Katzner, Steffen; Busse, Laura; Treue, Stefan
2009-01-01
Directing visual attention to spatial locations or to non-spatial stimulus features can strongly modulate responses of individual cortical sensory neurons. Effects of attention typically vary in magnitude, not only between visual cortical areas but also between individual neurons from the same area. Here, we investigate whether the size of attentional effects depends on the match between the tuning properties of the recorded neuron and the perceptual task at hand. We recorded extracellular responses from individual direction-selective neurons in the middle temporal area (MT) of rhesus monkeys trained to attend either to the color or the motion signal of a moving stimulus. We found that effects of spatial and feature-based attention in MT, which are typically observed in tasks allocating attention to motion, were very similar even when attention was directed to the color of the stimulus. We conclude that attentional modulation can occur in extrastriate cortex, even under conditions without a match between the tuning properties of the recorded neuron and the perceptual task at hand. Our data are consistent with theories of object-based attention describing a transfer of attention from relevant to irrelevant features, within the attended object and across the visual field. These results argue for a unified attentional system that modulates responses to a stimulus across cortical areas, even if a given area is specialized for processing task-irrelevant aspects of that stimulus.
Sensitivity of vergence responses of 5- to 10-week-old human infants
Seemiller, Eric S.; Wang, Jingyun; Candy, T. Rowan
2016-01-01
Infants have been shown to make vergence eye movements by 1 month of age to stimulation with prisms or targets moving in depth. However, little is currently understood about the threshold sensitivity of the maturing visual system to such stimulation. In this study, 5- to 10-week-old human infants and adults viewed a target moving in depth as a triangle wave of three amplitudes (1.0, 0.5, and 0.25 meter angles). Their horizontal eye position and the refractive state of both eyes were measured simultaneously. The vergence responses of the infants and adults varied at the same frequency as the stimulus at the three tested modulation amplitudes. For a typical infant of this age, the smallest amplitude is equivalent to an interocular change of approximately 2° of retinal disparity, from nearest to farthest points. The infants' accommodation responses only modulated reliably to the largest stimulus, while adults responded to all three amplitudes. Although the accommodative system appears relatively insensitive, the sensitivity of the vergence responses suggests that subtle cues are available to drive vergence in the second month after birth. PMID:26891827
Critical role of foreground stimuli in perceiving visually induced self-motion (vection).
Nakamura, S; Shimojo, S
1999-01-01
The effects of a foreground stimulus on vection (illusory perception of self-motion induced by a moving background stimulus) were examined in two experiments. The experiments reveal that the presentation of a foreground pattern with a moving background stimulus may affect vection. The foreground stimulus facilitated vection strength when it remained stationary or moved slowly in the opposite direction to that of the background stimulus. On the other hand, there was a strong inhibition of vection when the foreground stimulus moved slowly with, or quickly against, the background. These results suggest that foreground stimuli, as well as background stimuli, play an important role in perceiving self-motion.
A Novel Interhemispheric Interaction: Modulation of Neuronal Cooperativity in the Visual Areas
Carmeli, Cristian; Lopez-Aguado, Laura; Schmidt, Kerstin E.; De Feo, Oscar; Innocenti, Giorgio M.
2007-01-01
Background The cortical representation of the visual field is split along the vertical midline, with the left and the right hemi-fields projecting to separate hemispheres. Connections between the visual areas of the two hemispheres are abundant near the representation of the visual midline. It was suggested that they re-establish the functional continuity of the visual field by controlling the dynamics of the responses in the two hemispheres. Methods/Principal Findings To understand if and how the interactions between the two hemispheres participate in processing visual stimuli, the synchronization of responses to identical or different moving gratings in the two hemi-fields were studied in anesthetized ferrets. The responses were recorded by multiple electrodes in the primary visual areas and the synchronization of local field potentials across the electrodes were analyzed with a recent method derived from dynamical system theory. Inactivating the visual areas of one hemisphere modulated the synchronization of the stimulus-driven activity in the other hemisphere. The modulation was stimulus-specific and was consistent with the fine morphology of callosal axons in particular with the spatio-temporal pattern of activity that axonal geometry can generate. Conclusions/Significance These findings describe a new kind of interaction between the cerebral hemispheres and highlight the role of axonal geometry in modulating aspects of cortical dynamics responsible for stimulus detection and/or categorization. PMID:18074012
Stimulation of hair cells with ultraviolet light
NASA Astrophysics Data System (ADS)
Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.
2018-05-01
Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.
Ueda, Hiroshi; Takahashi, Kohske; Watanabe, Katsumi
2013-04-19
The saccadic "gap effect" refers to a phenomenon whereby saccadic reaction times (SRTs) are shortened by the removal of a visual fixation stimulus prior to target presentation. In the current study, we investigated whether the gap effect was influenced by retinal input of a fixation stimulus, as well as phenomenal permanence and/or expectation of the re-emergence of a fixation stimulus. In Experiment 1, we used an occluded fixation stimulus that was gradually hidden by a moving plate prior to the target presentation, which produced the impression that the fixation stimulus still remained and would reappear from behind the plate. We found that the gap effect was significantly weakened with the occluded fixation stimulus. However, the SRT with the occluded fixation stimulus was still shorter in comparison to when the fixation stimulus physically remained on the screen. In Experiment 2, we investigated whether this effect was due to phenomenal maintenance or expectation of the reappearance of the fixation stimulus; this was achieved by using occluding plates that were an identical color to the background screen, giving the impression of reappearance of the fixation stimulus but not of its maintenance. The result showed that the gap effect was still weakened by the same degree even without phenomenal maintenance of the fixation stimulus. These results suggest that the saccadic gap effect is modulated by both retinal input and subjective expectation of re-emergence of the fixation stimulus. In addition to oculomotor mechanisms, other components, such as attentional mechanisms, likely contribute to facilitation of the subsequent action. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Stimulus Movement Effect: Allocation of Attention or Artifact?
NASA Technical Reports Server (NTRS)
Washburn, David A.
1993-01-01
In previous reports, including one by the author, learning has been shown to benefit by having discriminanda move rather than remain stationary. This stimulus movement effect might be attributed to several theoretical mechanisms, including attention, topological memory, and exposure duration. The series of experiments reported in this article was designed to Contrast these potential explanatory factors. Ten rhesus monkeys (Macaca mulatta) were tested on a variety of computerized tasks in which the stimuli remained stationary, flashed, or moved at systematically varied speeds. Performance was significantly best when the sample stimulus moved quickly and was poorest when the stimulus remained stationary. Further analysis of these data and other previously published data revealed that the distribution of the stimulus movement effect across trials supported an attention allocation interpretation.
Moving Stimuli Facilitate Synchronization But Not Temporal Perception
Silva, Susana; Castro, São Luís
2016-01-01
Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap. PMID:27909419
Moving Stimuli Facilitate Synchronization But Not Temporal Perception.
Silva, Susana; Castro, São Luís
2016-01-01
Recent studies have shown that a moving visual stimulus (e.g., a bouncing ball) facilitates synchronization compared to a static stimulus (e.g., a flashing light), and that it can even be as effective as an auditory beep. We asked a group of participants to perform different tasks with four stimulus types: beeps, siren-like sounds, visual flashes (static) and bouncing balls. First, participants performed synchronization with isochronous sequences (stimulus-guided synchronization), followed by a continuation phase in which the stimulus was internally generated (imagery-guided synchronization). Then they performed a perception task, in which they judged whether the final part of a temporal sequence was compatible with the previous beat structure (stimulus-guided perception). Similar to synchronization, an imagery-guided variant was added, in which sequences contained a gap in between (imagery-guided perception). Balls outperformed flashes and matched beeps (powerful ball effect) in stimulus-guided synchronization but not in perception (stimulus- or imagery-guided). In imagery-guided synchronization, performance accuracy decreased for beeps and balls, but not for flashes and sirens. Our findings suggest that the advantages of moving visual stimuli over static ones are grounded in action rather than perception, and they support the hypothesis that the sensorimotor coupling mechanisms for auditory (beeps) and moving visual stimuli (bouncing balls) overlap.
Local and Global Correlations between Neurons in the Middle Temporal Area of Primate Visual Cortex.
Solomon, Selina S; Chen, Spencer C; Morley, John W; Solomon, Samuel G
2015-09-01
In humans and other primates, the analysis of visual motion includes populations of neurons in the middle-temporal (MT) area of visual cortex. Motion analysis will be constrained by the structure of neural correlations in these populations. Here, we use multi-electrode arrays to measure correlations in anesthetized marmoset, a New World monkey where area MT lies exposed on the cortical surface. We measured correlations in the spike count between pairs of neurons and within populations of neurons, for moving dot fields and moving gratings. Correlations were weaker in area MT than in area V1. The magnitude of correlations in area MT diminished with distance between receptive fields, and difference in preferred direction. Correlations during presentation of moving gratings were stronger than those during presentation of moving dot fields, extended further across cortex, and were less dependent on the functional properties of neurons. Analysis of the timescales of correlation suggests presence of 2 mechanisms. A local mechanism, associated with near-synchronous spiking activity, is strongest in nearby neurons with similar direction preference and is independent of visual stimulus. A global mechanism, operating over larger spatial scales and longer timescales, is independent of direction preference and is modulated by the type of visual stimulus presented. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Maezawa, Hitoshi; Onishi, Kaori; Yagyu, Kazuyori; Shiraishi, Hideaki; Hirai, Yoshiyuki; Funahashi, Makoto
2016-01-01
Modulation of 20-Hz activity in the primary sensorimotor cortex (SM1) may be important for oral functions. Here, we show that 20-Hz event-related desynchronization/synchronization (20-Hz ERD/ERS) is modulated by sensory input and motor output in the oral region. Magnetic 20-Hz activity was recorded following right-sided tongue stimulation during rest (Rest) and self-paced repetitive tongue movement (Move). To exclude proprioception effects, 20-Hz activity induced by right-sided hard palate stimulation was also recorded. The 20-Hz activity in the two conditions was compared via temporal spectral evolution analyses. 20-Hz ERD/ERS was detected over bilateral temporoparietal areas in the Rest condition for both regions. Moreover, 20-Hz ERS was significantly suppressed in the Move condition for both regions. Detection of 20-Hz ERD/ERS during the Rest condition for both regions suggests that the SM1 functional state may be modulated by oral stimulation, with or without proprioceptive effects. Moreover, the suppression of 20-Hz ERS for the hard palate during the Move condition suggests that the stimulation-induced functional state of SM1 may have been modulated by the movement, even though the movement and stimulation areas were different. Sensorimotor function of the general oral region may be finely coordinated through 20-Hz cortical oscillation. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance.
von Trapp, Gardiner; Buran, Bradley N; Sen, Kamal; Semple, Malcolm N; Sanes, Dan H
2016-10-26
The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. Copyright © 2016 the authors 0270-6474/16/3611097-10$15.00/0.
A Decline in Response Variability Improves Neural Signal Detection during Auditory Task Performance
Buran, Bradley N.; Sen, Kamal; Semple, Malcolm N.; Sanes, Dan H.
2016-01-01
The detection of a sensory stimulus arises from a significant change in neural activity, but a sensory neuron's response is rarely identical to successive presentations of the same stimulus. Large trial-to-trial variability would limit the central nervous system's ability to reliably detect a stimulus, presumably affecting perceptual performance. However, if response variability were to decrease while firing rate remained constant, then neural sensitivity could improve. Here, we asked whether engagement in an auditory detection task can modulate response variability, thereby increasing neural sensitivity. We recorded telemetrically from the core auditory cortex of gerbils, both while they engaged in an amplitude-modulation detection task and while they sat quietly listening to the identical stimuli. Using a signal detection theory framework, we found that neural sensitivity was improved during task performance, and this improvement was closely associated with a decrease in response variability. Moreover, units with the greatest change in response variability had absolute neural thresholds most closely aligned with simultaneously measured perceptual thresholds. Our findings suggest that the limitations imposed by response variability diminish during task performance, thereby improving the sensitivity of neural encoding and potentially leading to better perceptual sensitivity. SIGNIFICANCE STATEMENT The detection of a sensory stimulus arises from a significant change in neural activity. However, trial-to-trial variability of the neural response may limit perceptual performance. If the neural response to a stimulus is quite variable, then the response on a given trial could be confused with the pattern of neural activity generated when the stimulus is absent. Therefore, a neural mechanism that served to reduce response variability would allow for better stimulus detection. By recording from the cortex of freely moving animals engaged in an auditory detection task, we found that variability of the neural response becomes smaller during task performance, thereby improving neural detection thresholds. PMID:27798189
Cholinergic modulation of stimulus-driven attentional capture.
Boucart, Muriel; Michael, George Andrew; Bubicco, Giovanna; Ponchel, Amelie; Waucquier, Nawal; Deplanque, Dominique; Deguil, Julie; Bordet, Régis
2015-04-15
Distraction is one of the main problems encountered by people with degenerative diseases that are associated with reduced cortical cholinergic innervations. We examined the effects of donepezil, a cholinesterase inhibitor, on stimulus-driven attentional capture. Reflexive attention shifts to a distractor are usually elicited by abrupt peripheral changes. This bottom-up shift of attention to a salient item is thought to be the result of relatively inflexible hardwired mechanisms. Thirty young male participants were randomly allocated to one of two groups: placebo first/donepezil second session or the opposite. They were asked to locate a target appearing above and below fixation whilst a peripheral distractor moved abruptly (motion-jitter attentional capture condition) or not (baseline condition). A classical attentional capture effect was observed under placebo: moving distractors interfered with the task in slowing down response times as compared to the baseline condition with fixed distractors. Increased interference from moving distractors was found under donepezil. We suggest that attentional capture in our paradigm likely involved low level mechanisms such as automatic reflexive orienting. Peripheral motion-jitter elicited a rapid reflexive orienting response initiated by a cholinergic signal from the brainstem pedunculo-pontine nucleus that activates nicotinic receptors in the superior colliculus. Copyright © 2015 Elsevier B.V. All rights reserved.
Modulation of Saccade Vigor during Value-Based Decision Making.
Reppert, Thomas R; Lempert, Karolina M; Glimcher, Paul W; Shadmehr, Reza
2015-11-18
During value-based decision-making, individuals consider the various options and select the one that provides the maximum subjective value. Although the brain integrates abstract information to compute and compare these values, the only behavioral outcome is often the decision itself. However, if the options are visual stimuli, during deliberation the brain moves the eyes from one stimulus to the other. Previous work suggests that saccade vigor, i.e., peak velocity as a function of amplitude, is greater if reward is associated with the visual stimulus. This raises the possibility that vigor during the free viewing of options may be influenced by the valuation of each option. Here, humans chose between a small, immediate monetary reward and a larger but delayed reward. As the deliberation began, vigor was similar for the saccades made to the two options but diverged 0.5 s before decision time, becoming greater for the preferred option. This difference in vigor increased as a function of the difference in the subjective values that the participant assigned to the delayed and immediate options. After the decision was made, participants continued to gaze at the options, but with reduced vigor, making it possible to infer timing of the decision from the sudden drop in vigor. Therefore, the subjective value that the brain assigned to a stimulus during decision-making affected the motor system via the vigor with which the eyes moved toward that stimulus. We find that, as individuals deliberate between two rewarding options and arrive at a decision, the vigor with which they make saccades to each option reflects a real-time evaluation of that option. With deliberation, saccade vigor diverges between the two options, becoming greater for the option that the individual will eventually choose. The results suggest a shared element between the network that assigns value to a stimulus during the process of decision-making and the network that controls vigor of movements toward that stimulus. Copyright © 2015 the authors 0270-6474/15/3515369-10$15.00/0.
Modulation of Saccade Vigor during Value-Based Decision Making
Lempert, Karolina M.; Glimcher, Paul W.; Shadmehr, Reza
2015-01-01
During value-based decision-making, individuals consider the various options and select the one that provides the maximum subjective value. Although the brain integrates abstract information to compute and compare these values, the only behavioral outcome is often the decision itself. However, if the options are visual stimuli, during deliberation the brain moves the eyes from one stimulus to the other. Previous work suggests that saccade vigor, i.e., peak velocity as a function of amplitude, is greater if reward is associated with the visual stimulus. This raises the possibility that vigor during the free viewing of options may be influenced by the valuation of each option. Here, humans chose between a small, immediate monetary reward and a larger but delayed reward. As the deliberation began, vigor was similar for the saccades made to the two options but diverged 0.5 s before decision time, becoming greater for the preferred option. This difference in vigor increased as a function of the difference in the subjective values that the participant assigned to the delayed and immediate options. After the decision was made, participants continued to gaze at the options, but with reduced vigor, making it possible to infer timing of the decision from the sudden drop in vigor. Therefore, the subjective value that the brain assigned to a stimulus during decision-making affected the motor system via the vigor with which the eyes moved toward that stimulus. SIGNIFICANCE STATEMENT We find that, as individuals deliberate between two rewarding options and arrive at a decision, the vigor with which they make saccades to each option reflects a real-time evaluation of that option. With deliberation, saccade vigor diverges between the two options, becoming greater for the option that the individual will eventually choose. The results suggest a shared element between the network that assigns value to a stimulus during the process of decision-making and the network that controls vigor of movements toward that stimulus. PMID:26586823
NASA Technical Reports Server (NTRS)
Huebner, W. P.; Leigh, R. J.; Seidman, S. H.; Thomas, C. W.; Billian, C.; DiScenna, A. O.; Dell'Osso, L. F.
1992-01-01
1. We used a modeling approach to test the hypothesis that, in humans, the smooth pursuit (SP) system provides the primary signal for cancelling the vestibuloocular reflex (VOR) during combined eye-head tracking (CEHT) of a target moving smoothly in the horizontal plane. Separate models for SP and the VOR were developed. The optimal values of parameters of the two models were calculated using measured responses of four subjects to trials of SP and the visually enhanced VOR. After optimal parameter values were specified, each model generated waveforms that accurately reflected the subjects' responses to SP and vestibular stimuli. The models were then combined into a CEHT model wherein the final eye movement command signal was generated as the linear summation of the signals from the SP and VOR pathways. 2. The SP-VOR superposition hypothesis was tested using two types of CEHT stimuli, both of which involved passive rotation of subjects in a vestibular chair. The first stimulus consisted of a "chair brake" or sudden stop of the subject's head during CEHT; the visual target continued to move. The second stimulus consisted of a sudden change from the visually enhanced VOR to CEHT ("delayed target onset" paradigm); as the vestibular chair rotated past the angular position of the stationary visual stimulus, the latter started to move in synchrony with the chair. Data collected during experiments that employed these stimuli were compared quantitatively with predictions made by the CEHT model. 3. During CEHT, when the chair was suddenly and unexpectedly stopped, the eye promptly began to move in the orbit to track the moving target. Initially, gaze velocity did not completely match target velocity, however; this finally occurred approximately 100 ms after the brake onset. The model did predict the prompt onset of eye-in-orbit motion after the brake, but it did not predict that gaze velocity would initially be only approximately 70% of target velocity. One possible explanation for this discrepancy is that VOR gain can be dynamically modulated and, during sustained CEHT, it may assume a lower value. Consequently, during CEHT, a smaller-amplitude SP signal would be needed to cancel the lower-gain VOR. This reduction of the SP signal could account for the attenuated tracking response observed immediately after the brake. We found evidence for the dynamic modulation of VOR gain by noting differences in responses to the onset and offset of head rotation in trials of the visually enhanced VOR.(ABSTRACT TRUNCATED AT 400 WORDS).
Vögeli, Sabine; Lutz, Janika; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz
2014-07-01
Modulation of short-term emotions by long-term mood is little understood but relevant to understand the affective system and of importance in respect to animal welfare: a negative mood might taint experiences, whilst a positive mood might alleviate single negative events. To induce different mood states in sheep housing conditions were varied. Fourteen ewes were group-housed in an unpredictable, stimulus-poor and 15 ewes in a predictable, stimulus-rich environment. Sheep were tested individually for mood in a behavioural cognitive bias paradigm. Also, their reactions to three physical stimuli thought to differ in their perceived valence were observed (negative: pricking, intermediate: slight pressure, positive: kneading). General behaviour, activity, ear movements and positions, and haemodynamic changes in the cortical brain were recorded during stimulations. Generalised mixed-effects models and model probabilities based on the BIC (Bayesian information criterion) were used. Only weak evidence for mood difference was found. Sheep from the unpredictable, stimulus-poor housing condition had a somewhat more negative cognitive bias, showed slightly more aversive behaviour, were slightly more active and moved their ears somewhat more. Sheep most clearly differentiated the negative from the intermediate and positive stimulus in that they exhibited more aversive behaviour, less nibbling, were more active, showed more ear movements, more forward ear postures, fewer backward ear postures, and a stronger decrease in deoxyhaemoglobin when subjected to the negative stimulus. In conclusion, sheep reacted towards stimuli according to their presumed valence but their mood was not strongly influenced by housing conditions. Therefore, behavioural reactions and cortical brain activity towards the stimuli were hardly modulated by housing conditions. Copyright © 2014 Elsevier B.V. All rights reserved.
Rosenblatt, Steven David; Crane, Benjamin Thomas
2015-01-01
A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.
Emotional valence and contextual affordances flexibly shape approach-avoidance movements
Saraiva, Ana Carolina; Schüür, Friederike; Bestmann, Sven
2013-01-01
Behavior is influenced by the emotional content—or valence—of stimuli in our environment. Positive stimuli facilitate approach, whereas negative stimuli facilitate defensive actions such as avoidance (flight) and attack (fight). Facilitation of approach or avoidance movements may also be influenced by whether it is the self that moves relative to a stimulus (self-reference) or the stimulus that moves relative to the self (object-reference), adding flexibility and context-dependence to behavior. Alternatively, facilitation of approach avoidance movements may happen in a pre-defined and muscle-specific way, whereby arm flexion is faster to approach positive (e.g., flexing the arm brings a stimulus closer) and arm extension faster to avoid negative stimuli (e.g., extending the arm moves the stimulus away). While this allows for relatively fast responses, it may compromise the flexibility offered by contextual influences. Here we asked under which conditions approach-avoidance actions are influenced by contextual factors (i.e., reference-frame). We manipulated the reference-frame in which actions occurred by asking participants to move a symbolic manikin (representing the self) toward or away from a positive or negative stimulus, and move a stimulus toward or away from the manikin. We also controlled for the type of movements used to approach or avoid in each reference. We show that the reference-frame influences approach-avoidance actions to emotional stimuli, but additionally we find muscle-specificity for negative stimuli in self-reference contexts. We speculate this muscle-specificity may be a fast and adaptive response to threatening stimuli. Our results confirm that approach-avoidance behavior is flexible and reference-frame dependent, but can be muscle-specific depending on the context and valence of the stimulus. Reference-frame and stimulus-evaluation are key factors in guiding approach-avoidance behavior toward emotional stimuli in our environment. PMID:24379794
ERIC Educational Resources Information Center
Damonte, Kathleen
2005-01-01
Living things respond to a stimulus, which is a change in the surroundings. Some common stimuli are noises, smells, and things the people see or feel, such as a change in temperature. Animals often respond to a stimulus by moving. Because plants can't move around in the same way animals do, plants have to respond in a different way. Plants can…
Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition.
Grama, Abhinav; Engert, Florian
2012-01-01
The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction-selective retinal ganglion cells (DS-RGCs) in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction-selective (DS) responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in vivo whole cell electrophysiology on these DS tectal neurons and we found that their inhibitory inputs were strongly biased toward the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus, our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons.
Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition
Grama, Abhinav; Engert, Florian
2012-01-01
The extraction of the direction of motion is an important computation performed by many sensory systems and in particular, the mechanism by which direction-selective retinal ganglion cells (DS-RGCs) in the retina acquire their selective properties, has been studied extensively. However, whether DS-RGCs simply relay this information to downstream areas or whether additional and potentially de novo processing occurs in these recipient structures is a matter of great interest. Neurons in the larval zebrafish tectum, the largest retino-recipent area in this animal, show direction-selective (DS) responses to moving visual stimuli but how these properties are acquired is still unknown. In order to study this, we first used two-photon calcium imaging to classify the population responses of tectal cells to bars moving at different speeds and in different directions. Subsequently, we performed in vivo whole cell electrophysiology on these DS tectal neurons and we found that their inhibitory inputs were strongly biased toward the null direction of motion, whereas the excitatory inputs showed little selectivity. In addition, we found that excitatory currents evoked by a stimulus moving in the preferred direction occurred before the inhibitory currents whereas a stimulus moving in the null direction evoked currents in the reverse temporal order. The membrane potential modulations resulting from these currents were enhanced by the spike generation mechanism to generate amplified direction selectivity in the spike output. Thus, our results implicate a local inhibitory circuit in generating direction selectivity in tectal neurons. PMID:22969706
Reinhardt-Rutland, A H
2003-07-01
Induced motion is the illusory motion of a static stimulus in the opposite direction to a moving stimulus. Two types of induced motion have been distinguished: (a) when the moving stimulus is distant from the static stimulus and undergoes overall displacement, and (b) when the moving stimulus is pattern viewed within fixed boundaries that abut the static stimulus. Explanations of the 1st type of induced motion refer to mediating phenomena, such as vection, whereas the 2nd type is attributed to local processing by motion-sensitive neurons. The present research was directed to a display that elicited induced rotational motion with the characteristics of both types of induced motion: the moving stimulus lay within fixed boundaries, but the inducing and induced stimuli were distant from each other. The author investigated the properties that distinguished the two types of induced motion. In 3 experiments, induced motion persisted indefinitely, interocular transfer of the aftereffect of induced motion was limited to about 20%, and the time-course of the aftereffect of induced motion could not be attributed to vection. Those results were consistent with fixed-boundary induced motion. However, they could not be explained by local processing. Instead, the results might reflect the detection of object motion within a complex flow-field that resulted from the observer's motion.
Laser-controlled optical transconductance varistor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hoang T.; Stuart, Brent C.
2017-07-11
An optical transconductance varistor system having a modulated radiation source configured to provide modulated stimulus, a wavelength converter operably connected to the modulated radiation source to produce a modulated stimulus having a predetermined wavelength, and a wide bandgap semiconductor photoconductive material in contact between two electrodes. The photoconductive material is operably coupled, such as by a beam transport module, to receive the modulated stimulus having the predetermined wavelength to control a current flowing through the photoconductive material when a voltage potential is present across the electrodes.
Feature-selective attention in healthy old age: a selective decline in selective attention?
Quigley, Cliodhna; Müller, Matthias M
2014-02-12
Deficient selection against irrelevant information has been proposed to underlie age-related cognitive decline. We recently reported evidence for maintained early sensory selection when older and younger adults used spatial selective attention to perform a challenging task. Here we explored age-related differences when spatial selection is not possible and feature-selective attention must be deployed. We additionally compared the integrity of feedforward processing by exploiting the well established phenomenon of suppression of visual cortical responses attributable to interstimulus competition. Electroencephalogram was measured while older and younger human adults responded to brief occurrences of coherent motion in an attended stimulus composed of randomly moving, orientation-defined, flickering bars. Attention was directed to horizontal or vertical bars by a pretrial cue, after which two orthogonally oriented, overlapping stimuli or a single stimulus were presented. Horizontal and vertical bars flickered at different frequencies and thereby elicited separable steady-state visual-evoked potentials, which were used to examine the effect of feature-based selection and the competitive influence of a second stimulus on ongoing visual processing. Age differences were found in feature-selective attentional modulation of visual responses: older adults did not show consistent modulation of magnitude or phase. In contrast, the suppressive effect of a second stimulus was robust and comparable in magnitude across age groups, suggesting that bottom-up processing of the current stimuli is essentially unchanged in healthy old age. Thus, it seems that visual processing per se is unchanged, but top-down attentional control is compromised in older adults when space cannot be used to guide selection.
Stojcev, Maja; Radtke, Nils; D'Amaro, Daniele; Dyer, Adrian G; Neumeyer, Christa
2011-07-01
Visual systems can undergo striking adaptations to specific visual environments during evolution, but they can also be very "conservative." This seems to be the case in motion vision, which is surprisingly similar in species as distant as honeybee and goldfish. In both visual systems, motion vision measured with the optomotor response is color blind and mediated by one photoreceptor type only. Here, we ask whether this is also the case if the moving stimulus is restricted to a small part of the visual field, and test what influence velocity may have on chromatic motion perception. Honeybees were trained to discriminate between clockwise- and counterclockwise-rotating sector disks. Six types of disk stimuli differing in green receptor contrast were tested using three different rotational velocities. When green receptor contrast was at a minimum, bees were able to discriminate rotation directions with all colored disks at slow velocities of 6 and 12 Hz contrast frequency but not with a relatively high velocity of 24 Hz. In the goldfish experiment, the animals were trained to detect a moving red or blue disk presented in a green surround. Discrimination ability between this stimulus and a homogenous green background was poor when the M-cone type was not or only slightly modulated considering high stimulus velocity (7 cm/s). However, discrimination was improved with slower stimulus velocities (4 and 2 cm/s). These behavioral results indicate that there is potentially an object motion system in both honeybee and goldfish, which is able to incorporate color information at relatively low velocities but is color blind with higher speed. We thus propose that both honeybees and goldfish have multiple subsystems of object motion, which include achromatic as well as chromatic processing.
N2pc is modulated by stimulus-stimulus, but not by stimulus-response incompatibilities.
Cespón, J; Galdo-Álvarez, S; Díaz, F
2013-04-01
Studies of the N2pc in Simon-type tasks have revealed inconsistent results. That is, N2pc was only modulated when a stimulus-stimulus (S-S) overlap covaries with the stimulus-response (S-R) overlap. The present study aimed to establish whether N2pc is modulated by the S-R or by the S-S overlap. Therefore, we designed a Simon task requiring response to a colour stimulus (an arrow) with two irrelevant dimensions (position and direction). The following conditions were thus generated: compatible direction-compatible position (CDCP); incompatible direction-compatible position (IDCP); compatible direction-incompatible position (CDIP); and incompatible direction-incompatible position (IDIP). In IDCP and CDIP, both irrelevant dimensions conveyed contradictory spatial information (S-S incompatibility), while compatibility between both irrelevant dimensions occurred in CDCP and IDIP (the direction indicated was compatible with stimulus position). The N2pc amplitude was smaller in IDCP and CDIP than in CDCP and IDIP, what suggests that N2pc was modulated by S-S incompatibility and not by S-R incompatibilities. Copyright © 2013 Elsevier B.V. All rights reserved.
Mismatched summation mechanisms in older adults for the perception of small moving stimuli.
McDougall, Thomas J; Nguyen, Bao N; McKendrick, Allison M; Badcock, David R
2018-01-01
Previous studies have found evidence for reduced cortical inhibition in aging visual cortex. Reduced inhibition could plausibly increase the spatial area of excitation in receptive fields of older observers, as weaker inhibitory processes would allow the excitatory receptive field to dominate and be psychophysically measureable over larger areas. Here, we investigated aging effects on spatial summation of motion direction using the Battenberg summation method, which aims to control the influence of locally generated internal noise changes by holding overall display size constant. This method produces more accurate estimates of summation area than conventional methods that simply increase overall stimulus dimensions. Battenberg stimuli have a checkerboard arrangement, where check size (luminance-modulated drifting gratings alternating with mean luminance areas), but not display size, is varied and compared with performance for a full field stimulus to provide a measure of summation. Motion direction discrimination thresholds, where contrast was the dependent variable, were measured in 14 younger (24-34 years) and 14 older (62-76 years) adults. Older observers were less sensitive for all check sizes, but the relative sensitivity across sizes, also differed between groups. In the older adults, the full field stimulus offered smaller performance improvements compared to that for younger adults, specifically for the small checked Battenberg stimuli. This suggests aging impacts on short-range summation mechanisms, potentially underpinned by larger summation areas for the perception of small moving stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of feature-selective attention on neuronal responses in macaque area MT
Chen, X.; Hoffmann, K.-P.; Albright, T. D.
2012-01-01
Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color). PMID:22170961
Effect of feature-selective attention on neuronal responses in macaque area MT.
Chen, X; Hoffmann, K-P; Albright, T D; Thiele, A
2012-03-01
Attention influences visual processing in striate and extrastriate cortex, which has been extensively studied for spatial-, object-, and feature-based attention. Most studies exploring neural signatures of feature-based attention have trained animals to attend to an object identified by a certain feature and ignore objects/displays identified by a different feature. Little is known about the effects of feature-selective attention, where subjects attend to one stimulus feature domain (e.g., color) of an object while features from different domains (e.g., direction of motion) of the same object are ignored. To study this type of feature-selective attention in area MT in the middle temporal sulcus, we trained macaque monkeys to either attend to and report the direction of motion of a moving sine wave grating (a feature for which MT neurons display strong selectivity) or attend to and report its color (a feature for which MT neurons have very limited selectivity). We hypothesized that neurons would upregulate their firing rate during attend-direction conditions compared with attend-color conditions. We found that feature-selective attention significantly affected 22% of MT neurons. Contrary to our hypothesis, these neurons did not necessarily increase firing rate when animals attended to direction of motion but fell into one of two classes. In one class, attention to color increased the gain of stimulus-induced responses compared with attend-direction conditions. The other class displayed the opposite effects. Feature-selective activity modulations occurred earlier in neurons modulated by attention to color compared with neurons modulated by attention to motion direction. Thus feature-selective attention influences neuronal processing in macaque area MT but often exhibited a mismatch between the preferred stimulus dimension (direction of motion) and the preferred attention dimension (attention to color).
Anderson, Britt; Soliman, Sherif; O’Malley, Shannon; Danckert, James; Besner, Derek
2015-01-01
Drawing on theoretical and computational work with the localist dual route reading model and results from behavioral studies, Besner et al. (2011) proposed that the ability to perform tasks that require overriding stimulus-specific defaults (e.g., semantics when naming Arabic numerals, and phonology when evaluating the parity of number words) necessitate the ability to modulate the strength of connections between cognitive modules for lexical representation, semantics, and phonology on a task- and stimulus-specific basis. We used functional magnetic resonance imaging to evaluate this account by assessing changes in functional connectivity while participants performed tasks that did and did not require such stimulus-task default overrides. The occipital region showing the greatest modulation of BOLD signal strength for the two stimulus types was used as the seed region for Granger causality mapping (GCM). Our GCM analysis revealed a region of rostromedial frontal cortex with a crossover interaction. When participants performed tasks that required overriding stimulus type defaults (i.e., parity judgments of number words and naming Arabic numerals) functional connectivity between the occipital region and rostromedial frontal cortex was present. Statistically significant functional connectivity was absent when the tasks were the default for the stimulus type (i.e., parity judgments of Arabic numerals and reading number words). This frontal region (BA 10) has previously been shown to be involved in goal-directed behavior and maintenance of a specific task set. We conclude that overriding stimulus-task defaults requires a modulation of connection strengths between cognitive modules and that the override mechanism predicted from cognitive theory is instantiated by frontal modulation of neural activity of brain regions specialized for sensory processing. PMID:25870571
Rice, Nathaniel C; Makar, Jennifer R; Myers, Todd M
2017-03-15
The stimulus-movement effect refers to the phenomenon in which stimulus discrimination or acquisition of a response is facilitated by moving stimuli as opposed to stationary stimuli. The effect has been found in monkeys, rats, and humans, but the experiments conducted did not provide adequate female representation to investigate potential sex differences. The current experiment analyzed acquisition of stimulus touching in a progressive series of classical conditioning procedures in cynomolgus monkeys (Macaca fascicularis) as a function of sex and stimulus movement. Classical conditioning tasks arrange two or more stimuli in relation to each other with different temporal and predictive relations. Autoshaping procedures overlay operant contingencies onto a classical-conditioning stimulus arrangement. In the present case, a neutral stimulus (a small gray square displayed on a touchscreen) functioned as the conditional stimulus and a food pellet functioned as the unconditional stimulus. Although touching is not required to produce food, with repeated stimulus pairings subjects eventually touch the stimulus. Across conditions of increasing stimulus correlation and temporal contiguity, male monkeys acquired the response faster with a moving stimulus. In contrast, females acquired the response faster with a stationary stimulus. These results demonstrate that the stimulus-movement effect may be differentially affected by sex and indicate that additional experiments with females are needed to determine how sex interacts with behavioral phenomena discovered and elaborated almost exclusively using males. Published by Elsevier Inc.
Amodal completion of moving objects by pigeons.
Nagasaka, Yasuo; Wasserman, Edward A
2008-01-01
In a series of four experiments, we explored whether pigeons complete partially occluded moving shapes. Four pigeons were trained to discriminate between a complete moving shape and an incomplete moving shape in a two-alternative forced-choice task. In testing, the birds were presented with a partially occluded moving shape. In experiment 1, none of the pigeons appeared to complete the testing stimulus; instead, they appeared to perceive the testing stimulus as incomplete fragments. However, in experiments 2, 3, and 4, three of the birds appeared to complete the partially occluded moving shapes. These rare positive results suggest that motion may facilitate amodal completion by pigeons, perhaps by enhancing the figure - ground segregation process.
Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation
Onishi, Hideaki; Miyaguchi, Shota; Kotan, Shinichi; Nakagawa, Masaki; Kirimoto, Hikari
2018-01-01
We investigated the effects of different patterns of mechanical tactile stimulation (MS) on corticospinal excitability by measuring the motor-evoked potential (MEP). This was a single-blind study that included nineteen healthy subjects. MS was applied for 20 min to the right index finger. MS intervention was defined as simple, lateral, rubbing, vertical, or random. Simple intervention stimulated the entire finger pad at the same time. Lateral intervention stimulated with moving between left and right on the finger pad. Rubbing intervention stimulated with moving the stimulus probe, fixed by protrusion pins. Vertical intervention stimulated with moving in the forward and backward directions on the finger pad. Random intervention stimulated to finger pad with either row protrudes. MEPs were measured in the first dorsal interosseous muscle to transcranial magnetic stimulation of the left motor cortex before, immediately after, and 5–20 min after intervention. Following simple intervention, MEP amplitudes were significantly smaller than preintervention, indicating depression of corticospinal excitability. Following lateral, rubbing, and vertical intervention, MEP amplitudes were significantly larger than preintervention, indicating facilitation of corticospinal excitability. The modulation of corticospinal excitability depends on MS patterns. These results contribute to knowledge regarding the use of MS as a neurorehabilitation tool to neurological disorder. PMID:29849557
Modulation of Corticospinal Excitability Depends on the Pattern of Mechanical Tactile Stimulation.
Kojima, Sho; Onishi, Hideaki; Miyaguchi, Shota; Kotan, Shinichi; Sasaki, Ryoki; Nakagawa, Masaki; Kirimoto, Hikari; Tamaki, Hiroyuki
2018-01-01
We investigated the effects of different patterns of mechanical tactile stimulation (MS) on corticospinal excitability by measuring the motor-evoked potential (MEP). This was a single-blind study that included nineteen healthy subjects. MS was applied for 20 min to the right index finger. MS intervention was defined as simple, lateral, rubbing, vertical, or random. Simple intervention stimulated the entire finger pad at the same time. Lateral intervention stimulated with moving between left and right on the finger pad. Rubbing intervention stimulated with moving the stimulus probe, fixed by protrusion pins. Vertical intervention stimulated with moving in the forward and backward directions on the finger pad. Random intervention stimulated to finger pad with either row protrudes. MEPs were measured in the first dorsal interosseous muscle to transcranial magnetic stimulation of the left motor cortex before, immediately after, and 5-20 min after intervention. Following simple intervention, MEP amplitudes were significantly smaller than preintervention, indicating depression of corticospinal excitability. Following lateral, rubbing, and vertical intervention, MEP amplitudes were significantly larger than preintervention, indicating facilitation of corticospinal excitability. The modulation of corticospinal excitability depends on MS patterns. These results contribute to knowledge regarding the use of MS as a neurorehabilitation tool to neurological disorder.
Spike count, spike timing and temporal information in the cortex of awake, freely moving rats
Scaglione, Alessandro; Foffani, Guglielmo; Moxon, Karen A.
2014-01-01
Objective Sensory processing of peripheral information is not stationary but is, in general, a dynamic process related to the behavioral state of the animal. Yet the link between the state of the behavior and the encoding properties of neurons is unclear. This report investigates the impact of the behavioral state on the encoding mechanisms used by cortical neurons for both detection and discrimination of somatosensory stimuli in awake, freely moving, rats. Approach Neuronal activity was recorded from the primary somatosensory cortex of five rats under two different behavioral states (quiet vs. whisking) while electrical stimulation of increasing stimulus strength was delivered to the mystacial pad. Information theoretical measures were then used to measure the contribution of different encoding mechanisms to the information carried by neurons in response to the whisker stimulation. Main Results We found that the behavioral state of the animal modulated the total amount of information conveyed by neurons and that the timing of individual spikes increased the information compared to the total count of spikes alone. However, the temporal information, i.e. information exclusively related to when the spikes occur, was not modulated by behavioral state. Significance We conclude that information about somatosensory stimuli is modulated by the behavior of the animal and this modulation is mainly expressed in the spike count while the temporal information is more robust to changes in behavioral state. PMID:25024291
Bachmann, Talis; Murd, Carolina; Põder, Endel
2012-09-01
One fundamental property of the perceptual and cognitive systems is their capacity for prediction in the dynamic environment; the flash-lag effect has been considered as a particularly suggestive example of this capacity (Nijhawan in nature 370:256-257, 1994, Behav brain sci 31:179-239, 2008). Thus, because of involvement of the mechanisms of extrapolation and visual prediction, the moving object is perceived ahead of the simultaneously flashed static object objectively aligned with the moving one. In the present study we introduce a new method and report experimental results inconsistent with at least some versions of the prediction/extrapolation theory. We show that a stimulus moving in the opposite direction to the reference stimulus by approaching it before the flash does not diminish the flash-lag effect, but rather augments it. In addition, alternative theories (in)capable of explaining this paradoxical result are discussed.
Borucki, Ewa; Berg, Bruce G
2017-05-01
This study investigated the psychophysical effects of distortion products in a listening task traditionally used to estimate the bandwidth of phase sensitivity. For a 2000 Hz carrier, estimates of modulation depth necessary to discriminate amplitude modulated (AM) tones and quasi-frequency modulated (QFM) were measured in a two interval forced choice task as a function modulation frequency. Temporal modulation transfer functions were often non-monotonic at modulation frequencies above 300 Hz. This was likely to be due to a spectral cue arising from the interaction of auditory distortion products and the lower sideband of the stimulus complex. When the stimulus duration was decreased from 200 ms to 20 ms, thresholds for low-frequency modulators rose to near-chance levels, whereas thresholds in the region of non-monotonicities were less affected. The decrease in stimulus duration appears to hinder the listener's ability to use temporal cues in order to discriminate between AM and QFM, whereas spectral information derived from distortion product cues appears more resilient. Copyright © 2017. Published by Elsevier B.V.
Modality-dependent effect of motion information in sensory-motor synchronised tapping.
Ono, Kentaro
2018-05-14
Synchronised action is important for everyday life. Generally, the auditory domain is more sensitive for coding temporal information, and previous studies have shown that auditory-motor synchronisation is much more precise than visuo-motor synchronisation. Interestingly, adding motion information improves synchronisation with visual stimuli and the advantage of the auditory modality seems to diminish. However, whether adding motion information also improves auditory-motor synchronisation remains unknown. This study compared tapping accuracy with a stationary or moving stimulus in both auditory and visual modalities. Participants were instructed to tap in synchrony with the onset of a sound or flash in the stationary condition, while these stimuli were perceived as moving from side to side in the motion condition. The results demonstrated that synchronised tapping with a moving visual stimulus was significantly more accurate than tapping with a stationary visual stimulus, as previous studies have shown. However, tapping with a moving auditory stimulus was significantly poorer than tapping with a stationary auditory stimulus. Although motion information impaired audio-motor synchronisation, an advantage of auditory modality compared to visual modality still existed. These findings are likely the result of higher temporal resolution in the auditory domain, which is likely due to the physiological and structural differences in the auditory and visual pathways in the brain. Copyright © 2018 Elsevier B.V. All rights reserved.
Visual stimulus eccentricity affects human gamma peak frequency.
van Pelt, Stan; Fries, Pascal
2013-09-01
The peak frequency of neuronal gamma-band synchronization has received much attention in recent years. Gamma peak frequency shifts to higher frequency values for higher contrast, faster moving, and attended stimuli. In monkey V1, gamma peak frequency for a drifting grating is higher for a parafoveal as compared to an eccentric stimulus (Lima et al., 2010). This effect might be due to the cortical magnification factor: the higher cortical magnification for parafoveal stimuli increases the velocity with which the cortical representations of the moving grating stripes move across the cortical surface. Since faster moving stimuli lead to higher gamma frequency, a faster moving cortical representation might do the same. This explanation predicts that the eccentricity effect on gamma peak frequency is absent for stationary stimuli. To test this, we investigated the effect of eccentricity on gamma peak frequency by recording magnetoencephalography in human subjects while they viewed moving or stationary gratings. We found that both the moving and the stationary stimuli induced lower peak frequencies for larger eccentricities, arguing against an explanation based on the cortical magnification factor. We further investigated whether this eccentricity effect was explained by differences in the size or the spatial frequency of the expected cortical activation. Neither of those explained the eccentricity effect. We propose that the different stimulus and top-down factors leading to higher gamma peak frequency all result in higher stimulus salience, that salience is translated into gamma peak frequency, and that gamma peak frequency might subserve the preferential processing of neuronal activity induced by salient stimuli. Copyright © 2013 Elsevier Inc. All rights reserved.
Gestalt factors modulate basic spatial vision.
Sayim, B; Westheimer, G; Herzog, M H
2010-05-01
Human perception of a stimulus varies depending on the context in which the stimulus is presented. Such contextual modulation has often been explained by two basic neural mechanisms: lateral inhibition and spatial pooling. In the present study, we presented observers with a vernier stimulus flanked by single lines; observers' ability to discriminate the offset direction of the vernier stimulus deteriorated in accordance with both explanations. However, when the flanking lines were part of a geometric shape (i.e., a good Gestalt), this deterioration strongly diminished. These findings cannot be explained by lateral inhibition or spatial pooling. It seems that Gestalt factors play an important role in contextual modulation. We propose that contextual modulation can be used as a quantitative measure to investigate the rules governing the grouping of elements into meaningful wholes.
Top-down modulation: Bridging selective attention and working memory
Gazzaley, Adam; Nobre, Anna C.
2012-01-01
Selective attention, the ability to focus our cognitive resources on information relevant to our goals, influences working memory (WM) performance. Indeed, attention and working memory are increasingly viewed as overlapping constructs. Here, we review recent evidence from human neurophysiological studies demonstrating that top-down modulation serves as a common neural mechanism underlying these two cognitive operations. The core features include activity modulation in stimulus-selective sensory cortices with concurrent engagement of prefrontal and parietal control regions that function as sources of top-down signals. Notably, top-down modulation is engaged during both stimulus-present and stimulus-absent stages of WM tasks, i.e., expectation of an ensuing stimulus to be remembered, selection and encoding of stimuli, maintenance of relevant information in mind and memory retrieval. PMID:22209601
Moving the eye of the beholder. Motor components in vision determine aesthetic preference.
Topolinski, Sascha
2010-09-01
Perception entails not only sensory input (e.g., merely seeing), but also subsidiary motor processes (e.g., moving the eyes); such processes have been neglected in research on aesthetic preferences. To fill this gap, the present research manipulated the fluency of perceptual motor processes independently from sensory input and predicted that this increased fluency would result in increased aesthetic preference for stimulus movements that elicited the same motor movements as had been previously trained. Specifically, addressing the muscles that move the eyes, I trained participants to follow a stimulus movement without actually seeing it. Experiment 1 demonstrated that ocular-muscle training resulted in the predicted increase in preference for trained stimulus movements compared with untrained stimulus movements, although participants had not previously seen any of the movements. Experiments 2 and 3 showed that actual motor matching and not perceptual similarity drove this effect. Thus, beauty may be not only in the eye of the beholder, but also in the eyes' movements.
Suppression and Contrast Normalization in Motion Processing
2017-01-01
Sensory neurons are activated by a range of stimuli to which they are said to be tuned. Usually, they are also suppressed by another set of stimuli that have little effect when presented in isolation. The interactions between preferred and suppressive stimuli are often quite complex and vary across neurons, even within a single area, making it difficult to infer their collective effect on behavioral responses mediated by activity across populations of neurons. Here, we investigated this issue by measuring, in human subjects (three males), the suppressive effect of static masks on the ocular following responses induced by moving stimuli. We found a wide range of effects, which depend in a nonlinear and nonseparable manner on the spatial frequency, contrast, and spatial location of both stimulus and mask. Under some conditions, the presence of the mask can be seen as scaling the contrast of the driving stimulus. Under other conditions, the effect is more complex, involving also a direct scaling of the behavioral response. All of this complexity at the behavioral level can be captured by a simple model in which stimulus and mask interact nonlinearly at two stages, one monocular and one binocular. The nature of the interactions is compatible with those observed at the level of single neurons in primates, usually broadly described as divisive normalization, without having to invoke any scaling mechanism. SIGNIFICANCE STATEMENT The response of sensory neurons to their preferred stimulus is often modulated by stimuli that are not effective when presented alone. Individual neurons can exhibit multiple modulatory effects, with considerable variability across neurons even in a single area. Such diversity has made it difficult to infer the impact of these modulatory mechanisms on behavioral responses. Here, we report the effects of a stationary mask on the reflexive eye movements induced by a moving stimulus. A model with two stages, each incorporating a divisive modulatory mechanism, reproduces our experimental results and suggests that qualitative variability of masking effects in cortical neurons might arise from differences in the extent to which such effects are inherited from earlier stages. PMID:29018158
Spatio-temporal brain dynamics in a combined stimulus-stimulus and stimulus-response conflict task.
Frühholz, Sascha; Godde, Ben; Finke, Mareike; Herrmann, Manfred
2011-01-01
It is yet not well known whether different types of conflicts share common or rely on distinct brain mechanisms of conflict processing. We used a combined Flanker (stimulus-stimulus; S-S) and Simon (stimulus-response; S-R) conflict paradigm both in an fMRI and an EEG study. S-S conflicts induced stronger behavioral interference effects compared to S-R conflicts and the latter decayed with increasing response latencies. Besides some similar medial frontal activity across all conflict trials, which was, however, not statically consistent across trials, we especially found distinct activations depending on the type of conflict. S-S conflicts activated the anterior cingulate cortex and modulated the N2 and early P3 component with underlying source activity in inferior frontal cortex. S-R conflicts produced distinct activations in the posterior cingulate cortex and modulated the late P3b component with underlying source activity in superior parietal cortex. Double conflict trials containing both S-S and S-R conflicts revealed, first, distinct anterior frontal activity representing a meta-processing unit and, second, a sequential modulation of the N2 and the P3b component. The N2 modulation during double conflict trials was accompanied by increased source activity in the medial frontal gyrus (MeFG). In summary, S-S and S-R conflict processing mostly rely on distinct mechanisms of conflict processing and these conflicts differentially modulate the temporal stages of stimulus processing. Copyright © 2010 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Nelson, Charles A.; Horowitz, Frances Degen
1983-01-01
Holograms of faces were used to study two- and five-month-old infants' discriminations of changes in facial expression and pose when the stimulus was seen to move or to remain stationary. While no evidence was found suggesting that infants preferred the moving face, evidence indicated that motion contrasts facilitate face recognition. (Author/RH)
Dynamical evolution of motion perception.
Kanai, Ryota; Sheth, Bhavin R; Shimojo, Shinsuke
2007-03-01
Motion is defined as a sequence of positional changes over time. However, in perception, spatial position and motion dynamically interact with each other. This reciprocal interaction suggests that the perception of a moving object itself may dynamically evolve following the onset of motion. Here, we show evidence that the percept of a moving object systematically changes over time. In experiments, we introduced a transient gap in the motion sequence or a brief change in some feature (e.g., color or shape) of an otherwise smoothly moving target stimulus. Observers were highly sensitive to the gap or transient change if it occurred soon after motion onset (< or =200 ms), but significantly less so if it occurred later (> or = 300 ms). Our findings suggest that the moving stimulus is initially perceived as a time series of discrete potentially isolatable frames; later failures to perceive change suggests that over time, the stimulus begins to be perceived as a single, indivisible gestalt integrated over space as well as time, which could well be the signature of an emergent stable motion percept.
Separate channels for the analysis of the shape and the movement of moving visual stimulus.
Tolhurst, D J
1973-06-01
1. The effects of temporal modulation on the properties of spatial frequency channels have been investigated using adaptation.2. Adapting to drifting sinusoidal gratings caused threshold elevation that was both spatial frequency and direction specific. Little systematic difference was found between the band widths of the elevation curves for drifting and stationary gratings.3. It was confirmed that adaptation fails to reveal channels at low spatial frequencies when stationary gratings are used. However, channels were revealed at frequencies at least as low as 0.66 c/deg when the test gratings were made to move. These channels are adapted only a little by stationary gratings, confirming their dependence on movement.4. The existence of movement-sensitive channels at low spatial frequencies explains the well known observation that temporal modulation greatly increases the sensitivity of the visual system to low spatial frequencies.5. Temporal modulation was effective at revealing these channels only when the flicker or movement of the test patterns was apparent to the observer; only at low spatial frequencies did patterns, modulated at low rates, actually appear to be temporarily modulated at threshold. At higher spatial frequencies, they were indistinguishable from stationary patterns until the contrast was some way above the detection threshold.6. It is suggested, therefore, that the movement-sensitive channels are responsible for signalling the occurrence of movement; the channels at higher spatial frequencies give no information about temporal changes. These two systems of channels are compared to the Y- and X-cells respectively of the cat.
Beta oscillations reflect supramodal information during perceptual judgment.
Haegens, Saskia; Vergara, José; Rossi-Pool, Román; Lemus, Luis; Romo, Ranulfo
2017-12-26
Previous work on perceptual decision making in the sensorimotor system has shown population dynamics in the beta band, corresponding to the encoding of stimulus properties and the final decision outcome. Here, we asked how oscillatory dynamics in the medial premotor cortex (MPC) contribute to supramodal perceptual decision making. We recorded local field potentials (LFPs) and spikes in two monkeys trained to perform a tactile-acoustic frequency discrimination task, including both unimodal and crossmodal conditions. We studied the role of oscillatory activity as a function of stimulus properties (frequency and sensory modality), as well as decision outcome. We found that beta-band power correlated with relevant stimulus properties: there was a significant modulation by stimulus frequency during the working-memory (WM) retention interval, as well as modulation by stimulus modality-the latter was observed only in the case of a purely unimodal task, where modality information was relevant to prepare for the upcoming second stimulus. Furthermore, we found a significant modulation of beta power during the comparison and decision period, which was predictive of decision outcome. Finally, beta-band spike-field coherence (SFC) matched these LFP observations. In conclusion, we demonstrate that beta power in MPC is reflective of stimulus features in a supramodal, context-dependent manner, and additionally reflects the decision outcome. We propose that these beta modulations are a signature of the recruitment of functional neuronal ensembles, which encode task-relevant information.
de Bruijn cycles for neural decoding.
Aguirre, Geoffrey Karl; Mattar, Marcelo Gomes; Magis-Weinberg, Lucía
2011-06-01
Stimulus counterbalance is critical for studies of neural habituation, bias, anticipation, and (more generally) the effect of stimulus history and context. We introduce de Bruijn cycles, a class of combinatorial objects, as the ideal source of pseudo-random stimulus sequences with arbitrary levels of counterbalance. Neuro-vascular imaging studies (such as BOLD fMRI) have an additional requirement imposed by the filtering and noise properties of the method: only some temporal frequencies of neural modulation are detectable. Extant methods of generating counterbalanced stimulus sequences yield neural modulations that are weakly (or not at all) detected by BOLD fMRI. We solve this limitation using a novel "path-guided" approach for the generation of de Bruijn cycles. The algorithm encodes a hypothesized neural modulation of specific temporal frequency within the seemingly random order of events. By positioning the modulation between the signal and noise bands of the neuro-vascular imaging method, the resulting sequence markedly improves detection power. These sequences may be used to study stimulus context and history effects in a manner not previously possible. Copyright © 2011 Elsevier Inc. All rights reserved.
Rate change detection of frequency modulated signals: developmental trends.
Cohen-Mimran, Ravit; Sapir, Shimon
2011-08-26
The aim of this study was to examine developmental trends in rate change detection of auditory rhythmic signals (repetitive sinusoidally frequency modulated tones). Two groups of children (9-10 years old and 11-12 years old) and one group of young adults performed a rate change detection (RCD) task using three types of stimuli. The rate of stimulus modulation was either constant (CR), raised by 1 Hz in the middle of the stimulus (RR1) or raised by 2 Hz in the middle of the stimulus (RR2). Performance on the RCD task significantly improved with age. Also, the different stimuli showed different developmental trajectories. When the RR2 stimulus was used, results showed adult-like performance by the age of 10 years but when the RR1 stimulus was used performance continued to improve beyond 12 years of age. Rate change detection of repetitive sinusoidally frequency modulated tones show protracted development beyond the age of 12 years. Given evidence for abnormal processing of auditory rhythmic signals in neurodevelopmental conditions, such as dyslexia, the present methodology might help delineate the nature of these conditions.
Contextual effects on smooth-pursuit eye movements.
Spering, Miriam; Gegenfurtner, Karl R
2007-02-01
Segregating a moving object from its visual context is particularly relevant for the control of smooth-pursuit eye movements. We examined the interaction between a moving object and a stationary or moving visual context to determine the role of the context motion signal in driving pursuit. Eye movements were recorded from human observers to a medium-contrast Gaussian dot that moved horizontally at constant velocity. A peripheral context consisted of two vertically oriented sinusoidal gratings, one above and one below the stimulus trajectory, that were either stationary or drifted into the same or opposite direction as that of the target at different velocities. We found that a stationary context impaired pursuit acceleration and velocity and prolonged pursuit latency. A drifting context enhanced pursuit performance, irrespective of its motion direction. This effect was modulated by context contrast and orientation. When a context was briefly perturbed to move faster or slower eye velocity changed accordingly, but only when the context was drifting along with the target. Perturbing a context into the direction orthogonal to target motion evoked a deviation of the eye opposite to the perturbation direction. We therefore provide evidence for the use of absolute and relative motion cues, or motion assimilation and motion contrast, for the control of smooth-pursuit eye movements.
Effects of background motion on eye-movement information.
Nakamura, S
1997-02-01
The effect of background stimulus on eye-movement information was investigated by analyzing the underestimation of the target velocity during pursuit eye movement (Aubert-Fleishl paradox). In the experiment, a striped pattern with various brightness contrasts and spatial frequencies was used as a background stimulus, which was moved at various velocities. Analysis showed that the perceived velocity of the pursuit target, which indicated the magnitudes of eye-movement information, decreased when the background stripes moved in the same direction as eye movement at higher velocities and increased when the background moved in the opposite direction. The results suggest that the eye-movement information varied as a linear function of the velocity of the motion of the background retinal image (optic flow). In addition, the effectiveness of optic flow on eye-movement information was determined by the attributes of the background stimulus such as the brightness contrast or the spatial frequency of the striped pattern.
Ponnath, Abhilash; Farris, Hamilton E.
2014-01-01
Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437
Ponnath, Abhilash; Farris, Hamilton E
2014-01-01
Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.
Effects of Hand Proximity and Movement Direction in Spatial and Temporal Gap Discrimination.
Wiemers, Michael; Fischer, Martin H
2016-01-01
Previous research on the interplay between static manual postures and visual attention revealed enhanced visual selection near the hands (near-hand effect). During active movements there is also superior visual performance when moving toward compared to away from the stimulus (direction effect). The "modulated visual pathways" hypothesis argues that differential involvement of magno- and parvocellular visual processing streams causes the near-hand effect. The key finding supporting this hypothesis is an increase in temporal and a reduction in spatial processing in near-hand space (Gozli et al., 2012). Since this hypothesis has, so far, only been tested with static hand postures, we provide a conceptual replication of Gozli et al.'s (2012) result with moving hands, thus also probing the generality of the direction effect. Participants performed temporal or spatial gap discriminations while their right hand was moving below the display. In contrast to Gozli et al. (2012), temporal gap discrimination was superior at intermediate and not near hand proximity. In spatial gap discrimination, a direction effect without hand proximity effect suggests that pragmatic attentional maps overshadowed temporal/spatial processing biases for far/near-hand space.
Moors, Pieter; Wagemans, Johan; de-Wit, Lee
2014-01-01
Continuous flash suppression (CFS) is a powerful interocular suppression technique, which is often described as an effective means to reliably suppress stimuli from visual awareness. Suppression through CFS has been assumed to depend upon a reduction in (retinotopically specific) neural adaptation caused by the continual updating of the contents of the visual input to one eye. In this study, we started from the observation that suppressing a moving stimulus through CFS appeared to be more effective when using a mask that was actually more prone to retinotopically specific neural adaptation, but in which the properties of the mask were more similar to those of the to-be-suppressed stimulus. In two experiments, we find that using a moving Mondrian mask (i.e., one that includes motion) is more effective in suppressing a moving stimulus than a regular CFS mask. The observed pattern of results cannot be explained by a simple simulation that computes the degree of retinotopically specific neural adaptation over time, suggesting that this kind of neural adaptation does not play a large role in predicting the differences between conditions in this context. We also find some evidence consistent with the idea that the most effective CFS mask is the one that matches the properties (speed) of the suppressed stimulus. These results question the general importance of retinotopically specific neural adaptation in CFS, and potentially help to explain an implicit trend in the literature to adapt one's CFS mask to match one's to-be-suppressed stimuli. Finally, the results should help to guide the methodological development of future research where continuous suppression of moving stimuli is desired.
Functional significance of the emotion-related late positive potential
Brown, Stephen B. R. E.; van Steenbergen, Henk; Band, Guido P. H.; de Rover, Mischa; Nieuwenhuis, Sander
2012-01-01
The late positive potential (LPP) is an event-related potential (ERP) component over visual cortical areas that is modulated by the emotional intensity of a stimulus. However, the functional significance of this neural modulation remains elusive. We conducted two experiments in which we studied the relation between LPP amplitude, subsequent perceptual sensitivity to a non-emotional stimulus (Experiment 1) and visual cortical excitability, as reflected by P1/N1 components evoked by this stimulus (Experiment 2). During the LPP modulation elicited by unpleasant stimuli, perceptual sensitivity was not affected. In contrast, we found some evidence for a decreased N1 amplitude during the LPP modulation, a decreased P1 amplitude on trials with a relatively large LPP, and consistent negative (but non-significant) across-subject correlations between the magnitudes of the LPP modulation and corresponding changes in d-prime or P1/N1 amplitude. The results provide preliminary evidence that the LPP reflects a global inhibition of activity in visual cortex, resulting in the selective survival of activity associated with the processing of the emotional stimulus. PMID:22375117
Effects of Crowding and Attention on High-Levels of Motion Processing and Motion Adaptation
Pavan, Andrea; Greenlee, Mark W.
2015-01-01
The motion after-effect (MAE) persists in crowding conditions, i.e., when the adaptation direction cannot be reliably perceived. The MAE originating from complex moving patterns spreads into non-adapted sectors of a multi-sector adapting display (i.e., phantom MAE). In the present study we used global rotating patterns to measure the strength of the conventional and phantom MAEs in crowded and non-crowded conditions, and when attention was directed to the adapting stimulus and when it was diverted away from the adapting stimulus. The results show that: (i) the phantom MAE is weaker than the conventional MAE, for both non-crowded and crowded conditions, and when attention was focused on the adapting stimulus and when it was diverted from it, (ii) conventional and phantom MAEs in the crowded condition are weaker than in the non-crowded condition. Analysis conducted to assess the effect of crowding on high-level of motion adaptation suggests that crowding is likely to affect the awareness of the adapting stimulus rather than degrading its sensory representation, (iii) for high-level of motion processing the attentional manipulation does not affect the strength of either conventional or phantom MAEs, neither in the non-crowded nor in the crowded conditions. These results suggest that high-level MAEs do not depend on attention and that at high-level of motion adaptation the effects of crowding are not modulated by attention. PMID:25615577
Hummingbirds control hovering flight by stabilizing visual motion.
Goller, Benjamin; Altshuler, Douglas L
2014-12-23
Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.
Figure-ground processing during fixational saccades in V1: indication for higher-order stability.
Gilad, Ariel; Pesoa, Yair; Ayzenshtat, Inbal; Slovin, Hamutal
2014-02-26
In a typical visual scene we continuously perceive a "figure" that is segregated from the surrounding "background" despite ongoing microsaccades and small saccades that are performed when attempting fixation (fixational saccades [FSs]). Previously reported neuronal correlates of figure-ground (FG) segregation in the primary visual cortex (V1) showed enhanced activity in the "figure" along with suppressed activity in the noisy "background." However, it is unknown how this FG modulation in V1 is affected by FSs. To investigate this question, we trained two monkeys to detect a contour embedded in a noisy background while simultaneously imaging V1 using voltage-sensitive dyes. During stimulus presentation, the monkeys typically performed 1-3 FSs, which displaced the contour over the retina. Using eye position and a 2D analytical model to map the stimulus onto V1, we were able to compute FG modulation before and after each FS. On the spatial cortical scale, we found that, after each FS, FG modulation follows the stimulus retinal displacement and "hops" within the V1 retinotopic map, suggesting visual instability. On the temporal scale, FG modulation is initiated in the new retinotopic position before it disappeared from the old retinotopic position. Moreover, the FG modulation developed faster after an FS, compared with after stimulus onset, which may contribute to visual stability of FG segregation, along the timeline of stimulus presentation. Therefore, despite spatial discontinuity of FG modulation in V1, the higher-order stability of FG modulation along time may enable our stable and continuous perception.
Stimulus-dependent modulation of spontaneous low-frequency oscillations in the rat visual cortex.
Huang, Liangming; Liu, Yadong; Gui, Jianjun; Li, Ming; Hu, Dewen
2014-08-06
Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.
