Sample records for moving vortex phases

  1. Vortex with fourfold defect lines in a simple model of self-propelled particles

    NASA Astrophysics Data System (ADS)

    Seyed-Allaei, Hamid; Ejtehadi, Mohammad Reza

    2016-03-01

    We study the formation of a vortex with fourfold symmetry in a minimal model of self-propelled particles, confined inside a squared box, using computer simulations and also theoretical analysis. In addition to the vortex pattern, we observe five other regimes in the system: a homogeneous gaseous phase, band structures, moving clumps, moving clusters, and vibrating rings. All six regimes emerge from controlling the strength of noise and from the contribution of repulsion and alignment interactions. We study the shape of the vortex and its symmetry in detail. The pattern shows exponential defect lines where incoming and outgoing flows of particles collide. We show that alignment and repulsion interactions between particles are necessary to form such patterns. We derive hydrodynamical equations with an introduction of the "small deviation" technique to describe the vortex phase. The method is applicable to other systems as well. Finally, we compare the theory with the results of both computer simulations and an experiment using Quincke rotors. A good agreement between the three is observed.

  2. Size-Induced Depression of First-Order Transition Lines and Entropy Jump in Extremely Layered Nanocrystalline Vortex Matter

    NASA Astrophysics Data System (ADS)

    Dolz, M. I.; Fasano, Y.; Cejas Bolecek, N. R.; Pastoriza, H.; Mosser, V.; Li, M.; Konczykowski, M.

    2015-09-01

    We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi2 Sr2 CaCu2 O8 vortex matter down to a system size of less than one hundred vortices. The temperature location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.

  3. Size-Induced Depression of First-Order Transition Lines and Entropy Jump in Extremely Layered Nanocrystalline Vortex Matter.

    PubMed

    Dolz, M I; Fasano, Y; Cejas Bolecek, N R; Pastoriza, H; Mosser, V; Li, M; Konczykowski, M

    2015-09-25

    We detect the persistence of the solidification and order-disorder first-order transition lines in the phase diagram of nanocrystalline Bi_{2}Sr_{2}CaCu_{2}O_{8} vortex matter down to a system size of less than one hundred vortices. The temperature location of the vortex solidification transition line is not altered by decreasing the sample size although there is a depletion of the entropy jump at the transition with respect to macroscopic vortex matter. The solid order-disorder phase transition field moves upward on decreasing the system size due to the increase of the surface-to-volume ratio of vortices entailing a decrease on the average vortex binding energy.

  4. Vortex depinning as a nonequilibrium phase transition phenomenon: Scaling of current-voltage curves near the low and the high critical-current states in 2 H -Nb S2 single crystals

    NASA Astrophysics Data System (ADS)

    Bag, Biplab; Sivananda, Dibya J.; Mandal, Pabitra; Banerjee, S. S.; Sood, A. K.; Grover, A. K.

    2018-04-01

    The vortex depinning phenomenon in single crystals of 2 H -Nb S2 superconductors is used as a prototype for investigating properties of the nonequilibrium (NEQ) depinning phase transition. The 2 H -Nb S2 is a unique system as it exhibits two distinct depinning thresholds, viz., a lower critical current Icl and a higher one Ich. While Icl is related to depinning of a conventional, static (pinned) vortex state, the state with Ich is achieved via a negative differential resistance (NDR) transition where the velocity abruptly drops. Using a generalized finite-temperature scaling ansatz, we study the scaling of current (I)-voltage (V) curves measured across Icl and Ich. Our analysis shows that for I >Icl , the moving vortex state exhibits Arrhenius-like thermally activated flow behavior. This feature persists up to a current value where an inflexion in the IV curves is encountered. While past measurements have often reported similar inflexion, our analysis shows that the inflexion is a signature of a NEQ phase transformation from a thermally activated moving vortex phase to a free flowing phase. Beyond this inflection in IV, a large vortex velocity flow regime is encountered in the 2 H -Nb S2 system, wherein the Bardeen-Stephen flux flow limit is crossed. In this regime the NDR transition is encountered, leading to the high Ich state. The IV curves above Ich we show do not obey the generalized finite-temperature scaling ansatz (as obeyed near Icl). Instead, they scale according to the Fisher's scaling form [Fisher, Phys. Rev. B 31, 1396 (1985), 10.1103/PhysRevB.31.1396] where we show thermal fluctuations do not affect the vortex flow, unlike that found for depinning near Icl.

  5. The Influence of Low-frequency Oscillation Propagation of the Tibetan Plateau Vortex on Rainstorm Downstream

    NASA Astrophysics Data System (ADS)

    Xiao, Tiangui; Wang, Chao; La, Jia; Du, Jun; Zhang, Kairong

    2017-04-01

    Based on Tibetan Plateau vortex data, ERA-Interim and NCEP/NCAR reanalysis data, the characteristics of Tibetan Plateau vortex and the relationship with Low-Frequency Oscillation (LFO) from 2003 to 2012 were investigated. The heavy rainstorm occurred in Sichuan from June 29th to July 2nd in 2013, caused by the LFO, was studied. Besides, the signal of LFO, energy transmission and those influence to rainstorm were also investigate. The main conclusions are as follows: (1)Most of Tibetan Plateau vortex generate in eastern plateau, located at Tanggula Mountains, Zaduo, Dege, Qumalai and Qaidam. The moving-out Tibetan Plateau vortex mainly generate in Qumalai and most vortex occurrences during April to September. There are three directions of moving-out vortex paths: northeast, southeast and east. The areas which plateau vortex moving into are mainly distributed in Gansu, Sichuan, Shaanxi and Ningxia. (2)The zonal wind at 500hPa in plateau key region has a significant main 10-30d oscillation, with the secondly significant oscillation in 30-50d and the third in 70-90d. The relative vorticity at 500hPa in plateau key region has a significant main 30-50d oscillations, with the secondly significant oscillation in 10-30d. The 30-50d oscillation phase zone with weak westerly oscillation zone of 500hPa, and the 10-30d oscillation positive phase zone with weak oscillation zone of 500hPa are benefit to vortex generation. The 30-50d oscillation of zonal wind at 500hPa provides necessary circulation background for generation of plateau vortex, and positive phase region of 10-30d oscillation of relative vorticity at 500hPa provide necessary dynamic background conditions for it. (3) Comparing with the high frequency oscillation vortex, 10-25d low-frequency vortex is not significant at 500hPa before merging into the basin vortex. However, after merging into the basin vortex, there is a significant relationship between low-frequency vortex and the process of development, weakening and disappearance during the basin rainstorm. A typical heavy rainstorm occurred in Sichuan was studied. In the horizontal direction,atmospheric disturbance energy transmit from the west Sichuan plateau to heavy rainfall areas in basin, that is indicating the low-frequency atmospheric disturbance energy transmission. In the vertical direction, the disturbance energy transfer to the downstream is probably the major reason caused this heavy rainstorm. The value of wave packet and disturbance energy indicates the difference stages of rainstorm. Key words: the tibetan plateau; plateau vortex; FLO; rainstorm; wave-packet Acknowledgements This study was supported by National Natural Science Foundation of China Fund Project (91337215, 41575066), National Key Basic Research Program (2013CB733206), Special Fund for Meteorological Research in the Public Interest (GYHY201406015), and Risk Assessment System of Significant Climate Events in Tibet (14H046).

  6. Random center vortex lines in continuous 3D space-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Höllwieser, Roman; Institute of Atomic and Subatomic Physics, Vienna University of Technology, Operngasse 9, 1040 Vienna; Altarawneh, Derar

    2016-01-22

    We present a model of center vortices, represented by closed random lines in continuous 2+1-dimensional space-time. These random lines are modeled as being piece-wise linear and an ensemble is generated by Monte Carlo methods. The physical space in which the vortex lines are defined is a cuboid with periodic boundary conditions. Besides moving, growing and shrinking of the vortex configuration, also reconnections are allowed. Our ensemble therefore contains not a fixed, but a variable number of closed vortex lines. This is expected to be important for realizing the deconfining phase transition. Using the model, we study both vortex percolation andmore » the potential V(R) between quark and anti-quark as a function of distance R at different vortex densities, vortex segment lengths, reconnection conditions and at different temperatures. We have found three deconfinement phase transitions, as a function of density, as a function of vortex segment length, and as a function of temperature. The model reproduces the qualitative features of confinement physics seen in SU(2) Yang-Mills theory.« less

  7. Dissociation transition of a composite lattice of magnetic vortices in the flux-flow regime of two-band superconductors.

    PubMed

    Lin, Shi-Zeng; Bulaevskii, Lev N

    2013-02-22

    In multiband superconductors, each superconducting condensate supports vortices with fractional quantum flux. In the ground state, vortices in different bands are spatially bounded together to form a composite vortex, carrying one quantum flux Φ(0). Here we predict dissociation of the composite vortices lattice in the flux flow state due to the disparity of the vortex viscosity and flux of the vortex in different bands. For a small driving current, composite vortices start to deform, but the constituting vortices in different bands move with the same velocity. For a large current, composite vortices dissociate and vortices in different bands move with different velocities. The dissociation transition shows up as an increase of flux flow resistivity. In the dissociated phase, Shapiro steps are developed when an ac current is superimposed with a dc current.

  8. Model of random center vortex lines in continuous 2 +1 -dimensional spacetime

    NASA Astrophysics Data System (ADS)

    Altarawneh, Derar; Engelhardt, Michael; Höllwieser, Roman

    2016-12-01

    A picture of confinement in QCD based on a condensate of thick vortices with fluxes in the center of the gauge group (center vortices) is studied. Previous concrete model realizations of this picture utilized a hypercubic space-time scaffolding, which, together with many advantages, also has some disadvantages, e.g., in the treatment of vortex topological charge. In the present work, we explore a center vortex model which does not rely on such a scaffolding. Vortices are represented by closed random lines in continuous 2 +1 -dimensional space-time. These random lines are modeled as being piecewise linear, and an ensemble is generated by Monte Carlo methods. The physical space in which the vortex lines are defined is a torus with periodic boundary conditions. Besides moving, growing, and shrinking of the vortex configurations, also reconnections are allowed. Our ensemble therefore contains not a fixed but a variable number of closed vortex lines. This is expected to be important for realizing the deconfining phase transition. We study both vortex percolation and the potential V (R ) between the quark and antiquark as a function of distance R at different vortex densities, vortex segment lengths, reconnection conditions, and at different temperatures. We find three deconfinement phase transitions, as a function of density, as a function of vortex segment length, and as a function of temperature.

  9. Emission of discrete vortex rings by a vibrating grid in superfluid 3He-B: a precursor to quantum turbulence.

    PubMed

    Bradley, D I; Clubb, D O; Fisher, S N; Guénault, A M; Haley, R P; Matthews, C J; Pickett, G R; Tsepelin, V; Zaki, K

    2005-07-15

    We report a transition in the vorticity generated by a grid moving in the B phase of superfluid 3He at T

  10. Frequency spirals.

    PubMed

    Ottino-Löffler, Bertrand; Strogatz, Steven H

    2016-09-01

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call "frequency spirals." These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seen in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.

  11. Propagation dynamics of off-axis symmetrical and asymmetrical vortices embedded in flat-topped beams

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Wang, Haiyan

    2017-11-01

    In this paper, propagation dynamics of off-axis symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams have been explored numerically based on rigorous scalar diffraction theory. The distribution properties of phase and intensity play an important role in driving the propagation dynamics of OVs. Numerical results show that the single off-axis vortex moves in a straight line. The displacement of the single off-axis vortex becomes smaller, when either the order of flatness N and the beam size ω0are increased or the off-axis displacement d is decreased. In addition, the phase singularities of high order vortex beams can be split after propagating a certain distance. It is also demonstrated that the movement of OVs are closely related with the spatial symmetrical or asymmetrical distribution of vortex singularities field. Multiple symmetrical and asymmetrical optical vortices(OVs) embedded in flat-topped beams can interact and rotate. The investment of the propagation dynamics of OVs may have many applications in optical micro-manipulation and optical tweezers.

  12. Active Curved Polymers Form Vortex Patterns on Membranes.

    PubMed

    Denk, Jonas; Huber, Lorenz; Reithmann, Emanuel; Frey, Erwin

    2016-04-29

    Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns, including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.

  13. Non-invasive determination of external forces in vortex-pair-cylinder interactions

    NASA Astrophysics Data System (ADS)

    Hartmann, D.; Schröder, W.; Shashikanth, B. N.

    2012-06-01

    Expressions for the conserved linear and angular momenta of a dynamically coupled fluid + solid system are derived. Based on the knowledge of the flow velocity field, these expressions allow the determination of the external forces exerted on a body moving in the fluid such as, e.g., swimming fish. The verification of the derived conserved quantities is done numerically. The interaction of a vortex pair with a circular cylinder in various configurations of motions representing a generic test case for a dynamically coupled fluid + solid system is investigated in a weakly compressible Navier-Stokes setting using a Cartesian cut-cell method, i.e., the moving circular cylinder is represented by cut cells on a moving mesh. The objectives of this study are twofold. The first objective is to show the robustness of the derived expressions for the conserved linear and angular momenta with respect to bounded and discrete data sets. The second objective is to study the coupled dynamics of the vortex pair and a neutrally buoyant cylinder free to move in response to the fluid stresses exerted on its surface. A comparison of the vortex-body interaction with the case of a fixed circular cylinder evidences significant differences in the vortex dynamics. When the cylinder is fixed strong secondary vorticity is generated resulting in a repeating process between the primary vortex pair and the cylinder. In the neutrally buoyant cylinder case, a stable structure consisting of the primary vortex pair and secondary vorticity shear layers stays attached to the moving cylinder. In addition to these fundamental cases, the vortex-pair-cylinder interaction is studied for locomotion at constant speed and locomotion at constant thrust. It is shown that a similar vortex structure like in the neutrally buoyant cylinder case is obtained when the cylinder moves away from the approaching vortex pair at a constant speed smaller than the vortex pair translational velocity. Finally, the idealized symmetric settings are complemented by an asymmetric interaction of a vortex pair and a cylinder. This case is discussed for a fixed and a neutrally buoyant cylinder to show the validity of the derived relations for multi-dimensional body dynamics.

  14. Frequency spirals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottino-Löffler, Bertrand; Strogatz, Steven H., E-mail: strogatz@cornell.edu

    2016-09-15

    We study the dynamics of coupled phase oscillators on a two-dimensional Kuramoto lattice with periodic boundary conditions. For coupling strengths just below the transition to global phase-locking, we find localized spatiotemporal patterns that we call “frequency spirals.” These patterns cannot be seen under time averaging; they become visible only when we examine the spatial variation of the oscillators' instantaneous frequencies, where they manifest themselves as two-armed rotating spirals. In the more familiar phase representation, they appear as wobbly periodic patterns surrounding a phase vortex. Unlike the stationary phase vortices seen in magnetic spin systems, or the rotating spiral waves seenmore » in reaction-diffusion systems, frequency spirals librate: the phases of the oscillators surrounding the central vortex move forward and then backward, executing a periodic motion with zero winding number. We construct the simplest frequency spiral and characterize its properties using analytical and numerical methods. Simulations show that frequency spirals in large lattices behave much like this simple prototype.« less

  15. Electromagnetic Radiation from Vortex Flow in Type-II Superconductors

    NASA Astrophysics Data System (ADS)

    Bulaevskii, L. N.; Chudnovsky, E. M.

    2006-11-01

    We show that a moving vortex lattice, as it comes to a crystal edge, radiates into a free space the harmonics of the washboard frequency, ω0=2πv/a, up to a superconducting gap, Δ/ℏ. Here v is the velocity of the vortex lattice and a is the intervortex spacing. We compute radiation power and show that this effect can be used for the generation of terahertz radiation and for characterization of moving vortex lattices.

  16. Time-dependent London approach: Dissipation due to out-of-core normal excitations by moving vortices

    DOE PAGES

    Kogan, V. G.

    2018-03-19

    The dissipative currents due to normal excitations are included in the London description. The resulting time-dependent London equations are solved for a moving vortex and a moving vortex lattice. It is shown that the field distribution of a moving vortex loses its cylindrical symmetry. It experiences contraction that is stronger in the direction of the motion than in the direction normal to the velocity v. The London contribution of normal currents to dissipation is small relative to the Bardeen-Stephen core dissipation at small velocities, but it approaches the latter at high velocities, where this contribution is no longer proportional tomore » v 2. Here, to minimize the London contribution to dissipation, the vortex lattice is oriented so as to have one of the unit cell vectors along the velocity. This effect is seen in experiments and predicted within the time-dependent Ginzburg-Landau theory.« less

  17. Time-dependent London approach: Dissipation due to out-of-core normal excitations by moving vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kogan, V. G.

    The dissipative currents due to normal excitations are included in the London description. The resulting time-dependent London equations are solved for a moving vortex and a moving vortex lattice. It is shown that the field distribution of a moving vortex loses its cylindrical symmetry. It experiences contraction that is stronger in the direction of the motion than in the direction normal to the velocity v. The London contribution of normal currents to dissipation is small relative to the Bardeen-Stephen core dissipation at small velocities, but it approaches the latter at high velocities, where this contribution is no longer proportional tomore » v 2. Here, to minimize the London contribution to dissipation, the vortex lattice is oriented so as to have one of the unit cell vectors along the velocity. This effect is seen in experiments and predicted within the time-dependent Ginzburg-Landau theory.« less

  18. Time-dependent London approach: Dissipation due to out-of-core normal excitations by moving vortices

    NASA Astrophysics Data System (ADS)

    Kogan, V. G.

    2018-03-01

    The dissipative currents due to normal excitations are included in the London description. The resulting time-dependent London equations are solved for a moving vortex and a moving vortex lattice. It is shown that the field distribution of a moving vortex loses its cylindrical symmetry. It experiences contraction that is stronger in the direction of the motion than in the direction normal to the velocity v . The London contribution of normal currents to dissipation is small relative to the Bardeen-Stephen core dissipation at small velocities, but it approaches the latter at high velocities, where this contribution is no longer proportional to v2. To minimize the London contribution to dissipation, the vortex lattice is oriented so as to have one of the unit cell vectors along the velocity. This effect is seen in experiments and predicted within the time-dependent Ginzburg-Landau theory.

  19. Models of primary runaway electron distribution in the runaway vortex regime

    DOE PAGES

    Guo, Zehua; Tang, Xian-Zhu; McDevitt, Christopher J.

    2017-11-01

    Generation of runaway electrons (RE) beams can possibly induce the most deleterious effect of tokamak disruptions. A number of recent numerical calculations have confirmed the formation of a RE bump in their energy distribution by taking into account Synchrontron radiational damping force due to RE’s gyromotions. Here, we present a detailed examination on how the bump location changes at different pitch-angle and the characteristics of the RE pitch-angle distribution. Although REs moving along the magnetic field are preferably accelerated and then populate the phase-space of larger pitch-angle mainly through diffusions, an off-axis peak can still form due to the presencemore » of the vortex structure which causes accumulation of REs at low pitch-angle. A simplified Fokker- Planck model and its semi-analytical solutions based on local expansions around the O point is used to illustrate the characteristics of RE distribution around the O point of the runaway vortex in phase-space. The calculated energy location of the O point together with the local energy and pitch-angle distributions agree with the full numerical solution.« less

  20. An investigation of the effects of aft blowing on a 3.0 caliber tangent ogive body at high angles of attack. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Gittner, Nathan M.

    1992-01-01

    An experimental investigation of the effects of aft blowing on the asymmetric vortex flow of a slender, axisymmetric body at high angles of attack was conducted. A 3.0 caliber tangent ogive body fitted with a cylindrical afterbody was tested in a wind tunnel under subsonic, laminar flow test conditions. Asymmetric blowing from both a single nozzle and a double nozzle configuration, positioned near the body apex, was investigated. Aft blowing was observed to alter the vortex asymmetry by moving the blowing-side vortex closer to the body surface while moving the non-blowing-side vortex further away from the body. The effect of increasing the blowing coefficient was to move the blowing-side vortex closer to the body surface at a more upstream location. The data also showed that blowing was more effective in altering the initial vortex asymmetry at the higher angles of attack than at the lower. The effects of changing the nozzle exit geometry were investigated and it was observed that blowing from a nozzle with a low, broad exit geometry was more effective in reducing the vortex asymmetry than blowing from a high, narrow exit geometry.

  1. Pinning in BSCCO above the ordinary irreversibility line

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Konczykowski, M.; Motohira, N.; Berger, H.; Benoit, W.

    1996-12-01

    Frequency-dependent observations of magnetic flux structures are used to show that pinning plays a principal role in the whole mixed state in Bi2Sr2CaCu2O8 (BSCCO) single crystals. We speculate that the random pinning force on the moving vortices may dominate over thermal fluctuations and considerably modify the position of the vortex lattice phase transition.

  2. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors.

    PubMed

    Meng, Qingyou; Varney, Christopher N; Fangohr, Hans; Babaev, Egor

    2017-01-25

    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  3. Current driven transition from Abrikosov-Josephson to Josephson-like vortex in mesoscopic lateral S/S’/S superconducting weak links

    PubMed Central

    Carapella, G.; Sabatino, P.; Barone, C.; Pagano, S.; Gombos, M.

