Solène; Shapiro, Allison D.; Flumini, Andrea; Borghi, Anna M.; Buxbaum, Laurel J.
2013-01-01
Substantial evidence suggests that conceptual processing of manipulable objects is associated with potentiation of action. Such data have been viewed as evidence that objects are recognized via access to action features. Many objects, however, are associated with multiple actions. For example, a kitchen timer may be clenched with a power grip to move it, but pinched with a precision grip to use it. The present study tested the hypothesis that action evocation during conceptual object processing is responsive to the visual scene in which objects are presented. Twenty-five healthy adults were asked to categorize object pictures presented in different naturalistic visual contexts that evoke either move- or use-related actions. Categorization judgments (natural vs. artifact) were performed by executing a move- or use-related action (clench vs. pinch) on a response device, and response times were assessed as a function of contextual congruence. Although the actions performed were irrelevant to the categorization judgment, responses were significantly faster when actions were compatible with the visual context. This compatibility effect was largely driven by faster pinch responses when objects were presented in use- compared to move-compatible contexts. The present study is the first to highlight the influence of visual scene on stimulus-response compatibility effects during semantic object processing. These data support the hypothesis that action evocation during conceptual object processing is biased toward context-relevant actions. PMID:24186270
Effect of fixation positions on perception of lightness
NASA Astrophysics Data System (ADS)
Toscani, Matteo; Valsecchi, Matteo; Gegenfurtner, Karl R.
2015-03-01
Visual acuity, luminance sensitivity, contrast sensitivity, and color sensitivity are maximal in the fovea and decrease with retinal eccentricity. Therefore every scene is perceived by integrating the small, high resolution samples collected by moving the eyes around. Moreover, when viewing ambiguous figures the fixated position influences the dominance of the possible percepts. Therefore fixations could serve as a selection mechanism whose function is not confined to finely resolve the selected detail of the scene. Here this hypothesis is tested in the lightness perception domain. In a first series of experiments we demonstrated that when observers matched the color of natural objects they based their lightness judgments on objects' brightest parts. During this task the observers tended to fixate points with above average luminance, suggesting a relationship between perception and fixations that we causally proved using a gaze contingent display in a subsequent experiment. Simulations with rendered physical lighting show that higher values in an object's luminance distribution are particularly informative about reflectance. In a second series of experiments we considered a high level strategy that the visual system uses to segment the visual scene in a layered representation. We demonstrated that eye movement sampling mediates between the layer segregation and its effects on lightness perception. Together these studies show that eye fixations are partially responsible for the selection of information from a scene that allows the visual system to estimate the reflectance of a surface.
NASA Astrophysics Data System (ADS)
He, Zhongtai
2017-04-01
The two eastern segments of the Sertengshan piedmont fault have moved considerably since the Holocene. Several paleoseismic events have occurred along the fault since 30 ka BP. Paleoearthquake studies have been advanced by digging new trenches and combining the results with the findings of previous studies. Comprehensive analyses of the trenches revealed that 6 paleoseismic events have occurred on the Kuoluebulong segment since approximately 30 ka BP within the following successive time periods: 19.01-37.56 ka, 18.73 ka, 15.03-15.86 ka, 10.96 ka, 5.77-6.48 ka and 2.32 ka BP. The analyses also revealed that 6 paleoseismic events have occurred on the Dashetai segment since approximately 30 ka BP, and the successive occurrence times are 29.07 ka, 19.12-28.23 ka, 13.92-15.22 ka, 9.38-9.83 ka, 6.08-8.36 ka and 3.59 ka BP. The results indicate that quasi-periodic recurrences occurred along the two segments with an approximate 4000 a mean recurrence interval. The consistent timing of the 6 events between the two segments indicates that the segments might conform to the cascade rupturing model between the two segments of the Sertengshan piedmont fault. The latest event on the Kuoluebulong segment of the Sertengshan piedmont fault is the historical M8 earthquake that occurred on November 11, 7 BC, which was recorded by a large number of Chinese historical texts.
Medical image segmentation by combining graph cuts and oriented active appearance models.
Chen, Xinjian; Udupa, Jayaram K; Bagci, Ulas; Zhuge, Ying; Yao, Jianhua
2012-04-01
In this paper, we propose a novel method based on a strategic combination of the active appearance model (AAM), live wire (LW), and graph cuts (GCs) for abdominal 3-D organ segmentation. The proposed method consists of three main parts: model building, object recognition, and delineation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the recognition part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW methods, resulting in the oriented AAM (OAAM). A multiobject strategy is utilized to help in object initialization. We employ a pseudo-3-D initialization strategy and segment the organs slice by slice via a multiobject OAAM method. For the object delineation part, a 3-D shape-constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT data set and also on the MICCAI 2007 Grand Challenge liver data set. The results show the following: 1) The overall segmentation accuracy of true positive volume fraction TPVF > 94.3% and false positive volume fraction can be achieved; 2) the initialization performance can be improved by combining the AAM and LW; 3) the multiobject strategy greatly facilitates initialization; 4) compared with the traditional 3-D AAM method, the pseudo-3-D OAAM method achieves comparable performance while running 12 times faster; and 5) the performance of the proposed method is comparable to state-of-the-art liver segmentation algorithm. The executable version of the 3-D shape-constrained GC method with a user interface can be downloaded from http://xinjianchen.wordpress.com/research/.