Li, Fengling; Jiang, Weiqian; Wang, Tian-Yi; Xie, Taorong; Yao, Haishan
2018-05-21
In the primary visual cortex (V1), neuronal responses to stimuli within the receptive field (RF) are modulated by stimuli in the RF surround. A common effect of surround modulation is surround suppression, which is dependent on the feature difference between stimuli within and surround the RF and is suggested to be involved in the perceptual phenomenon of figure-ground segregation. In this study, we examined the relationship between feature-specific surround suppression of V1 neurons and figure detection behavior based on figure-ground feature difference. We trained freely moving mice to perform a figure detection task using figure and ground gratings that differed in spatial phase. The performance of figure detection increased with the figure-ground phase difference, and was modulated by stimulus contrast. Electrophysiological recordings from V1 in head-fixed mice showed that the increase in phase difference between stimuli within and surround the RF caused a reduction in surround suppression, which was associated with an increase in V1 neural discrimination between stimuli with and without RF-surround phase difference. Consistent with the behavioral performance, the sensitivity of V1 neurons to RF-surround phase difference could be influenced by stimulus contrast. Furthermore, inhibiting V1 by optogenetically activating either parvalbumin (PV)- or somatostatin (SOM)-expressing inhibitory neurons both decreased the behavioral performance of figure detection. Thus, the phase-specific surround suppression in V1 represents a neural correlate of figure detection behavior based on figure-ground phase discontinuity. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Topography of Responses in Conditional Discrimination Influences Formation of Equivalence Classes
ERIC Educational Resources Information Center
Kato, Olivia M.; de Rose, Julio C.; Faleiros, Pedro B.
2008-01-01
The effects of response topography on stimulus class formation were studied in two experiments. In Experiment 1, 32 college students were assigned to 2 response topographies and 2 stimulus sets, in a 2 x 2 design. Students selected stimuli by either moving a mouse to lace an arrow-shaped cursor on the stimulus or pressing a key corresponding to…
Motion onset does not capture attention when subsequent motion is "smooth".
Sunny, Meera Mary; von Mühlenen, Adrian
2011-12-01
Previous research on the attentional effects of moving objects has shown that motion per se does not capture attention. However, in later studies it was argued that the onset of motion does capture attention. Here, we show that this motion-onset effect critically depends on motion jerkiness--that is, the rate at which the moving stimulus is refreshed. Experiment 1 used search displays with a static, a motion-onset, and an abrupt-onset stimulus, while systematically varying the refresh rate of the moving stimulus. The results showed that motion onset only captures attention when subsequent motion is jerky (8 and 17 Hz), not when it is smooth (33 and 100 Hz). Experiment 2 replaced motion onset with continuous motion, showing that motion jerkiness does not affect how continuous motion is processed. These findings do not support accounts that assume a special role for motion onset, but they are in line with the more general unique-event account.
The structure of somatosensory information for human postural control
NASA Technical Reports Server (NTRS)
Jeka, J. J.; Ribeiro, P.; Oie, K.; Lackner, J. R.
1998-01-01
The goal of the present study was to determine the properties of the somatosensory stimulus that alter its temporal coupling to body sway. Six standing subjects were tested while touching a metal plate positioned either directly in front of or lateral to the subject. In each condition, the plate moved 4 mm at 0.2 Hz in either the medial-lateral (ML) or anterior-posterior direction (AP). The results showed that coupling between body sway and touch plate movement was strongest when the touch plate moved in a direction along the longitudinal axis of the arm. Coupling strength was weaker when the touch plate moved perpendicular to the longitudinal axis of the arm. The results consistently show that a radial expansion stimulus was more effective than a lamellar-type stimulus at the fingertip. Moreover, somatosensory information from a surface is interpreted in terms of the orientation of the contact limb and the potential degrees of freedom available through its movement.
Hamm, Jordan P.; Bobilev, Anastasia M.; Hayrynen, Lauren K.; Hudgens-Haney, Matthew E.; Oliver, William T.; Parker, David A.; McDowell, Jennifer E.; Buckley, Peter A.; Clementz, Brett A.
2017-01-01
Electroencephalographic (EEG) studies of auditory steady-state responses (aSSRs) non-invasively probe gamma-band (40-Hz) oscillatory capacity in sensory cortex with high signal-to-noise ratio. Consistent reports of reduced 40-Hz aSSRs in persons with schizophrenia (SZ) indicate its potential as an efficient biomarker for the disease, but studies have been limited to passive or indirect listening contexts with stereotypically short (500ms) stimulus trains. An inability to modulate sensorineural processing in accord with behavioral goals or within the sensory environmental context may represent a fundamental deficit in SZ, but whether and how this deficit relates to reduced aSSRs is unknown. We systematically varied stimulus duration and attentional contexts to further mature the 40-Hz aSSR as biomarker for future translational or mechanistic studies. Eighteen SZ and 18 healthy subjects (H) were presented binaural pure-tones with or without sinusoidal amplitude modulation at 40-Hz. Stimulus duration (500-ms or 1500-ms) and attention (via a button press task) were varied across 4 separate blocks. Evoked potentials recorded with dense-array EEGs were analyzed in the time-frequency domain. SZ displayed reduced 40-Hz aSSRs to typical stimulation parameters, replicating previous findings. In H, aSSRs were reduced when stimuli were presented in longer trains and were slightly enhanced by attention. Only the former modulation was impaired in SZ and correlated with sensory discrimination performance. Thus, gamma-band aSSRs are modulated by both attentional and stimulus duration contexts, but only modulations related to physical stimulus properties are abnormal in SZ, supporting its status as a biomarker of psychotic perceptual disturbance involving non-attentional sensori-cortical circuits. PMID:25868936
Abstract feature codes: The building blocks of the implicit learning system.
Eberhardt, Katharina; Esser, Sarah; Haider, Hilde
2017-07-01
According to the Theory of Event Coding (TEC; Hommel, Müsseler, Aschersleben, & Prinz, 2001), action and perception are represented in a shared format in the cognitive system by means of feature codes. In implicit sequence learning research, it is still common to make a conceptual difference between independent motor and perceptual sequences. This supposedly independent learning takes place in encapsulated modules (Keele, Ivry, Mayr, Hazeltine, & Heuer 2003) that process information along single dimensions. These dimensions have remained underspecified so far. It is especially not clear whether stimulus and response characteristics are processed in separate modules. Here, we suggest that feature dimensions as they are described in the TEC should be viewed as the basic content of modules of implicit learning. This means that the modules process all stimulus and response information related to certain feature dimensions of the perceptual environment. In 3 experiments, we investigated by means of a serial reaction time task the nature of the basic units of implicit learning. As a test case, we used stimulus location sequence learning. The results show that a stimulus location sequence and a response location sequence cannot be learned without interference (Experiment 2) unless one of the sequences can be coded via an alternative, nonspatial dimension (Experiment 3). These results support the notion that spatial location is one module of the implicit learning system and, consequently, that there are no separate processing units for stimulus versus response locations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Nasaruddin, N. H.; Yusoff, A. N.; Kaur, S.
2014-11-01
The objective of this multiple-subjects functional magnetic resonance imaging (fMRI) study was to identify the common brain areas that are activated when viewing black-and-white checkerboard pattern stimuli of various shapes, pattern and size and to investigate specific brain areas that are involved in processing static and moving visual stimuli. Sixteen participants viewed the moving (expanding ring, rotating wedge, flipping hour glass and bowtie and arc quadrant) and static (full checkerboard) stimuli during an fMRI scan. All stimuli have black-and-white checkerboard pattern. Statistical parametric mapping (SPM) was used in generating brain activation. Differential analyses were implemented to separately search for areas involved in processing static and moving stimuli. In general, the stimuli of various shapes, pattern and size activated multiple brain areas mostly in the left hemisphere. The activation in the right middle temporal gyrus (MTG) was found to be significantly higher in processing moving visual stimuli as compared to static stimulus. In contrast, the activation in the left calcarine sulcus and left lingual gyrus were significantly higher for static stimulus as compared to moving stimuli. Visual stimulation of various shapes, pattern and size used in this study indicated left lateralization of activation. The involvement of the right MTG in processing moving visual information was evident from differential analysis, while the left calcarine sulcus and left lingual gyrus are the areas that are involved in the processing of static visual stimulus.
Brain computer interface to enhance episodic memory in human participants
Burke, John F.; Merkow, Maxwell B.; Jacobs, Joshua; Kahana, Michael J.
2015-01-01
Recent research has revealed that neural oscillations in the theta (4–8 Hz) and alpha (9–14 Hz) bands are predictive of future success in memory encoding. Because these signals occur before the presentation of an upcoming stimulus, they are considered stimulus-independent in that they correlate with enhanced memory encoding independent of the item being encoded. Thus, such stimulus-independent activity has important implications for the neural mechanisms underlying episodic memory as well as the development of cognitive neural prosthetics. Here, we developed a brain computer interface (BCI) to test the ability of such pre-stimulus activity to modulate subsequent memory encoding. We recorded intracranial electroencephalography (iEEG) in neurosurgical patients as they performed a free recall memory task, and detected iEEG theta and alpha oscillations that correlated with optimal memory encoding. We then used these detected oscillatory changes to trigger the presentation of items in the free recall task. We found that item presentation contingent upon the presence of pre-stimulus theta and alpha oscillations modulated memory performance in more sessions than expected by chance. Our results suggest that an electrophysiological signal may be causally linked to a specific behavioral condition, and contingent stimulus presentation has the potential to modulate human memory encoding. PMID:25653605
Nakamura, S; Shimojo, S
1998-10-01
The effects of the size and eccentricity of the visual stimulus upon visually induced perception of self-motion (vection) were examined with various sizes of central and peripheral visual stimulation. Analysis indicated the strength of vection increased linearly with the size of the area in which the moving pattern was presented, but there was no difference in vection strength between central and peripheral stimuli when stimulus sizes were the same. Thus, the effect of stimulus size is homogeneous across eccentricities in the visual field.
Saetta, Gianluca; Grond, Ilva; Brugger, Peter; Lenggenhager, Bigna; Tsay, Anthony J; Giummarra, Melita J
2018-03-21
Phantom limbs are the phenomenal persistence of postural and sensorimotor features of an amputated limb. Although immaterial, their characteristics can be modulated by the presence of physical matter. For instance, the phantom may disappear when its phenomenal space is invaded by objects ("obstacle shunning"). Alternatively, "obstacle tolerance" occurs when the phantom is not limited by the law of impenetrability and co-exists with physical objects. Here we examined the link between this under-investigated aspect of phantom limbs and apparent motion perception. The illusion of apparent motion of human limbs involves the perception that a limb moves through or around an object, depending on the stimulus onset asynchrony (SOA) for the two images. Participants included 12 unilateral lower limb amputees matched for obstacle shunning (n = 6) and obstacle tolerance (n = 6) experiences, and 14 non-amputees. Using multilevel linear models, we replicated robust biases for short perceived trajectories for short SOA (moving through the object), and long trajectories (circumventing the object) for long SOAs in both groups. Importantly, however, amputees with obstacle shunning perceived leg stimuli to predominantly move through the object, whereas amputees with obstacle tolerance perceived leg stimuli to predominantly move around the object. That is, in people who experience obstacle shunning, apparent motion perception of lower limbs was not constrained to the laws of impenetrability (as the phantom disappears when invaded by objects), and legs can therefore move through physical objects. Amputees who experience obstacle tolerance, however, had stronger solidity constraints for lower limb apparent motion, perhaps because they must avoid co-location of the phantom with physical objects. Phantom limb experience does, therefore, appear to be modulated by intuitive physics, but not in the same way for everyone. This may have important implications for limb experience post-amputation (e.g., improving prosthesis embodiment when limb representation is constrained by the same limits as an intact limb). Copyright © 2018 Elsevier Ltd. All rights reserved.
Baumgarten, Thomas J; Königs, Sara; Schnitzler, Alfons; Lange, Joachim
2017-03-09
Despite being experienced as continuous, there is an ongoing debate if perception is an intrinsically discrete process, with incoming sensory information treated as a succession of single perceptual cycles. Here, we provide causal evidence that somatosensory perception is composed of discrete perceptual cycles. We used in humans an electrotactile temporal discrimination task preceded by a subliminal (i.e., below perceptual threshold) stimulus. Although not consciously perceived, subliminal stimuli are known to elicit neuronal activity in early sensory areas and modulate the phase of ongoing neuronal oscillations. We hypothesized that the subliminal stimulus indirectly, but systematically modulates the ongoing oscillatory phase in S1, thereby rhythmically shaping perception. The present results confirm that, without being consciously perceived, the subliminal stimulus critically influenced perception in the discrimination task. Importantly, perception was modulated rhythmically, in cycles corresponding to the beta-band (13-18 Hz). This can be compellingly explained by a model of discrete perceptual cycles.
Coherent modulation of stimulus colour can affect visually induced self-motion perception.
Nakamura, Shinji; Seno, Takeharu; Ito, Hiroyuki; Sunaga, Shoji
2010-01-01
The effects of dynamic colour modulation on vection were investigated to examine whether perceived variation of illumination affects self-motion perception. Participants observed expanding optic flow which simulated their forward self-motion. Onset latency, accumulated duration, and estimated magnitude of the self-motion were measured as indices of vection strength. Colour of the dots in the visual stimulus was modulated between white and red (experiment 1), white and grey (experiment 2), and grey and red (experiment 3). The results indicated that coherent colour oscillation in the visual stimulus significantly suppressed the strength of vection, whereas incoherent or static colour modulation did not affect vection. There was no effect of the types of the colour modulation; both achromatic and chromatic modulations turned out to be effective in inhibiting self-motion perception. Moreover, in a situation where the simulated direction of a spotlight was manipulated dynamically, vection strength was also suppressed (experiment 4). These results suggest that observer's perception of illumination is critical for self-motion perception, and rapid variation of perceived illumination would impair the reliabilities of visual information in determining self-motion.
Tang, Xiaoyu; Li, Chunlin; Li, Qi; Gao, Yulin; Yang, Weiping; Yang, Jingjing; Ishikawa, Soushirou; Wu, Jinglong
2013-10-11
Utilizing the high temporal resolution of event-related potentials (ERPs), we examined how visual spatial or temporal cues modulated the auditory stimulus processing. The visual spatial cue (VSC) induces orienting of attention to spatial locations; the visual temporal cue (VTC) induces orienting of attention to temporal intervals. Participants were instructed to respond to auditory targets. Behavioral responses to auditory stimuli following VSC were faster and more accurate than those following VTC. VSC and VTC had the same effect on the auditory N1 (150-170 ms after stimulus onset). The mean amplitude of the auditory P1 (90-110 ms) in VSC condition was larger than that in VTC condition, and the mean amplitude of late positivity (300-420 ms) in VTC condition was larger than that in VSC condition. These findings suggest that modulation of auditory stimulus processing by visually induced spatial or temporal orienting of attention were different, but partially overlapping. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Vetter, Brooke J.; Calfee, Robin D.; Mensinger, Allen F.
2017-01-01
Invasive silver carp (Hypophthalmichthys molitrix) dominate large regions of the Mississippi River drainage, outcompete native species, and are notorious for their prolific and unusual jumping behavior. High densities of juvenile and adult (~25 kg) carp are known to jump up to 3 m above the water surface in response to moving watercraft. Broadband sound recorded from an outboard motor (100 hp at 32 km/hr) can modulate their behavior in captivity; however, the response of wild silver carp to broadband sound has yet to be determined. In this experiment, broadband sound (0.06–10 kHz) elicited jumping behavior from silver carp in the Spoon River near Havana, IL independent of boat movement, indicating acoustic stimulus alone is sufficient to induce jumping. Furthermore, the number of jumping fish decreased with subsequent sound exposures. Understanding silver carp jumping is not only important from a behavioral standpoint, it is also critical to determine effective techniques for controlling this harmful species, such as herding fish into a net for removal.
Auditory modulation of wind-elicited walking behavior in the cricket Gryllus bimaculatus.
Fukutomi, Matasaburo; Someya, Makoto; Ogawa, Hiroto
2015-12-01
Animals flexibly change their locomotion triggered by an identical stimulus depending on the environmental context and behavioral state. This indicates that additional sensory inputs in different modality from the stimulus triggering the escape response affect the neuronal circuit governing that behavior. However, how the spatio-temporal relationships between these two stimuli effect a behavioral change remains unknown. We studied this question, using crickets, which respond to a short air-puff by oriented walking activity mediated by the cercal sensory system. In addition, an acoustic stimulus, such as conspecific 'song' received by the tympanal organ, elicits a distinct oriented locomotion termed phonotaxis. In this study, we examined the cross-modal effects on wind-elicited walking when an acoustic stimulus was preceded by an air-puff and tested whether the auditory modulation depends on the coincidence of the direction of both stimuli. A preceding 10 kHz pure tone biased the wind-elicited walking in a backward direction and elevated a threshold of the wind-elicited response, whereas other movement parameters, including turn angle, reaction time, walking speed and distance were unaffected. The auditory modulations, however, did not depend on the coincidence of the stimulus directions. A preceding sound consistently altered the wind-elicited walking direction and response probability throughout the experimental sessions, meaning that the auditory modulation did not result from previous experience or associative learning. These results suggest that the cricket nervous system is able to integrate auditory and air-puff stimuli, and modulate the wind-elicited escape behavior depending on the acoustic context. © 2015. Published by The Company of Biologists Ltd.
The Neural Correlates of Inhibiting Pursuit to Smoothly Moving Targets
ERIC Educational Resources Information Center
Burke, Melanie Rose; Barnes, Graham R.
2011-01-01
A previous study has shown that actively pursuing a moving target provides a predictive motor advantage when compared with passive observation of the moving target while keeping the eyes still [Burke, M. R., & Barnes, G. R. Anticipatory eye movements evoked after active following versus passive observation of a predictable motion stimulus. "Brain…
Lemaire, Patrick; Brun, Fleur
2014-10-01
Ageing results in the tendency of older adults to repeat the same strategy across consecutive problems more often than young adults, even when such strategy perseveration is not appropriate. Here, we examined how these age-related differences in strategy perseveration are modulated by response-stimulus intervals and problem characteristics. We asked participants to select the best strategy while accomplishing a computational estimation task (i.e., provide approximate sums to two-digit addition problems like 38 + 74). We found that participants repeated the same strategy across consecutive problems more often when the duration between their response and next problem display was short (300 ms) than when it was long (1300 ms). We also found more strategy perseverations in older than in young adults under short Response-Stimulus Intervals, but not under long Response-Stimulus Intervals. Finally, age-related differences in strategy perseveration decreased when problem features helped participants to select the best strategy. These modulations of age-related differences in strategy perseveration by response-stimulus intervals and characteristics of target problems are important for furthering our understanding of mechanisms underlying strategy perseveration and, more generally, ageing effects on strategy selection.
Speed tuning of motion segmentation and discrimination
NASA Technical Reports Server (NTRS)
Masson, G. S.; Mestre, D. R.; Stone, L. S.
1999-01-01
Motion transparency requires that the visual system distinguish different motion vectors and selectively integrate similar motion vectors over space into the perception of multiple surfaces moving through or over each other. Using large-field (7 degrees x 7 degrees) displays containing two populations of random-dots moving in the same (horizontal) direction but at different speeds, we examined speed-based segmentation by measuring the speed difference above which observers can perceive two moving surfaces. We systematically investigated this 'speed-segmentation' threshold as a function of speed and stimulus duration, and found that it increases sharply for speeds above approximately 8 degrees/s. In addition, speed-segmentation thresholds decrease with stimulus duration out to approximately 200 ms. In contrast, under matched conditions, speed-discrimination thresholds stay low at least out to 16 degrees/s and decrease with increasing stimulus duration at a faster rate than for speed segmentation. Thus, motion segmentation and motion discrimination exhibit different speed selectivity and different temporal integration characteristics. Results are discussed in terms of the speed preferences of different neuronal populations within the primate visual cortex.
Kinesthetic information facilitates saccades towards proprioceptive-tactile targets.
Voudouris, Dimitris; Goettker, Alexander; Mueller, Stefanie; Fiehler, Katja
2016-05-01
Saccades to somatosensory targets have longer latencies and are less accurate and precise than saccades to visual targets. Here we examined how different somatosensory information influences the planning and control of saccadic eye movements. Participants fixated a central cross and initiated a saccade as fast as possible in response to a tactile stimulus that was presented to either the index or the middle fingertip of their unseen left hand. In a static condition, the hand remained at a target location for the entire block of trials and the stimulus was presented at a fixed time after an auditory tone. Therefore, the target location was derived only from proprioceptive and tactile information. In a moving condition, the hand was first actively moved to the same target location and the stimulus was then presented immediately. Thus, in the moving condition additional kinesthetic information about the target location was available. We found shorter saccade latencies in the moving compared to the static condition, but no differences in accuracy or precision of saccadic endpoints. In a second experiment, we introduced variable delays after the auditory tone (static condition) or after the end of the hand movement (moving condition) in order to reduce the predictability of the moment of the stimulation and to allow more time to process the kinesthetic information. Again, we found shorter latencies in the moving compared to the static condition but no improvement in saccade accuracy or precision. In a third experiment, we showed that the shorter saccade latencies in the moving condition cannot be explained by the temporal proximity between the relevant event (auditory tone or end of hand movement) and the moment of the stimulation. Our findings suggest that kinesthetic information facilitates planning, but not control, of saccadic eye movements to proprioceptive-tactile targets. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall
2013-10-01
Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of ABIs may benefit from using pulse rates greater than those presently used in most ABIs, and by sound processing strategies that enhance the modulation depth of the electrical stimulus while preserving dynamic range.
Central Cannabinoid Receptors Modulate Acquisition of Eyeblink Conditioning
ERIC Educational Resources Information Center
Steinmetz, Adam B.; Freeman, John H.
2010-01-01
Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light, and an unconditioned stimulus (US) that elicits the blink reflex. Conditioned stimulus information is projected from the basilar pontine nuclei to the cerebellar interpositus nucleus and cortex. The cerebellar cortex,…
Stimulus onset predictability modulates proactive action control in a Go/No-go task
Berchicci, Marika; Lucci, Giuliana; Spinelli, Donatella; Di Russo, Francesco
2015-01-01
The aim of the study was to evaluate whether the presence/absence of visual cues specifying the onset of an upcoming, action-related stimulus modulates pre-stimulus brain activity, associated with the proactive control of goal-directed actions. To this aim we asked 12 subjects to perform an equal probability Go/No-go task with four stimulus configurations in two conditions: (1) uncued, i.e., without any external information about the timing of stimulus onset; and (2) cued, i.e., with external visual cues providing precise information about the timing of stimulus onset. During task both behavioral performance and event-related potentials (ERPs) were recorded. Behavioral results showed faster response times in the cued than uncued condition, confirming existing literature. ERPs showed novel results in the proactive control stage, that started about 1 s before the motor response. We observed a slow rising prefrontal positive activity, more pronounced in the cued than the uncued condition. Further, also pre-stimulus activity of premotor areas was larger in cued than uncued condition. In the post-stimulus period, the P3 amplitude was enhanced when the time of stimulus onset was externally driven, confirming that external cueing enhances processing of stimulus evaluation and response monitoring. Our results suggest that different pre-stimulus processing come into play in the two conditions. We hypothesize that the large prefrontal and premotor activities recorded with external visual cues index the monitoring of the external stimuli in order to finely regulate the action. PMID:25964751
Hao, Qiao; Ora, Hiroki; Ogawa, Ken-Ichiro; Ogata, Taiki; Miyake, Yoshihiro
2016-09-13
The simultaneous perception of multimodal sensory information has a crucial role for effective reactions to the external environment. Voluntary movements are known to occasionally affect simultaneous perception of auditory and tactile stimuli presented to the moving body part. However, little is known about spatial limits on the effect of voluntary movements on simultaneous perception, especially when tactile stimuli are presented to a non-moving body part. We examined the effect of voluntary movement on the simultaneous perception of auditory and tactile stimuli presented to the non-moving body part. We considered the possible mechanism using a temporal order judgement task under three experimental conditions: voluntary movement, where participants voluntarily moved their right index finger and judged the temporal order of auditory and tactile stimuli presented to their non-moving left index finger; passive movement; and no movement. During voluntary movement, the auditory stimulus needed to be presented before the tactile stimulus so that they were perceived as occurring simultaneously. This subjective simultaneity differed significantly from the passive movement and no movement conditions. This finding indicates that the effect of voluntary movement on simultaneous perception of auditory and tactile stimuli extends to the non-moving body part.
Modulation of V1 Spike Response by Temporal Interval of Spatiotemporal Stimulus Sequence
Kim, Taekjun; Kim, HyungGoo R.; Kim, Kayeon; Lee, Choongkil
2012-01-01
The spike activity of single neurons of the primary visual cortex (V1) becomes more selective and reliable in response to wide-field natural scenes compared to smaller stimuli confined to the classical receptive field (RF). However, it is largely unknown what aspects of natural scenes increase the selectivity of V1 neurons. One hypothesis is that modulation by surround interaction is highly sensitive to small changes in spatiotemporal aspects of RF surround. Such a fine-tuned modulation would enable single neurons to hold information about spatiotemporal sequences of oriented stimuli, which extends the role of V1 neurons as a simple spatiotemporal filter confined to the RF. In the current study, we examined the hypothesis in the V1 of awake behaving monkeys, by testing whether the spike response of single V1 neurons is modulated by temporal interval of spatiotemporal stimulus sequence encompassing inside and outside the RF. We used two identical Gabor stimuli that were sequentially presented with a variable stimulus onset asynchrony (SOA): the preceding one (S1) outside the RF and the following one (S2) in the RF. This stimulus configuration enabled us to examine the spatiotemporal selectivity of response modulation from a focal surround region. Although S1 alone did not evoke spike responses, visual response to S2 was modulated for SOA in the range of tens of milliseconds. These results suggest that V1 neurons participate in processing spatiotemporal sequences of oriented stimuli extending outside the RF. PMID:23091631
Nakamura, S; Shimojo, S
2000-01-01
We investigated interactions between foreground and background stimuli during visually induced perception of self-motion (vection) by using a stimulus composed of orthogonally moving random-dot patterns. The results indicated that, when the foreground moves with a slower speed, a self-motion sensation with a component in the same direction as the foreground is induced. We named this novel component of self-motion perception 'inverted vection'. The robustness of inverted vection was confirmed using various measures of self-motion sensation and under different stimulus conditions. The mechanism underlying inverted vection is discussed with regard to potentially relevant factors, such as relative motion between the foreground and background, and the interaction between the mis-registration of eye-movement information and self-motion perception.
Visual context modulates potentiation of grasp types during semantic object categorization.
Kalénine, Solène; Shapiro, Allison D; Flumini, Andrea; Borghi, Anna M; Buxbaum, Laurel J
2014-06-01
Substantial evidence suggests that conceptual processing of manipulable objects is associated with potentiation of action. Such data have been viewed as evidence that objects are recognized via access to action features. Many objects, however, are associated with multiple actions. For example, a kitchen timer may be clenched with a power grip to move it but pinched with a precision grip to use it. The present study tested the hypothesis that action evocation during conceptual object processing is responsive to the visual scene in which objects are presented. Twenty-five healthy adults were asked to categorize object pictures presented in different naturalistic visual contexts that evoke either move- or use-related actions. Categorization judgments (natural vs. artifact) were performed by executing a move- or use-related action (clench vs. pinch) on a response device, and response times were assessed as a function of contextual congruence. Although the actions performed were irrelevant to the categorization judgment, responses were significantly faster when actions were compatible with the visual context. This compatibility effect was largely driven by faster pinch responses when objects were presented in use-compatible, as compared with move-compatible, contexts. The present study is the first to highlight the influence of visual scene on stimulus-response compatibility effects during semantic object processing. These data support the hypothesis that action evocation during conceptual object processing is biased toward context-relevant actions.
Visual context modulates potentiation of grasp types during semantic object categorization
Kalénine, Solène; Shapiro, Allison D.; Flumini, Andrea; Borghi, Anna M.; Buxbaum, Laurel J.
2013-01-01
Substantial evidence suggests that conceptual processing of manipulable objects is associated with potentiation of action. Such data have been viewed as evidence that objects are recognized via access to action features. Many objects, however, are associated with multiple actions. For example, a kitchen timer may be clenched with a power grip to move it, but pinched with a precision grip to use it. The present study tested the hypothesis that action evocation during conceptual object processing is responsive to the visual scene in which objects are presented. Twenty-five healthy adults were asked to categorize object pictures presented in different naturalistic visual contexts that evoke either move- or use-related actions. Categorization judgments (natural vs. artifact) were performed by executing a move- or use-related action (clench vs. pinch) on a response device, and response times were assessed as a function of contextual congruence. Although the actions performed were irrelevant to the categorization judgment, responses were significantly faster when actions were compatible with the visual context. This compatibility effect was largely driven by faster pinch responses when objects were presented in use- compared to move-compatible contexts. The present study is the first to highlight the influence of visual scene on stimulus-response compatibility effects during semantic object processing. These data support the hypothesis that action evocation during conceptual object processing is biased toward context-relevant actions. PMID:24186270
Frequency modulation entrains slow neural oscillations and optimizes human listening behavior
Henry, Molly J.; Obleser, Jonas
2012-01-01
The human ability to continuously track dynamic environmental stimuli, in particular speech, is proposed to profit from “entrainment” of endogenous neural oscillations, which involves phase reorganization such that “optimal” phase comes into line with temporally expected critical events, resulting in improved processing. The current experiment goes beyond previous work in this domain by addressing two thus far unanswered questions. First, how general is neural entrainment to environmental rhythms: Can neural oscillations be entrained by temporal dynamics of ongoing rhythmic stimuli without abrupt onsets? Second, does neural entrainment optimize performance of the perceptual system: Does human auditory perception benefit from neural phase reorganization? In a human electroencephalography study, listeners detected short gaps distributed uniformly with respect to the phase angle of a 3-Hz frequency-modulated stimulus. Listeners’ ability to detect gaps in the frequency-modulated sound was not uniformly distributed in time, but clustered in certain preferred phases of the modulation. Moreover, the optimal stimulus phase was individually determined by the neural delta oscillation entrained by the stimulus. Finally, delta phase predicted behavior better than stimulus phase or the event-related potential after the gap. This study demonstrates behavioral benefits of phase realignment in response to frequency-modulated auditory stimuli, overall suggesting that frequency fluctuations in natural environmental input provide a pacing signal for endogenous neural oscillations, thereby influencing perceptual processing. PMID:23151506
An fMRI investigation into the effect of preceding stimuli during visual oddball tasks.
Fajkus, Jiří; Mikl, Michal; Shaw, Daniel Joel; Brázdil, Milan
2015-08-15
This study investigates the modulatory effect of stimulus sequence on neural responses to novel stimuli. A group of 34 healthy volunteers underwent event-related functional magnetic resonance imaging while performing a three-stimulus visual oddball task, involving randomly presented frequent stimuli and two types of infrequent stimuli - targets and distractors. We developed a modified categorization of rare stimuli that incorporated the type of preceding rare stimulus, and analyzed the event-related functional data according to this sequence categorization; specifically, we explored hemodynamic response modulation associated with increasing rare-to-rare stimulus interval. For two consecutive targets, a modulation of brain function was evident throughout posterior midline and lateral temporal cortex, while responses to targets preceded by distractors were modulated in a widely distributed fronto-parietal system. As for distractors that follow targets, brain function was modulated throughout a set of posterior brain structures. For two successive distractors, however, no significant modulation was observed, which is consistent with previous studies and our primary hypothesis. The addition of the aforementioned technique extends the possibilities of conventional oddball task analysis, enabling researchers to explore the effects of the whole range of rare stimuli intervals. This methodology can be applied to study a wide range of associated cognitive mechanisms, such as decision making, expectancy and attention. Copyright © 2015 Elsevier B.V. All rights reserved.
Transformation of the neural code for tactile detection from thalamus to cortex.
Vázquez, Yuriria; Salinas, Emilio; Romo, Ranulfo
2013-07-09
To understand how sensory-driven neural activity gives rise to perception, it is essential to characterize how various relay stations in the brain encode stimulus presence. Neurons in the ventral posterior lateral (VPL) nucleus of the somatosensory thalamus and in primary somatosensory cortex (S1) respond to vibrotactile stimulation with relatively slow modulations (∼100 ms) of their firing rate. In addition, faster modulations (∼10 ms) time-locked to the stimulus waveform are observed in both areas, but their contribution to stimulus detection is unknown. Furthermore, it is unclear whether VPL and S1 neurons encode stimulus presence with similar accuracy and via the same response features. To address these questions, we recorded single neurons while trained monkeys judged the presence or absence of a vibrotactile stimulus of variable amplitude, and their activity was analyzed with a unique decoding method that is sensitive to the time scale of the firing rate fluctuations. We found that the maximum detection accuracy of single neurons is similar in VPL and S1. However, VPL relies more heavily on fast rate modulations than S1, and as a consequence, the neural code in S1 is more tolerant: its performance degrades less when the readout method or the time scale of integration is suboptimal. Therefore, S1 neurons implement a more robust code, one less sensitive to the temporal integration window used to infer stimulus presence downstream. The differences between VPL and S1 responses signaling the appearance of a stimulus suggest a transformation of the neural code from thalamus to cortex.
Reduced Sensitivity to Minimum-Jerk Biological Motion in Autism Spectrum Conditions
ERIC Educational Resources Information Center
Cook, Jennifer; Saygin, Ayse Pinar; Swain, Rachel; Blakemore, Sarah-Jayne
2009-01-01
We compared psychophysical thresholds for biological and non-biological motion detection in adults with autism spectrum conditions (ASCs) and controls. Participants watched animations of a biological stimulus (a moving hand) or a non-biological stimulus (a falling tennis ball). The velocity profile of the movement was varied between 100% natural…
Modulation-Frequency-Specific Adaptation in Awake Auditory Cortex
Beitel, Ralph E.; Vollmer, Maike; Heiser, Marc A.; Schreiner, Christoph E.
2015-01-01
Amplitude modulations are fundamental features of natural signals, including human speech and nonhuman primate vocalizations. Because natural signals frequently occur in the context of other competing signals, we used a forward-masking paradigm to investigate how the modulation context of a prior signal affects cortical responses to subsequent modulated sounds. Psychophysical “modulation masking,” in which the presentation of a modulated “masker” signal elevates the threshold for detecting the modulation of a subsequent stimulus, has been interpreted as evidence of a central modulation filterbank and modeled accordingly. Whether cortical modulation tuning is compatible with such models remains unknown. By recording responses to pairs of sinusoidally amplitude modulated (SAM) tones in the auditory cortex of awake squirrel monkeys, we show that the prior presentation of the SAM masker elicited persistent and tuned suppression of the firing rate to subsequent SAM signals. Population averages of these effects are compatible with adaptation in broadly tuned modulation channels. In contrast, modulation context had little effect on the synchrony of the cortical representation of the second SAM stimuli and the tuning of such effects did not match that observed for firing rate. Our results suggest that, although the temporal representation of modulated signals is more robust to changes in stimulus context than representations based on average firing rate, this representation is not fully exploited and psychophysical modulation masking more closely mirrors physiological rate suppression and that rate tuning for a given stimulus feature in a given neuron's signal pathway appears sufficient to engender context-sensitive cortical adaptation. PMID:25878263
Emotion and attention: event-related brain potential studies.
Schupp, Harald T; Flaisch, Tobias; Stockburger, Jessica; Junghöfer, Markus
2006-01-01
Emotional pictures guide selective visual attention. A series of event-related brain potential (ERP) studies is reviewed demonstrating the consistent and robust modulation of specific ERP components by emotional images. Specifically, pictures depicting natural pleasant and unpleasant scenes are associated with an increased early posterior negativity, late positive potential, and sustained positive slow wave compared with neutral contents. These modulations are considered to index different stages of stimulus processing including perceptual encoding, stimulus representation in working memory, and elaborate stimulus evaluation. Furthermore, the review includes a discussion of studies exploring the interaction of motivated attention with passive and active forms of attentional control. Recent research is reviewed exploring the selective processing of emotional cues as a function of stimulus novelty, emotional prime pictures, learned stimulus significance, and in the context of explicit attention tasks. It is concluded that ERP measures are useful to assess the emotion-attention interface at the level of distinct processing stages. Results are discussed within the context of two-stage models of stimulus perception brought out by studies of attention, orienting, and learning.
Smulders, Tom V; Jarvis, Erich D
2013-11-01
Repeated exposure to an auditory stimulus leads to habituation of the electrophysiological and immediate-early-gene (IEG) expression response in the auditory system. A novel auditory stimulus reinstates this response in a form of dishabituation. This has been interpreted as the start of new memory formation for this novel stimulus. Changes in the location of an otherwise identical auditory stimulus can also dishabituate the IEG expression response. This has been interpreted as an integration of stimulus identity and stimulus location into a single auditory object, encoded in the firing patterns of the auditory system. In this study, we further tested this hypothesis. Using chronic multi-electrode arrays to record multi-unit activity from the auditory system of awake and behaving zebra finches, we found that habituation occurs to repeated exposure to the same song and dishabituation with a novel song, similar to that described in head-fixed, restrained animals. A large proportion of recording sites also showed dishabituation when the same auditory stimulus was moved to a novel location. However, when the song was randomly moved among 8 interleaved locations, habituation occurred independently of the continuous changes in location. In contrast, when 8 different auditory stimuli were interleaved all from the same location, a separate habituation occurred to each stimulus. This result suggests that neuronal memories of the acoustic identity and spatial location are different, and that allocentric location of a stimulus is not encoded as part of the memory for an auditory object, while its acoustic properties are. We speculate that, instead, the dishabituation that occurs with a change from a stable location of a sound is due to the unexpectedness of the location change, and might be due to different underlying mechanisms than the dishabituation and separate habituations to different acoustic stimuli. Copyright © 2013 Elsevier Inc. All rights reserved.
Bernaba, Mario; Johnson, Kevin A; Kong, Jiang-Ti; Mackey, Sean
2014-01-01
Purpose Conditioned pain modulation (CPM) is an experimental approach for probing endogenous analgesia by which one painful stimulus (the conditioning stimulus) may inhibit the perceived pain of a subsequent stimulus (the test stimulus). Animal studies suggest that CPM is mediated by a spino–bulbo–spinal loop using objective measures such as neuronal firing. In humans, pain ratings are often used as the end point. Because pain self-reports are subject to cognitive influences, we tested whether cognitive factors would impact on CPM results in healthy humans. Methods We conducted a within-subject, crossover study of healthy adults to determine the extent to which CPM is affected by 1) threatening and reassuring evaluation and 2) imagery alone of a cold conditioning stimulus. We used a heat stimulus individualized to 5/10 on a visual analog scale as the testing stimulus and computed the magnitude of CPM by subtracting the postconditioning rating from the baseline pain rating of the heat stimulus. Results We found that although evaluation can increase the pain rating of the conditioning stimulus, it did not significantly alter the magnitude of CPM. We also found that imagery of cold pain alone did not result in statistically significant CPM effect. Conclusion Our results suggest that CPM is primarily dependent on sensory input, and that the cortical processes of evaluation and imagery have little impact on CPM. These findings lend support for CPM as a useful tool for probing endogenous analgesia through subcortical mechanisms. PMID:25473310
Baumgarten, Thomas J.; Königs, Sara; Schnitzler, Alfons; Lange, Joachim
2017-01-01
Despite being experienced as continuous, there is an ongoing debate if perception is an intrinsically discrete process, with incoming sensory information treated as a succession of single perceptual cycles. Here, we provide causal evidence that somatosensory perception is composed of discrete perceptual cycles. We used in humans an electrotactile temporal discrimination task preceded by a subliminal (i.e., below perceptual threshold) stimulus. Although not consciously perceived, subliminal stimuli are known to elicit neuronal activity in early sensory areas and modulate the phase of ongoing neuronal oscillations. We hypothesized that the subliminal stimulus indirectly, but systematically modulates the ongoing oscillatory phase in S1, thereby rhythmically shaping perception. The present results confirm that, without being consciously perceived, the subliminal stimulus critically influenced perception in the discrimination task. Importantly, perception was modulated rhythmically, in cycles corresponding to the beta-band (13–18 Hz). This can be compellingly explained by a model of discrete perceptual cycles. PMID:28276493
NASA Astrophysics Data System (ADS)
Gambacorta, Christina Grace
Amblyopia is a developmental visual disorder resulting in sensory, motor and attentional deficits, including delays in both saccadic and manual reaction time. It is unclear whether this delay is due to differences in sensory processing of the stimulus, or the processes required to dis-engage/shift/re-engage attention when moving the eye from fixation to a saccadic target. In the first experiment we compare asymptotic saccadic and manual reaction times between the two eyes, using equivalent stimulus strength to account for differences in sensory processing. In a follow-up study, we modulate RT by removing the fixation dot, which is thought to release spatial attention at the fovea, and reduces reaction time in normal observers. Finally, we discuss the implications for these findings on future amblyopic treatment, specifically dichoptic video game playing. Playing videogames may help engage the attentional network, leading to greater improvements than traditional treatment of patching the non- amblyopic eye. Further, when treatment involves both eyes, fixation stability may be improved during the therapeutic intervention, yielding a better outcome than just playing a video game with a patch over the non-amblyopic eye.
Familiarity-Based Stimulus Generalization of Conditioned Suppression
2017-01-01
We report that stimulus novelty/familiarity is able to modulate stimulus generalization and discuss the theoretical implications of novelty/familiarity coding. Rats in Skinner boxes received clicker → shock pairings before generalization testing to a tone. Before clicker training, different groups of rats received preexposure treatments designed to systematically modulate the clicker and the tone’s novelty and familiarity. Rats whose preexposure matched novelty/familiarity (i.e., either both or neither clicker and tone were preexposed) showed enhanced suppression to the tone relative to rats whose preexposure mixed novelty/familiarity (i.e., only clicker or tone was preexposed). This was not the result of sensory preconditioning to clicker and tone. PMID:28383938
Blask, Katarina; Walther, Eva; Frings, Christian
2017-09-01
We investigated in two experiments whether selective attention processes modulate evaluative conditioning (EC). Based on the fact that the typical stimuli in an EC paradigm involve an affect-laden unconditioned stimulus (US) and a neutral conditioned stimulus (CS), we started from the assumption that learning might depend in part upon selective attention to the US. Attention to the US was manipulated by including a variant of the Eriksen flanker task in the EC paradigm. Similarly to the original Flanker paradigm, we implemented a target-distracter logic by introducing the CS as the task-relevant stimulus (i.e. the target) to which the participants had to respond and the US as a task-irrelevant distracter. Experiment 1 showed that CS-US congruence modulated EC if the CS had to be selected against the US. Specifically, EC was more pronounced for congruent CS-US pairs as compared to incongruent CS-US pairs. Experiment 2 disentangled CS-US congruence and CS-US compatibility and suggested that it is indeed CS-US stimulus congruence rather than CS-US response compatibility that modulates EC.
Besserve, Michel; Lowe, Scott C; Logothetis, Nikos K; Schölkopf, Bernhard; Panzeri, Stefano
2015-01-01
Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50-80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections.
Besserve, Michel; Lowe, Scott C.; Logothetis, Nikos K.; Schölkopf, Bernhard; Panzeri, Stefano
2015-01-01
Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50–80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections. PMID:26394205
Moerke, Megan J; de Moura, Fernando B; Koek, Wouter; McMahon, Lance R
2016-09-05
Some drugs that are positive allosteric nAChR modulators in vitro, desformylflustrabromine (dFBr), PNU-120596 and LY 2087101, have not been fully characterized in vivo. These drugs were examined for their capacity to share or modify the hypothermic and discriminative stimulus effects of nicotine (1mg/kg s.c.) in male C57Bl/6J mice. Nicotine, dFBr, and PNU-120596 produced significant hypothermia, whereas LY 2087101 (up to 100mg/kg) did not. Nicotine dose-dependently increased nicotine-appropriate responding and decreased response rate; the respective ED50 values were 0.56mg/kg and 0.91mg/kg. The modulators produced no more than 38% nicotine-appropriate responding up to doses that disrupted operant responding. Rank order potency was the same for hypothermia and rate-decreasing effects: nicotine>dFBr>PNU-120596=LY 2087101. Mecamylamine and the α4β2 nAChR antagonist dihydro-β-erythroidine, but not the α7 antagonist methyllycaconitine, antagonized the hypothermic effects of nicotine. In contrast, mecamylamine did not antagonize the hypothermic effects of the modulators. The combined discriminative stimulus effects of DFBr and nicotine were synergistic, whereas the combined hypothermic effects of nicotine with either dFBr or PNU-120596 were infra-additive. PNU-120596 did not modify the nicotine discriminative stimulus, and LY 2087101 did not significantly modify either effect of nicotine. Positive modulation of nicotine at nAChRs by PNU-120596 and LY 2087101 in vitro does not appear to confer enhancement of the nAChR-mediated hypothermic or discriminative stimulus effects of nicotine. However, dFBr appears to be a positive allosteric modulator of some behavioral effects of nicotine at doses of dFBr smaller than the doses producing unwanted effects (e.g. hypothermia) through non-nAChR mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.
Moerke, Megan J.; de Moura, Fernando B.; Koek, Wouter; McMahon, Lance R.
2016-01-01
Some drugs that are positive allosteric nAChR modulators in vitro, desformylflustrabromine (dFBr), PNU-120596 and LY 2087101, have not been fully characterized in vivo. These drugs were examined for their capacity to share or modify the hypothermic and discriminative stimulus effects of nicotine (1 mg/kg s.c.) in male C57Bl/6J mice. Nicotine, dFBr, and PNU-120596 produced significant hypothermia, whereas LY 2087101 (up to 100 mg/kg) did not. Nicotine dose-dependently increased nicotine-appropriate responding and decreased response rate; the respective ED50 values were 0.56 mg/kg and 0.91 mg/kg. The modulators produced no more than 38% nicotine-appropriate responding up to doses that disrupted operant responding. Rank order potency was the same for hypothermia and rate-decreasing effects: nicotine>dFBr>PNU-120596=LY 2087101. Mecamylamine and the α4β2 nAChR antagonist dihydro-β-erythroidine, but not the α7 antagonist methyllycaconitine, antagonized the hypothermic effects of nicotine. In contrast, mecamylamine did not antagonize the hypothermic effects of the modulators. The combined discriminative stimulus effects of DFBr and nicotine were synergistic, whereas the combined hypothermic effects of nicotine with either dFBr or PNU-120596 were infra-additive. PNU-120596 did not modify the nicotine discriminative stimulus, and LY 2087101 did not significantly modify either effect of nicotine. Positive modulation of nicotine at nAChRs by PNU-120596 and LY 2087101 in vitro does not appear to confer enhancement of the nAChR-mediated hypothermic or discriminative stimulus effects of nicotine. However, dFBr appears to be a positive allosteric modulator of some behavioral effects of nicotine at doses of dFBr smaller than the doses producing unwanted effects (e.g. hypothermia) through non-nAChR mechanisms. PMID:27238974
Neural theory for the perception of causal actions.
Fleischer, Falk; Christensen, Andrea; Caggiano, Vittorio; Thier, Peter; Giese, Martin A
2012-07-01
The efficient prediction of the behavior of others requires the recognition of their actions and an understanding of their action goals. In humans, this process is fast and extremely robust, as demonstrated by classical experiments showing that human observers reliably judge causal relationships and attribute interactive social behavior to strongly simplified stimuli consisting of simple moving geometrical shapes. While psychophysical experiments have identified critical visual features that determine the perception of causality and agency from such stimuli, the underlying detailed neural mechanisms remain largely unclear, and it is an open question why humans developed this advanced visual capability at all. We created pairs of naturalistic and abstract stimuli of hand actions that were exactly matched in terms of their motion parameters. We show that varying critical stimulus parameters for both stimulus types leads to very similar modulations of the perception of causality. However, the additional form information about the hand shape and its relationship with the object supports more fine-grained distinctions for the naturalistic stimuli. Moreover, we show that a physiologically plausible model for the recognition of goal-directed hand actions reproduces the observed dependencies of causality perception on critical stimulus parameters. These results support the hypothesis that selectivity for abstract action stimuli might emerge from the same neural mechanisms that underlie the visual processing of natural goal-directed action stimuli. Furthermore, the model proposes specific detailed neural circuits underlying this visual function, which can be evaluated in future experiments.
Perceptual impressions of causality are affected by common fate.
White, Peter A
2017-03-24
Many studies of perceptual impressions of causality have used a stimulus in which a moving object (the launcher) contacts a stationary object (the target) and the latter then moves off. Such stimuli give rise to an impression that the launcher makes the target move. In the present experiments, instead of a single target object, an array of four vertically aligned objects was used. The launcher contacted none of them, but stopped at a point between the two central objects. The four objects then moved with similar motion properties, exhibiting the Gestalt property of common fate. Strong impressions of causality were reported for this stimulus. It is argued that the array of four objects was perceived, by the likelihood principle, as a single object with some parts unseen, that the launcher was perceived as contacting one of the unseen parts of this object, and that the causal impression resulted from that. Supporting that argument, stimuli in which kinematic features were manipulated so as to weaken or eliminate common fate yielded weaker impressions of causality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rees, D.C.; Wood, R.W.; Laties, V.G.
1984-03-01
The behavioral effects of d-amphetamine have been shown to be modulated by stimulus control, with less impairment of performance occurring when control is great. When the fixed-consecutive-number schedule is used (on which at least a specified consecutive number of responses must be made on one operandum before a single response on another will produce a reinforcer), response rate tends to invariant but reinforcement frequency is not. This study asks whether the differences in reinforcement frequency that usually accompany changes in stimulus control could themselves be responsible for the performance differences. Two versions of the fixed-consecutive-number schedule of reinforcement were combinedmore » into a multiple schedule within which stimulus control was varied but differences in reinforcement frequency were minimized by omitting some reinforcer deliveries during the component that usually had the higher reinforcement frequency. In one component, a compound discriminative stimulus was added with the eighth consecutive response on the first lever, a single response on the second lever was then reinforced. In the other component, no such stimulus was presented. With no added stimulus, large decreases occurred in the number of runs satisfying the minimum requirement for reinforcement at doses of drug that produced only minimal changes when an added stimulus controlled behavior. Thus, increased stimulus control diminishes the behavioral changes produced by d-amphetamine even when the possible contribution by baseline reinforcement rate is minimized. 17 references, 6 figures, 4 tables.« less
Single neuron firing properties impact correlation-based population coding
Hong, Sungho; Ratté, Stéphanie; Prescott, Steven A.; De Schutter, Erik
2012-01-01
Correlated spiking has been widely observed but its impact on neural coding remains controversial. Correlation arising from co-modulation of rates across neurons has been shown to vary with the firing rates of individual neurons. This translates into rate and correlation being equivalently tuned to the stimulus; under those conditions, correlated spiking does not provide information beyond that already available from individual neuron firing rates. Such correlations are irrelevant and can reduce coding efficiency by introducing redundancy. Using simulations and experiments in rat hippocampal neurons, we show here that pairs of neurons receiving correlated input also exhibit correlations arising from precise spike-time synchronization. Contrary to rate co-modulation, spike-time synchronization is unaffected by firing rate, thus enabling synchrony- and rate-based coding to operate independently. The type of output correlation depends on whether intrinsic neuron properties promote integration or coincidence detection: “ideal” integrators (with spike generation sensitive to stimulus mean) exhibit rate co-modulation whereas “ideal” coincidence detectors (with spike generation sensitive to stimulus variance) exhibit precise spike-time synchronization. Pyramidal neurons are sensitive to both stimulus mean and variance, and thus exhibit both types of output correlation proportioned according to which operating mode is dominant. Our results explain how different types of correlations arise based on how individual neurons generate spikes, and why spike-time synchronization and rate co-modulation can encode different stimulus properties. Our results also highlight the importance of neuronal properties for population-level coding insofar as neural networks can employ different coding schemes depending on the dominant operating mode of their constituent neurons. PMID:22279226
Modulation of additive and interactive effects in lexical decision by trial history.
Masson, Michael E J; Kliegl, Reinhold
2013-05-01
Additive and interactive effects of word frequency, stimulus quality, and semantic priming have been used to test theoretical claims about the cognitive architecture of word-reading processes. Additive effects among these factors have been taken as evidence for discrete-stage models of word reading. We present evidence from linear mixed-model analyses applied to 2 lexical decision experiments indicating that apparent additive effects can be the product of aggregating over- and underadditive interaction effects that are modulated by recent trial history, particularly the lexical status and stimulus quality of the previous trial's target. Even a simple practice effect expressed as improved response speed across trials was powerfully modulated by the nature of the previous target item. These results suggest that additivity and interaction between factors may reflect trial-to-trial variation in stimulus representations and decision processes rather than fundamental differences in processing architecture.
Arandia-Romero, Iñigo; Tanabe, Seiji; Drugowitsch, Jan; Kohn, Adam; Moreno-Bote, Rubén
2016-01-01
Numerous studies have shown that neuronal responses are modulated by stimulus properties, and also by the state of the local network. However, little is known about how activity fluctuations of neuronal populations modulate the sensory tuning of cells and affect their encoded information. We found that fluctuations in ongoing and stimulus-evoked population activity in primate visual cortex modulate the tuning of neurons in a multiplicative and additive manner. While distributed on a continuum, neurons with stronger multiplicative effects tended to have less additive modulation, and vice versa. The information encoded by multiplicatively-modulated neurons increased with greater population activity, while that of additively-modulated neurons decreased. These effects offset each other, so that population activity had little effect on total information. Our results thus suggest that intrinsic activity fluctuations may act as a `traffic light' that determines which subset of neurons are most informative. PMID:26924437
Spectrotemporal Modulation Detection and Speech Perception by Cochlear Implant Users
Won, Jong Ho; Moon, Il Joon; Jin, Sunhwa; Park, Heesung; Woo, Jihwan; Cho, Yang-Sun; Chung, Won-Ho; Hong, Sung Hwa
2015-01-01
Spectrotemporal modulation (STM) detection performance was examined for cochlear implant (CI) users. The test involved discriminating between an unmodulated steady noise and a modulated stimulus. The modulated stimulus presents frequency modulation patterns that change in frequency over time. In order to examine STM detection performance for different modulation conditions, two different temporal modulation rates (5 and 10 Hz) and three different spectral modulation densities (0.5, 1.0, and 2.0 cycles/octave) were employed, producing a total 6 different STM stimulus conditions. In order to explore how electric hearing constrains STM sensitivity for CI users differently from acoustic hearing, normal-hearing (NH) and hearing-impaired (HI) listeners were also tested on the same tasks. STM detection performance was best in NH subjects, followed by HI subjects. On average, CI subjects showed poorest performance, but some CI subjects showed high levels of STM detection performance that was comparable to acoustic hearing. Significant correlations were found between STM detection performance and speech identification performance in quiet and in noise. In order to understand the relative contribution of spectral and temporal modulation cues to speech perception abilities for CI users, spectral and temporal modulation detection was performed separately and related to STM detection and speech perception performance. The results suggest that that slow spectral modulation rather than slow temporal modulation may be important for determining speech perception capabilities for CI users. Lastly, test–retest reliability for STM detection was good with no learning. The present study demonstrates that STM detection may be a useful tool to evaluate the ability of CI sound processing strategies to deliver clinically pertinent acoustic modulation information. PMID:26485715
Dietz, Mathias; Marquardt, Torsten; Salminen, Nelli H.; McAlpine, David
2013-01-01
The ability to locate the direction of a target sound in a background of competing sources is critical to the survival of many species and important for human communication. Nevertheless, brain mechanisms that provide for such accurate localization abilities remain poorly understood. In particular, it remains unclear how the auditory brain is able to extract reliable spatial information directly from the source when competing sounds and reflections dominate all but the earliest moments of the sound wave reaching each ear. We developed a stimulus mimicking the mutual relationship of sound amplitude and binaural cues, characteristic to reverberant speech. This stimulus, named amplitude modulated binaural beat, allows for a parametric and isolated change of modulation frequency and phase relations. Employing magnetoencephalography and psychoacoustics it is demonstrated that the auditory brain uses binaural information in the stimulus fine structure only during the rising portion of each modulation cycle, rendering spatial information recoverable in an otherwise unlocalizable sound. The data suggest that amplitude modulation provides a means of “glimpsing” low-frequency spatial cues in a manner that benefits listening in noisy or reverberant environments. PMID:23980161
ERIC Educational Resources Information Center
Campbell, Kenneth; Herzig, Alyssa; Jashmidi, Parastoo
2009-01-01
A long-duration stimulus will elicit a negative sustained potential (SP) that is maximum in amplitude over fronto-central areas of the scalp. This study examines how the duration of active attentional processing of the stimulus might also elicit a nonsensory contingent negative variation (CNV) that overlaps and summates to the SP. Subjects were…
Affective picture processing: An integrative review of ERP findings
Olofsson, Jonas K.; Nordin, Steven; Sequeira, Henrique; Polich, John
2008-01-01
The review summarizes and integrates findings from 40 years of event-related potential (ERP) studies using pictures that differ in valence (unpleasant-to-pleasant) and arousal (low-to-high) and that are used to elicit emotional processing. Affective stimulus factors primarily modulate ERP component amplitude, with little change in peak latency observed. Arousal effects are consistently obtained, and generally occur at longer latencies. Valence effects are inconsistently reported at several latency ranges, including very early components. Some affective ERP modulations vary with recording methodology, stimulus factors, as well as task-relevance and emotional state. Affective ERPs have been linked theoretically to attention orientation for unpleasant pictures at earlier components (< 300 ms). Enhanced stimulus processing has been associated with memory encoding for arousing pictures of assumed intrinsic motivational relevance, with task-induced differences contributing to emotional reactivity at later components (> 300 ms). Theoretical issues, stimulus factors, task demands, and individual differences are discussed. PMID:18164800
Top-down knowledge modulates onset capture in a feedforward manner.
Becker, Stefanie I; Lewis, Amanda J; Axtens, Jenna E
2017-04-01
How do we select behaviourally important information from cluttered visual environments? Previous research has shown that both top-down, goal-driven factors and bottom-up, stimulus-driven factors determine which stimuli are selected. However, it is still debated when top-down processes modulate visual selection. According to a feedforward account, top-down processes modulate visual processing even before the appearance of any stimuli, whereas others claim that top-down processes modulate visual selection only at a late stage, via feedback processing. In line with such a dual stage account, some studies found that eye movements to an irrelevant onset distractor are not modulated by its similarity to the target stimulus, especially when eye movements are launched early (within 150-ms post stimulus onset). However, in these studies the target transiently changed colour due to a colour after-effect that occurred during premasking, and the time course analyses were incomplete. The present study tested the feedforward account against the dual stage account in two eye tracking experiments, with and without colour after-effects (Exp. 1), as well when the target colour varied randomly and observers were informed of the target colour with a word cue (Exp. 2). The results showed that top-down processes modulated the earliest eye movements to the onset distractors (<150-ms latencies), without incurring any costs for selection of target matching distractors. These results unambiguously support a feedforward account of top-down modulation.
De Loof, Esther; Van Opstal, Filip; Verguts, Tom
2016-04-01
Theories on visual awareness claim that predicted stimuli reach awareness faster than unpredicted ones. In the current study, we disentangle whether prior information about the upcoming stimulus affects visual awareness of stimulus location (i.e., individuation) by modulating processing efficiency or threshold setting. Analogous research on stimulus identification revealed that prior information modulates threshold setting. However, as identification and individuation are two functionally and neurally distinct processes, the mechanisms underlying identification cannot simply be extrapolated directly to individuation. The goal of this study was therefore to investigate how individuation is influenced by prior information about the upcoming stimulus. To do so, a drift diffusion model was fitted to estimate the processing efficiency and threshold setting for predicted versus unpredicted stimuli in a cued individuation paradigm. Participants were asked to locate a picture, following a cue that was congruent, incongruent or neutral with respect to the picture's identity. Pictures were individuated faster in the congruent and neutral condition compared to the incongruent condition. In the diffusion model analysis, the processing efficiency was not significantly different across conditions. However, the threshold setting was significantly higher following an incongruent cue compared to both congruent and neutral cues. Our results indicate that predictive information about the upcoming stimulus influences visual awareness by shifting the threshold for individuation rather than by enhancing processing efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Vergence-dependent adaptation of the vestibulo-ocular reflex
NASA Technical Reports Server (NTRS)
Lewis, Richard F.; Clendaniel, Richard A.; Zee, David S.; Shelhamer, M. J. (Principal Investigator)
2003-01-01
The gain of the vestibulo-ocular reflex (VOR) normally depends on the distance between the subject and the visual target, but it remains uncertain whether vergence angle can be linked to changes in VOR gain through a process of context-dependent adaptation. In this study, we examined this question with an adaptation paradigm that modified the normal relationship between vergence angle and retinal image motion. Subjects were rotated sinusoidally while they viewed an optokinetic (OKN) stimulus through either diverging or converging prisms. In three subjects the diverging prisms were worn while the OKN stimulus moved out of phase with the head, and the converging prisms were worn when the OKN stimulus moved in-phase with the head. The relationship between the vergence angle and OKN stimulus was reversed in the fourth subject. After 2 h of training, the VOR gain at the two vergence angles changed significantly in all of the subjects, evidenced by the two different VOR gains that could be immediately accessed by switching between the diverged and converged conditions. The results demonstrate that subjects can learn to use vergence angle as the contextual cue that retrieves adaptive changes in the angular VOR.
Vögeli, Sabine; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz
2015-01-01
Many stimuli evoke short-term emotional reactions. These reactions may play an important role in assessing how a subject perceives a stimulus. Additionally, long-term mood may modulate the emotional reactions but it is still unclear in what way. The question seems to be important in terms of animal welfare, as a negative mood may taint emotional reactions. In the present study with sheep, we investigated the effects of thermal stimuli on emotional reactions and the potential modulating effect of mood induced by manipulations of the housing conditions. We assume that unpredictable, stimulus-poor conditions lead to a negative and predictable, stimulus-rich conditions to a positive mood state. The thermal stimuli were applied to the upper breast during warm ambient temperatures: hot (as presumably negative), intermediate, and cold (as presumably positive). We recorded cortical activity by functional near-infrared spectroscopy, restlessness behavior (e.g., locomotor activity, aversive behaviors), and ear postures as indicators of emotional reactions. The strongest hemodynamic reaction was found during a stimulus of intermediate valence independent of the animal’s housing conditions, whereas locomotor activity, ear movements, and aversive behaviors were seen most in sheep from the unpredictable, stimulus-poor housing conditions, independent of stimulus valence. We conclude that, sheep perceived the thermal stimuli and differentiated between some of them. An adequate interpretation of the neuronal activity pattern remains difficult, though. The effects of housing conditions were small indicating that the induction of mood was only modestly efficacious. Therefore, a modulating effect of mood on the emotional reaction was not found. PMID:26664938
Sek, Aleksander; Moore, Brian C J
2003-05-01
Two experiments were performed to test the concept that the auditory system contains a "modulation filter bank" (MFB). Experiment 1 examined the ability to "hear out" the modulation frequency of the central component of a three-component modulator applied to a 4-kHz sinusoidal carrier. On each trial, three modulated stimuli were presented. The modulator of the first stimulus contained three components. Within a run the frequencies of the outer two components were fixed and the frequency of the central ("target") component was drawn randomly from one of five values. The modulators of second and third stimuli contained one component. One had a frequency equal to that of the target and the other had a frequency randomly selected from one of the other possible values. Subjects indicated whether the target corresponded to the second or third stimulus. Scores were around 80% correct when the components in the three-component modulator were widely spaced and when the frequencies of the target and comparison differed sufficiently. Experiment 2 examined the ability to hear a change in the relative phase of the components in a three-component modulator with harmonically spaced components, using a 31FC task. The frequency of the central component, f(c), was either 50 or 100 Hz. Scores were 80%-90% correct when the component spacing was < or = 0.5 f(c), but decreased markedly for greater spacings. Performance was only slightly impaired by randomizing the overall modulation depth from one stimulus to the next. The results of both experiments are broadly consistent with what would be expected from a MFB with a Q value of 1 or slightly less.
Munn, Robert G K; Tyree, Susan M; McNaughton, Neil; Bilkey, David K
2015-01-01
The hippocampal formation plays a critical role in the generation of episodic memory. While the encoding of the spatial and contextual components of memory have been extensively studied, how the hippocampus encodes temporal information, especially at long time intervals, is less well understood. The activity of place cells in hippocampus has previously been shown to be modulated at a circadian time-scale, entrained by a behavioral stimulus, but not entrained by light. The experimental procedures used in the previous study of this phenomenon, however, necessarily conflated two alternative entraining stimuli, the exposure to the recording environment and the availability of food, making it impossible to distinguish between these possibilities. Here we demonstrate that the frequency of theta-band hippocampal EEG varies with a circadian period in freely moving animals and that this periodicity mirrors changes in the firing rate of hippocampal neurons. Theta activity serves, therefore, as a proxy of circadian-modulated hippocampal neuronal activity. We then demonstrate that the frequency of hippocampal theta driven by stimulation of the reticular formation also varies with a circadian period. Because this effect can be observed without having to feed the animal to encourage movement we were able to identify what stimulus entrains the circadian oscillation. We show that with reticular-activated recordings started at various times of the day the frequency of theta varies quasi-sinusoidally with a 25 h period and phase-aligned when referenced to the animal's regular feeding time, but not the recording start time. Furthermore, we show that theta frequency consistently varied with a circadian period when the data obtained from repeated recordings started at various times of the day were referenced to the start of food availability in the recording chamber. This pattern did not occur when data were referenced to the start of the recording session or to the actual time of day when this was not also related to feeding time. This double dissociation demonstrates that hippocampal theta is modulated with a circadian timescale, and that this modulation is strongly entrained by food. One interpretation of this finding is that the hippocampus is responsive to a food entrainable oscillator (FEO) that might modulate foraging behavior over circadian periods.