    2016-01-01

    Vortices are topological defects accounting for many important effects in superconductivity, superfluidity, and magnetism. Here we address the stability of a small number of such excitations driven by strong external forces. We focus on Abrikosov-Josephson vortex that appears in lateral superconducting S/S’/S weak links with suppressed superconductivity in S’. In such a system the vortex is nucleated and confined in the narrow S’ region by means of a small magnetic field and moves under the effect of a force proportional to an applied electrical current with a velocity proportional to the measured voltage. Our numerical simulations show that when a slow moving Abrikosov-Josephson vortex is driven by a strong constant current it becomes unstable with respect to a faster moving excitation: the Josephon-like vortex. Such a current-driven transition explains the structured dissipative branches that we observe in the voltage-current curve of the weak link. When vortex matter is strongly confined phenomena as magnetoresistance oscillations and reentrance of superconductivity can possibly occur. We experimentally observe these phenomena in our weak links. PMID:27752137

  4. Force balance on two-dimensional superconductors with a single moving vortex

    NASA Astrophysics Data System (ADS)

    Chung, Chun Kit; Arahata, Emiko; Kato, Yusuke

    2014-03-01

    We study forces on two-dimensional superconductors with a single moving vortex based on a recent fully self-consistent calculation of DC conductivity in an s-wave superconductor (E. Arahata and Y. Kato, arXiv:1310.0566). By considering momentum balance of the whole liquid, we attempt to identify various contributions to the total transverse force on the vortex. This provides an estimation of the effective Magnus force based on the quasiclassical theory generalized by Kita [T. Kita, Phys. Rev. B, 64, 054503 (2001)], which allows for the Hall effect in vortex states.

  5. Comparing the dynamics of skyrmions and superconducting vortices

    NASA Astrophysics Data System (ADS)

    Olson Reichhardt, C. J.; Lin, S. Z.; Ray, D.; Reichhardt, C.

    2014-08-01

    Vortices in type-II superconductors have attracted enormous attention as ideal systems in which to study nonequilibrium collective phenomena, since the self-ordering of the vortices competes with quenched disorder and thermal effects. Dynamic effects found in vortex systems include depinning, nonequilibrium phase transitions, creep, structural order-disorder transitions, and melting. Understanding vortex dynamics is also important for applications of superconductors which require the vortices either to remain pinned or to move in a controlled fashion. Recently, topological defects called skyrmions have been realized experimentally in chiral magnets. Here we highlight similarities and differences between skyrmion dynamics and vortex dynamics. Many of the previous ideas and experimental setups that have been applied to superconducting vortices can also be used to study skyrmions. We also discuss some of the differences between the two systems, such as the potentially large contribution of the Magnus force in the skyrmion system that can dramatically alter the dynamics and transport properties.

  6. The research on the drag reduction of a transport aircraft with upswept afterbody using long fins

    DTIC Science & Technology

    2016-03-30

    drag. A pair of fins installed under the fuselage extruding the core of the vortices effectively damp the vortex. Parametric study shows that the length...space near the body and move downstream. The vortex system shifts from lower vortexes, none vortex to upper vortexes when the AOA change from negative to

  7. Three-dimensional vortex-bright solitons in a spin-orbit-coupled spin-1 condensate

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep; Adhikari, S. K.

    2018-01-01

    We demonstrate stable and metastable vortex-bright solitons in a three-dimensional spin-orbit-coupled three-component hyperfine spin-1 Bose-Einstein condensate (BEC) using numerical solution and variational approximation of a mean-field model. The spin-orbit coupling provides attraction to form vortex-bright solitons in both attractive and repulsive spinor BECs. The ground state of these vortex-bright solitons is axially symmetric for weak polar interaction. For a sufficiently strong ferromagnetic interaction, we observe the emergence of a fully asymmetric vortex-bright soliton as the ground state. We also numerically investigate moving solitons. The present mean-field model is not Galilean invariant, and we use a Galilean-transformed mean-field model for generating the moving solitons.

  8. Experimental investigation of the effects of aft blowing with various nozzle exit geometries on a 3.0 caliber tangent ogive at high angles of attack: Forebody pressure distributions

    NASA Technical Reports Server (NTRS)

    Chokani, Ndaona; Gittner, N. M.

    1992-01-01

    An experimental study of the effects of aft blowing on the asymmetric vortex flow of a slender, axisymmetric body at high angles of attack was conducted. A 3.0 caliber tangent ogive body fitted with a cylindrical afterbody was tested in a wind tunnel under subsonic, laminar flow test conditions. Asymmetric blowing from both a single nozzle and a double nozzle configuration, positioned near the body apex, was studied. Aft blowing was observed to alter the vortex asymmetry by moving the blowing-side vortex closer to the body surface while moving the non-blowing-side vortex further away from the body. The effect of increasing the blowing coefficient was to move the blowing-side vortex closer to the body surface at a more upstream location. The data also showed that blowing was more effective in altering the initial vortex asymmetry at the higher angles of attack than at the lower. The effects of changing the nozzle exit geometry were studied and it was observed that blowing from a nozzle with a low, broad exit geometry was more effective in reducing the vortex asymmetry than blowing from a high, narrow exit geometry.

  9. Phase locking of moving magnetic vortices in bridge-coupled nanodisks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qiyuan; Zheng, Qi; Liu, Xianyin

    2015-05-07

    In this paper, phase locking dynamics of vortices induced by spin transfer torque in bridge-coupled nanodisks are studied by micromagnetic simulations. In the presence of the bridge coupling, the required time for the phase locking is dramatically reduced, and the phase difference between the two vortices keeps at a nonzero value after the phase locking. Moreover, the phase difference is affected significantly by bridge coupling, Oersted field distribution, nanodisk size, as well as in-plane bias magnetic field. In addition, the coupled gyrotropic frequency of vortices depends linearly on the perpendicular magnetic field. This systematic study of phase locking parameters, especiallymore » the phase difference, is important for the applications of vortex-based spin-torque nano-oscillators.« less

  10. Vortex pairs on surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koiller, Jair; Boatto, Stefanella

    2009-05-06

    A pair of infinitesimally close opposite vortices moving on a curved surface moves along a geodesic, according to a conjecture by Kimura. We outline a proof. Numerical simulations are presented for a pair of opposite vortices at a close but nonzero distance on a surface of revolution, the catenoid. We conjecture that the vortex pair system on a triaxial ellipsoid is a KAM perturbation of Jacobi's geodesic problem. We outline some preliminary calculations required for this study. Finding the surfaces for which the vortex pair system is integrable is in order.

  11. Using a plenoptic sensor to reconstruct vortex phase structures.

    PubMed

    Wu, Chensheng; Ko, Jonathan; Davis, Christopher C

    2016-07-15

    A branch point problem and its solution commonly involve recognizing and reconstructing a vortex phase structure around a singular point. In laser beam propagation through random media, the destructive phase contributions from various parts of a vortex phase structure will cause a dark area in the center of the beam's intensity profile. This null of intensity can, in turn, prevent the vortex phase structure from being recognized. In this Letter, we show how to use a plenoptic sensor to transform the light field of a vortex beam so that a simple and direct reconstruction algorithm can be applied to reveal the vortex phase structure. As a result, we show that the plenoptic sensor is effective in detecting branch points and can be used to reconstruct phase distortion in a beam in a wide sense.

  12. Study on the generation of a vortex laser beam by using phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Ma, Haotong; Hu, Haojun; Xie, Wenke; Xu, Xiaojun

    2013-09-01

    The generation of vortex laser beam by using phase-only liquid crystal spatial light modulator (LC-SLM) combined with the spiral phase screen is experimentally and theoretically studied. Results show that Gaussian and dark hollow vortex laser beams can be generated by using this method successfully. Differing with the Gaussian and dark hollow beams, far field intensities of the generated vortex laser beams still exhibit dark hollow distributions. The comparisons between the ideal generation and experimental generation of vortex laser beams with different optical topological charges by using phase only LC-SLM is investigated in detail. Compared with the ideal generated vortex laser beam, phase distribution of the experimental generated vortex laser beam contains many phase singularities, the number of which is the same as that of the optical topological charges. The corresponding near field and far field dark hollow intensity distributions of the generated vortex laser beams exhibit discontinuous in rotational direction. Detailed theoretical analysis show that the main reason for the physical phenomenon mentioned above is the response error of phase only LC-SLM. These studies can provide effective guide for the generation of vortex laser beam by using phase only LC-SLM for optical tweezers and free space optical communication.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    Vortex shedding from an obstacle potential moving in a Bose-Einstein condensate is investigated. Long-lived alternately aligned vortex pairs are found to form in the wake, which is similar to the Benard-von Karman vortex street in classical viscous fluids. Various patterns of vortex shedding are systematically studied and the drag force on the obstacle is calculated. It is shown that the phenomenon can be observed in a trapped system.

  14. Internal scanning method as unique imaging method of optical vortex scanning microscope

    NASA Astrophysics Data System (ADS)

    Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2018-06-01

    The internal scanning method is specific for the optical vortex microscope. It allows to move the vortex point inside the focused vortex beam with nanometer resolution while the whole beam stays in place. Thus the sample illuminated by the focused vortex beam can be scanned just by the vortex point. We show that this method enables high resolution imaging. The paper presents the preliminary experimental results obtained with the first basic image recovery procedure. A prospect of developing more powerful tools for topography recovery with the optical vortex scanning microscope is discussed shortly.

  15. Supersymmetrizing the Gorsky-Shifman-Yung soliton

    NASA Astrophysics Data System (ADS)

    Ireson, E.; Shifman, M.; Yung, A.

    2018-05-01

    We supersymmetrize the Hopfion studied by Gorsky et al. [Phys. Rev. D 88, 045026 (2013)., 10.1103/PhysRevD.88.045026]. This soliton represents a closed semilocal vortex string in U(1) gauge theory. It carries nonzero Hopf number due to the additional winding of a phase modulus as one moves along the closed string. We study this solution in N =2 supersymmetric QED with two flavors. As a preliminary exercise, we compactify one space dimension and consider a straight vortex with periodic boundary conditions. It turns out to be 1 /2 -BPS saturated. An additional winding along the string can be introduced and it does not spoil the BPS nature of the object. Next, we consider a ringlike vortex in a non-compact space and show that the circumference of the ring L can be stabilized once the previously mentioned winding along the string is introduced. Of course, the ringlike vortex is not BPS but its energy becomes close to the BPS bound if L is large, which can be guaranteed in the case that we have a large value of the angular momentum J . Thus we arrive at the concept of asymptotically BPS-saturated solitons. BPS saturation is achieved in the limit J →∞ .

  16. Vortex relaxation in type-II superconductors following current quenches

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Harsh; Assi, Hiba; Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe

    2015-03-01

    The mixed phase in type-II superconductors is characterized by the presence of mutually repulsive magnetic flux lines that are driven by external currents and pinned by point-like or extended material defects. We represent the disordered vortex system in the London limit by an elastic directed line model, whose relaxational dynamics we investigate numerically by means of Langevin Molecular Dynamics. We specifically study the effects of sudden changes of the driving current on the time evolution of the mean flux line gyration radius and the associated transverse displacement correlation functions. Upon quenching from the moving into the pinned glassy phase, we observe algebraically slow relaxation. The associated two-time height-autocorrelations display broken time translation invariance and can be described by a simple aging scaling form, albeit with non-universal scaling exponents. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  17. Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam.

    PubMed

    Guo, Lina; Chen, Yahong; Liu, Xianlong; Liu, Lin; Cai, Yangjian

    2016-06-27

    Partially coherent radially polarized (PCRP) beam was introduced and generated in recent years. In this paper, we investigate the statistical properties of a PCRP beam embedded with a vortex phase (i.e., PCRP vortex beam). We derive the analytical formula for the cross-spectral density matrix of a PCRP vortex beam propagating through a paraxial ABCD optical system and analyze the statistical properties of a PCRP vortex beam focused by a thin lens. It is found that the statistical properties of a PCRP vortex beam on propagation are much different from those of a PCRP beam. The vortex phase induces not only the rotation of the beam spot, but also the changes of the beam shape, the degree of polarization and the state of polarization. We also find that the vortex phase plays a role of resisting the coherence-induced degradation of the intensity distribution and the coherence-induced depolarization. Furthermore, we report experimental generation of a PCRP vortex beam for the first time. Our results will be useful for trapping and rotating particles, free-space optical communications and detection of phase object.

  18. Generation of singular optical beams from fundamental Gaussian beam using Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Naik, Dinesh N.; Viswanathan, Nirmal K.

    2016-09-01

    We propose a simple free-space optics recipe for the controlled generation of optical vortex beams with a vortex dipole or a single charge vortex, using an inherently stable Sagnac interferometer. We investigate the role played by the amplitude and phase differences in generating higher-order Gaussian beams from the fundamental Gaussian mode. Our simulation results reveal how important the control of both the amplitude and the phase difference between superposing beams is to achieving optical vortex beams. The creation of a vortex dipole from null interference is unveiled through the introduction of a lateral shear and a radial phase difference between two out-of-phase Gaussian beams. A stable and high quality optical vortex beam, equivalent to the first-order Laguerre-Gaussian beam, is synthesized by coupling lateral shear with linear phase difference, introduced orthogonal to the shear between two out-of-phase Gaussian beams.

  19. A point vortex model for the formation of ocean eddies by flow separation

    NASA Astrophysics Data System (ADS)

    Southwick, O. R.; Johnson, E. R.; McDonald, N. R.

    2015-01-01

    A simple model for the formation of ocean eddies by flow separation from sharply curved horizontal boundary topography is developed. This is based on the Brown-Michael model for two-dimensional vortex shedding, which is adapted to more realistically model mesoscale oceanic flow by including a deforming free surface. With a free surface, the streamfunction for the flow is not harmonic so the conformal mapping methods used in the standard Brown-Michael approach cannot be used and the problem must be solved numerically. A numerical scheme is developed based on a Chebyshev spectral method for the streamfunction partial differential equation and a second order implicit timestepping scheme for the vortex position ordinary differntial equations. This method is used to compute shed vortex trajectories for three background flows: (A) a steady flow around a semi-infinite plate, (B) a free vortex moving around a semi-infinite plate, and (C) a free vortex moving around a right-angled wedge. In (A), the inclusion of surface deformation dramatically slows the vortex and changes its trajectory from a straight path to a curved one. In (B) and (C), without the inclusion of flow separation, free vortices traverse fully around the tip along symmetrical trajectories. With the effects of flow separation included, very different trajectories are found: for all values of the model parameter—the Rossby radius—the free and shed vortices pair up and move off to infinity without passing around the tip. Their final propagation angle depends strongly and monotonically on the Rossby radius.

  20. Vortex leading edge flap assembly for supersonic airplanes

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C. (Inventor)

    1997-01-01

    A leading edge flap (16) for supersonic transport airplanes is disclosed. In its stowed position, the leading edge flap forms the lower surface of the wing leading edge up to the horizontal center of the leading edge radius. For low speed operation, the vortex leading edge flap moves forward and rotates down. The upward curve of the flap leading edge triggers flow separation on the flap and rotational flow on the upper surface of the flap (vortex). The rounded shape of the upper fixed leading edge provides the conditions for a controlled reattachment of the flow on the upper wing surface and therefore a stable vortex. The vortex generates lift and a nose-up pitching moment. This improves maximum lift at low speed, reduces attitude for a given lift coefficient and improves lift to drag ratio. The mechanism (27) to move the vortex flap consists of two spanwise supports (24) with two diverging straight tracks (64 and 68) each and a screw drive mechanism (62) in the center of the flap panel (29). The flap motion is essentially normal to the airloads and therefore requires only low actuation forces.

  1. Structure of vortices in superfluid 3He A-like phase in uniaxially stretched aerogel

    NASA Astrophysics Data System (ADS)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2009-02-01

    Possible vortex-core transitions in A-like phase of superfluid 3He in uniaxially stretched aerogel are investigated. Since the global anisotropy in this system induces the polar pairing state in a narrow range close to the superfluid transition in addition to the A-like and B-like phases, the polar state may occur in the core of a vortex in the A-like phase identified with the ABM pairing state, like in the case of the bulk B phase where a core including the ABM state is realized at higher pressures. We examine the core structure of a single vortex under the boundary condition compatible with the Mermin-Ho vortex in the presence of the dipole interaction. Following Salomaa and Volovik's approach, we numerically solve the Ginzburg-Landau equation for an axially symmetric vortex and, by examining its stability against nonaxisymmetric perturbations, discuss possible vortex core states. It is found that a first order transition on core states may occur on warming from an axisymmetric vortex with a nonunitary core to a singular vortex with the polar core.

  2. High-charge and multiple-star vortex coronagraphy from stacked vector vortex phase masks.

    PubMed

    Aleksanyan, Artur; Brasselet, Etienne

    2018-02-01

    Optical vortex phase masks are now installed at many ground-based large telescopes for high-contrast astronomical imaging. To date, such instrumental advances have been restricted to the use of helical phase masks of the lowest even order, while future giant telescopes will require high-order masks. Here we propose a single-stage on-axis scheme to create high-order vortex coronagraphs based on second-order vortex phase masks. By extending our approach to an off-axis design, we also explore the implementation of multiple-star vortex coronagraphy. An experimental laboratory demonstration is reported and supported by numerical simulations. These results offer a practical roadmap to the development of future coronagraphic tools with enhanced performances.

  3. Thermal reactor. [liquid silicon production from silane gas

    NASA Technical Reports Server (NTRS)

    Levin, H.; Ford, L. B. (Inventor)

    1982-01-01

    A thermal reactor apparatus and method of pyrolyticaly decomposing silane gas into liquid silicon product and hydrogen by-product gas is disclosed. The thermal reactor has a reaction chamber which is heated well above the decomposition temperature of silane. An injector probe introduces the silane gas tangentially into the reaction chamber to form a first, outer, forwardly moving vortex containing the liquid silicon product and a second, inner, rewardly moving vortex containing the by-product hydrogen gas. The liquid silicon in the first outer vortex deposits onto the interior walls of the reaction chamber to form an equilibrium skull layer which flows to the forward or bottom end of the reaction chamber where it is removed. The by-product hydrogen gas in the second inner vortex is removed from the top or rear of the reaction chamber by a vortex finder. The injector probe which introduces the silane gas into the reaction chamber is continually cooled by a cooling jacket.

  4. Jet and Vortex Projectile Flows in Shock/bubble-on-wall Configuration

    NASA Astrophysics Data System (ADS)

    Peng, Gaozhu; Zabusky, Norman

    2001-11-01

    We observe intense coaxial upstream and radial flow structures from a shock in air interacting with a SF6 half-bubble placed against an ideally reflecting wall. Our axisymmetric numerical simulations were done with PPM and models a spherical bubble struck symmetrically by two identical approaching shocks . A "dual" vorticity deposition arises at early time and a coaxial upstream moving primary jet and radial vortex ring flow appears. A coherent vortex ring or vortex projectile (VP), with entrained shocklets originates from the vortex layer produced at the Mach stem (which arises from the primary reflected shock). This VP moves ahead of the jet. The original transmitted wave and other trapped waves in the expanding axial jet causes a collapsing and expanding cavity and other instabilities on the complex bubble interface. We present and analyze our results with different diagnostics: vorticity, density, divergence of velocity, and numerical shadowgraph patterns; global quantification of circulation, enstrophy and r-integrated vorticity; etc. We also discuss data projection and filtering for quantifying and validating complex flows.

  5. Vortex diode jet

    DOEpatents

    Houck, Edward D.

    1994-01-01

    A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

  6. Motion of vortices in inhomogeneous Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Groszek, Andrew J.; Paganin, David M.; Helmerson, Kristian; Simula, Tapio P.

    2018-02-01

    We derive a general and exact equation of motion for a quantized vortex in an inhomogeneous two-dimensional Bose-Einstein condensate. This equation expresses the velocity of a vortex as a sum of local ambient density and phase gradients in the vicinity of the vortex. We perform Gross-Pitaevskii simulations of single-vortex dynamics in both harmonic and hard-walled disk-shaped traps, and find excellent agreement in both cases with our analytical prediction. The simulations reveal that, in a harmonic trap, the main contribution to the vortex velocity is an induced ambient phase gradient, a finding that contradicts the commonly quoted result that the local density gradient is the only relevant effect in this scenario. We use our analytical vortex velocity formula to derive a point-vortex model that accounts for both density and phase contributions to the vortex velocity, suitable for use in inhomogeneous condensates. Although good agreement is obtained between Gross-Pitaevskii and point-vortex simulations for specific few-vortex configurations, the effects of nonuniform condensate density are in general highly nontrivial, and are thus difficult to efficiently and accurately model using a simplified point-vortex description.

  7. Negative velocity fluctuations and non-equilibrium fluctuation relation for a driven high critical current vortex state.