a Region-Based Multi-Scale Approach for Object-Based Image Analysis
NASA Astrophysics Data System (ADS)
Kavzoglu, T.; Yildiz Erdemir, M.; Tonbul, H.
2016-06-01
Within the last two decades, object-based image analysis (OBIA) considering objects (i.e. groups of pixels) instead of pixels has gained popularity and attracted increasing interest. The most important stage of the OBIA is image segmentation that groups spectrally similar adjacent pixels considering not only the spectral features but also spatial and textural features. Although there are several parameters (scale, shape, compactness and band weights) to be set by the analyst, scale parameter stands out the most important parameter in segmentation process. Estimating optimal scale parameter is crucially important to increase the classification accuracy that depends on image resolution, image object size and characteristics of the study area. In this study, two scale-selection strategies were implemented in the image segmentation process using pan-sharped Qickbird-2 image. The first strategy estimates optimal scale parameters for the eight sub-regions. For this purpose, the local variance/rate of change (LV-RoC) graphs produced by the ESP-2 tool were analysed to determine fine, moderate and coarse scales for each region. In the second strategy, the image was segmented using the three candidate scale values (fine, moderate, coarse) determined from the LV-RoC graph calculated for whole image. The nearest neighbour classifier was applied in all segmentation experiments and equal number of pixels was randomly selected to calculate accuracy metrics (overall accuracy and kappa coefficient). Comparison of region-based and image-based segmentation was carried out on the classified images and found that region-based multi-scale OBIA produced significantly more accurate results than image-based single-scale OBIA. The difference in classification accuracy reached to 10% in terms of overall accuracy.
ERIC Educational Resources Information Center
Gogate, Lakshmi J.; Bahrick, Lorraine E.
1998-01-01
Investigated 7-month olds' ability to relate vowel sounds with objects when intersensory redundancy was present versus absent. Found that infants detected a mismatch in the vowel-object pairs in the moving-synchronous condition but not in the still or moving-asynchronous condition, demonstrating that temporal synchrony between vocalizations and…
ERIC Educational Resources Information Center
Young, Timothy; Guy, Mark
2011-01-01
Students have a difficult time understanding force, especially when dealing with a moving object. Many forces can be acting on an object at the same time, causing it to stay in one place or move. By directly observing these forces, students can better understand the effect these forces have on an object. With a simple, student-built device called…
16. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific ...
16. Interior, Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to south (90mm lens). Note the large segmental-arched doorway to move locomotives in and out of Machine Shop. - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV
Distinctive ribonucleic acid patterns of human rotavirus subgroups 1 and 2.
Kalica, A R; Greenberg, H B; Espejo, R T; Flores, J; Wyatt, R G; Kapikian, A Z; Chanock, R M
1981-01-01
The ribonucleic acid migration patterns of 7 subgroup 1 and 16 subgroup 2 human rotaviruses recovered from four geographic areas were compared. The subgroup 1 ribonucleic acid patterns had strikingly slower-moving segments 10 and 11, suggesting a correlation between the ribonucleic acid pattern and the subgroup specificity. Images PMID:6270002
3D shape measurement of moving object with FFT-based spatial matching
NASA Astrophysics Data System (ADS)
Guo, Qinghua; Ruan, Yuxi; Xi, Jiangtao; Song, Limei; Zhu, Xinjun; Yu, Yanguang; Tong, Jun
2018-03-01
This work presents a new technique for 3D shape measurement of moving object in translational motion, which finds applications in online inspection, quality control, etc. A low-complexity 1D fast Fourier transform (FFT)-based spatial matching approach is devised to obtain accurate object displacement estimates, and it is combined with single shot fringe pattern prolometry (FPP) techniques to achieve high measurement performance with multiple captured images through coherent combining. The proposed technique overcomes some limitations of existing ones. Specifically, the placement of marks on object surface and synchronization between projector and camera are not needed, the velocity of the moving object is not required to be constant, and there is no restriction on the movement trajectory. Both simulation and experimental results demonstrate the effectiveness of the proposed technique.