Smith, A; Pedler, A
2018-01-01
Various conditioned pain modulation (CPM) methodologies have been used to investigate diffuse noxious inhibitory control pain mechanisms in healthy and clinical populations. Occlusion cuff parameters have been poorly studied. We aimed to investigate whether occlusion cuff intensity and/or duration influenced CPM magnitudes. We also investigated the role of physical activity levels on CPM magnitude. Two studies were performed to investigate the role of intensity and duration of occlusion cuff conditioning stimulus on test stimulus (tibialis anterior pressure pain thresholds). In Study 1, conditioning stimulus intensity of 2/10 or 5/10 (duration <20 s) was evaluated using a paired-samples t-test. In Study 2, duration of 2/10 conditioning stimulus was 3 min. One-way repeated-measures ANOVA was used to investigate the effect of time (0, 1, 2 and 3 min) on CPM magnitude. In Study 1, 27 healthy volunteers (mean ± SD: 24.9 years (±4.5); eight female) demonstrated that an occlusion cuff applied to the upper arm eliciting 5/10 local pain resulted in a significant (mean ± SD: 17% ± 46%) increase in CPM magnitude, when compared to 2/10 intensity (-3% ± 38%, p = 0.026), whereas in Study 2, 25 healthy volunteers (22.5 years (±2.7); 13 female) demonstrated that 3 min of 2/10 CS intensity did not result in a significant change in CPM (p = 0.21). There was no significant relationship between physical activity levels and CPM in either study (p > 0.22). This study demonstrated that an occlusion cuff of 5/10 conditioning stimulus intensity, when compared to 2/10, significantly increased CPM magnitude. Maintaining 2/10 conditioning stimulus for 3 min did not increase CPM magnitude. Dysfunctional conditioned pain modulation (CPM) has been associated with poor health outcomes. Various factors can influence CPM outcomes. The role of occlusion cuff conditioning stimulus intensity and duration has not been previously investigated. Intensity (5/10), but not duration of lower intensity (2/10) conditioning stimulus, affects CPM magnitude. © 2017 European Pain Federation - EFIC®.
Lunar Module 4 moved for mating with Lunar Module Adapter at KSC
NASA Technical Reports Server (NTRS)
1969-01-01
Lunar Module 4 in the Kennedy Space Center's Manned Spacecraft Operations Bldg being moved into position for mating with Spacecraft Lunar Module Adapter (SLA) 13 (17809);Lunar Module 4 being moved for mating with the Spacecraft Lunar Module Adapter in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building. Lunar module 4 will be flown on the Apollo 10 (Spacecraft 106/Saturn 505) lunar orbit mission (17810).
Skerswetat, Jan; Formankiewicz, Monika A; Waugh, Sarah J
2018-01-01
Luminance-modulated noise (LM) and contrast-modulated noise (CM) gratings were presented with interocularly correlated, uncorrelated and anti-correlated binary noise to investigate their contributions to mixed percepts, specifically piecemeal and superimposition, during binocular rivalry. Stimuli were sine-wave gratings of 2 c/deg presented within 2 deg circular apertures. The LM stimulus contrast was 0.1 and the CM stimulus modulation depth was 1.0, equating to approximately 5 and 7 times detection threshold, respectively. Twelve 45 s trials, per noise configuration, were carried out. Fifteen participants with normal vision indicated via button presses whether an exclusive, piecemeal or superimposed percept was seen. For all noise conditions LM stimuli generated more exclusive visibility, and lower proportions of superimposition. CM stimuli led to greater proportions and longer periods of superimposition. For both stimulus types, correlated interocular noise generated more superimposition than did anti- or uncorrelated interocular noise. No significant effect of stimulus type (LM vs CM) or noise configuration (correlated, uncorrelated, anti-correlated) on piecemeal perception was found. Exclusive visibility was greater in proportion, and perceptual changes more numerous, during binocular rivalry for CM stimuli when interocular noise was not correlated. This suggests that mutual inhibition, initiated by non-correlated noise CM gratings, occurs between neurons processing luminance noise (first-order component), as well as those processing gratings (second-order component). Therefore, first- and second-order components can contribute to overall binocular rivalry responses. We suggest the addition of a new well to the current energy landscape model for binocular rivalry that takes superimposition into account. Copyright © 2017 Elsevier Ltd. All rights reserved.
Eye movements and the span of the effective stimulus in visual search.
Bertera, J H; Rayner, K
2000-04-01
The span of the effective stimulus during visual search through an unstructured alphanumeric array was investigated by using eye-contingent-display changes while the subjects searched for a target letter. In one condition, a window exposing the search array moved in synchrony with the subjects' eye movements, and the size of the window was varied. Performance reached asymptotic levels when the window was 5 degrees. In another condition, a foveal mask moved in synchrony with each eye movement, and the size of the mask was varied. The foveal mask conditions were much more detrimental to search behavior than the window conditions, indicating the importance of foveal vision during search. The size of the array also influenced performance, but performance reached asymptote for all array sizes tested at the same window size, and the effect of the foveal mask was the same for all array sizes. The results indicate that both acuity and difficulty of the search task influenced the span of the effective stimulus during visual search.
Schedules of electric shock presentation in the behavioral control of imprinted ducklings.
Barrett, J E
1972-09-01
The behavioral effects of various schedules of electric shock presentation were investigated during and after the imprinting of Peking ducklings to moving stimuli. The behavior of following a moving imprinted stimulus was differentially controlled by a multiple schedule of punishment and avoidance that respectively suppressed and maintained following behavior. Pole-pecking, reinforced by presentations of the imprinted stimulus, was suppressed by response-produced shock (punishment); various schedules of response-independent shock and delayed punishment had an overall minimal effect. The delivery of response-independent shock in the presence of one of two stimuli, both during and after imprinting, resulted in a marked reduction in choice of the stimulus paired with shock. The experiments provide no support for a differentiation of imprinting from learning on the basis of the behavioral effects of aversive stimuli. Instead, as is the case with other organisms, the schedule under which shock is delivered to imprinted ducklings appears to be an important determinant of the temporal patterning of subsequent behavior.
Lie, Marie Udnesseter; Matre, Dagfinn; Hansson, Per; Stubhaug, Audun; Zwart, John-Anker; Nilsen, Kristian Bernhard
2017-01-01
Abstract Introduction: The interest in conditioned pain modulation (CPM) as a clinical tool for measuring endogenously induced analgesia is increasing. There is, however, large variation in the CPM methodology, hindering comparison of results across studies. Research comparing different CPM protocols is needed in order to obtain a standardized test paradigm. Objectives: The aim of the study was to assess whether a protocol with phasic heat stimuli as test-stimulus is preferable to a protocol with tonic heat stimulus as test-stimulus. Methods: In this experimental crossover study, we compared 2 CPM protocols with different test-stimulus; one with tonic test-stimulus (constant heat stimulus of 120-second duration) and one with phasic test-stimuli (3 heat stimulations of 5 seconds duration separated by 10 seconds). Conditioning stimulus was a 7°C water bath in parallel with the test-stimulus. Twenty-four healthy volunteers were assessed on 2 occasions with minimum 1 week apart. Differences in the magnitude and test–retest reliability of the CPM effect in the 2 protocols were investigated with repeated-measures analysis of variance and by relative and absolute reliability indices. Results: The protocol with tonic test-stimulus induced a significantly larger CPM effect compared to the protocol with phasic test-stimuli (P < 0.001). Fair and good relative reliability was found with the phasic and tonic test-stimuli, respectively. Absolute reliability indices showed large intraindividual variability from session to session in both protocols. Conclusion: The present study shows that a CPM protocol with a tonic test-stimulus is preferable to a protocol with phasic test-stimuli. However, we emphasize that one should be cautious to use the CPM effect as biomarker or in clinical decision making on an individual level due to large intraindividual variability. PMID:29392240
Distractor Interference during Smooth Pursuit Eye Movements
ERIC Educational Resources Information Center
Spering, Miriam; Gegenfurtner, Karl R.; Kerzel, Dirk
2006-01-01
When 2 targets for pursuit eye movements move in different directions, the eye velocity follows the vector average (S. G. Lisberger & V. P. Ferrera, 1997). The present study investigates the mechanisms of target selection when observers are instructed to follow a predefined horizontal target and to ignore a moving distractor stimulus. Results show…
Spectrotemporal Processing in Spectral Tuning Modules of Cat Primary Auditory Cortex
Atencio, Craig A.; Schreiner, Christoph E.
2012-01-01
Spectral integration properties show topographical order in cat primary auditory cortex (AI). Along the iso-frequency domain, regions with predominantly narrowly tuned (NT) neurons are segregated from regions with more broadly tuned (BT) neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs) and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences - and thus distinct physiological functions - for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed. PMID:22384036
Molina, Vicente; Bachiller, Alejandro; Gomez-Pilar, Javier; Lubeiro, Alba; Hornero, Roberto; Cea-Cañas, Benjamín; Valcárcel, César; Haidar, Mahmoun-Karim; Poza, Jesús
2018-05-01
Spectral entropy (SE) is a measurement from information theory field that provides an estimation of EEG regularity and may be useful as a summary of its spectral properties. Previous studies using small samples reported a deficit of EEG entropy modulation in schizophrenia during cognitive activity. The present study is aimed at replicating this finding in a larger sample, to explore its cognitive and clinical correlates and to discard antipsychotic treatment as the main source of that deficit. We included 64 schizophrenia patients (21 first episodes, FE) and 65 healthy controls. We computed SE during performance of an odd-ball paradigm, at the windows prior (-300 to 0ms) and following (150 to 450ms) stimulus presentation. Modulation of SE was defined as the difference between post- and pre-stimulus windows. In comparison to controls, patients showed a deficit of SE modulation over frontal and central regions, also shown by FE patients. Baseline SE did not differ between patients and controls. Modulation deficit was directly associated with cognitive deficits and negative symptoms, and inversely with positive symptoms. SE modulation was not related to antipsychotic doses. Patients also showed a smaller change of median frequency (i.e., smaller slowing of oscillatory activity) of the EEG from pre- to post-stimulus windows. These results support that a deficit of fast modulation contributes to cognitive deficits and symptoms in schizophrenia patients. Copyright © 2017 Elsevier B.V. All rights reserved.
Carpenter, C. M.; Rakow-Penner, R.; Jiang, S.; Pogue, B. W.; Glover, G. H.; Paulsen, K. D.
2010-01-01
Purpose: The modulation of tissue hemodynamics has important clinical value in medicine for both tumor diagnosis and therapy. As an oncological tool, increasing tissue oxygenation via modulation of inspired gas has been proposed as a method to improve cancer therapy and determine radiation sensitivity. As a radiological tool, inducing changes in tissue total hemoglobin may provide a means to detect and characterize malignant tumors by providing information about tissue vascular function. The ability to change and measure tissue hemoglobin and oxygenation concentrations in the healthy breast during administration of three different types of modulated gas stimuli (oxygen∕carbogen, air∕carbogen, and air∕oxygen) was investigated. Methods: Subjects breathed combinations of gases which were modulated in time. MR-guided diffuse optical tomography measured total hemoglobin and oxygen saturation in the breast every 30 s during the 16 min breathing stimulus. Metrics of maximum correlation and phase lag were calculated by cross correlating the measured hemodynamics with the stimulus. These results were compared to an air∕air control to determine the hemodynamic changes compared to the baseline physiology. Results: This study demonstrated that a gas stimulus consisting of alternating oxygen∕carbogen induced the largest and most robust hemodynamic response in healthy breast parenchyma relative to the changes that occurred during the breathing of room air. This stimulus caused increases in total hemoglobin and oxygen saturation during the carbogen phase of gas inhalation, and decreases during the oxygen phase. These findings are consistent with the theory that oxygen acts as a vasoconstrictor, while carbogen acts as a vasodilator. However, difficulties in inducing a consistent change in tissue hemoglobin and oxygenation were observed because of variability in intersubject physiology, especially during the air∕oxygen or air∕carbogen modulated breathing protocols. Conclusions: MR-guided diffuse optical imaging is a unique tool that can measure tissue hemodynamics in the breast during modulated breathing. This technique may have utility in determining the therapeutic potential of pretreatment tissue oxygenation or in investigating vascular function. Future gas modulation studies in the breast should use a combination of oxygen and carbogen as the functional stimulus. Additionally, control measures of subject physiology during air breathing are critical for robust measurements. PMID:20443485
Nir, Yuval; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Banks, Matthew I.; Tononi, Giulio
2015-01-01
Sleep entails a disconnection from the external environment. By and large, sensory stimuli do not trigger behavioral responses and are not consciously perceived as they usually are in wakefulness. Traditionally, sleep disconnection was ascribed to a thalamic “gate,” which would prevent signal propagation along ascending sensory pathways to primary cortical areas. Here, we compared single-unit and LFP responses in core auditory cortex as freely moving rats spontaneously switched between wakefulness and sleep states. Despite robust differences in baseline neuronal activity, both the selectivity and the magnitude of auditory-evoked responses were comparable across wakefulness, Nonrapid eye movement (NREM) and rapid eye movement (REM) sleep (pairwise differences <8% between states). The processing of deviant tones was also compared in sleep and wakefulness using an oddball paradigm. Robust stimulus-specific adaptation (SSA) was observed following the onset of repetitive tones, and the strength of SSA effects (13–20%) was comparable across vigilance states. Thus, responses in core auditory cortex are preserved across sleep states, suggesting that evoked activity in primary sensory cortices is driven by external physical stimuli with little modulation by vigilance state. We suggest that sensory disconnection during sleep occurs at a stage later than primary sensory areas. PMID:24323498
Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict.
van den Berg, Berry; Krebs, Ruth M; Lorist, Monicque M; Woldorff, Marty G
2014-06-01
The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive task performance. In this task, the cue indicated whether or not the participant needed to prepare for an upcoming Stroop stimulus and, if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued attention and cued reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (contingent negative variation [CNV]) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted shorter versus longer response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across participants with the degree to which reward-prospect both facilitated overall task performance (shorter RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information.
Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict
van den Berg, Berry; Krebs, Ruth M.; Lorist, Monicque M.; Woldorff, Marty G.
2015-01-01
The prospect of gaining money is an incentive widely at play in the real world. Such monetary motivation might have particularly strong influence when the cognitive system is challenged, such as when needing to process conflicting stimulus inputs. Here, we employed manipulations of reward-prospect and attentional-preparation levels in a cued-Stroop stimulus-conflict task, along with the high temporal resolution of electrical brain recordings, to provide insight into the mechanisms by which reward-prospect and attention interact and modulate cognitive-task performance. In this task the cue indicated whether or not the subject needed to prepare for an upcoming Stroop stimulus, and if so, whether there was the potential for monetary reward (dependent on performance on that trial). Both cued-attention and cued-reward-prospect enhanced preparatory neural activity, as reflected by increases in the hallmark attention-related negative-polarity ERP slow wave (CNV) and reductions in oscillatory Alpha activity, which was followed by enhanced processing of the subsequent Stroop stimulus. In addition, similar modulations of preparatory neural activity (larger CNVs and reduced Alpha) predicted faster versus slower response times (RTs) to the subsequent target stimulus, consistent with such modulations reflecting trial-to-trial variations in attention. Particularly striking were the individual differences in the utilization of reward-prospect information. In particular, the size of the reward effects on the preparatory neural activity correlated across-subjects with the degree to which reward-prospect both facilitated overall task performance (faster RTs) and reduced conflict-related behavioral interference. Thus, the prospect of reward appears to recruit attentional preparation circuits to enhance processing of task-relevant target information. PMID:24820263
Shrem, Talia; Murray, Micah M; Deouell, Leon Y
2017-11-01
Space is a dimension shared by different modalities, but at what stage spatial encoding is affected by multisensory processes is unclear. Early studies observed attenuation of N1/P2 auditory evoked responses following repetition of sounds from the same location. Here, we asked whether this effect is modulated by audiovisual interactions. In two experiments, using a repetition-suppression paradigm, we presented pairs of tones in free field, where the test stimulus was a tone presented at a fixed lateral location. Experiment 1 established a neural index of auditory spatial sensitivity, by comparing the degree of attenuation of the response to test stimuli when they were preceded by an adapter sound at the same location versus 30° or 60° away. We found that the degree of attenuation at the P2 latency was inversely related to the spatial distance between the test stimulus and the adapter stimulus. In Experiment 2, the adapter stimulus was a tone presented from the same location or a more medial location than the test stimulus. The adapter stimulus was accompanied by a simultaneous flash displayed orthogonally from one of the two locations. Sound-flash incongruence reduced accuracy in a same-different location discrimination task (i.e., the ventriloquism effect) and reduced the location-specific repetition-suppression at the P2 latency. Importantly, this multisensory effect included topographic modulations, indicative of changes in the relative contribution of underlying sources across conditions. Our findings suggest that the auditory response at the P2 latency is affected by spatially selective brain activity, which is affected crossmodally by visual information. © 2017 Society for Psychophysiological Research.
Effects of dopamine D1 modulation of the anterior cingulate cortex in a fear conditioning procedure
Pezze, M.A.; Marshall, H.J.; Domonkos, A.; Cassaday, H.J.
2016-01-01
The anterior cingulate cortex (AC) component of the medial prefrontal cortex (mPFC) has been implicated in attention and working memory as measured by trace conditioning. Since dopamine (DA) is a key modulator of mPFC function, the present study evaluated the role of DA receptor agents in rat AC, using trace fear conditioning. A conditioned stimulus (CS, noise) was followed by an unconditioned stimulus (US, shock) with or without a 10 s trace interval interposed between these events in a between-subjects design. Conditioned suppression of drinking was assessed in response to presentation of the CS or an experimental background stimulus (flashing lights, previously presented for the duration of the conditioning session). The selective D1 agonist SKF81297 (0.05 μg/side) or D1 antagonist SCH23390 (0.5 μg/side) was administered by intra-cerebral microinfusion directly into AC. It was predicted that either of these manipulations should be sufficient to impair trace (but not delay) conditioning. Counter to expectation, there was no effect of DA D1 modulation on trace conditioning as measured by suppression to the noise CS. However, rats infused with SKF81297 acquired stronger conditioned suppression to the experimental background stimulus than those infused with SCH23390 or saline. Thus, the DA D1 agonist SKF81297 increased conditioned suppression to the contextual background light stimulus but was otherwise without effect on fear conditioning. PMID:26343307
Motes, Michael A; Rao, Neena K; Shokri-Kojori, Ehsan; Chiang, Hsueh-Sheng; Kraut, Michael A; Hart, John
2017-01-01
Computer-based assessment of many cognitive processes (eg, anticipatory and response readiness processes) requires the use of invariant stimulus display times (SDT) and intertrial intervals (ITI). Although designs with invariant SDTs and ITIs have been used in functional magnetic resonance imaging (fMRI) research, such designs are problematic for fMRI studies because of collinearity issues. This study examined regressor modulation with trial-level reaction times (RT) as a method for improving signal detection in a go/no-go task with invariant SDTs and ITIs. The effects of modulating the go regressor were evaluated with respect to the detection of BOLD signal-change for the no-go condition. BOLD signal-change to no-go stimuli was examined when the go regressor was based on a (a) canonical hemodynamic response function (HRF), (b) RT-based amplitude-modulated (AM) HRF, and (c) RT-based amplitude and duration modulated (A&DM) HRF. Reaction time–based modulation reduced the collinearity between the go and no-go regressors, with A&DM producing the greatest reductions in correlations between the regressors, and greater reductions in the correlations between regressors were associated with longer mean RTs and greater RT variability. Reaction time–based modulation increased statistical power for detecting group-level no-go BOLD signal-change across a broad set of brain regions. The findings show the efficacy of using regressor modulation to increase power in detecting BOLD signal-change in fMRI studies in which circumstances dictate the use of temporally invariant stimulus presentations. PMID:29276390
Motes, Michael A; Rao, Neena K; Shokri-Kojori, Ehsan; Chiang, Hsueh-Sheng; Kraut, Michael A; Hart, John
2017-01-01
Computer-based assessment of many cognitive processes (eg, anticipatory and response readiness processes) requires the use of invariant stimulus display times (SDT) and intertrial intervals (ITI). Although designs with invariant SDTs and ITIs have been used in functional magnetic resonance imaging (fMRI) research, such designs are problematic for fMRI studies because of collinearity issues. This study examined regressor modulation with trial-level reaction times (RT) as a method for improving signal detection in a go / no-go task with invariant SDTs and ITIs. The effects of modulating the go regressor were evaluated with respect to the detection of BOLD signal-change for the no-go condition. BOLD signal-change to no-go stimuli was examined when the go regressor was based on a (a) canonical hemodynamic response function (HRF), (b) RT-based amplitude-modulated (AM) HRF, and (c) RT-based amplitude and duration modulated (A&DM) HRF. Reaction time-based modulation reduced the collinearity between the go and no-go regressors, with A&DM producing the greatest reductions in correlations between the regressors, and greater reductions in the correlations between regressors were associated with longer mean RTs and greater RT variability. Reaction time-based modulation increased statistical power for detecting group-level no-go BOLD signal-change across a broad set of brain regions. The findings show the efficacy of using regressor modulation to increase power in detecting BOLD signal-change in fMRI studies in which circumstances dictate the use of temporally invariant stimulus presentations.
A novel paradigm to evaluate conditioned pain modulation in fibromyalgia.
Schoen, Cynthia J; Ablin, Jacob N; Ichesco, Eric; Bhavsar, Rupal J; Kochlefl, Laura; Harris, Richard E; Clauw, Daniel J; Gracely, Richard H; Harte, Steven E
2016-01-01
Application of noxious stimulation to one body area reduces pain sensitivity in a remote body area through activation of an endogenous pain-inhibitory network, a behavioral phenomenon referred to as conditioned pain modulation (CPM). The efficiency of CPM is predictive of a variety of health outcomes, while impaired CPM has been associated with various chronic pain conditions. Current methods used to assess CPM vary widely, and interest in CPM method development remains strong. Here, we evaluated a novel method for assessing CPM in healthy controls and fibromyalgia (FM) patients using thumb pressure as both a test and conditioning stimulus. Sixteen female FM patients and 14 matched healthy controls underwent CPM testing with thumbnail pressure as the test stimulus, and either cold water or noxious pressure as the conditioning stimulus. CPM magnitude was evaluated as the difference in pain rating of the test stimulus applied before and during the conditioning stimulus. In healthy controls, application of either pressure or cold water conditioning stimulation induced CPM as evidenced by a significant reduction in test stimulus pain rating during conditioning ( P =0.007 and P =0.021, respectively). In contrast, in FM patients, neither conditioning stimulus induced a significant CPM effect ( P >0.274). There was a significant difference in CPM magnitude for FM patients compared to healthy controls with noxious pressure conditioning stimulation ( P =0.023); however, no significant difference in CPM was found between groups using cold water as a conditioning stimulus ( P =0.269). The current study demonstrates that thumbnail pressure can be used as both a test and conditioning stimulus in the assessment of CPM. This study further confirms previous findings of attenuated CPM in FM patients compared with healthy controls.
A novel paradigm to evaluate conditioned pain modulation in fibromyalgia
Schoen, Cynthia J; Ablin, Jacob N; Ichesco, Eric; Bhavsar, Rupal J; Kochlefl, Laura; Harris, Richard E; Clauw, Daniel J; Gracely, Richard H; Harte, Steven E
2016-01-01
Introduction Application of noxious stimulation to one body area reduces pain sensitivity in a remote body area through activation of an endogenous pain-inhibitory network, a behavioral phenomenon referred to as conditioned pain modulation (CPM). The efficiency of CPM is predictive of a variety of health outcomes, while impaired CPM has been associated with various chronic pain conditions. Current methods used to assess CPM vary widely, and interest in CPM method development remains strong. Here, we evaluated a novel method for assessing CPM in healthy controls and fibromyalgia (FM) patients using thumb pressure as both a test and conditioning stimulus. Methods Sixteen female FM patients and 14 matched healthy controls underwent CPM testing with thumbnail pressure as the test stimulus, and either cold water or noxious pressure as the conditioning stimulus. CPM magnitude was evaluated as the difference in pain rating of the test stimulus applied before and during the conditioning stimulus. Results In healthy controls, application of either pressure or cold water conditioning stimulation induced CPM as evidenced by a significant reduction in test stimulus pain rating during conditioning (P=0.007 and P=0.021, respectively). In contrast, in FM patients, neither conditioning stimulus induced a significant CPM effect (P>0.274). There was a significant difference in CPM magnitude for FM patients compared to healthy controls with noxious pressure conditioning stimulation (P=0.023); however, no significant difference in CPM was found between groups using cold water as a conditioning stimulus (P=0.269). Conclusion The current study demonstrates that thumbnail pressure can be used as both a test and conditioning stimulus in the assessment of CPM. This study further confirms previous findings of attenuated CPM in FM patients compared with healthy controls. PMID:27713648
Tuned Normalization Explains the Size of Attention Modulations
Ni, Amy M.; Ray, Supratim; Maunsell, John H. R.
2012-01-01
SUMMARY The effect of attention on firing rates varies considerably within a single cortical area. The firing rate of some neurons is greatly modulated by attention while others are hardly affected. The reason for this variability across neurons is unknown. We found that the variability in attention modulation across neurons in area MT of macaques can be well explained by variability in the strength of tuned normalization across neurons. The presence of tuned normalization also explains a striking asymmetry in attention effects within neurons: when two stimuli are in a neuron’s receptive field, directing attention to the preferred stimulus modulates firing rates more than directing attention to the non-preferred stimulus. These findings show that much of the neuron-to-neuron variability in modulation of responses by attention depends on variability in the way the neurons process multiple stimuli, rather than differences in the influence of top-down signals related to attention. PMID:22365552
Tuned normalization explains the size of attention modulations.
Ni, Amy M; Ray, Supratim; Maunsell, John H R
2012-02-23
The effect of attention on firing rates varies considerably within a single cortical area. The firing rate of some neurons is greatly modulated by attention while others are hardly affected. The reason for this variability across neurons is unknown. We found that the variability in attention modulation across neurons in area MT of macaques can be well explained by variability in the strength of tuned normalization across neurons. The presence of tuned normalization also explains a striking asymmetry in attention effects within neurons: when two stimuli are in a neuron's receptive field, directing attention to the preferred stimulus modulates firing rates more than directing attention to the nonpreferred stimulus. These findings show that much of the neuron-to-neuron variability in modulation of responses by attention depends on variability in the way the neurons process multiple stimuli, rather than differences in the influence of top-down signals related to attention. Copyright © 2012 Elsevier Inc. All rights reserved.
Attention operates uniformly throughout the classical receptive field and the surround.
Verhoef, Bram-Ernst; Maunsell, John Hr
2016-08-22
Shifting attention among visual stimuli at different locations modulates neuronal responses in heterogeneous ways, depending on where those stimuli lie within the receptive fields of neurons. Yet how attention interacts with the receptive-field structure of cortical neurons remains unclear. We measured neuronal responses in area V4 while monkeys shifted their attention among stimuli placed in different locations within and around neuronal receptive fields. We found that attention interacts uniformly with the spatially-varying excitation and suppression associated with the receptive field. This interaction explained the large variability in attention modulation across neurons, and a non-additive relationship among stimulus selectivity, stimulus-induced suppression and attention modulation that has not been previously described. A spatially-tuned normalization model precisely accounted for all observed attention modulations and for the spatial summation properties of neurons. These results provide a unified account of spatial summation and attention-related modulation across both the classical receptive field and the surround.
Cockpit Window Edge Proximity Effects on Judgements of Horizon Vertical Displacement
NASA Technical Reports Server (NTRS)
Haines, R. F.
1984-01-01
To quantify the influence of a spatially fixed edge on vertical displacement threshold, twenty-four males (12 pilots, 12 non-pilots) were presented a series of forced choice, paired comparison trials in which a 32 deg arc wide, thin, luminous horizontal stimulus line moved smoothly downward through five angles from a common starting position within a three second-long period. The five angles were 1.4, 1.7, 2, 2.3, and 2.6 deg. Each angle was presented paired with itself and the other four angles in all combinations in random order. For each pair of trials the observer had to choose which trial possessed the largest displacement. A confidence response also was made. The independent variable was the angular separation between the lower edge of a stable 'window' aperture through which the stimulus was seen to move and the lowest position attained by the stimulus. It was found that vertical displacement accuracy is inversely related to the angle separating the stimulus and the fixed window edge (p = .05). In addition, there is a strong tendency for pilot confidence to be lower than that of non-pilots for each of the three angular separations. These results are discussed in erms of selected cockpit features and as they relate to how pilots judge changes in aircraft pitch attitude.
Weiss, Craig; Disterhoft, John F.
2008-01-01
Many laboratories studying eyeblinks in unanesthetized rodents use a periorbital shock to evoke the blink. The stimulus is typically delivered via a tether and usually obliterates detection of a full unconditioned response with electromyographic (EMG) recording. Here we describe the adapter we have used successfully for several years to deliver puffs of air to the cornea of freely moving rats during our studies of eyeblink conditioning. The stimulus evokes an unconditioned response that can be recorded without affecting the EMG signal. This allows a complete analysis of the unconditioned response which is important for studies examining reflex modification or the effect of drugs, genetic manipulations, or aging on the unconditioned blink reflex. We also describe an infrared reflective sensor that can be added to the tether to minimize the number of wires that need to be implanted around the eye, and which is relatively immune to electrical artifacts associated with a periorbital shock stimulus or other devices powered by alternating current. The responses recorded simultaneously by EMG wires and the optical sensor appear highly correlated and demonstrate that the optical sensor can measure responses that might otherwise be lost due to electrical interference from a shock stimulus. PMID:18598716
Simultaneous chromatic and luminance human electroretinogram responses.
Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan
2012-07-01
The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats' ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing.
Subliminal action priming modulates the perceived intensity of sensory action consequences.
Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J
2014-02-01
The sense of control over the consequences of one's actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime-target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Subliminal action priming modulates the perceived intensity of sensory action consequences☆
Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.
2014-01-01
The sense of control over the consequences of one’s actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime–target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. PMID:24333539
Modulation of visual physiology by behavioral state in monkeys, mice, and flies.
Maimon, Gaby
2011-08-01
When a monkey attends to a visual stimulus, neurons in visual cortex respond differently to that stimulus than when the monkey attends elsewhere. In the 25 years since the initial discovery, the study of attention in primates has been central to understanding flexible visual processing. Recent experiments demonstrate that visual neurons in mice and fruit flies are modulated by locomotor behaviors, like running and flying, in a manner that resembles attention-based modulations in primates. The similar findings across species argue for a more generalized view of state-dependent sensory processing and for a renewed dialogue among vertebrate and invertebrate research communities. Copyright © 2011 Elsevier Ltd. All rights reserved.
Color Discrimination Is Affected by Modulation of Luminance Noise in Pseudoisochromatic Stimuli
Cormenzana Méndez, Iñaki; Martín, Andrés; Charmichael, Teaire L.; Jacob, Mellina M.; Lacerda, Eliza M. C. B.; Gomes, Bruno D.; Fitzgerald, Malinda E. C.; Ventura, Dora F.; Silveira, Luiz C. L.; O'Donell, Beatriz M.; Souza, Givago S.
2016-01-01
Pseudoisochromatic stimuli have been widely used to evaluate color discrimination and to identify color vision deficits. Luminance noise is one of the stimulus parameters used to ensure that subject's response is due to their ability to discriminate target stimulus from the background based solely on the hue between the colors that compose such stimuli. We studied the influence of contrast modulation of the stimulus luminance noise on threshold and reaction time color discrimination. We evaluated color discrimination thresholds using the Cambridge Color Test (CCT) at six different stimulus mean luminances. Each mean luminance condition was tested using two protocols: constant absolute difference between maximum and minimum luminance of the luminance noise (constant delta protocol, CDP), and constant contrast modulation of the luminance noise (constant contrast protocol, CCP). MacAdam ellipses were fitted to the color discrimination thresholds in the CIE 1976 color space to quantify the color discrimination ellipses at threshold level. The same CDP and CCP protocols were applied in the experiment measuring RTs at three levels of stimulus mean luminance. The color threshold measurements show that for the CDP, ellipse areas decreased as a function of the mean luminance and they were significantly larger at the two lowest mean luminances, 10 cd/m2 and 13 cd/m2, compared to the highest one, 25 cd/m2. For the CCP, the ellipses areas also decreased as a function of the mean luminance, but there was no significant difference between ellipses areas estimated at six stimulus mean luminances. The exponent of the decrease of ellipse areas as a function of stimulus mean luminance was steeper in the CDP than CCP. Further, reaction time increased linearly with the reciprocal of the length of the chromatic vectors varying along the four chromatic half-axes. It decreased as a function of stimulus mean luminance in the CDP but not in the CCP. The findings indicated that visual performance using pseudoisochromatic stimuli was dependent on the Weber's contrast of the luminance noise. Low Weber's contrast in the luminance noise is suggested to have a reduced effect on chromatic information and, hence, facilitate desegregation of the hue-defined target from the background. PMID:27458404
The Force of Appearance: Gamma Movement, Naive Impetus, and Representational Momentum
ERIC Educational Resources Information Center
Hubbard, Timothy L.; Ruppel, Susan E.; Courtney, Jon R.
2005-01-01
If a moving stimulus (i.e., launcher) contacts a stationary target that subsequently begins to move, observers attribute motion of the target to the launcher (Michotte, 1946/1963). In experiments reported here, a stationary launcher adjacent to the target appeared or vanished and displacement in memory for the position of the target was measured.…
Seeing Objects as Faces Enhances Object Detection.
Takahashi, Kohske; Watanabe, Katsumi
2015-10-01
The face is a special visual stimulus. Both bottom-up processes for low-level facial features and top-down modulation by face expectations contribute to the advantages of face perception. However, it is hard to dissociate the top-down factors from the bottom-up processes, since facial stimuli mandatorily lead to face awareness. In the present study, using the face pareidolia phenomenon, we demonstrated that face awareness, namely seeing an object as a face, enhances object detection performance. In face pareidolia, some people see a visual stimulus, for example, three dots arranged in V shape, as a face, while others do not. This phenomenon allows us to investigate the effect of face awareness leaving the stimulus per se unchanged. Participants were asked to detect a face target or a triangle target. While target per se was identical between the two tasks, the detection sensitivity was higher when the participants recognized the target as a face. This was the case irrespective of the stimulus eccentricity or the vertical orientation of the stimulus. These results demonstrate that seeing an object as a face facilitates object detection via top-down modulation. The advantages of face perception are, therefore, at least partly, due to face awareness.
Seeing Objects as Faces Enhances Object Detection
Watanabe, Katsumi
2015-01-01
The face is a special visual stimulus. Both bottom-up processes for low-level facial features and top-down modulation by face expectations contribute to the advantages of face perception. However, it is hard to dissociate the top-down factors from the bottom-up processes, since facial stimuli mandatorily lead to face awareness. In the present study, using the face pareidolia phenomenon, we demonstrated that face awareness, namely seeing an object as a face, enhances object detection performance. In face pareidolia, some people see a visual stimulus, for example, three dots arranged in V shape, as a face, while others do not. This phenomenon allows us to investigate the effect of face awareness leaving the stimulus per se unchanged. Participants were asked to detect a face target or a triangle target. While target per se was identical between the two tasks, the detection sensitivity was higher when the participants recognized the target as a face. This was the case irrespective of the stimulus eccentricity or the vertical orientation of the stimulus. These results demonstrate that seeing an object as a face facilitates object detection via top-down modulation. The advantages of face perception are, therefore, at least partly, due to face awareness. PMID:27648219
A Neural Signature Encoding Decisions under Perceptual Ambiguity
Sun, Sai; Yu, Rongjun
2017-01-01
Abstract People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making. PMID:29177189
Increased conditioned pain modulation in athletes.
Flood, Andrew; Waddington, Gordon; Thompson, Kevin; Cathcart, Stuart
2017-06-01
The potential relationship between physical activity and endogenous pain modulatory capacity remains unclear. Therefore, the aim of the current study was to compare the pain modulatory responses of athletes and non-athletes. Conditioned pain modulation (CPM) was assessed in 15 athletes and 15 non-athletes at rest. Participation was restricted to pain-free males between 18 and 40 years of age. To measure CPM capacity, a sequential CPM testing protocol was implemented, whereby a test stimulus (pressure pain threshold [PPT]) was presented before and immediately after a conditioning stimulus (4-min cold-pressor test). Pain intensity ratings were obtained at 15-s intervals throughout the cold-pressor task using a numerical rating scale. Athletes demonstrated higher baseline PPTs compared to non-athletes (P = .03). Athletes also gave lower mean (P < .001) and maximum (P < .001) pain intensity ratings in response to the conditioning stimulus. The conditioning stimulus had a stronger inhibitory effect on the test stimulus in athletes, showing enhanced CPM in athletes compared to non-athletes (P < .05). This finding of enhanced CPM in athletes helps clarify previous mixed findings. Potential implications for exercise performance and injury are discussed.
A Neural Signature Encoding Decisions under Perceptual Ambiguity.
Sun, Sai; Yu, Rongjun; Wang, Shuo
2017-01-01
People often make perceptual decisions with ambiguous information, but it remains unclear whether the brain has a common neural substrate that encodes various forms of perceptual ambiguity. Here, we used three types of perceptually ambiguous stimuli as well as task instructions to examine the neural basis for both stimulus-driven and task-driven perceptual ambiguity. We identified a neural signature, the late positive potential (LPP), that encoded a general form of stimulus-driven perceptual ambiguity. In addition to stimulus-driven ambiguity, the LPP was also modulated by ambiguity in task instructions. To further specify the functional role of the LPP and elucidate the relationship between stimulus ambiguity, behavioral response, and the LPP, we employed regression models and found that the LPP was specifically associated with response latency and confidence rating, suggesting that the LPP encoded decisions under perceptual ambiguity. Finally, direct behavioral ratings of stimulus and task ambiguity confirmed our neurophysiological findings, which could not be attributed to differences in eye movements either. Together, our findings argue for a common neural signature that encodes decisions under perceptual ambiguity but is subject to the modulation of task ambiguity. Our results represent an essential first step toward a complete neural understanding of human perceptual decision making.
Gertz, Hanna; Hilger, Maximilian; Hegele, Mathias; Fiehler, Katja
2016-09-01
Previous studies have shown that beliefs about the human origin of a stimulus are capable of modulating the coupling of perception and action. Such beliefs can be based on top-down recognition of the identity of an actor or bottom-up observation of the behavior of the stimulus. Instructed human agency has been shown to lead to superior tracking performance of a moving dot as compared to instructed computer agency, especially when the dot followed a biological velocity profile and thus matched the predicted movement, whereas a violation of instructed human agency by a nonbiological dot motion impaired oculomotor tracking (Zwickel et al., 2012). This suggests that the instructed agency biases the selection of predictive models on the movement trajectory of the dot motion. The aim of the present fMRI study was to examine the neural correlates of top-down and bottom-up modulations of perception-action couplings by manipulating the instructed agency (human action vs. computer-generated action) and the observable behavior of the stimulus (biological vs. nonbiological velocity profile). To this end, participants performed an oculomotor tracking task in an MRI environment. Oculomotor tracking activated areas of the eye movement network. A right-hemisphere occipito-temporal cluster comprising the motion-sensitive area V5 showed a preference for the biological as compared to the nonbiological velocity profile. Importantly, a mismatch between instructed human agency and a nonbiological velocity profile primarily activated medial-frontal areas comprising the frontal pole, the paracingulate gyrus, and the anterior cingulate gyrus, as well as the cerebellum and the supplementary eye field as part of the eye movement network. This mismatch effect was specific to the instructed human agency and did not occur in conditions with a mismatch between instructed computer agency and a biological velocity profile. Our results support the hypothesis that humans activate a specific predictive model for biological movements based on their own motor expertise. A violation of this predictive model causes costs as the movement needs to be corrected in accordance with incoming (nonbiological) sensory information. Copyright © 2016 Elsevier Inc. All rights reserved.
Phillips, Derrick J; Schei, Jennifer L; Meighan, Peter C; Rector, David M
2011-11-01
Auditory evoked potential (AEP) components correspond to sequential activation of brain structures within the auditory pathway and reveal neural activity during sensory processing. To investigate state-dependent modulation of stimulus intensity response profiles within different brain structures, we assessed AEP components across both stimulus intensity and state. We implanted adult female Sprague-Dawley rats (N = 6) with electrodes to measure EEG, EKG, and EMG. Intermittent auditory stimuli (6-12 s) varying from 50 to 75 dBa were delivered over a 24-h period. Data were parsed into 2-s epochs and scored for wake/sleep state. All AEP components increased in amplitude with increased stimulus intensity during wake. During quiet sleep, however, only the early latency response (ELR) showed this relationship, while the middle latency response (MLR) increased at the highest 75 dBa intensity, and the late latency response (LLR) showed no significant change across the stimulus intensities tested. During rapid eye movement sleep (REM), both ELR and LLR increased, similar to wake, but MLR was severely attenuated. Stimulation intensity and the corresponding AEP response profile were dependent on both brain structure and sleep state. Lower brain structures maintained stimulus intensity and neural response relationships during sleep. This relationship was not observed in the cortex, implying state-dependent modification of stimulus intensity coding. Since AEP amplitude is not modulated by stimulus intensity during sleep, differences between paired 75/50 dBa stimuli could be used to determine state better than individual intensities.
Justinova, Zuzana; Ferre, Sergi; Segal, Pavan N; Antoniou, Katerina; Solinas, Marcello; Pappas, Lara A; Highkin, Jena L; Hockemeyer, Jorg; Munzar, Patrik; Goldberg, Steven R
2003-12-01
Adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission. We have recently reported that nonselective adenosine receptor antagonists (caffeine and 3,7-dimethyl-1-propargylxanthine) can partially substitute for the discriminative-stimulus effects of methamphetamine. In the present study, by using more selective compounds, we investigated the involvement of A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of both cocaine and methamphetamine. The effects of the A1 receptor agonist N6-cyclopentyladenosine (CPA; 0.01-0.1 mg/kg) and antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.3-23.7 mg/kg) and the A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; 0.03-0.18 mg/kg) and antagonist 3-(3-hydroxypropyl)-8-(3-methoxystyryl)-7-methyl-1-propargylxanthin phosphate disodium salt (MSX-3; 1-56 mg/kg) were evaluated in rats trained to discriminate either 1 mg/kg methamphetamine or 10 mg/kg cocaine from saline under a fixed-ratio 10 schedule of food presentation. The A1 and A2A receptor antagonists (CPT and MSX-3) both produced high levels of drug-lever selection when substituted for either methamphetamine or cocaine and significantly shifted dose-response curves of both psychostimulants to the left. Unexpectedly, the A2A receptor agonist CGS 21680 also produced drug-appropriate responding (although at lower levels) when substituted for the cocaine-training stimulus, and both CGS 21680 and the A1 receptor agonist CPA significantly shifted the cocaine dose-response curve to the left. In contrast, both agonists did not produce significant levels of drug-lever selection when substituted for the methamphetamine-training stimulus and failed to shift the methamphetamine dose-response curve. Therefore, adenosine A1 and A2A receptors appear to play important but differential roles in the modulation of the discriminative-stimulus effects of methamphetamine and cocaine.
Hoppe, Katharina; Küper, Kristina; Wascher, Edmund
2017-01-01
In the Simon task, participants respond faster when the task-irrelevant stimulus position and the response position are corresponding, for example on the same side, compared to when they have a non-corresponding relation. Interestingly, this Simon effect is reduced after non-corresponding trials. Such sequential effects can be explained in terms of a more focused processing of the relevant stimulus dimension due to increased cognitive control, which transfers from the previous non-corresponding trial (conflict adaptation effects). Alternatively, sequential modulations of the Simon effect can also be due to the degree of trial-to-trial repetitions and alternations of task features, which is confounded with the correspondence sequence (feature integration effects). In the present study, we used a spatially two-dimensional Simon task with vertical response keys to examine the contribution of adaptive cognitive control and feature integration processes to the sequential modulation of the Simon effect. The two-dimensional Simon task creates correspondences in the vertical as well as in the horizontal dimension. A trial-by-trial alternation of the spatial dimension, for example from a vertical to a horizontal stimulus presentation, generates a subset containing no complete repetitions of task features, but only complete alternations and partial repetitions, which are equally distributed over all correspondence sequences. In line with the assumed feature integration effects, we found sequential modulations of the Simon effect only when the spatial dimension repeated. At least for the horizontal dimension, this pattern was confirmed by the parietal P3b, an event-related potential that is assumed to reflect stimulus-response link processes. Contrary to conflict adaptation effects, cognitive control, measured by the fronto-central N2 component of the EEG, was not sequentially modulated. Overall, our data provide behavioral as well as electrophysiological evidence for feature integration effects contributing to sequential modulations of the Simon effect.
Fraser, Matthew; McKay, Colette M.
2012-01-01
Temporal modulation transfer functions (TMTFs) were measured for six users of cochlear implants, using different carrier rates and levels. Unlike most previous studies investigating modulation detection, the experimental design limited potential effects of overall loudness cues. Psychometric functions (percent correct discrimination of modulated from unmodulated stimuli versus modulation depth) were obtained. For each modulation depth, each modulated stimulus was loudness balanced to the unmodulated reference stimulus, and level jitter was applied in the discrimination task. The loudness-balance data showed that the modulated stimuli were louder than the unmodulated reference stimuli with the same average current, thus confirming the need to limit loudness cues when measuring modulation detection. TMTFs measured in this way had a low-pass characteristic, with a cut-off frequency (at comfortably loud levels) similar to that for normal-hearing listeners. A reduction in level caused degradation in modulation detection efficiency and a lower-cut-off frequency (i.e. poorer temporal resolution). An increase in carrier rate also led to a degradation in modulation detection efficiency, but only at lower levels or higher modulation frequencies. When detection thresholds were expressed as a proportion of dynamic range, there was no effect of carrier rate for the lowest modulation frequency (50 Hz) at either level. PMID:22146425
Color Modulates Olfactory Learning in Honeybees by an Occasion-Setting Mechanism
ERIC Educational Resources Information Center
Mota, Theo; Giurfa, Martin; Sandoz, Jean-Christophe
2011-01-01
A sophisticated form of nonelemental learning is provided by occasion setting. In this paradigm, animals learn to disambiguate an uncertain conditioned stimulus using alternative stimuli that do not enter into direct association with the unconditioned stimulus. For instance, animals may learn to discriminate odor rewarded from odor nonrewarded…
Establishing Derived Equivalence Relations of Basic Geography Skills in Children with Autism
ERIC Educational Resources Information Center
Dixon, Mark R.; Stanley, Caleb; Belisle, Jordan; Galliford, Megan E.; Alholail, Amani; Schmick, Ayla M.
2017-01-01
The present study evaluated the efficacy of a stimulus-equivalence training procedure in teaching basic geography skills to two children with autism. The procedures were taken directly from a standardized training curriculum based in stimulus equivalence theory called "Promoting the Emergence of Advanced Knowledge Equivalence Module"…
Entorhinal cortex receptive fields are modulated by spatial attention, even without movement
König, Peter; König, Seth; Buffalo, Elizabeth A
2018-01-01
Grid cells in the entorhinal cortex allow for the precise decoding of position in space. Along with potentially playing an important role in navigation, grid cells have recently been hypothesized to make a general contribution to mental operations. A prerequisite for this hypothesis is that grid cell activity does not critically depend on physical movement. Here, we show that movement of covert attention, without any physical movement, also elicits spatial receptive fields with a triangular tiling of space. In monkeys trained to maintain central fixation while covertly attending to a stimulus moving in the periphery we identified a significant population (20/141, 14% neurons at a FDR <5%) of entorhinal cells with spatially structured receptive fields. This contrasts with recordings obtained in the hippocampus, where grid-like representations were not observed. Our results provide evidence that neurons in macaque entorhinal cortex do not rely on physical movement. PMID:29537964
Drolet, Matthis; Schubotz, Ricarda I; Fischer, Julia
2013-06-01
Context has been found to have a profound effect on the recognition of social stimuli and correlated brain activation. The present study was designed to determine whether knowledge about emotional authenticity influences emotion recognition expressed through speech intonation. Participants classified emotionally expressive speech in an fMRI experimental design as sad, happy, angry, or fearful. For some trials, stimuli were cued as either authentic or play-acted in order to manipulate participant top-down belief about authenticity, and these labels were presented both congruently and incongruently to the emotional authenticity of the stimulus. Contrasting authentic versus play-acted stimuli during uncued trials indicated that play-acted stimuli spontaneously up-regulate activity in the auditory cortex and regions associated with emotional speech processing. In addition, a clear interaction effect of cue and stimulus authenticity showed up-regulation in the posterior superior temporal sulcus and the anterior cingulate cortex, indicating that cueing had an impact on the perception of authenticity. In particular, when a cue indicating an authentic stimulus was followed by a play-acted stimulus, additional activation occurred in the temporoparietal junction, probably pointing to increased load on perspective taking in such trials. While actual authenticity has a significant impact on brain activation, individual belief about stimulus authenticity can additionally modulate the brain response to differences in emotionally expressive speech.
ERIC Educational Resources Information Center
Singer, Bryan F.; Bryan, Myranda A.; Popov, Pavlo; Scarff, Raymond; Carter, Cody; Wright, Erin; Aragona, Brandon J.; Robinson, Terry E.
2016-01-01
The sensory properties of a reward-paired cue (a conditioned stimulus; CS) may impact the motivational value attributed to the cue, and in turn influence the form of the conditioned response (CR) that develops. A cue with multiple sensory qualities, such as a moving lever-CS, may activate numerous neural pathways that process auditory and visual…
Law, Phillip C F; Miller, Steven M; Ngo, Trung T
2017-11-01
Binocular rivalry (BR) occurs when conflicting images concurrently presented to corresponding retinal locations of each eye stochastically alternate in perception. Anomalies of BR rate have been examined in a range of clinical psychiatric conditions. In particular, slow BR rate has been proposed as an endophenotype for bipolar disorder (BD) to improve power in large-scale genome-wide association studies. Examining the validity of BR rate as a BD endophenotype however requires large-scale datasets (n=1000s to 10,000s), a standardized testing protocol, and optimization of stimulus parameters to maximize separation between BD and healthy groups. Such requirements are indeed relevant to all clinical psychiatric BR studies. Here we address the issue of stimulus optimization by examining the effect of stimulus parameter variation on BR rate and mixed-percept duration (MPD) in healthy individuals. We aimed to identify the stimulus parameters that induced the fastest BR rates with the least MPD. Employing a repeated-measures within-subjects design, 40 healthy adults completed four BR tasks using orthogonally drifting grating stimuli that varied in drift speed and aperture size. Pairwise comparisons were performed to determine modulation of BR rate and MPD by these stimulus parameters, and individual variation of such modulation was also assessed. From amongst the stimulus parameters examined, we found that 8cycles/s drift speed in a 1.5° aperture induced the fastest BR rate without increasing MPD, but that BR rate with this stimulus configuration was not substantially different to BR rate with stimulus parameters we have used in previous studies (i.e., 4cycles/s drift speed in a 1.5° aperture). In addition to contributing to stimulus optimization issues, the findings have implications for Levelt's Proposition IV of binocular rivalry dynamics and individual differences in such dynamics. Copyright © 2017 Elsevier Inc. All rights reserved.
Negative Emotion Does Not Modulate Rapid Feature Integration Effects
Trübutschek, Darinka; Egner, Tobias
2012-01-01
Emotional arousal at encoding is known to facilitate later memory recall. In the present study, we asked whether this emotion-modulation of episodic memory is also evident at very short time scales, as measured by “feature integration effects,” the moment-by-moment binding of relevant stimulus and response features in episodic memory. This question was motivated by recent findings that negative emotion appears to potentiate first-order trial sequence effects in classic conflict tasks, which has been attributed to emotion-modulation of conflict-driven cognitive control processes. However, these effects could equally well have been carried by emotion-modulation of mnemonic feature binding processes, which were perfectly confounded with putative control processes in these studies. In the present experiments, we tried to shed light on this question by testing explicitly whether feature integration processes, assessed in isolation of conflict–control, are in fact susceptible to negative emotion-modulation. For this purpose, we adopted a standard protocol for assessing the rapid binding of stimulus and response features in episodic memory (Experiment 1) and paired it with the presentation of either neutral or fearful background face stimuli, shown either at encoding only (Experiment 2), or at both encoding and retrieval (Experiment 3). Whereas reliable feature integration effects were observed in all three experiments, no evidence for emotion-modulation of these effects was detected, in spite of significant effects of emotion on response times. These findings suggest that rapid feature integration of foreground stimulus and response features is not subject to modulation by negative emotional background stimuli and further suggest that previous reports of emotion-modulated trial–transition effects are likely attributable to the effects of emotion on cognitive control processes. PMID:22509172
Induction and modulation of persistent activity in a layer V PFC microcircuit model
Papoutsi, Athanasia; Sidiropoulou, Kyriaki; Cutsuridis, Vassilis; Poirazi, Panayiota
2013-01-01
Working memory refers to the temporary storage of information and is strongly associated with the prefrontal cortex (PFC). Persistent activity of cortical neurons, namely the activity that persists beyond the stimulus presentation, is considered the cellular correlate of working memory. Although past studies suggested that this type of activity is characteristic of large scale networks, recent experimental evidence imply that small, tightly interconnected clusters of neurons in the cortex may support similar functionalities. However, very little is known about the biophysical mechanisms giving rise to persistent activity in small-sized microcircuits in the PFC. Here, we present a detailed biophysically—yet morphologically simplified—microcircuit model of layer V PFC neurons that incorporates connectivity constraints and is validated against a multitude of experimental data. We show that (a) a small-sized network can exhibit persistent activity under realistic stimulus conditions. (b) Its emergence depends strongly on the interplay of dADP, NMDA, and GABAB currents. (c) Although increases in stimulus duration increase the probability of persistent activity induction, variability in the stimulus firing frequency does not consistently influence it. (d) Modulation of ionic conductances (Ih, ID, IsAHP, IcaL, IcaN, IcaR) differentially controls persistent activity properties in a location dependent manner. These findings suggest that modulation of the microcircuit's firing characteristics is achieved primarily through changes in its intrinsic mechanism makeup, supporting the hypothesis of multiple bi-stable units in the PFC. Overall, the model generates a number of experimentally testable predictions that may lead to a better understanding of the biophysical mechanisms of persistent activity induction and modulation in the PFC. PMID:24130519
The extreme relativity of perception: A new contextual effect modulates human resolving power.
Namdar, Gal; Ganel, Tzvi; Algom, Daniel
2016-04-01
The authors report the discovery of a new effect of context that modulates human resolving power with respect to an individual stimulus. They show that the size of the difference threshold or the just noticeable difference around a standard stimulus depends on the range of the other standards tested simultaneously for resolution within the same experimental session. The larger this range, the poorer the resolving power for a given standard. The authors term this effect the range of standards effect (RSE). They establish this result both in the visual domain for the perception of linear extent, and in the somatosensory domain for the perception of weight. They discuss the contingent nature of stimulus resolution in perception and psychophysics and contrast it with the immunity to contextual influences of visually guided action. (c) 2016 APA, all rights reserved).
Different responses of spontaneous and stimulus-related alpha activity to ambient luminance changes.
Benedetto, Alessandro; Lozano-Soldevilla, Diego; VanRullen, Rufin
2017-12-04
Alpha oscillations are particularly important in determining our percepts and have been implicated in fundamental brain functions. Oscillatory activity can be spontaneous or stimulus-related. Furthermore, stimulus-related responses can be phase- or non-phase-locked to the stimulus. Non-phase-locked (induced) activity can be identified as the average amplitude changes in response to a stimulation, while phase-locked activity can be measured via reverse-correlation techniques (echo function). However, the mechanisms and the functional roles of these oscillations are far from clear. Here, we investigated the effect of ambient luminance changes, known to dramatically modulate neural oscillations, on spontaneous and stimulus-related alpha. We investigated the effect of ambient luminance on EEG alpha during spontaneous human brain activity at rest (experiment 1) and during visual stimulation (experiment 2). Results show that spontaneous alpha amplitude increased by decreasing ambient luminance, while alpha frequency remained unaffected. In the second experiment, we found that under low-luminance viewing, the stimulus-related alpha amplitude was lower, and its frequency was slightly faster. These effects were evident in the phase-locked part of the alpha response (echo function), but weaker or absent in the induced (non-phase-locked) alpha responses. Finally, we explored the possible behavioural correlates of these modulations in a monocular critical flicker frequency task (experiment 3), finding that dark adaptation in the left eye decreased the temporal threshold of the right eye. Overall, we found that ambient luminance changes impact differently on spontaneous and stimulus-related alpha expression. We suggest that stimulus-related alpha activity is crucial in determining human temporal segmentation abilities. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
2013-01-01
Background Prior studies demonstrated that hesitation-prone persons with Parkinson’s disease (PDs) acutely improve step initiation using a novel self-triggered stimulus that enhances lateral weight shift prior to step onset. PDs showed reduced anticipatory postural adjustment (APA) durations, earlier step onsets, and faster 1st step speed immediately following stimulus exposure. Objective This study investigated the effects of long-term stimulus exposure. Methods Two groups of hesitation-prone subjects with Parkinson’s disease (PD) participated in a 6-week step-initiation training program involving one of two stimulus conditions: 1) Drop. The stance-side support surface was lowered quickly (1.5 cm); 2) Vibration. A short vibration (100 ms) was applied beneath the stance-side support surface. Stimuli were self-triggered by a 5% reduction in vertical force under the stance foot during the APA. Testing was at baseline, immediately post-training, and 6 weeks post-training. Measurements included timing and magnitude of ground reaction forces, and step speed and length. Results Both groups improved their APA force modulation after training. Contrary to previous results, neither group showed reduced APA durations or earlier step onset times. The vibration group showed 55% increase in step speed and a 39% increase in step length which were retained 6 weeks post-training. The drop group showed no stepping-performance improvements. Conclusions The acute sensitivity to the quickness-enhancing effects of stimulus exposure demonstrated in previous studies was supplanted by improved force modulation following prolonged stimulus exposure. The results suggest a potential approach to reduce the severity of start hesitation in PDs, but further study is needed to understand the relationship between short- and long-term effects of stimulus exposure. PMID:23363975
Population Response Profiles in Early Visual Cortex Are Biased in Favor of More Valuable Stimuli
Saproo, Sameer
2010-01-01
Voluntary and stimulus-driven shifts of attention can modulate the representation of behaviorally relevant stimuli in early areas of visual cortex. In turn, attended items are processed faster and more accurately, facilitating the selection of appropriate behavioral responses. Information processing is also strongly influenced by past experience and recent studies indicate that the learned value of a stimulus can influence relatively late stages of decision making such as the process of selecting a motor response. However, the learned value of a stimulus can also influence the magnitude of cortical responses in early sensory areas such as V1 and S1. These early effects of stimulus value are presumed to improve the quality of sensory representations; however, the nature of these modulations is not clear. They could reflect nonspecific changes in response amplitude associated with changes in general arousal or they could reflect a bias in population responses so that high-value features are represented more robustly. To examine this issue, subjects performed a two-alternative forced choice paradigm with a variable-interval payoff schedule to dynamically manipulate the relative value of two stimuli defined by their orientation (one was rotated clockwise from vertical, the other counterclockwise). Activation levels in visual cortex were monitored using functional MRI and feature-selective voxel tuning functions while subjects performed the behavioral task. The results suggest that value not only modulates the relative amplitude of responses in early areas of human visual cortex, but also sharpens the response profile across the populations of feature-selective neurons that encode the critical stimulus feature (orientation). Moreover, changes in space- or feature-based attention cannot easily explain the results because representations of both the selected and the unselected stimuli underwent a similar feature-selective modulation. This sharpening in the population response profile could theoretically improve the probability of correctly discriminating high-value stimuli from low-value alternatives. PMID:20410360
Su, Yi-Huang
2014-01-01
Both lower-level stimulus factors (e.g., temporal proximity) and higher-level cognitive factors (e.g., content congruency) are known to influence multisensory integration. The former can direct attention in a converging manner, and the latter can indicate whether information from the two modalities belongs together. The present research investigated whether and how these two factors interacted in the perception of rhythmic, audiovisual (AV) streams derived from a human movement scenario. Congruency here was based on sensorimotor correspondence pertaining to rhythm perception. Participants attended to bimodal stimuli consisting of a humanlike figure moving regularly to a sequence of auditory beat, and detected a possible auditory temporal deviant. The figure moved either downwards (congruently) or upwards (incongruently) to the downbeat, while in both situations the movement was either synchronous with the beat, or lagging behind it. Greater cross-modal binding was expected to hinder deviant detection. Results revealed poorer detection for congruent than for incongruent streams, suggesting stronger integration in the former. False alarms increased in asynchronous stimuli only for congruent streams, indicating greater tendency for deviant report due to visual capture of asynchronous auditory events. In addition, a greater increase in perceived synchrony was associated with a greater reduction in false alarms for congruent streams, while the pattern was reversed for incongruent ones. These results demonstrate that content congruency as a top-down factor not only promotes integration, but also modulates bottom-up effects of synchrony. Results are also discussed regarding how theories of integration and attentional entrainment may be combined in the context of rhythmic multisensory stimuli.
Task set persistence modulates word reading following resolution of picture-word interference.
Masson, Michael E J; Bub, Daniel N; Ishigami, Yoko
2007-12-01
We extend the finding that word reading slows following successful responses to a color-word Stroop interference task (Masson, Bub, Woodward, & Chan, 2003). Word reading was assessed in a picture-word interference task in which subjects alternated between naming a picture (with either a word or a row of Xs superimposed on it) and reading a word. For the word-reading task, words were presented either in isolation or superimposed on a picture. Word reading was slower after subjects responded to a bivalent stimulus that required resolution of conflict (naming a picture with a word superimposed on it) than after they responded to a stimulus that involved no conflict (naming a picture with Xs superimposed on it), indicating modulation of dominant task performance. This effect was found when word-reading targets were superimposed on pictures but not when those targets were presented in isolation. Modulation of word reading, therefore, appears to be the result of interference from a persistent picture-naming task set, cued by a stimulus configuration that invites execution of both competing tasks.
Özdem, Ceylan; Wiese, Eva; Wykowska, Agnieszka; Müller, Hermann; Brass, Marcel; Van Overwalle, Frank
2017-10-01
Attributing mind to interaction partners has been shown to increase the social relevance we ascribe to others' actions and to modulate the amount of attention dedicated to them. However, it remains unclear how the relationship between higher-order mind attribution and lower-level attention processes is established in the brain. In this neuroimaging study, participants saw images of an anthropomorphic robot that moved its eyes left- or rightwards to signal the appearance of an upcoming stimulus in the same (valid cue) or opposite location (invalid cue). Independently, participants' beliefs about the intentionality underlying the observed eye movements were manipulated by describing the eye movements as under human control or preprogrammed. As expected, we observed a validity effect behaviorally and neurologically (increased response times and activation in the invalid vs. valid condition). More importantly, we observed that this effect was more pronounced for the condition in which the robot's behavior was believed to be controlled by a human, as opposed to be preprogrammed. This interaction effect between cue validity and belief was, however, only found at the neural level and was manifested as a significant increase of activation in bilateral anterior temporoparietal junction.
Simultaneous chromatic and luminance human electroretinogram responses
Parry, Neil R A; Murray, Ian J; Panorgias, Athanasios; McKeefry, Declan J; Lee, Barry B; Kremers, Jan
2012-01-01
The parallel processing of information forms an important organisational principle of the primate visual system. Here we describe experiments which use a novel chromatic–achromatic temporal compound stimulus to simultaneously identify colour and luminance specific signals in the human electroretinogram (ERG). Luminance and chromatic components are separated in the stimulus; the luminance modulation has twice the temporal frequency of the chromatic modulation. ERGs were recorded from four trichromatic and two dichromatic subjects (1 deuteranope and 1 protanope). At isoluminance, the fundamental (first harmonic) response was elicited by the chromatic component in the stimulus. The trichromatic ERGs possessed low-pass temporal tuning characteristics, reflecting the activity of parvocellular post-receptoral mechanisms. There was very little first harmonic response in the dichromats’ ERGs. The second harmonic response was elicited by the luminance modulation in the compound stimulus and showed, in all subjects, band-pass temporal tuning characteristic of magnocellular activity. Thus it is possible to concurrently elicit ERG responses from the human retina which reflect processing in both chromatic and luminance pathways. As well as providing a clear demonstration of the parallel nature of chromatic and luminance processing in the human retina, the differences that exist between ERGs from trichromatic and dichromatic subjects point to the existence of interactions between afferent post-receptoral pathways that are in operation from the earliest stages of visual processing. PMID:22586211
Khan, Junad; Korczeniewska, Olga; Benoliel, Rafael; Kalladka, Mythili; Eliav, Eli; Nasri-Heir, Cibelle
2018-04-13
The aim of this study was to investigate intraoral temporal summation (TS) and conditioned pain modulation (CPM) and compare the outcome with TS and CPM induced in the forearm. In addition, we aimed to study the effect of age and gender on intraoral and forearm TS and CPM. Mechanical stimulation was induced with # 5.46 von Frey filament applying 26 grams of force. A single stimulus, followed by a train of 30 successive stimuli, was applied intraorally and to the dominant forearm. CPM was assessed with the TS test as the painful stimulus and with immersion of the nondominant hand in a hot water bath as the conditioning stimulus. Gender was significantly associated with TS but not with CPM measures. Females had significantly lower mean TS measured in the face and in the dominant forearm compared with males. Age was significantly associated with CPM, but not with TS measures. In both sites examined, older patients had significantly lower mean CPM compared with younger patients. Mechanical TM elicited in the oral cavity can be used as test stimulus for CPM testing. Intraoral modulation, both TS and CPM, has an extent similar to that of the standard cutaneous extremity. TS was lower in females, and CPM was reduced with age. Copyright © 2018 Elsevier Inc. All rights reserved.
Pursuit Latency for Chromatic Targets
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.; Ellis, Stephen R. (Technical Monitor)
1998-01-01
The temporal dynamics of eye movement response to a change in direction of stimulus motion has been used to compare the processing speeds of different types of stimuli (Mulligan, ARVO '97). In this study, the pursuit response to colored targets was measured to test the hypothesis that the slow response of the chromatic system (as measured using traditional temporal sensitivity measures such as contrast sensitivity) results in increased eye movement latencies. Subjects viewed a small (0.4 deg) Gaussian spot which moved downward at a speed of 6.6 deg/sec. At a variable time during the trajectory, the dot's direction of motion changed by 30 degrees, either to the right or left. Subjects were instructed to pursue the spot. Eye movements were measured using a video ophthalmoscope with an angular resolution of approximately 1 arc min and a temporal sampling rate of 60 Hz. Stimuli were modulated in chrominance for a variety of hue directions, combined with a range of small luminance increments and decrements, to insure that some of the stimuli fell in the subjects' equiluminance planes. The smooth portions of the resulting eye movement traces were fit by convolving the stimulus velocity with an exponential having variable onset latency, time constant and amplitude. Smooth eye movements with few saccades were observed for all stimuli. Pursuit responses to stimuli having a significant luminance component are well-fit by exponentials having latencies and time constants on the order of 100 msec. Increases in pursuit response latency on the order of 100-200 msec are observed in response to certain stimuli, which occur in pairs of complementary hues, corresponding to the intersection of the stimulus section with the subjects' equiluminant plane. Smooth eye movements can be made in response to purely chromatic stimuli, but are slower than responses to stimuli with a luminance component.
Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects
Ma, Zheng; Watamaniuk, Scott N. J.; Heinen, Stephen J.
2017-01-01
When small objects move in a scene, we keep them foveated with smooth pursuit eye movements. Although large objects such as people and animals are common, it is nonetheless unknown how we pursue them since they cannot be foveated. It might be that the brain calculates an object's centroid, and then centers the eyes on it during pursuit as a foveation mechanism might. Alternatively, the brain merely matches the velocity by motion integration. We test these alternatives with an illusory motion stimulus that translates at a speed different from its retinal motion. The stimulus was a Gabor array that translated at a fixed velocity, with component Gabors that drifted with motion consistent or inconsistent with the translation. Velocity matching predicts different pursuit behaviors across drift conditions, while centroid matching predicts no difference. We also tested whether pursuit can segregate and ignore irrelevant local drifts when motion and centroid information are consistent by surrounding the Gabors with solid frames. Finally, observers judged the global translational speed of the Gabors to determine whether smooth pursuit and motion perception share mechanisms. We found that consistent Gabor motion enhanced pursuit gain while inconsistent, opposite motion diminished it, drawing the eyes away from the center of the stimulus and supporting a motion-based pursuit drive. Catch-up saccades tended to counter the position offset, directing the eyes opposite to the deviation caused by the pursuit gain change. Surrounding the Gabors with visible frames canceled both the gain increase and the compensatory saccades. Perceived speed was modulated analogous to pursuit gain. The results suggest that smooth pursuit of large stimuli depends on the magnitude of integrated retinal motion information, not its retinal location, and that the position system might be unnecessary for generating smooth velocity to large pursuit targets. PMID:29090315
Griffeth, Valerie E M; Simon, Aaron B; Buxton, Richard B
2015-01-01
Quantitative functional MRI (fMRI) experiments to measure blood flow and oxygen metabolism coupling in the brain typically rely on simple repetitive stimuli. Here we compared such stimuli with a more naturalistic stimulus. Previous work on the primary visual cortex showed that direct attentional modulation evokes a blood flow (CBF) response with a relatively large oxygen metabolism (CMRO2) response in comparison to an unattended stimulus, which evokes a much smaller metabolic response relative to the flow response. We hypothesized that a similar effect would be associated with a more engaging stimulus, and tested this by measuring the primary human visual cortex response to two contrast levels of a radial flickering checkerboard in comparison to the response to free viewing of brief movie clips. We did not find a significant difference in the blood flow-metabolism coupling (n=%ΔCBF/%ΔCMRO2) between the movie stimulus and the flickering checkerboards employing two different analysis methods: a standard analysis using the Davis model and a new analysis using a heuristic model dependent only on measured quantities. This finding suggests that in the primary visual cortex a naturalistic stimulus (in comparison to a simple repetitive stimulus) is either not sufficient to provoke a change in flow-metabolism coupling by attentional modulation as hypothesized, that the experimental design disrupted the cognitive processes underlying the response to a more natural stimulus, or that the technique used is not sensitive enough to detect a small difference. Copyright © 2014 Elsevier Inc. All rights reserved.
Lunar Module 4 moved for mating with Lunar Module Adapter at KSC
NASA Technical Reports Server (NTRS)
1969-01-01
Lunar Module 4 being moved for mating with the Spacecraft Lunar Module Adapter in the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building. Lunar module 4 will be flown on the Apollo 10 (Spacecraft 106/Saturn 505) lunar orbit mission.
Strong Recurrent Networks Compute the Orientation-Tuning of Surround Modulation in Primate V1
Shushruth, S.; Mangapathy, Pradeep; Ichida, Jennifer M.; Bressloff, Paul C.; Schwabe, Lars; Angelucci, Alessandra
2012-01-01
In macaque primary visual cortex (V1) neuronal responses to stimuli inside the receptive field (RF) are modulated by stimuli in the RF surround. This modulation is orientation-specific. Previous studies suggested that for some cells this specificity may not be fixed, but changes with the stimulus orientation presented to the RF. We demonstrate, in recording studies, that this tuning behavior is instead highly prevalent in V1 and, in theoretical work, that it arises only if V1 operates in a regime of strong local recurrence. Strongest surround suppression occurs when the stimuli in the RF and the surround are iso-oriented, and strongest facilitation when the stimuli are cross-oriented. This is the case even when the RF is sub-optimally activated by a stimulus of non-preferred orientation, but only if this stimulus can activate the cell when presented alone. This tuning behavior emerges from the interaction of lateral inhibition (via the surround pathways), which is tuned to the RF’s preferred orientation, with weakly-tuned, but strong, local recurrent connections, causing maximal withdrawal of recurrent excitation at the feedforward input orientation. Thus, horizontal and feedback modulation of strong recurrent circuits allows the tuning of contextual effects to change with changing feedforward inputs. PMID:22219292
Components of Attention Modulated by Temporal Expectation
ERIC Educational Resources Information Center
Sørensen, Thomas Alrik; Vangkilde, Signe; Bundesen, Claus
2015-01-01
By varying the probabilities that a stimulus would appear at particular times after the presentation of a cue and modeling the data by the theory of visual attention (Bundesen, 1990), Vangkilde, Coull, and Bundesen (2012) provided evidence that the speed of encoding a singly presented stimulus letter into visual short-term memory (VSTM) is…
Effect of stress and attention on startle response and prepulse inhibition.
De la Casa, Luis Gonzalo; Mena, Auxiliadora; Ruiz-Salas, Juan Carlos
2016-10-15
The startle reflex magnitude can be modulated when a weak stimulus is presented before the onset of the startle stimulus, a phenomenon termed prepulse inhibition (PPI). Previous research has demonstrated that emotional processes can modulate PPI and startle intensity, but the available evidence is inconclusive. In order to obtain additional evidence in this domain, we conducted two experiments intended to analyze the effect of induced stress and attentional load on PPI and startle magnitude. Specifically, in Experiment 1 we used a between subject strategy to evaluate the effect on startle response and PPI magnitude of performing a difficult task intended to induce stress in the participants, as compared to a group exposed to a control task. In Experiment 2 we evaluated the effect of diverting attention from the acoustic stimulus on startle and PPI intensity. The results seem to indicate that induced stress can reduce PPI, and that startle reflex intensity is reduced when attention is directed away from the auditory stimulus that induces the reflex. Copyright © 2016 Elsevier Inc. All rights reserved.
Peschard, Virginie; Philippot, Pierre; Joassin, Frédéric; Rossignol, Mandy
2013-04-01
Social anxiety has been characterized by an attentional bias towards threatening faces. Electrophysiological studies have demonstrated modulations of cognitive processing from 100 ms after stimulus presentation. However, the impact of the stimulus features and task instructions on facial processing remains unclear. Event-related potentials were recorded while high and low socially anxious individuals performed an adapted Stroop paradigm that included a colour-naming task with non-emotional stimuli, an emotion-naming task (the explicit task) and a colour-naming task (the implicit task) on happy, angry and neutral faces. Whereas the impact of task factors was examined by contrasting an explicit and an implicit emotional task, the effects of perceptual changes on facial processing were explored by including upright and inverted faces. The findings showed an enhanced P1 in social anxiety during the three tasks, without a moderating effect of the type of task or stimulus. These results suggest a global modulation of attentional processing in performance situations. Copyright © 2013 Elsevier B.V. All rights reserved.
Contextual effects on preattentive processing of sound motion as revealed by spatial MMN.
Shestopalova, L B; Petropavlovskaia, E A; Vaitulevich, S Ph; Nikitin, N I
2015-04-01
The magnitude of spatial distance between sound stimuli is critically important for their preattentive discrimination, yet the effect of stimulus context on auditory motion processing is not clear. This study investigated the effects of acoustical change and stimulus context on preattentive spatial change detection. Auditory event-related potentials (ERPs) were recorded for stationary midline noises and two patterns of sound motion produced by linear or abrupt changes of interaural time differences. Each of the three types of stimuli was used as standard or deviant in different blocks. Context effects on mismatch negativity (MMN) elicited by stationary and moving sound stimuli were investigated by reversing the role of standard and deviant stimuli, while the acoustical stimulus parameters were kept the same. That is, MMN amplitudes were calculated by subtracting ERPs to identical stimuli presented as standard in one block and deviant in another block. In contrast, effects of acoustical change on MMN amplitudes were calculated by subtracting ERPs of standards and deviants presented within the same block. Preattentive discrimination of moving and stationary sounds indexed by MMN was strongly dependent on the stimulus context. Higher MMNs were produced in oddball configurations where deviance represented increments of the sound velocity, as compared to configurations with velocity decrements. The effect of standard-deviant reversal was more pronounced with the abrupt sound displacement than with gradual sound motion. Copyright © 2015 Elsevier B.V. All rights reserved.
Yang, Qiang; Arathorn, David W.; Tiruveedhula, Pavan; Vogel, Curtis R.; Roorda, Austin
2010-01-01
We demonstrate an integrated FPGA solution to project highly stabilized, aberration-corrected stimuli directly onto the retina by means of real-time retinal image motion signals in combination with high speed modulation of a scanning laser. By reducing the latency between target location prediction and stimulus delivery, the stimulus location accuracy, in a subject with good fixation, is improved to 0.15 arcminutes from 0.26 arcminutes in our earlier solution. We also demonstrate the new FPGA solution is capable of delivering stabilized large stimulus pattern (up to 256x256 pixels) to the retina. PMID:20721171
Hahn, Britta; Ross, Thomas J; Wolkenberg, Frank A; Shakleya, Diaa M; Huestis, Marilyn A; Stein, Elliot A
2009-09-01
Attention-enhancing effects of nicotine appear to depend on the nature of the attentional function. Underlying neuroanatomical mechanisms, too, may vary depending on the function modulated. This functional magnetic resonance imaging study recorded blood oxygen level-dependent (BOLD) activity in minimally deprived smokers during tasks of simple stimulus detection, selective attention, or divided attention after single-blind application of a transdermal nicotine (21 mg) or placebo patch. Smokers' performance in the placebo condition was unimpaired as compared with matched nonsmokers. Nicotine reduced reaction time (RT) in the stimulus detection and selective attention but not divided attention condition. Across all task conditions, nicotine reduced activation in frontal, temporal, thalamic, and visual regions and enhanced deactivation in so-called "default" regions. Thalamic effects correlated with RT reduction selectively during stimulus detection. An interaction with task condition was observed in middle and superior frontal gyri, where nicotine reduced activation only during stimulus detection. A visuomotor control experiment provided evidence against nonspecific effects of nicotine. In conclusion, although prefrontal activity partly displayed differential modulation by nicotine, most BOLD effects were identical across tasks, despite differential performance effects, suggesting that common neuronal mechanisms can selectively benefit different attentional functions. Overall, the effects of nicotine may be explained by increased functional efficiency and downregulated task-independent "default" functions.
Flood, Andrew; Waddington, Gordon; Cathcart, Stuart
2017-01-01
The aim of the current study was to examine the relationship between pain modulatory capacity and endurance exercise performance. Twenty-seven recreationally active males between 18 and 35 years of age participated in the study. Pain modulation was assessed by examining the inhibitory effect of a noxious conditioning stimulus (cuff occlusion) on the perceived intensity of a second noxious stimulus (pressure pain threshold). Participants completed two, maximal voluntary contractions followed by a submaximal endurance time task. Both performance tasks involved an isometric contraction of the non-dominant leg. The main analysis uncovered a correlation between pain modulatory capacity and performance on the endurance time task (r = -.425, p = .027), such that those with elevated pain modulation produced longer endurance times. These findings are the first to demonstrate the relationship between pain modulation responses and endurance exercise performance.
Burger, Lucile; Uittenhove, Kim; Lemaire, Patrick; Taconnat, Laurence
2017-04-01
Efficient execution of strategies is crucial to memory performance and to age-related differences in this performance. Relative strategy complexity influences memory performance and aging effects on memory. Here, we aimed to further our understanding of the effects of relative strategy complexity by looking at the role of cognitive control functions and the time-course of the effects of relative strategy complexity. Thus, we manipulated inter-stimulus intervals (ISI) and assessed executive functions. Results showed that (a) performance as a function of the relative strategy difficulty of the current and previous trial was modulated by ISI, (b) these effects were modulated by inhibition capacities, and (c) significant age differences were found in the way ISI modulates relative strategy difficulty. These findings have important implications for understanding the relationships between aging, executive control, and strategy execution in episodic memory. Copyright © 2017 Elsevier B.V. All rights reserved.
Topographical variations in behavior during autoshaping, automaintenance, and omission training
Eldridge, Gloria D.; Pear, Joseph J.
1987-01-01
Three pigeons were exposed to an autoshaping and automaintenance procedure while a computer-controlled tracking system continuously recorded the position of the bird's head as it moved freely in the experimental chamber. Although only 2 birds pecked the key during the conditional stimulus (red keylight), all 3 birds exhibited stable patterns of approaching the conditional stimulus and withdrawing from the intertrial stimulus (white keylight). Subsequent exposure to an omission procedure, in which pecks on the red key cancelled the presentation of food upon the termination of the red keylight, greatly reduced key pecking, but approaching and pecking in the vicinity of the conditional stimulus were maintained at high levels. When the omission contingency was removed key pecking increased. During all phases the birds withdrew from the area of the white key and engaged in repetitive back-and-forth or circuiting movements during this intertrial stimulus. The data document (a) the strong control the conditional stimulus in autoshaping and automaintenance exerts over approach to the key and pecking motions whether or not the conditional stimulus elicits key pecking at a high level; and (b) withdrawal from the vicinity of the key and the occurrence of stereotypic behavior during the intertrial interval. PMID:16812484
Topographical variations in behavior during autoshaping, automaintenance, and omission training.
Eldridge, G D; Pear, J J
1987-05-01
Three pigeons were exposed to an autoshaping and automaintenance procedure while a computer-controlled tracking system continuously recorded the position of the bird's head as it moved freely in the experimental chamber. Although only 2 birds pecked the key during the conditional stimulus (red keylight), all 3 birds exhibited stable patterns of approaching the conditional stimulus and withdrawing from the intertrial stimulus (white keylight). Subsequent exposure to an omission procedure, in which pecks on the red key cancelled the presentation of food upon the termination of the red keylight, greatly reduced key pecking, but approaching and pecking in the vicinity of the conditional stimulus were maintained at high levels. When the omission contingency was removed key pecking increased. During all phases the birds withdrew from the area of the white key and engaged in repetitive back-and-forth or circuiting movements during this intertrial stimulus. The data document (a) the strong control the conditional stimulus in autoshaping and automaintenance exerts over approach to the key and pecking motions whether or not the conditional stimulus elicits key pecking at a high level; and (b) withdrawal from the vicinity of the key and the occurrence of stereotypic behavior during the intertrial interval.
Attention operates uniformly throughout the classical receptive field and the surround
Verhoef, Bram-Ernst; Maunsell, John HR
2016-01-01
Shifting attention among visual stimuli at different locations modulates neuronal responses in heterogeneous ways, depending on where those stimuli lie within the receptive fields of neurons. Yet how attention interacts with the receptive-field structure of cortical neurons remains unclear. We measured neuronal responses in area V4 while monkeys shifted their attention among stimuli placed in different locations within and around neuronal receptive fields. We found that attention interacts uniformly with the spatially-varying excitation and suppression associated with the receptive field. This interaction explained the large variability in attention modulation across neurons, and a non-additive relationship among stimulus selectivity, stimulus-induced suppression and attention modulation that has not been previously described. A spatially-tuned normalization model precisely accounted for all observed attention modulations and for the spatial summation properties of neurons. These results provide a unified account of spatial summation and attention-related modulation across both the classical receptive field and the surround. DOI: http://dx.doi.org/10.7554/eLife.17256.001 PMID:27547989
Reminder Cues Modulate the Renewal Effect in Human Predictive Learning
Bustamante, Javier; Uengoer, Metin; Lachnit, Harald
2016-01-01
Associative learning refers to our ability to learn about regularities in our environment. When a stimulus is repeatedly followed by a specific outcome, we learn to expect the outcome in the presence of the stimulus. We are also able to modify established expectations in the face of disconfirming information (the stimulus is no longer followed by the outcome). Both the change of environmental regularities and the related processes of adaptation are referred to as extinction. However, extinction does not erase the initially acquired expectations. For instance, following successful extinction, the initially learned expectations can recover when there is a context change – a phenomenon called the renewal effect, which is considered as a model for relapse after exposure therapy. Renewal was found to be modulated by reminder cues of acquisition and extinction. However, the mechanisms underlying the effectiveness of reminder cues are not well understood. The aim of the present study was to investigate the impact of reminder cues on renewal in the field of human predictive learning. Experiment I demonstrated that renewal in human predictive learning is modulated by cues related to acquisition or extinction. Initially, participants received pairings of a stimulus and an outcome in one context. These stimulus-outcome pairings were preceded by presentations of a reminder cue (acquisition cue). Then, participants received extinction in a different context in which presentations of the stimulus were no longer followed by the outcome. These extinction trials were preceded by a second reminder cue (extinction cue). During a final phase conducted in a third context, participants showed stronger expectations of the outcome in the presence of the stimulus when testing was accompanied by the acquisition cue compared to the extinction cue. Experiment II tested an explanation of the reminder cue effect in terms of simple cue-outcome associations. Therefore, acquisition and extinction cues were equated for their associative histories in Experiment II, which should abolish their impact on renewal if based on simple cue-outcome associations. In contrast to this prediction, Experiment II replicated the findings from Experiment I indicating that the effectiveness of reminder cues did not require direct reminder cue-outcome associations. PMID:28066293
Temporal dynamics underlying the modulation of social status on social attention.
Dalmaso, Mario; Galfano, Giovanni; Coricelli, Carol; Castelli, Luigi
2014-01-01
Fixating someone suddenly moving the eyes is known to trigger a corresponding shift of attention in the observer. This phenomenon, known as gaze-cueing effect, can be modulated as a function of the social status of the individual depicted in the cueing face. Here, in two experiments, we investigated the temporal dynamics underlying this modulation. To this end, a gaze-cueing paradigm was implemented in which centrally-placed faces depicting high- and low-status individuals suddenly shifted the eyes towards a location either spatially congruent or incongruent with that occupied by a subsequent target stimulus. Social status was manipulated by presenting fictive Curriculum Vitae before the experimental phase. In Experiment 1, in which two temporal intervals (50 ms vs. 900 ms) occurred between the direct-gaze face and the averted-gaze face onsets, a stronger gaze-cueing effect in response to high-status faces than low-status faces was observed, irrespective of the time participants were allowed for extracting social information. In Experiment 2, in which two temporal intervals (200 ms vs. 1000 ms) occurred between the averted-gaze face and target onset, a stronger gaze cueing for high-status faces was observed at the shorter interval only. Taken together, these results suggest that information regarding social status is extracted from faces rapidly (Experiment 1), and that the tendency to selectively attend to the locations gazed by high-status individuals may decay with time (Experiment 2).
ERIC Educational Resources Information Center
Saneyoshi, Ayako; Michimata, Chikashi
2009-01-01
Participants performed two object-matching tasks for novel, non-nameable objects consisting of geons. For each original stimulus, two transformations were applied to create comparison stimuli. In the categorical transformation, a geon connected to geon A was moved to geon B. In the coordinate transformation, a geon connected to geon A was moved to…
A Competition Model of Exogenous Orienting in 3.5-Month-Old Infants.
ERIC Educational Resources Information Center
Dannemiller, James L.
1998-01-01
Four experiments examined exogenous orienting in 3.5-month-olds. Found that sensitivity to a small moving bar was lower when most of the red bars were in the visual field contra-lateral to this probe. The distribution of color within the visual field biased attention, making it either more or less likely that the infant detected a moving stimulus.…
France, Charles P.; Cheng, Kejun; Rice, Kenner C.
2012-01-01
In vivo effects of GABAB receptor-positive modulators suggest them to have therapeutic potential to treat central nervous system disorders such as anxiety and drug abuse. Although these effects are thought to be mediated by positive modulation of GABAB receptors, such modulation has been examined primarily in vitro. This study further examined the in vivo properties of the GABAB receptor-positive modulators 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl) phenol (CGP7930) and (R,S)-5,7-di-tert-butyl-3-hydroxy-3-trifluoromethyl-3H-benzofuran-2-one (rac-BHFF). In pigeons discriminating baclofen from saline, γ-hydroxybutyrate (GHB) produced 100% baclofen-appropriate responding, and the GABAB antagonist 3-aminopropyl(dimethoxymethyl) phosphinic acid (CGP35348) blocked the effects of both drugs. CGP7930 and rac-BHFF produced at most 41 and 74% baclofen-appropriate responding, respectively, and enhanced the discriminative stimulus effects of baclofen, but not of GHB. In pigeons discriminating GHB from saline, CGP7930 and rac-BHFF produced at most 1 and 49% GHB-appropriate responding, respectively, and enhanced the effects of baclofen, but not of GHB. Enhancement of the discriminative stimulus effects of baclofen by rac-BHFF and CGP7930 is further evidence of their effectiveness as GABAB receptor-positive modulators in vivo. Furthermore, lack of complete substitution of the positive modulators rac-BHFF and CGP7930 for baclofen and GHB suggests that their discriminative stimulus effects differ from those of GABAB receptor agonists. Finally, together with converging evidence that the GABAB receptor populations mediating the effects of baclofen and GHB are not identical, the present findings suggest that these populations differ in their susceptibility to positive modulatory effects. Such differences could allow for more selective therapeutic targeting of the GABAB system. PMID:22319197
Gockel, Hedwig E; Krugliak, Alexandra; Plack, Christopher J; Carlyon, Robert P
2015-12-01
The frequency following response (FFR) is a scalp-recorded measure of phase-locked brainstem activity to stimulus-related periodicities. Three experiments investigated the specificity of the FFR for carrier and modulation frequency using adaptation. FFR waveforms evoked by alternating-polarity stimuli were averaged for each polarity and added, to enhance envelope, or subtracted, to enhance temporal fine structure information. The first experiment investigated peristimulus adaptation of the FFR for pure and complex tones as a function of stimulus frequency and fundamental frequency (F0). It showed more adaptation of the FFR in response to sounds with higher frequencies or F0s than to sounds with lower frequency or F0s. The second experiment investigated tuning to modulation rate in the FFR. The FFR to a complex tone with a modulation rate of 213 Hz was not reduced more by an adaptor that had the same modulation rate than by an adaptor with a different modulation rate (90 or 504 Hz), thus providing no evidence that the FFR originates mainly from neurons that respond selectively to the modulation rate of the stimulus. The third experiment investigated tuning to audio frequency in the FFR using pure tones. An adaptor that had the same frequency as the target (213 or 504 Hz) did not generally reduce the FFR to the target more than an adaptor that differed in frequency (by 1.24 octaves). Thus, there was no evidence that the FFR originated mainly from neurons tuned to the frequency of the target. Instead, the results are consistent with the suggestion that the FFR for low-frequency pure tones at medium to high levels mainly originates from neurons tuned to higher frequencies. Implications for the use and interpretation of the FFR are discussed.
Conflict adaptation in time: foreperiods as contextual cues for attentional adjustment.
Wendt, Mike; Kiesel, Andrea
2011-10-01
Interference evoked by distractor stimulus information, such as flankers in the Eriksen task, is reduced when the proportion of conflicting stimuli is increased. This modulation is sensitive to contextual cues such as stimulus location or color, suggesting attentional adjustment to conflict contingencies on the basis of context information. In the present study, we explored whether conflict adjustment is modulated by temporal variation of conflict likelihood. To this end, we associated low and high proportions of conflict stimuli with foreperiods of different lengths. Flanker interference was higher with foreperiods associated with low conflict proportions, suggesting that participants use the foreperiod as a contextual cue for attentional adjustment. We conjecture that participants initially adopt the strategy useful for conflict contingencies associated with short foreperiods, and then readjust during the trial, in the absence of any additional exogenous cue, when the imperative stimulus has not occurred during a certain time interval.
Stimulus induced reset of 40-Hz auditory steady-state responses.
Ross, B; Herdman, A T; Pantev, C
2004-11-30
Auditory steady-state responses (ASSR) were evoked with 40-Hz amplitude modulated 500-Hz tones. An additional impulse-like noise stimulus (2,000 +/- 500 Hz) with spectrum clearly distinct from the one of the AM sound, induced pronounced perturbations in the ASSR. The effect of the interfering noise was interpreted as (1) reset of the ASSR because of a sudden loss in phase coherence, (2) a decrease in signal power immediately after presentation of the noise impulse, and (3) a modulation of ASSR amplitude and phase resembling the time course of the ASSR onset. The time-course of the ASSR onset was interpreted as reflecting temporal integration over several 100 ms. The reset of the ASSR was discussed as a powerful mechanism, which allows for fast reaction to a short stimulus change that overcomes the disadvantage of the ASSR's long integration time constant.
Emotional facilitation of sensory processing in the visual cortex.
Schupp, Harald T; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O
2003-01-01
A key function of emotion is the preparation for action. However, organization of successful behavioral strategies depends on efficient stimulus encoding. The present study tested the hypothesis that perceptual encoding in the visual cortex is modulated by the emotional significance of visual stimuli. Event-related brain potentials were measured while subjects viewed pleasant, neutral, and unpleasant pictures. Early selective encoding of pleasant and unpleasant images was associated with a posterior negativity, indicating primary sources of activation in the visual cortex. The study also replicated previous findings in that affective cues also elicited enlarged late positive potentials, indexing increased stimulus relevance at higher-order stages of stimulus processing. These results support the hypothesis that sensory encoding of affective stimuli is facilitated implicitly by natural selective attention. Thus, the affect system not only modulates motor output (i.e., favoring approach or avoidance dispositions), but already operates at an early level of sensory encoding.
Spatial attention increases high-frequency gamma synchronisation in human medial visual cortex.
Koelewijn, Loes; Rich, Anina N; Muthukumaraswamy, Suresh D; Singh, Krish D
2013-10-01
Visual information processing involves the integration of stimulus and goal-driven information, requiring neuronal communication. Gamma synchronisation is linked to neuronal communication, and is known to be modulated in visual cortex both by stimulus properties and voluntarily-directed attention. Stimulus-driven modulations of gamma activity are particularly associated with early visual areas such as V1, whereas attentional effects are generally localised to higher visual areas such as V4. The absence of a gamma increase in early visual cortex is at odds with robust attentional enhancements found with other measures of neuronal activity in this area. Here we used magnetoencephalography (MEG) to explore the effect of spatial attention on gamma activity in human early visual cortex using a highly effective gamma-inducing stimulus and strong attentional manipulation. In separate blocks, subjects tracked either a parafoveal grating patch that induced gamma activity in contralateral medial visual cortex, or a small line at fixation, effectively attending away from the gamma-inducing grating. Both items were always present, but rotated unpredictably and independently of each other. The rotating grating induced gamma synchronisation in medial visual cortex at 30-70 Hz, and in lateral visual cortex at 60-90 Hz, regardless of whether it was attended. Directing spatial attention to the grating increased gamma synchronisation in medial visual cortex, but only at 60-90 Hz. These results suggest that the generally found increase in gamma activity by spatial attention can be localised to early visual cortex in humans, and that stimulus and goal-driven modulations may be mediated at different frequencies within the gamma range. Copyright © 2013 Elsevier Inc. All rights reserved.
Parallel processing streams for motor output and sensory prediction during action preparation
Bauer, Markus; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.
2014-01-01
Sensory consequences of one's own actions are perceived as less intense than identical, externally generated stimuli. This is generally taken as evidence for sensory prediction of action consequences. Accordingly, recent theoretical models explain this attenuation by an anticipatory modulation of sensory processing prior to stimulus onset (Roussel et al. 2013) or even action execution (Brown et al. 2013). Experimentally, prestimulus changes that occur in anticipation of self-generated sensations are difficult to disentangle from more general effects of stimulus expectation, attention and task load (performing an action). Here, we show that an established manipulation of subjective agency over a stimulus leads to a predictive modulation in sensory cortex that is independent of these factors. We recorded magnetoencephalography while subjects performed a simple action with either hand and judged the loudness of a tone caused by the action. Effector selection was manipulated by subliminal motor priming. Compatible priming is known to enhance a subjective experience of agency over a consequent stimulus (Chambon and Haggard 2012). In line with this effect on subjective agency, we found stronger sensory attenuation when the action that caused the tone was compatibly primed. This perceptual effect was reflected in a transient phase-locked signal in auditory cortex before stimulus onset and motor execution. Interestingly, this sensory signal emerged at a time when the hemispheric lateralization of motor signals in M1 indicated ongoing effector selection. Our findings confirm theoretical predictions of a sensory modulation prior to self-generated sensations and support the idea that a sensory prediction is generated in parallel to motor output (Walsh and Haggard 2010), before an efference copy becomes available. PMID:25540223
Parallel processing streams for motor output and sensory prediction during action preparation.
Stenner, Max-Philipp; Bauer, Markus; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J
2015-03-15
Sensory consequences of one's own actions are perceived as less intense than identical, externally generated stimuli. This is generally taken as evidence for sensory prediction of action consequences. Accordingly, recent theoretical models explain this attenuation by an anticipatory modulation of sensory processing prior to stimulus onset (Roussel et al. 2013) or even action execution (Brown et al. 2013). Experimentally, prestimulus changes that occur in anticipation of self-generated sensations are difficult to disentangle from more general effects of stimulus expectation, attention and task load (performing an action). Here, we show that an established manipulation of subjective agency over a stimulus leads to a predictive modulation in sensory cortex that is independent of these factors. We recorded magnetoencephalography while subjects performed a simple action with either hand and judged the loudness of a tone caused by the action. Effector selection was manipulated by subliminal motor priming. Compatible priming is known to enhance a subjective experience of agency over a consequent stimulus (Chambon and Haggard 2012). In line with this effect on subjective agency, we found stronger sensory attenuation when the action that caused the tone was compatibly primed. This perceptual effect was reflected in a transient phase-locked signal in auditory cortex before stimulus onset and motor execution. Interestingly, this sensory signal emerged at a time when the hemispheric lateralization of motor signals in M1 indicated ongoing effector selection. Our findings confirm theoretical predictions of a sensory modulation prior to self-generated sensations and support the idea that a sensory prediction is generated in parallel to motor output (Walsh and Haggard 2010), before an efference copy becomes available. Copyright © 2015 the American Physiological Society.
Chow, Stephanie S.; Romo, Ranulfo; Brody, Carlos D.
2010-01-01
In a complex world, a sensory cue may prompt different actions in different contexts. A laboratory example of context-dependent sensory processing is the two-stimulus-interval discrimination task. In each trial, a first stimulus (f1) must be stored in short-term memory and later compared with a second stimulus (f2), for the animal to come to a binary decision. Prefrontal cortex (PFC) neurons need to interpret the f1 information in one way (perhaps with a positive weight) and the f2 information in an opposite way (perhaps with a negative weight), although they come from the very same secondary somatosensory cortex (S2) neurons; therefore, a functional sign inversion is required. This task thus provides a clear example of context-dependent processing. Here we develop a biologically plausible model of a context-dependent signal transformation of the stimulus encoding from S2 to PFC. To ground our model in experimental neurophysiology, we use neurophysiological data recorded by R. Romo’s laboratory from both cortical area S2 and PFC in monkeys performing the task. Our main goal is to use experimentally observed context-dependent modulations of firing rates in cortical area S2 as the basis for a model that achieves a context-dependent inversion of the sign of S2 to PFC connections. This is done without requiring any changes in connectivity (Salinas, 2004b). We (1) characterize the experimentally observed context-dependent firing rate modulation in area S2, (2) construct a model that results in the sign transformation, and (3) characterize the robustness and consequent biological plausibility of the model. PMID:19494146
Niwa, Mamiko; Johnson, Jeffrey S.; O’Connor, Kevin N.; Sutter, Mitchell L.
2013-01-01
We recorded from middle-lateral (ML) and primary (A1) auditory cortex while macaques discriminated amplitude modulated (AM) from unmodulated noise. Compared to A1, ML had a higher proportion of neurons that encode increasing AM depth by decreasing their firing-rates (‘decreasing’ neurons), particularly with responses that were not synchronized to the modulation. Choice probability (CP) analysis revealed that A1 and ML activity were different during the first half of the test stimulus. In A1, significant CP begins prior to the test stimulus, remains relatively constant (or increases slightly) during the stimulus and increases greatly within 200 ms of lever-release. Neurons in ML behave similarly, except that significant CP disappears during the first half of the stimulus and reappears during the second half and pre-release periods. CP differences between A1 and ML depend on neural response type. In ML (but not A1), when activity is lower during the first half of the stimulus in non-synchronized ‘decreasing’ neurons, the monkey is more likely to report AM. Neurons that both increase firing rate with increasing modulation depth (‘increasing’ neurons) and synchronize their responses to AM had similar choice-related activity dynamics in ML and A1. The results suggest that, when ascending the auditory system, there is a transformation in coding AM from primarily synchronized ‘increasing’ responses in A1 to non-synchronized and dual (‘increasing’/’decreasing’) coding in ML. This sensory transformation is accompanied by changes in the timing of activity related to choice, suggesting functional differences between A1 and ML related to attention and/or behavior. PMID:23658177
Induction and modulation of persistent activity in a layer V PFC microcircuit model.
Papoutsi, Athanasia; Sidiropoulou, Kyriaki; Cutsuridis, Vassilis; Poirazi, Panayiota
2013-01-01
Working memory refers to the temporary storage of information and is strongly associated with the prefrontal cortex (PFC). Persistent activity of cortical neurons, namely the activity that persists beyond the stimulus presentation, is considered the cellular correlate of working memory. Although past studies suggested that this type of activity is characteristic of large scale networks, recent experimental evidence imply that small, tightly interconnected clusters of neurons in the cortex may support similar functionalities. However, very little is known about the biophysical mechanisms giving rise to persistent activity in small-sized microcircuits in the PFC. Here, we present a detailed biophysically-yet morphologically simplified-microcircuit model of layer V PFC neurons that incorporates connectivity constraints and is validated against a multitude of experimental data. We show that (a) a small-sized network can exhibit persistent activity under realistic stimulus conditions. (b) Its emergence depends strongly on the interplay of dADP, NMDA, and GABAB currents. (c) Although increases in stimulus duration increase the probability of persistent activity induction, variability in the stimulus firing frequency does not consistently influence it. (d) Modulation of ionic conductances (I h , I D , I sAHP, I caL, I caN, I caR) differentially controls persistent activity properties in a location dependent manner. These findings suggest that modulation of the microcircuit's firing characteristics is achieved primarily through changes in its intrinsic mechanism makeup, supporting the hypothesis of multiple bi-stable units in the PFC. Overall, the model generates a number of experimentally testable predictions that may lead to a better understanding of the biophysical mechanisms of persistent activity induction and modulation in the PFC.
Thomsen, Morgane; Caine, Simon Barak
2016-04-05
Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Human Factors Engineering Bibliographic Series. Volume 2: 1960-1964 Literature
1966-10-01
flutter discrimination, melodic and temporal) binaural vs. monaural equipment and methods (e.g., anechoic chambers, audiometric devices, communication...brightness, duration, timbre, vocality) stimulus mixtures (e.g., harmonics, beats , combination tones, modulations) thresholds training, nonverbal--see Training...scales and aids) Beats --see Audition (stimulus mixtures) Bells--see Auditory (displays, nonverbal) Belts, Harnesses, and other Restraining Devices--see
ERIC Educational Resources Information Center
Critchfield, Thomas S.; Reed, Derek D.
2016-01-01
Participants first became familiar with an image showing moderate symptoms of the skin cancer melanoma. In a generalization test, they indicated whether images showing more and less pronounced symptoms were "like the original." Some groups (cancer context) were told that the images depicted melanoma and that the disease is deadly unless…
Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making.
Lou, Bin; Li, Yun; Philiastides, Marios G; Sajda, Paul
2014-02-15
Pre-stimulus α power has been shown to correlate with the behavioral accuracy of perceptual decisions. In most cases, these correlations have been observed by comparing α power for different behavioral outcomes (e.g. correct vs incorrect trials). In this paper we investigate such covariation within the context of behaviorally-latent fluctuations in task-relevant post-stimulus neural activity. Specially we consider variations of pre-stimulus α power with post-stimulus EEG components in a two alternative forced choice visual discrimination task. EEG components, discriminative of stimulus class, are identified using a linear multivariate classifier and only the variability of the components for correct trials (regardless of stimulus class, and for nominally identical stimuli) are correlated with the corresponding pre-stimulus α power. We find a significant relationship between the mean and variance of the pre-stimulus α power and the variation of the trial-to-trial magnitude of an early post-stimulus EEG component. This relationship is not seen for a later EEG component that is also discriminative of stimulus class and which has been previously linked to the quality of evidence driving the decision process. Our results suggest that early perceptual representations, rather than temporally later neural correlates of the perceptual decision, are modulated by pre-stimulus state. © 2013 Elsevier Inc. All rights reserved.
Prestimulus alpha power predicts fidelity of sensory encoding in perceptual decision making
Lou, Bin; Li, Yun; Philiastides, Marios G.; Sajda, Paul
2013-01-01
Pre-stimulus α power has been shown to correlate with the behavioral accuracy of perceptual decisions. In most cases, these correlations have been observed by comparing α power for different behavioral outcomes (e.g. correct vs incorrect trials). In this paper we investigate such covariation within the context of behaviorally-latent fluctuations in task-relevant post-stimulus neural activity. Specially we consider variations of pre-stimulus α power with post-stimulus EEG components in a two alternative forced choice visual discrimination task. EEG components, discriminative of stimulus class, are identified using a linear multivariate classifier and only the variability of the components for correct trials (regardless of stimulus class, and for nominally identical stimuli) are correlated with the corresponding pre-stimulus α power. We find a significant relationship between the mean and variance of the pre-stimulus α power and the variation of the trial-to-trial magnitude of an early post-stimulus EEG component. This relationship is not seen for a later EEG component that is also discriminative of stimulus class and which has been previously linked to the quality of evidence driving the decision process. Our results suggest that early perceptual representations, rather than temporally later neural correlates of the perceptual decision, are modulated by pre-stimulus state. PMID:24185020
Caudate Microstimulation Increases Value of Specific Choices.
Santacruz, Samantha R; Rich, Erin L; Wallis, Joni D; Carmena, Jose M
2017-11-06
Value-based decision-making involves an assessment of the value of items available and the actions required to obtain them. The basal ganglia are highly implicated in action selection and goal-directed behavior [1-4], and the striatum in particular plays a critical role in arbitrating between competing choices [5-9]. Previous work has demonstrated that neural activity in the caudate nucleus is modulated by task-relevant action values [6, 8]. Nonetheless, how value is represented and maintained in the striatum remains unclear since decision-making in these tasks relied on spatially lateralized responses, confounding the ability to generalize to a more abstract choice task [6, 8, 9]. Here, we investigate striatal value representations by applying caudate electrical stimulation in macaque monkeys (n = 3) to bias decision-making in a task that divorces the value of a stimulus from motor action. Electrical microstimulation is known to induce neural plasticity [10, 11], and caudate microstimulation in primates has been shown to accelerate associative learning [12, 13]. Our results indicate that stimulation paired with a particular stimulus increases selection of that stimulus, and this effect was stimulus dependent and action independent. The modulation of choice behavior using microstimulation was best modeled as resulting from changes in stimulus value. Caudate neural recordings (n = 1) show that changes in value-coding neuron activity are stimulus value dependent. We argue that caudate microstimulation can differentially increase stimulus values independent of action, and unilateral manipulations of value are sufficient to mediate choice behavior. These results support potential future applications of microstimulation to correct maladaptive plasticity underlying dysfunctional decision-making related to neuropsychiatric conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Temporal and spectral profiles of stimulus-stimulus and stimulus-response conflict processing.
Wang, Kai; Li, Qi; Zheng, Ya; Wang, Hongbin; Liu, Xun
2014-04-01
The ability to detect and resolve conflict is an essential function of cognitive control. Laboratory studies often use stimulus-response-compatibility (SRC) tasks to examine conflict processing in order to elucidate the mechanism and modular organization of cognitive control. Inspired by two influential theories regarding cognitive control, the conflict monitoring theory (Botvinick, Braver, Barch, Carter, & Cohen, 2001) and dimensional overlap taxonomy (Kornblum, Hasbroucq, & Osman, 1990), we explored the temporal and spectral similarities and differences between processing of stimulus-stimulus (S-S) and stimulus-response (S-R) conflicts with event related potential (ERP) and time-frequency measures. We predicted that processing of S-S conflict starts earlier than that of S-R conflict and that the two types of conflict may involve different frequency bands. Participants were asked to perform two parallel SRC tasks, both combining the Stroop task (involving S-S conflict) and Simon task (involving S-R conflict). ERP results showed pronounced SRC effects (incongruent vs. congruent) on N2 and P3 components for both S-S and S-R conflicts. In both tasks, SRC effects of S-S conflict took place earlier than those of S-R conflict. Time-frequency analysis revealed that both types of SRC effects modulated theta and alpha bands, while S-R conflict effects additionally modulated power in the beta band. These results indicated that although S-S and S-R conflict processing shared considerable ERP and time-frequency properties, they differed in temporal and spectral dynamics. We suggest that the modular organization of cognitive control should take both commonality and distinction of S-S and S-R conflict processing into consideration. Copyright © 2013 Elsevier Inc. All rights reserved.
Stekelenburg, Jeroen J; Keetels, Mirjam
2016-05-01
The Colavita effect refers to the phenomenon that when confronted with an audiovisual stimulus, observers report more often to have perceived the visual than the auditory component. The Colavita effect depends on low-level stimulus factors such as spatial and temporal proximity between the unimodal signals. Here, we examined whether the Colavita effect is modulated by synesthetic congruency between visual size and auditory pitch. If the Colavita effect depends on synesthetic congruency, we expect a larger Colavita effect for synesthetically congruent size/pitch (large visual stimulus/low-pitched tone; small visual stimulus/high-pitched tone) than synesthetically incongruent (large visual stimulus/high-pitched tone; small visual stimulus/low-pitched tone) combinations. Participants had to identify stimulus type (visual, auditory or audiovisual). The study replicated the Colavita effect because participants reported more often the visual than auditory component of the audiovisual stimuli. Synesthetic congruency had, however, no effect on the magnitude of the Colavita effect. EEG recordings to congruent and incongruent audiovisual pairings showed a late frontal congruency effect at 400-550 ms and an occipitoparietal effect at 690-800 ms with neural sources in the anterior cingulate and premotor cortex for the 400- to 550-ms window and premotor cortex, inferior parietal lobule and the posterior middle temporal gyrus for the 690- to 800-ms window. The electrophysiological data show that synesthetic congruency was probably detected in a processing stage subsequent to the Colavita effect. We conclude that-in a modality detection task-the Colavita effect can be modulated by low-level structural factors but not by higher-order associations between auditory and visual inputs.
The continuous Wagon Wheel Illusion depends on, but is not identical to neuronal adaptation.
VanRullen, Rufin
2007-07-01
The occurrence of perceived reversed motion while observers view a continuous, periodically moving stimulus (a bistable phenomenon coined the "continuous Wagon Wheel Illusion" or "c-WWI") has been taken as evidence that some aspects of motion perception rely on discrete sampling of visual information. Alternative accounts rely on the possibility of a motion aftereffect that may become visible even while the adapting stimulus is present. Here I show that motion adaptation might be necessary, but is not sufficient to explain the illusion. When local adaptation is prevented by slowly drifting the moving wheel across the retina, the c-WWI illusion tends to decrease, as do other bistable percepts (e.g. binocular rivalry). However, the strength of the c-WWI and that of adaptation (as measured by either the static or flicker motion aftereffects) are not directly related: although the c-WWI decreases with increasing eccentricity, the aftereffects actually intensify concurrently. A similar dissociation can be induced by manipulating stimulus contrast. This indicates that the c-WWI may be enabled by, but is not equivalent to, local motion adaptation - and that other factors such as discrete sampling may be involved in its generation.
Identification of a novel dynamic red blindness in human by event-related brain potentials.
Zhang, Jiahua; Kong, Weijia; Yang, Zhongle
2010-12-01
Dynamic color is an important carrier that takes information in some special occupations. However, up to the present, there are no available and objective tests to evaluate dynamic color processing. To investigate the characteristics of dynamic color processing, we adopted two patterns of visual stimulus called "onset-offset" which reflected static color stimuli and "sustained moving" without abrupt mode which reflected dynamic color stimuli to evoke event-related brain potentials (ERPs) in primary color amblyopia patients (abnormal group) and subjects with normal color recognition ability (normal group). ERPs were recorded by Neuroscan system. The results showed that in the normal group, ERPs in response to the dynamic red stimulus showed frontal positive amplitudes with a latency of about 180 ms, a negative peak at about 240 ms and a peak latency of the late positive potential (LPP) in a time window between 290 and 580 ms. In the abnormal group, ERPs in response to the dynamic red stimulus were fully lost and characterized by vanished amplitudes between 0 and 800 ms. No significant difference was noted in ERPs in response to the dynamic green and blue stimulus between the two groups (P>0.05). ERPs of the two groups in response to the static red, green and blue stimulus were not much different, showing a transient negative peak at about 170 ms and a peak latency of LPP in a time window between 350 and 650 ms. Our results first revealed that some subjects who were not identified as color blindness under static color recognition could not completely apperceive a sort of dynamic red stimulus by ERPs, which was called "dynamic red blindness". Furthermore, these results also indicated that low-frequency ERPs induced by "sustained moving" may be a good and new method to test dynamic color perception competence.
Visual motion disambiguation by a subliminal sound.
Dufour, Andre; Touzalin, Pascale; Moessinger, Michèle; Brochard, Renaud; Després, Olivier
2008-09-01
There is growing interest in the effect of sound on visual motion perception. One model involves the illusion created when two identical objects moving towards each other on a two-dimensional visual display can be seen to either bounce off or stream through each other. Previous studies show that the large bias normally seen toward the streaming percept can be modulated by the presentation of an auditory event at the moment of coincidence. However, no reports to date provide sufficient evidence to indicate whether the sound bounce-inducing effect is due to a perceptual binding process or merely to an explicit inference resulting from the transient auditory stimulus resembling a physical collision of two objects. In the present study, we used a novel experimental design in which a subliminal sound was presented either 150 ms before, at, or 150 ms after the moment of coincidence of two disks moving towards each other. The results showed that there was an increased perception of bouncing (rather than streaming) when the subliminal sound was presented at or 150 ms after the moment of coincidence compared to when no sound was presented. These findings provide the first empirical demonstration that activation of the human auditory system without reaching consciousness affects the perception of an ambiguous visual motion display.
Prete, Frederick R; Komito, Justin L; Dominguez, Salina; Svenson, Gavin; López, LeoLin Y; Guillen, Alex; Bogdanivich, Nicole
2011-09-01
We assessed the differences in appetitive responses to visual stimuli by three species of praying mantis (Insecta: Mantodea), Tenodera aridifolia sinensis, Mantis religiosa, and Cilnia humeralis. Tethered, adult females watched computer generated stimuli (erratically moving disks or linearly moving rectangles) that varied along predetermined parameters. Three responses were scored: tracking, approaching, and striking. Threshold stimulus size (diameter) for tracking and striking at disks ranged from 3.5 deg (C. humeralis) to 7.8 deg (M. religiosa), and from 3.3 deg (C. humeralis) to 11.7 deg (M. religiosa), respectively. Unlike the other species which struck at disks as large as 44 deg, T. a. sinensis displayed a preference for 14 deg disks. Disks moving at 143 deg/s were preferred by all species. M. religiosa exhibited the most approaching behavior, and with T. a. sinensis distinguished between rectangular stimuli moving parallel versus perpendicular to their long axes. C. humeralis did not make this distinction. Stimulus sizes that elicited the target behaviors were not related to mantis size. However, differences in compound eye morphology may be related to species differences: C. humeralis' eyes are farthest apart, and it has an apparently narrower binocular visual field which may affect retinal inputs to movement-sensitive visual interneurons.
Congruency sequence effect without feature integration and contingency learning.
Kim, Sanga; Cho, Yang Seok
2014-06-01
The magnitude of congruency effects, such as the flanker-compatibility effects, has been found to vary as a function of the congruency of the previous trial. Some studies have suggested that this congruency sequence effect is attributable to stimulus and/or response priming, and/or contingency learning, whereas other studies have suggested that the control process triggered by conflict modulates the congruency effect. The present study examined whether sequential modulation can occur without stimulus and response repetitions and contingency learning. Participants were asked to perform two color flanker-compatibility tasks alternately in a trial-by-trial manner, with four fingers of one hand in Experiment 1 and with the index and middle fingers of two hands in Experiment 2, to avoid stimulus and response repetitions and contingency learning. A significant congruency sequence effect was obtained between the congruencies of the two tasks in Experiment 1 but not in Experiment 2. These results provide evidence for the idea that the sequential modulation is, at least in part, an outcome of the top-down control process triggered by conflict, which is specific to response mode. Copyright © 2014 Elsevier B.V. All rights reserved.
Laube, Inga; Matthews, Natasha; Dean, Angela J.; O’Connell, Redmond G.; Mattingley, Jason B.; Bellgrove, Mark A.
2017-01-01
Limited resources for the in-depth processing of external stimuli make it necessary to select only relevant information from our surroundings and to ignore irrelevant stimuli. Attentional mechanisms facilitate this selection via top-down modulation of stimulus representations in the brain. Previous research has indicated that acetylcholine (ACh) modulates this influence of attention on stimulus processing. However, the role of muscarinic receptors as well as the specific mechanism of cholinergic modulation remains unclear. Here we investigated the influence of ACh on feature-based, top-down control of stimulus processing via muscarinic receptors by using a contingent capture paradigm which specifically tests attentional shifts toward uninformative cue stimuli which display one of the target defining features In a double-blind, placebo controlled study we measured the impact of the muscarinic receptor antagonist scopolamine on behavioral and electrophysiological measures of contingent attentional capture. The results demonstrated all the signs of functional contingent capture, i.e., attentional shifts toward cued locations reflected in increased amplitudes of N1 and N2Pc components, under placebo conditions. However, scopolamine did not affect behavioral or electrophysiological measures of contingent capture. Instead, scopolamine reduced the amplitude of the distractor-evoked Pd component which has recently been associated with active suppression of irrelevant distractor information. The findings suggest a general cholinergic modulation of top-down control during distractor processing. PMID:29270112
Contrast gain control in first- and second-order motion perception.
Lu, Z L; Sperling, G
1996-12-01
A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.
Response Activation in Overlapping Tasks and the Response-Selection Bottleneck
ERIC Educational Resources Information Center
Schubert, Torsten; Fischer, Rico; Stelzel, Christine
2008-01-01
The authors investigated the impact of response activation on dual-task performance by presenting a subliminal prime before the stimulus in Task 2 (S2) of a psychological refractory period (PRP) task. Congruence between prime and S2 modulated the reaction times in Task 2 at short stimulus onset asynchrony despite a PRP effect. This Task 2…
ERIC Educational Resources Information Center
Osnes, Berge; Hugdahl, Kenneth; Hjelmervik, Helene; Specht, Karsten
2012-01-01
In studies on auditory speech perception, participants are often asked to perform active tasks, e.g. decide whether the perceived sound is a speech sound or not. However, information about the stimulus, inherent in such tasks, may induce expectations that cause altered activations not only in the auditory cortex, but also in frontal areas such as…
Bravi, Riccardo; Del Tongo, Claudia; Cohen, Erez James; Dalle Mura, Gabriele; Tognetti, Alessandro; Minciacchi, Diego
2014-06-01
The ability to perform isochronous movements while listening to a rhythmic auditory stimulus requires a flexible process that integrates timing information with movement. Here, we explored how non-temporal and temporal characteristics of an auditory stimulus (presence, interval occupancy, and tempo) affect motor performance. These characteristics were chosen on the basis of their ability to modulate the precision and accuracy of synchronized movements. Subjects have participated in sessions in which they performed sets of repeated isochronous wrist's flexion-extensions under various conditions. The conditions were chosen on the basis of the defined characteristics. Kinematic parameters were evaluated during each session, and temporal parameters were analyzed. In order to study the effects of the auditory stimulus, we have minimized all other sensory information that could interfere with its perception or affect the performance of repeated isochronous movements. The present study shows that the distinct characteristics of an auditory stimulus significantly influence isochronous movements by altering their duration. Results provide evidence for an adaptable control of timing in the audio-motor coupling for isochronous movements. This flexibility would make plausible the use of different encoding strategies to adapt audio-motor coupling for specific tasks.
Stellmack, Mark A.; Byrne, Andrew J.; Viemeister, Neal F.
2010-01-01
When different components of a stimulus carry different binaural information, processing of binaural information in a target component is often affected. The present experiments examine whether such interference is affected by amplitude modulation and the relative phase of modulation of the target and distractors. In all experiments, listeners attempted to discriminate interaural time differences of a target stimulus in the presence of distractor stimuli with ITD=0. In Experiment 1, modulation of the distractors but not the target reduced interference between components. In Experiment 2, synthesized musical notes exhibited little binaural interference when there were slight asynchronies between different streams of notes (31 or 62 ms). The remaining experiments suggested that the reduction in binaural interference in the previous experiments was due neither to the complex spectra of the synthesized notes nor to greater detectability of the target in the presence of modulated distractors. These data suggest that this interference is reduced when components are modulated in ways that result in the target appearing briefly in isolation, not because of segregation cues. These data also suggest that modulation and asynchronies between modulators that might be encountered in real-world listening situations are adequate to reduce binaural interference to inconsequential levels. PMID:20815459
Open-field exposure facilitates consummatory extinction.
Justel, Nadia; Psyrdellis, Mariana; Pautassi, Ricardo M
2016-12-07
During extinction, the organism learns that a conditioned stimulus or a conditioned response is no longer associated with an unconditioned stimulus, and as a consequence, a decrement in the response is presented. The exposure to novel situations (e.g. exploration of a novel open field) has been used widely to modulate (i.e. either enhance or deteriorate) learning and memory. The aim of the present study was to test whether open-field exposure could modulate consummatory extinction. The results indicated that open-field exposure accelerated the extinction response (i.e. experimental animals provided novelty exposure had lower consummatory behavior than control animals) when applied before - but not after - the first extinction trial, or when applied before the second extinction trial. The results suggest that environmental treatments such as novelty exposure provide a valuable, nonpharmacological alternative to potentially modulate extinction processes.
Perception of stochastic envelopes by normal-hearing and cochlear-implant listeners
Gomersall, Philip A.; Turner, Richard E.; Baguley, David M.; Deeks, John M.; Gockel, Hedwig E.; Carlyon, Robert P.
2016-01-01
We assessed auditory sensitivity to three classes of temporal-envelope statistics (modulation depth, modulation rate, and comodulation) that are important for the perception of ‘sound textures’. The textures were generated by a probabilistic model that prescribes the temporal statistics of a selected number of modulation envelopes, superimposed onto noise carriers. Discrimination thresholds were measured for normal-hearing (NH) listeners and users of a MED-EL pulsar cochlear implant (CI), for separate manipulations of the average rate and modulation depth of the envelope in each frequency band of the stimulus, and of the co-modulation between bands. Normal-hearing (NH) listeners' discrimination of envelope rate was similar for baseline modulation rates of 5 and 34 Hz, and much poorer than previously reported for sinusoidally amplitude-modulated sounds. In contrast, discrimination of model parameters that controlled modulation depth was poorer at the lower baseline rate, consistent with the idea that, at the lower rate, subjects get fewer ‘looks’ at the relevant information when comparing stimuli differing in modulation depth. NH listeners could discriminate differences in co-modulation across bands; a multidimensional scaling study revealed that this was likely due to genuine across-frequency processing, rather than within-channel cues. CI users' discrimination performance was worse overall than for NH listeners, but showed a similar dependence on stimulus parameters. PMID:26706708
Troisi, Joseph R; Craig, Elizabeth M
2015-06-01
Interoceptive states interact with exteroceptive contexts in modulating operant behavior, which is maintained by its consequences. Evaluating discriminative stimulus control by overlapping interoceptive and exteroceptive configurations (gestalts) and the contribution of each modality may be clinically important for understanding aspects of relapsing behavior (e.g., drug abuse). With rats, the current investigation used a completely counterbalanced one-manipulandum operant drug discrimination procedure that established discriminative stimulus control between nicotine (0.3mg/kg) in one exteroceptive context and EtOH (1.0g/kg) in a differing exteroceptive context. One combined interoceptive-exteroceptive condition occasioned sessions of food reinforcement (S(D)) and the other counterbalanced condition occasioned sessions of non-reinforcement (S(Δ)). Each stimulus modality contributed to discriminative control, but to lesser extents than the combined intero-exteroceptive compound configurations (Experiments 1 & 2). In Experiment 1, responding was extinguished in the interoceptive stimulus conditions alone in a neutral exteroceptive context, but then renewed by reconfiguring the drugs with the exteroceptive contexts, and reversed in the opposing exteroceptive contexts. In Experiment 2, responding was extinguished in the interoceptive and exteroceptive contexts separately. Reconfiguration of the full intero-exteroceptive compound configurations did not promote recovery. These results suggest that interoceptive and exteroceptive discriminative control can be methodologically configured in modulating operant behavior during acquisition, extinction, and recovery of behavior; however, configuring interoceptive and exteroceptive discriminative stimuli do not appear to function as unique cues that differ from each stimulus modality alone. Clinical implications are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Limited transfer of long-term motion perceptual learning with double training.
Liang, Ju; Zhou, Yifeng; Fahle, Manfred; Liu, Zili
2015-01-01
A significant recent development in visual perceptual learning research is the double training technique. With this technique, Xiao, Zhang, Wang, Klein, Levi, and Yu (2008) have found complete transfer in tasks that had previously been shown to be stimulus specific. The significance of this finding is that this technique has since been successful in all tasks tested, including motion direction discrimination. Here, we investigated whether or not this technique could generalize to longer-term learning, using the method of constant stimuli. Our task was learning to discriminate motion directions of random dots. The second leg of training was contrast discrimination along a new average direction of the same moving dots. We found that, although exposure of moving dots along a new direction facilitated motion direction discrimination, this partial transfer was far from complete. We conclude that, although perceptual learning is transferrable under certain conditions, stimulus specificity also remains an inherent characteristic of motion perceptual learning.
Time perception of visual motion is tuned by the motor representation of human actions
Gavazzi, Gioele; Bisio, Ambra; Pozzo, Thierry
2013-01-01
Several studies have shown that the observation of a rapidly moving stimulus dilates our perception of time. However, this effect appears to be at odds with the fact that our interactions both with environment and with each other are temporally accurate. This work exploits this paradox to investigate whether the temporal accuracy of visual motion uses motor representations of actions. To this aim, the stimuli were a dot moving with kinematics belonging or not to the human motor repertoire and displayed at different velocities. Participants had to replicate its duration with two tasks differing in the underlying motor plan. Results show that independently of the task's motor plan, the temporal accuracy and precision depend on the correspondence between the stimulus' kinematics and the observer's motor competencies. Our data suggest that the temporal mechanism of visual motion exploits a temporal visuomotor representation tuned by the motor knowledge of human actions. PMID:23378903
Early top-down control of visual processing predicts working memory performance
Rutman, Aaron M.; Clapp, Wesley C.; Chadick, James Z.; Gazzaley, Adam
2009-01-01
Selective attention confers a behavioral benefit for both perceptual and working memory (WM) performance, often attributed to top-down modulation of sensory neural processing. However, the direct relationship between early activity modulation in sensory cortices during selective encoding and subsequent WM performance has not been established. To explore the influence of selective attention on WM recognition, we used electroencephalography (EEG) to study the temporal dynamics of top-down modulation in a selective, delayed-recognition paradigm. Participants were presented with overlapped, “double-exposed” images of faces and natural scenes, and were instructed to either remember the face or the scene while simultaneously ignoring the other stimulus. Here, we present evidence that the degree to which participants modulate the early P100 (97–129 ms) event-related potential (ERP) during selective stimulus encoding significantly correlates with their subsequent WM recognition. These results contribute to our evolving understanding of the mechanistic overlap between attention and memory. PMID:19413473
Effects of modulation phase on profile analysis in normal-hearing and hearing-impaired listeners
NASA Astrophysics Data System (ADS)
Rogers, Deanna; Lentz, Jennifer
2003-04-01
The ability to discriminate between sounds with different spectral shapes in the presence of amplitude modulation was measured in normal-hearing and hearing-impaired listeners. The standard stimulus was the sum of equal-amplitude modulated tones, and the signal stimulus was generated by increasing the level of half the tones (up components) and decreasing the level of half the tones (down components). The down components had the same modulation phase, and a phase shift was applied to the up components to encourage segregation from the down tones. The same phase shift was used in both standard and signal stimuli. Profile-analysis thresholds were measured as a function of the phase shift between up and down components. The phase shifts were 0, 30, 45, 60, 90, and 180 deg. As expected, thresholds were lowest when all tones had the same modulation phase and increased somewhat with increasing phase disparity. This small increase in thresholds was similar for both groups. These results suggest that hearing-impaired listeners are able to use modulation phase to group sounds in a manner similar to that of normal listeners. [Work supported by NIH (DC 05835).
Meijer, Guido T; Montijn, Jorrit S; Pennartz, Cyriel M A; Lansink, Carien S
2017-09-06
The sensory neocortex is a highly connected associative network that integrates information from multiple senses, even at the level of the primary sensory areas. Although a growing body of empirical evidence supports this view, the neural mechanisms of cross-modal integration in primary sensory areas, such as the primary visual cortex (V1), are still largely unknown. Using two-photon calcium imaging in awake mice, we show that the encoding of audiovisual stimuli in V1 neuronal populations is highly dependent on the features of the stimulus constituents. When the visual and auditory stimulus features were modulated at the same rate (i.e., temporally congruent), neurons responded with either an enhancement or suppression compared with unisensory visual stimuli, and their prevalence was balanced. Temporally incongruent tones or white-noise bursts included in audiovisual stimulus pairs resulted in predominant response suppression across the neuronal population. Visual contrast did not influence multisensory processing when the audiovisual stimulus pairs were congruent; however, when white-noise bursts were used, neurons generally showed response suppression when the visual stimulus contrast was high whereas this effect was absent when the visual contrast was low. Furthermore, a small fraction of V1 neurons, predominantly those located near the lateral border of V1, responded to sound alone. These results show that V1 is involved in the encoding of cross-modal interactions in a more versatile way than previously thought. SIGNIFICANCE STATEMENT The neural substrate of cross-modal integration is not limited to specialized cortical association areas but extends to primary sensory areas. Using two-photon imaging of large groups of neurons, we show that multisensory modulation of V1 populations is strongly determined by the individual and shared features of cross-modal stimulus constituents, such as contrast, frequency, congruency, and temporal structure. Congruent audiovisual stimulation resulted in a balanced pattern of response enhancement and suppression compared with unisensory visual stimuli, whereas incongruent or dissimilar stimuli at full contrast gave rise to a population dominated by response-suppressing neurons. Our results indicate that V1 dynamically integrates nonvisual sources of information while still attributing most of its resources to coding visual information. Copyright © 2017 the authors 0270-6474/17/378783-14$15.00/0.
Effects of feature-based attention on the motion aftereffect at remote locations.
Boynton, Geoffrey M; Ciaramitaro, Vivian M; Arman, A Cyrus
2006-09-01
Previous studies have shown that attention to a particular stimulus feature, such as direction of motion or color, enhances neuronal responses to unattended stimuli sharing that feature. We studied this effect psychophysically by measuring the strength of the motion aftereffect (MAE) induced by an unattended stimulus when attention was directed to one of two overlapping fields of moving dots in a different spatial location. When attention was directed to the same direction of motion as the unattended stimulus, the unattended stimulus induced a stronger MAE than when attention was directed to the opposite direction. Also, when the unattended location contained either uncorrelated motion or had no stimulus at all an MAE was induced in the opposite direction to the attended direction of motion. The strength of the MAE was similar regardless of whether subjects attended to the speed or luminance of the attended dots. These results provide further support for a global feature-based mechanism of attention, and show that the effect spreads across all features of an attended object, and to all locations of visual space.
Liao, Hsin-I; Yeh, Su-Ling
2013-11-01
Attentional orienting can be involuntarily directed to task-irrelevant stimuli, but it remains unsolved whether such attentional capture is contingent on top-down settings or could be purely stimulus-driven. We propose that attentional capture depends on the stimulus property because transient and static features are processed differently; thus, they might be modulated differently by top-down controls. To test this hybrid account, we adopted a spatial cuing paradigm in which a noninformative onset or color cue preceded an onset or color target with various stimulus onset asynchronies (SOAs). Results showed that the onset cue captured attention regardless of target type at short-but not long-SOAs. In contrast, the color cue captured attention at short and long SOAs, but only with a color target. The overall pattern of results corroborates our hypothesis, suggesting that different mechanisms are at work for stimulus-driven capture (by onset) and contingent capture (by color). Stimulus-driven capture elicits reflexive involuntary orienting, and contingent capture elicits voluntary feature-based enhancement.
Evaluative Conditioning Can Be Modulated by Memory of the CS-US Pairings at the Time of Testing
ERIC Educational Resources Information Center
Gast, Anne; De Houwer, Jan; De Schryver, Maarten
2012-01-01
Evaluative conditioning (EC) is the valence change of a (typically neutral) stimulus (CS) that is due to the previous pairing with another (typically valent) stimulus (US). It has been repeatedly shown that EC effects are stronger or existent only if participants know which US was paired with which CS. Knowledge of the CS-US pairings is usually…
The Rhythm of Perception: Entrainment to Acoustic Rhythms Induces Subsequent Perceptual Oscillation.