    PubMed

    Bag, Biplab; Shaw, Gorky; Banerjee, S S; Majumdar, Sayantan; Sood, A K; Grover, A K

    2017-07-17

    Under the influence of a constant drive the moving vortex state in 2H-NbS 2 superconductor exhibits a negative differential resistance (NDR) transition from a steady flow to an immobile state. This state possesses a high depinning current threshold ([Formula: see text]) with unconventional depinning characteristics. At currents well above [Formula: see text], the moving vortex state exhibits a multimodal velocity distribution which is characteristic of vortex flow instabilities in the NDR regime. However at lower currents which are just above [Formula: see text], the velocity distribution is non-Gaussian with a tail extending to significant negative velocity values. These unusual negative velocity events correspond to vortices drifting opposite to the driving force direction. We show that this distribution obeys the Gallavotti-Cohen Non-Equilibrium Fluctuation Relation (GC-NEFR). Just above [Formula: see text], we also find a high vortex density fluctuating driven state not obeying the conventional GC-NEFR. The GC-NEFR analysis provides a measure of an effective energy scale (E eff ) associated with the driven vortex state. The E eff corresponds to the average energy dissipated by the fluctuating vortex state above [Formula: see text]. We propose the high E eff value corresponds to the onset of high energy dynamic instabilities in this driven vortex state just above [Formula: see text].

  8. 3D vortex formation of drag-based propulsors

    NASA Astrophysics Data System (ADS)

    Kim, Daegyoum; Gharib, Morteza

    2008-11-01

    Three dimensional vortex formation mechanism of impulsively rotating plates is studied experimentally using defocusing digital particle image velocimetry. The plate face is normal to the moving direction to simulate drag-based propulsion and only one power stroke is considered. In order to compare the effect of shape on vortex generation, three different shapes of plate (rectangular, triangular and duck's webbed-foot shapes) are used. These three cases show striking differences in vortex formation process during power stroke. Axial flow is shown to play an important role in the tip vortex formation. Correlation between hydrodynamic forces acting on the plate and vortex formation processes is described.

  9. Kinks and vortex-twister dynamics in type-II superconductors

    NASA Astrophysics Data System (ADS)

    D'Anna, G.; Benoit, W.; Sémoroz, A.; Berseth, V.

    1997-02-01

    We report magneto-optical observations of moving helicoidal vortex structures in high purity YBa 2Cu 3O 7-δ single cyrstals. We found that the dynamics of these ‘vortex-twisters’ is mainly controlled by localized instabilities (kinks) which stream along the helices. The kinks allow the motion of the twisters, or the annihilation of twisters with opposite chirality.

  10. Flux line non-equilibrium relaxation kinetics following current quenches in disordered type-II superconductors

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Harshwardhan; Assi, Hiba; Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe

    We investigate the relaxation dynamics of magnetic vortex lines in disordered type-II superconductors following rapid changes in the external driving current by means of Langevin molecular dynamics simulations for an elastic line model. A system of driven interacting flux lines in a sample with randomly distributed point pinning centers is initially relaxed to a moving non-equilibrium steady state. The current is then instantaneously decreased, such that the final stationary state resides either still in the moving regime, or in the pinned Bragg glass phase. The ensuing non-equilibrium relaxation kinetics of the vortices is studied in detail by measuring the mean flux line gyration radius and the two-time transverse height autocorrelation function. The latter allows us to investigate the physical aging properties for quenches from the moving into the glassy phase, and to compare with non-equilibrium relaxation features obtained with different initial configurations. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  11. An experimental investigation of delta wing vortex flow with and without external jet blowing

    NASA Technical Reports Server (NTRS)

    Iwanski, Kenneth P.; Ng, T. Terry; Nelson, Robert C.

    1989-01-01

    A visual and quantitative study of the vortex flow field over a 70-deg delta wing with an external jet blowing parallel to and at the leading edge was conducted. In the experiment, the vortex core was visually marked with TiCl4, and LDA was used to measure the velocity parallel and normal to the wing surface. It is found that jet blowing moved vortex breakdown farther downstream from its natural position and influenced the breakdown characteristics.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Zehua; Tang, Xian-Zhu; McDevitt, Christopher J.

    Generation of runaway electrons (RE) beams can possibly induce the most deleterious effect of tokamak disruptions. A number of recent numerical calculations have confirmed the formation of a RE bump in their energy distribution by taking into account Synchrontron radiational damping force due to RE’s gyromotions. Here, we present a detailed examination on how the bump location changes at different pitch-angle and the characteristics of the RE pitch-angle distribution. Although REs moving along the magnetic field are preferably accelerated and then populate the phase-space of larger pitch-angle mainly through diffusions, an off-axis peak can still form due to the presencemore » of the vortex structure which causes accumulation of REs at low pitch-angle. A simplified Fokker- Planck model and its semi-analytical solutions based on local expansions around the O point is used to illustrate the characteristics of RE distribution around the O point of the runaway vortex in phase-space. The calculated energy location of the O point together with the local energy and pitch-angle distributions agree with the full numerical solution.« less

  13. Analytical model of the optical vortex microscope.

    PubMed

    Płocinniczak, Łukasz; Popiołek-Masajada, Agnieszka; Masajada, Jan; Szatkowski, Mateusz

    2016-04-20

    This paper presents an analytical model of the optical vortex scanning microscope. In this microscope the Gaussian beam with an embedded optical vortex is focused into the sample plane. Additionally, the optical vortex can be moved inside the beam, which allows fine scanning of the sample. We provide an analytical solution of the whole path of the beam in the system (within paraxial approximation)-from the vortex lens to the observation plane situated on the CCD camera. The calculations are performed step by step from one optical element to the next. We show that at each step, the expression for light complex amplitude has the same form with only four coefficients modified. We also derive a simple expression for the vortex trajectory of small vortex displacements.

  14. Magnification of signatures of a topological phase transition by quantum zero point motion

    NASA Astrophysics Data System (ADS)

    Lopes, Pedro L. e. S.; Ghaemi, Pouyan

    2015-08-01

    We show that the zero point motion of a vortex in superconducting doped topological insulators leads to significant changes in the electronic spectrum at the topological phase transition in this system. This topological phase transition is tuned by the doping level, and the corresponding effects are manifest in the density of states at energies which are on the order of the vortex fluctuation frequency. Although the electronic energy gap in the spectrum generated by a stationary vortex is but a small fraction of the bulk superconducting gap, the vortex fluctuation frequency may be much larger. As a result, this quantum zero point motion can induce a discontinuous change in the spectral features of the system at the topological vortex phase transition to energies which are well within the resolution of scanning tunneling microscopy. This discontinuous change is exclusive to superconducting systems in which we have a topological phase transition. Moreover, the phenomena studied in this paper present effects of Magnus forces on the vortex spectrum which are not present in the ordinary s -wave superconductors. Finally, we demonstrate explicitly that the vortex in this system is equivalent to a Kitaev chain. This allows for the mapping of the vortex fluctuating scenario in three dimensions into similar one-dimensional situations in which one may search for other novel signatures of topological phase transitions.

  15. Heat transfer enhancement due to a longitudinal vortex produced by a single winglet in a pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyakawa, Kenyu; Senaha, Izuru; Ishikawa, Shuji

    1999-07-01

    Longitudinal vortices were artificially generated by a single winglet vortex generator in a pipe. The purpose of this study is to analyze the motion of longitudinal vortices and their effects on heat transfer enhancement. The flow pattern was visualized by means of both fluorescein and rhodamine B as traces in a water flow. The main vortex was moved spirally along the circumference and the behavior of the other vortices was observed. Streamwise and circumferential heat transfer coefficients on the wall, wall static pressure, and velocity distribution in an overall cross section were also measured for the air flow in amore » range of Reynolds numbers from 18,800 to 62,400. The distributions of the streamwise heat transfer coefficient had a periodic pattern, and the peaks in the distribution were circumferentially moved due to the spiral motion of the main vortex. Lastly, the relationships between the iso-velocity distribution, wall static pressure, and heat transfer characteristics was shown. In the process of forming the vortex behind the winglet vortex generator, behaviors of both the main vortex and the corner vortex were observed as streak lines. The vortex being raised along the end of the winglet, and the vortex ring being rolled up to the main vortex were newly observed. Both patterns of the streamwise velocity on a cross-section and the static pressure on the wall show good correspondences to phenomena of the main vortex spirally flowing downstream. The increased ratio of the heat transfer is similar to that of the friction factor based on the shear stress on the wall surface of the pipe. The quantitative analogy between the heat transfer and the shear stress is confirmed except for some regions, where the effects of the down-wash or blow-away of the secondary flows is caused due to the main vortex.« less

  16. Onset of nanoscale dissipation in superfluid 4He at zero temperature: Role of vortex shedding and cavitation

    NASA Astrophysics Data System (ADS)

    Ancilotto, Francesco; Barranco, Manuel; Eloranta, Jussi; Pi, Martí

    2017-08-01

    Two-dimensional flow past an infinitely long cylinder of nanoscopic radius in superfluid 4He at zero temperature is studied using time-dependent density-functional theory. The calculations reveal two distinct critical phenomena for the onset of dissipation: (i) vortex-antivortex pair shedding from the periphery of the moving cylinder, and (ii) the appearance of cavitation in the wake, which possesses similar geometry to that observed experimentally for fast-moving micrometer-scale particles in superfluid 4He. The formation of cavitation bubbles behind the cylinder is accompanied by a sudden jump in the drag exerted on the moving cylinder by the fluid. Vortex pairs with the same circulation are occasionally emitted in the form of dimers, which constitute the building blocks for the Benard-von Karman vortex street structure observed in classical turbulent fluids and Bose-Einstein condensates. The cavitation-induced dissipation mechanism should be common to all superfluids that are self-bound and have a finite surface tension, which include the recently discovered self-bound droplets in ultracold Bose gases. These systems would provide an ideal testing ground for further exploration of this mechanism experimentally.

  17. Dynamics of vortices in complex wakes: Modeling, analysis, and experiments

    NASA Astrophysics Data System (ADS)

    Basu, Saikat

    The thesis develops singly-periodic mathematical models for complex laminar wakes which are formed behind vortex-shedding bluff bodies. These wake structures exhibit a variety of patterns as the bodies oscillate or are in close proximity of one another. The most well-known formation comprises two counter-rotating vortices in each shedding cycle and is popularly known as the von Karman vortex street. Of the more complex configurations, as a specific example, this thesis investigates one of the most commonly occurring wake arrangements, which consists of two pairs of vortices in each shedding period. The paired vortices are, in general, counter-rotating and belong to a more general definition of the 2P mode, which involves periodic release of four vortices into the flow. The 2P arrangement can, primarily, be sub-classed into two types: one with a symmetric orientation of the two vortex pairs about the streamwise direction in a periodic domain and the other in which the two vortex pairs per period are placed in a staggered geometry about the wake centerline. The thesis explores the governing dynamics of such wakes and characterizes the corresponding relative vortex motion. In general, for both the symmetric as well as the staggered four vortex periodic arrangements, the thesis develops two-dimensional potential flow models (consisting of an integrable Hamiltonian system of point vortices) that consider spatially periodic arrays of four vortices with their strengths being +/-Gamma1 and +/-Gamma2. Vortex formations observed in the experiments inspire the assumed spatial symmetry. The models demonstrate a number of dynamic modes that are classified using a bifurcation analysis of the phase space topology, consisting of level curves of the Hamiltonian. Despite the vortex strengths in each pair being unequal in magnitude, some initial conditions lead to relative equilibrium when the vortex configuration moves with invariant size and shape. The scaled comparisons of the model results with experiments conducted in a owing soap film with an airfoil, which was imparted with forced oscillations, are satisfactory and validate the reduced order modeling framework. The experiments have been performed by a collaborator group at the Department of Physics and Fluid Dynamics at the Technical University of Denmark (DTU), led by Dr. Anders Andersen. Similar experiments have also been run at Virginia Tech as part of this dissertation and the preliminary results are included in this treatise. The thesis also employs the same dynamical systems techniques, which have been applied to study the 2P regime dynamics, to develop a mathematical model for the P+S mode vortex wakes, with three vortices present in each shedding cycle. The model results have also been compared favorably with an experiment and the predictions regarding the vortex circulation data match well with the previous results from literature. Finally, the thesis introduces a novel concept of clean and renewable energy extraction from vortex-induced vibrations of bluff bodies. The slow-moving currents in the off-shore marine environments and riverine flows are beyond the operational capabilities of the more established hydrokinetic energy converters and the discussed technology promises to be a significant tool to generate useful power from these copiously available but previously untapped sources.

  18. Combined action of transverse oscillations and uniform cross-flow on vortex formation and pattern of a circular cylinder

    NASA Astrophysics Data System (ADS)

    Lam, K. M.; Liu, P.; Hu, J. C.

    2010-07-01

    This paper attempts to study the roles of lateral cylinder oscillations and a uniform cross-flow in the vortex formation and wake modes of an oscillating circular cylinder. A circular cylinder is given lateral oscillations of varying amplitudes (between 0.28 and 1.42 cylinder-diameters) in a slow uniform flow stream (Reynolds number=284) to produce the 2S, 2P and P+S wake modes. Detailed flow information is obtained with time-resolved particle-image velocimetry and the phase-locked averaging techniques. In the 2S and 2P mode, the flow speeds relative to the cylinder movement are less than the uniform flow velocity and it is found that initial formation of a vortex is caused by shear-layer separation of the uniform flow on the cylinder. Subsequent development of the shear-layer vortices is affected by the lateral cylinder movement. At small cylinder oscillation amplitudes, vortices are shed in synchronization with the cylinder movement, resulting in the 2S mode. The 2P mode occurs at larger cylinder oscillation amplitudes at which each shear-layer vortex is found to undergo intense stretching and eventual bifurcation into two separate vortices. The P+S mode occurs when the cylinder moving speeds are, for most of the time, higher than the speed of the uniform flow. These situations are found at fast and large-amplitude cylinder oscillations in which the flow relative to the cylinder movement takes over the uniform flow in governing the initial vortex formation. The formation stages of vortices from the cylinder are found to bear close resemblance to those of a vortex street pattern of a cylinder oscillating in an otherwise quiescent fluid at Keulegan-Carpenter numbers around 16. Vortices in the inclined vortex street pattern so formed are then convected downstream by the uniform flow as the vortex pairs in the 2P mode.

  19. Dynamics of Meddies Interaction With Submarine Mountains

    NASA Astrophysics Data System (ADS)

    Cenedese, A.; Espa, S.; Sciarra, R.; Cicerani, S.

    The dynamics of MEDDIES (i.e. Mediterranean Eddies) impinging on submarine mountains has been experimentally analyzed both in the f-plane and b-plane condi- tions in order to validate in situ observations of the geophysical phenomenon (Richard- son P.L., Bower A.S. &Zenk W.; 2000). Experiments have been performed by using a rotating tank equipped with a co-rotating video camera, which allows to take flow visualizations. The tank has a squared section (L=88 cm) and is filled with pure wa- ter (Tz180 C). Cyclonic vortices are generated by placing ice cubes on the upper surface of the tank (Cenedese C., 2000) and the mountain is simulated by using cylin- ders characterised by different shaped sections. We analyzed two impact typology in which there is: - vortex advected by an uniform background flow: the experiment is performed by moving an obstacle against a motionless vortex in a f-plane framework. A video camera is fixed over the obstacle moving at the same time. -self moving vor- tex: the beta effect induced by a sloping bottom allow the vortex to move by itself. In this case the vortex impinges on a fixed obstacle. Our aim is to investigate the possible scenario corresponding to frontal and glancing collision events and the influ- ence of impact and geometrical parameters (i.e. obstacle size, D, and shape; vortex size, R; distance between the center of the vortex and the horizontal axis of the obsta- cle) leading to vortex destruction, vortex bifurcation or changing in vortex structure. Lagrangian trajectories of individual tracers (styrene particles) released on the fluid surface have been reconstructed in the tank reference frame by using PTV technique (Cenedese A., Querzoli G., 2000). These particles are supposed to act as passive scalar i.e. their influence on the fluid motion can be considered negligible. By interpolating Lagrangian velocities over a regular grid, we obtained the Eulerian flow fields. It is then possible to evaluate vorticity distribution and to investigate its evolution during the impact event. REFERENCES Richardson P.L., Bower A.S. &Zenk W. (2000) 'A census of Med- dies tracked by floats'. Progress in Oceanography, 45, 209-250. Cenedese C.(2000) 'Mesoscale vortices colliding with a seamount' J.Geophys.Res. Cenedese, A., Quer- zoli, G., (2000), SParticle Tracking Velocimetry: measuring in the Lagrangian ref- ´ erence frameS, in: Particle Image Velocimetry and associated techniques, Lectures series 2000-01, von Karman Institute for Fluid Dynamics

  20. Vortobots

    NASA Technical Reports Server (NTRS)

    Park, Han; Noca, Flavio; Koumoutsakos, Petros

    2005-01-01

    The term vortobots denotes proposed swimming robots that would have dimensions as small as micrometers or even nanometers and that would move in swarms through fluids by generating and exploiting vortices in a cooperative manner. Vortobots were conceived as means of exploring confined or otherwise inaccessible fluid environments: they are expected to be especially attractive for biomedical uses like examining the interiors of blood vessels. The main advantage of the vortobot concept, relative to other concepts for swimming microscopic robots, is that the mechanisms for locomotion would be relatively simple and, therefore, could be miniaturized more easily. For example, only a simple spinning paddle would be required to generate a vortex around a vortobot (see Figure 1). The difficulty is that a smart swarming and cooperative control algorithm would be necessary for purposeful locomotion. This necessity arises because, as a consequence of basic principles of vortex dynamics, an isolated single vortex cannot move by itself because its induced flow at the center is zero; however, a vortex can move other vortices by the induced flow. By cleverly adjusting the strength and sign of each member in a group of vortices, the group can achieve net translational motion in the preferred direction through cooperation. Figure 2 presents two simple examples that serve to illustrate the principle of cooperative motion of vortobots. For the sake of simplicity, these examples are based on an idealized two-dimensional potential flow of an inviscid, incompressible liquid. The example of the upper part of the figure is of two vortices of equal magnitude and opposite sign. The centers of the vortices would move along parallel paths. The example of the lower part of the figure is of two vortices of the same magnitude and sign. In this case, both vortices would move in a circle in diametrically opposite positions. More complex motions can be obtained by introducing more vortices (or pairs of vortices) and choosing different vortex strengths and orientations.

  1. Persistence of metastable vortex lattice domains in MgB2 in the presence of vortex motion.

    PubMed

    Rastovski, C; Schlesinger, K J; Gannon, W J; Dewhurst, C D; DeBeer-Schmitt, L; Zhigadlo, N D; Karpinski, J; Eskildsen, M R

    2013-09-06

    Recently, extensive vortex lattice metastability was reported in MgB2 in connection with a second-order rotational phase transition. However, the mechanism responsible for these well-ordered metastable vortex lattice phases is not well understood. Using small-angle neutron scattering, we studied the vortex lattice in MgB2 as it was driven from a metastable to the ground state through a series of small changes in the applied magnetic field. Our results show that metastable vortex lattice domains persist in the presence of substantial vortex motion and directly demonstrate that the metastability is not due to vortex pinning. Instead, we propose that it is due to the jamming of counterrotated vortex lattice domains which prevents a rotation to the ground state orientation.

  2. Simulation of moving flat plate with unsteady translational motion using vortex method

    NASA Astrophysics Data System (ADS)

    Widodo, A. F.; Zuhal, L. R.

    2013-10-01

    This paper presents simulation of moving flate plate with unsteady translational motion using Lagrangianmeshless numerical simulation named vortex method. The method solves Navier-Stokes equations in term of vorticity. The solving strategy is splitting the equation into diffusion and convection term to be solved separately. The diffusion term is modeled by particles strength exchange(PSE) which is the most accurate of diffusion modeling in vortex method. The convection term that represents transport of particles is calculated by time step integration of velocity. Velocity of particles is natively calculated using Biot-Savart relation but for acceleration, fastmultiple method(FMM) is employed. The simulation is validated experimentally using digital particle image velocimetry(DPIV) and the results give good agreement.

  3. Vortex Formation and Foraging in Polyphenic Spadefoot Toad Tadpoles.

    PubMed

    Bazazi, Sepideh; Pfennig, Karin S; Handegard, Nils Olav; Couzin, Iain D

    2012-06-01

    Animal aggregations are widespread in nature and can exhibit complex emergent properties not found at an individual level. We investigate one such example here, collective vortex formation by congeneric spadefoot toad tadpoles: Spea bombifrons and S. multiplicata. Tadpoles of these species develop into either an omnivorous or a carnivorous (cannibalistic) morph depending on diet. Previous studies show S. multiplicata are more likely to develop into omnivores and feed on suspended organic matter in the water body. The omnivorous morph is frequently social, forming aggregates that move and forage together, and form vortices in which they adopt a distinctive slowly-rotating circular formation. This behaviour has been speculated to act as a means to agitate the substratum in ponds and thus could be a collective foraging strategy. Here we perform a quantitative investigation of the behaviour of tadpoles within aggregates. We found that only S. multiplicata groups exhibited vortex formation, suggesting that social interactions differ between species. The probability of collectively forming a vortex, in response to introduced food particles, increased for higher tadpole densities and when tadpoles were hungry. Individuals inside a vortex moved faster and exhibited higher (by approximately 27%) tailbeat frequencies than those outside the vortex, thus incurring a personal energetic cost. The resulting environmental modification, however, suggests vortex behaviour may be an adaptation to actively create, and exploit, a resource patch within the environment.