NASA Astrophysics Data System (ADS)
Wang, Xuejuan; Wu, Shuhang; Liu, Yunpeng
2018-04-01
This paper presents a new method for wood defect detection. It can solve the over-segmentation problem existing in local threshold segmentation methods. This method effectively takes advantages of visual saliency and local threshold segmentation. Firstly, defect areas are coarsely located by using spectral residual method to calculate global visual saliency of them. Then, the threshold segmentation of maximum inter-class variance method is adopted for positioning and segmenting the wood surface defects precisely around the coarse located areas. Lastly, we use mathematical morphology to process the binary images after segmentation, which reduces the noise and small false objects. Experiments on test images of insect hole, dead knot and sound knot show that the method we proposed obtains ideal segmentation results and is superior to the existing segmentation methods based on edge detection, OSTU and threshold segmentation.
A semi-automated image analysis procedure for in situ plankton imaging systems.
Bi, Hongsheng; Guo, Zhenhua; Benfield, Mark C; Fan, Chunlei; Ford, Michael; Shahrestani, Suzan; Sieracki, Jeffery M
2015-01-01
Plankton imaging systems are capable of providing fine-scale observations that enhance our understanding of key physical and biological processes. However, processing the large volumes of data collected by imaging systems remains a major obstacle for their employment, and existing approaches are designed either for images acquired under laboratory controlled conditions or within clear waters. In the present study, we developed a semi-automated approach to analyze plankton taxa from images acquired by the ZOOplankton VISualization (ZOOVIS) system within turbid estuarine waters, in Chesapeake Bay. When compared to images under laboratory controlled conditions or clear waters, images from highly turbid waters are often of relatively low quality and more variable, due to the large amount of objects and nonlinear illumination within each image. We first customized a segmentation procedure to locate objects within each image and extracted them for classification. A maximally stable extremal regions algorithm was applied to segment large gelatinous zooplankton and an adaptive threshold approach was developed to segment small organisms, such as copepods. Unlike the existing approaches for images acquired from laboratory, controlled conditions or clear waters, the target objects are often the majority class, and the classification can be treated as a multi-class classification problem. We customized a two-level hierarchical classification procedure using support vector machines to classify the target objects (< 5%), and remove the non-target objects (> 95%). First, histograms of oriented gradients feature descriptors were constructed for the segmented objects. In the first step all non-target and target objects were classified into different groups: arrow-like, copepod-like, and gelatinous zooplankton. Each object was passed to a group-specific classifier to remove most non-target objects. After the object was classified, an expert or non-expert then manually removed the non-target objects that could not be removed by the procedure. The procedure was tested on 89,419 images collected in Chesapeake Bay, and results were consistent with visual counts with >80% accuracy for all three groups.
A Semi-Automated Image Analysis Procedure for In Situ Plankton Imaging Systems
Bi, Hongsheng; Guo, Zhenhua; Benfield, Mark C.; Fan, Chunlei; Ford, Michael; Shahrestani, Suzan; Sieracki, Jeffery M.
2015-01-01
Plankton imaging systems are capable of providing fine-scale observations that enhance our understanding of key physical and biological processes. However, processing the large volumes of data collected by imaging systems remains a major obstacle for their employment, and existing approaches are designed either for images acquired under laboratory controlled conditions or within clear waters. In the present study, we developed a semi-automated approach to analyze plankton taxa from images acquired by the ZOOplankton VISualization (ZOOVIS) system within turbid estuarine waters, in Chesapeake Bay. When compared to images under laboratory controlled conditions or clear waters, images from highly turbid waters are often of relatively low quality and more variable, due to the large amount of objects and nonlinear illumination within each image. We first customized a segmentation procedure to locate objects within each image and extracted them for classification. A maximally stable extremal regions algorithm was applied to segment large gelatinous zooplankton and an adaptive threshold approach was developed to segment small organisms, such as copepods. Unlike the existing approaches for images acquired from laboratory, controlled conditions or clear waters, the target objects are often the majority class, and the classification can be treated as a multi-class classification problem. We customized a two-level hierarchical classification procedure using support vector machines to classify the target objects (< 5%), and remove the non-target objects (> 95%). First, histograms of oriented gradients feature descriptors were constructed for the segmented objects. In the first step all non-target and target objects were classified into different groups: arrow-like, copepod-like, and gelatinous zooplankton. Each object was passed to a group-specific classifier to remove most non-target objects. After the object was classified, an expert or non-expert then manually removed the non-target objects that could not be removed by the procedure. The procedure was tested on 89,419 images collected in Chesapeake Bay, and results were consistent with visual counts with >80% accuracy for all three groups. PMID:26010260
Error analysis of motion correction method for laser scanning of moving objects
NASA Astrophysics Data System (ADS)
Goel, S.; Lohani, B.