Hickok, Gregory; Farahbod, Haleh; Saberi, Kourosh
2015-07-01
Acoustic rhythms are pervasive in speech, music, and environmental sounds. Recent evidence for neural codes representing periodic information suggests that they may be a neural basis for the ability to detect rhythm. Further, rhythmic information has been found to modulate auditory-system excitability, which provides a potential mechanism for parsing the acoustic stream. Here, we explored the effects of a rhythmic stimulus on subsequent auditory perception. We found that a low-frequency (3 Hz), amplitude-modulated signal induces a subsequent oscillation of the perceptual detectability of a brief nonperiodic acoustic stimulus (1-kHz tone); the frequency but not the phase of the perceptual oscillation matches the entrained stimulus-driven rhythmic oscillation. This provides evidence that rhythmic contexts have a direct influence on subsequent auditory perception of discrete acoustic events. Rhythm coding is likely a fundamental feature of auditory-system design that predates the development of explicit human enjoyment of rhythm in music or poetry. © The Author(s) 2015.
Masking interrupts figure-ground signals in V1.
Lamme, Victor A F; Zipser, Karl; Spekreijse, Henk
2002-10-01
In a backward masking paradigm, a target stimulus is rapidly (<100 msec) followed by a second stimulus. This typically results in a dramatic decrease in the visibility of the target stimulus. It has been shown that masking reduces responses in V1. It is not known, however, which process in V1 is affected by the mask. In the past, we have shown that in V1, modulations of neural activity that are specifically related to figure-ground segregation can be recorded. Here, we recorded from awake macaque monkeys, engaged in a task where they had to detect figures from background in a pattern backward masking paradigm. We show that the V1 figure-ground signals are selectively and fully suppressed at target-mask intervals that psychophysically result in the target being invisible. Initial response transients, signalling the features that make up the scene, are not affected. As figure-ground modulations depend on feedback from extrastriate areas, these results suggest that masking selectively interrupts the recurrent interactions between V1 and higher visual areas.
Combining language and space: sentence bisection in unilateral spatial neglect.
Veronelli, Laura; Guasti, Maria T; Arduino, Lisa S; Vallar, Giuseppe
2014-10-01
In line bisection right-brain-damaged patients with left spatial neglect show a rightward deviation, with respect to the line's physical center. In word bisection ortho-phonological features of the stimulus' final (right-sided) part modulate performance of both patients and healthy participants (Veronelli, Vallar, Marinelli, Primativo, & Arduino, 2014). We investigated the role of linguistic factors in sentence bisection, in patients with and without neglect, and control participants. The effects of information in the right-sided part of the sentence (Experiment #1), and of lexical and syntactic violations (Experiment #2) were assessed. Neglect patients showed an overall rightward bias, larger than those of patients without neglect and controls. The neglect patients' bias was modulated by stimulus type, decreasing from lines, to letter strings and to all types of sentences. In sum, in visuo-manual sentence bisection a basic linguistic mechanism, such as sentence readability, brings about a more leftward appreciation of the stimulus, reducing the neglect patients' rightward bias. Copyright © 2014 Elsevier Inc. All rights reserved.
Binaural Interaction Effects of 30-50 Hz Auditory Steady State Responses.
Gransier, Robin; van Wieringen, Astrid; Wouters, Jan
Auditory stimuli modulated by modulation frequencies within the 30 to 50 Hz region evoke auditory steady state responses (ASSRs) with high signal to noise ratios in adults, and can be used to determine the frequency-specific hearing thresholds of adults who are unable to give behavioral feedback reliably. To measure ASSRs as efficiently as possible a multiple stimulus paradigm can be used, stimulating both ears simultaneously. The response strength of 30 to 50Hz ASSRs is, however, affected when both ears are stimulated simultaneously. The aim of the present study is to gain insight in the measurement efficiency of 30 to 50 Hz ASSRs evoked with a 2-ear stimulation paradigm, by systematically investigating the binaural interaction effects of 30 to 50 Hz ASSRs in normal-hearing adults. ASSRs were obtained with a 64-channel EEG system in 23 normal-hearing adults. All participants participated in one diotic, multiple dichotic, and multiple monaural conditions. Stimuli consisted of a modulated one-octave noise band, centered at 1 kHz, and presented at 70 dB SPL. The diotic condition contained 40 Hz modulated stimuli presented to both ears. In the dichotic conditions, the modulation frequency of the left ear stimulus was kept constant at 40 Hz, while the stimulus at the right ear was either the unmodulated or modulated carrier. In case of the modulated carrier, the modulation frequency varied between 30 and 50 Hz in steps of 2 Hz across conditions. The monaural conditions consisted of all stimuli included in the diotic and dichotic conditions. Modulation frequencies ≥36 Hz resulted in prominent ASSRs in all participants for the monaural conditions. A significant enhancement effect was observed (average: ~3 dB) in the diotic condition, whereas a significant reduction effect was observed in the dichotic conditions. There was no distinct effect of the temporal characteristics of the stimuli on the amount of reduction. The attenuation was in 33% of the cases >3 dB for ASSRs evoked with modulation frequencies ≥40 Hz and 50% for ASSRs evoked with modulation frequencies ≤36 Hz. Binaural interaction effects as observed in the diotic condition are similar to the binaural interaction effects of middle latency responses as reported in the literature, suggesting that these responses share a same underlying mechanism. Our data also indicated that 30 to 50 Hz ASSRs are attenuated when presented dichotically and that this attenuation is independent of the stimulus characteristics as used in the present study. These findings are important as they give insight in how binaural interaction affects the measurement efficiency. The 2-ear stimulation paradigm of the present study was, for the most optimal modulation frequencies (i.e., ≥40 Hz), more efficient than a 1-ear sequential stimulation paradigm in 66% of the cases.
Gestalt perception modulates early visual processing.
Herrmann, C S; Bosch, V
2001-04-17
We examined whether early visual processing reflects perceptual properties of a stimulus in addition to physical features. We recorded event-related potentials (ERPs) of 13 subjects in a visual classification task. We used four different stimuli which were all composed of four identical elements. One of the stimuli constituted an illusory Kanizsa square, another was composed of the same number of collinear line segments but the elements did not form a Gestalt. In addition, a target and a control stimulus were used which were arranged differently. These stimuli allow us to differentiate the processing of colinear line elements (stimulus features) and illusory figures (perceptual properties). The visual N170 in response to the illusory figure was significantly larger as compared to the other collinear stimulus. This is taken to indicate that the visual N170 reflects cognitive processes of Gestalt perception in addition to attentional processes and physical stimulus properties.
Couperus, J W
2010-11-26
This study explored effects of perceptual load on stimulus processing in the presence and absence of an attended stimulus. Participants were presented with a bilateral or unilateral display and asked to perform a discrimination task at either low or high perceptual load. Electrophysiological responses to stimuli were then compared at the P100 and N100. As in previous studies, perceptual load modified processing of attended and unattended stimuli seen at occipital scalp sites. Moreover, perceptual load modulated attention effects when the attended stimulus was presented at high perceptual load for unilateral displays. However, this was not true when the attended and unattended stimulus appeared simultaneously in bilateral displays. Instead, only a main effect of perceptual load was found. Reductions in processing contralateral to the unattended stimulus at the N100 provide support for Lavie's (1995) theory of selective attention. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Unconscious semantic activation depends on feature-specific attention allocation.
Spruyt, Adriaan; De Houwer, Jan; Everaert, Tom; Hermans, Dirk
2012-01-01
We examined whether semantic activation by subliminally presented stimuli is dependent upon the extent to which participants assign attention to specific semantic stimulus features and stimulus dimensions. Participants pronounced visible target words that were preceded by briefly presented, masked prime words. Both affective and non-affective semantic congruence of the prime-target pairs were manipulated under conditions that either promoted selective attention for affective stimulus information or selective attention for non-affective semantic stimulus information. In line with our predictions, results showed that affective congruence had a clear impact on word pronunciation latencies only if participants were encouraged to assign attention to the affective stimulus dimension. In contrast, non-affective semantic relatedness of the prime-target pairs produced no priming at all. Our findings are consistent with the hypothesis that unconscious activation of (affective) semantic information is modulated by feature-specific attention allocation. Copyright © 2011 Elsevier B.V. All rights reserved.
Chemotaxis of artificial microswimmers in active density waves
NASA Astrophysics Data System (ADS)
Geiseler, Alexander; Hänggi, Peter; Marchesoni, Fabio; Mulhern, Colm; Savel'ev, Sergey
2016-07-01
Living microorganisms are capable of a tactic response to external stimuli by swimming toward or away from the stimulus source; they do so by adapting their tactic signal transduction pathways to the environment. Their self-motility thus allows them to swim against a traveling tactic wave, whereas a simple fore-rear asymmetry argument would suggest the opposite. Their biomimetic counterpart, the artificial microswimmers, also propel themselves by harvesting kinetic energy from an active medium, but, in contrast, lack the adaptive capacity. Here we investigate the transport of artificial swimmers subject to traveling active waves and show, by means of analytical and numerical methods, that self-propelled particles can actually diffuse in either direction with respect to the wave, depending on its speed and waveform. Moreover, chiral swimmers, which move along spiraling trajectories, may diffuse preferably in a direction perpendicular to the active wave. Such a variety of tactic responses is explained by the modulation of the swimmer's diffusion inside traveling active pulses.
NASA Technical Reports Server (NTRS)
Wood, Scott J.; Paloski, W. H. (Principal Investigator)
2002-01-01
The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.
Behavioral and Neural Adaptation in Approach Behavior.
Wang, Shuo; Falvello, Virginia; Porter, Jenny; Said, Christopher P; Todorov, Alexander
2018-06-01
People often make approachability decisions based on perceived facial trustworthiness. However, it remains unclear how people learn trustworthiness from a population of faces and whether this learning influences their approachability decisions. Here we investigated the neural underpinning of approach behavior and tested two important hypotheses: whether the amygdala adapts to different trustworthiness ranges and whether the amygdala is modulated by task instructions and evaluative goals. We showed that participants adapted to the stimulus range of perceived trustworthiness when making approach decisions and that these decisions were further modulated by the social context. The right amygdala showed both linear response and quadratic response to trustworthiness level, as observed in prior studies. Notably, the amygdala's response to trustworthiness was not modulated by stimulus range or social context, a possible neural dynamic adaptation. Together, our data have revealed a robust behavioral adaptation to different trustworthiness ranges as well as a neural substrate underlying approach behavior based on perceived facial trustworthiness.
Apollo Spacecraft 012 Command/Service Module being moved to Operations bldg
NASA Technical Reports Server (NTRS)
1967-01-01
Apollo Spacecraft 012 Command/Service Module is moved from H-134 to east stokes for mating to the Saturn Lunar Module Adapter No. 05 in the Manned Spacecraft Operations bldg. S/C 012 will be flown on the Apollo/Saturn 204 mission.
Creating stimuli for the study of biological-motion perception.
Dekeyser, Mathias; Verfaillie, Karl; Vanrie, Jan
2002-08-01
In the perception of biological motion, the stimulus information is confined to a small number of lights attached to the major joints of a moving person. Despite this drastic degradation of the stimulus information, the human visual apparatus organizes the swarm of moving dots into a vivid percept of a moving biological creature. Several techniques have been proposed to create point-light stimuli: placing dots at strategic locations on photographs or films, video recording a person with markers attached to the body, computer animation based on artificial synthesis, and computer animation based on motion-capture data. A description is given of the technique we are currently using in our laboratory to produce animated point-light figures. The technique is based on a combination of motion capture and three-dimensional animation software (Character Studio, Autodesk, Inc., 1998). Some of the advantages of our approach are that the same actions can be shown from any viewpoint, that point-light versions, as well as versions with a full-fleshed character, can be created of the same actions, and that point lights can indicate the center of a joint (thereby eliminating several disadvantages associated with other techniques).
Cardiorespiratory Fitness and the Flexible Modulation of Cognitive Control in Preadolescent Children
ERIC Educational Resources Information Center
Pontifex, Matthew B.; Raine, Lauren B.; Johnson, Christopher R.; Chaddock, Laura; Voss, Michelle W.; Cohen, Neal J.; Kramer, Arthur F.; Hillman, Charles H.
2011-01-01
The influence of cardiorespiratory fitness on the modulation of cognitive control was assessed in preadolescent children separated into higher- and lower-fit groups. Participants completed compatible and incompatible stimulus-response conditions of a modified flanker task, consisting of congruent and incongruent arrays, while ERPs and task…
Stress Modulates the Use of Spatial versus Stimulus-Response Learning Strategies in Humans
ERIC Educational Resources Information Center
Philippsen, Christine; Richter, Steffen; Bohringer, Andreas; Wippich, Werner; Schachinger, Hartmut; Schwabe, Lars; Oitzl, Melly S.
2007-01-01
Animal studies provided evidence that stress modulates multiple memory systems, favoring caudate nucleus-based "habit" memory over hippocampus-based "cognitive" memory. However, effects of stress on learning strategy and memory consolidation were not differentiated. We specifically address the effects of psychosocial stress on the applied learning…
Hill, N J; Schölkopf, B
2012-01-01
We report on the development and online testing of an EEG-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects’ modulation of N1 and P3 ERP components measured during single 5-second stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare “oddball” stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly-known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention-modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject’s attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology. PMID:22333135
NASA Astrophysics Data System (ADS)
Hill, N. J.; Schölkopf, B.
2012-04-01
We report on the development and online testing of an electroencephalogram-based brain-computer interface (BCI) that aims to be usable by completely paralysed users—for whom visual or motor-system-based BCIs may not be suitable, and among whom reports of successful BCI use have so far been very rare. The current approach exploits covert shifts of attention to auditory stimuli in a dichotic-listening stimulus design. To compare the efficacy of event-related potentials (ERPs) and steady-state auditory evoked potentials (SSAEPs), the stimuli were designed such that they elicited both ERPs and SSAEPs simultaneously. Trial-by-trial feedback was provided online, based on subjects' modulation of N1 and P3 ERP components measured during single 5 s stimulation intervals. All 13 healthy subjects were able to use the BCI, with performance in a binary left/right choice task ranging from 75% to 96% correct across subjects (mean 85%). BCI classification was based on the contrast between stimuli in the attended stream and stimuli in the unattended stream, making use of every stimulus, rather than contrasting frequent standard and rare ‘oddball’ stimuli. SSAEPs were assessed offline: for all subjects, spectral components at the two exactly known modulation frequencies allowed discrimination of pre-stimulus from stimulus intervals, and of left-only stimuli from right-only stimuli when one side of the dichotic stimulus pair was muted. However, attention modulation of SSAEPs was not sufficient for single-trial BCI communication, even when the subject's attention was clearly focused well enough to allow classification of the same trials via ERPs. ERPs clearly provided a superior basis for BCI. The ERP results are a promising step towards the development of a simple-to-use, reliable yes/no communication system for users in the most severely paralysed states, as well as potential attention-monitoring and -training applications outside the context of assistive technology.
Ludwig, Karin; Sterzer, Philipp; Kathmann, Norbert; Hesselmann, Guido
2016-10-01
As a functional organization principle in cortical visual information processing, the influential 'two visual systems' hypothesis proposes a division of labor between a dorsal "vision-for-action" and a ventral "vision-for-perception" stream. A core assumption of this model is that the two visual streams are differentially involved in visual awareness: ventral stream processing is closely linked to awareness while dorsal stream processing is not. In this functional magnetic resonance imaging (fMRI) study with human observers, we directly probed the stimulus-related information encoded in fMRI response patterns in both visual streams as a function of stimulus visibility. We parametrically modulated the visibility of face and tool stimuli by varying the contrasts of the masks in a continuous flash suppression (CFS) paradigm. We found that visibility - operationalized by objective and subjective measures - decreased proportionally with increasing log CFS mask contrast. Neuronally, this relationship was closely matched by ventral visual areas, showing a linear decrease of stimulus-related information with increasing mask contrast. Stimulus-related information in dorsal areas also showed a dependency on mask contrast, but the decrease rather followed a step function instead of a linear function. Together, our results suggest that both the ventral and the dorsal visual stream are linked to visual awareness, but neural activity in ventral areas more closely reflects graded differences in awareness compared to dorsal areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatially tuned normalization explains attention modulation variance within neurons.
Ni, Amy M; Maunsell, John H R
2017-09-01
Spatial attention improves perception of attended parts of a scene, a behavioral enhancement accompanied by modulations of neuronal firing rates. These modulations vary in size across neurons in the same brain area. Models of normalization explain much of this variance in attention modulation with differences in tuned normalization across neurons (Lee J, Maunsell JHR. PLoS One 4: e4651, 2009; Ni AM, Ray S, Maunsell JHR. Neuron 73: 803-813, 2012). However, recent studies suggest that normalization tuning varies with spatial location both across and within neurons (Ruff DA, Alberts JJ, Cohen MR. J Neurophysiol 116: 1375-1386, 2016; Verhoef BE, Maunsell JHR. eLife 5: e17256, 2016). Here we show directly that attention modulation and normalization tuning do in fact covary within individual neurons, in addition to across neurons as previously demonstrated. We recorded the activity of isolated neurons in the middle temporal area of two rhesus monkeys as they performed a change-detection task that controlled the focus of spatial attention. Using the same two drifting Gabor stimuli and the same two receptive field locations for each neuron, we found that switching which stimulus was presented at which location affected both attention modulation and normalization in a correlated way within neurons. We present an equal-maximum-suppression spatially tuned normalization model that explains this covariance both across and within neurons: each stimulus generates equally strong suppression of its own excitatory drive, but its suppression of distant stimuli is typically less. This new model specifies how the tuned normalization associated with each stimulus location varies across space both within and across neurons, changing our understanding of the normalization mechanism and how attention modulations depend on this mechanism. NEW & NOTEWORTHY Tuned normalization studies have demonstrated that the variance in attention modulation size seen across neurons from the same cortical area can be largely explained by between-neuron differences in normalization strength. Here we demonstrate that attention modulation size varies within neurons as well and that this variance is largely explained by within-neuron differences in normalization strength. We provide a new spatially tuned normalization model that explains this broad range of observed normalization and attention effects. Copyright © 2017 the American Physiological Society.
Modeling depth from motion parallax with the motion/pursuit ratio
Nawrot, Mark; Ratzlaff, Michael; Leonard, Zachary; Stroyan, Keith
2014-01-01
The perception of unambiguous scaled depth from motion parallax relies on both retinal image motion and an extra-retinal pursuit eye movement signal. The motion/pursuit ratio represents a dynamic geometric model linking these two proximal cues to the ratio of depth to viewing distance. An important step in understanding the visual mechanisms serving the perception of depth from motion parallax is to determine the relationship between these stimulus parameters and empirically determined perceived depth magnitude. Observers compared perceived depth magnitude of dynamic motion parallax stimuli to static binocular disparity comparison stimuli at three different viewing distances, in both head-moving and head-stationary conditions. A stereo-viewing system provided ocular separation for stereo stimuli and monocular viewing of parallax stimuli. For each motion parallax stimulus, a point of subjective equality (PSE) was estimated for the amount of binocular disparity that generates the equivalent magnitude of perceived depth from motion parallax. Similar to previous results, perceived depth from motion parallax had significant foreshortening. Head-moving conditions produced even greater foreshortening due to the differences in the compensatory eye movement signal. An empirical version of the motion/pursuit law, termed the empirical motion/pursuit ratio, which models perceived depth magnitude from these stimulus parameters, is proposed. PMID:25339926
O'Malley, Shannon; Besner, Derek
2013-07-01
No one would argue with the proposition that how we process events in the world is strongly affected by our experience. Nonetheless, recent experience (e.g., from the previous trial) is typically not considered in the analysis of timed cognitive performance in the laboratory. Masson and Kliegl (2013) reported that, in the context of the lexical decision task, the nature of the previous trial strongly modulates the joint effects of word frequency and stimulus quality-a joint effect that is widely reported to be additive when averaged over trial history. In particular, their analysis suggests there may be no genuine additivity of these factors. Here we extended this line of investigation by reanalyzing data reported by O'Malley and Besner (2008) in which subjects read words and nonwords aloud, with word frequency and stimulus quality as manipulated factors. These factors are additive on reaction time in the standard analysis of variance. Contrary to Masson and Kliegl's finding for lexical decision, when previous trial history is taken into consideration, these 2 factors still do not interact. This suggests that, at least in the context of reading aloud, previous trial does not modulate how the effects of these 2 factors combine. Some implications are briefly noted. PsycINFO Database Record (c) 2013 APA, all rights reserved.
te Woerd, Erik S.; Oostenveld, Robert; Bloem, Bastiaan R.; de Lange, Floris P.; Praamstra, Peter
2015-01-01
The basal ganglia play an important role in beat perception and patients with Parkinson’s disease (PD) are impaired in perception of beat-based rhythms. Rhythmic cues are nonetheless beneficial in gait rehabilitation, raising the question how rhythm improves movement in PD. We addressed this question with magnetoencephalography recordings during a choice response task with rhythmic and non-rhythmic modes of stimulus presentation. Analyses focused on (i) entrainment of slow oscillations, (ii) the depth of beta power modulation, and (iii) whether a gain in modulation depth of beta power, due to rhythmicity, is of predictive or reactive nature. The results show weaker phase synchronisation of slow oscillations and a relative shift from predictive to reactive movement-related beta suppression in PD. Nonetheless, rhythmic stimulus presentation increased beta modulation depth to the same extent in patients and controls. Critically, this gain selectively increased the predictive and not reactive movement-related beta power suppression. Operation of a predictive mechanism, induced by rhythmic stimulation, was corroborated by a sensory gating effect in the sensorimotor cortex. The predictive mode of cue utilisation points to facilitation of basal ganglia-premotor interactions, contrasting with the popular view that rhythmic stimulation confers a special advantage in PD, based on recruitment of alternative pathways. PMID:26509117
Chapter 5: Modulation Excitation Spectroscopy with Phase-Sensitive Detection for Surface Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shulda, Sarah; Richards, Ryan M.
Advancements in in situ spectroscopic techniques have led to significant progress being made in elucidating heterogeneous reaction mechanisms. The potential of these progressive methods is often limited only by the complexity of the system and noise in the data. Short-lived intermediates can be challenging, if not impossible, to identify with conventional spectra analysis means. Often equally difficult is separating signals that arise from active and inactive species. Modulation excitation spectroscopy combined with phase-sensitive detection analysis is a powerful tool for removing noise from the data while simultaneously revealing the underlying kinetics of the reaction. A stimulus is applied at amore » constant frequency to the reaction system, for example, a reactant cycled with an inert phase. Through mathematical manipulation of the data, any signal contributing to the overall spectra but not oscillating with the same frequency as the stimulus will be dampened or removed. With phase-sensitive detection, signals oscillating with the stimulus frequency but with various lag times are amplified providing valuable kinetic information. In this chapter, some examples are provided from the literature that have successfully used modulation excitation spectroscopy with phase-sensitive detection to uncover previously unobserved reaction intermediates and kinetics. Examples from a broad range of spectroscopic methods are included to provide perspective to the reader.« less
Henry, Christopher A.
2013-01-01
A key property of neurons in primary visual cortex (V1) is the distinction between simple and complex cells. Recent reports in cat visual cortex indicate the categorization of simple and complex can change depending on stimulus conditions. We investigated the stability of the simple/complex classification with changes in drive produced by either contrast or modulation by the extraclassical receptive field (eCRF). These two conditions were reported to increase the proportion of simple cells in cat cortex. The ratio of the modulation depth of the response (F1) to the elevation of response (F0) to a drifting grating (F1/F0 ratio) was used as the measure of simple/complex. The majority of V1 complex cells remained classified as complex with decreasing contrast. Near contrast threshold, an equal proportion of simple and complex cells changed their classification. The F1/F0 ratio was stable between optimal and large stimulus areas even for those neurons that showed strong eCRF suppression. There was no discernible overall effect of surrounding spatial context on the F1/F0 ratio. Simple/complex cell classification is relatively stable across a range of stimulus drives, produced by either contrast or eCRF suppression. PMID:23303859
Flexible strategies for flight control: an active role for the abdomen.
Dyhr, Jonathan P; Morgansen, Kristi A; Daniel, Thomas L; Cowan, Noah J
2013-05-01
Moving animals orchestrate myriad motor systems in response to multimodal sensory inputs. Coordinating movement is particularly challenging in flight control, where animals deal with potential instability and multiple degrees of freedom of movement. Prior studies have focused on wings as the primary flight control structures, for which changes in angle of attack or shape are used to modulate lift and drag forces. However, other actuators that may impact flight performance are reflexively activated during flight. We investigated the visual-abdominal reflex displayed by the hawkmoth Manduca sexta to determine its role in flight control. We measured the open-loop stimulus-response characteristics (measured as a transfer function) between the visual stimulus and abdominal response in tethered moths. The transfer function reveals a 41 ms delay and a high-pass filter behavior with a pass band starting at ~0.5 Hz. We also developed a simplified mathematical model of hovering flight wherein articulation of the thoracic-abdominal joint redirects an average lift force provided by the wings. We show that control of the joint, subject to a high-pass filter, is sufficient to maintain stable hovering, but with a slim stability margin. Our experiments and models suggest a novel mechanism by which articulation of the body or 'airframe' of an animal can be used to redirect lift forces for effective flight control. Furthermore, the small stability margin may increase flight agility by easing the transition from stable flight to a more maneuverable, unstable regime.
Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu
2015-01-01
Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828
Lunar Module 5 ascent stage being moved for mating with adapter
NASA Technical Reports Server (NTRS)
1969-01-01
Interior view of the Kennedy Space Center's (KSC) Manned Spacecraft Operations Building showing Lunar Module 5 being moved from workstand for mating with its Spacecraft Lunar Module Adapter (SLA). LM-5 is scheduled to be flown on the Apollo 11 lunar landing mission.
Independence of Movement Preparation and Movement Initiation.
Haith, Adrian M; Pakpoor, Jina; Krakauer, John W
2016-03-09
Initiating a movement in response to a visual stimulus takes significantly longer than might be expected on the basis of neural transmission delays, but it is unclear why. In a visually guided reaching task, we forced human participants to move at lower-than-normal reaction times to test whether normal reaction times are strictly necessary for accurate movement. We found that participants were, in fact, capable of moving accurately ∼80 ms earlier than their reaction times would suggest. Reaction times thus include a seemingly unnecessary delay that accounts for approximately one-third of their duration. Close examination of participants' behavior in conventional reaction-time conditions revealed that they generated occasional, spontaneous errors in trials in which their reaction time was unusually short. The pattern of these errors could be well accounted for by a simple model in which the timing of movement initiation is independent of the timing of movement preparation. This independence provides an explanation for why reaction times are usually so sluggish: delaying the mean time of movement initiation relative to preparation reduces the risk that a movement will be initiated before it has been appropriately prepared. Our results suggest that preparation and initiation of movement are mechanistically independent and may have a distinct neural basis. The results also demonstrate that, even in strongly stimulus-driven tasks, presentation of a stimulus does not directly trigger a movement. Rather, the stimulus appears to trigger an internal decision whether to make a movement, reflecting a volitional rather than reactive mode of control. Copyright © 2016 the authors 0270-6474/16/363007-10$15.00/0.
Self-polarization and directional motility of cytoplasm.
Verkhovsky, A B; Svitkina, T M; Borisy, G G
1999-01-14
Directional cell motility implies the presence of a steering mechanism and a functional asymmetry between the front and rear of the cell. How this functional asymmetry arises and is maintained during cell locomotion is, however, unclear. Lamellar fragments of fish epidermal keratocytes, which lack nuclei, microtubules and most organelles, present a simplified, perhaps minimal, system for analyzing this problem because they consist of little other than the motile machinery enclosed by a membrane and yet can move with remarkable speed and persistence. We have produced two types of cellular fragments: discoid stationary fragments and polarized fragments undergoing locomotion. The organization and dynamics of the actin-myosin II system were isotropic in stationary fragments and anisotropic in the moving fragments. To investigate whether the creation of asymmetry could result in locomotion, a transient mechanical stimulus was applied to stationary fragments. The stimulus induced localized contraction and the formation of an actin-myosin II bundle at one edge of the fragment. Remarkably, stimulated fragments started to undergo locomotion and the locomotion and associated anisotropic organization of the actin-myosin II system were sustained after withdrawal of the stimulus. We propose a model in which lamellar cytoplasm is considered a dynamically bistable system capable of existing in a non-polarized or polarized state and interconvertible by mechanical stimulus. The model explains how the anisotropic organization of the lamellum is maintained in the process of locomotion. Polarized locomotion is sustained through a positive-feedback loop intrinsic to the actin-myosin II machinery: anisotropic organization of the machinery drives translocation, which then reinforces the asymmetry of the machinery, favoring further translocation.
ERIC Educational Resources Information Center
Chudasama, Yogita; Dalley, Jeffrey W.; Nathwani, Falgyni; Bouger, Pascale; Robbins, Trevor W.
2004-01-01
Two experiments examined the effects of reductions in cortical cholinergic function on performance of a novel task that allowed for the simultaneous assessment of attention to a visual stimulus and memory for that stimulus over a variable delay within the same test session. In the first experiment, infusions of the muscarinic receptor antagonist…
Conditioned pain modulation (CPM) in children and adolescents: Effects of sex and age
Tsao, Jennie C. I.; Seidman, Laura C.; Evans, Subhadra; Lung, Kirsten C.; Zeltzer, Lonnie K.; Naliboff, Bruce D.
2013-01-01
Conditioned pain modulation (CPM) refers to the diminution of perceived pain intensity for a test stimulus following application of a conditioning stimulus to a remote area of the body, and is thought to reflect the descending inhibition of nociceptive signals. Studying CPM in children may inform interventions to enhance central pain inhibition within a developmental framework. We assessed CPM in 133 healthy children (mean age = 13 years; 52.6% girls) and tested the effects of sex and age. Participants were exposed to four trials of a pressure test stimulus before, during, and after the application of a cold water conditioning stimulus. CPM was documented by a reduction in pressure pain ratings during cold water administration. Older children (12–17 years) exhibited greater CPM than younger (8–11 years) children. No sex differences in CPM were found. Lower heart rate variability (HRV) at baseline and after pain induction was associated with less CPM controlling for child age. The findings of greater CPM in the older age cohort suggest a developmental improvement in central pain inhibitory mechanisms. The results highlight the need to examine developmental and contributory factors in central pain inhibitory mechanisms in children to guide effective, age appropriate, pain interventions. PMID:23541066
Xu, Yifang; Collins, Leslie M
2005-06-01
This work investigates dynamic range and intensity discrimination for electrical pulse-train stimuli that are modulated by noise using a stochastic auditory nerve model. Based on a hypothesized monotonic relationship between loudness and the number of spikes elicited by a stimulus, theoretical prediction of the uncomfortable level has previously been determined by comparing spike counts to a fixed threshold, Nucl. However, no specific rule for determining Nucl has been suggested. Our work determines the uncomfortable level based on the excitation pattern of the neural response in a normal ear. The number of fibers corresponding to the portion of the basilar membrane driven by a stimulus at an uncomfortable level in a normal ear is related to Nucl at an uncomfortable level of the electrical stimulus. Intensity discrimination limens are predicted using signal detection theory via the probability mass function of the neural response and via experimental simulations. The results show that the uncomfortable level for pulse-train stimuli increases slightly as noise level increases. Combining this with our previous threshold predictions, we hypothesize that the dynamic range for noise-modulated pulse-train stimuli should increase with additive noise. However, since our predictions indicate that intensity discrimination under noise degrades, overall intensity coding performance may not improve significantly.
Wittevrongel, Benjamin; Van Wolputte, Elia; Van Hulle, Marc M
2017-11-08
When encoding visual targets using various lagged versions of a pseudorandom binary sequence of luminance changes, the EEG signal recorded over the viewer's occipital pole exhibits so-called code-modulated visual evoked potentials (cVEPs), the phase lags of which can be tied to these targets. The cVEP paradigm has enjoyed interest in the brain-computer interfacing (BCI) community for the reported high information transfer rates (ITR, in bits/min). In this study, we introduce a novel decoding algorithm based on spatiotemporal beamforming, and show that this algorithm is able to accurately identify the gazed target. Especially for a small number of repetitions of the coding sequence, our beamforming approach significantly outperforms an optimised support vector machine (SVM)-based classifier, which is considered state-of-the-art in cVEP-based BCI. In addition to the traditional 60 Hz stimulus presentation rate for the coding sequence, we also explore the 120 Hz rate, and show that the latter enables faster communication, with a maximal median ITR of 172.87 bits/min. Finally, we also report on a transition effect in the EEG signal following the onset of the stimulus sequence, and recommend to exclude the first 150 ms of the trials from decoding when relying on a single presentation of the stimulus sequence.
Yamaguchi, Motonori; Chen, Jing; Proctor, Robert W
2015-08-01
The Simon effect refers to the advantage of responding to spatially compatible stimuli. This effect can be eliminated or even reversed to favor spatially incompatible stimuli after participants practice a choice-reaction task with spatially incompatible mappings (e.g., pressing left and right keys to stimuli on the right and left, respectively). This transfer of incompatible spatial associations has been observed under conditions in which responses were made manually (e.g., keypresses, moving a joystick). The present study used vocal responses to reveal the primary determinants of the transfer effect, dissociating the influences of stimulus type, response mode, and their interaction (set-level compatibility). The results suggest that contextual match between the practice and transfer tasks with respect to stimulus type and response mode determined transfer of incompatible associations to the Simon task, and stimulus type determined the efficiency of acquiring new associations. However, there was little evidence that set-level compatibility plays any major role in either acquisition or transfer of spatial associations.
Spatiotemporal discrimination in neural networks with short-term synaptic plasticity
NASA Astrophysics Data System (ADS)
Shlaer, Benjamin; Miller, Paul
2015-03-01
Cells in recurrently connected neural networks exhibit bistability, which allows for stimulus information to persist in a circuit even after stimulus offset, i.e. short-term memory. However, such a system does not have enough hysteresis to encode temporal information about the stimuli. The biophysically described phenomenon of synaptic depression decreases synaptic transmission strengths due to increased presynaptic activity. This short-term reduction in synaptic strengths can destabilize attractor states in excitatory recurrent neural networks, causing the network to move along stimulus dependent dynamical trajectories. Such a network can successfully separate amplitudes and durations of stimuli from the number of successive stimuli. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression. Front. Comput. Neurosci. 7:59., and so provides a strong candidate network for the encoding of spatiotemporal information. Here we explicitly demonstrate the capability of a recurrent neural network with short-term synaptic depression to discriminate between the temporal sequences in which spatial stimuli are presented.
Waning of "conditioned pain modulation": a novel expression of subtle pronociception in migraine.
Nahman-Averbuch, Hadas; Granovsky, Yelena; Coghill, Robert C; Yarnitsky, David; Sprecher, Elliot; Weissman-Fogel, Irit
2013-01-01
To assess the decay of the conditioned pain modulation (CPM) response along repeated applications as a possible expression of subtle pronociception in migraine. One of the most explored mechanisms underlying the pain modulation system is "diffuse noxious inhibitory controls," which is measured psychophysically in the lab by the CPM paradigm. There are contradicting reports on CPM response in migraine, questioning whether migraineurs express pronociceptive pain modulation. Migraineurs (n = 26) and healthy controls (n = 35), all females, underwent 3 stimulation series, consisting of repeated (1) "test-stimulus" (Ts) alone that was given first followed by (2) parallel CPM application (CPM-parallel), and (3) sequential CPM application (CPM-sequential), in which the Ts is delivered during or following the conditioning-stimulus, respectively. In all series, the Ts repeated 4 times (0-3). In the CPM series, repetition "0" consisted of the Ts-alone that was followed by 3 repetitions of the Ts with a conditioning-stimulus application. Although there was no difference between migraineurs and controls for the first CPM response in each series, we found waning of CPM-parallel efficiency along the series for migraineurs (P = .005 for third vs first CPM), but not for controls. Further, greater CPM waning in the CPM-sequential series was correlated with less reported extent of pain reduction by episodic medication (r = 0.493, P = .028). Migraineurs have subtle deficits in endogenous pain modulation which requires a more challenging test protocol than the commonly used single CPM. Waning of CPM response seems to reveal this pronociceptive state. The clinical relevance of the CPM waning effect is highlighted by its association with clinical parameters of migraine. © 2013 American Headache Society.
Vidal, Juan R.; Perrone-Bertolotti, Marcela; Kahane, Philippe; Lachaux, Jean-Philippe
2015-01-01
If conscious perception requires global information integration across active distant brain networks, how does the loss of conscious perception affect neural processing in these distant networks? Pioneering studies on perceptual suppression (PS) described specific local neural network responses in primary visual cortex, thalamus and lateral prefrontal cortex of the macaque brain. Yet the neural effects of PS have rarely been studied with intracerebral recordings outside these cortices and simultaneously across distant brain areas. Here, we combined (1) a novel experimental paradigm in which we produced a similar perceptual disappearance and also re-appearance by using visual adaptation with transient contrast changes, with (2) electrophysiological observations from human intracranial electrodes sampling wide brain areas. We focused on broadband high-frequency (50–150 Hz, i.e., gamma) and low-frequency (8–24 Hz) neural activity amplitude modulations related to target visibility and invisibility. We report that low-frequency amplitude modulations reflected stimulus visibility in a larger ensemble of recording sites as compared to broadband gamma responses, across distinct brain regions including occipital, temporal and frontal cortices. Moreover, the dynamics of the broadband gamma response distinguished stimulus visibility from stimulus invisibility earlier in anterior insula and inferior frontal gyrus than in temporal regions, suggesting a possible role of fronto-insular cortices in top–down processing for conscious perception. Finally, we report that in primary visual cortex only low-frequency amplitude modulations correlated directly with perceptual status. Interestingly, in this sensory area broadband gamma was not modulated during PS but became positively modulated after 300 ms when stimuli were rendered visible again, suggesting that local networks could be ignited by top–down influences during conscious perception. PMID:25642199
Orion EM-1 Crew Module Move from Clean Room to Work Station
2017-05-11
Workers have moved the Orion crew module pressure vessel for NASA’s Exploration Mission 1 (EM-1) out of a clean room inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida. The crew module will be moved to a work station where it will undergo additional processing to prepare it for launch in 2019. The spacecraft is being prepared for its first integrated flight atop the Space Launch System rocket on Exploration Mission-1.
Full-wave and half-wave rectification in second-order motion perception
NASA Technical Reports Server (NTRS)
Solomon, J. A.; Sperling, G.
1994-01-01
Microbalanced stimuli are dynamic displays which do not stimulate motion mechanisms that apply standard (Fourier-energy or autocorrelational) motion analysis directly to the visual signal. In order to extract motion information from microbalanced stimuli, Chubb and Sperling [(1988) Journal of the Optical Society of America, 5, 1986-2006] proposed that the human visual system performs a rectifying transformation on the visual signal prior to standard motion analysis. The current research employs two novel types of microbalanced stimuli: half-wave stimuli preserve motion information following half-wave rectification (with a threshold) but lose motion information following full-wave rectification; full-wave stimuli preserve motion information following full-wave rectification but lose motion information following half-wave rectification. Additionally, Fourier stimuli, ordinary square-wave gratings, were used to stimulate standard motion mechanisms. Psychometric functions (direction discrimination vs stimulus contrast) were obtained for each type of stimulus when presented alone, and when masked by each of the other stimuli (presented as moving masks and also as nonmoving, counterphase-flickering masks). RESULTS: given sufficient contrast, all three types of stimulus convey motion. However, only one-third of the population can perceive the motion of the half-wave stimulus. Observers are able to process the motion information contained in the Fourier stimulus slightly more efficiently than the information in the full-wave stimulus but are much less efficient in processing half-wave motion information. Moving masks are more effective than counterphase masks at hampering direction discrimination, indicating that some of the masking effect is interference between motion mechanisms, and some occurs at earlier stages. When either full-wave and Fourier or half-wave and Fourier gratings are presented simultaneously, there is a wide range of relative contrasts within which the motion directions of both gratings are easily determinable. Conversely, when half-wave and full-wave gratings are combined, the direction of only one of these gratings can be determined with high accuracy. CONCLUSIONS: the results indicate that three motion computations are carried out, any two in parallel: one standard ("first order") and two non-Fourier ("second-order") computations that employ full-wave and half-wave rectification.
Sensory integration of a light touch reference in human standing balance.
Assländer, Lorenz; Smith, Craig P; Reynolds, Raymond F
2018-01-01
In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting.
Sensory integration of a light touch reference in human standing balance
Smith, Craig P.; Reynolds, Raymond F.
2018-01-01
In upright stance, light touch of a space-stationary touch reference reduces spontaneous sway. Moving the reference evokes sway responses which exhibit non-linear behavior that has been attributed to sensory reweighting. Reweighting refers to a change in the relative contribution of sensory cues signaling body sway in space and light touch cues signaling finger position with respect to the body. Here we test the hypothesis that the sensory fusion process involves a transformation of light touch signals into the same reference frame as other sensory inputs encoding body sway in space, or vice versa. Eight subjects lightly gripped a robotic manipulandum which moved in a circular arc around the ankle joint. A pseudo-randomized motion sequence with broad spectral characteristics was applied at three amplitudes. The stimulus was presented at two different heights and therefore different radial distances, which were matched in terms of angular motion. However, the higher stimulus evoked a significantly larger sway response, indicating that the response was not matched to stimulus angular motion. Instead, the body sway response was strongly related to the horizontal translation of the manipulandum. The results suggest that light touch is integrated as the horizontal distance between body COM and the finger. The data were well explained by a model with one feedback loop minimizing changes in horizontal COM-finger distance. The model further includes a second feedback loop estimating the horizontal finger motion and correcting the first loop when the touch reference is moving. The second loop includes the predicted transformation of sensory signals into the same reference frame and a non-linear threshold element that reproduces the non-linear sway responses, thus providing a mechanism that can explain reweighting. PMID:29874252
EEG in the classroom: Synchronised neural recordings during video presentation
Poulsen, Andreas Trier; Kamronn, Simon; Dmochowski, Jacek; Parra, Lucas C.; Hansen, Lars Kai
2017-01-01
We performed simultaneous recordings of electroencephalography (EEG) from multiple students in a classroom, and measured the inter-subject correlation (ISC) of activity evoked by a common video stimulus. The neural reliability, as quantified by ISC, has been linked to engagement and attentional modulation in earlier studies that used high-grade equipment in laboratory settings. Here we reproduce many of the results from these studies using portable low-cost equipment, focusing on the robustness of using ISC for subjects experiencing naturalistic stimuli. The present data shows that stimulus-evoked neural responses, known to be modulated by attention, can be tracked for groups of students with synchronized EEG acquisition. This is a step towards real-time inference of engagement in the classroom. PMID:28266588
EEG in the classroom: Synchronised neural recordings during video presentation
NASA Astrophysics Data System (ADS)
Poulsen, Andreas Trier; Kamronn, Simon; Dmochowski, Jacek; Parra, Lucas C.; Hansen, Lars Kai
2017-03-01
We performed simultaneous recordings of electroencephalography (EEG) from multiple students in a classroom, and measured the inter-subject correlation (ISC) of activity evoked by a common video stimulus. The neural reliability, as quantified by ISC, has been linked to engagement and attentional modulation in earlier studies that used high-grade equipment in laboratory settings. Here we reproduce many of the results from these studies using portable low-cost equipment, focusing on the robustness of using ISC for subjects experiencing naturalistic stimuli. The present data shows that stimulus-evoked neural responses, known to be modulated by attention, can be tracked for groups of students with synchronized EEG acquisition. This is a step towards real-time inference of engagement in the classroom.
Tang, Dandan; Hu, Li; Lei, Yi; Li, Hong; Chen, Antao
2015-01-01
Conflicts between target and distraction can occur at the level of both stimulus and response processing. However, the neural oscillations underlying occurrence of the interference in different levels have not been understood well. Here, we reveal such a neural oscillation modulation by combining a 4:2 mapping design (two targets are mapped into one response key) with a practice paradigm (pretest, practice, and posttest) when healthy human participants were performing a novel color-word flanker task. Response time (RT) results revealed constant stimulus conflict (SC, stimulus incongruent minus congruent, SI-CO) but increased response conflict (RC, response incongruent minus stimulus incongruent, RI-SI) with practice. Event-related potential (ERP) results demonstrated stable P3 amplitude differences for the SI-CO in the centro-parietal region across practice, which may reflect maintenance of the stimulus processing; and significantly larger P3 amplitudes in the same region for the RI relative to SI trial type in posttest, which may reflect inhibition of the distraction response. Further, neural oscillatory results showed that with practice, the lower alpha band in the frontal region and the upper alpha band in the occipital-parietal region distinguished between stimulus- and response-conflicts, respectively, suggesting that practice reduces the alertness (sensitiveness) of the brain to conflict occurrence, and enhances stimulus-response associations. PMID:26300758
The Role of Temporal Disparity on Audiovisual Integration in Low-Vision Individuals.
Targher, Stefano; Micciolo, Rocco; Occelli, Valeria; Zampini, Massimiliano
2017-12-01
Recent findings have shown that sounds improve visual detection in low vision individuals when the audiovisual stimuli pairs of stimuli are presented simultaneously and from the same spatial position. The present study purports to investigate the temporal aspects of the audiovisual enhancement effect previously reported. Low vision participants were asked to detect the presence of a visual stimulus (yes/no task) presented either alone or together with an auditory stimulus at different stimulus onset asynchronies (SOAs). In the first experiment, the sound was presented either simultaneously or before the visual stimulus (i.e., SOAs 0, 100, 250, 400 ms). The results show that the presence of a task-irrelevant auditory stimulus produced a significant visual detection enhancement in all the conditions. In the second experiment, the sound was either synchronized with, or randomly preceded/lagged behind the visual stimulus (i.e., SOAs 0, ± 250, ± 400 ms). The visual detection enhancement was reduced in magnitude and limited only to the synchronous condition and to the condition in which the sound stimulus was presented 250 ms before the visual stimulus. Taken together, the evidence of the present study seems to suggest that audiovisual interaction in low vision individuals is highly modulated by top-down mechanisms.
Behold the Voice of Wrath: Cross-Modal Modulation of Visual Attention by Anger Prosody
ERIC Educational Resources Information Center
Brosch, Tobias; Grandjean, Didier; Sander, David; Scherer, Klaus R.
2008-01-01
Emotionally relevant stimuli are prioritized in human information processing. It has repeatedly been shown that selective spatial attention is modulated by the emotional content of a stimulus. Until now, studies investigating this phenomenon have only examined "within-modality" effects, most frequently using pictures of emotional stimuli to…
Modulation of Automatic Semantic Priming by Feature-Specific Attention Allocation
ERIC Educational Resources Information Center
Spruyt, Adriaan; De Houwer, Jan; Hermans, Dirk
2009-01-01
We argue that the semantic analysis of task-irrelevant stimuli is modulated by feature-specific attention allocation. In line with this hypothesis, we found semantic priming of pronunciation responses to depend upon the extent to which participants focused their attention upon specific semantic stimulus dimensions. In Experiment 1, we examined the…
Dynamic Reweighting of Auditory Modulation Filters.
Joosten, Eva R M; Shamma, Shihab A; Lorenzi, Christian; Neri, Peter
2016-07-01
Sound waveforms convey information largely via amplitude modulations (AM). A large body of experimental evidence has provided support for a modulation (bandpass) filterbank. Details of this model have varied over time partly reflecting different experimental conditions and diverse datasets from distinct task strategies, contributing uncertainty to the bandwidth measurements and leaving important issues unresolved. We adopt here a solely data-driven measurement approach in which we first demonstrate how different models can be subsumed within a common 'cascade' framework, and then proceed to characterize the cascade via system identification analysis using a single stimulus/task specification and hence stable task rules largely unconstrained by any model or parameters. Observers were required to detect a brief change in level superimposed onto random level changes that served as AM noise; the relationship between trial-by-trial noisy fluctuations and corresponding human responses enables targeted identification of distinct cascade elements. The resulting measurements exhibit a dynamic complex picture in which human perception of auditory modulations appears adaptive in nature, evolving from an initial lowpass to bandpass modes (with broad tuning, Q∼1) following repeated stimulus exposure.
A Biophysical Neural Model To Describe Spatial Visual Attention
NASA Astrophysics Data System (ADS)
Hugues, Etienne; José, Jorge V.
2008-02-01
Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We first constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations.
A Biophysical Neural Model To Describe Spatial Visual Attention
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugues, Etienne; Jose, Jorge V.
2008-02-14
Visual scenes have enormous spatial and temporal information that are transduced into neural spike trains. Psychophysical experiments indicate that only a small portion of a spatial image is consciously accessible. Electrophysiological experiments in behaving monkeys have revealed a number of modulations of the neural activity in special visual area known as V4, when the animal is paying attention directly towards a particular stimulus location. The nature of the attentional input to V4, however, remains unknown as well as to the mechanisms responsible for these modulations. We use a biophysical neural network model of V4 to address these issues. We firstmore » constrain our model to reproduce the experimental results obtained for different external stimulus configurations and without paying attention. To reproduce the known neuronal response variability, we found that the neurons should receive about equal, or balanced, levels of excitatory and inhibitory inputs and whose levels are high as they are in in vivo conditions. Next we consider attentional inputs that can induce and reproduce the observed spiking modulations. We also elucidate the role played by the neural network to generate these modulations.« less
Criterion-free measurement of motion transparency perception at different speeds
Rocchi, Francesca; Ledgeway, Timothy; Webb, Ben S.
2018-01-01
Transparency perception often occurs when objects within the visual scene partially occlude each other or move at the same time, at different velocities across the same spatial region. Although transparent motion perception has been extensively studied, we still do not understand how the distribution of velocities within a visual scene contribute to transparent perception. Here we use a novel psychophysical procedure to characterize the distribution of velocities in a scene that give rise to transparent motion perception. To prevent participants from adopting a subjective decision criterion when discriminating transparent motion, we used an “odd-one-out,” three-alternative forced-choice procedure. Two intervals contained the standard—a random-dot-kinematogram with dot speeds or directions sampled from a uniform distribution. The other interval contained the comparison—speeds or directions sampled from a distribution with the same range as the standard, but with a notch of different widths removed. Our results suggest that transparent motion perception is driven primarily by relatively slow speeds, and does not emerge when only very fast speeds are present within a visual scene. Transparent perception of moving surfaces is modulated by stimulus-based characteristics, such as the separation between the means of the overlapping distributions or the range of speeds presented within an image. Our work illustrates the utility of using objective, forced-choice methods to reveal the mechanisms underlying motion transparency perception. PMID:29614154
Temporal prediction errors modulate task-switching performance.
Limongi, Roberto; Silva, Angélica M; Góngora-Costa, Begoña
2015-01-01
We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus' onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as "executive control" is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.
Suppression of Striatal Prediction Errors by the Prefrontal Cortex in Placebo Hypoalgesia.
Schenk, Lieven A; Sprenger, Christian; Onat, Selim; Colloca, Luana; Büchel, Christian
2017-10-04
Classical learning theories predict extinction after the discontinuation of reinforcement through prediction errors. However, placebo hypoalgesia, although mediated by associative learning, has been shown to be resistant to extinction. We tested the hypothesis that this is mediated by the suppression of prediction error processing through the prefrontal cortex (PFC). We compared pain modulation through treatment cues (placebo hypoalgesia, treatment context) with pain modulation through stimulus intensity cues (stimulus context) during functional magnetic resonance imaging in 48 male and female healthy volunteers. During acquisition, our data show that expectations are correctly learned and that this is associated with prediction error signals in the ventral striatum (VS) in both contexts. However, in the nonreinforced test phase, pain modulation and expectations of pain relief persisted to a larger degree in the treatment context, indicating that the expectations were not correctly updated in the treatment context. Consistently, we observed significantly stronger neural prediction error signals in the VS in the stimulus context compared with the treatment context. A connectivity analysis revealed negative coupling between the anterior PFC and the VS in the treatment context, suggesting that the PFC can suppress the expression of prediction errors in the VS. Consistent with this, a participant's conceptual views and beliefs about treatments influenced the pain modulation only in the treatment context. Our results indicate that in placebo hypoalgesia contextual treatment information engages prefrontal conceptual processes, which can suppress prediction error processing in the VS and lead to reduced updating of treatment expectancies, resulting in less extinction of placebo hypoalgesia. SIGNIFICANCE STATEMENT In aversive and appetitive reinforcement learning, learned effects show extinction when reinforcement is discontinued. This is thought to be mediated by prediction errors (i.e., the difference between expectations and outcome). Although reinforcement learning has been central in explaining placebo hypoalgesia, placebo hypoalgesic effects show little extinction and persist after the discontinuation of reinforcement. Our results support the idea that conceptual treatment beliefs bias the neural processing of expectations in a treatment context compared with a more stimulus-driven processing of expectations with stimulus intensity cues. We provide evidence that this is associated with the suppression of prediction error processing in the ventral striatum by the prefrontal cortex. This provides a neural basis for persisting effects in reinforcement learning and placebo hypoalgesia. Copyright © 2017 the authors 0270-6474/17/379715-09$15.00/0.
Objective and automated measurement of dynamic vision functions
NASA Technical Reports Server (NTRS)
Flom, M. C.; Adams, A. J.
1976-01-01
A phoria stimulus array and electro-oculographic (EOG) arrangements for measuring motor and sensory responses of subjects subjected to stress or drug conditions are described, along with experimental procedures. Heterophoria (as oculomotor function) and glare recovery time (time required for photochemical and neural recovery after exposure to a flash stimulus) are measured, in research aimed at developing automated objective measurement of dynamic vision functions. Onset of involuntary optokinetic nystagmus in subjects attempting to track moving stripes (while viewing through head-mounted binocular eyepieces) after exposure to glare serves as an objective measure of glare recovery time.
Moving an In-Class Module Online: A Case Study for Chemistry
ERIC Educational Resources Information Center
Seery, Michael K.
2012-01-01
This article summarises the author's experiences in running a module "Computers for Chemistry" entirely online for the past four years. The module, previously taught in a face-to-face environment, was reconfigured for teaching in an online environment. The rationale for moving online along with the design, implementation and evaluation of the…
Investigating local network interactions underlying first- and second-order processing.
Ellemberg, Dave; Allen, Harriet A; Hess, Robert F
2004-01-01
We compared the spatial lateral interactions for first-order cues to those for second-order cues, and investigated spatial interactions between these two types of cues. We measured the apparent modulation depth of a target Gabor at fixation, in the presence and the absence of horizontally flanking Gabors. The Gabors' gratings were either added to (first-order) or multiplied with (second-order) binary 2-D noise. Apparent "contrast" or modulation depth (i.e., the perceived difference between the high and low luminance regions for the first-order stimulus, or between the high and low contrast regions for the second-order stimulus) was measured with a modulation depth-matching paradigm. For each observer, the first- and second-order Gabors were equated for apparent modulation depth without the flankers. Our results indicate that at the smallest inter-element spacing, the perceived reduction in modulation depth is significantly smaller for the second-order than for the first-order stimuli. Further, lateral interactions operate over shorter distances and the spatial frequency and orientation tuning of the suppression effect are broader for second- than first-order stimuli. Finally, first- and second-order information interact in an asymmetrical fashion; second-order flankers do not reduce the apparent modulation depth of the first-order target, whilst first-order flankers reduce the apparent modulation depth of the second-order target.
Hoppe, Katharina; Küper, Kristina; Wascher, Edmund
2017-01-01
In the Simon task, participants respond faster when the task-irrelevant stimulus position and the response position are corresponding, for example on the same side, compared to when they have a non-corresponding relation. Interestingly, this Simon effect is reduced after non-corresponding trials. Such sequential effects can be explained in terms of a more focused processing of the relevant stimulus dimension due to increased cognitive control, which transfers from the previous non-corresponding trial (conflict adaptation effects). Alternatively, sequential modulations of the Simon effect can also be due to the degree of trial-to-trial repetitions and alternations of task features, which is confounded with the correspondence sequence (feature integration effects). In the present study, we used a spatially two-dimensional Simon task with vertical response keys to examine the contribution of adaptive cognitive control and feature integration processes to the sequential modulation of the Simon effect. The two-dimensional Simon task creates correspondences in the vertical as well as in the horizontal dimension. A trial-by-trial alternation of the spatial dimension, for example from a vertical to a horizontal stimulus presentation, generates a subset containing no complete repetitions of task features, but only complete alternations and partial repetitions, which are equally distributed over all correspondence sequences. In line with the assumed feature integration effects, we found sequential modulations of the Simon effect only when the spatial dimension repeated. At least for the horizontal dimension, this pattern was confirmed by the parietal P3b, an event-related potential that is assumed to reflect stimulus–response link processes. Contrary to conflict adaptation effects, cognitive control, measured by the fronto-central N2 component of the EEG, was not sequentially modulated. Overall, our data provide behavioral as well as electrophysiological evidence for feature integration effects contributing to sequential modulations of the Simon effect. PMID:28713305
A Unifying Motif for Spatial and Directional Surround Suppression.
Liu, Liu D; Miller, Kenneth D; Pack, Christopher C
2018-01-24
In the visual system, the response to a stimulus in a neuron's receptive field can be modulated by stimulus context, and the strength of these contextual influences vary with stimulus intensity. Recent work has shown how a theoretical model, the stabilized supralinear network (SSN), can account for such modulatory influences, using a small set of computational mechanisms. Although the predictions of the SSN have been confirmed in primary visual cortex (V1), its computational principles apply with equal validity to any cortical structure. We have therefore tested the generality of the SSN by examining modulatory influences in the middle temporal area (MT) of the macaque visual cortex, using electrophysiological recordings and pharmacological manipulations. We developed a novel stimulus that can be adjusted parametrically to be larger or smaller in the space of all possible motion directions. We found, as predicted by the SSN, that MT neurons integrate across motion directions for low-contrast stimuli, but that they exhibit suppression by the same stimuli when they are high in contrast. These results are analogous to those found in visual cortex when stimulus size is varied in the space domain. We further tested the mechanisms of inhibition using pharmacological manipulations of inhibitory efficacy. As predicted by the SSN, local manipulation of inhibitory strength altered firing rates, but did not change the strength of surround suppression. These results are consistent with the idea that the SSN can account for modulatory influences along different stimulus dimensions and in different cortical areas. SIGNIFICANCE STATEMENT Visual neurons are selective for specific stimulus features in a region of visual space known as the receptive field, but can be modulated by stimuli outside of the receptive field. The SSN model has been proposed to account for these and other modulatory influences, and tested in V1. As this model is not specific to any particular stimulus feature or brain region, we wondered whether similar modulatory influences might be observed for other stimulus dimensions and other regions. We tested for specific patterns of modulatory influences in the domain of motion direction, using electrophysiological recordings from MT. Our data confirm the predictions of the SSN in MT, suggesting that the SSN computations might be a generic feature of sensory cortex. Copyright © 2018 the authors 0270-6474/18/380989-11$15.00/0.
EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.
Cohen, Michael X; Ridderinkhof, K Richard
2013-01-01
Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.
The effect of positive affect on conflict resolution: Modulated by approach-motivational intensity.
Liu, Ya; Wang, Zhenhong; Quan, Sixiang; Li, Mingjun
2017-01-01
The motivational dimensional model of affect proposes that the influence of positive affect on cognitive processing is modulated by approach-motivational intensity. The present research extended this model by examining the influence of positive affect varying in approach-motivational intensity on conflict resolution-the ability to resolve interference from task-irrelevant distractors in order to focus on the target. The global-local task (Experiment 1) and letter-Flanker task (Experiment 2) were used to measure conflict resolution. Additionally, the 4:2 mapping design that assigns two kinds of task-relevant stimuli to one response key and two more to another response key was used in these two tasks to dissociate stimulus and response conflict. Results showed that positive affect varying in approach motivation had opposite influences on conflict resolution. The opposite influences are primarily reflected in low approach-motivated positive affect impairing, while high approach-motivated positive affect facilitating the resolution of response conflict. Conversely, the stimulus conflict was slightly influenced. These findings highlight the utility of distinguishing stimulus and response conflict in future research.
Perceptual salience does not influence emotional arousal's impairing effects on top-down attention.
Sutherland, Matthew R; McQuiggan, Douglas A; Ryan, Jennifer D; Mather, Mara
2017-06-01
Emotional arousal impairs top-down attentional control while strengthening bottom-up attentional biases. In this study, we examined whether top-down impairments due to arousal can be modulated by increasing the perceptual salience of the target stimulus. To examine this question, we briefly displayed positive and negative arousing images prior to the encoding of 2 emotionally neutral items, 1 of which was to be remembered and 1 of which was perceptually salient (the to-be-remembered and the salient items were either the same item or different items). Eye tracking was used to measure attention biases during the encoding of the 2 competing neutral items, as well as to measure pupillary responses to the preceding modulator image. Viewing emotional images, regardless of valence, impaired top-down attention to animate stimulus targets (i.e., animals), regardless of perceptual salience. However, these effects on encoding had no influence on recognition memory. Taken together, these findings reveal that exposure to emotionally arousing images impairs top-down attention to animate stimuli, regardless of whether that stimulus is perceptually salient. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Bell, Brittany A; Phan, Mimi L; Vicario, David S
2015-03-01
How do social interactions form and modulate the neural representations of specific complex signals? This question can be addressed in the songbird auditory system. Like humans, songbirds learn to vocalize by imitating tutors heard during development. These learned vocalizations are important in reproductive and social interactions and in individual recognition. As a model for the social reinforcement of particular songs, male zebra finches were trained to peck for a food reward in response to one song stimulus (GO) and to withhold responding for another (NoGO). After performance reached criterion, single and multiunit neural responses to both trained and novel stimuli were obtained from multiple electrodes inserted bilaterally into two songbird auditory processing areas [caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM)] of awake, restrained birds. Neurons in these areas undergo stimulus-specific adaptation to repeated song stimuli, and responses to familiar stimuli adapt more slowly than to novel stimuli. The results show that auditory responses differed in NCM and CMM for trained (GO and NoGO) stimuli vs. novel song stimuli. When subjects were grouped by the number of training days required to reach criterion, fast learners showed larger neural responses and faster stimulus-specific adaptation to all stimuli than slow learners in both areas. Furthermore, responses in NCM of fast learners were more strongly left-lateralized than in slow learners. Thus auditory responses in these sensory areas not only encode stimulus familiarity, but also reflect behavioral reinforcement in our paradigm, and can potentially be modulated by social interactions. Copyright © 2015 the American Physiological Society.
A theta rhythm in macaque visual cortex and its attentional modulation
Spyropoulos, Georgios; Fries, Pascal
2018-01-01
Theta rhythms govern rodent sniffing and whisking, and human language processing. Human psychophysics suggests a role for theta also in visual attention. However, little is known about theta in visual areas and its attentional modulation. We used electrocorticography (ECoG) to record local field potentials (LFPs) simultaneously from areas V1, V2, V4, and TEO of two macaque monkeys performing a selective visual attention task. We found a ≈4-Hz theta rhythm within both the V1–V2 and the V4–TEO region, and theta synchronization between them, with a predominantly feedforward directed influence. ECoG coverage of large parts of these regions revealed a surprising spatial correspondence between theta and visually induced gamma. Furthermore, gamma power was modulated with theta phase. Selective attention to the respective visual stimulus strongly reduced these theta-rhythmic processes, leading to an unusually strong attention effect for V1. Microsaccades (MSs) were partly locked to theta. However, neuronal theta rhythms tended to be even more pronounced for epochs devoid of MSs. Thus, we find an MS-independent theta rhythm specific to visually driven parts of V1–V2, which rhythmically modulates local gamma and entrains V4–TEO, and which is strongly reduced by attention. We propose that the less theta-rhythmic and thereby more continuous processing of the attended stimulus serves the exploitation of this behaviorally most relevant information. The theta-rhythmic and thereby intermittent processing of the unattended stimulus likely reflects the ecologically important exploration of less relevant sources of information. PMID:29848632
Stimulus appraisal modulates cardiac reactivity to briefly presented mutilation pictures.
Mocaiber, Izabela; Perakakis, Pandelis; Pereira, Mirtes Garcia; Pinheiro, Walter Machado; Volchan, Eliane; de Oliveira, Letícia; Vila, Jaime
2011-09-01
Emotional reactions to threatening situations can be either advantageous for human adaptation or unfavorable for physical and mental health if sustained over prolonged periods of time. These contrasting effects mostly depend on the individual's capacity for emotion regulation. It has been shown, for example, that changing appraisal can alter the course of emotional processing. In the present study, the influence of stimulus appraisal over cardiac reactivity to briefly presented (200ms) mutilation pictures was tested in the context of an affective classification task. Heart rate and reaction time of twenty-four undergraduate students were monitored during the presentation of pictures (neutral or mutilated bodies) in successive blocks. In one condition (real), participants were told that the pictures depicted real events. In the other condition (fictitious), they were told that the pictures were taken from movie scenes. As expected, the results showed a more pronounced bradycardia to mutilation pictures, in comparison to neural pictures, in the real context. In the fictitious context, a significant attenuation of the emotional modulation (defensive bradycardia) was observed. However, this attenuation seemed to be transient because it was only observed in the first presentation block of the fictitious context. Reaction time to classify mutilation pictures, compared to neutral pictures, was slower in both contexts, reflecting the privileged processing of emotionally laden material. The present findings show that even briefly presented mutilation pictures elicit a differential cardiac reactivity and modulate behavioral performance. Importantly, changing stimulus appraisal attenuates the emotional modulation of cardiac reactivity (defensive bradycardia). Copyright © 2011 Elsevier B.V. All rights reserved.
Herbert, Cornelia; Platte, Petra; Wiemer, Julian; Macht, Michael; Blumenthal, Terry D
2014-08-01
People differ in both their sensitivity for bitter taste and their tendency to respond to emotional stimuli with approach or avoidance. The present study investigated the relationship between these sensitivities in an affective picture paradigm with startle responding. Emotion-induced changes in arousal and attention (pupil modulation), priming of approach and avoidance behavior (startle reflex modulation), and subjective evaluations (ratings) were examined. Sensitivity for bitter taste was assessed with the 6-n-propylthiouracil (PROP)-sensitivity test, which discriminated individuals who were highly sensitive to PROP compared to NaCl (PROP-tasters) and those who were less sensitive or insensitive to the bitter taste of PROP. Neither pupil responses nor picture ratings differed between the two taster groups. The startle eye blink response, however, significantly differentiated PROP-tasters from PROP-insensitive subjects. Facilitated response priming to emotional stimuli emerged in PROP-tasters but not in PROP-insensitive subjects at shorter startle lead intervals (200-300ms between picture onset and startle stimulus onset). At longer lead intervals (3-4.5s between picture onset and startle stimulus onset) affective startle modulation did not differ between the two taster groups. This implies that in PROP-sensitive individuals action tendencies of approach or avoidance are primed immediately after emotional stimulus exposure. These results suggest a link between PROP taste perception and biologically relevant patterns of emotional responding. Direct perception-action links have been proposed to underlie motivational priming effects of the startle reflex, and the present results extend these to the sensory dimension of taste. Copyright © 2014 Elsevier Inc. All rights reserved.