  4. Broadband and high-efficiency vortex beam generator based on a hybrid helix array.

    PubMed

    Fang, Chaoqun; Wu, Chao; Gong, Zhijie; Zhao, Song; Sun, Anqi; Wei, Zeyong; Li, Hongqiang

    2018-04-01

    The vortex beam which carries the orbital angular momentum has versatile applications, such as high-resolution imaging, optical communications, and particle manipulation. Generating vortex beams with the Pancharatnam-Berry (PB) phase has drawn considerable attention for its unique spin-to-orbital conversion features. Despite the PB phase being frequency independent, an optical element with broadband high-efficiency circular polarization conversion feature is still needed for the broadband high-efficiency vortex beam generation. In this work, a broadband and high-efficiency vortex beam generator based on the PB phase is built with a hybrid helix array. Such devices can generate vortex beams with arbitrary topological charge. Moreover, vortex beams with opposite topological charge can be generated with an opposite handedness incident beam that propagates backward. The measured efficiency of our device is above 65% for a wide frequency range, with the relative bandwidth of 46.5%.

  5. Unsteady Separated Flows: Vorticity and Turbulence.

    DTIC Science & Technology

    1982-10-01

    investigation. The vortex train used in the mathe- matical model is adapted to simulate the flow generated in the wake of an oscillating spoiler moving...weak wake structure. C H - At K = 1.5, the trailing edge vortex clearly leads the vorte : generated from the leading edge in the normal geonetry tests...flows is summarized. Specific projects reviewed include: (a) oscillating airfoil dynamic stall; (b) vortex entrapment and stability analysis -and (c

  6. Evolution of phase singularities of vortex beams propagating in atmospheric turbulence.

    PubMed

    Ge, Xiao-Lu; Wang, Ben-Yi; Guo, Cheng-Shan

    2015-05-01

    Optical vortex beams propagating through atmospheric turbulence are studied by numerical modeling, and the phase singularities of the vortices existing in the turbulence-distorted beams are calculated. It is found that the algebraic sum of topological charges (TCs) of all the phase singularities existing in test aperture is approximately equal to the TC of the input vortex beam. This property provides us a possible approach for determining the TC of the vortex beam propagating through the atmospheric turbulence, which could have potential application in optical communication using optical vortices.

  7. An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder

    NASA Technical Reports Server (NTRS)

    Cantwell, B.; Coles, D.

    1983-01-01

    Attention is given to an experimental investigation of transport processes in the near wake of a circular cylinder, for a Reynolds number of 140,000, in which an X-array of hot wire probes mounted on a pair of whirling arms was used for flow measurement. Rotation of the arms in a uniform flow applies a wide range of relative flow angles to these X-arrays, making them inherently self-calibrating in pitch. A phase signal synchronized with the vortex-shedding process allowed a sorting of the velocity data into 16 populations, each having essentially constant phase. An ensemble average for each population yielded a sequence of pictures of the instantaneous mean flow field in which the vortices are frozen, as they would be on a photograph. The measurements also yield nonsteady mean data for velocity, intermittency, vorticity, stress, and turbulent energy production, as a function of phase. Emphasis is given in a discussion of study results to the nonsteady mean flow, which emerges as a pattern of centers and saddles in a frame of reference that moves with the eddies. The kinematics of the vortex formation process are described in terms of the formation and evolution of saddle points between vortices in the first few diameters of the near wake.

  8. Theoretical study on second-harmonic generation of focused vortex beams

    NASA Astrophysics Data System (ADS)

    Tang, Daolong; Wang, Jing; Ma, Jingui; Zhou, Bingjie; Yuan, Peng; Xie, Guoqiang; Zhu, Heyuan; Qian, Liejia

    2018-03-01

    Second-harmonic generation (SHG) provides a promising route for generating vortex beams of both short wavelength and large topological charge. Here we theoretically investigate the efficiency optimization and beam characteristics of focused vortex-beam SHG. Owing to the increasing beam divergence, vortex beams have distinct features in SHG optimization compared with a Gaussian beam. We show that, under the noncritical phase-matching condition, the Boyd and Kleinman prediction of the optimal focusing parameter for Gaussian-beam SHG remains valid for vortex-beam SHG. However, under the critical phase-matching condition, which is sensitive to the beam divergence, the Boyd and Kleinman prediction is no longer valid. In contrast, the optimal focusing parameter for maximizing the SHG efficiency strongly depends on the vortex order. We also investigate the effects of focusing and phase-matching conditions on the second-harmonic beam characteristics.

  9. Preemptive vortex-loop proliferation in multicomponent interacting Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, E. K.; Kragset, S.; Sudboe, A.

    2008-04-01

    We use analytical arguments and large-scale Monte Carlo calculations to investigate the nature of the phase transitions between distinct complex superfluid phases in a two-component Bose-Einstein condensate when a nondissipative drag between the two components is being varied. We focus on understanding the role of topological defects in various phase transitions and develop vortex-matter arguments, allowing an analytical description of the phase diagram. We find the behavior of fluctuation induced vortex matter to be much more complex and substantially different from that of single-component superfluids. We propose and numerically investigate a drag-induced ''preemptive vortex loop proliferation'' scenario. Such a transitionmore » may be a quite generic feature in many multicomponent systems where symmetry is restored by a gas of several kinds of competing vortex loops.« less

  10. Reconstruction phases in the planar three- and four-vortex problems

    NASA Astrophysics Data System (ADS)

    Hernández-Garduño, Antonio; Shashikanth, Banavara N.

    2018-03-01

    Pure reconstruction phases—geometric and dynamic—are computed in the N-point-vortex model in the plane, for the cases N=3 and N=4 . The phases are computed relative to a metric-orthogonal connection on appropriately defined principal fiber bundles. The metric is similar to the kinetic energy metric for point masses but with the masses replaced by vortex strengths. The geometric phases are shown to be proportional to areas enclosed by the closed orbit on the symmetry reduced spaces. More interestingly, simple formulae are obtained for the dynamic phases, analogous to Montgomery’s result for the free rigid body, which show them to be proportional to the time period of the symmetry reduced closed orbits. For the case N = 3 a non-zero total vortex strength is assumed. For the case N = 4 the vortex strengths are assumed equal.

  11. Motion/visual cueing requirements for vortex encounters during simulated transport visual approach and landing

    NASA Technical Reports Server (NTRS)

    Parrish, R. V.; Bowles, R. L.

    1983-01-01

    This paper addresses the issues of motion/visual cueing fidelity requirements for vortex encounters during simulated transport visual approaches and landings. Four simulator configurations were utilized to provide objective performance measures during simulated vortex penetrations, and subjective comments from pilots were collected. The configurations used were as follows: fixed base with visual degradation (delay), fixed base with no visual degradation, moving base with visual degradation (delay), and moving base with no visual degradation. The statistical comparisons of the objective measures and the subjective pilot opinions indicated that although both minimum visual delay and motion cueing are recommended for the vortex penetration task, the visual-scene delay characteristics were not as significant a fidelity factor as was the presence of motion cues. However, this indication was applicable to a restricted task, and to transport aircraft. Although they were statistically significant, the effects of visual delay and motion cueing on the touchdown-related measures were considered to be of no practical consequence.

  12. Research of the Electron Cyclotron Emission with Vortex Property excited by high power high frequency Gyrotron

    NASA Astrophysics Data System (ADS)

    Goto, Yuki; Kubo, Shin; Tsujimura, Tohru; Takubo, Hidenori

    2017-10-01

    Recently, it has been shown that the radiation from a single electron in cyclotron motion has vortex property. Although the cyclotron emission exists universally in nature, the vortex property has not been featured because this property is normally cancelled out due to the randomness in gyro-phase of electrons and the development of detection of the vortex property has not been well motivated. In this research, we are developing a method to generate the vortex radiation from electrons in cyclotron motion with controlled gyro-phase. Electron that rotates around the uniform static magnetic field is accelerated by right-hand circular polarized (RHCP) radiation resonantly when the cyclotron frequency coincides with the applied RHCP radiation frequency. A large number of electrons can be coherently accelerated in gyro-phase by a RHCP high power radiation so that these electrons can radiate coherent emission with vortex feature. We will show that vortex radiation created by purely rotating electrons for the first time.

  13. Tropical cyclogenesis in a tropical wave critical layer: easterly waves

    NASA Astrophysics Data System (ADS)

    Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.

    2009-08-01

    The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside. The critical layer equatorward of the easterly jet axis is important to tropical cyclogenesis because its cat's eye provides (i) a region of cyclonic vorticity and weak deformation by the resolved flow, (ii) containment of moisture entrained by the developing gyre and/or lofted by deep convection therein, (iii) confinement of mesoscale vortex aggregation, (iv) a predominantly convective type of heating profile, and (v) maintenance or enhancement of the parent wave until the vortex becomes a self-sustaining entity and emerges from the wave as a tropical depression. The entire sequence is likened to the development of a marsupial infant in its mother's pouch. These ideas are formulated in three new hypotheses describing the flow kinematics and dynamics, moist thermodynamics and wave/vortex interactions comprising the "marsupial paradigm". A survey of 55 named tropical storms in 1998-2001 reveals that actual critical layers sometimes resemble the ideal east-west train of cat's eyes, but are usually less regular, with one or more recirculation regions in the co-moving frame. It is shown that the kinematics of isolated proto-vortices carried by the wave also can be visualized in a frame of reference translating at or near the phase speed of the parent wave. The proper translation speeds for wave and vortex may vary with height owing to vertical shear and wave-vortex interaction. Some implications for entrainment/containment of vorticity and moisture in the cat's eye are discussed from this perspective, based on the observational survey.

  14. Mechanics of Individual, Isolated Vortices in a Cuprate Superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auslaender, M.

    2010-05-25

    Superconductors often contain quantized microscopic whirlpools of electrons, called vortices, that can be modeled as one-dimensional elastic objects. Vortices are a diverse playground for condensed matter because of the interplay between thermal fluctuations, vortex-vortex interactions, and the interaction of the vortex core with the three-dimensional disorder landscape. While vortex matter has been studied extensively, the static and dynamic properties of an individual vortex have not. Here we employ magnetic force microscopy (MFM) to image and manipulate individual vortices in detwinned, single crystal YBa{sub 2}Cu{sub 3}O{sub 6.991} (YBCO), directly measuring the interaction of a moving vortex with the local disorder potential.more » We find an unexpected and dramatic enhancement of the response of a vortex to pulling when we wiggle it transversely. In addition, we find enhanced vortex pinning anisotropy that suggests clustering of oxygen vacancies in our sample and demonstrates the power of MFM to probe vortex structure and microscopic defects that cause pinning.« less

  15. Overlap of two topological phases in the antiferromagnetic Potts model

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Ding, Chengxiang; Deng, Youjin

    2018-05-01

    By controlling the vortex core energy, the three-state ferromagnetic Potts model can exhibit two types of topological paradigms, including the quasi-long-range ordered phase and the vortex lattice phase [Phys. Rev. Lett. 116, 097206 (2016), 10.1103/PhysRevLett.116.097206]. Here, using Monte Carlo simulations using an efficient worm algorithm, we show that by controlling the vortex core energy, the antiferromagnetic Potts model can also exhibit the two topological phases, and, more interestingly, the two topological phases can overlap with each other.

  16. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-03-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  17. Gyrator transform of Gaussian beams with phase difference and generation of hollow beam

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyu; Xia, Hui; Yu, Tao; Xie, Ding; Xie, Wenke

    2018-06-01

    The optical expression of Gaussian beams with phase difference, which is caused by gyrator transform (GT), has been obtained. The intensity and phase distribution of transform Gaussian beams are analyzed. It is found that the circular hollow vortex beam can be obtained by overlapping two GT Gaussian beams with π phase difference. The effect of parameters on the intensity and phase distributions of the hollow vortex beam are discussed. The results show that the shape of intensity distribution is significantly influenced by GT angle α and propagation distance z. The size of the hollow vortex beam can be adjusted by waist width ω 0. Compared with previously reported results, the work shows that the hollow vortex beam can be obtained without any model conversion of the light source.

  18. Diagnostic studies of the Antarctic vortex during the 1987 Airborne Antarctic Ozone Experiment - Ozone miniholes

    NASA Technical Reports Server (NTRS)

    Mckenna, D. S.; Jones, R. L.; Austin, J.; Browell, E. V.; Mccormick, M. P.; Krueger, A. J.

    1989-01-01

    Localized rapid reductions in total ozone (miniholes), which were observed during the Airborne Antarctic Ozone Experiment, are studied with particular attention given to meteorological aspects. It is suggested that miniholes are forced by tropospheric weather features and that they are largely reversible distortions to the airflow around the vortex. The relationship between the miniholes and upper tropospheric and lower stratospheric synoptic-scale disturbances is studied. Trajectory calculations are presented which demonstrate the exchange of air from low latitudes with air from within the vortex, with the vortex air subsequently moving to lower latitudes.

  19. Satellite Image Shows Entry of the Polar Vortex into the Northern U.S.

    NASA Image and Video Library

    2017-12-08

    The Polar Vortex is a whirling and persistent large area of low pressure, found typically over both north and south poles. The northern Polar Vortex is pushing southward over western Wisconsin/eastern Minnesota today, Monday, January 6, 2014 and is bringing frigid temperatures to half of the continental United States. It is expected to move northward back over Canada toward the end of the week. This image was captured by NOAA's GOES-East satellite on January 6, 2014 at 1601 UTC/11:01 a.m. EST. A frontal system that brought rain to the coast is draped from north to south along the U.S. East Coast. Behind the front lies the clearer skies bitter cold air associated with the Polar Vortex. The GOES image also revealed snow on the ground in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Michigan, Iowa and Missouri, stretching into the Great Plains. Cloudiness over Texas is associated with a low pressure system centered over western Oklahoma that is part of the cold front connected to the movement of the Polar Vortex. The GOES image was created at NASA's GOES Project, located at NASA's Goddard Space Flight Center in Greenbelt, Md. Both the northern and southern polar vortices are located in the middle and upper troposphere (lowest level of the atmosphere) and the stratosphere (next level up in the atmosphere). The polar vortex is a winter phenomenon. It develops and strengthens in its respective hemisphere's winter as the sun sets over the polar region and temperatures cool. They weaken in the summer. In the northern hemisphere, they circulate in a counter-clockwise direction, so the vortex sitting over western Wisconsin is sweeping in cold Arctic air around it. The Arctic Polar Vortex peaks in the Northern Hemisphere's wintertime and has already moved southward several times this winter. In the past, it has also moved southward over Europe.On January 21, 1985, the National Oceanic and Atmospheric Administration Daily Weather Map series showed a strong polar vortex centered over Maine. The Polar Vortex also affects ozone. For more information on the Polar Vortex and how it affects ozone, visit NASA's Ozone Watch page: ozonewatch.gsfc.nasa.gov/facts/vortex_NH.html Rob Gutro NASA's Goddard Space Flight Center Credit: NOAA/NASA GOES Project NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Three-dimensionality development inside standard parallelepipedic lid-driven cavities at /Re=1000

    NASA Astrophysics Data System (ADS)

    Migeon, C.; Pineau, G.; Texier, A.

    2003-04-01

    This paper considers the problem of the time-dependent laminar incompressible flow motion within parallelepipedic cavities in which one wall moves with uniform velocity after an impulsive start using a particle-streak and a dye-emission techniques. Of particular concern is the examination of the spanwise structures of the flow in view to point out how three-dimensionality arises and develops with time for a Reynolds number of 1000. For this purpose, attention is focused on the spanwise currents, the end-wall corner vortices and the structures resulting from the centrifugal instability. Among others, the study clearly shows the scenario of propagation of the spanwise currents by giving quantitative information on their velocity and on the time from which a given cross-plane becomes affected by such a 3-D perturbation. Furthermore, the numerous visualizations reveal the existence of only one corner-vortex on each end-wall; this vortex is quasi-toroidal shaped. Finally, concerning flow instability, the present results show that no well-formed counter-rotating vortices emerge for /Re=1000 during the start-up phase contrary to what was asserted so far. However, two successive initial phases of this instability development are revealed for the first time.

  1. Low flow vortex shedding flowmeter for hypergolics/all media

    NASA Technical Reports Server (NTRS)

    Thinh, Ngo

    1990-01-01

    A family of vortex shedding flowmeters for flow measurement of hypergols that requires a long term operation without removal from system lines was further developed. A family of vortex shedding flowmeters without moving parts was designed. The test loop to evaluate the meters for the Freon flow, which simulates the hypergolic fluids, was modified and reconstructed. Preliminary results were obtained on the output frequency characteristics of an 1/2 inch flowmeter as a function of the flow rate.

  2. An experimental study of the nonlinear dynamic phenomenon known as wing rock

    NASA Technical Reports Server (NTRS)

    Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.

    1990-01-01

    An experimental investigation into the physical phenomena associated with limit cycle wing rock on slender delta wings has been conducted. The model used was a slender flat plate delta wing with 80-deg leading edge sweep. The investigation concentrated on three main areas: motion characteristics obtained from time history plots, static and dynamic flow visualization of vortex position, and static and dynamic flow visualization of vortex breakdown. The flow visualization studies are correlated with model motion to determine the relationship between vortex position and vortex breakdown with the dynamic rolling moments. Dynamic roll moment coefficient curves reveal rate-dependent hysteresis, which drives the motion. Vortex position correlated with time and model motion show a time lag in the normal position of the upward moving wing vortex. This time lag may be the mechanism responsible for the hysteresis. Vortex breakdown is shown to have a damping effect on the motion.

  3. Evolution of hairpin vortices in a shear flow

    NASA Technical Reports Server (NTRS)

    Hon, T.-L.; Walker, J. D. A.

    1988-01-01

    Recent experimental studies suggest that the hairpin vortex plays an important (and perhaps dominant) role in the dynamics of turbulent flows near walls. In this study a numerical procedure is developed to allow the accurate computation of the trajectory of a 3-D vortex having a small core radius. For hairpin vortices which are convected in a shear flow above a wall, the calculated results show that a 2-D vortex containing a small 3-D disturbance distorts into a complex shape with subsidiary hairpin vortices forming outboard of the original hairpin vortex. As the vortex moves above the wall, it induces unsteady motion in the viscous flow near the wall: numerical solutions suggest that the boundary-layer flow near the wall will ultimately erupt in response to the motion of the hairpin vortex and in the process a secondary hairpin vortex will be created. The computer results agree with recent experimental investigations.

  4. The structure and development of streamwise vortex arrays embedded in a turbulent boundary layer. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Greber, Isaac; Hingst, Warren R.

    1991-01-01

    An investigation of the structure and development of streamwise vortices embedded in a turbulent boundary layer was conducted. The vortices were generated by a single spanwise row of rectangular vortex generator blades. A single embedded vortex was examined, as well as arrays of embedded counter rotating vortices produced by equally spaced vortex generators. Measurements of the secondary velocity field in the crossplane provided the basis for characterization of vortex structure. Vortex structure was characterized by four descriptors. The center of each vortex core was located at the spanwise and normal position of peak streamwise vorticity. Vortex concentration was characterized by the magnitude of the peak streamwise vorticity, and the vortex strength by its circulation. Measurements of the secondary velocity field were conducted at two crossplane locations to examine the streamwise development of the vortex arrays. Large initial spacings of the vortex generators produced pairs of strong vortices which tended to move away from the wall region while smaller spacings produced tight arrays of weak vortices close to the wall. A model of vortex interaction and development is constructed using the experimental results. The model is based on the structure of the Oseen Vortex. Vortex trajectories are modelled by including the convective effects of neighbors.

  5. Vectoring of parallel synthetic jets

    NASA Astrophysics Data System (ADS)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  6. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings

    PubMed Central

    Zheng, Shuang; Wang, Jian

    2017-01-01

    Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams. PMID:28094325

  7. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings.

    PubMed

    Zheng, Shuang; Wang, Jian

    2017-01-17

    Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams.

  8. A Small Postmidnight Substorm During IMF Bz+ and By+ Conditions -- Joint Optical, Radar, Magnetic and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Liang, J.; Sofko, G.; Donovan, E.; Greenwald, R.

    2002-12-01

    Multi-instrument observations of a small postmidnight substorm event during a period of IMF dominated by Bz+ and By+ conditions on October 9, 2000, showed the substorm structure with high time resolution. Three optical intensifications and Pi2 bursts occurred. The last and strongest Pi2 burst was associated with an expansive phase (EP) onset, characterized by a 100 nT magnetic bay at Fort Churchill and an auroral breakup in which the 630 nm emissions moved poleward about 2.5 degrees. About 11 minutes after the first EP onset, a second stage of auroral brightening occurred. For each of the three initial optical intensifications, there was an eastward-moving discrete azimuthal structure. SuperDARN HF radar line-of-sight velocity measurements revealed eastward electric fields within each Pi2 wave train. The observations are interpreted as resulting from the drift-Alfven-ballooning (DAB) mode instability at near-geosynchronous orbit (NGO) locations. Within the NGO drift waves, regions of charge separation led to electric fields and field-aligned currents (FACs) of alternating direction. The ionospheric reflection of Alfven wave energy likely generated the Pi2 pulsations observed on the ground. The multi-instrument ground observations agree quite well with the substorm onset scenario based upon CRRES satellite observations by Erickson et al. [2000]. There was a single, relatively confined (~4 hour in MLT) counterclockwise convection cell during the growth phase and EP onset. A clearly defined vortex at its center defined the center of the downward FAC. This vortex, initially northward of the optical aurora, moved eastward and then suddenly southward just prior to the EP onset. At that time, the FAC structure was typical of the substorm current wedge (SCW). Reasons for the convection cell motion and SCW development are discussed. Erickson, G. M., N. C. Maynard, W. J. Burke, G. R. Wilson, and M. A. Heinemann, Electromagnetics of substorm onsets in the near-geosynchronous plasma sheet, J. Geophys. Res., 105, 25265, 2000.