2014-05-01
The limitation of conventional laser scanning methods is that the objects being scanned should be static. The need of scanning moving objects has resulted in the development of new methods capable of generating correct 3D geometry of moving objects. Limited literature is available showing development of very few methods capable of catering to the problem of object motion during scanning. All the existing methods utilize their own models or sensors. Any studies on error modelling or analysis of any of the motion correction methods are found to be lacking in literature. In this paper, we develop the error budget and present the analysis of one such `motion correction' method. This method assumes availability of position and orientation information of the moving object which in general can be obtained by installing a POS system on board or by use of some tracking devices. It then uses this information along with laser scanner data to apply correction to laser data, thus resulting in correct geometry despite the object being mobile during scanning. The major application of this method lie in the shipping industry to scan ships either moving or parked in the sea and to scan other objects like hot air balloons or aerostats. It is to be noted that the other methods of "motion correction" explained in literature can not be applied to scan the objects mentioned here making the chosen method quite unique. This paper presents some interesting insights in to the functioning of "motion correction" method as well as a detailed account of the behavior and variation of the error due to different sensor components alone and in combination with each other. The analysis can be used to obtain insights in to optimal utilization of available components for achieving the best results.
Some characteristics of optokinetic eye-movement patterns : a comparative study.
DOT National Transportation Integrated Search
1970-07-01
Long-associated with transportation ('railroad nystagmus'), optokinetic (OPK) nystagmus is an eye-movement reaction which occurs when a series of moving objects crosses the visual field or when an observer moves past a series of objects. Similar cont...
A-Track: A new approach for detection of moving objects in FITS images
NASA Astrophysics Data System (ADS)
Atay, T.; Kaplan, M.; Kilic, Y.; Karapinar, N.
2016-10-01
We have developed a fast, open-source, cross-platform pipeline, called A-Track, for detecting the moving objects (asteroids and comets) in sequential telescope images in FITS format. The pipeline is coded in Python 3. The moving objects are detected using a modified line detection algorithm, called MILD. We tested the pipeline on astronomical data acquired by an SI-1100 CCD with a 1-meter telescope. We found that A-Track performs very well in terms of detection efficiency, stability, and processing time. The code is hosted on GitHub under the GNU GPL v3 license.
Effects of sport expertise on representational momentum during timing control.
Nakamoto, Hiroki; Mori, Shiro; Ikudome, Sachi; Unenaka, Satoshi; Imanaka, Kuniyasu
2015-04-01
Sports involving fast visual perception require players to compensate for delays in neural processing of visual information. Memory for the final position of a moving object is distorted forward along its path of motion (i.e., "representational momentum," RM). This cognitive extrapolation of visual perception might compensate for the neural delay in interacting appropriately with a moving object. The present study examined whether experienced batters cognitively extrapolate the location of a fast-moving object and whether this extrapolation is associated with coincident timing control. Nine expert and nine novice baseball players performed a prediction motion task in which a target moved from one end of a straight 400-cm track at a constant velocity. In half of the trials, vision was suddenly occluded when the target reached the 200-cm point (occlusion condition). Participants had to press a button concurrently with the target arrival at the end of the track and verbally report their subjective assessment of the first target-occluded position. Experts showed larger RM magnitude (cognitive extrapolation) than did novices in the occlusion condition. RM magnitude and timing errors were strongly correlated in the fast velocity condition in both experts and novices, whereas in the slow velocity condition, a significant correlation appeared only in experts. This suggests that experts can cognitively extrapolate the location of a moving object according to their anticipation and, as a result, potentially circumvent neural processing delays. This process might be used to control response timing when interacting with moving objects.
TIGRESS highly-segmented high-purity germanium clover detector
NASA Astrophysics Data System (ADS)
Scraggs, H. C.; Pearson, C. J.; Hackman, G.; Smith, M. B.; Austin, R. A. E.; Ball, G. C.; Boston, A. J.; Bricault, P.; Chakrawarthy, R. S.; Churchman, R.; Cowan, N.; Cronkhite, G.; Cunningham, E. S.; Drake, T. E.; Finlay, P.; Garrett, P. E.; Grinyer, G. F.; Hyland, B.; Jones, B.; Leslie, J. R.; Martin, J.-P.; Morris, D.; Morton, A. C.; Phillips, A. A.; Sarazin, F.; Schumaker, M. A.; Svensson, C. E.; Valiente-Dobón, J. J.; Waddington, J. C.; Watters, L. M.; Zimmerman, L.
2005-05-01
The TRIUMF-ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS) will consist of twelve units of four high-purity germanium (HPGe) crystals in a common cryostat. The outer contacts of each crystal will be divided into four quadrants and two lateral segments for a total of eight outer contacts. The performance of a prototype HPGe four-crystal unit has been investigated. Integrated noise spectra for all contacts were measured. Energy resolutions, relative efficiencies for both individual crystals and for the entire unit, and peak-to-total ratios were measured with point-like sources. Position-dependent performance was measured by moving a collimated source across the face of the detector.