Temporal properties of responses to sound in the ventral nucleus of the lateral lemniscus.
Recio-Spinoso, Alberto; Joris, Philip X
2014-02-01
Besides the rapid fluctuations in pressure that constitute the "fine structure" of a sound stimulus, slower fluctuations in the sound's envelope represent an important temporal feature. At various stages in the auditory system, neurons exhibit tuning to envelope frequency and have been described as modulation filters. We examine such tuning in the ventral nucleus of the lateral lemniscus (VNLL) of the pentobarbital-anesthetized cat. The VNLL is a large but poorly accessible auditory structure that provides a massive inhibitory input to the inferior colliculus. We test whether envelope filtering effectively applies to the envelope spectrum when multiple envelope components are simultaneously present. We find two broad classes of response with often complementary properties. The firing rate of onset neurons is tuned to a band of modulation frequencies, over which they also synchronize strongly to the envelope waveform. Although most sustained neurons show little firing rate dependence on modulation frequency, some of them are weakly tuned. The latter neurons are usually band-pass or low-pass tuned in synchronization, and a reverse-correlation approach demonstrates that their modulation tuning is preserved to nonperiodic, noisy envelope modulations of a tonal carrier. Modulation tuning to this type of stimulus is weaker for onset neurons. In response to broadband noise, sustained and onset neurons tend to filter out envelope components over a frequency range consistent with their modulation tuning to periodically modulated tones. The results support a role for VNLL in providing temporal reference signals to the auditory midbrain.
Utility-based early modulation of processing distracting stimulus information.
Wendt, Mike; Luna-Rodriguez, Aquiles; Jacobsen, Thomas
2014-12-10
Humans are selective information processors who efficiently prevent goal-inappropriate stimulus information to gain control over their actions. Nonetheless, stimuli, which are both unnecessary for solving a current task and liable to cue an incorrect response (i.e., "distractors"), frequently modulate task performance, even when consistently paired with a physical feature that makes them easily discernible from target stimuli. Current models of cognitive control assume adjustment of the processing of distractor information based on the overall distractor utility (e.g., predictive value regarding the appropriate response, likelihood to elicit conflict with target processing). Although studies on distractor interference have supported the notion of utility-based processing adjustment, previous evidence is inconclusive regarding the specificity of this adjustment for distractor information and the stage(s) of processing affected. To assess the processing of distractors during sensory-perceptual phases we applied EEG recording in a stimulus identification task, involving successive distractor-target presentation, and manipulated the overall distractor utility. Behavioral measures replicated previously found utility modulations of distractor interference. Crucially, distractor-evoked visual potentials (i.e., posterior N1) were more pronounced in high-utility than low-utility conditions. This effect generalized to distractors unrelated to the utility manipulation, providing evidence for item-unspecific adjustment of early distractor processing to the experienced utility of distractor information. Copyright © 2014 the authors 0270-6474/14/3416720-06$15.00/0.
Deconstructing Interocular Suppression: Attention and Divisive Normalization
Li, Hsin-Hung; Carrasco, Marisa; Heeger, David J.
2015-01-01
In interocular suppression, a suprathreshold monocular target can be rendered invisible by a salient competitor stimulus presented in the other eye. Despite decades of research on interocular suppression and related phenomena (e.g., binocular rivalry, flash suppression, continuous flash suppression), the neural processing underlying interocular suppression is still unknown. We developed and tested a computational model of interocular suppression. The model included two processes that contributed to the strength of interocular suppression: divisive normalization and attentional modulation. According to the model, the salient competitor induced a stimulus-driven attentional modulation selective for the location and orientation of the competitor, thereby increasing the gain of neural responses to the competitor and reducing the gain of neural responses to the target. Additional suppression was induced by divisive normalization in the model, similar to other forms of visual masking. To test the model, we conducted psychophysics experiments in which both the size and the eye-of-origin of the competitor were manipulated. For small and medium competitors, behavioral performance was consonant with a change in the response gain of neurons that responded to the target. But large competitors induced a contrast-gain change, even when the competitor was split between the two eyes. The model correctly predicted these results and outperformed an alternative model in which the attentional modulation was eye specific. We conclude that both stimulus-driven attention (selective for location and feature) and divisive normalization contribute to interocular suppression. PMID:26517321
Deconstructing Interocular Suppression: Attention and Divisive Normalization.
Li, Hsin-Hung; Carrasco, Marisa; Heeger, David J
2015-10-01
In interocular suppression, a suprathreshold monocular target can be rendered invisible by a salient competitor stimulus presented in the other eye. Despite decades of research on interocular suppression and related phenomena (e.g., binocular rivalry, flash suppression, continuous flash suppression), the neural processing underlying interocular suppression is still unknown. We developed and tested a computational model of interocular suppression. The model included two processes that contributed to the strength of interocular suppression: divisive normalization and attentional modulation. According to the model, the salient competitor induced a stimulus-driven attentional modulation selective for the location and orientation of the competitor, thereby increasing the gain of neural responses to the competitor and reducing the gain of neural responses to the target. Additional suppression was induced by divisive normalization in the model, similar to other forms of visual masking. To test the model, we conducted psychophysics experiments in which both the size and the eye-of-origin of the competitor were manipulated. For small and medium competitors, behavioral performance was consonant with a change in the response gain of neurons that responded to the target. But large competitors induced a contrast-gain change, even when the competitor was split between the two eyes. The model correctly predicted these results and outperformed an alternative model in which the attentional modulation was eye specific. We conclude that both stimulus-driven attention (selective for location and feature) and divisive normalization contribute to interocular suppression.
Huebl, Julius; Brücke, Christof; Merkl, Angela; Bajbouj, Malek; Schneider, Gerd-Helge
2016-01-01
Deep brain stimulation (DBS) of the subgenual anterior cingulate cortex (sgACC) has emerged as a new therapeutic option in patients with treatment resistant depression (TRD). At the same time, DBS offers a unique opportunity as an innovative research tool to study brain function in vivo. Indirect measures of brain function such as positron-emission-tomography imaging findings have revealed a hypermetabolism in the sgACC area in patients with TRD that normalizes in parallel with treatment response to DBS. We used direct intracranial recordings via implanted DBS electrodes to study the neuronal oscillatory activity in the sgACC area during a picture viewing task including emotional and neutral stimuli in eight patients with TRD who underwent DBS. We found a stimulus-induced decrease in beta-band and increase in gamma-band activity, with a main effect of valence for event-related desynchronisation in the beta-frequency range (14–30 Hz). Unpleasant stimuli induced the strongest and most sustained beta-power decrease. The degree of beta-band modulation upon emotional stimuli correlated with the patients’ rating of stimulus valence. Our findings confirm the involvement of the sgACC area in emotional processing that was more enhanced for unpleasant stimuli. Moreover, stimulus evaluation may be encoded by modulations of beta-band activity. PMID:27013105
2017-11-17
Technicians in clean-room suits attach a crane to the Orion crew module for Exploration Mission-1 for its move to the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. Orion will be lifted out of a test stand and lowered onto another stand to for the move. The crew module will undergo a thermal cycle test to assess the workmanship of critical hardware and structural locations. The test also demonstrates crew module subsystem operations in a thermally stressing environment to confirm no damage or anomalous hardware conditions as a result of the test. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.
Station Module Move in 4K Video Resolution
2015-06-09
Robotics flight controllers in Mission Control Houston and Canada detached the large Permanent Multipurpose Module (PMM), used as a supply depot on the orbital laboratory, from the Earth-facing port of the Unity module and robotically relocated it to the forward port of the Tranquility module. This move cleared the Unity port for its conversion into the spare berthing location for U.S. cargo spacecraft; the Earth-facing port on Harmony is the primary docking location. Harmony’s space-facing port currently is the spare berthing location for cargo vehicles, so this move frees that location to be used in conjunction with Harmony’s forward port as the arrival locations for commercial crew spacecraft.
Learning and recognition of tactile temporal sequences by mice and humans
Bale, Michael R; Bitzidou, Malamati; Pitas, Anna; Brebner, Leonie S; Khazim, Lina; Anagnou, Stavros T; Stevenson, Caitlin D; Maravall, Miguel
2017-01-01
The world around us is replete with stimuli that unfold over time. When we hear an auditory stream like music or speech or scan a texture with our fingertip, physical features in the stimulus are concatenated in a particular order. This temporal patterning is critical to interpreting the stimulus. To explore the capacity of mice and humans to learn tactile sequences, we developed a task in which subjects had to recognise a continuous modulated noise sequence delivered to whiskers or fingertips, defined by its temporal patterning over hundreds of milliseconds. GO and NO-GO sequences differed only in that the order of their constituent noise modulation segments was temporally scrambled. Both mice and humans efficiently learned tactile sequences. Mouse sequence recognition depended on detecting transitions in noise amplitude; animals could base their decision on the earliest information available. Humans appeared to use additional cues, including the duration of noise modulation segments. DOI: http://dx.doi.org/10.7554/eLife.27333.001 PMID:28812976
Atkins, Norman; Ren, Shifang; Hatcher, Nathan; Burgoon, Penny W; Mitchell, Jennifer W; Sweedler, Jonathan V; Gillette, Martha U
2018-06-20
Daily oscillations of brain and body states are under complex temporal modulation by environmental light and the hypothalamic suprachiasmatic nucleus (SCN), the master circadian clock. To better understand mediators of differential temporal modulation, we characterize neuropeptide releasate profiles by nonselective capture of secreted neuropeptides in an optic nerve horizontal SCN brain slice model. Releasates are collected following electrophysiological stimulation of the optic nerve/retinohypothalamic tract under conditions that alter the phase of the SCN activity state. Secreted neuropeptides are identified by intact mass via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We found time-of-day-specific suites of peptides released downstream of optic nerve stimulation. Peptide release was modified differentially with respect to time-of-day by stimulus parameters and by inhibitors of glutamatergic or PACAPergic neurotransmission. The results suggest that SCN physiology is modulated by differential peptide release of both known and unexpected peptides that communicate time-of-day-specific photic signals via previously unreported neuropeptide signatures.
Yao, Dezhong; Tang, Yu; Huang, Yilan; Su, Sheng
2009-01-01
Previous studies have shown that the amplitude and phase of the steady-state visual-evoked potential (SSVEP) can be influenced by a cognitive task, yet the mechanism of this influence has not been understood. As the event-related potential (ERP) is the direct neural electric response to a cognitive task, studying the relationship between the SSVEP and ERP would be meaningful in understanding this underlying mechanism. In this work, the traditional average method was applied to extract the ERP directly, following the stimulus of a working memory task, while a technique named steady-state probe topography was utilized to estimate the SSVEP under the simultaneous stimulus of an 8.3-Hz flicker and a working memory task; a comparison between the ERP and SSVEP was completed. The results show that the ERP can modulate the SSVEP amplitude, and for regions where both SSVEP and ERP are strong, the modulation depth is large. PMID:19960240
Spapé, M M; Harjunen, Ville; Ravaja, N
2017-03-01
Being touched is known to affect emotion, and even a casual touch can elicit positive feelings and affinity. Psychophysiological studies have recently shown that tactile primes affect visual evoked potentials to emotional stimuli, suggesting altered affective stimulus processing. As, however, these studies approached emotion from a purely unidimensional perspective, it remains unclear whether touch biases emotional evaluation or a more general feature such as salience. Here, we investigated how simple tactile primes modulate event related potentials (ERPs), facial EMG and cardiac response to pictures of facial expressions of emotion. All measures replicated known effects of emotional face processing: Disgust and fear modulated early ERPs, anger increased the cardiac orienting response, and expressions elicited emotion-congruent facial EMG activity. Tactile primes also affected these measures, but priming never interacted with the type of emotional expression. Thus, touch may additively affect general stimulus processing, but it does not bias or modulate immediate affective evaluation. Copyright © 2017. Published by Elsevier B.V.
Practice-induced and sequential modulations of the Simon effect.
Soetens, Eric; Maetens, Kathleen; Zeischka, Peter
2010-05-01
People react more quickly and more accurately to stimuli presented in locations corresponding to the response, as compared with noncorresponding locations, even when stimulus location is irrelevant (Simon effect [SE]). The explanation that SEs are caused by the automatic priming of a corresponding response has been questioned, because of the many exceptions to the effect. We replicated practice-induced and sequential modulations of the SE in two experiments--first, by training participants with blocks of location-relevant stimuli, and second, by mixing location-relevant and location-irrelevant trials. The decrease of the SE with incompatible training was relatively permanent in the blocked experiment, whereas the effect was temporary in the mixed experiment. The difference was caused by a more permanent reversal of the SE after incongruent trials, showing that sequential modulations depend on long-term practice effects. We suggest that there is a formation of a contralateral long-term memory stimulus-response link in blocked conditions and that short-term and long-term memory links are primed by preceding events.
Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices
Sprague, Thomas C.; Serences, John T.
2014-01-01
Computational theories propose that attention modulates the topographical landscape of spatial ‘priority’ maps in regions of visual cortex so that the location of an important object is associated with higher activation levels. While single-unit recording studies have demonstrated attention-related increases in the gain of neural responses and changes in the size of spatial receptive fields, the net effect of these modulations on the topography of region-level priority maps has not been investigated. Here, we used fMRI and a multivariate encoding model to reconstruct spatial representations of attended and ignored stimuli using activation patterns across entire visual areas. These reconstructed spatial representations reveal the influence of attention on the amplitude and size of stimulus representations within putative priority maps across the visual hierarchy. Our results suggest that attention increases the amplitude of stimulus representations in these spatial maps, particularly in higher visual areas, but does not substantively change their size. PMID:24212672
Tanaka, T; Kojima, S; Takeda, H; Ino, S; Ifukube, T
2001-12-15
The maintenance of postural balance depends on effective and efficient feedback from various sensory inputs. The importance of auditory inputs in this respect is not, as yet, fully understood. The purpose of this study was to analyse how the moving auditory stimuli could affect the standing balance in healthy adults of different ages. The participants of the study were 12 healthy volunteers, who were divided into two age categories: the young group (mean = 21.9 years) and the elderly group (mean = 68.9 years). The instrument used for evaluation of standing balance was a force plate for measuring body sway parameters. The toe pressure was measured using the F-scan Tactile Sensor System. The moving auditory stimulus produced a white-noise sound and binaural cue using the Beachtron Affordable 3D Audio system. The moving auditory stimulus conditions were employed by having the sound come from the right to left or vice versa at the height of the participant's ears. Participants were asked to stand on the force plate in the Romberg position for 20 s with either eyes opened or eyes closed for analysing the effect of visual input. Simultaneously, all participants tried to remain in the standing position with and without auditory stimulation that the participants heard from the headphone. In addition, the variables of body sway were measured under four conditions for analysing the effect of decreased tactile sensation of toes and feet soles: standing on the normal surface (NS) or soft surface (SS) with and without auditory stimulation. The participants were asked to stand in a total of eight conditions. The results showed that the lateral body sway of the elderly group was more influenced than that of the young group by the lateral moving auditory stimulation. The analysis of toe pressure indicated that all participants used their left feet more than their right feet to maintain balance. Moreover, the elderly had the tendency to be stabilized mainly by use of their heels. The young group were mainly stabilized by the toes of their feet. The results suggest that the elderly may need a more appropriate stimulus of tactile and auditory sense as a feedback system than the young for maintaining and control of their standing postures.
Conflict Background Triggered Congruency Sequence Effects in Graphic Judgment Task
Zhao, Liang; Wang, Yonghui
2013-01-01
Congruency sequence effects refer to the reduction of congruency effects when following an incongruent trial than following a congruent trial. The conflict monitoring account, one of the most influential contributions to this effect, assumes that the sequential modulations are evoked by response conflict. The present study aimed at exploring the congruency sequence effects in the absence of response conflict. We found congruency sequence effects occurred in graphic judgment task, in which the conflict stimuli acted as irrelevant information. The findings reveal that processing task-irrelevant conflict stimulus features could also induce sequential modulations of interference. The results do not support the interpretation of conflict monitoring and favor a feature integration account that the congruency sequence effects are attributed to the repetitions of stimulus and response features. PMID:23372766
Basic quantitative assessment of visual performance in patients with very low vision.
Bach, Michael; Wilke, Michaela; Wilhelm, Barbara; Zrenner, Eberhart; Wilke, Robert
2010-02-01
A variety of approaches to developing visual prostheses are being pursued: subretinal, epiretinal, via the optic nerve, or via the visual cortex. This report presents a method of comparing their efficacy at genuinely improving visual function, starting at no light perception (NLP). A test battery (a computer program, Basic Assessment of Light and Motion [BaLM]) was developed in four basic visual dimensions: (1) light perception (light/no light), with an unstructured large-field stimulus; (2) temporal resolution, with single versus double flash discrimination; (3) localization of light, where a wedge extends from the center into four possible directions; and (4) motion, with a coarse pattern moving in one of four directions. Two- or four-alternative, forced-choice paradigms were used. The participants' responses were self-paced and delivered with a keypad. The feasibility of the BaLM was tested in 73 eyes of 51 patients with low vision. The light and time test modules discriminated between NLP and light perception (LP). The localization and motion modules showed no significant response for NLP but discriminated between LP and hand movement (HM). All four modules reached their ceilings in the acuity categories higher than HM. BaLM results systematically differed between the very-low-acuity categories NLP, LP, and HM. Light and time yielded similar results, as did localization and motion; still, for assessing the visual prostheses with differing temporal characteristics, they are not redundant. The results suggest that this simple test battery provides a quantitative assessment of visual function in the very-low-vision range from NLP to HM.
Dissociation of binding and learning processes.
Moeller, Birte; Frings, Christian
2017-11-01
A single encounter of a stimulus together with a response can result in a short-lived association between the stimulus and the response [sometimes called an event file, see Hommel, Müsseler, Aschersleben, & Prinz, (2001) Behavioral and Brain Sciences, 24, 910-926]. The repetition of stimulus-response pairings typically results in longer lasting learning effects indicating stimulus-response associations (e.g., Logan & Etherton, (1994) Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1022-1050]. An important question is whether or not what has been described as stimulus-response binding in action control research is actually identical with an early stage of incidental learning (e.g., binding might be seen as single-trial learning). Here, we present evidence that short-lived binding effects can be distinguished from learning of longer lasting stimulus-response associations. In two experiments, participants always responded to centrally presented target letters that were flanked by response irrelevant distractor letters. Experiment 1 varied whether distractors flanked targets on the horizontal or vertical axis. Binding effects were larger for a horizontal than for a vertical distractor-target configuration, while stimulus configuration did not influence incidental learning of longer lasting stimulus-response associations. In Experiment 2, the duration of the interval between response n - 1 and presentation of display n (500 ms vs. 2000 ms) had opposing influences on binding and learning effects. Both experiments indicate that modulating factors influence stimulus-response binding and incidental learning effects in different ways. We conclude that distinct underlying processes should be assumed for binding and incidental learning effects.
Strategic allocation of attention reduces temporally predictable stimulus conflict
Appelbaum, L. Gregory; Boehler, Carsten N.; Won, Robert; Davis, Lauren; Woldorff, Marty G.
2013-01-01
Humans are able to continuously monitor environmental situations and adjust their behavioral strategies to optimize performance. Here we investigate the behavioral and brain adjustments that occur when conflicting stimulus elements are, or are not, temporally predictable. Event-related potentials (ERPs) were collected while manual-response variants of the Stroop task were performed in which the stimulus onset asynchronies (SOAs) between the relevant-color and irrelevant-word stimulus components were either randomly intermixed, or held constant, within each experimental run. Results indicated that the size of both the neural and behavioral effects of stimulus incongruency varied with the temporal arrangement of the stimulus components, such that the random-SOA arrangements produced the greatest incongruency effects at the earliest irrelevant-first SOA (−200 ms) and the constant-SOA arrangements produced the greatest effects with simultaneous presentation. These differences in conflict processing were accompanied by rapid (~150 ms) modulations of the sensory ERPs to the irrelevant distracter components when they occurred consistently first. These effects suggest that individuals are able to strategically allocate attention in time to mitigate the influence of a temporally predictable distracter. As these adjustments are instantiated by the subjects without instruction, they reveal a form of rapid strategic learning for dealing with temporally predictable stimulus incongruency. PMID:22360623
Bode, Stefan; Bennett, Daniel; Sewell, David K; Paton, Bryan; Egan, Gary F; Smith, Philip L; Murawski, Carsten
2018-03-01
According to sequential sampling models, perceptual decision-making is based on accumulation of noisy evidence towards a decision threshold. The speed with which a decision is reached is determined by both the quality of incoming sensory information and random trial-by-trial variability in the encoded stimulus representations. To investigate those decision dynamics at the neural level, participants made perceptual decisions while functional magnetic resonance imaging (fMRI) was conducted. On each trial, participants judged whether an image presented under conditions of high, medium, or low visual noise showed a piano or a chair. Higher stimulus quality (lower visual noise) was associated with increased activation in bilateral medial occipito-temporal cortex and ventral striatum. Lower stimulus quality was related to stronger activation in posterior parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC). When stimulus quality was fixed, faster response times were associated with a positive parametric modulation of activation in medial prefrontal and orbitofrontal cortex, while slower response times were again related to more activation in PPC, DLPFC and insula. Our results suggest that distinct neural networks were sensitive to the quality of stimulus information, and to trial-to-trial variability in the encoded stimulus representations, but that reaching a decision was a consequence of their joint activity. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface.
Ng, Kian B; Bradley, Andrew P; Cunnington, Ross
2012-06-01
The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.
Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface
NASA Astrophysics Data System (ADS)
Ng, Kian B.; Bradley, Andrew P.; Cunnington, Ross
2012-06-01
The mechanisms of neural excitation and inhibition when given a visual stimulus are well studied. It has been established that changing stimulus specificity such as luminance contrast or spatial frequency can alter the neuronal activity and thus modulate the visual-evoked response. In this paper, we study the effect that stimulus specificity has on the classification performance of a steady-state visual-evoked potential-based brain-computer interface (SSVEP-BCI). For example, we investigate how closely two visual stimuli can be placed before they compete for neural representation in the cortex and thus influence BCI classification accuracy. We characterize stimulus specificity using the four stimulus parameters commonly encountered in SSVEP-BCI design: temporal frequency, spatial size, number of simultaneously displayed stimuli and their spatial proximity. By varying these quantities and measuring the SSVEP-BCI classification accuracy, we are able to determine the parameters that provide optimal performance. Our results show that superior SSVEP-BCI accuracy is attained when stimuli are placed spatially more than 5° apart, with size that subtends at least 2° of visual angle, when using a tagging frequency of between high alpha and beta band. These findings may assist in deciding the stimulus parameters for optimal SSVEP-BCI design.
Ponnath, Abhilash; Hoke, Kim L; Farris, Hamilton E
2013-04-01
Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28% of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f=±16%). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45% of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments.
Ponnath, Abhilash; Hoke, Kim L.
2013-01-01
Neural adaptation, a reduction in the response to a maintained stimulus, is an important mechanism for detecting stimulus change. Contributing to change detection is the fact that adaptation is often stimulus specific: adaptation to a particular stimulus reduces excitability to a specific subset of stimuli, while the ability to respond to other stimuli is unaffected. Phasic cells (e.g., cells responding to stimulus onset) are good candidates for detecting the most rapid changes in natural auditory scenes, as they exhibit fast and complete adaptation to an initial stimulus presentation. We made recordings of single phasic auditory units in the frog midbrain to determine if adaptation was specific to stimulus frequency and ear of input. In response to an instantaneous frequency step in a tone, 28 % of phasic cells exhibited frequency specific adaptation based on a relative frequency change (delta-f = ±16 %). Frequency specific adaptation was not limited to frequency steps, however, as adaptation was also overcome during continuous frequency modulated stimuli and in response to spectral transients interrupting tones. The results suggest that adaptation is separated for peripheral (e.g., frequency) channels. This was tested directly using dichotic stimuli. In 45 % of binaural phasic units, adaptation was ear specific: adaptation to stimulation of one ear did not affect responses to stimulation of the other ear. Thus, adaptation exhibited specificity for stimulus frequency and lateralization at the level of the midbrain. This mechanism could be employed to detect rapid stimulus change within and between sound sources in complex acoustic environments. PMID:23344947
How Do Changes in Speed Affect the Perception of Duration?
ERIC Educational Resources Information Center
Matthews, William J.
2011-01-01
Six experiments investigated how changes in stimulus speed influence subjective duration. Participants saw rotating or translating shapes in three conditions: constant speed, accelerating motion, and decelerating motion. The distance moved and average speed were the same in all three conditions. In temporal judgment tasks, the constant-speed…
Vision: a moving hill for spatial updating on the fly.
Stanford, Terrence R
2015-02-02
A recent study reveals a dynamic neural map that provides a continuous representation of remembered visual stimulus locations with respect to constantly changing gaze. This finding suggests a new mechanistic framework for understanding the spatiotemporal dynamics of goal-directed action. Copyright © 2015 Elsevier Ltd. All rights reserved.
Age-related audiovisual interactions in the superior colliculus of the rat.
Costa, M; Piché, M; Lepore, F; Guillemot, J-P
2016-04-21
It is well established that multisensory integration is a functional characteristic of the superior colliculus that disambiguates external stimuli and therefore reduces the reaction times toward simple audiovisual targets in space. However, in a condition where a complex audiovisual stimulus is used, such as the optical flow in the presence of modulated audio signals, little is known about the processing of the multisensory integration in the superior colliculus. Furthermore, since visual and auditory deficits constitute hallmark signs during aging, we sought to gain some insight on whether audiovisual processes in the superior colliculus are altered with age. Extracellular single-unit recordings were conducted in the superior colliculus of anesthetized Sprague-Dawley adult (10-12 months) and aged (21-22 months) rats. Looming circular concentric sinusoidal (CCS) gratings were presented alone and in the presence of sinusoidally amplitude modulated white noise. In both groups of rats, two different audiovisual response interactions were encountered in the spatial domain: superadditive, and suppressive. In contrast, additive audiovisual interactions were found only in adult rats. Hence, superior colliculus audiovisual interactions were more numerous in adult rats (38%) than in aged rats (8%). These results suggest that intersensory interactions in the superior colliculus play an essential role in space processing toward audiovisual moving objects during self-motion. Moreover, aging has a deleterious effect on complex audiovisual interactions. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Jaramillo, Anel A; Agan, Verda E; Makhijani, Viren H; Pedroza, Stephen; McElligott, Zoe A; Besheer, Joyce
2017-09-27
The insular cortex (IC) is a region proposed to modulate, in part, interoceptive states and motivated behavior. Interestingly, IC dysfunction and deficits in interoceptive processing are often found among individuals with substance-use disorders. Furthermore, the IC projects to the nucleus accumbens core (AcbC), a region known to modulate the discriminative stimulus/interoceptive effects of alcohol and other drug-related behaviors. Therefore, the goal of the present work was to investigate the possible role of the IC ➔ AcbC circuit in modulating the interoceptive effects of alcohol. Thus, we utilized a chemogenetic technique (hM4D i designer receptor activation by designer drugs) to silence neuronal activity in the IC of rats trained to discriminate alcohol (1 g/kg, IG) versus water using an operant or Pavlovian alcohol discrimination procedure. Chemogenetic silencing of the IC or IC ➔ AcbC neuronal projections resulted in potentiated sensitivity to the interoceptive effects of alcohol in both the operant and Pavlovian tasks. Together, these data provide critical evidence for the nature of the complex IC circuitry and, specifically, suppression of the insular-striatal circuit in modulating behavior under a drug stimulus control. © 2017 Society for the Study of Addiction.
Neural correlates of olfactory learning paradigms in an identified neuron in the honeybee brain.
Mauelshagen, J
1993-02-01
1. Sensitization and classical odor conditioning of the proboscis extension reflex were functionally analyzed by repeated intracellular recordings from a single identified neuron (PE1-neuron) in the central bee brain. This neuron belongs to the class of "extrinsic cells" arising from the pedunculus of the mushroom bodies and has extensive arborizations in the median and lateral protocerebrum. The recordings were performed on isolated bee heads. 2. Two different series of physiological experiments were carried out with the use of a similar temporal succession of stimuli as in previous behavioral experiments. In the first series, one group of animals was used for a single conditioning trial [conditioned stimulus (CS), carnation; unconditioned stimulus (US), sucrose solution to the antennae and proboscis), a second group was used for sensitization (sensitizing stimulus, sucrose solution to the antennae and/or proboscis), and the third group served as control (no sucrose stimulation). In the second series, a differential conditioning paradigm (paired odor CS+, carnation; unpaired odor CS-, orange blossom) was applied to test the associative nature of the conditioning effect. 3. The PE1-neuron showed a characteristic burstlike odor response before the training procedures. The treatments resulted in different spike-frequency modulations of this response, which were specific for the nonassociative and associative stimulus paradigms applied. During differential conditioning, there are dynamic up and down modulations of spike frequencies and of the DC potentials underlying the responses to the CS+. Overall, only transient changes in the minute range were observed. 4. The results of the sensitization procedures suggest two qualitatively different US pathways. The comparison between sensitization and one-trial conditioning shows differential effects of nonassociative and associative stimulus paradigms on the response behavior of the PE1-neuron. The results of the differential conditioning procedure reveal that the effect observed for the one-trial conditioning paradigm is of an associative nature and that there might be modulations, which are specific for single and multiple trial conditioning procedures. It is hypothesized that the PE1-neuron is a possible element involved in the short-term acquisition, rather than in the long-term storage, of an associative olfactory memory in the honeybee.
Gmeindl, Leon; Nelson, James K.; Wiggin, Timothy; Reuter-Lorenz, Patricia A.
2011-01-01
In what form are multiple spatial locations represented in working memory? The current study revealed that people often maintain the configural properties (inter-item relationships) of visuospatial stimuli even when this information is explicitly task-irrelevant. However, results also indicate that the voluntary allocation of selective attention prior to stimulus presentation, as well as feature-based perceptual segregation of relevant from irrelevant stimuli, can eliminate the influences of stimulus configuration on location change detection performance. In contrast, voluntary attention cued to the relevant target location following presentation of the stimulus array failed to attenuate these influences. Thus, whereas voluntary selective attention can isolate or prevent the encoding of irrelevant stimulus locations and configural properties, people, perhaps due to limitations in attentional resources, reliably fail to isolate or suppress configural representations that have been encoded into working memory. PMID:21761373
NASA Technical Reports Server (NTRS)
Washburn, David A.; Hopkins, William D.; Rumbaugh, Duane M.
1989-01-01
Effects of stimulus movement on learning, transfer, matching, and short-term memory performance were assessed with 2 monkeys using a video-task paradigm in which the animals responded to computer-generated images by manipulating a joystick. Performance on tests of learning set, transfer index, matching to sample, and delayed matching to sample in the video-task paradigm was comparable to that obtained in previous investigations using the Wisconsin General Testing Apparatus. Additionally, learning, transfer, and matching were reliably and significantly better when the stimuli or discriminanda moved than when the stimuli were stationary. External manipulations such as stimulus movement may increase attention to the demands of a task, which in turn should increase the efficiency of learning. These findings have implications for the investigation of learning in other populations, as well as for the application of the video-task paradigm to comparative study.
Spitzer, M W; Semple, M N
1998-12-01
Transformation of binaural response properties in the ascending auditory pathway: influence of time-varying interaural phase disparity. J. Neurophysiol. 80: 3062-3076, 1998. Previous studies demonstrated that tuning of inferior colliculus (IC) neurons to interaural phase disparity (IPD) is often profoundly influenced by temporal variation of IPD, which simulates the binaural cue produced by a moving sound source. To determine whether sensitivity to simulated motion arises in IC or at an earlier stage of binaural processing we compared responses in IC with those of two major IPD-sensitive neuronal classes in the superior olivary complex (SOC), neurons whose discharges were phase locked (PL) to tonal stimuli and those that were nonphase locked (NPL). Time-varying IPD stimuli consisted of binaural beats, generated by presenting tones of slightly different frequencies to the two ears, and interaural phase modulation (IPM), generated by presenting a pure tone to one ear and a phase modulated tone to the other. IC neurons and NPL-SOC neurons were more sharply tuned to time-varying than to static IPD, whereas PL-SOC neurons were essentially uninfluenced by the mode of stimulus presentation. Preferred IPD was generally similar in responses to static and time-varying IPD for all unit populations. A few IC neurons were highly influenced by the direction and rate of simulated motion, but the major effect for most IC neurons and all SOC neurons was a linear shift of preferred IPD at high rates-attributable to response latency. Most IC and NPL-SOC neurons were strongly influenced by IPM stimuli simulating motion through restricted ranges of azimuth; simulated motion through partially overlapping azimuthal ranges elicited discharge profiles that were highly discontiguous, indicating that the response associated with a particular IPD is dependent on preceding portions of the stimulus. In contrast, PL-SOC responses tracked instantaneous IPD throughout the trajectory of simulated motion, resulting in highly contiguous discharge profiles for overlapping stimuli. This finding indicates that responses of PL-SOC units to time-varying IPD reflect only instantaneous IPD with no additional influence of dynamic stimulus attributes. Thus the neuronal representation of auditory spatial information undergoes a major transformation as interaural delay is initially processed in the SOC and subsequently reprocessed in IC. The finding that motion sensitivity in IC emerges from motion-insensitive input suggests that information about change of position is crucial to spatial processing at higher levels of the auditory system.
Joshi, Anand C.; Riley, David E.; Mustari, Michael J.; Cohen, Mark L.; Leigh, R. John
2010-01-01
Smooth ocular tracking of a moving visual stimulus comprises a range of responses that encompass the ocular following response (OFR), a pre-attentive, short-latency mechanism, and smooth pursuit, which directs the retinal fovea at the moving stimulus. In order to determine how interdependent these two forms of ocular tracking are, we studied vertical OFR in progressive supranuclear palsy (PSP), a parkinsonian disorder in which vertical smooth pursuit is known to be impaired. We measured eye movements of 9 patients with PSP and 12 healthy control subjects. Subjects viewed vertically moving sine-wave gratings that had a temporal frequency of 16.7 Hz, contrast of 32%, and spatial frequencies of 0.17, 0.27 or 0.44 cycles/°. We measured OFR amplitude as change in eye position in the 70 – 150 ms, open-loop interval following stimulus onset. Vertical smooth pursuit was studied as subjects attempted to track a 0.27 cycles/° grating moving sinusoidally through several cycles at frequencies between 0.1 – 2.5 Hz. We found that OFR amplitude, and its dependence on spatial frequency, was similar in PSP patients (group mean 0.10°) and control subjects (0.11°), but the latency to onset of OFR was greater for PSP patients (group mean 99 ms) than control subjects (90 ms). When OFR amplitude was re-measured, taking into account the increased latency in PSP patients, there was still no difference from control subjects. We confirmed that smooth pursuit was consistently impaired in PSP; group mean tracking gain at 0.7 Hz was 0.29 for PSP patients and 0.63 for controls. Neither PSP patients nor control subjects showed any correlation between OFR amplitude and smooth-pursuit gain. We propose that OFR is spared because it is generated by low-level motion processing that is dependent on posterior cerebral cortex, which is less affected in PSP. Conversely, smooth pursuit depends more on projections from frontal cortex to the pontine nuclei, both of which are involved in PSP. The accessory optic pathway, which is heavily involved in PSP, seems unlikely to contribute to the OFR in humans. PMID:20123108
Teaching braille line tracking using stimulus fading.
Scheithauer, Mindy C; Tiger, Jeffrey H
2014-01-01
Line tracking is a prerequisite skill for braille literacy that involves moving one's finger horizontally across a line of braille text and identifying when a line ends so the reader may reset his or her finger on the subsequent line. Current procedures for teaching line tracking are incomplete, because they focus on tracking lines with only small gaps between characters. The current study extended previous line-tracking instruction using stimulus fading to teach tracking across larger gaps. After instruction, all participants showed improvement in line tracking, and 2 of 3 participants met mastery criteria for tracking across extended spaces. © Society for the Experimental Analysis of Behavior.
Haltere mechanosensory influence on tethered flight behavior in Drosophila.
Mureli, Shwetha; Fox, Jessica L
2015-08-01
In flies, mechanosensory information from modified hindwings known as halteres is combined with visual information for wing-steering behavior. Haltere input is necessary for free flight, making it difficult to study the effects of haltere ablation under natural flight conditions. We thus used tethered Drosophila melanogaster flies to examine the relationship between halteres and the visual system, using wide-field motion or moving figures as visual stimuli. Haltere input was altered by surgically decreasing its mass, or by removing it entirely. Haltere removal does not affect the flies' ability to flap or steer their wings, but it does increase the temporal frequency at which they modify their wingbeat amplitude. Reducing the haltere mass decreases the optomotor reflex response to wide-field motion, and removing the haltere entirely does not further decrease the response. Decreasing the mass does not attenuate the response to figure motion, but removing the entire haltere does attenuate the response. When flies are allowed to control a visual stimulus in closed-loop conditions, haltereless flies fixate figures with the same acuity as intact flies, but cannot stabilize a wide-field stimulus as accurately as intact flies can. These manipulations suggest that the haltere mass is influential in wide-field stabilization, but less so in figure tracking. In both figure and wide-field experiments, we observe responses to visual motion with and without halteres, indicating that during tethered flight, intact halteres are not strictly necessary for visually guided wing-steering responses. However, the haltere feedback loop may operate in a context-dependent way to modulate responses to visual motion. © 2015. Published by The Company of Biologists Ltd.
Moving beyond gender: processes that create relationship equality.
Knudson-Martin, Carmen; Mahoney, Anne Rankin
2005-04-01
Equality is related to relationship success, yet few couples achieve it. In this qualitative study, we examine how couples with children in two time cohorts (1982 and 2001) moved toward equality. The analysis identifies three types of couples: Postgender, gender legacy, and traditional. Movement toward equality is facilitated by: (a) Stimulus for change, including awareness of gender, commitment to family and work, and situational pressures; and (b) patterns that promote change, including active negotiation, challenges to gender entitlement, development of new competencies, and mutual attention to relationship and family tasks. Implications for practice are discussed.
D'haenens, Wendy; Dhooge, Ingeborg; De Vel, Eddy; Maes, Leen; Bockstael, Annelies; Vinck, Bart M
2007-08-01
The present study utilized a commercially available multiple auditory steady-state response (ASSR) system to test normal hearing adults (n=55). The primary objective was to evaluate the impact of the mixed modulation (MM) and the novel proposed exponential AM(2)/FM stimuli on the signal-to-noise ratio (SNR) and threshold estimation accuracy, through a within-subject comparison. The second aim was to establish a normative database for both stimulus types. The results demonstrated that the AM(2)/FM and MM stimulus had a similar effect on the SNR, whereas the ASSR threshold results revealed that the AM(2)/FM produced better thresholds than the MM stimulus for the 500, 1000, and 4000 Hz carrier frequency. The mean difference scores to tones of 500, 1000, 2000, and 4000 Hz were for the MM stimulus: 20+/-12, 14+/-9, 10+/-8, and 12+/-8 dB; and for the AM(2)/FM stimulus: 18+/-13, 12+/-8, 11+/-8, and 10+/-8 dB, respectively. The current research confirms that the AM(2)/FM stimulus can be used efficiently to test normal hearing adults.
Processing of pitch and location in human auditory cortex during visual and auditory tasks.
Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu
2015-01-01
The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed task-dependent activation modulations, but no systematic activations to pitch or location. Based on these results, we argue that activations during pitch and location tasks cannot be explained by enhanced stimulus-specific processing alone, but rather that activations in human AC depend in a complex manner on the requirements of the task at hand.
Processing of pitch and location in human auditory cortex during visual and auditory tasks
Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu
2015-01-01
The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed task-dependent activation modulations, but no systematic activations to pitch or location. Based on these results, we argue that activations during pitch and location tasks cannot be explained by enhanced stimulus-specific processing alone, but rather that activations in human AC depend in a complex manner on the requirements of the task at hand. PMID:26594185
Velez, Mariel M.; Wernet, Mathias F.; Clark, Damon A.
2014-01-01
Understanding the mechanisms that link sensory stimuli to animal behavior is a central challenge in neuroscience. The quantitative description of behavioral responses to defined stimuli has led to a rich understanding of different behavioral strategies in many species. One important navigational cue perceived by many vertebrates and insects is the e-vector orientation of linearly polarized light. Drosophila manifests an innate orientation response to this cue (‘polarotaxis’), aligning its body axis with the e-vector field. We have established a population-based behavioral paradigm for the genetic dissection of neural circuits guiding polarotaxis to both celestial as well as reflected polarized stimuli. However, the behavioral mechanisms by which flies align with a linearly polarized stimulus remain unknown. Here, we present a detailed quantitative description of Drosophila polarotaxis, systematically measuring behavioral parameters that are modulated by the stimulus. We show that angular acceleration is modulated during alignment, and this single parameter may be sufficient for alignment. Furthermore, using monocular deprivation, we show that each eye is necessary for modulating turns in the ipsilateral direction. This analysis lays the foundation for understanding how neural circuits guide these important visual behaviors. PMID:24810784
NASA Astrophysics Data System (ADS)
Wang, Liu-Suo; Li, Ning-Xi; Chen, Jing-Jia; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei
2018-04-01
A positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability depending on the intensity of the stimulus in some particular networks. It is less understood how the transition between the two dynamic modes is modulated by the positive and negative feedback loops. We developed an abstract model of such systems, largely based on the core p53 pathway, to explore the mechanism for the transformation of dynamic behaviors. Our results show that enhancing the positive feedback may promote or suppress oscillations depending on the strength of both feedback loops. We found that the system oscillates with low amplitudes in response to a moderate stimulus and switches to the on state upon a strong stimulus. When the positive feedback is activated much later than the negative one in response to a strong stimulus, the system exhibits long-term oscillations before switching to the on state. We explain this intriguing phenomenon using quasistatic approximation. Moreover, early switching to the on state may occur when the system starts from a steady state in the absence of stimuli. The interplay between the positive and negative feedback plays a key role in the transitions between oscillation and bistability. Of note, our conclusions should be applicable only to some specific gene regulatory networks, especially the p53 network, in which both oscillation and bistability exist in response to a certain type of stimulus. Our work also underscores the significance of transient dynamics in determining cellular outcome.
Awiszus, F; Feistner, H; Schäfer, S S
1991-01-01
The peri-stimulus-time histogram (PSTH) analysis of stimulus-related neuronal spike train data is usually regarded as a method to detect stimulus-induced excitations or inhibitions. However, for a fairly regularly discharging neuron such as the human alpha-motoneuron, long-latency modulations of a PSTH are difficult to interpret as PSTH modulations can also occur as a consequence of a modulated neuronal autocorrelation. The experiments reported here were made (i) to investigate the extent to which a PSTH of a human hand-muscle motoneuron may be contaminated by features of the autocorrelation and (ii) to develop methods that display the motoneuronal excitations and inhibitions without such contamination. Responses of 29 single motor units to electrical ulnar nerve stimulation below motor threshold were investigated in the first dorsal interosseous muscle of three healthy volunteers using an experimental protocol capable of demonstrating the presence of autocorrelative modulations in the neuronal response. It was found for all units that the PSTH as well as the cumulative sum (CUSUM) derived from these responses were severely affected by the presence of autocorrelative features. On the other hand, calculating the CUSUM in a slightly modified form yielded--for all units investigated--a neuronal output feature sensitive only to motoneuronal excitations and inhibitions induced by the afferent volley. The price that has to be paid to arrive at such a modified CUSUM (mCUSUM) was a high computational effort prohibiting the on-line availability of this output feature during the experiment. It was found, however, that an interspike interval superposition plot (IISP)--easily obtainable during the experiment--is also free of autocorrelative features.(ABSTRACT TRUNCATED AT 250 WORDS)
Barrett, Andrew C; Negus, S Stevens; Mello, Nancy K; Caine, S Barak
2005-11-01
Recent studies indicate that GABAergic ligands modulate abuse-related effects of cocaine. The goal of this study was to evaluate the effects of a mechanistically diverse group of GABAergic ligands on the discriminative stimulus and reinforcing effects of cocaine in rats. One group of rats was trained to discriminate 5.6 mg/kg cocaine from saline in a two-lever, food-reinforced, drug discrimination procedure. In two other groups, responding was maintained by cocaine (0-3.2 mg/kg/injection) or liquid food (0-100%) under a fixed ratio 5 schedule. Six GABA agonists were tested: the GABA-A receptor agonist muscimol, the GABA-B receptor agonist baclofen, the GABA transaminase inhibitor gamma-vinyl-GABA (GVG), and three GABA-A receptor modulators (the barbiturate pentobarbital, the high-efficacy benzodiazepine midazolam, and the low-efficacy benzodiazepine enazenil). When tested alone, none of the compounds substituted fully for the discriminative stimulus effects of cocaine. As acute pretreatments, select doses of midazolam and pentobarbital produced 2.2- to 3.6-fold rightward shifts in the cocaine dose-effect function. In contrast, muscimol, baclofen, GVG, and enazenil failed to alter the discriminative stimulus effects of cocaine. In assays of cocaine- and food-maintained responding, midazolam and pentobarbital decreased cocaine self-administration at doses 9.6- and 3.3-fold lower, respectively, than those that decreased food-maintained responding. In contrast, muscimol, baclofen, and GVG decreased cocaine self-administration at doses that also decreased food-maintained responding. Enazenil failed to alter cocaine self-administration. Together with previous studies, these data suggest that among mechanistically diverse GABA agonists, high-efficacy GABA-A modulators may be the most effective for modifying the abuse-related effects of cocaine.
Dissociation in decision bias mechanism between probabilistic information and previous decision
Kaneko, Yoshiyuki; Sakai, Katsuyuki
2015-01-01
Target detection performance is known to be influenced by events in the previous trials. It has not been clear, however, whether this bias effect is due to the previous sensory stimulus, motor response, or decision. Also it remains open whether or not the previous trial effect emerges via the same mechanism as the effect of knowledge about the target probability. In the present study, we asked normal human subjects to make a decision about the presence or absence of a visual target. We presented a pre-cue indicating the target probability before the stimulus, and also a decision-response mapping cue after the stimulus so as to tease apart the effect of decision from that of motor response. We found that the target detection performance was significantly affected by the probability cue in the current trial and also by the decision in the previous trial. While the information about the target probability modulated the decision criteria, the previous decision modulated the sensitivity to target-relevant sensory signals (d-prime). Using functional magnetic resonance imaging (fMRI), we also found that activation in the left intraparietal sulcus (IPS) was decreased when the probability cue indicated a high probability of the target. By contrast, activation in the right inferior frontal gyrus (IFG) was increased when the subjects made a target-present decision in the previous trial, but this change was observed specifically when the target was present in the current trial. Activation in these regions was associated with individual-difference in the decision computation parameters. We argue that the previous decision biases the target detection performance by modulating the processing of target-selective information, and this mechanism is distinct from modulation of decision criteria due to expectation of a target. PMID:25999844
Brielmann, Aenne A; Vale, Lauren; Pelli, Denis G
2017-12-01
Over time, how does beauty develop and decay? Common sense suggests that beauty is intensely felt only after prolonged experience of the object. Here, we present one of various stimuli for a variable duration (1-30 s), measure the observers' pleasure over time, and, finally, ask whether they felt beauty. On each trial, participants (N = 21) either see an image that they had chosen as "movingly beautiful," see an image with prerated valence, or suck a candy. During the stimulus and a further 60 s, participants rate pleasure continuously using a custom touchscreen web app, EmotionTracker.com. After each trial, participants judge whether they felt beauty. Across all stimulus kinds, durations, and beauty responses, the dynamic pleasure rating has a stereotypical time course that is well fit by a one-parameter model with a brief exponential onset (roughly 2.5 s), a sustained plateau during stimulus presentation, and a long exponential decay (roughly 70 s). Across conditions, only the plateau amplitude varies. Beauty and pleasure amplitude are nearly independent of stimulus duration. The final beauty rating is positively correlated with pleasure amplitude (r = 0.60), and nearly independent of duration (r = 0.10). Beauty's independence from duration is unlike Bentham's 18th-century notion of value (utility), which he supposed to depend on the product of pleasure amplitude and duration. Participants report having felt pleasure as strongly after a mere 1 s stimulus as after longer durations, up to 30 s. Thus, we find that amplitude of pleasure is independent of stimulus duration.
Effects of reward on the accuracy and dynamics of smooth pursuit eye movements.
Brielmann, Aenne A; Spering, Miriam
2015-08-01
Reward modulates behavioral choices and biases goal-oriented behavior, such as eye or hand movements, toward locations or stimuli associated with higher rewards. We investigated reward effects on the accuracy and timing of smooth pursuit eye movements in 4 experiments. Eye movements were recorded in participants tracking a moving visual target on a computer monitor. Before target motion onset, a monetary reward cue indicated whether participants could earn money by tracking accurately, or whether the trial was unrewarded (Experiments 1 and 2, n = 11 each). Reward significantly improved eye-movement accuracy across different levels of task difficulty. Improvements were seen even in the earliest phase of the eye movement, within 70 ms of tracking onset, indicating that reward impacts visual-motor processing at an early level. We obtained similar findings when reward was not precued but explicitly associated with the pursuit target (Experiment 3, n = 16); critically, these results were not driven by stimulus prevalence or other factors such as preparation or motivation. Numerical cues (Experiment 4, n = 9) were not effective. (c) 2015 APA, all rights reserved).
The fate of task-irrelevant visual motion: perceptual load versus feature-based attention.
Taya, Shuichiro; Adams, Wendy J; Graf, Erich W; Lavie, Nilli
2009-11-18
We tested contrasting predictions derived from perceptual load theory and from recent feature-based selection accounts. Observers viewed moving, colored stimuli and performed low or high load tasks associated with one stimulus feature, either color or motion. The resultant motion aftereffect (MAE) was used to evaluate attentional allocation. We found that task-irrelevant visual features received less attention than co-localized task-relevant features of the same objects. Moreover, when color and motion features were co-localized yet perceived to belong to two distinct surfaces, feature-based selection was further increased at the expense of object-based co-selection. Load theory predicts that the MAE for task-irrelevant motion would be reduced with a higher load color task. However, this was not seen for co-localized features; perceptual load only modulated the MAE for task-irrelevant motion when this was spatially separated from the attended color location. Our results suggest that perceptual load effects are mediated by spatial selection and do not generalize to the feature domain. Feature-based selection operates to suppress processing of task-irrelevant, co-localized features, irrespective of perceptual load.
Pupil size reflects the focus of feature-based attention.
Binda, Paola; Pereverzeva, Maria; Murray, Scott O
2014-12-15
We measured pupil size in adult human subjects while they selectively attended to one of two surfaces, bright and dark, defined by coherently moving dots. The two surfaces were presented at the same location; therefore, subjects could select the cued surface only on the basis of its features. With no luminance change in the stimulus, we find that pupil size was smaller when the bright surface was attended and larger when the dark surface was attended: an effect of feature-based (or surface-based) attention. With the same surfaces at nonoverlapping locations, we find a similar effect of spatial attention. The pupil size modulation cannot be accounted for by differences in eye position and by other variables known to affect pupil size such as task difficulty, accommodation, or the mere anticipation (imagery) of bright/dark stimuli. We conclude that pupil size reflects not just luminance or cognitive state, but the interaction between the two: it reflects which luminance level in the visual scene is relevant for the task at hand. Copyright © 2014 the American Physiological Society.
New efficient stimuli for evoking frequency-specific auditory steady-state responses.
Stürzebecher, Ekkehard; Cebulla, Mario; Elberling, Claus; Berger, Thomas
2006-06-01
ASSR is a promising tool for the objective frequency-specific assessment of hearing thresholds in children. The stimulus generally used for ASSR recording (single amplitude-modulated carrier) only activates a small area on the basilar membrane. Therefore, the response amplitude is low. A stimulus with a broader frequency spectrum can be composed by adding several cosines whose frequency intervals comply with the desired stimulus repetition rate. Compensation of the travelling wave delay on the basilar membrane is possible with a stimulus of this type. Through this, a better synchronization of the neural response can be obtained and, as a result, higher response amplitudes can be expected, particularly for low-frequency stimuli. The additional introduction of a frequency offset enables the use of a q-sample test for the response detection, especially important at 500 Hz. The results of investigations carried out on a large group of normally hearing test subjects have confirmed the efficiency of this stimulus design. The new stimuli lead to significantly improved ASSRs with higher SNRs and thus higher detection rates and shorter detection times.
Complementary modulation of N2 and CRN by conflict frequency.
Grützmann, Rosa; Riesel, Anja; Klawohn, Julia; Kathmann, Norbert; Endrass, Tanja
2014-08-01
The present study investigated the modulation of the N2 and the correct-related negativity (CRN) by conflict frequency. Conflict costs, as measured by reaction times and error rate, were reduced with increasing conflict frequency, indicating improved conflict resolution. N2 amplitudes in incompatible trials increased with higher conflict frequency, while postresponse CRN amplitudes decreased. In concert with behavioral findings of reduced conflict costs and greater interference suppression, the increase of N2 might reflect enhanced conflict resolution during stimulus processing. The CRN, however, might reflect postresponse implementation of cognitive control, which is reduced when conflict is already adequately resolved during stimulus processing. Furthermore, N2 and CRN in incompatible trials were inversely related on the between- and within-subject level, implying that the two modes of implementing cognitive control are applied complementarily. Copyright © 2014 Society for Psychophysiological Research.
Online Modulation of Selective Attention is not Impaired in Healthy Aging.
Sekuler, Robert; Huang, Jie; Sekuler, Allison B; Bennett, Patrick J
2017-01-01
Background/Study Context: Reduced processing speed pervades a great many aspects of human aging and cognition. However, little is known about one aspect of cognitive aging in which speed is of the essence, namely, the speed with which older adults can deploy attention in response to a cue. The authors compared rapid temporal modulation of cued visual attention in younger (M age = 22.3 years) and older (M age = 68.9 years) adults. On each trial of a short-term memory task, a cue identified which of two briefly presented stimuli was task relevant and which one should be ignored. After a short delay, subjects demonstrated recall by reproducing from memory the task-relevant stimulus. This produced estimates of (i) accuracy with which the task-relevant stimulus was recalled, (ii) the influence of stimuli encountered on previous trials (a prototype effect), and (iii) the influence of the trial's task-irrelevant stimulus. For both groups, errors in recall were considerably smaller when selective attention was cued before rather than after presentation of the stimuli. Both groups showed serial position effects to the same degree, and both seemed equally adept at exploiting the stimuli encountered on previous trials as a means of supplementing recall accuracy on the current trial. Younger and older subjects may not differ reliably in capacity for cue-directed temporal modulation of selective attention, or in ability to draw on previously seen stimuli as memory support.
Inferior Frontal Cortex Modulation with an Acute Dose of Heroin During Cognitive Control
Schmidt, André; Walter, Marc; Gerber, Hana; Schmid, Otto; Smieskova, Renata; Bendfeldt, Kerstin; Wiesbeck, Gerhard A; Riecher-Rössler, Anita; Lang, Undine E; Rubia, Katya; McGuire, Philip; Borgwardt, Stefan
2013-01-01
Impairments in inhibitory control and in stimulus-driven attention are hallmarks of drug addiction and are associated with decreased activation in the right inferior frontal gyrus (IFG). Although previous studies indicate that the response inhibition function is impaired in abstinent heroin dependents, and that this is mediated by reduced IFG activity, it remains completely unknown whether and how an acute dose of heroin modulates IFG activity during cognitive control in heroin-dependent patients. This study investigates the acute effects of heroin administration on IFG activity during response inhibition and stimulus-driven attention in heroin-dependent patients. Using a cross-over, double-blind, placebo-controlled design, saline and heroin were administered to 26 heroin-dependent patients from stable heroin-assisted treatment, while performing a Go/No–Go event-related functional magnetic resonance imaging task to assess right IFG activity during motor response inhibition, as well as during oddball-driven attention allocation. Relative to saline, heroin significantly reduced right IFG activity during both successful response inhibition and oddball-driven attention allocation, whereas it did not change right IFG activity during response inhibition after correction for the effect of attention allocation. These heroin-induced effects were not related to changes in drug craving, state anxiety, behavioral performance, or co-consumption of psychostimulant drugs. This study demonstrates that heroin administration acutely impairs stimulus-driven attention allocation, as indicated by reduced IFG activity in response to infrequently presented stimuli, and does not specifically modulate IFG activity during response inhibition. PMID:23673865
Modulation of Temporal Precision in Thalamic Population Responses to Natural Visual Stimuli
Desbordes, Gaëlle; Jin, Jianzhong; Alonso, Jose-Manuel; Stanley, Garrett B.
2010-01-01
Natural visual stimuli have highly structured spatial and temporal properties which influence the way visual information is encoded in the visual pathway. In response to natural scene stimuli, neurons in the lateral geniculate nucleus (LGN) are temporally precise – on a time scale of 10–25 ms – both within single cells and across cells within a population. This time scale, established by non stimulus-driven elements of neuronal firing, is significantly shorter than that of natural scenes, yet is critical for the neural representation of the spatial and temporal structure of the scene. Here, a generalized linear model (GLM) that combines stimulus-driven elements with spike-history dependence associated with intrinsic cellular dynamics is shown to predict the fine timing precision of LGN responses to natural scene stimuli, the corresponding correlation structure across nearby neurons in the population, and the continuous modulation of spike timing precision and latency across neurons. A single model captured the experimentally observed neural response, across different levels of contrasts and different classes of visual stimuli, through interactions between the stimulus correlation structure and the nonlinearity in spike generation and spike history dependence. Given the sensitivity of the thalamocortical synapse to closely timed spikes and the importance of fine timing precision for the faithful representation of natural scenes, the modulation of thalamic population timing over these time scales is likely important for cortical representations of the dynamic natural visual environment. PMID:21151356
Deciding what to see: the role of intention and attention in the perception of apparent motion.
Kohler, Axel; Haddad, Leila; Singer, Wolf; Muckli, Lars
2008-03-01
Apparent motion is an illusory perception of movement that can be induced by alternating presentations of static objects. Already in Wertheimer's early investigation of the phenomenon [Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung. Zeitschrift fur Psychologie, 61, 161-265], he mentions that voluntary attention can influence the way in which an ambiguous apparent motion display is perceived. But until now, few studies have investigated how strong the modulation of apparent motion through attention can be under different stimulus and task conditions. We used bistable motion quartets of two different sizes, where the perception of vertical and horizontal motion is equally likely. Eleven observers participated in two experiments. In Experiment 1, participants were instructed to either (a) hold the current movement direction as long as possible, (b) passively view the stimulus, or (c) switch the movement directions as quickly as possible. With the respective instructions, observers could almost double phase durations in (a) and more than halve durations in (c) relative to the passive condition. This modulation effect was stronger for the large quartets. In Experiment 2, observers' attention was diverted from the stimulus by a detection task at fixation while they still had to report their conscious perception. This manipulation prolonged dominance durations for up to 100%. The experiments reveal a high susceptibility of ambiguous apparent motion to attentional modulation. We discuss how feature- and space-based attention mechanisms might contribute to those effects.
Pre-attentive, context-specific representation of fear memory in the auditory cortex of rat.
Funamizu, Akihiro; Kanzaki, Ryohei; Takahashi, Hirokazu
2013-01-01
Neural representation in the auditory cortex is rapidly modulated by both top-down attention and bottom-up stimulus properties, in order to improve perception in a given context. Learning-induced, pre-attentive, map plasticity has been also studied in the anesthetized cortex; however, little attention has been paid to rapid, context-dependent modulation. We hypothesize that context-specific learning leads to pre-attentively modulated, multiplex representation in the auditory cortex. Here, we investigate map plasticity in the auditory cortices of anesthetized rats conditioned in a context-dependent manner, such that a conditioned stimulus (CS) of a 20-kHz tone and an unconditioned stimulus (US) of a mild electrical shock were associated only under a noisy auditory context, but not in silence. After the conditioning, although no distinct plasticity was found in the tonotopic map, tone-evoked responses were more noise-resistive than pre-conditioning. Yet, the conditioned group showed a reduced spread of activation to each tone with noise, but not with silence, associated with a sharpening of frequency tuning. The encoding accuracy index of neurons showed that conditioning deteriorated the accuracy of tone-frequency representations in noisy condition at off-CS regions, but not at CS regions, suggesting that arbitrary tones around the frequency of the CS were more likely perceived as the CS in a specific context, where CS was associated with US. These results together demonstrate that learning-induced plasticity in the auditory cortex occurs in a context-dependent manner.
Huebl, Julius; Brücke, Christof; Merkl, Angela; Bajbouj, Malek; Schneider, Gerd-Helge; Kühn, Andrea A
2016-08-01
Deep brain stimulation (DBS) of the subgenual anterior cingulate cortex (sgACC) has emerged as a new therapeutic option in patients with treatment resistant depression (TRD). At the same time, DBS offers a unique opportunity as an innovative research tool to study brain function in vivo Indirect measures of brain function such as positron-emission-tomography imaging findings have revealed a hypermetabolism in the sgACC area in patients with TRD that normalizes in parallel with treatment response to DBS. We used direct intracranial recordings via implanted DBS electrodes to study the neuronal oscillatory activity in the sgACC area during a picture viewing task including emotional and neutral stimuli in eight patients with TRD who underwent DBS.We found a stimulus-induced decrease in beta-band and increase in gamma-band activity, with a main effect of valence for event-related desynchronisation in the beta-frequency range (14-30 Hz). Unpleasant stimuli induced the strongest and most sustained beta-power decrease. The degree of beta-band modulation upon emotional stimuli correlated with the patients' rating of stimulus valence. Our findings confirm the involvement of the sgACC area in emotional processing that was more enhanced for unpleasant stimuli. Moreover, stimulus evaluation may be encoded by modulations of beta-band activity. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing
Cohen, Michael X; Ridderinkhof, K. Richard
2013-01-01
Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions. PMID:23451201
Stenner, Max-Philipp; Bauer, Markus; Haggard, Patrick; Heinze, Hans-Jochen; Dolan, Ray
2014-11-01
The perceived intensity of sensory stimuli is reduced when these stimuli are caused by the observer's actions. This phenomenon is traditionally explained by forward models of sensory action-outcome, which arise from motor processing. Although these forward models critically predict anticipatory modulation of sensory neural processing, neurophysiological evidence for anticipatory modulation is sparse and has not been linked to perceptual data showing sensory attenuation. By combining a psychophysical task involving contrast discrimination with source-level time-frequency analysis of MEG data, we demonstrate that the amplitude of alpha-oscillations in visual cortex is enhanced before the onset of a visual stimulus when the identity and onset of the stimulus are controlled by participants' motor actions. Critically, this prestimulus enhancement of alpha-amplitude is paralleled by psychophysical judgments of a reduced contrast for this stimulus. We suggest that alpha-oscillations in visual cortex preceding self-generated visual stimulation are a likely neurophysiological signature of motor-induced sensory anticipation and mediate sensory attenuation. We discuss our results in relation to proposals that attribute generic inhibitory functions to alpha-oscillations in prioritizing and gating sensory information via top-down control.
Implicit and explicit categorization of natural scenes.
Codispoti, Maurizio; Ferrari, Vera; De Cesarei, Andrea; Cardinale, Rossella
2006-01-01
Event-related potential (ERP) studies have consistently found that emotionally arousing (pleasant and unpleasant) pictures elicit a larger late positive potential (LPP) than neutral pictures in a window from 400 to 800 ms after picture onset. In addition, an early ERP component has been reported to vary with emotional arousal in a window from about 150 to 300 ms with affective, compared to neutral stimuli, prompting significantly less positivity over occipito-temporal sites. Similar early and late ERP components have been found in explicit categorization tasks, suggesting that selective attention to target features results in similar cortical changes. Several studies have shown that the affective modulation of the LPP persisted even when the same pictures are repeated several times, when they are presented as distractors, or when participants are engaged in a competing task. These results indicate that categorization of affective stimuli is an obligatory process. On the other hand, perceptual factors (e.g., stimulus size) seem to affect the early ERP component but not the affective modulation of the LPP. Although early and late ERP components vary with stimulus relevance, given that they are differentially affected by stimulus and task manipulations, they appear to index different facets of picture processing.
Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias M.; Petro, Nathan M.; Bradley, Margaret M.; Keil, Andreas
2015-01-01
Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene’s physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. PMID:25640949
Miskovic, Vladimir; Martinovic, Jasna; Wieser, Matthias J; Petro, Nathan M; Bradley, Margaret M; Keil, Andreas
2015-03-01
Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arousal in order to target the relative contributions of luminance based versus chromatic visual channels to emotional perception. Stimulus-evoked brain electrical activity was measured during picture viewing and used to quantify neural responses sensitive to lower-tier visual cortical involvement (steady-state visual evoked potentials) as well as the late positive potential, reflecting a more distributed cortical event. Results showed that the enhancement for emotional content was stimulus-selective when examining the steady-state segments of the evoked visual potentials. Response amplification was present only for low spatial frequency, grayscale stimuli, and not for high spatial frequency, red/green stimuli. In contrast, the late positive potential was modulated by emotion regardless of the scene's physical properties. Our findings are discussed in relation to neurophysiologically plausible constraints operating at distinct stages of the cortical processing stream. Copyright © 2015 Elsevier B.V. All rights reserved.
Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP.
Matheny, Sharon A; Chen, Chiyuan; Kortum, Robert L; Razidlo, Gina L; Lewis, Robert E; White, Michael A
2004-01-15
The signal transduction cascade comprising Raf, mitogen-activated protein (MAP) kinase kinase (MEK) and MAP kinase is a Ras effector pathway that mediates diverse cellular responses to environmental cues and contributes to Ras-dependent oncogenic transformation. Here we report that the Ras effector protein Impedes Mitogenic signal Propagation (IMP) modulates sensitivity of the MAP kinase cascade to stimulus-dependent activation by limiting functional assembly of the core enzymatic components through the inactivation of KSR, a scaffold/adaptor protein that couples activated Raf to its substrate MEK. IMP is a Ras-responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination, which releases the inhibition of Raf-MEK complex formation. Thus, Ras activates the MAP kinase cascade through simultaneous dual effector interactions: induction of Raf kinase activity and derepression of Raf-MEK complex formation. IMP depletion results in increased stimulus-dependent MEK activation without alterations in the timing or duration of the response. These observations suggest that IMP functions as a threshold modulator, controlling sensitivity of the cascade to stimulus and providing a mechanism to allow adaptive behaviour of the cascade in chronic or complex signalling environments.