  9. Experiments on Electron-Plasma Vortex Motion Driven by a Background Vorticity Gradient.

    NASA Astrophysics Data System (ADS)

    Kabantsev, A. A.; Driscoll, C. F.

    2000-10-01

    The interaction of self-trapped vortices with a background vorticity gradient plays an important role in 2D hydrodynamics, including various aspects of relaxation and self-organization of 2D turbulence. In the present experiments, electron plasma columns with monotonically decreasing density profiles provide a vorticity background with (negative) shear in the rotational flow. Clumps of extra electrons are then retrograde vortices, rotating against the background shear; and regions with a deficit of electrons (holes) are prograde vortices. Theory predicts that clumps move up the background gradient, and holes move down the gradient, with velocities which depend differently on the ratio of the vortex trapping length to vortex radius, l / r_v. The present experiments show quantitative agreement with recent theory and simulations,(D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83), 2191 (1999). for the accessible regime of 0.2 < l/rv < 2. The experiments also show that moving clumps leave a spiral density wake, and that instability of these wakes results in a large number of long-lived holes.

  10. A counter-rotating vortex pair in inviscid fluid

    NASA Astrophysics Data System (ADS)

    Habibah, Ummu; Fukumoto, Yasuhide

    2017-12-01

    We study the motion of a counter-rotating vortex pair with the circulations ±Γ move in incompressible fluid. The assumption is made that the core is very thin, that is the core radius σ is much smaller than the vortex radius d such that ɛ = σ/d ≪ 1. With this condition, the method of matched asymptotic expansion is employed. The solutions of the Navier-Stokes equations and the Biot-Savart law, regarding the inner and outer solutions respectively, are constructed in the form of a small parameter. An asymptotic expansion of the Biot-Savart law near the vortex core provides with the matching condition for an asymptotic expansion for limiting the Navier-Stokes equations for large radius r. The general formula of an anti-parallel vortex pair is established. At leading order O(ɛ0), we apply the special case in inviscid fluid, the Rankine vortex, a circular vortex of uniform vorticity. Furthermore at leading order O(ɛ5) we show the traveling speed of a vortex pair.

  11. Giant moving vortex mass in thick magnetic nanodots

    PubMed Central

    Guslienko, K. Y.; Kakazei, G. N.; Ding, J.; Liu, X. M.; Adeyeye, A. O.

    2015-01-01

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5–50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50–100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing. PMID:26355430

  12. Giant moving vortex mass in thick magnetic nanodots.

    PubMed

    Guslienko, K Y; Kakazei, G N; Ding, J; Liu, X M; Adeyeye, A O

    2015-09-10

    Magnetic vortex is one of the simplest topologically non-trivial textures in condensed matter physics. It is the ground state of submicron magnetic elements (dots) of different shapes: cylindrical, square etc. So far, the vast majority of the vortex dynamics studies were focused on thin dots with thickness 5-50 nm and only uniform across the thickness vortex excitation modes were observed. Here we explore the fundamental vortex mode in relatively thick (50-100 nm) dots using broadband ferromagnetic resonance and show that dimensionality increase leads to qualitatively new excitation spectra. We demonstrate that the fundamental mode frequency cannot be explained without introducing a giant vortex mass, which is a result of the vortex distortion due to interaction with spin waves. The vortex mass depends on the system geometry and is non-local because of important role of the dipolar interaction. The mass is rather small for thin dots. However, its importance increases drastically with the dot thickness increasing.

  13. Vortex interaction with a leading-edge of finite thickness

    NASA Technical Reports Server (NTRS)

    Sohn, D.; Rockwell, Donald

    1987-01-01

    Vortex interaction with a thick elliptical leading-edge at zero relative offset produces a pronounced secondary vortes of opposite sense that travels with the same phase speed as the primaty vortex along the lower surface of the edge. The edge thickness (scale) relative to the incident vorticity field has a strong effect on the distortion of the incident primary vortex during the impingement processs. When the thickness is sufficiently small, there is a definite severing of the incident vortex and the portion of the incident vortex that travels along the upper part of the elliptical surface has a considerably larger phase speed than that along the lower surface; this suggests that the integrated loading along the upper surface is more strongly correlated. When the thickness becomes too large, then most, if not all, of the incident vortex passes below the leading-edge. On the other hand, the relative tranverse offset of the edge with respect to the center of the incident vortex has a significant effect on the secondary vortex formation.

  14. Atmospheric study of the impact of Borneo vortex and Madden-Julian oscillation over Western Indonesian maritime area

    NASA Astrophysics Data System (ADS)

    Saragih, R. M.; Fajarianti, R.; Winarso, P. A.

    2018-03-01

    During the Asian winter Monsoon (November-March), the Indonesia Maritime Continent is an area of deep convection. In that period, there is a synoptic scale disturbance over Northwest of Borneo Island called Borneo vortex. In addition to the impact of Asian Winter Monsoon, Madden-Julian Oscillation (MJO) also have an impact on deep convection during an active period. This study aims to study the impact of interaction Borneo vortex and MJO (during MJO active period in phase 3, 4 and 5) and rainfall condition over the western part of Indonesia Maritime Continent using compositing technique in the period of November-March 2015/2016. The parameters used to identify the incidence of Borneo vortex, MJO, and its interaction is vertical velocity. When MJO is active, Borneo vortex occurs most often in phase 5 and at least in phase 3. However, Borneo vortex occurs most often when the MJO is inactive. The interaction between Borneo vortex and MJO seems may affect not so much rainfall occurrence in the western part of IMC.

  15. Nonequilibrium dynamic phases in driven vortex lattices with periodic pinning

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles Michael

    1998-12-01

    We present the results of an extensive series of simulations of flux-gradient and current driven vortices interacting with either random or periodically arranged pinning sites. First, we consider flux-gradient-driven simulations of superconducting vortices interacting with strong randomly-distributed columnar pinning defects, as an external field H(t) is quasi-statically swept from zero through a matching field Bsb{phi}. Here, we find significant changes in the behavior of the local flux density B(x, y, H(t)), magnetization M(H(t)), critical current Jsb{c}(B(t)), and the individual vortex flow paths, as the local flux density crosses Bsb{phi}. Further, we find that for a given pin density, Jsb{c}(B) can be enhanced by maximizing the distance between the pins for B < Bsb{phi}. For the case of periodic pinning sites as a function of applied field, we find a rich variety of ordered and partially-ordered vortex lattice configurations. We present formulas that predict the matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square pinning arrays (K. Harada et al., Science 274, 1167 (1996)). For current driven simulations with periodic pinning we find a remarkable number of dynamical plastic flow phases. Signatures of the transitions between these different dynamical phases include sudden jumps in the current-voltage curves, hysteresis, as well as marked changes in the vortex trajectories and vortex lattice order. These phases are outlined in a series of dynamic phase diagrams. We show that several of these phases and their phase-boundaries can be understood in terms of analytical arguments. Finally, when the vortex lattice is driven at varying angles with respect to the underlying periodic pinning array, the transverse voltage-current V(I) curves show a series of mode-locked plateaus with the overall V(I) forming a devil's staircase structure.

  16. Calculations of axisymmetric vortex sheet roll-up using a panel and a filament model

    NASA Technical Reports Server (NTRS)

    Kantelis, J. P.; Widnall, S. E.

    1986-01-01

    A method for calculating the self-induced motion of a vortex sheet using discrete vortex elements is presented. Vortex panels and vortex filaments are used to simulate two-dimensional and axisymmetric vortex sheet roll-up. A straight forward application using vortex elements to simulate the motion of a disk of vorticity with an elliptic circulation distribution yields unsatisfactroy results where the vortex elements move in a chaotic manner. The difficulty is assumed to be due to the inability of a finite number of discrete vortex elements to model the singularity at the sheet edge and due to large velocity calculation errors which result from uneven sheet stretching. A model of the inner portion of the spiral is introduced to eliminate the difficulty with the sheet edge singularity. The model replaces the outermost portion of the sheet with a single vortex of equivalent circulation and a number of higher order terms which account for the asymmetry of the spiral. The resulting discrete vortex model is applied to both two-dimensional and axisymmetric sheets. The two-dimensional roll-up is compared to the solution for a semi-infinite sheet with good results.

  17. Vortex ring behavior provides the epigenetic blueprint for the human heart

    PubMed Central

    Arvidsson, Per M.; Kovács, Sándor J.; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-01-01

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R2 = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health. PMID:26915473

  18. Vortex ring behavior provides the epigenetic blueprint for the human heart.

    PubMed

    Arvidsson, Per M; Kovács, Sándor J; Töger, Johannes; Borgquist, Rasmus; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan

    2016-02-26

    The laws of fluid dynamics govern vortex ring formation and precede cardiac development by billions of years, suggesting that diastolic vortex ring formation is instrumental in defining the shape of the heart. Using novel and validated magnetic resonance imaging measurements, we show that the healthy left ventricle moves in tandem with the expanding vortex ring, indicating that cardiac form and function is epigenetically optimized to accommodate vortex ring formation for volume pumping. Healthy hearts demonstrate a strong coupling between vortex and cardiac volumes (R(2) = 0.83), but this optimized phenotype is lost in heart failure, suggesting restoration of normal vortex ring dynamics as a new, and possibly important consideration for individualized heart failure treatment. Vortex ring volume was unrelated to early rapid filling (E-wave) velocity in patients and controls. Characteristics of vortex-wall interaction provide unique physiologic and mechanistic information about cardiac diastolic function that may be applied to guide the design and implantation of prosthetic valves, and have potential clinical utility as therapeutic targets for tailored medicine or measures of cardiac health.

  19. Spectroscopy of Magnetic Excitations in Magnetic Superconductors Using Vortex Motion

    NASA Astrophysics Data System (ADS)

    Bulaevskii, L. N.; Hruška, M.; Maley, M. P.

    2005-11-01

    In magnetic superconductors a moving vortex lattice is accompanied by an ac magnetic field which leads to the generation of spin waves. At resonance conditions the dynamics of vortices in magnetic superconductors changes drastically, resulting in strong peaks in the dc I-V characteristics at voltages at which the washboard frequency of the vortex lattice matches the spin wave frequency ωs(g), where g are the reciprocal vortex lattice vectors. We show that if the washboard frequency lies above the magnetic gap, measurement of the I-V characteristics provides a new method to obtain information on the spectrum of magnetic excitations in borocarbides and cuprate layered magnetic superconductors.

  20. Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam

    NASA Astrophysics Data System (ADS)

    Lin, Han; Gu, Min

    2013-02-01

    Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.

  1. Dynamics of vortices followed by the collapse of ring dark solitons in a two-component Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Wang, Lin-Xue; Dai, Chao-Qing; Wen, Lin; Liu, Tao; Jiang, Hai-Feng; Saito, Hiroki; Zhang, Shou-Gang; Zhang, Xiao-Fei

    2018-06-01

    We explore the effects of system parameters on the dynamics of ring dark solitons (RDSs) and vortices followed by the collapse of RDSs in a two-component Bose-Einstein condensate (BEC). The system exhibits complicated dynamical behaviors, which are quite different from those in a scalar BEC. For two shallow RDSs with equal initial depths, the dynamical trajectories of generated vortex dipoles are similar to those in a scalar BEC, but the time for vortex dipoles to perform a periodic motion is increased. In particular, there exists a critical depth, above which vortex dipoles first move along the vertical direction and then preform complicated dynamics, including their rearrangement and recombination. Finally, we consider the case of unequal initial depths and find that the number of created vortices is determined by the depth of the shallow RDS, while their initial moving direction is determined by the deeper one.

  2. Dynamics of Perturbed Relative Equilibria of Point Vortices on the Sphere or Plane

    NASA Astrophysics Data System (ADS)

    Patrick, G. W.

    2000-06-01

    , and there are stable relative equilibria of four point vortices, where three identical point vortices form an equilateral triangle circling a central vortex. These relative equilibria have zero (nongeneric) momentum and form a family that extends to arbitrarily small diameters. Using the energy-momentum method, I show their shape is stable while their location on the sphere is unstable, and they move, after perturbation to nonzero momentum, on the sphere as point particles move under the influence of a magnetic monopole. In the analysis the internal and external degrees of freedom are separated and the mass of these point particles determined. In addition, two identical such relative equilibria attract one another, while opposites repel, and in energetic collisions, opposites disintegrate to vortex pairs while identicals interact by exchanging a vortex. An analogous situation also occurs for the planar system with its noncompact SE(2) symmetry.

  3. Symmetry-broken states in a system of interacting bosons on a two-leg ladder with a uniform Abelian gauge field

    NASA Astrophysics Data System (ADS)

    Greschner, S.; Piraud, M.; Heidrich-Meisner, F.; McCulloch, I. P.; Schollwöck, U.; Vekua, T.

    2016-12-01

    We study the quantum phases of bosons with repulsive contact interactions on a two-leg ladder in the presence of a uniform Abelian gauge field. The model realizes many interesting states, including Meissner phases, vortex fluids, vortex lattices, charge density waves, and the biased-ladder phase. Our work focuses on the subset of these states that breaks a discrete symmetry. We use density matrix renormalization group simulations to demonstrate the existence of three vortex-lattice states at different vortex densities and we characterize the phase transitions from these phases into neighboring states. Furthermore, we provide an intuitive explanation of the chiral-current reversal effect that is tied to some of these vortex lattices. We also study a charge-density-wave state that exists at 1/4 particle filling at large interaction strengths and flux values close to half a flux quantum. By changing the system parameters, this state can transition into a completely gapped vortex-lattice Mott-insulating state. We elucidate the stability of these phases against nearest-neighbor interactions on the rungs of the ladder relevant for experimental realizations with a synthetic lattice dimension. A charge-density-wave state at 1/3 particle filling can be stabilized for flux values close to half a flux quantum and for very strong on-site interactions in the presence of strong repulsion on the rungs. Finally, we analytically describe the emergence of these phases in the low-density regime, and, in particular, we obtain the boundaries of the biased-ladder phase, i.e., the phase that features a density imbalance between the legs. We make contact with recent quantum-gas experiments that realized related models and discuss signatures of these quantum states in experimentally accessible observables.

  4. Origin and dynamics of vortex rings in drop splashing

    DOE PAGES

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; ...

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  5. Origin and dynamics of vortex rings in drop splashing.

    PubMed

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  6. Origin and dynamics of vortex rings in drop splashing

    PubMed Central

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-01-01

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing. PMID:26337704

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Edwin; Bemito-Llorens, Jose; Kalarachchi, Udhara

    Here, we image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh 9In 4S 4 (T c = 2.25 K). We measure the superconducting gap of Rh 9In 4S 4, finding Δ ≈ 0.33 meV, and image a hexagonal vortex lattice up to close to H c2 observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T/T c < 0.1. We study creeping vortex lattices by making images duringmore » long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. Lastly, the images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.« less

  8. Phase and vortex correlations in superconducting Josephson-junction arrays at irrational magnetic frustration.

    PubMed

    Granato, Enzo

    2008-07-11

    Phase coherence and vortex order in a Josephson-junction array at irrational frustration are studied by extensive Monte Carlo simulations using the parallel-tempering method. A scaling analysis of the correlation length of phase variables in the full equilibrated system shows that the critical temperature vanishes with a power-law divergent correlation length and critical exponent nuph, in agreement with recent results from resistivity scaling analysis. A similar scaling analysis for vortex variables reveals a different critical exponent nuv, suggesting that there are two distinct correlation lengths associated with a decoupled zero-temperature phase transition.

  9. A Discrete-Vortex Method for Studying the Wing Rock of Delta Wings

    NASA Technical Reports Server (NTRS)

    Gainer, Thomas G.

    2002-01-01

    A discrete-vortex method is developed to investigate the wing rock problem associated with highly swept wings. The method uses two logarithmic vortices placed above the wing to represent the vortex flow field and uses boundary conditions based on conical flow, vortex rate of change of momentum, and other considerations to position the vortices and determine their strengths. A relationship based on the time analogy and conical-flow assumptions is used to determine the hysteretic positions of the vortices during roll oscillations. Static and dynamic vortex positions and wing rock amplitudes and frequencies calculated by using the method are generally in good agreement with available experimental data. The results verify that wing rock is caused by hysteretic deflections of the vortices and indicate that the stabilizing moments that limit wing rock amplitudes are the result of the one primary vortex moving outboard of the wing where it has little influence on the wing.

  10. Aerodynamic loads on a Darrieus rotor blade

    NASA Astrophysics Data System (ADS)

    Wilson, R. E.; McKie, W. R.; Lissaman, P. B. S.; James, M.

    1983-03-01

    A method is presented for the free vortex analysis of a Darrieus rotor blade in nonsteady motion, which employs the circle theorem to map the moving rotor airfoil into the circle plane and models the wake generated in terms of point vortices. Nascent vortex strength and position are taken from the Kutta condition, so that the nascent vortex has the same strength as a vortex sheet of uniform strength. Pressure integration over the plate and wake vortex impulse methods yields the same numerical results. The numerical results presented for a one-bladed Darrieus rotor at a tip/speed ratio of three, and two different chord sizes, indicate that the moment on the blade can be adequately approximated by quasi-steady relationships, although the accurate determination of local velocity and circulation are still required.

  11. Selective equal spin Andreev reflection at vortex core center in magnetic semiconductor-superconductor heterostructure.

    PubMed

    Li, Chuang; Hu, Lun-Hui; Zhou, Yi; Zhang, Fu-Chun

    2018-05-18

    Sau, Lutchyn, Tewari and Das Sarma (SLTD) proposed a heterostructure consisting of a semiconducting thin film sandwiched between an s-wave superconductor and a magnetic insulator and showed possible Majorana zero mode. Here we study spin polarization of the vortex core states and spin selective Andreev reflection at the vortex center of the SLTD model. In the topological phase, the differential conductance at the vortex center contributed from the Andreev reflection, is spin selective and has a quantized value [Formula: see text] at zero bias. In the topological trivial phase, [Formula: see text] at the lowest quasiparticle energy of the vortex core is spin selective due to the spin-orbit coupling (SOC). Unlike in the topological phase, [Formula: see text] is suppressed in the Giaever limit and vanishes exactly at zero bias due to the quantum destruction interference.

  12. Vortex mass in a superfluid

    NASA Astrophysics Data System (ADS)

    Simula, Tapio

    2018-02-01

    We consider the inertial mass of a vortex in a superfluid. We obtain a vortex mass that is well defined and is determined microscopically and self-consistently by the elementary excitation energy of the kelvon quasiparticle localized within the vortex core. The obtained result for the vortex mass is found to be consistent with experimental observations on superfluid quantum gases and vortex rings in water. We propose a method to measure the inertial rest mass and Berry phase of a vortex in superfluid Bose and Fermi gases.

  13. Vortex phase diagram of the layered superconductor Cu0.03TaS2 for H \\parallel c

    NASA Astrophysics Data System (ADS)

    Zhu, X. D.; Lu, J. C.; Sun, Y. P.; Pi, L.; Qu, Z.; Ling, L. S.; Yang, Z. R.; Zhang, Y. H.

    2010-12-01

    The magnetization and anisotropic electrical transport properties have been measured in high quality Cu0.03TaS2 single crystals. A pronounced peak effect has been observed, indicating that high quality and homogeneity are vital to the peak effect. A kink has been observed in the magnetic field, H, dependence of the in-plane resistivity ρab for H\\parallel c , which corresponds to a transition from activated to diffusive behavior of the vortex liquid phase. In the diffusive regime of the vortex liquid phase, the in-plane resistivity ρab is proportional to H0.3, which does not follow the Bardeen-Stephen law for free flux flow. Finally, a simplified vortex phase diagram of Cu0.03TaS2 for H \\parallel c is given.

  14. Phase coexistence and electric-field control of toroidal order in oxide superlattices.

    PubMed

    Damodaran, A R; Clarkson, J D; Hong, Z; Liu, H; Yadav, A K; Nelson, C T; Hsu, S-L; McCarter, M R; Park, K-D; Kravtsov, V; Farhan, A; Dong, Y; Cai, Z; Zhou, H; Aguado-Puente, P; García-Fernández, P; Íñiguez, J; Junquera, J; Scholl, A; Raschke, M B; Chen, L-Q; Fong, D D; Ramesh, R; Martin, L W

    2017-10-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3 /SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1 /a 2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

  15. Phase coexistence and electric-field control of toroidal order in oxide superlattices

    NASA Astrophysics Data System (ADS)

    Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; Liu, H.; Yadav, A. K.; Nelson, C. T.; Hsu, S.-L.; McCarter, M. R.; Park, K.-D.; Kravtsov, V.; Farhan, A.; Dong, Y.; Cai, Z.; Zhou, H.; Aguado-Puente, P.; García-Fernández, P.; Íñiguez, J.; Junquera, J.; Scholl, A.; Raschke, M. B.; Chen, L.-Q.; Fong, D. D.; Ramesh, R.; Martin, L. W.

    2017-10-01

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO3/SrTiO3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a1/a2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.

  16. Critical behavior at a dynamic vortex insulator-to-metal transition

    DOE PAGES

    Poccia, Nicola; Baturina, Tatyana I.; Coneri, Francesco; ...

    2015-09-10

    An array of superconducting islands placed on a normal metal film offers a tunable realization of nanopatterned superconductivity. This system enables elucidating open questions concerning the nature of competing vortex states and phase transitions between them. A square array creates the egg crate potential in which magnetic field-induced vortices are frozen into a vortex insulator. We observe a vortex insulator-to-vortex metal transition driven by the applied electric current and determine critical exponents strikingly coinciding with those for thermodynamic liquid-gas transition. Lastly, our findings offer a comprehensive description of dynamic critical behavior and establish a deep connection between equilibrium and nonequilibriummore » phase transitions.« less

  17. Critical behavior at a dynamic vortex insulator-to-metal transition.

    PubMed

    Poccia, Nicola; Baturina, Tatyana I; Coneri, Francesco; Molenaar, Cor G; Wang, X Renshaw; Bianconi, Ginestra; Brinkman, Alexander; Hilgenkamp, Hans; Golubov, Alexander A; Vinokur, Valerii M

    2015-09-11

    An array of superconducting islands placed on a normal metal film offers a tunable realization of nanopatterned superconductivity. This system enables investigation of the nature of competing vortex states and phase transitions between them. A square array creates the eggcrate potential in which magnetic field-induced vortices are frozen into a vortex insulator. We observed a vortex insulator-vortex metal transition driven by the applied electric current and determined critical exponents that coincided with those for thermodynamic liquid-gas transition. Our findings offer a comprehensive description of dynamic critical behavior and establish a deep connection between equilibrium and nonequilibrium phase transitions. Copyright © 2015, American Association for the Advancement of Science.

  18. Vortex creep at very low temperatures in single crystals of the extreme type-II Rh 9In 4S 4

    DOE PAGES

    Herrera, Edwin; Bemito-Llorens, Jose; Kalarachchi, Udhara; ...

    2017-04-07

    Here, we image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh 9In 4S 4 (T c = 2.25 K). We measure the superconducting gap of Rh 9In 4S 4, finding Δ ≈ 0.33 meV, and image a hexagonal vortex lattice up to close to H c2 observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T/T c < 0.1. We study creeping vortex lattices by making images duringmore » long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. Lastly, the images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.« less

  19. Vortex creep at very low temperatures in single crystals of the extreme type-II superconductor Rh9In4S4

    NASA Astrophysics Data System (ADS)

    Herrera, Edwin; Benito-Llorens, José; Kaluarachchi, Udhara S.; Bud'ko, Sergey L.; Canfield, Paul C.; Guillamón, Isabel; Suderow, Hermann

    2017-04-01

    We image vortex creep at very low temperatures using scanning tunneling microscopy in the superconductor Rh9In4S4 (Tc=2.25 K ). We measure the superconducting gap of Rh9In4S4 , finding Δ ≈0.33 meV , and image a hexagonal vortex lattice up to close to Hc 2, observing slow vortex creep at temperatures as low as 150 mK. We estimate thermal and quantum barriers for vortex motion and show that thermal fluctuations likely cause vortex creep, in spite of being at temperatures T /Tc<0.1 . We study creeping vortex lattices by making images during long times and show that the vortex lattice remains hexagonal during creep with vortices moving along one of the high-symmetry axes of the vortex lattice. Furthermore, the creep velocity changes with the scanning window suggesting that creep depends on the local arrangements of pinning centers. Vortices fluctuate on small-scale erratic paths, indicating that the vortex lattice makes jumps trying different arrangements during its travel along the main direction for creep. The images provide a visual account of how vortex lattice motion maintains hexagonal order, while showing dynamic properties characteristic of a glass.

  20. Discrete-vortex model for the symmetric-vortex flow on cones

    NASA Technical Reports Server (NTRS)

    Gainer, Thomas G.

    1990-01-01

    A relatively simple but accurate potential flow model was developed for studying the symmetric vortex flow on cones. The model is a modified version of the model first developed by Bryson, in which discrete vortices and straight-line feeding sheets were used to represent the flow field. It differs, however, in the zero-force condition used to position the vortices and determine their circulation strengths. The Bryson model imposed the condition that the net force on the feeding sheets and discrete vortices must be zero. The proposed model satisfies this zero-force condition by having the vortices move as free vortices, at a velocity equal to at the local crossflow velocity at their centers. When the free-vortex assumption is made, a solution is obtained in the form of two nonlinear algebraic equations that relate the vortex center coordinates and vortex strengths to the cone angle and angle of attack. The vortex center locations calculated using the model are in good agreement with experimental values. The cone normal forces as well as center locations are in good agreement with the vortex cloud method of calculating symmetric flow fields.

  1. The Evolution and Fate of Saturn's Stratospheric Vortex: Infrared Spectroscopy from Cassini

    NASA Technical Reports Server (NTRS)

    Fletcher, Leigh N.; Hesman, B. E.; Arhterberg, R. K.; Bjoraker, G.; Irwin, P. G. J.; Hurley, J.; Sinclair, J.; Gorius, N.; Orton, G. S.; Read, P. L.; hide

    2012-01-01

    The planet-encircling springtime storm in Saturn's troposphere (December 2010-July 2011) produced dramatic perturbations to stratospheric temperatures, winds and composition at mbar pressures that persisted long after the tropospheric disturbance had abated. Observations from the Cassini Composite Infrared Spectrometer (CIRS), supported by ground-based imaging from the VISIR instrument on the Very Large Telescope,is used to track the evolution of a large, hot stratospheric anticyclone between January 2011 and the present day. The evolutionary sequence can be divided into three phases: (I) the formation and intensification of two distinct warm airmasses near 0.5 mbar between 25 and 35N (one residing directly above the convective storm head) between January-April 2011, moving westward with different zonal velocities; (II) the merging of the warm airmasses to form the large single 'stratospheric beacon' near 40N between April and June 2011, dissociated from the storm head and at a higher pressure (2 mbar) than the original beacons; and (III) the mature phase characterized by slow cooling and longitudinal shrinkage of the anticyclone since July 2011, moving west with a near-constant velocity of 2.70+/-0.04 deg/day (-24.5+/-0.4 m/s at 40N). Peak temperatures of 220 K at 2 mbar were measured on May 5th 2011 immediately after the merger, some 80 K warmer than the quiescent surroundings. Thermal winds hear calculations in August 2011 suggest clockwise peripheral velocities of 200400 mls at 2 mbar, defining a peripheral collar with a width of 65 degrees longitude (50,000 km in diameter) and 25 degrees latitude. Stratospheric acetylene (C2H2) was uniformly enhanced by a factor of three within the vortex, whereas ethane (C2H6) remained unaffected. We will discuss the thermal and chemical characteristics of Saturn's beacon in its mature phase, and implications for stratospheric vortices on other giant planets.

  2. Energy loss from a moving vortex in superfluid helium

    NASA Astrophysics Data System (ADS)

    Zieve, R. J.; Frei, C. M.; Wolfson, D. L.

    2012-11-01

    We present measurements on both energy loss and pinning for a vortex terminating on the curved surface of a cylindrical container. We vary surface roughness, cell diameter, fluid velocity, and temperature. Although energy loss and pinning both arise from interactions between the vortex and the surface, their dependences on the experimental parameters differ, suggesting that different mechanisms govern the two effects. We propose that the energy loss stems from reconnections with a mesh of microscopic vortices that covers the cell wall, while pinning is dominated by other influences such as the local fluid velocity.

  3. BKT phase transition in a 2D system with long-range dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    Fedichev, P. O.; Men'shikov, L. I.

    2012-01-01

    We consider phase transitions in 2D XY-like systems with long-range dipole-dipole interactions and demonstrate that BKT-type phase transition always occurs separating the ordered (ferroelectric) and the disordered (paraelectric) phases. The low-temperature phase corresponds to a thermal state with bound vortex-antivortex pairs characterized by linear attraction at large distances. Using the Maier-Schwabl topological charge model, we show that bound vortex pairs polarize and screen the vortex-antivortex interaction, leaving only the logarithmic attraction at sufficiently large separations between the vortices. At higher temperatures the pairs dissociate and the phase transition similar to BKT occurs, though at a larger temperature than in a system without the dipole-dipole interaction.

  4. Generation of high-order Bessel vortex beam carrying orbital angular momentum using multilayer amplitude-phase-modulated surfaces in radiofrequency domain

    NASA Astrophysics Data System (ADS)

    Kou, Na; Yu, Shixing; Li, Long

    2017-01-01

    A high-order Bessel vortex beam carrying orbital angular momentum (OAM) is generated by using multilayer amplitude-phase-modulated surfaces (APMSs) at 10 GHz. The APMS transmitarray is composed of four-layer conformal square-loop (FCSL) surfaces with both amplitude and phase modulation. The APMS can transform a quasi-spherical wave emitted from the feeding source into a pseudo non-diffractive high-order Bessel vortex beam with OAM. The APMS for a second-order Bessel beam carrying OAM in the n = 2 mode is designed, fabricated, and measured. Full-wave simulation and measurement results confirm that Bessel vortex beams with OAM can be effectively generated using the proposed APMS transmitarray.

  5. Analysis of turbulent synthetic jet by dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš; Netřebská, Hana; Devera, Jakub; Kalinay, Radomír

    The article deals with the analysis of CFD results of the turbulent synthetic jet. The numerical simulation of Large Eddy Simulation (LES) using commercial solver ANSYS CFX has been performed. The unsteady flow field is studied from the point of view of identification of the moving vortex ring, which has been identified both on the snapshots of flow field using swirling-strength criterion and using the Dynamic Mode Decomposition (DMD) of five periods. It is shown that travelling vortex ring vanishes due to interaction with vortex structures in the synthesised turbulent jet. DMD modes with multiple of the basic frequency of synthetic jet, which are connected with travelling vortex structure, have largest DMD amplitudes.

  6. The characteristics of the ground vortex and its effect on the aerodynamics of the STOL configuration

    NASA Technical Reports Server (NTRS)

    Stewart, Vearle R.

    1988-01-01

    The interaction of the free stream velocity on the wall jet formed by the impingement of deflected engine thrust results in a rolled up vortex which exerts sizable forces on a short takeoff (STOL) airplane configuration. Some data suggest that the boundary layer under the free stream ahead of the configuration may be important in determining the extent of the travel of the wall jet into the oncoming stream. Here, early studies of the ground vortex are examined, and those results are compared to some later data obtained with moving a model over a fixed ground board. The effect of the ground vortex on the aerodynamic characteristics are discussed.

  7. Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate

    PubMed Central

    Miyamoto, Katsuhiko; Kang, Bong Joo; Kim, Won Tae; Sasaki, Yuta; Niinomi, Hiromasa; Suizu, Koji; Rotermund, Fabian; Omatsu, Takashige

    2016-01-01

    Optical vortex, possessing an annular intensity profile and an orbital angular momentum (characterized by an integer termed a topological charge) associated with a helical wavefront, has attracted great attention for diverse applications due to its unique properties. In particular for terahertz (THz) frequency range, several approaches for THz vortex generation, including molded phase plates consisting of metal slit antennas, achromatic polarization elements and binary-diffractive optical elements, have been recently proposed, however, they are typically designed for a specific frequency. Here, we demonstrate highly intense broadband monocycle vortex generation near 0.6 THz by utilizing a polymeric Tsurupica spiral phase plate in combination with tilted-pulse-front optical rectification in a prism-cut LiNbO3 crystal. A maximum peak power of 2.3 MW was obtained for THz vortex output with an expected topological charge of 1.15. Furthermore, we applied the highly intense THz vortex beam for studying unique nonlinear behaviors in bilayer graphene towards the development of nonlinear super-resolution THz microscopy and imaging system. PMID:27966595

  8. Fragmentation of fast Josephson vortices and breakdown of ordered states by moving topological defects

    DOE PAGES

    Sheikhzada, Ahmad; Gurevich, Alex

    2015-12-07

    Topological defects such as vortices, dislocations or domain walls define many important effects in superconductivity, superfluidity, magnetism, liquid crystals, and plasticity of solids. Here we address the breakdown of the topologically-protected stability of such defects driven by strong external forces. We focus on Josephson vortices that appear at planar weak links of suppressed superconductivity which have attracted much attention for electronic applications, new sources of THz radiation, and low-dissipative computing. Our numerical simulations show that a rapidly moving vortex driven by a constant current becomes unstable with respect to generation of vortex-antivortex pairs caused by Cherenkov radiation. As a result,more » vortices and antivortices become spatially separated and accumulate continuously on the opposite sides of an expanding dissipative domain. This effect is most pronounced in thin film edge Josephson junctions at low temperatures where a single vortex can switch the whole junction into a resistive state at currents well below the Josephson critical current. In conclusion, our work gives a new insight into instability of a moving topological defect which destroys global long-range order in a way that is remarkably similar to the crack propagation in solids.« less

  9. Computer code for gas-liquid two-phase vortex motions: GLVM

    NASA Technical Reports Server (NTRS)

    Yeh, T. T.

    1986-01-01

    A computer program aimed at the phase separation between gas and liquid at zero gravity, induced by vortex motion, is developed. It utilizes an explicit solution method for a set of equations describing rotating gas-liquid flows. The vortex motion is established by a tangential fluid injection. A Lax-Wendroff two-step (McCormack's) numerical scheme is used. The program can be used to study the fluid dynamical behavior of the rotational two-phase fluids in a cylindrical tank. It provides a quick/easy sensitivity test on various parameters and thus provides the guidance for the design and use of actual physical systems for handling two-phase fluids.

  10. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid

    PubMed Central

    Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M.; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M.; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H.; Sanvitto, Daniele

    2015-01-01

    Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings. PMID:26665174

  11. Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.

    PubMed

    Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H; Sanvitto, Daniele

    2015-12-01

    Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings.

  12. Vortex phase diagram of the layered superconductor Cu0.03TaS2 for H is parallel to c.

    PubMed

    Zhu, X D; Lu, J C; Sun, Y P; Pi, L; Qu, Z; Ling, L S; Yang, Z R; Zhang, Y H

    2010-12-22

    The magnetization and anisotropic electrical transport properties have been measured in high quality Cu(0.03)TaS(2) single crystals. A pronounced peak effect has been observed, indicating that high quality and homogeneity are vital to the peak effect. A kink has been observed in the magnetic field, H, dependence of the in-plane resistivity ρ(ab) for H is parallel to c, which corresponds to a transition from activated to diffusive behavior of the vortex liquid phase. In the diffusive regime of the vortex liquid phase, the in-plane resistivity ρ(ab) is proportional to H(0.3), which does not follow the Bardeen-Stephen law for free flux flow. Finally, a simplified vortex phase diagram of Cu(0.03)TaS(2) for H is parallel to c is given.

  13. Equilibrium vortex structures of type-II/1 superconducting films with washboard pinning landscapes

    NASA Astrophysics Data System (ADS)

    Wei, C. A.; Xu, X. B.; Xu, X. N.; Wang, Z. H.; Gu, M.

    2018-05-01

    We numerically study the equilibrium vortex structures of type-II/1 superconducting films with a periodic quasi-one-dimensional corrugated substrate. We show as a function of substrate period and pinning strength that, the vortex system displays a variety of vortex phases including arrays consisted of vortex clumps with different morphologies, ordered vortex stripes parallel and perpendicular to pinning troughs, and ordered one-dimensional vortex chains. Our simulations are helpful in understanding the structural modulations for extensive systems with both competing interactions and competing periodicities.

  14. Research on aircraft trailing vortex detection based on laser's multiplex information echo

    NASA Astrophysics Data System (ADS)

    Zhao, Nan-xiang; Wu, Yong-hua; Hu, Yi-hua; Lei, Wu-hu

    2010-10-01

    Airfoil trailing vortex is an important reason for the crash, and vortex detection is the basic premise for the civil aeronautics boards to make the flight measures and protect civil aviation's security. So a new method of aircraft trailing vortex detection based on laser's multiplex information echo has been proposed in this paper. According to the classical aerodynamics theories, the formation mechanism of the trailing vortex from the airfoil wingtip has been analyzed, and the vortex model of Boeing 737 in the taking-off phase has also been established on the FLUENT software platform. Combining with the unique morphological structure characteristics of trailing vortex, we have discussed the vortex's possible impact on the frequency, amplitude and phase information of laser echo, and expounded the principle of detecting vortex based on fusing this information variation of laser echo. In order to prove the feasibility of this detecting technique, the field experiment of detecting the vortex of civil Boeing 737 by laser has been carried on. The experimental result has shown that the aircraft vortex could be found really in the laser scanning area, and its diffusion characteristic has been very similar to the previous simulation result. Therefore, this vortex detection means based on laser's multiplex information echo was proved to be practicable relatively in this paper. It will provide the detection and identification of aircraft's trailing vortex a new way, and have massive research value and extensive application prospect as well.

  15. Structured caustic vector vortex optical field: manipulating optical angular momentum flux and polarization rotation.

    PubMed

    Chen, Rui-Pin; Chen, Zhaozhong; Chew, Khian-Hooi; Li, Pei-Gang; Yu, Zhongliang; Ding, Jianping; He, Sailing

    2015-05-29

    A caustic vector vortex optical field is experimentally generated and demonstrated by a caustic-based approach. The desired caustic with arbitrary acceleration trajectories, as well as the structured states of polarization (SoP) and vortex orders located in different positions in the field cross-section, is generated by imposing the corresponding spatial phase function in a vector vortex optical field. Our study reveals that different spin and orbital angular momentum flux distributions (including opposite directions) in different positions in the cross-section of a caustic vector vortex optical field can be dynamically managed during propagation by intentionally choosing the initial polarization and vortex topological charges, as a result of the modulation of the caustic phase. We find that the SoP in the field cross-section rotates during propagation due to the existence of the vortex. The unique structured feature of the caustic vector vortex optical field opens the possibility of multi-manipulation of optical angular momentum fluxes and SoP, leading to more complex manipulation of the optical field scenarios. Thus this approach further expands the functionality of an optical system.

  16. Interplay between topological phase and self-acceleration in a vortex symmetric Airy beam.

    PubMed

    Fang, Zhao-Xiang; Chen, Yue; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De; Zhang, An-Qi; Zhao, Hong-Ze; Wang, Pei

    2018-03-19

    Photons in an optical vortex usually carry orbital angular momentum, which boosts the application of the micro-rotation of absorbing particles and quantum information encoding. Such photons propagate along a straight line in free space or follow a curved trace once guided by an optical fiber. Teleportation of an optical vortex using a beam with non-diffraction and self-healing is quite challenging. We demonstrate the manipulation of the propagation trace of an optical vortex with a symmetric Airy beam (SAB) and found that the SAB experiences self-rotation with the implementation of a topological phase structure of coaxial vortex. Slight misalignment of the vortex and the SAB enables the guiding of the vortex into one of the self-accelerating channels. Multiple off-axis vortices embedded in SAB are also demonstrated to follow the trajectory of the major lobe for the SAB beam. The Poynting vector for the beams proves the direction of the energy flow corresponding to the intensity distribution. Hence, we anticipate that the proposed vortex symmetric Airy beam (VSAB) will provide new possibilities for optical manipulation and optical communication.

  17. Vectorial diffraction properties of THz vortex Bessel beams.

    PubMed

    Wu, Zhen; Wang, Xinke; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Yu, Yue; Zhang, Yan

    2018-01-22

    A vortex Bessel beam combines the merits of an optical vortex and a Bessel beam, including a spiral wave front and a non-diffractive feature, which has immense application potentials in optical trapping, optical fabrication, optical communications, and so on. Here, linearly and circularly polarized vortex Bessel beams in the terahertz (THz) frequency range are generated by utilizing a THz quarter wave plate, a spiral phase plate, and Teflon axicons with different opening angles. Taking advantage of a THz focal-plane imaging system, vectorial diffraction properties of the THz vortex Bessel beams are comprehensively characterized and discussed, including the transverse (Ex, Ey) and longitudinal (Ez) polarization components. The experimental phenomena are accurately simulated by adopting the vectorial Rayleigh diffraction integral. By varying the opening angle of the axicon, the characteristic parameters of these THz vortex Bessel beams are exhibited and compared, including the light spot size, the diffraction-free range, and the phase evolution process. This work provides the precise experimental and theoretical bases for the comprehension and application of a THz vortex Bessel beam.