Leon-Carrion, Jose; Martín-Rodríguez, Juan Francisco; Damas-López, Jesús; Pourrezai, Kambiz; Izzetoglu, Kurtulus; Barroso Y Martin, Juan Manuel; Dominguez-Morales, M Rosario
2007-04-06
A fundamental question in human sexuality regards the neural substrate underlying sexually-arousing representations. Lesion and neuroimaging studies suggest that dorsolateral pre-frontal cortex (DLPFC) plays an important role in regulating the processing of visual sexual stimulation. The aim of this Functional Near-Infrared Spectroscopy (fNIRS) study was to explore DLPFC structures involved in the processing of erotic and non-sexual films. fNIRS was used to image the evoked-cerebral blood oxygenation (CBO) response in 15 male and 15 female subjects. Our hypothesis is that a sexual stimulus would produce DLPFC activation during the period of direct stimulus perception ("on" period), and that this activation would continue after stimulus cessation ("off" period). A new paradigm was used to measure the relative oxygenated hemoglobin (oxyHb) concentrations in DLPFC while subjects viewed the two selected stimuli (Roman orgy and a non-sexual film clip), and also immediately following stimulus cessation. Viewing of the non-sexual stimulus produced no overshoot in DLPFC, whereas exposure to the erotic stimulus produced rapidly ascendant overshoot, which became even more pronounced following stimulus cessation. We also report on gender differences in the timing and intensity of DLPFC activation in response to a sexually explicit visual stimulus. We found evidence indicating that men experience greater and more rapid sexual arousal when exposed to erotic stimuli than do women. Our results point out that self-regulation of DLPFC activation is modulated by subjective arousal and that cognitive appraisal of the sexual stimulus (valence) plays a secondary role in this regulation.
The effect of chromatic and luminance information on reaction times.
O'Donell, Beatriz M; Barraza, Jose F; Colombo, Elisa M
2010-07-01
We present a series of experiments exploring the effect of chromaticity on reaction time (RT) for a variety of stimulus conditions, including chromatic and luminance contrast, luminance, and size. The chromaticity of these stimuli was varied along a series of vectors in color space that included the two chromatic-opponent-cone axes, a red-green (L-M) axis and a blue-yellow [S - (L + M)] axis, and intermediate noncardinal orientations, as well as the luminance axis (L + M). For Weber luminance contrasts above 10-20%, RTs tend to the same asymptote, irrespective of chromatic direction. At lower luminance contrast, the addition of chromatic information shortens the RT. RTs are strongly influenced by stimulus size when the chromatic stimulus is modulated along the [S - (L + M)] pathway and by stimulus size and adaptation luminance for the (L-M) pathway. RTs are independent of stimulus size for stimuli larger than 0.5 deg. Data are modeled with a modified version of Pieron's formula with an exponent close to 2, in which the stimulus intensity term is replaced by a factor that considers the relative effects of chromatic and achromatic information, as indexed by the RMS (square-root of the cone contrast) value at isoluminance and the Weber luminance contrast, respectively. The parameters of the model reveal how RT is linked to stimulus size, chromatic channels, and adaptation luminance and how they can be interpreted in terms of two chromatic mechanisms. This equation predicts that, for isoluminance, RTs for a stimulus lying on the S-cone pathway are higher than those for a stimulus lying on the L-M-cone pathway, for a given RMS cone contrast. The equation also predicts an asymptotic trend to the RT for an achromatic stimulus when the luminance contrast is sufficiently large.
Nartey, Richard K; Arntzen, Erik; Fields, Lanny
2015-12-01
In the present study, equivalence class formation was influenced by the temporal point of inclusion of a meaningful stimulus when baseline relations were serially or sequentially trained, and much less so by the location of the meaningful stimulus in the nodal structure of the class. In Experiment 1, participants attempted to form three 3-node, 5-member classes (A→B→C→D→E) under the simultaneous protocol. After serially training the baseline relations AB, BC, CD, and DE, in that order, the emergence of all emergent relations was tested concurrently. In the A-as-PIC condition, A was meaningful stimulus and B to E were meaningless stimulus, and 60 % of the participants formed classes. In addition, classes were formed by 40 %, 70 %, 40 %, and 20 % of the participants in the B-as-PIC, C-as-PIC, D-as-PIC, and E-as-PIC groups, respectively. Thus, the likelihood of class formation could have been influenced by the location of a meaningful stimulus in the class structure and/or by its order of introduction during training. In Experiment 2, we controlled for any effect of order of introduction by the concurrent training of all of the baseline relations. Regardless of the location of the meaningful stimulus, 0-20 % of participants formed classes. Thus, the temporal order of introducing a meaningful stimulus was the primary modulator of the class-enhancing property of meaningful stimuli, and not the location of the meaningful stimulus in the class structure.
Two-dimensional adaptation in the auditory forebrain
Nagel, Katherine I.; Doupe, Allison J.
2011-01-01
Sensory neurons exhibit two universal properties: sensitivity to multiple stimulus dimensions, and adaptation to stimulus statistics. How adaptation affects encoding along primary dimensions is well characterized for most sensory pathways, but if and how it affects secondary dimensions is less clear. We studied these effects for neurons in the avian equivalent of primary auditory cortex, responding to temporally modulated sounds. We showed that the firing rate of single neurons in field L was affected by at least two components of the time-varying sound log-amplitude. When overall sound amplitude was low, neural responses were based on nonlinear combinations of the mean log-amplitude and its rate of change (first time differential). At high mean sound amplitude, the two relevant stimulus features became the first and second time derivatives of the sound log-amplitude. Thus a strikingly systematic relationship between dimensions was conserved across changes in stimulus intensity, whereby one of the relevant dimensions approximated the time differential of the other dimension. In contrast to stimulus mean, increases in stimulus variance did not change relevant dimensions, but selectively increased the contribution of the second dimension to neural firing, illustrating a new adaptive behavior enabled by multidimensional encoding. Finally, we demonstrated theoretically that inclusion of time differentials as additional stimulus features, as seen so prominently in the single-neuron responses studied here, is a useful strategy for encoding naturalistic stimuli, because it can lower the necessary sampling rate while maintaining the robustness of stimulus reconstruction to correlated noise. PMID:21753019
Stimulus encoding and feature extraction by multiple sensory neurons.
Krahe, Rüdiger; Kreiman, Gabriel; Gabbiani, Fabrizio; Koch, Christof; Metzner, Walter
2002-03-15
Neighboring cells in topographical sensory maps may transmit similar information to the next higher level of processing. How information transmission by groups of nearby neurons compares with the performance of single cells is a very important question for understanding the functioning of the nervous system. To tackle this problem, we quantified stimulus-encoding and feature extraction performance by pairs of simultaneously recorded electrosensory pyramidal cells in the hindbrain of weakly electric fish. These cells constitute the output neurons of the first central nervous stage of electrosensory processing. Using random amplitude modulations (RAMs) of a mimic of the fish's own electric field within behaviorally relevant frequency bands, we found that pyramidal cells with overlapping receptive fields exhibit strong stimulus-induced correlations. To quantify the encoding of the RAM time course, we estimated the stimuli from simultaneously recorded spike trains and found significant improvements over single spike trains. The quality of stimulus reconstruction, however, was still inferior to the one measured for single primary sensory afferents. In an analysis of feature extraction, we found that spikes of pyramidal cell pairs coinciding within a time window of a few milliseconds performed significantly better at detecting upstrokes and downstrokes of the stimulus compared with isolated spikes and even spike bursts of single cells. Coincident spikes can thus be considered "distributed bursts." Our results suggest that stimulus encoding by primary sensory afferents is transformed into feature extraction at the next processing stage. There, stimulus-induced coincident activity can improve the extraction of behaviorally relevant features from the stimulus.
Stimulus-Response-Outcome Coding in the Pigeon Nidopallium Caudolaterale
Starosta, Sarah; Güntürkün, Onur; Stüttgen, Maik C.
2013-01-01
A prerequisite for adaptive goal-directed behavior is that animals constantly evaluate action outcomes and relate them to both their antecedent behavior and to stimuli predictive of reward or non-reward. Here, we investigate whether single neurons in the avian nidopallium caudolaterale (NCL), a multimodal associative forebrain structure and a presumed analogue of mammalian prefrontal cortex, represent information useful for goal-directed behavior. We subjected pigeons to a go-nogo task, in which responding to one visual stimulus (S+) was partially reinforced, responding to another stimulus (S–) was punished, and responding to test stimuli from the same physical dimension (spatial frequency) was inconsequential. The birds responded most intensely to S+, and their response rates decreased monotonically as stimuli became progressively dissimilar to S+; thereby, response rates provided a behavioral index of reward expectancy. We found that many NCL neurons' responses were modulated in the stimulus discrimination phase, the outcome phase, or both. A substantial fraction of neurons increased firing for cues predicting non-reward or decreased firing for cues predicting reward. Interestingly, the same neurons also responded when reward was expected but not delivered, and could thus provide a negative reward prediction error or, alternatively, signal negative value. In addition, many cells showed motor-related response modulation. In summary, NCL neurons represent information about the reward value of specific stimuli, instrumental actions as well as action outcomes, and therefore provide signals useful for adaptive behavior in dynamically changing environments. PMID:23437383
Vection: the contributions of absolute and relative visual motion.
Howard, I P; Howard, A
1994-01-01
Inspection of a visual scene rotating about the vertical body axis induces a compelling sense of self rotation, or circular vection. Circular vection is suppressed by stationary objects seen beyond the moving display but not by stationary objects in the foreground. We hypothesised that stationary objects in the foreground facilitate vection because they introduce a relative-motion signal into what would otherwise be an absolute-motion signal. Vection latency and magnitude were measured with a full-field moving display and with stationary objects of various sizes and at various positions in the visual field. The results confirmed the hypothesis. Vection latency was longer when there were no stationary objects in view than when stationary objects were in view. The effect of stationary objects was particularly evident at low stimulus velocities. At low velocities a small stationary point significantly increased vection magnitude in spite of the fact that, at higher stimulus velocities and with other stationary objects in view, fixation on a stationary point, if anything, reduced vection. Changing the position of the stationary objects in the field of view did not affect vection latencies or magnitudes.
Species-specific response-topography of chickens' and pigeons' water-induced autoshaped responding.
Ploog, Bertram O
2014-07-01
Four pigeons and eight chickens received autoshaping training where a keylight (conditioned stimulus) signaled response-independent deliveries of water (unconditioned stimulus). Pigeons drink while keeping their beaks submerged in water and moving their beaks to create suction ("mumbling"), whereas chickens drink by trapping a small amount of water in their mouths and then lifting their heads so the water trickles down. This experiment tested whether these and other species-specific differences in drinking and related behaviors of pigeons and chickens would be reflected in the form of conditioned (autoshaped) responding. Touchscreens and videotapes were used for data recording. Results showed that chickens moved their heads more than pigeons when drinking (unconditioned response). The birds also differed in conditioned responding in the presence of the keylight: Pigeons produced more keyswitch closures and mumbled at the keylight more than chickens whereas chickens scratched more than pigeons. In conclusion, with this unique comparative method that employed identical contingencies and comparable deprivation levels, species-specific differences in unconditioned responses and, more importantly, differences in their corresponding conditioned responses were observed. Copyright © 2014 Elsevier B.V. All rights reserved.
Training methods for horses: habituation to a frightening stimulus.
Christensen, J W; Rundgren, M; Olsson, K
2006-09-01
Responses of horses in frightening situations are important for both equine and human safety. Considerable scientific interest has been shown in development of reactivity tests, but little effort has been dedicated to the development of appropriate training methods for reducing fearfulness. To investigate which of 3 different training methods (habituation, desensitisation and counter-conditioning) was most effective in teaching horses to react calmly in a potentially frightening situation. 1) Horses are able to generalise about the test stimulus such that, once familiar with the test stimulus in one situation, it appears less frightening and elicits a reduced response even when the stimulus intensity is increased or the stimulus is presented differently; and 2) alternative methods such as desensitisation and counter-conditioning would be more efficient than a classic habituation approach. Twenty-seven naive 2-year-old Danish Warmblood stallions were trained according to 3 different methods, based on classical learning theory: 1) horses (n = 9) were exposed to the full stimulus (a moving, white nylon bag, 1.2 x 0.75 m) in 5 daily training sessions until they met a predefined habituation criterion (habituation); 2) horses (n = 9) were introduced gradually to the stimulus and habituated to each step before the full stimulus was applied (desensitisation); 3) horses (n = 9) were trained to associate the stimulus with a positive reward before being exposed to the full stimulus (counter-conditioning). Each horse received 5 training sessions of 3 min per day. Heart rate and behavioural responses were recorded. Horses trained with the desensitisation method showed fewer flight responses in total and needed fewer training sessions to learn to react calmly to test stimuli. Variations in heart rate persisted even when behavioural responses had ceased. In addition, all horses on the desensitisation method eventually habituated to the test stimulus whereas some horses on the other methods did not. Desensitisation appeared to be the most effective training method for horses in frightening situations. Further research is needed in order to investigate the role of positive reinforcement, such as offering food, in the training of horses.
Muiños, Mónica; Ballesteros, Soledad
2015-08-01
A major topic of current research in aging has been to investigate ways to promote healthy aging and neuroplasticity in order to counteract perceptual and cognitive declines. The aim of the present study was to investigate the benefits of intensive, sustained judo and karate martial arts training in young and older athletes and nonathletes of the same age for attenuating age-related dynamic visual acuity (DVA) decline. As a target, we used a moving stimulus similar to a Landolt ring that moved horizontally, vertically, or obliquely across the screen at three possible contrasts and three different speeds. The results indicated that (1) athletes had better DVA than nonathletes; (2) the older adult groups showed a larger oblique effect than the younger groups, regardless of whether or not they practiced a martial art; and (3) age modulated the results of sport under the high-speed condition: The DVA of young karate athletes was superior to that of nonathletes, while both judo and karate older athletes showed better DVA than did sedentary older adults. These findings suggest that in older adults, the practice of a martial art in general, rather than the practice of a particular type of martial art, is the crucial thing. We concluded that the sustained practice of a martial art such as judo or karate attenuates the decline of DVA, suggesting neuroplasticity in the aging human brain.
Deviance sensitivity in the auditory cortex of freely moving rats
2018-01-01
Deviance sensitivity is the specific response to a surprising stimulus, one that violates expectations set by the past stimulation stream. In audition, deviance sensitivity is often conflated with stimulus-specific adaptation (SSA), the decrease in responses to a common stimulus that only partially generalizes to other, rare stimuli. SSA is usually measured using oddball sequences, where a common (standard) tone and a rare (deviant) tone are randomly intermixed. However, the larger responses to a tone when deviant does not necessarily represent deviance sensitivity. Deviance sensitivity is commonly tested using a control sequence in which many different tones serve as the standard, eliminating the expectations set by the standard ('deviant among many standards'). When the response to a tone when deviant (against a single standard) is larger than the responses to the same tone in the control sequence, it is concluded that true deviance sensitivity occurs. In primary auditory cortex of anesthetized rats, responses to deviants and to the same tones in the control condition are comparable in size. We recorded local field potentials and multiunit activity from the auditory cortex of awake, freely moving rats, implanted with 32-channel drivable microelectrode arrays and using telemetry. We observed highly significant SSA in the awake state. Moreover, the responses to a tone when deviant were significantly larger than the responses to the same tone in the control condition. These results establish the presence of true deviance sensitivity in primary auditory cortex in awake rats. PMID:29874246
Carlini, Alessandro; Actis-Grosso, Rossana; Stucchi, Natale; Pozzo, Thierry
2012-01-01
Our daily experience shows that the CNS is a highly efficient machine to predict the effect of actions into the future; are we so efficient also in reconstructing the past of an action? Previous studies demonstrated we are more effective in extrapolating the final position of a stimulus moving according to biological kinematic laws. Here we address the complementary question: are we more effective in extrapolating the starting position (SP) of a motion following a biological velocity profile? We presented a dot moving upward and corresponding to vertical arm movements that were masked in the first part of the trajectory. The stimulus could either move according to biological or non-biological kinematic laws of motion. Results show a better efficacy in reconstructing the SP of a natural motion: participants demonstrate to reconstruct coherently only the SP of the biological condition. When the motion violates the biological kinematic law, responses are scattered and show a tendency toward larger errors. Instead, in a control experiment where the full motions were displayed, no-difference between biological and non-biological motions is found. Results are discussed in light of potential mechanisms involved in visual inference. We propose that as soon as the target appears the cortical motor area would generate an internal representation of reaching movement. When the visual input and the stored kinematic template match, the SP is traced back on the basis of this memory template, making more effective the SP reconstruction. PMID:22712012
LUNAR MODULE TEST ARTICLE [LTA] [2R] IS MOVED FOR MATING TO LUNAR MODULE ADAPTER
NASA Technical Reports Server (NTRS)
1967-01-01
The Lunar Module Test Article [LTA] 2R, for the second Saturn V mission, is being moved from the low bay of the Manned Spacecraft Operations Building for mating with the spacecraft Lunar Module Adapter. The second Saturn V [502], except for a different lunar return trajectory, will be a repeat of the Apollo 4 unmanned Earth orbital flight of a high apogee for systems testing using several propulsion system burns and a heat shield test at lunar re-entry speed.
The Joint Airlock Module is moved to a payload canister in the O&C
NASA Technical Reports Server (NTRS)
2000-01-01
The Joint Airlock Module is suspended by an overhead crane in the Operations and Checkout Building before being moved and placed into the payload canister for transfer to the Space Station Processing Facility. There the module will undergo more preflight processing for the STS-104 mission scheduled for launch aboard Space Shuttle Atlantis May 17, 2001. The Joint Airlock Module is the gateway from which crew members aboard the International Space Station will enter and exit the 470-ton orbiting research facility.
2017-11-17
The Orion crew module for Exploration Mission-1 was moved into the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The crew module will undergo a thermal cycle test to assess the workmanship of critical hardware and structural locations. The test also demonstrates crew module subsystem operations in a thermally stressing environment to confirm no damage or anomalous hardware conditions as a result of the test. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.
2017-11-17
Technicians assist as the Orion crew module for Exploration Mission-1 is moved toward the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The crew module will undergo a thermal cycle test to assess the workmanship of critical hardware and structural locations. The test also demonstrates crew module subsystem operations in a thermally stressing environment to confirm no damage or anomalous hardware conditions as a result of the test. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) is being moved to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) into a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) toward a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Nespolia moving the Neurospat Hardware in the Columbus Module during Expedition 26
2010-12-20
ISS026-E-012919 (20 Dec. 2010) --- European Space Agency astronaut Paolo Nespoli, Expedition 26 flight engineer, moves the Neurospat hardware (including light shield and frame) used for the Bodies in the Space Environment (BISE) experiment, in the Columbus Module aboard the International Space Station.
U.S.S. Hornet moves toward the Apollo 12 Command Module to retrieve it
1969-11-24
U.S.S. Hornet, prime recovery vessel for the Apollo 12 lunar landing mission, moves toward the Apollo 12 Command Module to retrieve the spacecraft. A helicopter from the recovery ship, which took part in the recovery operations, hovers over the scene of the splashdown.
Kamiński, Jan; Mamelak, Adam N; Birch, Kurtis; Mosher, Clayton P; Tagliati, Michele; Rutishauser, Ueli
2018-05-07
The encoding of information into long-term declarative memory is facilitated by dopamine. This process depends on hippocampal novelty signals, but it remains unknown how midbrain dopaminergic neurons are modulated by declarative-memory-based information. We recorded individual substantia nigra (SN) neurons and cortical field potentials in human patients performing a recognition memory task. We found that 25% of SN neurons were modulated by stimulus novelty. Extracellular waveform shape and anatomical location indicated that these memory-selective neurons were putatively dopaminergic. The responses of memory-selective neurons appeared 527 ms after stimulus onset, changed after a single trial, and were indicative of recognition accuracy. SN neurons phase locked to frontal cortical theta-frequency oscillations, and the extent of this coordination predicted successful memory formation. These data reveal that dopaminergic neurons in the human SN are modulated by memory signals and demonstrate a progression of information flow in the hippocampal-basal ganglia-frontal cortex loop for memory encoding. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Reward modulates perception in binocular rivalry.
Marx, Svenja; Einhäuser, Wolfgang
2015-01-14
Our perception does not provide us with an exact imprint of the outside world, but is continuously adapted to our internal expectations, task sets, and behavioral goals. Although effects of reward-or value in general-on perception therefore seem likely, how valuation modulates perception and how such modulation relates to attention is largely unknown. We probed effects of reward on perception by using a binocular-rivalry paradigm. Distinct gratings drifting in opposite directions were presented to each observer's eyes. To objectify their subjective perceptual experience, the optokinetic nystagmus was used as measure of current perceptual dominance. In a first experiment, one of the percepts was either rewarded or attended. We found that reward and attention similarly biased perception. In a second experiment, observers performed an attentionally demanding task either on the rewarded stimulus, the other stimulus, or both. We found that-on top of an attentional effect on perception-at each level of attentional load, reward still modulated perception by increasing the dominance of the rewarded percept. Similarly, penalizing one percept increased dominance of the other at each level of attentional load. In turn, rewarding-and similarly nonpunishing-a percept yielded performance benefits that are typically associated with selective attention. In conclusion, our data show that value modulates perception in a similar way as the volitional deployment of attention, even though the relative effect of value is largely unaffected by an attention task. © 2015 ARVO.
Differential contribution of early visual areas to the perceptual process of contour processing.
Schira, Mark M; Fahle, Manfred; Donner, Tobias H; Kraft, Antje; Brandt, Stephan A
2004-04-01
We investigated contour processing and figure-ground detection within human retinotopic areas using event-related functional magnetic resonance imaging (fMRI) in 6 healthy and naïve subjects. A figure (6 degrees side length) was created by a 2nd-order texture contour. An independent and demanding foveal letter-discrimination task prevented subjects from noticing this more peripheral contour stimulus. The contour subdivided our stimulus into a figure and a ground. Using localizers and retinotopic mapping stimuli we were able to subdivide each early visual area into 3 eccentricity regions corresponding to 1) the central figure, 2) the area along the contour, and 3) the background. In these subregions we investigated the hemodynamic responses to our stimuli and compared responses with or without the contour defining the figure. No contour-related blood oxygenation level-dependent modulation in early visual areas V1, V3, VP, and MT+ was found. Significant signal modulation in the contour subregions of V2v, V2d, V3a, and LO occurred. This activation pattern was different from comparable studies, which might be attributable to the letter-discrimination task reducing confounding attentional modulation. In V3a, but not in any other retinotopic area, signal modulation corresponding to the central figure could be detected. Such contextual modulation will be discussed in light of the recurrent processing hypothesis and the role of visual awareness.
Illusory object motion in the centre of a radial pattern: The Pursuit-Pursuing illusion.
Ito, Hiroyuki
2012-01-01
A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed.
Accumulation of Inertial Sensory Information in the Perception of Whole Body Yaw Rotation.
Nesti, Alessandro; de Winkel, Ksander; Bülthoff, Heinrich H
2017-01-01
While moving through the environment, our central nervous system accumulates sensory information over time to provide an estimate of our self-motion, allowing for completing crucial tasks such as maintaining balance. However, little is known on how the duration of the motion stimuli influences our performances in a self-motion discrimination task. Here we study the human ability to discriminate intensities of sinusoidal (0.5 Hz) self-rotations around the vertical axis (yaw) for four different stimulus durations (1, 2, 3 and 5 s) in darkness. In a typical trial, participants experienced two consecutive rotations of equal duration and different peak amplitude, and reported the one perceived as stronger. For each stimulus duration, we determined the smallest detectable change in stimulus intensity (differential threshold) for a reference velocity of 15 deg/s. Results indicate that differential thresholds decrease with stimulus duration and asymptotically converge to a constant, positive value. This suggests that the central nervous system accumulates sensory information on self-motion over time, resulting in improved discrimination performances. Observed trends in differential thresholds are consistent with predictions based on a drift diffusion model with leaky integration of sensory evidence.
Binocular Perception of 2D Lateral Motion and Guidance of Coordinated Motor Behavior.
Fath, Aaron J; Snapp-Childs, Winona; Kountouriotis, Georgios K; Bingham, Geoffrey P
2016-04-01
Zannoli, Cass, Alais, and Mamassian (2012) found greater audiovisual lag between a tone and disparity-defined stimuli moving laterally (90-170 ms) than for disparity-defined stimuli moving in depth or luminance-defined stimuli moving laterally or in depth (50-60 ms). We tested if this increased lag presents an impediment to visually guided coordination with laterally moving objects. Participants used a joystick to move a virtual object in several constant relative phases with a laterally oscillating stimulus. Both the participant-controlled object and the target object were presented using a disparity-defined display that yielded information through changes in disparity over time (CDOT) or using a luminance-defined display that additionally provided information through monocular motion and interocular velocity differences (IOVD). Performance was comparable for both disparity-defined and luminance-defined displays in all relative phases. This suggests that, despite lag, perception of lateral motion through CDOT is generally sufficient to guide coordinated motor behavior.
Hu, Ning; Miller, Charles A; Abbas, Paul J; Robinson, Barbara K; Woo, Jihwan
2010-12-01
Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F(0) amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F(0) amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F(0) amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F(0) measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures.
Effects of Electrical and Mechanical Overstimulus on Spontaneous Oscillations in Hair Bundles
NASA Astrophysics Data System (ADS)
Kao, Albert; Strimbu, C. Elliott; Bozovic, Dolores
2011-11-01
Spontaneous oscillations constitute one of the manifestations of the active process operant in hair cells and provides a sensitive probe for their internal dynamics. The influx of ions into the stereocilia can be modulated by applying an electrical current across the epithelium and has been previously shown to strongly affect the oscillatory profiles. We applied strong transient stimuli and demonstrated that they can induce a transition from the oscillatory to the quiescent state, an effect that can last over several seconds post stimulus cessation. The dynamics of recovery to the oscillatory state was found to be dependent on the amplitude and the duration of the stimulus. Similar dynamics were observed after high-amplitude mechanical stimulus, which mimics the effects of loud sound on an individual bundle.
Digital signaling decouples activation probability and population heterogeneity.
Kellogg, Ryan A; Tian, Chengzhe; Lipniacki, Tomasz; Quake, Stephen R; Tay, Savaş
2015-10-21
Digital signaling enhances robustness of cellular decisions in noisy environments, but it is unclear how digital systems transmit temporal information about a stimulus. To understand how temporal input information is encoded and decoded by the NF-κB system, we studied transcription factor dynamics and gene regulation under dose- and duration-modulated inflammatory inputs. Mathematical modeling predicted and microfluidic single-cell experiments confirmed that integral of the stimulus (or area, concentration × duration) controls the fraction of cells that activate NF-κB in the population. However, stimulus temporal profile determined NF-κB dynamics, cell-to-cell variability, and gene expression phenotype. A sustained, weak stimulation lead to heterogeneous activation and delayed timing that is transmitted to gene expression. In contrast, a transient, strong stimulus with the same area caused rapid and uniform dynamics. These results show that digital NF-κB signaling enables multidimensional control of cellular phenotype via input profile, allowing parallel and independent control of single-cell activation probability and population heterogeneity.
Impact of stimulus uncanniness on speeded response
Takahashi, Kohske; Fukuda, Haruaki; Samejima, Kazuyuki; Watanabe, Katsumi; Ueda, Kazuhiro
2015-01-01
In the uncanny valley phenomenon, the causes of the feeling of uncanniness as well as the impact of the uncanniness on behavioral performances still remain open. The present study investigated the behavioral effects of stimulus uncanniness, particularly with respect to speeded response. Pictures of fish were used as visual stimuli. Participants engaged in direction discrimination, spatial cueing, and dot-probe tasks. The results showed that pictures rated as strongly uncanny delayed speeded response in the discrimination of the direction of the fish. In the cueing experiment, where a fish served as a task-irrelevant and unpredictable cue for a peripheral target, we again observed that the detection of a target was slowed when the cue was an uncanny fish. Conversely, the dot-probe task suggested that uncanny fish, unlike threatening stimulus, did not capture visual spatial attention. These results suggested that stimulus uncanniness resulted in the delayed response, and importantly this modulation was not mediated by the feelings of threat. PMID:26052297
Uncovering effects of self-control and stimulus-driven action selection on the sense of agency.
Wang, Yuru; Damen, Tom G E; Aarts, Henk
2017-10-01
The sense of agency refers to feelings of causing one's own action and resulting effect. Previous research indicates that voluntary action selection is an important factor in shaping the sense of agency. Whereas the volitional nature of the sense of agency is well documented, the present study examined whether agency is modulated when action selection shifts from self-control to a more automatic stimulus-driven process. Seventy-two participants performed an auditory Simon task including congruent and incongruent trials to generate automatic stimulus-driven vs. more self-control driven action, respectively. Responses in the Simon task produced a tone and agency was assessed with the intentional binding task - an implicit measure of agency. Results showed a Simon effect and temporal binding effect. However, temporal binding was independent of congruency. These findings suggest that temporal binding, a window to the sense of agency, emerges for both automatic stimulus-driven actions and self-controlled actions. Copyright © 2017 Elsevier Inc. All rights reserved.
Early correlates of visual awareness following orientation and colour rivalry.
Veser, Sandra; O'Shea, Robert P; Schröger, Erich; Trujillo-Barreto, Nelson J; Roeber, Urte
2008-10-01
Binocular rivalry occurs when dissimilar images are presented to corresponding retinal regions of the two eyes: visibility alternates irregularly between the two images, interspersed by brief transitions when parts of both may be visible. We measured event-related potentials (ERPs) following binocular rivalry by changing the stimulus viewed by one eye to be identical to that in the other eye, eliciting binocular fusion. Because of the rivalry, observers either saw the change, when it happened to the visible stimulus, or did not see the change, when it happened to the invisible stimulus. The earliest ERP differences between visible and invisible changes occurred after about 100 ms (P1) when the rivalry was between stimuli differing in orientation, and after about 200 ms (N1) when the rivalry was between stimuli differing in colour. These differences originated from ventro-lateral temporal and prefrontal areas. We conclude that the rivalling stimulus property influences the timing of modulation of correlates of visual awareness in a property-independent cortical network.
10 Hz Amplitude Modulated Sounds Induce Short-Term Tinnitus Suppression
Neff, Patrick; Michels, Jakob; Meyer, Martin; Schecklmann, Martin; Langguth, Berthold; Schlee, Winfried
2017-01-01
Objectives: Acoustic stimulation or sound therapy is proposed as a main treatment option for chronic subjective tinnitus. To further probe the field of acoustic stimulations for tinnitus therapy, this exploratory study compared 10 Hz amplitude modulated (AM) sounds (two pure tones, noise, music, and frequency modulated (FM) sounds) and unmodulated sounds (pure tone, noise) regarding their temporary suppression of tinnitus loudness. First, it was hypothesized that modulated sounds elicit larger temporary loudness suppression (residual inhibition) than unmodulated sounds. Second, with manipulation of stimulus loudness and duration of the modulated sounds weaker or stronger effects of loudness suppression were expected, respectively. Methods: We recruited 29 participants with chronic tonal tinnitus from the multidisciplinary Tinnitus Clinic of the University of Regensburg. Participants underwent audiometric, psychometric and tinnitus pitch matching assessments followed by an acoustic stimulation experiment with a tinnitus loudness growth paradigm. In a first block participants were stimulated with all of the sounds for 3 min each and rated their subjective tinnitus loudness to the pre-stimulus loudness every 30 s after stimulus offset. The same procedure was deployed in the second block with the pure tone AM stimuli matched to the tinnitus frequency, manipulated in length (6 min), and loudness (reduced by 30 dB and linear fade out). Repeated measures mixed model analyses of variance (ANOVA) were calculated to assess differences in loudness growth between the stimuli for each block separately. Results: First, we found that all sounds elicit a short-term suppression of tinnitus loudness (seconds to minutes) with strongest suppression right after stimulus offset [F(6, 1331) = 3.74, p < 0.01]. Second, similar to previous findings we found that AM sounds near the tinnitus frequency produce significantly stronger tinnitus loudness suppression than noise [vs. Pink noise: t(27) = −4.22, p < 0.0001]. Finally, variants of the AM sound matched to the tinnitus frequency reduced in sound level resulted in less suppression while there was no significant difference observed for a longer stimulation duration. Moreover, feasibility of the overall procedure could be confirmed as scores of both tinnitus loudness and questionnaires were lower after the experiment [tinnitus loudness: t(27) = 2.77, p < 0.01; Tinnitus Questionnaire: t(27) = 2.06, p < 0.05; Tinnitus Handicap Inventory: t(27) = 1.92, p = 0.065]. Conclusion: Taken together, these results imply that AM sounds, especially in or around the tinnitus frequency, may induce larger suppression than unmodulated sounds. Future studies should thus evaluate this approach in longitudinal studies and real life settings. Furthermore, the putative neural relation of these sound stimuli with a modulation rate in the EEG α band to the observed tinnitus suppression should be probed with respective neurophysiological methods. PMID:28579955
Temporal processing and adaptation in the songbird auditory forebrain.
Nagel, Katherine I; Doupe, Allison J
2006-09-21
Songbird auditory neurons must encode the dynamics of natural sounds at many volumes. We investigated how neural coding depends on the distribution of stimulus intensities. Using reverse-correlation, we modeled responses to amplitude-modulated sounds as the output of a linear filter and a nonlinear gain function, then asked how filters and nonlinearities depend on the stimulus mean and variance. Filter shape depended strongly on mean amplitude (volume): at low mean, most neurons integrated sound over many milliseconds, while at high mean, neurons responded more to local changes in amplitude. Increasing the variance (contrast) of amplitude modulations had less effect on filter shape but decreased the gain of firing in most cells. Both filter and gain changes occurred rapidly after a change in statistics, suggesting that they represent nonlinearities in processing. These changes may permit neurons to signal effectively over a wider dynamic range and are reminiscent of findings in other sensory systems.
1982-04-01
the gas particulate filter system MODULE L: OPERATE THE M250 BRENADE LAUNCHER 1L. Load the grenade launcher 2L. Unload the grenade launcher MODULE M...k Initia~ng Stimulus: Thei (11rdLr from the T.C. to load the M250 .p grenade launcher. J ACTION Loader will: 1L. Load the grenade launcher. 2L. Unload
Influence of prior information on pain involves biased perceptual decision-making.
Wiech, Katja; Vandekerckhove, Joachim; Zaman, Jonas; Tuerlinckx, Francis; Vlaeyen, Johan W S; Tracey, Irene
2014-08-04
Prior information about features of a stimulus is a strong modulator of perception. For instance, the prospect of more intense pain leads to an increased perception of pain, whereas the expectation of analgesia reduces pain, as shown in placebo analgesia and expectancy modulations during drug administration. This influence is commonly assumed to be rooted in altered sensory processing and expectancy-related modulations in the spinal cord, are often taken as evidence for this notion. Contemporary models of perception, however, suggest that prior information can also modulate perception by biasing perceptual decision-making - the inferential process underlying perception in which prior information is used to interpret sensory information. In this type of bias, the information is already present in the system before the stimulus is observed. Computational models can distinguish between changes in sensory processing and altered decision-making as they result in different response times for incorrect choices in a perceptual decision-making task (Figure S1A,B). Using a drift-diffusion model, we investigated the influence of both processes in two independent experiments. The results of both experiments strongly suggest that these changes in pain perception are predominantly based on altered perceptual decision-making. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Schmidt-Hansen, Mia; Honey, Robert C
2014-03-01
Two experiments investigated how the schizotypal characteristics of unusual experiences modulate changes in attention to alphanumeric stimuli. In the first stage of both experiments, participants were required to attend and respond to either Arabic numerals or Latin letters; with the four exemplars from each dimension being presented on a different number of occasions (0, 5, 10, 20). During the test in Experiment 1 (n=103), speeded alphanumeric decisions were more accurate for the novel than familiar exemplars, irrespective of whether they had been attended to or not. This influence of familiarity was not modulated by schizotypy. During the test in Experiment 2 (n=128), learning that the attended dimension predicted the presentation of the symbol X (or the absence of X) proceeded more rapidly than learning the corresponding predictions involving the unattended dimension. In the case of novel exemplars, but not familiar exemplars, this modulation of learning by attention was reduced as schizotypy scores increased. Taken together, these results show that schizotypal characteristics do not modulate the influence of familiarity on performance (Experiment 1), but do have an influence on attention, which is best characterised as one on tuning attention to stimulus dimensions rather than individual stimuli. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation
Micali, Gabriele; Aquino, Gerardo; Richards, David M.; Endres, Robert G.
2015-01-01
Cells sense external concentrations and, via biochemical signaling, respond by regulating the expression of target proteins. Both in signaling networks and gene regulation there are two main mechanisms by which the concentration can be encoded internally: amplitude modulation (AM), where the absolute concentration of an internal signaling molecule encodes the stimulus, and frequency modulation (FM), where the period between successive bursts represents the stimulus. Although both mechanisms have been observed in biological systems, the question of when it is beneficial for cells to use either AM or FM is largely unanswered. Here, we first consider a simple model for a single receptor (or ion channel), which can either signal continuously whenever a ligand is bound, or produce a burst in signaling molecule upon receptor binding. We find that bursty signaling is more accurate than continuous signaling only for sufficiently fast dynamics. This suggests that modulation based on bursts may be more common in signaling networks than in gene regulation. We then extend our model to multiple receptors, where continuous and bursty signaling are equivalent to AM and FM respectively, finding that AM is always more accurate. This implies that the reason some cells use FM is related to factors other than accuracy, such as the ability to coordinate expression of multiple genes or to implement threshold crossing mechanisms. PMID:26030820
Teaching Braille Line Tracking Using Stimulus Fading
ERIC Educational Resources Information Center
Scheithauer, Mindy C.; Tiger, Jeffrey H.
2014-01-01
Line tracking is a prerequisite skill for braille literacy that involves moving one's finger horizontally across a line of braille text and identifying when a line ends so the reader may reset his or her finger on the subsequent line. Current procedures for teaching line tracking are incomplete, because they focus on tracking lines with only…
Applying Schema Theory to Mass Media Information Processing: Moving toward a Formal Model.
ERIC Educational Resources Information Center
Wicks, Robert H.
Schema theory may be significant in determining if and how news audiences process information. For any given news topic, people have from none to many schemata (cognitive structures that represent organized knowledge about a given concept or type of stimulus abstracted from prior experience) upon which to draw. Models of how schemata are used…
Young Infants' Perception of the Trajectories of Two- and Three-Dimensional Objects
ERIC Educational Resources Information Center
Johnson, Scott P.; Bremner, J. Gavin; Slater, Alan M.; Shuwairi, Sarah M.; Mason, Uschi; Spring, Jo; Usherwood, Barrie
2012-01-01
We investigated oculomotor anticipations in 4-month-old infants as they viewed center-occluded object trajectories. In two experiments, we examined performance in two-dimensional (2D) and three-dimensional (3D) dynamic occlusion displays and in an additional 3D condition with a smiley face as the moving target stimulus. Rates of anticipatory eye…
Statistical context shapes stimulus-specific adaptation in human auditory cortex
Henry, Molly J.; Fromboluti, Elisa Kim; McAuley, J. Devin
2015-01-01
Stimulus-specific adaptation is the phenomenon whereby neural response magnitude decreases with repeated stimulation. Inconsistencies between recent nonhuman animal recordings and computational modeling suggest dynamic influences on stimulus-specific adaptation. The present human electroencephalography (EEG) study investigates the potential role of statistical context in dynamically modulating stimulus-specific adaptation by examining the auditory cortex-generated N1 and P2 components. As in previous studies of stimulus-specific adaptation, listeners were presented with oddball sequences in which the presentation of a repeated tone was infrequently interrupted by rare spectral changes taking on three different magnitudes. Critically, the statistical context varied with respect to the probability of small versus large spectral changes within oddball sequences (half of the time a small change was most probable; in the other half a large change was most probable). We observed larger N1 and P2 amplitudes (i.e., release from adaptation) for all spectral changes in the small-change compared with the large-change statistical context. The increase in response magnitude also held for responses to tones presented with high probability, indicating that statistical adaptation can overrule stimulus probability per se in its influence on neural responses. Computational modeling showed that the degree of coadaptation in auditory cortex changed depending on the statistical context, which in turn affected stimulus-specific adaptation. Thus the present data demonstrate that stimulus-specific adaptation in human auditory cortex critically depends on statistical context. Finally, the present results challenge the implicit assumption of stationarity of neural response magnitudes that governs the practice of isolating established deviant-detection responses such as the mismatch negativity. PMID:25652920
Expectancy Effects on Conditioned Pain Modulation Are Not Influenced by Naloxone or Morphine.
France, Christopher R; Burns, John W; Gupta, Rajnish K; Buvanendran, Asokumar; Chont, Melissa; Schuster, Erik; Orlowska, Daria; Bruehl, Stephen
2016-08-01
Recent studies suggest that participant expectations influence pain ratings during conditioned pain modulation testing. The present study extends this work by examining expectancy effects among individuals with and without chronic back pain after administration of placebo, naloxone, or morphine. This study aims to identify the influence of individual differences in expectancy on changes in heat pain ratings obtained before, during, and after a forearm ischemic pain stimulus. Participants with chronic low back pain (n = 88) and healthy controls (n = 100) rated heat pain experience (i.e., "test stimulus") before, during, and after exposure to ischemic pain (i.e., "conditioning stimulus"). Prior to testing, participants indicated whether they anticipated that their heat pain would increase, decrease, or remain unchanged during ischemic pain. Analysis of the effects of expectancy (pain increase, decrease, or no change), drug (placebo, naloxone, or morphine), and group (back pain, healthy) on changes in heat pain revealed a significant main effect of expectancy (p = 0.001), but no other significant main effects or interactions. Follow-up analyses revealed that individuals who expected lower pain during ischemia reported significantly larger decreases in heat pain as compared with those who expected either no change (p = 0.004) or increased pain (p = 0.001). The present findings confirm that expectancy is an important contributor to conditioned pain modulation effects, and therefore significant caution is needed when interpreting findings that do not account for this individual difference. Opioid mechanisms do not appear to be involved in these expectancy effects.
Emotion modulates activity in the 'what' but not 'where' auditory processing pathway.
Kryklywy, James H; Macpherson, Ewan A; Greening, Steven G; Mitchell, Derek G V
2013-11-15
Auditory cortices can be separated into dissociable processing pathways similar to those observed in the visual domain. Emotional stimuli elicit enhanced neural activation within sensory cortices when compared to neutral stimuli. This effect is particularly notable in the ventral visual stream. Little is known, however, about how emotion interacts with dorsal processing streams, and essentially nothing is known about the impact of emotion on auditory stimulus localization. In the current study, we used fMRI in concert with individualized auditory virtual environments to investigate the effect of emotion during an auditory stimulus localization task. Surprisingly, participants were significantly slower to localize emotional relative to neutral sounds. A separate localizer scan was performed to isolate neural regions sensitive to stimulus location independent of emotion. When applied to the main experimental task, a significant main effect of location, but not emotion, was found in this ROI. A whole-brain analysis of the data revealed that posterior-medial regions of auditory cortex were modulated by sound location; however, additional anterior-lateral areas of auditory cortex demonstrated enhanced neural activity to emotional compared to neutral stimuli. The latter region resembled areas described in dual pathway models of auditory processing as the 'what' processing stream, prompting a follow-up task to generate an identity-sensitive ROI (the 'what' pathway) independent of location and emotion. Within this region, significant main effects of location and emotion were identified, as well as a significant interaction. These results suggest that emotion modulates activity in the 'what,' but not the 'where,' auditory processing pathway. Copyright © 2013 Elsevier Inc. All rights reserved.
2017-11-17
A crane is being prepared for use during move operations of the Orion crew module for Exploration Mission-1 to the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The crew module will undergo a thermal cycle test to assess the workmanship of critical hardware and structural locations. The test also demonstrates crew module subsystem operations in a thermally stressing environment to confirm no damage or anomalous hardware conditions as a result of the test. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.
2017-11-17
Technicians check a crane that will be used during move operations of the Orion crew module for Exploration Mission-1 to the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The crew module will undergo a thermal cycle test to assess the workmanship of critical hardware and structural locations. The test also demonstrates crew module subsystem operations in a thermally stressing environment to confirm no damage or anomalous hardware conditions as a result of the test. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, workers attach the overhead crane that will lift the Unity connecting module from its workstand to move the module to the payload canister. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
2017-11-17
Technicians prepare a crane for use during move operations of the Orion crew module for Exploration Mission-1 to the thermal chamber in the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida. The crew module will undergo a thermal cycle test to assess the workmanship of critical hardware and structural locations. The test also demonstrates crew module subsystem operations in a thermally stressing environment to confirm no damage or anomalous hardware conditions as a result of the test. The Orion spacecraft will launch atop NASA's Space Launch System rocket on its first uncrewed integrated flight.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians begin to move the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a Lockheed Martin technician secures a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, a protective cover is installed around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians are preparing the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for the move into a clean room. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Orion EM-1 Crew Module Adapter Move to Clean Room
2016-11-29
Inside the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, Lockheed Martin technicians secure a protective cover around the Orion crew module adapter (CMA) for Exploration Mission 1 (EM-1) for its move to a clean. The CMA will undergo propellant and environmental control and life support system tube installation and welding. The adapter will connect the Orion crew module to the European Space Agency-provided service module. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Burst Firing is a Neural Code in an Insect Auditory System
Eyherabide, Hugo G.; Rokem, Ariel; Herz, Andreas V. M.; Samengo, Inés
2008-01-01
Various classes of neurons alternate between high-frequency discharges and silent intervals. This phenomenon is called burst firing. To analyze burst activity in an insect system, grasshopper auditory receptor neurons were recorded in vivo for several distinct stimulus types. The experimental data show that both burst probability and burst characteristics are strongly influenced by temporal modulations of the acoustic stimulus. The tendency to burst, hence, is not only determined by cell-intrinsic processes, but also by their interaction with the stimulus time course. We study this interaction quantitatively and observe that bursts containing a certain number of spikes occur shortly after stimulus deflections of specific intensity and duration. Our findings suggest a sparse neural code where information about the stimulus is represented by the number of spikes per burst, irrespective of the detailed interspike-interval structure within a burst. This compact representation cannot be interpreted as a firing-rate code. An information-theoretical analysis reveals that the number of spikes per burst reliably conveys information about the amplitude and duration of sound transients, whereas their time of occurrence is reflected by the burst onset time. The investigated neurons encode almost half of the total transmitted information in burst activity. PMID:18946533
Changes in the magnitude of the eyeblink startle response during habituation of sexual arousal.
Koukounas, E; Over, R
2000-06-01
Modulation of the startle response was used to examine emotional processing of sexual stimulation across trials within a session. Eyeblink startle was elicited by a probe (burst of intense white noise) presented intermittently while men were viewing an erotic film segment. Repeated display of the film segment resulted in a progressive decrease in sexual arousal. Habituation of sexual arousal was accompanied by a reduction over trials in the extent the men felt absorbed when viewing the erotic stimulus and by an increase over trials in the magnitude of the eyeblink startle response. Replacing the familiar stimulus by a novel erotic stimulus increased in sexual arousal and absorption and reduced startle (novelty effect), while dishabituation was evident for all three response measures when the familiar stimulus was reintroduced. This pattern of results indicates that with repeated presentation an erotic stimulus is experienced not only as less sexually arousing but also as less appetitive and absorbing. The question of whether habituation of sexual arousal is mediated by changes in attentional and affective processing over trials is discussed, as are clinical contexts in which eyeblink startle can be used in studying aspects of sexual functioning.
Stimulus Threat and Exposure Context Modulate the Effect of Mere Exposure on Approach Behaviors.
Young, Steven G; Jones, Isaiah F; Claypool, Heather M
2016-01-01
Mere-exposure (ME) research has found that initially neutral objects made familiar are preferred relative to novel objects. Recent work extends these preference judgments into the behavioral domain by illustrating that mere exposure prompts approach-oriented behavior toward familiar stimuli. However, no investigations have examined the effect of mere exposure on approach-oriented behavior toward threatening stimuli. The current work examines this issue and also explores how exposure context interacts with stimulus threat to influence behavioral tendencies. In two experiments participants were presented with both mere-exposed and novel stimuli and approach speed was assessed. In the first experiment, when stimulus threat was presented in a homogeneous format (i.e., participants viewed exclusively neutral or threatening stimuli), ME potentiated approach behaviors for both neutral and threatening stimuli. However, in the second experiment, in which stimulus threat was presented in a heterogeneous fashion (i.e., participants viewed both neutral and threatening stimuli), mere exposure facilitated approach only for initially neutral stimuli. These results suggest that ME effects on approach behaviors are highly context sensitive and depend on both stimulus valence and exposure context. Further implications of these findings for the ME literature are discussed.
Global inhibition and stimulus competition in the owl optic tectum
Mysore, Shreesh P.; Asadollahi, Ali; Knudsen, Eric I.
2010-01-01
Stimulus selection for gaze and spatial attention involves competition among stimuli across sensory modalities and across all of space. We demonstrate that such cross-modal, global competition takes place in the intermediate and deep layers of the optic tectum, a structure known to be involved in gaze control and attention. A variety of either visual or auditory stimuli located anywhere outside of a neuron's receptive field (RF) were shown to suppress or completely eliminate responses to a visual stimulus located inside the RF in nitrous oxide sedated owls. The essential mechanism underlying this stimulus competition is global, divisive inhibition. Unlike the effect of the classical inhibitory surround, which decreases with distance from the RF center and shapes neuronal responses to individual stimuli, global inhibition acts across the entirety of space and modulates responses primarily in the context of multiple stimuli. Whereas the source of this global inhibition is as yet unknown, our data indicate that different networks mediate the classical surround and global inhibition. We hypothesize that this global, cross-modal inhibition, which acts automatically in a bottom-up fashion even in sedated animals, is critical to the creation of a map of stimulus salience in the optic tectum. PMID:20130182
Stimulus Threat and Exposure Context Modulate the Effect of Mere Exposure on Approach Behaviors
Young, Steven G.; Jones, Isaiah F.; Claypool, Heather M.
2016-01-01
Mere-exposure (ME) research has found that initially neutral objects made familiar are preferred relative to novel objects. Recent work extends these preference judgments into the behavioral domain by illustrating that mere exposure prompts approach-oriented behavior toward familiar stimuli. However, no investigations have examined the effect of mere exposure on approach-oriented behavior toward threatening stimuli. The current work examines this issue and also explores how exposure context interacts with stimulus threat to influence behavioral tendencies. In two experiments participants were presented with both mere-exposed and novel stimuli and approach speed was assessed. In the first experiment, when stimulus threat was presented in a homogeneous format (i.e., participants viewed exclusively neutral or threatening stimuli), ME potentiated approach behaviors for both neutral and threatening stimuli. However, in the second experiment, in which stimulus threat was presented in a heterogeneous fashion (i.e., participants viewed both neutral and threatening stimuli), mere exposure facilitated approach only for initially neutral stimuli. These results suggest that ME effects on approach behaviors are highly context sensitive and depend on both stimulus valence and exposure context. Further implications of these findings for the ME literature are discussed. PMID:27965614
Mismatch and conflict: neurophysiological and behavioral evidence for conflict priming.
Mager, Ralph; Meuth, Sven G; Kräuchi, Kurt; Schmidlin, Maria; Müller-Spahn, Franz; Falkenstein, Michael
2009-11-01
Conflict-related cognitive processes are critical for adapting to sudden environmental changes that confront the individual with inconsistent or ambiguous information. Thus, these processes play a crucial role to cope with daily life. Generally, conflicts tend to accumulate especially in complex and threatening situations. Therefore, the question arises how conflict-related cognitive processes are modulated by the close succession of conflicts. In the present study, we investigated the effect of interactions between different types of conflict on performance as well as on electrophysiological parameters. A task-irrelevant auditory stimulus and a task-relevant visual stimulus were presented successively. The auditory stimulus consisted of a standard or deviant tone, followed by a congruent or incongruent Stroop stimulus. After standard prestimuli, performance deteriorated for incongruent compared to congruent Stroop stimuli, which were accompanied by a widespread negativity for incongruent versus congruent stimuli in the event-related potentials (ERPs). However, after deviant prestimuli, performance was better for incongruent than for congruent Stroop stimuli and an additional early negativity in the ERP emerged with a fronto-central maximum. Our data show that deviant auditory prestimuli facilitate specifically the processing of stimulus-related conflict, providing evidence for a conflict-priming effect.
Memory consolidation by replay of stimulus-specific neural activity.
Deuker, Lorena; Olligs, Jan; Fell, Juergen; Kranz, Thorsten A; Mormann, Florian; Montag, Christian; Reuter, Martin; Elger, Christian E; Axmacher, Nikolai
2013-12-04
Memory consolidation transforms initially labile memory traces into more stable representations. One putative mechanism for consolidation is the reactivation of memory traces after their initial encoding during subsequent sleep or waking state. However, it is still unknown whether consolidation of individual memory contents relies on reactivation of stimulus-specific neural representations in humans. Investigating stimulus-specific representations in humans is particularly difficult, but potentially feasible using multivariate pattern classification analysis (MVPA). Here, we show in healthy human participants that stimulus-specific activation patterns can indeed be identified with MVPA, that these patterns reoccur spontaneously during postlearning resting periods and sleep, and that the frequency of reactivation predicts subsequent memory for individual items. We conducted a paired-associate learning task with items and spatial positions and extracted stimulus-specific activity patterns by MVPA in a simultaneous electroencephalography and functional magnetic resonance imaging (fMRI) study. As a first step, we investigated the amount of fMRI volumes during rest that resembled either one of the items shown before or one of the items shown as a control after the resting period. Reactivations during both awake resting state and sleep predicted subsequent memory. These data are first evidence that spontaneous reactivation of stimulus-specific activity patterns during resting state can be investigated using MVPA. They show that reactivation occurs in humans and is behaviorally relevant for stabilizing memory traces against interference. They move beyond previous studies because replay was investigated on the level of individual stimuli and because reactivations were not evoked by sensory cues but occurred spontaneously.
Effects of contrast on smooth pursuit eye movements.
Spering, Miriam; Kerzel, Dirk; Braun, Doris I; Hawken, Michael J; Gegenfurtner, Karl R
2005-05-20
It is well known that moving stimuli can appear to move more slowly when contrast is reduced (P. Thompson, 1982). Here we address the question whether changes in stimulus contrast also affect smooth pursuit eye movements. Subjects were asked to smoothly track a moving Gabor patch. Targets varied in velocity (1, 8, and 15 deg/s), spatial frequency (0.1, 1, 4, and 8 c/deg), and contrast, ranging from just below individual thresholds to maximum contrast. Results show that smooth pursuit eye velocity gain rose significantly with increasing contrast. Below a contrast level of two to three times threshold, pursuit gain, acceleration, latency, and positional accuracy were severely impaired. Therefore, the smooth pursuit motor response shows the same kind of slowing at low contrast that was demonstrated in previous studies on perception.
Two different mechanisms support selective attention at different phases of training.
Itthipuripat, Sirawaj; Cha, Kexin; Byers, Anna; Serences, John T
2017-06-01
Selective attention supports the prioritized processing of relevant sensory information to facilitate goal-directed behavior. Studies in human subjects demonstrate that attentional gain of cortical responses can sufficiently account for attention-related improvements in behavior. On the other hand, studies using highly trained nonhuman primates suggest that reductions in neural noise can better explain attentional facilitation of behavior. Given the importance of selective information processing in nearly all domains of cognition, we sought to reconcile these competing accounts by testing the hypothesis that extensive behavioral training alters the neural mechanisms that support selective attention. We tested this hypothesis using electroencephalography (EEG) to measure stimulus-evoked visual responses from human subjects while they performed a selective spatial attention task over the course of ~1 month. Early in training, spatial attention led to an increase in the gain of stimulus-evoked visual responses. Gain was apparent within ~100 ms of stimulus onset, and a quantitative model based on signal detection theory (SDT) successfully linked the magnitude of this gain modulation to attention-related improvements in behavior. However, after extensive training, this early attentional gain was eliminated even though there were still substantial attention-related improvements in behavior. Accordingly, the SDT-based model required noise reduction to account for the link between the stimulus-evoked visual responses and attentional modulations of behavior. These findings suggest that training can lead to fundamental changes in the way attention alters the early cortical responses that support selective information processing. Moreover, these data facilitate the translation of results across different species and across experimental procedures that employ different behavioral training regimes.
Two different mechanisms support selective attention at different phases of training
Cha, Kexin; Byers, Anna; Serences, John T.
2017-01-01
Selective attention supports the prioritized processing of relevant sensory information to facilitate goal-directed behavior. Studies in human subjects demonstrate that attentional gain of cortical responses can sufficiently account for attention-related improvements in behavior. On the other hand, studies using highly trained nonhuman primates suggest that reductions in neural noise can better explain attentional facilitation of behavior. Given the importance of selective information processing in nearly all domains of cognition, we sought to reconcile these competing accounts by testing the hypothesis that extensive behavioral training alters the neural mechanisms that support selective attention. We tested this hypothesis using electroencephalography (EEG) to measure stimulus-evoked visual responses from human subjects while they performed a selective spatial attention task over the course of ~1 month. Early in training, spatial attention led to an increase in the gain of stimulus-evoked visual responses. Gain was apparent within ~100 ms of stimulus onset, and a quantitative model based on signal detection theory (SDT) successfully linked the magnitude of this gain modulation to attention-related improvements in behavior. However, after extensive training, this early attentional gain was eliminated even though there were still substantial attention-related improvements in behavior. Accordingly, the SDT-based model required noise reduction to account for the link between the stimulus-evoked visual responses and attentional modulations of behavior. These findings suggest that training can lead to fundamental changes in the way attention alters the early cortical responses that support selective information processing. Moreover, these data facilitate the translation of results across different species and across experimental procedures that employ different behavioral training regimes. PMID:28654635
Temporal variability of spectro-temporal receptive fields in the anesthetized auditory cortex.
Meyer, Arne F; Diepenbrock, Jan-Philipp; Ohl, Frank W; Anemüller, Jörn
2014-01-01
Temporal variability of neuronal response characteristics during sensory stimulation is a ubiquitous phenomenon that may reflect processes such as stimulus-driven adaptation, top-down modulation or spontaneous fluctuations. It poses a challenge to functional characterization methods such as the receptive field, since these often assume stationarity. We propose a novel method for estimation of sensory neurons' receptive fields that extends the classic static linear receptive field model to the time-varying case. Here, the long-term estimate of the static receptive field serves as the mean of a probabilistic prior distribution from which the short-term temporally localized receptive field may deviate stochastically with time-varying standard deviation. The derived corresponding generalized linear model permits robust characterization of temporal variability in receptive field structure also for highly non-Gaussian stimulus ensembles. We computed and analyzed short-term auditory spectro-temporal receptive field (STRF) estimates with characteristic temporal resolution 5-30 s based on model simulations and responses from in total 60 single-unit recordings in anesthetized Mongolian gerbil auditory midbrain and cortex. Stimulation was performed with short (100 ms) overlapping frequency-modulated tones. Results demonstrate identification of time-varying STRFs, with obtained predictive model likelihoods exceeding those from baseline static STRF estimation. Quantitative characterization of STRF variability reveals a higher degree thereof in auditory cortex compared to midbrain. Cluster analysis indicates that significant deviations from the long-term static STRF are brief, but reliably estimated. We hypothesize that the observed variability more likely reflects spontaneous or state-dependent internal fluctuations that interact with stimulus-induced processing, rather than experimental or stimulus design.
Distributed neural signatures of natural audiovisual speech and music in the human auditory cortex.
Salmi, Juha; Koistinen, Olli-Pekka; Glerean, Enrico; Jylänki, Pasi; Vehtari, Aki; Jääskeläinen, Iiro P; Mäkelä, Sasu; Nummenmaa, Lauri; Nummi-Kuisma, Katarina; Nummi, Ilari; Sams, Mikko
2017-08-15
During a conversation or when listening to music, auditory and visual information are combined automatically into audiovisual objects. However, it is still poorly understood how specific type of visual information shapes neural processing of sounds in lifelike stimulus environments. Here we applied multi-voxel pattern analysis to investigate how naturally matching visual input modulates supratemporal cortex activity during processing of naturalistic acoustic speech, singing and instrumental music. Bayesian logistic regression classifiers with sparsity-promoting priors were trained to predict whether the stimulus was audiovisual or auditory, and whether it contained piano playing, speech, or singing. The predictive performances of the classifiers were tested by leaving one participant at a time for testing and training the model using the remaining 15 participants. The signature patterns associated with unimodal auditory stimuli encompassed distributed locations mostly in the middle and superior temporal gyrus (STG/MTG). A pattern regression analysis, based on a continuous acoustic model, revealed that activity in some of these MTG and STG areas were associated with acoustic features present in speech and music stimuli. Concurrent visual stimulus modulated activity in bilateral MTG (speech), lateral aspect of right anterior STG (singing), and bilateral parietal opercular cortex (piano). Our results suggest that specific supratemporal brain areas are involved in processing complex natural speech, singing, and piano playing, and other brain areas located in anterior (facial speech) and posterior (music-related hand actions) supratemporal cortex are influenced by related visual information. Those anterior and posterior supratemporal areas have been linked to stimulus identification and sensory-motor integration, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.
Oscillatory EEG signatures of postponed somatosensory decisions.
Ludwig, Simon; Herding, Jan; Blankenburg, Felix
2018-05-02
In recent electroencephalography (EEG) studies, the vibrotactile frequency comparison task has been used to study oscillatory signatures of perceptual decision making in humans, revealing a choice-selective modulation of premotor upper beta band power shortly before decisions were reported. Importantly, these studies focused on decisions that were (1) indicated immediately after stimulus presentation, and (2) for which a direct motor mapping was provided. Here, we investigated whether the putative beta band choice signal also extends to postponed decisions, and how such a decision signal might be influenced by a response mapping that is dissociated from a specific motor command. We recorded EEG data in two separate experiments, both employing the vibrotactile frequency comparison task with delayed decision reports. In the first experiment, delayed choices were associated with a fixed motor mapping, whereas in the second experiment, choices were mapped onto a color code concealing a specific motor response until the end of the delay phase. In between stimulus presentations, as well as after the second stimulus, prefrontal beta band power indexed stimulus information held in working memory. Beta band power also encoded choices during the response delay, notably, in different cortical areas depending on the provided response mapping. In particular, when decisions were associated with a specific motor mapping, choices were represented in premotor cortices, whereas the color mapping resulted in a choice-selective modulation of beta band power in parietal cortices. Together, our findings imply that how a choice is expressed (i.e., the decision consequence) determines where in the cortical sensorimotor hierarchy an according decision signal is processed. © 2018 Wiley Periodicals, Inc.
Prior probability and feature predictability interactively bias perceptual decisions
Dunovan, Kyle E.; Tremel, Joshua J.; Wheeler, Mark E.
2014-01-01
Anticipating a forthcoming sensory experience facilitates perception for expected stimuli but also hinders perception for less likely alternatives. Recent neuroimaging studies suggest that expectation biases arise from feature-level predictions that enhance early sensory representations and facilitate evidence accumulation for contextually probable stimuli while suppressing alternatives. Reasonably then, the extent to which prior knowledge biases subsequent sensory processing should depend on the precision of expectations at the feature level as well as the degree to which expected features match those of an observed stimulus. In the present study we investigated how these two sources of uncertainty modulated pre- and post-stimulus bias mechanisms in the drift-diffusion model during a probabilistic face/house discrimination task. We tested several plausible models of choice bias, concluding that predictive cues led to a bias in both the starting-point and rate of evidence accumulation favoring the more probable stimulus category. We further tested the hypotheses that prior bias in the starting-point was conditional on the feature-level uncertainty of category expectations and that dynamic bias in the drift-rate was modulated by the match between expected and observed stimulus features. Starting-point estimates suggested that subjects formed a constant prior bias in favor of the face category, which exhibits less feature-level variability, that was strengthened or weakened by trial-wise predictive cues. Furthermore, we found that the gain on face/house evidence was increased for stimuli with less ambiguous features and that this relationship was enhanced by valid category expectations. These findings offer new evidence that bridges psychological models of decision-making with recent predictive coding theories of perception. PMID:24978303
Pedersen, Walker S; Muftuler, L Tugan; Larson, Christine L
2017-08-01
The hippocampus and amygdala exhibit sensitivity to stimulus novelty that is reduced in participants with inhibited temperament, which is related to trait anxiety. Although the bed nucleus of the stria terminalis (BNST) is highly connected to the amygdala and is implicated in anxiety, whether the BNST responds to novelty remains unstudied, as well as how trait anxiety may modulate this response. Additionally how novelty, stimulus negativity and trait anxiety interact to affect activity in these areas is also unclear. To address these questions, we presented participants with novel and repeated, fearful and neutral faces, while measuring brain activity via fMRI, and also assessed participants' self-reported trait anxiety. As the small size of the BNST makes assessing its activity at typical fMRI resolution difficult, we employed high resolution 7 Tesla scanning. Our results replicate findings of novelty sensitivity that is independent of valence in the hippocampus. Our results also provide novel evidence for a BNST novelty response toward neutral, but not fearful faces. We also found that the novelty response in the hippocampus and BNST was blunted in participants with high trait anxiety. Additionally, we found left amygdala sensitivity to stimulus negativity that was blunted for high trait anxiety participants. These findings extend past research on the response to novel stimuli in the hippocampus and amygdala at high resolution, and are the first to demonstrate trait anxiety modulated novelty sensitivity in the BNST that is dependent on stimulus valence. Copyright © 2017 Elsevier Inc. All rights reserved.