  18. New Transition in the Vortex Liquid State: intrinsic limit of the irreversibility line

    NASA Astrophysics Data System (ADS)

    Kwok, Wai-Kwong; Paulius, Lisa; Figueras, Jordi

    2005-03-01

    We have carried out angular dependent magneto-transport measurements on optimally doped, untwinned YBCO crystals irradiated with high energy heavy ions to determine the onset of vortex line tension in the vortex liquid state. The matching field was controlled and kept at a low level to partially preserve the first order vortex lattice melting transition. A Bose glass transition is observed below the lower critical point which then transforms into a first order phase transition near 5 Tesla. The locus of points which indicate the onset of vortex line tension overlaps with the Bose glass transition line at low fields and then deviates at higher fields, indicating a new transition line in the vortex liquid state. This new line in the vortex liquid phase extends beyond the upper critical point.This work was supported by the U.S. Department of Energy, BES, Materials Science under Contract No. W-31-109-ENG-38 at Argonne National Laboratory.

  19. Multiple orbital angular momentum generated by dielectric hybrid phase element

    NASA Astrophysics Data System (ADS)

    Wang, Xuewen; Kuchmizhak, Aleksandr; Hu, Dejiao; Li, Xiangping

    2017-09-01

    Vortex beam carrying multiple orbital angular momentum provides a new degree of freedom to manipulate light leading to the various exciting applications as trapping, quantum optics, information multiplexing, etc. Helical wavefront can be generated either via the geometric or the dynamic phase arising from a space-variant birefringence (q-plate) or from phase accumulation through propagation (spiral-phase-plate), respectively. Using fast direct laser writing technique we fabricate and characterize novel hybrid q-plate generating vortex beam simultaneously carrying two different high-order topological charges, which arise from the spin-orbital conversion and the azimuthal height variation of the recorded structures. We approve the versatile concept to generate multiple-OAM vortex beams combining the spin-orbital interaction and the phase accumulation in a single micro-scale device, a hybrid dielectric phase plate.

  20. Phase locking of vortex cores in two coupled magnetic nanopillars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Qiyuan; Liu, Xianyin; Zheng, Qi

    2014-11-15

    Phase locking dynamics of the coupled vortex cores in two identical magnetic spin valves induced by spin-polarized current are studied by means of micromagnetic simulations. Our results show that the available current range of phase locking can be expanded significantly by the use of constrained polarizer, and the vortices undergo large orbit motions outside the polarization areas. The effects of polarization areas and dipolar interaction on the phase locking dynamics are studied systematically. Phase locking parameters extracted from simulations are discussed by theoreticians. The dynamics of vortices influenced by spin valve geometry and vortex chirality are discussed at last. Thismore » work provides deeper insights into the dynamics of phase locking and the results are important for the design of spin-torque nano-oscillators.« less

  1. Disappearance of the force-free current configuration at the first order vortex lattice phase transition in YBa 2Cu 3O 7-δ single crystals

    NASA Astrophysics Data System (ADS)

    van der Beek, C. J.; Indenbom, M. V.; Berseth, V.; Benoit, W.; Erb, A.; Flükiger, R.

    1997-08-01

    The anisotropy in the transverse AC susceptibility of YBa2Cu3O7-δ single crystals, induced by the periodic appearance of a force-free current configuration upon rotation of a superimposed DC field in the crystal plane, disappears at the vortex phase transition, indicating the loss of the vortex lines' stability against mutual cutting.

  2. An Organic Vortex Laser.

    PubMed

    Stellinga, Daan; Pietrzyk, Monika E; Glackin, James M E; Wang, Yue; Bansal, Ashu K; Turnbull, Graham A; Dholakia, Kishan; Samuel, Ifor D W; Krauss, Thomas F

    2018-03-27

    Optical vortex beams are at the heart of a number of novel research directions, both as carriers of information and for the investigation of optical activity and chiral molecules. Optical vortex beams are beams of light with a helical wavefront and associated orbital angular momentum. They are typically generated using bulk optics methods or by a passive element such as a forked grating or a metasurface to imprint the required phase distribution onto an incident beam. Since many applications benefit from further miniaturization, a more integrated yet scalable method is highly desirable. Here, we demonstrate the generation of an azimuthally polarized vortex beam directly by an organic semiconductor laser that meets these requirements. The organic vortex laser uses a spiral grating as a feedback element that gives control over phase, handedness, and degree of helicity of the emitted beam. We demonstrate vortex beams up to an azimuthal index l = 3 that can be readily multiplexed into an array configuration.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row ofmore » vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.« less

  4. Systematic study of vortex pinning and liquid-glass phase transition in BaFe2-x Ni x As2 single crystals

    NASA Astrophysics Data System (ADS)

    Vlasenko, V. A.; Sobolevskiy, O. A.; Sadakov, A. V.; Pervakov, K. S.; Gavrilkin, S. Yu.; Dik, A. V.; Eltsev, Yu. F.

    2018-01-01

    The vortex pinning and liquid-glass transition have been studied in BaFe2-x Ni x As2 single crystals with different doping levels (x = 0.065; 0.093; 0.1; 0.14; 0.18). We found that Ni-doped Ba-122 has rather narrow vortex-liquid state region. Our results show that the temperature dependence of the resistivity as well as I-V characteristics of Ni-doped Ba-122 is consistent with 3D vortex-glass model. It was found that δl-pinning gives the main contribution to overall pinning in 122 Ni-doped system. The vortex phase diagrams for different doping levels were built based on the obtained data of temperature of the vortex-glass transition T g and the upper critical magnetic field H c2.

  5. Vortex Formation and Acceleration of a Fish-Inspired Robot Performing Starts from Rest

    NASA Astrophysics Data System (ADS)

    Devoria, Adam; Bapst, Jonathan; Ringuette, Matthew

    2009-11-01

    We investigate the unsteady flow of a fish-inspired robot executing starts from rest, with the objective of understanding the connection among the kinematics, vortex formation, and acceleration performance. Several fish perform ``fast starts,'' where the body bends into a ``C'' or ``S'' shape while turning (phase I), followed by a straightening of the body and caudal fin and a linear acceleration (phase II). The resulting highly 3-D, unsteady vortex formation and its relationship to the acceleration are not well understood. The self-propelled robotic model contains motor-driven joints with programmable motion to emulate phase II of a simplified C-start. The experiments are conducted in a water tank, and the model is constrained to 1 direction along rails. The velocity is measured using digital particle image velocimetry (DPIV) in multiple planes. Vortex boundaries are identified using the finite-time Lyapunov exponent, then the unsteady vortex circulation is computed. The thrust is estimated from the identified vortices, and correlated with the circulation and model acceleration for different kinematics.

  6. Demonstration of a terahertz pure vector beam by tailoring geometric phase.

    PubMed

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Sakaue, Kazuyuki; Washio, Masakazu; Otani, Yukitoshi

    2018-06-06

    We demonstrate the creation of a vector beam by tailoring geometric phase of left- and right- circularly polarized beams. Such a vector beam with a uniform phase has not been demonstrated before because a vortex phase remains in the beam. We focus on vortex phase cancellation to generate vector beams in terahertz regions, and measure the geometric phase of the beam and its spatial distribution of polarization. We conduct proof-of-principle experiments for producing a vector beam with radial polarization and uniform phase at 0.36 THz. We determine the vortex phase of the vector beam to be below 4%, thus highlighting the extendibility and availability of the proposed concept to the super broadband spectral region from ultraviolet to terahertz. The extended range of our proposed techniques could lead to breakthroughs in the fields of microscopy, chiral nano-materials, and quantum information science.

  7. The physics of transverse mode instability-induced nonlinear phase distortions in large area optical fiber amplifiers and their mitigation with applications in scaling of pulsed and continuous wave high-energy lasers

    DTIC Science & Technology

    2016-12-13

    plate and novel all-fiber fused coupler. Such work has laid the platform to demonstrate the mitigation of thermal mode instability through vortex beam...at IIT Madras to experimentally validate the above results as well as to explore the generation of vortex modes through a spiral phase plate and...modes through spiral phase plates and novel all-fiber fused couplers. We have demonstrated the excitation of a vortex mode with charge 1 through a

  8. Experimental investigations of on-demand vortex generators

    NASA Astrophysics Data System (ADS)

    Saddoughi, Seyed G.

    1994-12-01

    Conventional vortex generators as found on many civil aircrafts are mainly for off-design conditions - e.g. suppression of separation or loss of aileron power when the Mach number accidentally rises above the design (cruise) value. In normal conditions they perform no useful function and exert a significant drag penalty. Recently there have been advances in new designs for passive vortex generators and boundary layer control. While traditionally the generators heights were of the order of the boundary layer thickness (delta), recent advances have been made where generators of the order of delta/4 have been shown to be effective. The advancement of MIcro-Electro-Mechanical (MEM) devices has prompted several efforts in exploring the possibility of using such devices in turbulence control. These new devices offer the possibility of boundary layer manipulation through the production of vortices, momentum jets, or other features in the flow. However, the energy output of each device is low in general, but they can be used in large numbers. Therefore, the possibility of moving from passive vortex generators to active (on-demand) devices becomes of interest. Replacement of fixed rectangular or delta-wing generators by devices that could be activated when needed would produce substantial economies. Our proposed application is not strictly 'active' control: the vortex generators would simply be switched on, all together, when needed (e.g. when the aircraft Mach number exceeded a certain limit). To this extent our scheme is simpler; however, to promote mixing and suppress separation we desire to deposit longitudinal vortices into the outer layer of the boundary layer as in conventional vortex generators. This requires a larger device although an alternative might be an array of smaller devices, for example, a longitudinal row with phase differences in the modulation signals so that the periodic vortices join up. The vortex pair with common flow up has the advantage that it will naturally drift away from the surface, but the disadvantage is that the net vorticity is zero so that the pair is eventually obliterated by turbulent mixing, rather than simply being diffused as in the case of a single vortex. It should be possible to devise alternative shapes of cavity wall so that the jet emerges obliquely and produces net longitudinal vorticity.

  9. Experimental investigations of on-demand vortex generators

    NASA Technical Reports Server (NTRS)

    Saddoughi, Seyed G.

    1994-01-01

    Conventional vortex generators as found on many civil aircrafts are mainly for off-design conditions - e.g. suppression of separation or loss of aileron power when the Mach number accidentally rises above the design (cruise) value. In normal conditions they perform no useful function and exert a significant drag penalty. Recently there have been advances in new designs for passive vortex generators and boundary layer control. While traditionally the generators heights were of the order of the boundary layer thickness (delta), recent advances have been made where generators of the order of delta/4 have been shown to be effective. The advancement of MIcro-Electro-Mechanical (MEM) devices has prompted several efforts in exploring the possibility of using such devices in turbulence control. These new devices offer the possibility of boundary layer manipulation through the production of vortices, momentum jets, or other features in the flow. However, the energy output of each device is low in general, but they can be used in large numbers. Therefore, the possibility of moving from passive vortex generators to active (on-demand) devices becomes of interest. Replacement of fixed rectangular or delta-wing generators by devices that could be activated when needed would produce substantial economies. Our proposed application is not strictly 'active' control: the vortex generators would simply be switched on, all together, when needed (e.g. when the aircraft Mach number exceeded a certain limit). To this extent our scheme is simpler; however, to promote mixing and suppress separation we desire to deposit longitudinal vortices into the outer layer of the boundary layer as in conventional vortex generators. This requires a larger device although an alternative might be an array of smaller devices, for example, a longitudinal row with phase differences in the modulation signals so that the periodic vortices join up. The vortex pair with common flow up has the advantage that it will naturally drift away from the surface, but the disadvantage is that the net vorticity is zero so that the pair is eventually obliterated by turbulent mixing, rather than simply being diffused as in the case of a single vortex. It should be possible to devise alternative shapes of cavity wall so that the jet emerges obliquely and produces net longitudinal vorticity.

  10. Navier-Stokes Computations of a Wing-Flap Model With Blowing Normal to the Flap Surface

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.

    2005-01-01

    A computational study of a generic wing with a half span flap shows the mean flow effects of several blown flap configurations. The effort compares and contrasts the thin-layer, Reynolds averaged, Navier-Stokes solutions of a baseline wing-flap configuration with configurations that have blowing normal to the flap surface through small slits near the flap side edge. Vorticity contours reveal a dual vortex structure at the flap side edge for all cases. The dual vortex merges into a single vortex at approximately the mid-flap chord location. Upper surface blowing reduces the strength of the merged vortex and moves the vortex away from the upper edge. Lower surface blowing thickens the lower shear layer and weakens the merged vortex, but not as much as upper surface blowing. Side surface blowing forces the lower surface vortex farther outboard of the flap edge by effectively increasing the aerodynamic span of the flap. It is seen that there is no global aerodynamic penalty or benefit from the particular blowing configurations examined.

  11. Computational investigation of cicada aerodynamics in forward flight.

    PubMed

    Wan, Hui; Dong, Haibo; Gai, Kuo

    2015-01-06

    Free forward flight of cicadas is investigated through high-speed photogrammetry, three-dimensional surface reconstruction and computational fluid dynamics simulations. We report two new vortices generated by the cicada's wide body. One is the thorax-generated vortex, which helps the downwash flow, indicating a new phenomenon of lift enhancement. Another is the cicada posterior body vortex, which entangles with the vortex ring composed of wing tip, trailing edge and wing root vortices. Some other vortex features include: independently developed left- and right-hand side leading edge vortex (LEV), dual-core LEV structure at the mid-wing region and near-wake two-vortex-ring structure. In the cicada forward flight, approximately 79% of the total lift is generated during the downstroke. Cicada wings experience drag in the downstroke, and generate thrust during the upstroke. Energetics study shows that the cicada in free forward flight consumes much more power in the downstroke than in the upstroke, to provide enough lift to support the weight and to overcome drag to move forward.

  12. Computational investigation of cicada aerodynamics in forward flight

    PubMed Central

    Wan, Hui; Dong, Haibo; Gai, Kuo

    2015-01-01

    Free forward flight of cicadas is investigated through high-speed photogrammetry, three-dimensional surface reconstruction and computational fluid dynamics simulations. We report two new vortices generated by the cicada's wide body. One is the thorax-generated vortex, which helps the downwash flow, indicating a new phenomenon of lift enhancement. Another is the cicada posterior body vortex, which entangles with the vortex ring composed of wing tip, trailing edge and wing root vortices. Some other vortex features include: independently developed left- and right-hand side leading edge vortex (LEV), dual-core LEV structure at the mid-wing region and near-wake two-vortex-ring structure. In the cicada forward flight, approximately 79% of the total lift is generated during the downstroke. Cicada wings experience drag in the downstroke, and generate thrust during the upstroke. Energetics study shows that the cicada in free forward flight consumes much more power in the downstroke than in the upstroke, to provide enough lift to support the weight and to overcome drag to move forward. PMID:25551136

  13. Three-Phased Wake Vortex Decay

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  14. A predictor-corrector scheme for vortex identification

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Banks, David C.

    1994-01-01

    A new algorithm for identifying and characterizing vortices in complex flows is presented. The scheme uses both the vorticity and pressure fields. A skeleton line along the center of a vortex is produced by a two-step predictor-corrector scheme. The technique uses the vector field to move in the direction of the skeleton line and the scalar field to correct the location in the plane perpendicular to the skeleton line. A general vortex cross section can be concisely defined with five parameters at each point along the skeleton line. The details of the method and examples of its use are discussed.

  15. Visualization of Dynamic Vortex Structures in Magnetic Films with Uniaxial Anisotropy (Micromagnetic Simulation)

    NASA Astrophysics Data System (ADS)

    Zverev, V. V.; Izmozherov, I. M.; Filippov, B. N.

    2018-02-01

    Three-dimensional computer simulation of dynamic processes in a moving domain boundary separating domains in a soft magnetic uniaxial film with planar anisotropy is performed by numerical solution of Landau-Lifshitz-Gilbert equations. The developed visualization methods are used to establish the connection between the motion of surface vortices and antivortices, singular (Bloch) points, and core lines of intrafilm vortex structures. A relation between the character of magnetization dynamics and the film thickness is found. The analytical models of spatial vortex structures for imitation of topological properties of the structures observed in micromagnetic simulation are constructed.

  16. The Effect of the Air-Delivery Method on Parameters of the Precessing Vortex Core in a Hydrodynamic Vortex Chamber

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Shtork, S. I.; Yusupov, R. R.

    2018-03-01

    The effect of the method of gas-phase injection into a swirled fluid flow on parameters of a precessing vortex core is studied experimentally. Conditions of the appearance of the vortex-core precession effect were modeled in a hydrodynamic sudden expansion vortex chamber. The dependences of the vortexcore precession frequency, flow-pulsation level, and full pressure differential in the vortex chamber on the consumption gas content in the flow have been obtained. The results of measurements permit one to determine optimum conditions for the most effective control of vortex-core precession.

  17. Vector vortex beam generation with dolphin-shaped cell meta-surface.

    PubMed

    Yang, Zhuo; Kuang, Deng-Feng; Cheng, Fang

    2017-09-18

    We present a dolphin-shaped cell meta-surface, which is a combination of dolphin-shaped metallic cells and dielectric substrate, for vector vortex beam generation with the illumination of linearly polarized light. Surface plasmon polaritons are excited at the boundary of the metallic cells, then guided by the metallic structures, and finally squeezed to the tips to form highly localized strong electromagnetic fields, which generate the intensity of vector vortex beams at z component. Synchronously, the abrupt phase change produced by the meta-surface is utilized to explain the vortex phase generated by elements. The new kind of structure can be utilized for communication, bioscience, and materiality.

  18. ProFile Vortex and Vortex Blue Nickel-Titanium Rotary Instruments after Clinical Use.

    PubMed

    Shen, Ya; Zhou, Huimin; Coil, Jeffrey M; Aljazaeri, Bassim; Buttar, Rene; Wang, Zhejun; Zheng, Yu-feng; Haapasalo, Markus

    2015-06-01

    The aim of this study was to analyze the incidence and mode of ProFile Vortex and Vortex Blue instrument defects after clinical use in a graduate endodontic program and to examine the impact of clinical use on the instruments' metallurgical properties. A total of 330 ProFile Vortex and 1136 Vortex Blue instruments from the graduate program were collected after each had been used in 3 teeth. The incidence and type of instrument defects were analyzed. The lateral surfaces and fracture surfaces of the fractured files were examined by using scanning electron microscopy. Unused and used instruments were examined by full and partial differential scanning calorimetry. No fractures were observed in the 330 ProFile Vortex instruments, whereas 20 (6.1%) revealed bent or blunt defects. Only 2 of the 1136 Vortex Blue files fractured during clinical use. The cause of fracture was shear stress. The fractures occurred at the tip end of the spirals. Only 1.8% (21 of 1136) of the Vortex Blue files had blunt tips. Austenite-finish temperatures were very similar for unused and used ProFile Vortex files and were all greater than 50°C. The austenite-finish temperatures of used and unused Vortex Blue files (38.5°C) were lower than those in ProFile Vortex instruments (P < .001). However, the transformation behavior of Vortex Blue files had an obvious 2-stage transformation, martensite-to-R phase and R-to-austenite phase. The trends of differential scanning calorimetry plots of unused Vortex Blue instruments and clinically used instruments were very similar. The risk of ProFile Vortex and Vortex Blue instrument fracture is very low when instruments are discarded after clinical use in the graduate endodontic program. The Vortex Blue files have metallurgical behavior different from ProFile Vortex instruments. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. On random pressure pulses in the turbine draft tube

    NASA Astrophysics Data System (ADS)

    Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Tsoy, M. A.

    2017-04-01

    The flow in the conical part of the hydroturbine draft tube undergoes various instabilities due to deceleration and flow swirling at off-design operation points. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope induces periodical low-frequency pressure oscillations in the draft tube. Interaction of rotational (asynchronous) mode of disturbances with the elbow can bring to strong oscillations in the whole hydrodynamical system. Recent researches on flow structure in the discharge cone in a regime of free runner had revealed that helical-like vortex rope can be unstable itself. Some coils of helix close to each other and reconnection appears with generation of a vortex ring. The vortex ring moves toward the draft tube wall and downstream. The present research is focused on interaction of vortex ring with wall and generation of pressure pulses.

  20. The effect of wing dihedral and section suction distribution on vortex bursting

    NASA Technical Reports Server (NTRS)

    Washburn, K. E.; Gloss, B. B.

    1975-01-01

    Eleven semi-span wing models were tested in the 1/8-scale model of the Langley V/STOL tunnel to qualitatively study vortex bursting. Flow visualization was achieved by using helium filled soap bubbles introduced upstream of the model. The angle of attack range was from 0 deg to 45 deg. The results show that the vortex is unstable, that is, the bursting point location is not fixed at a given angle of attack but moves within certain bounds. Upstream of the trailing edge, the bursting point location has a range of two inches; downstream, the range is about six inches. Anhedral and dihedral appear to have an insignificant effect on the vortex and its bursting point location. Altering the section suction distribution by improving the triangularity generally increases the angle of attack at which vortex bursting occurs at the trailing edge.

  1. Generation and characterization of a perfect vortex beam with a large topological charge through a digital micromirror device.