Adaptive shaping of cortical response selectivity in the vibrissa pathway
Zheng, He J. V.; Wang, Qi
2015-01-01
One embodiment of context-dependent sensory processing is bottom-up adaptation, where persistent stimuli decrease neuronal firing rate over hundreds of milliseconds. Adaptation is not, however, simply the fatigue of the sensory pathway, but shapes the information flow and selectivity to stimulus features. Adaptation enhances spatial discriminability (distinguishing stimulus location) while degrading detectability (reporting presence of the stimulus), for both the ideal observer of the cortex and awake, behaving animals. However, how the dynamics of the adaptation shape the cortical response and this detection and discrimination tradeoff is unknown, as is to what degree this phenomenon occurs on a continuum as opposed to a switching of processing modes. Using voltage-sensitive dye imaging in anesthetized rats to capture the temporal and spatial characteristics of the cortical response to tactile inputs, we showed that the suppression of the cortical response, in both magnitude and spatial spread, is continuously modulated by the increasing amount of energy in the adapting stimulus, which is nonuniquely determined by its frequency and velocity. Single-trial ideal observer analysis demonstrated a tradeoff between detectability and spatial discriminability up to a moderate amount of adaptation, which corresponds to the frequency range in natural whisking. This was accompanied by a decrease in both detectability and discriminability with high-energy adaptation, which indicates a more complex coupling between detection and discrimination than a simple switching of modes. Taken together, the results suggest that adaptation operates on a continuum and modulates the tradeoff between detectability and discriminability that has implications for information processing in ethological contexts. PMID:25787959
Emotional Picture and Word Processing: An fMRI Study on Effects of Stimulus Complexity
Schlochtermeier, Lorna H.; Kuchinke, Lars; Pehrs, Corinna; Urton, Karolina; Kappelhoff, Hermann; Jacobs, Arthur M.
2013-01-01
Neuroscientific investigations regarding aspects of emotional experiences usually focus on one stimulus modality (e.g., pictorial or verbal). Similarities and differences in the processing between the different modalities have rarely been studied directly. The comparison of verbal and pictorial emotional stimuli often reveals a processing advantage of emotional pictures in terms of larger or more pronounced emotion effects evoked by pictorial stimuli. In this study, we examined whether this picture advantage refers to general processing differences or whether it might partly be attributed to differences in visual complexity between pictures and words. We first developed a new stimulus database comprising valence and arousal ratings for more than 200 concrete objects representable in different modalities including different levels of complexity: words, phrases, pictograms, and photographs. Using fMRI we then studied the neural correlates of the processing of these emotional stimuli in a valence judgment task, in which the stimulus material was controlled for differences in emotional arousal. No superiority for the pictorial stimuli was found in terms of emotional information processing with differences between modalities being revealed mainly in perceptual processing regions. While visual complexity might partly account for previously found differences in emotional stimulus processing, the main existing processing differences are probably due to enhanced processing in modality specific perceptual regions. We would suggest that both pictures and words elicit emotional responses with no general superiority for either stimulus modality, while emotional responses to pictures are modulated by perceptual stimulus features, such as picture complexity. PMID:23409009
Task-dependent V1 responses in human retinitis pigmentosa.
Masuda, Yoichiro; Horiguchi, Hiroshi; Dumoulin, Serge O; Furuta, Ayumu; Miyauchi, Satoru; Nakadomari, Satoshi; Wandell, Brian A
2010-10-01
During measurement with functional MRI (fMRI) during passive viewing, subjects with macular degeneration (MD) have a large unresponsive lesion projection zone (LPZ) in V1. fMRI responses can be evoked from the LPZ when subjects engage in a stimulus-related task. The authors report fMRI measurements on a different class of subjects, those with retinitis pigmentosa (RP), who have intact foveal vision but peripheral visual field loss. The authors measured three RP subjects and two control subjects. fMRI was performed while the subjects viewed drifting contrast pattern stimuli. The subjects passively viewed the stimuli or performed a stimulus-related task. During passive viewing, the BOLD response in the posterior calcarine cortex of all RP subjects was in phase with the stimulus. A bordering, anterior LPZ could be identified by responses that were in opposite phase to the stimulus. When the RP subjects made stimulus-related judgments, however, the LPZ responses changed: the responses modulated in phase with the stimulus and task. In control subjects, the responses in a simulated V1 LPZ were unchanged between the passive and the stimulus-related judgment conditions. Task-dependent LPZ responses are present in RP subjects, similar to responses measured in MD subjects. The results are consistent with the hypothesis that deleting the retinal input to the LPZ unmasks preexisting extrastriate feedback signals that are present across V1. The authors discuss the implications of this hypothesis for visual therapy designed to replace the missing V1 LPZ inputs and to restore vision.
Modulation of Neuronal Responses by Exogenous Attention in Macaque Primary Visual Cortex.
Wang, Feng; Chen, Minggui; Yan, Yin; Zhaoping, Li; Li, Wu
2015-09-30
Visual perception is influenced by attention deployed voluntarily or triggered involuntarily by salient stimuli. Modulation of visual cortical processing by voluntary or endogenous attention has been extensively studied, but much less is known about how involuntary or exogenous attention affects responses of visual cortical neurons. Using implanted microelectrode arrays, we examined the effects of exogenous attention on neuronal responses in the primary visual cortex (V1) of awake monkeys. A bright annular cue was flashed either around the receptive fields of recorded neurons or in the opposite visual field to capture attention. A subsequent grating stimulus probed the cue-induced effects. In a fixation task, when the cue-to-probe stimulus onset asynchrony (SOA) was <240 ms, the cue induced a transient increase of neuronal responses to the probe at the cued location during 40-100 ms after the onset of neuronal responses to the probe. This facilitation diminished and disappeared after repeated presentations of the same cue but recurred for a new cue of a different color. In another task to detect the probe, relative shortening of monkey's reaction times for the validly cued probe depended on the SOA in a way similar to the cue-induced V1 facilitation, and the behavioral and physiological cueing effects remained after repeated practice. Flashing two cues simultaneously in the two opposite visual fields weakened or diminished both the physiological and behavioral cueing effects. Our findings indicate that exogenous attention significantly modulates V1 responses and that the modulation strength depends on both novelty and task relevance of the stimulus. Significance statement: Visual attention can be involuntarily captured by a sudden appearance of a conspicuous object, allowing rapid reactions to unexpected events of significance. The current study discovered a correlate of this effect in monkey primary visual cortex. An abrupt, salient, flash enhanced neuronal responses, and shortened the animal's reaction time, to a subsequent visual probe stimulus at the same location. However, the enhancement of the neural responses diminished after repeated exposures to this flash if the animal was not required to react to the probe. Moreover, a second, simultaneous, flash at another location weakened the neuronal and behavioral effects of the first one. These findings revealed, beyond the observations reported so far, the effects of exogenous attention in the brain. Copyright © 2015 the authors 0270-6474/15/3513419-11$15.00/0.
Oe, Momoko; Ogawa, Hiroto
2013-01-01
Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent ‘escape behavior’ from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs) in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals required to control wind-elicited walking. PMID:24244644
The Primary Visual Cortex Is Differentially Modulated by Stimulus-Driven and Top-Down Attention
Bekisz, Marek; Bogdan, Wojciech; Ghazaryan, Anaida; Waleszczyk, Wioletta J.; Kublik, Ewa; Wróbel, Andrzej
2016-01-01
Selective attention can be focused either volitionally, by top-down signals derived from task demands, or automatically, by bottom-up signals from salient stimuli. Because the brain mechanisms that underlie these two attention processes are poorly understood, we recorded local field potentials (LFPs) from primary visual cortical areas of cats as they performed stimulus-driven and anticipatory discrimination tasks. Consistent with our previous observations, in both tasks, we found enhanced beta activity, which we have postulated may serve as an attention carrier. We characterized the functional organization of task-related beta activity by (i) cortical responses (EPs) evoked by electrical stimulation of the optic chiasm and (ii) intracortical LFP correlations. During the anticipatory task, peripheral stimulation that was preceded by high-amplitude beta oscillations evoked large-amplitude EPs compared with EPs that followed low-amplitude beta. In contrast, during the stimulus-driven task, cortical EPs preceded by high-amplitude beta oscillations were, on average, smaller than those preceded by low-amplitude beta. Analysis of the correlations between the different recording sites revealed that beta activation maps were heterogeneous during the bottom-up task and homogeneous for the top-down task. We conclude that bottom-up attention activates cortical visual areas in a mosaic-like pattern, whereas top-down attentional modulation results in spatially homogeneous excitation. PMID:26730705
Honigman, Liat; Yarnitsky, David; Sprecher, Elliot; Weissman-Fogel, Irit
2013-08-01
The endogenous analgesia (EA) system is psychophysically evaluated using various paradigms, including conditioned pain modulation (CPM) and offset analgesia (OA) testing, respectively, the spatial and temporal filtering processes of noxious information. Though both paradigms assess the function of the EA system, it is still unknown whether they reflect the same aspects of EA and consequently whether they provide additive or equivalent data. Twenty-nine healthy volunteers (15 males) underwent 5 trials of different stimulation conditions in random order including: (1) the classic OA three-temperature stimulus train ('OA'); (2) a three-temperature stimulus train as control for the OA ('OAcon'); (3) a constant temperature stimulus ('constant'); (4) the classic parallel CPM ('CPM'); and (5) a combination of OA and CPM ('OA + CPM'). We found that in males, the pain reduction during the OA + CPM condition was greater than during the OA (P = 0.003) and CPM (P = 0.07) conditions. Furthermore, a correlation was found between OA and CPM (r = 0.62, P = 0.01) at the time of maximum OA effect. The additive effect found suggests that the two paradigms represent at least partially different aspects of EA. The moderate association between the CPM and OA magnitudes indicates, on the other hand, some commonality of their underlying mechanisms.
The Unity connecting module moves into payload bay of Endeavour
NASA Technical Reports Server (NTRS)
1998-01-01
The Unity connecting module is moved toward the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88 . The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.
Jirmann, Kay-Uwe; Pernberg, Joachim; Eysel, Ulf T
2009-01-01
The role of GABAergic inhibition in orientation and direction selectivity has been investigated with the GABA(A)-Blocker bicuculline in the cat visual cortex, and results indicated a region specific difference of functional contributions of GABAergic inhibition in areas 17 and 18. In area 17 inhibition appeared mainly involved in sculpturing orientation and direction tuning, while in area 18 inhibition seemed more closely associated with temporal receptive field properties. However, different types of stimuli were used to test areas 17 and 18 and further studies performed in area 17 suggested an important influence of the stimulus type (single light bars vs. moving gratings) on the evoked responses (transient vs. sustained) and inhibitory mechanisms (GABA(A) vs. GABA(B)) which in turn might be more decisive for the specific results than the cortical region. To insert the missing link in this chain of arguments it was necessary to study GABAergic inhibition in area 18 with moving light bars, which has not been done so far. Therefore, in the present study we investigated area 18 cells responding to oriented moving light bars with extracellular recordings and reversible microiontophoretic blockade of GABAergig inhibition with bicuculline methiodide. The majority of neurons was characterized by a pronounced orientation specificity and variable degrees of direction selectivity. GABA(A)ergic inhibition significantly influenced preferred orientation and preferred direction in area 18. During the action of bicuculline orientation tuning width increased and orientation and direction selectivity indices decreased. Our results obtained in area 18 with moving bar stimuli, although in the proportion of affected cells similar to those described in area 17, quantitatively matched the findings for direction and orientation specificity obtained with moving gratings in area 18. Accordingly, stimulus type is not decisive in area 18 and the GABA(A) dependent, inhibitory intracortical computations involved in orientation specificity are indeed region-specific and in comparison to area 17 less effective in area 18.
The reference frame for encoding and retention of motion depends on stimulus set size.
Huynh, Duong; Tripathy, Srimant P; Bedell, Harold E; Öğmen, Haluk
2017-04-01
The goal of this study was to investigate the reference frames used in perceptual encoding and storage of visual motion information. In our experiments, observers viewed multiple moving objects and reported the direction of motion of a randomly selected item. Using a vector-decomposition technique, we computed performance during smooth pursuit with respect to a spatiotopic (nonretinotopic) and to a retinotopic component and compared them with performance during fixation, which served as the baseline. For the stimulus encoding stage, which precedes memory, we found that the reference frame depends on the stimulus set size. For a single moving target, the spatiotopic reference frame had the most significant contribution with some additional contribution from the retinotopic reference frame. When the number of items increased (Set Sizes 3 to 7), the spatiotopic reference frame was able to account for the performance. Finally, when the number of items became larger than 7, the distinction between reference frames vanished. We interpret this finding as a switch to a more abstract nonmetric encoding of motion direction. We found that the retinotopic reference frame was not used in memory. Taken together with other studies, our results suggest that, whereas a retinotopic reference frame may be employed for controlling eye movements, perception and memory use primarily nonretinotopic reference frames. Furthermore, the use of nonretinotopic reference frames appears to be capacity limited. In the case of complex stimuli, the visual system may use perceptual grouping in order to simplify the complexity of stimuli or resort to a nonmetric abstract coding of motion information.
O'Shea, Jacinta; Jensen, Ole; Bergmann, Til O.
2015-01-01
Covertly directing visuospatial attention produces a frequency-specific modulation of neuronal oscillations in occipital and parietal cortices: anticipatory alpha (8–12 Hz) power decreases contralateral and increases ipsilateral to attention, whereas stimulus-induced gamma (>40 Hz) power is boosted contralaterally and attenuated ipsilaterally. These modulations must be under top-down control; however, the control mechanisms are not yet fully understood. Here we investigated the causal contribution of the human frontal eye field (FEF) by combining repetitive transcranial magnetic stimulation (TMS) with subsequent magnetoencephalography. Following inhibitory theta burst stimulation to the left FEF, right FEF, or vertex, participants performed a visual discrimination task requiring covert attention to either visual hemifield. Both left and right FEF TMS caused marked attenuation of alpha modulation in the occipitoparietal cortex. Notably, alpha modulation was consistently reduced in the hemisphere contralateral to stimulation, leaving the ipsilateral hemisphere relatively unaffected. Additionally, right FEF TMS enhanced gamma modulation in left visual cortex. Behaviorally, TMS caused a relative slowing of response times to targets contralateral to stimulation during the early task period. Our results suggest that left and right FEF are causally involved in the attentional top-down control of anticipatory alpha power in the contralateral visual system, whereas a right-hemispheric dominance seems to exist for control of stimulus-induced gamma power. These findings contrast the assumption of primarily intrahemispheric connectivity between FEF and parietal cortex, emphasizing the relevance of interhemispheric interactions. The contralaterality of effects may result from a transient functional reorganization of the dorsal attention network after inhibition of either FEF. PMID:25632139
Envelope Responses in Single-Trial EEG Indicate Attended Speaker in a Cocktail Party
2013-06-20
users to modulate their brain activity, such as motor rhythms, in order to signal intent [13], but these often require considerable training . Other...BCIs forgo training and instead have subjects make choices by attending to one of multiple visual and/or auditory stimuli. By presenting each stimulus...modulated). An envelope-based BCI could operate on more naturalistic auditory stimuli, such as speech or music . For example, an envelope-based BCI
Hu, L.; Zhang, Z.G.; Mouraux, A.; Iannetti, G.D.
2015-01-01
Transient sensory, motor or cognitive event elicit not only phase-locked event-related potentials (ERPs) in the ongoing electroencephalogram (EEG), but also induce non-phase-locked modulations of ongoing EEG oscillations. These modulations can be detected when single-trial waveforms are analysed in the time-frequency domain, and consist in stimulus-induced decreases (event-related desynchronization, ERD) or increases (event-related synchronization, ERS) of synchrony in the activity of the underlying neuronal populations. ERD and ERS reflect changes in the parameters that control oscillations in neuronal networks and, depending on the frequency at which they occur, represent neuronal mechanisms involved in cortical activation, inhibition and binding. ERD and ERS are commonly estimated by averaging the time-frequency decomposition of single trials. However, their trial-to-trial variability that can reflect physiologically-important information is lost by across-trial averaging. Here, we aim to (1) develop novel approaches to explore single-trial parameters (including latency, frequency and magnitude) of ERP/ERD/ERS; (2) disclose the relationship between estimated single-trial parameters and other experimental factors (e.g., perceived intensity). We found that (1) stimulus-elicited ERP/ERD/ERS can be correctly separated using principal component analysis (PCA) decomposition with Varimax rotation on the single-trial time-frequency distributions; (2) time-frequency multiple linear regression with dispersion term (TF-MLRd) enhances the signal-to-noise ratio of ERP/ERD/ERS in single trials, and provides an unbiased estimation of their latency, frequency, and magnitude at single-trial level; (3) these estimates can be meaningfully correlated with each other and with other experimental factors at single-trial level (e.g., perceived stimulus intensity and ERP magnitude). The methods described in this article allow exploring fully non-phase-locked stimulus-induced cortical oscillations, obtaining single-trial estimate of response latency, frequency, and magnitude. This permits within-subject statistical comparisons, correlation with pre-stimulus features, and integration of simultaneously-recorded EEG and fMRI. PMID:25665966
Can Monkeys (Macaca mulatta) Represent Invisible Displacement?
NASA Technical Reports Server (NTRS)
Filion, Christine M.; Washburn, David A.; Gulledge, Jonathan P.
1996-01-01
Four experiments were conducted to assess whether or not rhesus macaques (Macaca mulatta) could represent the unperceived movements of a stimulus. Subjects were tested on 2 computerized tasks, HOLE (monkeys) and LASER (humans and monkeys), in which subjects needed to chase or shoot at, respectively, a moving target that either remained visible or became invisible for a portion of its path of movement. Response patterns were analyzed and compared between target-visible and target-invisible conditions. Results of Experiments 1, 2, and 3 demonstrated that the monkeys are capable of extrapolating movement. That this extrapolation involved internal representation of the target's invisible movement was suggested but not confirmed. Experiment 4, however, demonstrated that the monkeys are capable of representing the invisible displacements of a stimulus.
Wu, Zhe-Meng; Ding, Yu; Jia, Hong-Xiao; Li, Liang
2016-09-01
Prepulse inhibition (PPI) is suppression of the startle reflex by a weaker sensory stimulus (prepulse) preceding the startling stimulus. In people with schizophrenia, impairment of attentional modulation of PPI, but not impairment of baseline PPI, is correlated with symptom severity. In rats, both fear conditioning of prepulse and perceptually spatial separation between the conditioned prepulse and a noise masker enhance PPI (the paradigms of attentional modulation of PPI). As a neurodevelopmental model of schizophrenia, isolation rearing impairs both baseline PPI and attentional modulations of PPI in rats. This study examined in Sprague-Dawley male rats whether neonatally blocking N-methyl-D-aspartate (NMDA) receptors specifically affects attentional modulations of PPI during adulthood. Both socially reared rats with neonatal exposure to the NMDA receptor antagonist MK-801 and isolation-reared rats exhibited augmented startle responses, but only isolation rearing impaired baseline PPI. Fear conditioning of the prepulse enhanced PPI in socially reared rats, but MK-801-treated rats lost the prepulse feature specificity. Perceptually spatial separation between the conditioned prepulse and a noise masker further enhanced PPI only in normally reared rats. Clozapine administration during adulthood generally weakened startle, enhanced baseline PPI in neonatally interrupted rats, and restored the fear conditioning-induced PPI enhancement in isolation-reared rats with a loss of the prepulse feature specificity. Clozapine administration also abolished both the perceptual separation-induced PPI enhancement in normally reared rats and the fear conditioning-induced PPI enhancement in MK-801-treated rats. Isolation rearing impairs both baseline PPI and attentional modulations of PPI, but neonatally disrupting NMDA receptor-mediated transmissions specifically impair attentional modulations of PPI. Clozapine has limited alleviating effects.
Yoder, Kathleen M.; Vicario, David S.
2012-01-01
Gonadal hormones modulate behavioral responses to sexual stimuli, and communication signals can also modulate circulating hormone levels. In several species, these combined effects appear to underlie a two-way interaction between circulating gonadal hormones and behavioral responses to socially salient stimuli. Recent work in songbirds has shown that manipulating local estradiol levels in the auditory forebrain produces physiological changes that affect discrimination of conspecific vocalizations and can affect behavior. These studies provide new evidence that estrogens can directly alter auditory processing and indirectly alter the behavioral response to a stimulus. These studies show that: 1. Local estradiol action within an auditory area is necessary for socially-relevant sounds to induce normal physiological responses in the brains of both sexes; 2. These physiological effects occur much more quickly than predicted by the classical time-frame for genomic effects; 3. Estradiol action within the auditory forebrain enables behavioral discrimination among socially-relevant sounds in males; and 4. Estradiol is produced locally in the male brain during exposure to particular social interactions. The accumulating evidence suggests a socio-neuro-endocrinology framework in which estradiol is essential to auditory processing, is increased by a socially relevant stimulus, acts rapidly to shape perception of subsequent stimuli experienced during social interactions, and modulates behavioral responses to these stimuli. Brain estrogens are likely to function similarly in both songbird sexes because aromatase and estrogen receptors are present in both male and female forebrain. Estrogenic modulation of perception in songbirds and perhaps other animals could fine-tune male advertising signals and female ability to discriminate them, facilitating mate selection by modulating behaviors. Keywords: Estrogens, Songbird, Social Context, Auditory Perception PMID:22201281
Anticipation increases tactile stimulus processing in the ipsilateral primary somatosensory cortex.
van Ede, Freek; de Lange, Floris P; Maris, Eric
2014-10-01
Stimulus anticipation improves perception. To account for this improvement, we investigated how stimulus processing is altered by anticipation. In contrast to a large body of previous work, we employed a demanding perceptual task and investigated sensory responses that occur beyond early evoked activity in contralateral primary sensory areas: Stimulus-induced modulations of neural oscillations. For this, we recorded magnetoencephalography in 19 humans while they performed a cued tactile identification task involving the identification of either a proximal or a distal stimulation on the fingertips. We varied the cue-target interval between 0 and 1000 ms such that tactile targets occurred at various degrees of anticipation. This allowed us to investigate the influence of anticipation on stimulus processing in a parametric fashion. We observed that anticipation increases the stimulus-induced response (suppression of beta-band oscillations) originating from the ipsilateral primary somatosensory cortex. This occurs in the period in which the tactile memory trace is analyzed and is correlated with the anticipation-induced improvement in tactile perception. We propose that this ipsilateral response indicates distributed processing across bilateral primary sensory cortices, of which the extent increases with anticipation. This constitutes a new and potentially important mechanism contributing to perception and its improvement following anticipation. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Innes-Brown, Hamish; Barutchu, Ayla; Crewther, David P.
2013-01-01
The effect of multi-modal vs uni-modal prior stimuli on the subsequent processing of a simple flash stimulus was studied in the context of the audio-visual ‘flash-beep’ illusion, in which the number of flashes a person sees is influenced by accompanying beep stimuli. EEG recordings were made while combinations of simple visual and audio-visual stimuli were presented. The experiments found that the electric field strength related to a flash stimulus was stronger when it was preceded by a multi-modal flash/beep stimulus, compared to when it was preceded by another uni-modal flash stimulus. This difference was found to be significant in two distinct timeframes – an early timeframe, from 130–160 ms, and a late timeframe, from 300–320 ms. Source localisation analysis found that the increased activity in the early interval was localised to an area centred on the inferior and superior parietal lobes, whereas the later increase was associated with stronger activity in an area centred on primary and secondary visual cortex, in the occipital lobe. The results suggest that processing of a visual stimulus can be affected by the presence of an immediately prior multisensory event. Relatively long-lasting interactions generated by the initial auditory and visual stimuli altered the processing of a subsequent visual stimulus. PMID:24391939
Discrimination of sound source velocity in human listeners
NASA Astrophysics Data System (ADS)
Carlile, Simon; Best, Virginia
2002-02-01
The ability of six human subjects to discriminate the velocity of moving sound sources was examined using broadband stimuli presented in virtual auditory space. Subjects were presented with two successive stimuli moving in the frontal horizontal plane level with the ears, and were required to judge which moved the fastest. Discrimination thresholds were calculated for reference velocities of 15, 30, and 60 degrees/s under three stimulus conditions. In one condition, stimuli were centered on 0° azimuth and their duration varied randomly to prevent subjects from using displacement as an indicator of velocity. Performance varied between subjects giving median thresholds of 5.5, 9.1, and 14.8 degrees/s for the three reference velocities, respectively. In a second condition, pairs of stimuli were presented for a constant duration and subjects would have been able to use displacement to assist their judgment as faster stimuli traveled further. It was found that thresholds decreased significantly for all velocities (3.8, 7.1, and 9.8 degrees/s), suggesting that the subjects were using the additional displacement cue. The third condition differed from the second in that the stimuli were ``anchored'' on the same starting location rather than centered on the midline, thus doubling the spatial offset between stimulus endpoints. Subjects showed the lowest thresholds in this condition (2.9, 4.0, and 7.0 degrees/s). The results suggested that the auditory system is sensitive to velocity per se, but velocity comparisons are greatly aided if displacement cues are present.
Attention modulates visual size adaptation.
Kreutzer, Sylvia; Fink, Gereon R; Weidner, Ralph
2015-01-01
The current study determined in healthy subjects (n = 16) whether size adaptation occurs at early, i.e., preattentive, levels of processing or whether higher cognitive processes such as attention can modulate the illusion. To investigate this issue, bottom-up stimulation was kept constant across conditions by using a single adaptation display containing both small and large adapter stimuli. Subjects' attention was directed to either the large or small adapter stimulus by means of a luminance detection task. When attention was directed toward the small as compared to the large adapter, the perceived size of the subsequent target was significantly increased. Data suggest that different size adaptation effects can be induced by one and the same stimulus depending on the current allocation of attention. This indicates that size adaptation is subject to attentional modulation. These findings are in line with previous research showing that transient as well as sustained attention modulates visual features, such as contrast sensitivity and spatial frequency, and influences adaptation in other contexts, such as motion adaptation (Alais & Blake, 1999; Lankheet & Verstraten, 1995). Based on a recently suggested model (Pooresmaeili, Arrighi, Biagi, & Morrone, 2013), according to which perceptual adaptation is based on local excitation and inhibition in V1, we conclude that guiding attention can boost these local processes in one or the other direction by increasing the weight of the attended adapter. In sum, perceptual adaptation, although reflected in changes of neural activity at early levels (as shown in the aforementioned study), is nevertheless subject to higher-order modulation.
ERIC Educational Resources Information Center
Bertenthal, Bennett I.; Gredeback, Gustaf; Boyer, Ty W.
2013-01-01
Sixty infants divided evenly between 5 and 7 months of age were tested for their knowledge of object continuity versus discontinuity with a predictive tracking task. The stimulus event consisted of a moving ball that was briefly occluded for 20 trials. Both age groups predictively tracked the ball when it disappeared and reappeared via occlusion,…
ERIC Educational Resources Information Center
Hunnius, Sabine; Geuze, Reint H.
2004-01-01
The characteristics of scanning patterns between the ages of 6 and 26 weeks were investigated through repeated assessments of 10 infants. Eye movements were recorded using a corneal-reflection system while the infants looked at 2 dynamic stimuli: the naturally moving face of their mother and an abstract stimulus. Results indicated that the way…
Voluntary attention modulates motion-induced mislocalization
Tse, Peter U.; Whitney, David; Anstis, Stuart; Cavanagh, Patrick
2013-01-01
When a test is flashed on top of two superimposed, opposing motions, the perceived location of the test is shifted in opposite directions depending on which of the two motions is attended. Because the stimulus remains unchanged as attention switches from one motion to the other, the effect cannot be due to stimulus-driven, low-level motion. A control condition ruled out any contribution from possible attention-induced cyclotorsion of the eyes. This provides the strongest evidence to date for a role of attention in the perception of location, and establishes that what we attend to influences where we perceive objects to be. PMID:21415228
Illusory object motion in the centre of a radial pattern: The Pursuit–Pursuing illusion
Ito, Hiroyuki
2012-01-01
A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed. PMID:23145267
Statistical context shapes stimulus-specific adaptation in human auditory cortex.
Herrmann, Björn; Henry, Molly J; Fromboluti, Elisa Kim; McAuley, J Devin; Obleser, Jonas
2015-04-01
Stimulus-specific adaptation is the phenomenon whereby neural response magnitude decreases with repeated stimulation. Inconsistencies between recent nonhuman animal recordings and computational modeling suggest dynamic influences on stimulus-specific adaptation. The present human electroencephalography (EEG) study investigates the potential role of statistical context in dynamically modulating stimulus-specific adaptation by examining the auditory cortex-generated N1 and P2 components. As in previous studies of stimulus-specific adaptation, listeners were presented with oddball sequences in which the presentation of a repeated tone was infrequently interrupted by rare spectral changes taking on three different magnitudes. Critically, the statistical context varied with respect to the probability of small versus large spectral changes within oddball sequences (half of the time a small change was most probable; in the other half a large change was most probable). We observed larger N1 and P2 amplitudes (i.e., release from adaptation) for all spectral changes in the small-change compared with the large-change statistical context. The increase in response magnitude also held for responses to tones presented with high probability, indicating that statistical adaptation can overrule stimulus probability per se in its influence on neural responses. Computational modeling showed that the degree of coadaptation in auditory cortex changed depending on the statistical context, which in turn affected stimulus-specific adaptation. Thus the present data demonstrate that stimulus-specific adaptation in human auditory cortex critically depends on statistical context. Finally, the present results challenge the implicit assumption of stationarity of neural response magnitudes that governs the practice of isolating established deviant-detection responses such as the mismatch negativity. Copyright © 2015 the American Physiological Society.
Modulations of the processing of line discontinuities under selective attention conditions?
Giersch, Anne; Fahle, Manfred
2002-01-01
We examined whether the processing of discontinuities involved in figure-ground segmentation, like line ends, can be modulated under selective attention conditions. Subjects decided whether a gap in collinear or parallel lines was located to the right or left. Two stimuli were displayed in immediate succession. When the gaps were on the same side, reaction times (RTs) for the second stimulus increased when collinear lines followed parallel lines, or the reverse, but only when the two stimuli shared the same orientation and location. The effect did not depend on the global form of the stimuli or on the relative orientation of the gaps. A frame drawn around collinear elements affected the results, suggesting a crucial role of the "amodal" orthogonal lines produced when line ends are aligned. Including several gaps in the first stimulus also eliminated RT variations. By contrast, RT variations remained stable across several experimental blocks and were significant for interstimulus intervals from 50 to 600 msec between the two stimuli. These results are interpreted in terms of a modulation of the processing of line ends or the production of amodal lines, arising when attention is selectively drawn to a gap.
Motion-based nearest vector metric for reference frame selection in the perception of motion.
Agaoglu, Mehmet N; Clarke, Aaron M; Herzog, Michael H; Ögmen, Haluk
2016-05-01
We investigated how the visual system selects a reference frame for the perception of motion. Two concentric arcs underwent circular motion around the center of the display, where observers fixated. The outer (target) arc's angular velocity profile was modulated by a sine wave midflight whereas the inner (reference) arc moved at a constant angular speed. The task was to report whether the target reversed its direction of motion at any point during its motion. We investigated the effects of spatial and figural factors by systematically varying the radial and angular distances between the arcs, and their relative sizes. We found that the effectiveness of the reference frame decreases with increasing radial- and angular-distance measures. Drastic changes in the relative sizes of the arcs did not influence motion reversal thresholds, suggesting no influence of stimulus form on perceived motion. We also investigated the effect of common velocity by introducing velocity fluctuations to the reference arc as well. We found no effect of whether or not a reference frame has a constant motion. We examined several form- and motion-based metrics, which could potentially unify our findings. We found that a motion-based nearest vector metric can fully account for all the data reported here. These findings suggest that the selection of reference frames for motion processing does not result from a winner-take-all process, but instead, can be explained by a field whose strength decreases with the distance between the nearest motion vectors regardless of the form of the moving objects.
[The P300 based brain-computer interface: effect of stimulus position in a stimulus train].
Ganin, I P; Shishkin, S L; Kochetova, A G; Kaplan, A Ia
2012-01-01
The P300 brain-computer interface (BCI) is currently the most efficient BCI. This interface is based on detection of the P300 wave of the brain potentials evoked when a symbol related to the intended input is highlighted. To increase operation speed of the P300 BCI, reduction of the number of stimuli repetitions is needed. This reduction leads to increase of the relative contribution to the input symbol detection from the reaction to the first target stimulus. It is known that the event-related potentials (ERP) to the first stimulus presentations can be different from the ERP to stimuli presented latter. In particular, the amplitude of responses to the first stimulus presentations is often increased, which is beneficial for their recognition by the BCI. However, this effect was not studied within the BCI framework. The current study examined the ERP obtained from healthy participants (n = 14) in the standard P300 BCI paradigm using 10 trials, as well as in the modified P300 BCI with stimuli presented on moving objects in triple-trial (n = 6) and single-trial (n = 6) stimulation modes. Increased ERP amplitude was observed in response to the first target stimuli in both conditions, as well as in the single-trial mode comparing to triple-trial. We discuss the prospects of using the specific features of the ERP to first stimuli and the single-trial ERP for optimizing the high-speed modes in the P300 BCIs.
Xiao, Jianbo
2015-01-01
Segmenting visual scenes into distinct objects and surfaces is a fundamental visual function. To better understand the underlying neural mechanism, we investigated how neurons in the middle temporal cortex (MT) of macaque monkeys represent overlapping random-dot stimuli moving transparently in slightly different directions. It has been shown that the neuronal response elicited by two stimuli approximately follows the average of the responses elicited by the constituent stimulus components presented alone. In this scheme of response pooling, the ability to segment two simultaneously presented motion directions is limited by the width of the tuning curve to motion in a single direction. We found that, although the population-averaged neuronal tuning showed response averaging, subgroups of neurons showed distinct patterns of response tuning and were capable of representing component directions that were separated by a small angle—less than the tuning width to unidirectional stimuli. One group of neurons preferentially represented the component direction at a specific side of the bidirectional stimuli, weighting one stimulus component more strongly than the other. Another group of neurons pooled the component responses nonlinearly and showed two separate peaks in their tuning curves even when the average of the component responses was unimodal. We also show for the first time that the direction tuning of MT neurons evolved from initially representing the vector-averaged direction of slightly different stimuli to gradually representing the component directions. Our results reveal important neural processes underlying image segmentation and suggest that information about slightly different stimulus components is computed dynamically and distributed across neurons. SIGNIFICANCE STATEMENT Natural scenes often contain multiple entities. The ability to segment visual scenes into distinct objects and surfaces is fundamental to sensory processing and is crucial for generating the perception of our environment. Because cortical neurons are broadly tuned to a given visual feature, segmenting two stimuli that differ only slightly is a challenge for the visual system. In this study, we discovered that many neurons in the visual cortex are capable of representing individual components of slightly different stimuli by selectively and nonlinearly pooling the responses elicited by the stimulus components. We also show for the first time that the neural representation of individual stimulus components developed over a period of ∼70–100 ms, revealing a dynamic process of image segmentation. PMID:26658869
Frequency analysis for modulation-enhanced powder diffraction.
Chernyshov, Dmitry; Dyadkin, Vadim; van Beek, Wouter; Urakawa, Atsushi
2016-07-01
Periodic modulation of external conditions on a crystalline sample with a consequent analysis of periodic diffraction response has been recently proposed as a tool to enhance experimental sensitivity for minor structural changes. Here the intensity distributions for both a linear and nonlinear structural response induced by a symmetric and periodic stimulus are analysed. The analysis is further extended for powder diffraction when an external perturbation changes not only the intensity of Bragg lines but also their positions. The derived results should serve as a basis for a quantitative modelling of modulation-enhanced diffraction data measured in real conditions.
Hippocampal lesions, contextual retrieval, and autoshaping in pigeons.
Richmond, Jenny; Colombo, Michael
2002-02-22
Both pigeons and rats with damage to the hippocampus are slow to acquire an autoshaped response and emit fewer overall responses than control animals. Experiment 1 explored the possibility that the autoshaping deficit was due to an impairment in contextual retrieval. Pigeons were trained for 14 days on an autoshaping task in which a red stimulus was followed by reinforcement in context A, and a green stimulus was followed by reinforcement in context B. On day 15, the subjects were given a context test in which the red and green stimuli were presented simultaneously in context A and then later in context B. Both control and hippocampal animals showed context specificity, that is, they responded more to the red stimulus in context A and to the green stimulus in context B. In Experiment 2 we video-recorded the control and hippocampal animals performing the autoshaping task. Hippocampal animals tended to miss-peck the key more often than control animals. In addition, the number of missed pecks increased across days for hippocampal animals but not for control animals, suggesting that while the control animals increased their pecking accuracy, the hippocampal animals actually decreased their pecking accuracy. Our findings suggest that impairments in moving through space may underlie the hippocampal autoshaping deficit.
Controlling the spotlight of attention: visual span size and flexibility in schizophrenia.
Elahipanah, Ava; Christensen, Bruce K; Reingold, Eyal M
2011-10-01
The current study investigated the size and flexible control of visual span among patients with schizophrenia during visual search performance. Visual span is the region of the visual field from which one extracts information during a single eye fixation, and a larger visual span size is linked to more efficient search performance. Therefore, a reduced visual span may explain patients' impaired performance on search tasks. The gaze-contingent moving window paradigm was used to estimate the visual span size of patients and healthy participants while they performed two different search tasks. In addition, changes in visual span size were measured as a function of two manipulations of task difficulty: target-distractor similarity and stimulus familiarity. Patients with schizophrenia searched more slowly across both tasks and conditions. Patients also demonstrated smaller visual span sizes on the easier search condition in each task. Moreover, healthy controls' visual span size increased as target discriminability or distractor familiarity increased. This modulation of visual span size, however, was reduced or not observed among patients. The implications of the present findings, with regard to previously reported visual search deficits, and other functional and structural abnormalities associated with schizophrenia, are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Unity connecting module moves into payload bay of Endeavour
NASA Technical Reports Server (NTRS)
1998-01-01
Looking like a painting, this wide-angle view shows the Unity connecting module being moved toward the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.
The Unity connecting module is moved to payload canister
NASA Technical Reports Server (NTRS)
1998-01-01
In the Space Station Processing Facility, an overhead crane moves the Unity connecting module to the payload canister for transfer to the launch pad. Part of the International Space Station (ISS), Unity is scheduled for launch aboard Space Shuttle Endeavour on Mission STS-88 in December. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach Unity to the Russian-built Zarya control module which will be in orbit at that time.
The Unity connecting module moves into payload bay of Endeavour
NASA Technical Reports Server (NTRS)
1998-01-01
Viewed from below, the Unity connecting module is moved into the payload bay of the orbiter Endeavour at Launch Pad 39A. Part of the International Space Station (ISS), Unity is scheduled for launch Dec. 3, 1998, on Mission STS-88. The Unity is a connecting passageway to the living and working areas of ISS. While on orbit, the flight crew will deploy Unity from the payload bay and attach it to the Russian-built Zarya control module which will be in orbit at that time.
Motion streaks do not influence the perceived position of stationary flashed objects.
Pavan, Andrea; Bellacosa Marotti, Rosilari
2012-01-01
In the present study, we investigated whether motion streaks, produced by fast moving dots Geisler 1999, distort the positional map of stationary flashed objects producing the well-known motion-induced position shift illusion (MIPS). The illusion relies on motion-processing mechanisms that induce local distortions in the positional map of the stimulus which is derived by shape-processing mechanisms. To measure the MIPS, two horizontally offset Gaussian blobs, placed above and below a central fixation point, were flashed over two fields of dots moving in opposite directions. Subjects judged the position of the top Gaussian blob relative to the bottom one. The results showed that neither fast (motion streaks) nor slow moving dots influenced the perceived spatial position of the stationary flashed objects, suggesting that background motion does not interact with the shape-processing mechanisms involved in MIPS.
Brain responses to 40-Hz binaural beat and effects on emotion and memory.
Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan
2017-10-01
Gamma oscillation plays a role in binding process or sensory integration, a process by which several brain areas beside primary cortex are activated for higher perception of the received stimulus. Beta oscillation is also involved in interpreting received stimulus and occurs following gamma oscillation, and this process is known as gamma-to-beta transition, a process for neglecting unnecessary stimuli in surrounding environment. Gamma oscillation also associates with cognitive functions, memory and emotion. Therefore, modulation of the brain activity can lead to manipulation of cognitive functions. The stimulus used in this study was 40-Hz binaural beat because binaural beat induces frequency following response. This study aimed to investigate the neural oscillation responding to the 40-Hz binaural beat and to evaluate working memory function and emotional states after listening to that stimulus. Two experiments were developed based on the study aims. In the first experiment, electroencephalograms were recorded while participants listened to the stimulus for 30min. The results suggested that frontal, temporal, and central regions were activated within 15min. In the second experiment, word list recall task was conducted before and after listening to the stimulus for 20min. The results showed that, after listening, the recalled words were increase in the working memory portion of the list. Brunel Mood Scale, a questionnaire to evaluate emotional states, revealed changes in emotional states after listening to the stimulus. The emotional results suggested that these changes were consistent with the induced neural oscillations. Copyright © 2017 Elsevier B.V. All rights reserved.
Dai, Lengshi; Shinn-Cunningham, Barbara G
2016-01-01
Listeners with normal hearing thresholds (NHTs) differ in their ability to steer attention to whatever sound source is important. This ability depends on top-down executive control, which modulates the sensory representation of sound in the cortex. Yet, this sensory representation also depends on the coding fidelity of the peripheral auditory system. Both of these factors may thus contribute to the individual differences in performance. We designed a selective auditory attention paradigm in which we could simultaneously measure envelope following responses (EFRs, reflecting peripheral coding), onset event-related potentials (ERPs) from the scalp (reflecting cortical responses to sound) and behavioral scores. We performed two experiments that varied stimulus conditions to alter the degree to which performance might be limited due to fine stimulus details vs. due to control of attentional focus. Consistent with past work, in both experiments we find that attention strongly modulates cortical ERPs. Importantly, in Experiment I, where coding fidelity limits the task, individual behavioral performance correlates with subcortical coding strength (derived by computing how the EFR is degraded for fully masked tones compared to partially masked tones); however, in this experiment, the effects of attention on cortical ERPs were unrelated to individual subject performance. In contrast, in Experiment II, where sensory cues for segregation are robust (and thus less of a limiting factor on task performance), inter-subject behavioral differences correlate with subcortical coding strength. In addition, after factoring out the influence of subcortical coding strength, behavioral differences are also correlated with the strength of attentional modulation of ERPs. These results support the hypothesis that behavioral abilities amongst listeners with NHTs can arise due to both subcortical coding differences and differences in attentional control, depending on stimulus characteristics and task demands.
Grau-Moya, Jordi; Ortega, Pedro A.; Braun, Daniel A.
2016-01-01
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain. PMID:27124723
Stanton, P K; Jones, R S; Mody, I; Heinemann, U
1987-01-01
Reduction of extracellular Mg2+ concentration induced spontaneous and evoked epileptiform activity in the entorhinal cortex (EC) and dentate gyrus (DG) of combined hippocampus (HC)-EC slices. Extracellular field potentials, as well as changes in extracellular Ca2+ and K+ concentrations, were measured in EC and DG with ion-selective/reference electrodes during both repetitive and single stimuli. In the EC, lowering extracellular [Mg2+] induces both spontaneous and single stimulus evoked ictal events consisting of extracellular negative potential shifts (up to 5 mV, 30 sec), decreases in [Ca2+]0 and increases in [K+]0. In the DG, spontaneous events were much shorter, but similar changes in [Ca2+]0, [K+]0 and field potentials (FPs) could be evoked by brief high-frequency stimulation. In both areas, the N-methyl-D-aspartate (NMDA) receptor antagonist 2-aminophosphonovalerate (2-APV) completely blocked spontaneous as well as stimulus evoked epileptiform events. The neurotransmitter norepinephrine (NE), which has previously been shown to modulate long-term potentiation in the DG, was found to exhibit differential modulation of epileptiform activity in the EC and DG. In the EC, NE, acting via alpha 1-receptors, completely blocked low Mg2+-induced epileptiform activity. In contrast, in the DG, NE exhibited a beta-receptor mediated prolongation of the low Mg2+-induced ictal events, and enhanced the stimulus-induced ionic and field potential changes. From these results, we conclude that lowering extracellular [Mg2+], acting in large part through the removal of the Mg2+ voltage-dependent blockade of NMDA receptors, leads to induction of epileptiform activity in both the EC and DG.(ABSTRACT TRUNCATED AT 250 WORDS)
Leek, E Charles; Roberts, Mark; Oliver, Zoe J; Cristino, Filipe; Pegna, Alan J
2016-08-01
Here we investigated the time course underlying differential processing of local and global shape information during the perception of complex three-dimensional (3D) objects. Observers made shape matching judgments about pairs of sequentially presented multi-part novel objects. Event-related potentials (ERPs) were used to measure perceptual sensitivity to 3D shape differences in terms of local part structure and global shape configuration - based on predictions derived from hierarchical structural description models of object recognition. There were three types of different object trials in which stimulus pairs (1) shared local parts but differed in global shape configuration; (2) contained different local parts but shared global configuration or (3) shared neither local parts nor global configuration. Analyses of the ERP data showed differential amplitude modulation as a function of shape similarity as early as the N1 component between 146-215ms post-stimulus onset. These negative amplitude deflections were more similar between objects sharing global shape configuration than local part structure. Differentiation among all stimulus types was reflected in N2 amplitude modulations between 276-330ms. sLORETA inverse solutions showed stronger involvement of left occipitotemporal areas during the N1 for object discrimination weighted towards local part structure. The results suggest that the perception of 3D object shape involves parallel processing of information at local and global scales. This processing is characterised by relatively slow derivation of 'fine-grained' local shape structure, and fast derivation of 'coarse-grained' global shape configuration. We propose that the rapid early derivation of global shape attributes underlies the observed patterns of N1 amplitude modulations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fuenzalida-Uribe, Nicolás; Campusano, Jorge M
2018-02-10
The communication between sensory systems and the specific brain centers that process this information is crucial to develop adequate behavioral responses. Modulatory systems, including dopaminergic circuits, regulate this communication to finely tune the behavioral response associated to any given stimulus. For instance, the Mushroom Body (MB), an insect brain integration center that receives and processes several sensory stimuli and organizes the execution of motor programs, communicates with MB output neurons (MBONs) to develop behavioral responses associated to olfactory stimuli. This communication is modulated by dopaminergic neural systems. Here we show that silencing dopaminergic neurons increases the aversive response observed in adult flies exposed to Benzaldehyde (Bz) or octanol. We studied the contribution of two dopaminergic clusters that innervate different zones of MB, Protocerebral anterior medial (PAM) and Protocerebral posterior lateral 1 (PPL1), on the innate value to the aversive stimulus and the associated locomotor behavior. In order to do this, we manipulated the synaptic transmission of these neural clusters through the expression of Tetanus toxin, Kir2.1 and Transient receptor potential cation channel A1 (TrpA1) channels. Our results show that neurons in PPL1 and PAM differentially modulate the innate value to Bz in adult flies. On the other hand, blocking neurotransmission or genetic silencing of PAM neurons results in decreased locomotor behavior in flies, an effect not observed when silencing PPL1. Our results suggest that as in mammals, specific dopaminergic pathways differentially modulate locomotor behavior and the innate value for an odorant, a limbic-like response in Drosophila. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Grau-Moya, Jordi; Ortega, Pedro A; Braun, Daniel A
2016-01-01
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.
Sugimoto, Fumie; Kimura, Motohiro; Takeda, Yuji; Katayama, Jun'ichi
2017-08-16
In a three-stimulus oddball task, the amplitude of P3a elicited by deviant stimuli increases with an increase in the difficulty of discriminating between standard and target stimuli (i.e. task-difficulty effect on P3a), indicating that attentional capture by deviant stimuli is enhanced with an increase in task difficulty. This enhancement of attentional capture may be explained in terms of the modulation of modality-nonspecific temporal attention; that is, the participant's attention directed to the predicted timing of stimulus presentation is stronger when the task difficulty increases, which results in enhanced attentional capture. The present study examined this possibility with a modified three-stimulus oddball task consisting of a visual standard, a visual target, and four types of deviant stimuli defined by a combination of two modalities (visual and auditory) and two presentation timings (predicted and unpredicted). We expected that if the modulation of temporal attention is involved in enhanced attentional capture, then the task-difficulty effect on P3a should be reduced for unpredicted compared with predicted deviant stimuli irrespective of their modality; this is because the influence of temporal attention should be markedly weaker for unpredicted compared with predicted deviant stimuli. The results showed that the task-difficulty effect on P3a was significantly reduced for unpredicted compared with predicted deviant stimuli in both the visual and the auditory modalities. This result suggests that the modulation of modality-nonspecific temporal attention induced by the increase in task difficulty is at least partly involved in the enhancement of attentional capture by deviant stimuli.
Spatial Correlations in Natural Scenes Modulate Response Reliability in Mouse Visual Cortex
Rikhye, Rajeev V.
2015-01-01
Intrinsic neuronal variability significantly limits information encoding in the primary visual cortex (V1). Certain stimuli can suppress this intertrial variability to increase the reliability of neuronal responses. In particular, responses to natural scenes, which have broadband spatiotemporal statistics, are more reliable than responses to stimuli such as gratings. However, very little is known about which stimulus statistics modulate reliable coding and how this occurs at the neural ensemble level. Here, we sought to elucidate the role that spatial correlations in natural scenes play in reliable coding. We developed a novel noise-masking method to systematically alter spatial correlations in natural movies, without altering their edge structure. Using high-speed two-photon calcium imaging in vivo, we found that responses in mouse V1 were much less reliable at both the single neuron and population level when spatial correlations were removed from the image. This change in reliability was due to a reorganization of between-neuron correlations. Strongly correlated neurons formed ensembles that reliably and accurately encoded visual stimuli, whereas reducing spatial correlations reduced the activation of these ensembles, leading to an unreliable code. Together with an ensemble-specific normalization model, these results suggest that the coordinated activation of specific subsets of neurons underlies the reliable coding of natural scenes. SIGNIFICANCE STATEMENT The natural environment is rich with information. To process this information with high fidelity, V1 neurons have to be robust to noise and, consequentially, must generate responses that are reliable from trial to trial. While several studies have hinted that both stimulus attributes and population coding may reduce noise, the details remain unclear. Specifically, what features of natural scenes are important and how do they modulate reliability? This study is the first to investigate the role of spatial correlations, which are a fundamental attribute of natural scenes, in shaping stimulus coding by V1 neurons. Our results provide new insights into how stimulus spatial correlations reorganize the correlated activation of specific ensembles of neurons to ensure accurate information processing in V1. PMID:26511254
Analysis of masking effects on speech intelligibility with respect to moving sound stimulus
NASA Astrophysics Data System (ADS)
Chen, Chiung Yao
2004-05-01
The purpose of this study is to compare the disturbed degree of speech by an immovable noise source and an apparent moving one (AMN). In the study of the sound localization, we found that source-directional sensitivity (SDS) well associates with the magnitude of interaural cross correlation (IACC). Ando et al. [Y. Ando, S. H. Kang, and H. Nagamatsu, J. Acoust. Soc. Jpn. (E) 8, 183-190 (1987)] reported that potential correlation between left and right inferior colliculus at auditory path in the brain is in harmony with the correlation function of amplitude input into two ear-canal entrances. We assume that the degree of disturbance under the apparent moving noisy source is probably different from that being installed in front of us within a constant distance in a free field (no reflection). Then, we found there is a different influence on speech intelligibility between a moving and a fixed source generated by 1/3-octave narrow-band noise with the center frequency 2 kHz. However, the reasons for the moving speed and the masking effects on speech intelligibility were uncertain.
McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.
2014-01-01
Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075
Yoncheva, Yuliya; Maurer, Urs; Zevin, Jason D; McCandliss, Bruce D
2014-08-15
Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective attention to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by manipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data-driven source localization analyses revealed that selective attention to phonology led to significantly greater recruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings suggest a key role for selective attention in on-line phonological computations. Furthermore, these findings motivate future research on the role that neural mechanisms of attention may play in phonological awareness impairments thought to underlie developmental reading disabilities. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Yoncheva; Maurer, Urs; Zevin, Jason; McCandliss, Bruce
2015-01-01
Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective atten tion to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by ma nipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data- driven source localization analyses revealed that selective attention to phonology led to significantly greater re cruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings support the key role of selective attention to phonology in the development of literacy and motivate future research on the neural bases of the interaction between phonological awareness and literacy, deemed central to both typical and atypical reading development. PMID:24746955
Griffis, Joseph C.; Elkhetali, Abdurahman S.; Burge, Wesley K.; Chen, Richard H.; Visscher, Kristina M.
2015-01-01
Attention facilitates the processing of task-relevant visual information and suppresses interference from task-irrelevant information. Modulations of neural activity in visual cortex depend on attention, and likely result from signals originating in fronto-parietal and cingulo-opercular regions of cortex. Here, we tested the hypothesis that attentional facilitation of visual processing is accomplished in part by changes in how brain networks involved in attentional control interact with sectors of V1 that represent different retinal eccentricities. We measured the strength of background connectivity between fronto-parietal and cingulo-opercular regions with different eccentricity sectors in V1 using functional MRI data that were collected while participants performed tasks involving attention to either a centrally presented visual stimulus or a simultaneously presented auditory stimulus. We found that when the visual stimulus was attended, background connectivity between V1 and the left frontal eye fields (FEF), left intraparietal sulcus (IPS), and right IPS varied strongly across different eccentricity sectors in V1 so that foveal sectors were more strongly connected than peripheral sectors. This retinotopic gradient was weaker when the visual stimulus was ignored, indicating that it was driven by attentional effects. Greater task-driven differences between foveal and peripheral sectors in background connectivity to these regions were associated with better performance on the visual task and faster response times on correct trials. These findings are consistent with the notion that attention drives the configuration of task-specific functional pathways that enable the prioritized processing of task-relevant visual information, and show that the prioritization of visual information by attentional processes may be encoded in the retinotopic gradient of connectivty between V1 and fronto-parietal regions. PMID:26106320
Goal-Directed and Habit-Like Modulations of Stimulus Processing during Reinforcement Learning.
Luque, David; Beesley, Tom; Morris, Richard W; Jack, Bradley N; Griffiths, Oren; Whitford, Thomas J; Le Pelley, Mike E
2017-03-15
Recent research has shown that perceptual processing of stimuli previously associated with high-value rewards is automatically prioritized even when rewards are no longer available. It has been hypothesized that such reward-related modulation of stimulus salience is conceptually similar to an "attentional habit." Recording event-related potentials in humans during a reinforcement learning task, we show strong evidence in favor of this hypothesis. Resistance to outcome devaluation (the defining feature of a habit) was shown by the stimulus-locked P1 component, reflecting activity in the extrastriate visual cortex. Analysis at longer latencies revealed a positive component (corresponding to the P3b, from 550-700 ms) sensitive to outcome devaluation. Therefore, distinct spatiotemporal patterns of brain activity were observed corresponding to habitual and goal-directed processes. These results demonstrate that reinforcement learning engages both attentional habits and goal-directed processes in parallel. Consequences for brain and computational models of reinforcement learning are discussed. SIGNIFICANCE STATEMENT The human attentional network adapts to detect stimuli that predict important rewards. A recent hypothesis suggests that the visual cortex automatically prioritizes reward-related stimuli, driven by cached representations of reward value; that is, stimulus-response habits. Alternatively, the neural system may track the current value of the predicted outcome. Our results demonstrate for the first time that visual cortex activity is increased for reward-related stimuli even when the rewarding event is temporarily devalued. In contrast, longer-latency brain activity was specifically sensitive to transient changes in reward value. Therefore, we show that both habit-like attention and goal-directed processes occur in the same learning episode at different latencies. This result has important consequences for computational models of reinforcement learning. Copyright © 2017 the authors 0270-6474/17/373009-09$15.00/0.
Johnston, Melissa; Anderson, Catrona; Colombo, Michael
2017-01-15
We recorded neuronal activity from the nidopallium caudolaterale, the avian equivalent of mammalian prefrontal cortex, and the entopallium, the avian equivalent of the mammalian visual cortex, in four birds trained on a differential outcomes delayed matching-to-sample procedure in which one sample stimulus was followed by reward and the other was not. Despite similar incidence of reward-specific and reward-unspecific delay cell types across the two areas, overall entopallium delay activity occurred following both rewarded and non-rewarded stimuli, whereas nidopallium caudolaterale delay activity tended to occur following the rewarded stimulus but not the non-rewarded stimulus. These findings are consistent with the view that delay activity in entopallium represents a code of the sample stimulus whereas delay activity in nidopallium caudolaterale represents a code of the possibility of an upcoming reward. However, based on the types of delay cells encountered, cells in NCL also code the sample stimulus and cells in ENTO are influenced by reward. We conclude that both areas support the retention of information, but that the activity in each area is differentially modulated by factors such as reward and attentional mechanisms. Copyright © 2016 Elsevier B.V. All rights reserved.
Kasties, Nils; Starosta, Sarah; Güntürkün, Onur; Stüttgen, Maik C.
2016-01-01
Animals exploit visual information to identify objects, form stimulus-reward associations, and prepare appropriate behavioral responses. The nidopallium caudolaterale (NCL), an associative region of the avian endbrain, contains neurons exhibiting prominent response modulation during presentation of reward-predicting visual stimuli, but it is unclear whether neural activity represents valuation signals, stimulus properties, or sensorimotor contingencies. To test the hypothesis that NCL neurons represent stimulus value, we subjected pigeons to a Pavlovian sign-tracking paradigm in which visual cues predicted rewards differing in magnitude (large vs. small) and delay to presentation (short vs. long). Subjects’ strength of conditioned responding to visual cues reliably differentiated between predicted reward types and thus indexed valuation. The majority of NCL neurons discriminated between visual cues, with discriminability peaking shortly after stimulus onset and being maintained at lower levels throughout the stimulus presentation period. However, while some cells’ firing rates correlated with reward value, such neurons were not more frequent than expected by chance. Instead, neurons formed discernible clusters which differed in their preferred visual cue. We propose that this activity pattern constitutes a prerequisite for using visual information in more complex situations e.g. requiring value-based choices. PMID:27762287
Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion
2014-01-01
This study examines the role of stimulus duration in learning and memory formation of honeybees (Apis mellifera). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS becomes a predictor for the US eliciting a conditioned response (CR). Here we study the role of US duration in classical conditioning by examining honeybees conditioned with different US durations. We quantify the CR during acquisition, memory retention, and extinction of the early long-term memory (eLTM), and examine the molecular mechanisms of eLTM by interfering with protein synthesis. We find that the US duration affects neither the probability nor the strength of the CR during acquisition, eLTM retention, and extinction 24 h after conditioning. However, we find that the resistance to extinction 24 h after conditioning is susceptible to protein synthesis inhibition depending on the US duration. We conclude that the US duration does not affect the predictability of the US but modulates the protein synthesis underlying the eLTM's strength. Thus, the US duration differentially impacts learning, eLTM strength, and its underlying protein synthesis. PMID:25403456
CRAWLER HIDDEN UNDER MOBILE LAUNCHER MOVES APOLLO 17 FROM VEHICLE ASSEMBLY BUILDING AS TRIP TO LAUNC
NASA Technical Reports Server (NTRS)
1972-01-01
The Apollo 17 space vehicle was moved today from the Vehicle Assembly Building to Complex 39's pad A in preparation for its launch with Astronauts Eugene A. Cernan, Commander; Ronald A. Evans, Command Module Pilot; and Dr. Harrison H. ''Jack'' Schmitt, Lunar Module Pilot, on the sixth U.S. manned lunar landing mission on December 6, 1972.
How the mind shapes action: Offline contexts modulate involuntary episodic retrieval.
Frings, Christian; Koch, Iring; Moeller, Birte
2017-11-01
Involuntary retrieval of previous stimulus-response episodes is a centerpiece of many theories of priming, episodic binding, and action control. Typically it is assumed that by repeating a stimulus from trial n-1 to trial n, involuntary retrieval is triggered in a nearly automatic fashion, facilitating (or interfering with) the to-be-executed action. Here we argue that changes in the offline context weaken the involuntary retrieval of previous episodes (the offline context is defined to be the information presented before or after the focal stimulus). In four conditions differing in cue modality and target modality, retrieval was diminished if participants changed the target selection criterion (as indicated by a cue presented before the selection took place) while they still performed the same task. Thus, solely through changes in the offline context (cue or selection criterion), involuntary retrieval can be weakened in an effective way.
Phonological Processing in Human Auditory Cortical Fields
Woods, David L.; Herron, Timothy J.; Cate, Anthony D.; Kang, Xiaojian; Yund, E. W.
2011-01-01
We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant–vowel–consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features. PMID:21541252
The working memory stroop effect: when internal representations clash with external stimuli.
Kiyonaga, Anastasia; Egner, Tobias
2014-08-01
Working memory (WM) has recently been described as internally directed attention, which implies that WM content should affect behavior exactly like an externally perceived and attended stimulus. We tested whether holding a color word in WM, rather than attending to it in the external environment, can produce interference in a color-discrimination task, which would mimic the classic Stroop effect. Over three experiments, the WM Stroop effect recapitulated core properties of the classic attentional Stroop effect, displaying equivalent congruency effects, additive contributions from stimulus- and response-level congruency, and susceptibility to modulation by the percentage of congruent and incongruent trials. Moreover, WM maintenance was inversely related to attentional demands during the WM delay between stimulus presentation and recall, with poorer memory performance following incongruent than congruent trials. Together, these results suggest that WM and attention rely on the same resources and operate over the same representations. © The Author(s) 2014.
Orion EM-1 Crew Module Structural Test Article Move to Birdcage
2016-11-16
Inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida, Lockheed Martin technicians monitor the progress as a crane moves the Orion crew module structural test article (STA) along the center aisle of the high bay. The STA arrived aboard NASA's Super Guppy aircraft at the Shuttle Landing Facility operated by Space Florida. The test article will be moved to a test tool called the birdcage for further testing. The Orion spacecraft will launch atop NASA’s Space Launch System rocket on EM-1, its first deep space mission, in late 2018.
Lateralization of event-related potential effects during mental rotation of polygons.
Pellkofer, Julia; Jansen, Petra; Heil, Martin
2012-07-11
Numerous studies have shown that there is an amplitude modulation of the late positivity depending on the angular disparity during mental rotation performance. However, almost all of these studies used characters as stimulus material, whereas studies with different stimuli are rare. In the present experiment, 35 participants were instructed to rotate polygons mentally. Most importantly, with this stimulus material, the well-known event-related potential effects were also present at posterior electrode leads. Interestingly, the amplitude modulation were found to be larger and more reliable over left than over right posterior electrode leads, a finding reported previously for characters as stimuli, although not consistently. Thus, the present data suggest that the left lateralization of event-related potential effects during mental rotation of characters might not be because of their 'verbal nature', but might suggest a stronger involvement of the left parietal cortex during mental rotation per se, a suggestion that needs to be addressed with methods providing a higher spatial resolution.
Adapting another person's affective state modulates brain potentials to unpleasant pictures.
Paul, Sandra; Endrass, Tanja; Kathmann, Norbert; Simon, Daniela
2016-10-01
Emotional processing is influenced by top-down processes such as reappraisal of emotion-inducing events. Besides one's own stimulus appraisal, information from the social environment can be used to modify the stimulus' meaning. This study investigated whether perspective taking changes participants' brain potentials to unpleasant pictures. Event-related potentials (ERPs) were measured while twenty-nine participants evaluated arousal of neutral or negative pictures. Subsequently, they received bogus feedback about another person's picture evaluation. Then, the same picture was presented again and participants were instructed to view the picture from the other person's perspective. Higher bogus- versus self-ratings of picture arousal increased P300 and late positive potential (LPP) amplitudes to unpleasant stimuli, whereas lower bogus- versus self-ratings did not influence ERPs. Thus, perspective taking only modulated ERPs when bogus ratings signaled potential underestimation of arousal. Resulting increases in responsiveness might constitute an adaptive mechanism preparing the organism against harm. Copyright © 2016 Elsevier B.V. All rights reserved.
Attentional modulation of neuronal variability in circuit models of cortex
Kanashiro, Tatjana; Ocker, Gabriel Koch; Cohen, Marlene R; Doiron, Brent
2017-01-01
The circuit mechanisms behind shared neural variability (noise correlation) and its dependence on neural state are poorly understood. Visual attention is well-suited to constrain cortical models of response variability because attention both increases firing rates and their stimulus sensitivity, as well as decreases noise correlations. We provide a novel analysis of population recordings in rhesus primate visual area V4 showing that a single biophysical mechanism may underlie these diverse neural correlates of attention. We explore model cortical networks where top-down mediated increases in excitability, distributed across excitatory and inhibitory targets, capture the key neuronal correlates of attention. Our models predict that top-down signals primarily affect inhibitory neurons, whereas excitatory neurons are more sensitive to stimulus specific bottom-up inputs. Accounting for trial variability in models of state dependent modulation of neuronal activity is a critical step in building a mechanistic theory of neuronal cognition. DOI: http://dx.doi.org/10.7554/eLife.23978.001 PMID:28590902
Cholinergic transmission in the dorsal hippocampus modulates trace but not delay fear conditioning.
Pang, Min-Hee; Kim, Nam-Soo; Kim, Il-Hwan; Kim, Hyun; Kim, Hyun-Taek; Choi, June-Seek
2010-09-01
Although cholinergic mechanisms have been widely implicated in learning and memory processes, few studies have investigated the specific contribution of hippocampal cholinergic transmission during trace fear conditioning, a form of associative learning involving a temporal gap between two stimuli. Microinfusions of scopolamine, a muscarinic receptor antagonist, into the dorsal hippocampus (DH) produced dose-dependent impairment in the acquisition and expression of a conditioned response (CR) following trace fear conditioning with a tone conditioned stimulus (CS) and a footshock unconditioned stimulus (US) in rats. The same infusions, however, had no effect on delay conditioning, general activity, pain sensitivity or attentional modulation. Moreover, scopolamine infusions attenuated phosphorylation of extracellular signal-regulated kinase (ERK) in the amygdala, indicating that cholinergic signals in the DH are important for trace fear conditioning. Taken together, the current study provides evidence that cholinergic neurotransmission in the DH is essential for the cellular processing of CS-US association in the amygdala when the two stimuli are temporally disconnected. Copyright 2010 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Grant, Elizabeth, Comp.; Johnson, Cassius, Comp.
2009-01-01
On February 17, 2009, President Barack Obama signed the American Recovery and Reinvestment Act, better known as the economic stimulus plan. Congress and the Obama Administration acted in the wake of an economic crisis spurred by a deepening recession. Among its aims in passing the ARRA, Congress moved to help states and local jurisdictions reduce…