    PubMed

    Chen, Yue; Fang, Zhao-Xiang; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De

    2015-09-20

    Optical vortices are associated with a spatial phase singularity. Such a beam with a vortex is valuable in optical microscopy, hyper-entanglement, and optical levitation. In these applications, vortex beams with a perfect circle shape and a large topological charge are highly desirable. But the generation of perfect vortices with high topological charges is challenging. We present a novel method to create perfect vortex beams with large topological charges using a digital micromirror device (DMD) through binary amplitude modulation and a narrow Gaussian approximation. The DMD with binary holograms encoding both the spatial amplitude and the phase could generate fast switchable, reconfigurable optical vortex beams with significantly high quality and fidelity. With either the binary Lee hologram or the superpixel binary encoding technique, we were able to generate the corresponding hologram with high fidelity and create a perfect vortex with topological charge as large as 90. The physical properties of the perfect vortex beam produced were characterized through measurements of propagation dynamics and the focusing fields. The measurements show good consistency with the theoretical simulation. The perfect vortex beam produced satisfies high-demand utilization in optical manipulation and control, momentum transfer, quantum computing, and biophotonics.

  2. NUMERICAL SIMULATIONS OF KELVIN–HELMHOLTZ INSTABILITY: A TWO-DIMENSIONAL PARAMETRIC STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Chunlin; Chen, Yao, E-mail: chunlin.tian@sdu.edu.cn

    2016-06-10

    Using two-dimensional simulations, we numerically explore the dependences of Kelvin–Helmholtz (KH) instability upon various physical parameters, including viscosity, the width of the sheared layer, flow speed, and magnetic field strength. In most cases, a multi-vortex phase exists between the initial growth phase and the final single-vortex phase. The parametric study shows that the evolutionary properties, such as phase duration and vortex dynamics, are generally sensitive to these parameters, except in certain regimes. An interesting result is that for supersonic flows, the phase durations and saturation of velocity growth approach constant values asymptotically as the sonic Mach number increases. We confirmmore » that the linear coupling between magnetic field and KH modes is negligible if the magnetic field is weak enough. The morphological behavior suggests that the multi-vortex coalescence might be driven by the underlying wave–wave interaction. Based on these results, we present a preliminary discussion of several events observed in the solar corona. The numerical models need to be further improved to perform a practical diagnostic of the coronal plasma properties.« less

  3. Periodicity of the density wake past a vortex ring in a stratified liquid

    NASA Astrophysics Data System (ADS)

    Prokhorov, V.

    2009-04-01

    Spatial coherent structure of the density wake past a vortex ring moving horizontally in viscid stratified liquid is experimentally revealed. It follows from analysis that repetition period of the structure is determined by rotation radial frequency (or mean vorticity) of the vortex core and toward speed of the vortex ring. The wake formation of the ring is considered in respect to vorticity shedding which produces velocity disturbances in ambient medium. In case of stratified liquid velocity fluctuations, in their turn, cause density field distortion. This process is superimposed by vortex core oscillations, and, in result, vorticity shedding will be not monotonous but modulated at some frequency. So, the density wake is periodically structured, and the spatial period is defined by intrinsic frequency of the core and forward speed of the ring. To support analysis, experiments were conducted in which vortex rings excited by spring-piston generator were observed with high-sensitive Schlieren instrument and computer-controlled camera. Experimental tank was filled with salt-stratified water of constant buoyancy period, vortex ring velocities range from 3 to 16 cm/s. Spatial period is derived from schlieren image using two independent methods, both 2D spectral analysis and geometry calculations of the vortex core. Spatial periods and vortex intrinsic frequencies calculated by both algorithms are in good agreement; they vary in power lows depending on vortex speed

  4. Ultrashort vortex from a Gaussian pulse - An achromatic-interferometric approach.

    PubMed

    Naik, Dinesh N; Saad, Nabil A; Rao, D Narayana; Viswanathan, Nirmal K

    2017-05-24

    The more than a century old Sagnac interferometer is put to first of its kind use to generate an achromatic single-charge vortex equivalent to a Laguerre-Gaussian beam possessing orbital angular momentum (OAM). The interference of counter-propagating polychromatic Gaussian beams of beam waist ω λ with correlated linear phase (ϕ 0  ≥ 0.025 λ) and lateral shear (y 0  ≥ 0.05 ω λ ) in orthogonal directions is shown to create a vortex phase distribution around the null interference. Using a wavelength-tunable continuous-wave laser the entire range of visible wavelengths is shown to satisfy the condition for vortex generation to achieve a highly stable white-light vortex with excellent propagation integrity. The application capablitiy of the proposed scheme is demonstrated by generating ultrashort optical vortex pulses, its nonlinear frequency conversion and transforming them to vector pulses. We believe that our scheme for generating robust achromatic vortex (implemented with only mirrors and a beam-splitter) pulses in the femtosecond regime, with no conceivable spectral-temporal range and peak-power limitations, can have significant advantages for a variety of applications.

  5. Modeling Primary Breakup: A Three-Dimensional Eulerian Level Set/Vortex Sheet Method for Two-Phase Interface Dynamics

    NASA Technical Reports Server (NTRS)

    Herrmann, M.

    2003-01-01

    This paper is divided into four parts. First, the level set/vortex sheet method for three-dimensional two-phase interface dynamics is presented. Second, the LSS model for the primary breakup of turbulent liquid jets and sheets is outlined and all terms requiring subgrid modeling are identified. Then, preliminary three-dimensional results of the level set/vortex sheet method are presented and discussed. Finally, conclusions are drawn and an outlook to future work is given.

  6. Investigation on flow oscillation modes and aero-acoustics generation mechanism in cavity

    NASA Astrophysics Data System (ADS)

    Yang, Dang-Guo; Lu, Bo; Cai, Jin-Sheng; Wu, Jun-Qiang; Qu, Kun; Liu, Jun

    2018-05-01

    Unsteady flow and multi-scale vortex transformation inside a cavity of L/D = 6 (ratio of length to depth) at Ma = 0.9 and 1.5 were studied using the numerical simulation method of modified delayed detached eddy simulation (DDES) in this paper. Aero-acoustic characteristics for the cavity at same flow conditions were obtained by the numerical method and 0.6 m by 0.6 m transonic and supersonic wind-tunnel experiments. The analysis on the computational and experimental results indicates that some vortex generates from flow separation in shear-layer over the cavity, and the vortex moves from forward to downward of the cavity at some velocity, and impingement of the vortex and the rear-wall of the cavity occurs. Some sound waves spread abroad to the cavity fore-wall, which induces some new vortex generation, and the vortex sheds, moves and impinges on the cavity rear-wall. New sound waves occur. The research results indicate that sound wave feedback created by the impingement of the shedding-vortices and rear cavity face leads to flow oscillations and noise generation inside the cavity. Analysis on aero-acoustic characteristics inside the cavity is feasible. The simulated self-sustained flow-oscillation modes and peak sound pressure on typical frequencies inside the cavity agree well with Rossiter’s and Heller’s predicated results. Moreover, the peak sound pressure occurs in the first and second flow-oscillation modes and most of sound energy focuses on the low-frequency region. Compared with subsonic speed (Ma = 0.9), aerodynamic noise is more intense at Ma = 1.5, which is induced by compression wave or shock wave in near region of fore and rear cavity face.

  7. Thermal depinning of a single superconducting vortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sok, Junghyun

    1995-06-19

    Thermal depinning has been studied for a single vortex trapped in a superconducting thin film in order to determine the value of the superconducting order parameter and the superfluid density when the vortex depins and starts to move around the film. For the Pb film in Pb/Al/Al 2O 3/PbBi junction having a gold line, the vortex depins from the artificial pinning site (Au line) and reproducibly moves through the same sequence of other pinning sites before it leaves the junction area of the Pb film. Values of the normalized order parameter Δ/Δ ° vary from Δ/Δ °=0.20 at the firstmore » motion of the vortex to Δ/Δ °=0.16 where the vortex finally leaves the junction. Equivalently, the value of the normalized superfluid density changes from 4% to 2.5% for this sample in this same temperature interval. For the Nb film in Nb/Al/Al 2O 3/Nb junction, thermal depinning occurs when the value of Δ/Δ ° is approximately 0.22 and the value of ρ s/ρ so is approximately 5%. These values are about 20% larger than those of a Pb sample having a gold line, but the values are really very close. For the Nb sample, grain boundaries are important pinning sites whereas, for the Pb sample with a gold line, pinning may have been dominated by an array Pb 3AU precipitates. Because roughly the same answer was obtained for these rather different kinds of pinning site, there is a reasonable chance that this is a general value within factors of 2 for a wide range of materials.« less

  8. Partially filled Landau level at even denominators: A vortex metal with a Berry phase

    NASA Astrophysics Data System (ADS)

    You, Yizhi

    2018-04-01

    We develop a vortex metal theory for a partially filled Landau level at ν =1/2 n whose ground state contains a composite Fermi surface formed by the vortex of electrons. In the projected Landau-level limit, the composite Fermi surface contains a -π/n Berry phase. Such a fractional Berry phase is a consequence of Landau-level projection which produces the Girvin-MacDonald-Platzman [S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev. B 33, 2481 (1986), 10.1103/PhysRevB.33.2481] guiding center algebra and embellishes an anomalous velocity to the equation of motion for the vortex metal. Further, we investigate a particle-hole symmetric bilayer system with ν1=1/2 n and ν2=1 -1/2 n at each layer, and demonstrate that the -π/n Berry phase on the composite Fermi surface leads to the suppression of 2 kf backscattering between the particle-hole partner bilayer, which could be a smoking gun to detect the fractional Berry phase. We also mention various instabilities and competing orders in such bilayer systems, including a Z4 n topological order phase driven by quantum criticality.

  9. The rollup of a vortex layer near a wall

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier; Orlandi, Paolo

    1993-01-01

    The behavior of an inviscid vortex layer of non-zero thickness near a wall is studied, both through direct numerical simulation of the two-dimensional vorticity equation at high Reynolds numbers, and using an approximate ordinary nonlinear integro-differential equation which is satisfied in the limit of a thin layer under long-wavelength perturbations. For appropriate initial conditions the layer rolls up and breaks into compact vortices which move along the wall at constant speed. Because of the effect of the wall, they correspond to equilibrium counter-rotating vortex dipoles. This breakup can be related to the disintegration of the initial conditions of the approximate nonlinear dispersive equation into solitary waves. The study is motivated by the formation of longitudinal vortices from vortex sheets in the wall region of a turbulent channel.

  10. Effects of a modulated vortex structure on the diffraction dynamics of ring Airy Gaussian beams.

    PubMed

    Huang, Xianwei; Shi, Xiaohui; Deng, Zhixiang; Bai, Yanfeng; Fu, Xiquan

    2017-09-01

    The evolution of the ring Airy Gaussian beams with a modulated vortex in free space is numerically investigated. Compared with the unmodulated vortex, the unique property is that the beam spots first break up, and then gather. The evolution of the beams is influenced by the parameters of the vortex modulation, and the splitting phenomenon gets enhanced with multiple rings becoming light spots if the modulation depth increases. The symmetric branch pattern of the beam spots gets changed when the number of phase folds increases, and the initial modulation phase only impacts the angle of the beam spots. Moreover, a large distribution factor correlates to a hollow Gaussian vortex shape and weakens the splitting and gathering trend. By changing the initial parameters of the vortex modulation and the distribution factor, the peak intensity is greatly affected. In addition, the energy flow and the angular momentum are elucidated with the beam evolution features being confirmed.

  11. Non-equlibrium relaxation of vortex lines in disordered type-II superconductors

    NASA Astrophysics Data System (ADS)

    Dobramysl, Ulrich; Assi, Hiba; Pleimling, Michel; T&äUber, Uwe C.

    2013-03-01

    Vortex matter in disordered type-II superconductors display a remarkable wealth of behavior, ranging from hexagonally arranged crystals and a vortex liquid to glassy phases. The type and strength of the disorder has a profound influence on the structural properties of the vortex matter: Randomly distributed weak point pinning sites lead to the destruction of long range order and a Bragg glass phase; correlated, columnar disorder can yield a Bose glass phase with infinite tilt modulus. We employ a three-dimensional elastic line model and apply a Langevin molecular dynamics algorithm to simulate the dynamics of vortex lines in a dissipative medium. We investigate the relaxation of a system of lines that were initially prepared in an out-of-equilibrium state and characterize the transient behavior via two-time quantities. We vary the disorder type and strength and compare our results for random and columnar disorder. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  12. Atomic Josephson Vortex

    NASA Astrophysics Data System (ADS)

    Kaurov, Vitaliy; Kuklov, Anatoly

    2006-03-01

    We show that atomic Josephson vortices [1] in a quasi-1D atomic junction can be controllably manipulated by imposing a tunneling bias current created by a difference of chemical potentials on the atomic BEC waveguides forming the junction. This effect, which has its origin in the Berry phase structure of a vortex, turns out to be very robust in the whole range of the parameters where such vortices can exist [2]. Acceleration of the vortex up to a certain threshold speed, determined by the strength of the Josephson coupling, results in the phase slip causing switching of the vorticity. This effect is directly related to the interconversion [1], when slow variation of the coupling can cause transformation of the vortex into the dark soliton and vice verse. We also propose that a Josephson vortex can be created by the phase imprinting technique and can be identified by a specific tangential feature in the interference picture produced by expanding clouds released from the waveguides [2]. [1] V. M. Kaurov , A. B. Kuklov, Phys. Rev. A 71, 11601(R) (2005). [2] V. M. Kaurov , A. B. Kuklov cond-mat/0508342

  13. Second harmonic generation of off axial vortex beam in the case of walk-off effect

    NASA Astrophysics Data System (ADS)

    Chen, Shunyi; Ding, Panfeng; Pu, Jixiong

    2016-07-01

    Process of off axial vortex beam propagating in negative uniaxial crystal is investigated in this work. Firstly, we get the formulae of the normalized electric field and calculate the location of vortices for second harmonic beam in two type of phase matching. Then, numerical analysis verifies that the intensity distribution and location of vortices of the first order original vortex beam depend on the walk-off angle and off axial magnitude. It is shown that, in type I phase matching, the distribution of vortices is symmetrical about the horizontal axis, the separation distance increases as the off axial magnitude increases or the off axial magnitude deceases. However, in type II phase matching, the vortices are symmetrical along with some vertical axis, and increase of the walk-off angle or off axial magnitude leads to larger separation distance. Finally, the case of high order original off axial vortex beam is also investigated.

  14. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Yan; Guo, Zhongyi; Li, Rongzhen; Zhang, Jingran; Zhang, Anjun; Qu, Shiliang

    2015-04-01

    The ultra-thin optical vortex phase plate (VPP) has been designed and investigated based on the metasurface of the metal rectangular split-ring resonators (MRSRRs) array. The circularly polarized incident light can convert into corresponding cross-polarization transmission light, and the phase and the amplitude of cross-polarization transmission light can be simultaneously governed by modulating two arms of the MRSRR. The MRSRR has been arranged in a special order for forming an ultra-thin optical VPP that can covert a plane wave into a vortex beam with a variety of the topological charges, and the transformation between spin angular momentum (SAM) and orbital angular momentum (OAM) has been discussed in detail. The multi-spectral characteristics of the VPP have also been investigated, and the operating bandwidth of the designed VPP is 190 nm (in the range of 710-900 nm), which enable a potential implication for integrated optics and vortex optics.

  15. Vortex ring motions in stratified media

    NASA Astrophysics Data System (ADS)

    Auvity, Bruno; Koulal, Mokrane; Dupont, Pascal; Peerhossaini, Hassan

    2003-11-01

    The behavior of vortex rings generated in a stably stratified media has received only weak treatment in the literature. This configuration is believed to shed light on the basic phenomena involved in the collapse of wake in stratified fluid. The present study focused on experimental observations of the formation, the advection and the collapse of horizontal vortex rings in stratified media. Stable continuous vertical stratification was produced in a tank using the well-known two-tanks method. The generation of vortex ring was realized moving a piston through a tube. The maximum piston stroke achievable was seven tube diameters. The problem is mainly characterized by two parameters : the initial Reynolds number and the initial Froude number of the vortex ring. Both these numbers were varied in the study. The Reynolds number based on the tube diameter and piston velocity was in the range 1,500 - 5,500 and the Froude number based on the same parameters in the range 1.4 - 4.7. Dye visualizations were performed from the top and the side of the tank showing the vortex ring may develop an important asymmetry. Different processes to the complete collapse of the vortex ring were identified.

  16. A novel scenario of aperiodical impacts appearance in the turbine draft tube

    NASA Astrophysics Data System (ADS)

    Alekseenko, S. V.; Kuibin, P. A.; Shtork, S. I.; Skripkin, S. G.; Sonin, V. I.; Tsoy, M. A.; Ustimenko, A. S.

    2016-11-01

    The swirling flow in the discharge cone of hydroturbine is characterized by various self-induced instabilities and associated low frequency phenomena when the turbine is operated far from the best efficiency point. In particular, the precessing vortex rope develops at part-load regimes in the draft tube. This rope can serve a reason of the periodical low- frequency pressure oscillations in the whole hydrodynamical system. During the experimental research of flow structure in the discharge cone in a regime of free runner new interesting phenomenon was discovered. Due to instability some coils of helical vortex close to each other and reconnection appears with generation of a vortex ring. The experiments were fulfilled at the cavitational conditions when a cavity arises in the vortex core. So the phenomenon was registered with help of visualization by the high speed video recording. The vortex ring after the reconnection moves apart from the main vortex rope toward the wall and downstream. When it reaches the area with high pressure the cavity collapses with generation of pressure impact. The mechanism of cavitational vortex rings generation and their further collapse can serve as a prototype of the aperiodical pressure impacts inside the turbine draft tube.

  17. Full-Potential Modeling of Blade-Vortex Interactions. Degree awarded by George Washington Univ., Feb. 1987

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.

    1997-01-01

    A study of the full-potential modeling of a blade-vortex interaction was made. A primary goal of this study was to investigate the effectiveness of the various methods of modeling the vortex. The model problem restricts the interaction to that of an infinite wing with an infinite line vortex moving parallel to its leading edge. This problem provides a convenient testing ground for the various methods of modeling the vortex while retaining the essential physics of the full three-dimensional interaction. A full-potential algorithm specifically tailored to solve the blade-vortex interaction (BVI) was developed to solve this problem. The basic algorithm was modified to include the effect of a vortex passing near the airfoil. Four different methods of modeling the vortex were used: (1) the angle-of-attack method, (2) the lifting-surface method, (3) the branch-cut method, and (4) the split-potential method. A side-by-side comparison of the four models was conducted. These comparisons included comparing generated velocity fields, a subcritical interaction, and a critical interaction. The subcritical and critical interactions are compared with experimentally generated results. The split-potential model was used to make a survey of some of the more critical parameters which affect the BVI.

  18. Magneto-optical observation of twisted vortices in type-II superconductors

    NASA Astrophysics Data System (ADS)

    Indenbom, M. V.; van der Beek, C. J.; Berseth, V.; Benoit, W.; D'Anna, G.; Erb, A.; Walker, E.; Flükiger, R.

    1997-02-01

    When magnetic flux penetrates a type-II superconductor, it does so as quantized flux lines or vortex lines, so called because each is surrounded by a supercurrent vortex. Interactions between such vortices lead to a very rich and well characterized phenomenology for this 'mixed state'. But an outstanding question remains: are individual vortex lines 'strong', or can they easily be cut and made to pass through one another? The concept of vortex cutting was originally proposed to account for dissipation observed in superconducting wires oriented parallel to an applied magnetic field, where the vortex lines and transport current should be in a force-free configuration1-6. Previous experiments, however, have been unable to establish the vortex topology in the force-free configuration or the size of the energy barrier for vortex cutting. Here we report magneto-optical images of YBa2Cu3O7-δ samples in the force-free configuration which show that thousands of vortex lines can twist together to form highly stable structures. In some cases, these 'vortex twisters' interact with one another to produce wave-like dynamics. Our measurements also determine directly the current required to initiate vortex cutting, and show that it is much higher than that needed to overcome the pinning of vortices by material defects. This implies that thermodynamic phases of entangled vortices7-10 are intrinsically stable and may occupy a significant portion of the mixed-state phase diagram for type-II superconductors.

  19. Modeling the quasi-biennial oscillation's effect on the winter stratospheric circulation

    NASA Technical Reports Server (NTRS)

    O'Sullivan, Donal; Young, Richard E.

    1992-01-01

    The influence of the equatorial quasi-biennial oscillation (QBO) on the winter middle atmosphere is modeled with a mechanistic global primitive equation model. The model's polar vortex evolution is sensitive to the lower stratosphere's tropical winds, with the polar vortex becoming more (less) disturbed as the lower stratospheric winds are more easterly (westerly). This agrees with the observed relationship between wintertime polar circulation strength and the phase of the QBO in the lower stratosphere. In these experiments it is the extratropical planetary Rossby waves that provide the tropical-extratropical coupling mechanism. More easterly tropical winds in the lower stratosphere act to confine the extratropical Rossby waves farther north and closer to the vortex at the QBO altitudes, weakening the vortex relative to the case of westerly QBO phase. While the QBO winds occur in the lower stratosphere, the anomaly in the polar vortex strength is strongest at higher levels.

  20. Intra-seasonal variability of extreme boreal stratospheric polar vortex events and their precursors

    NASA Astrophysics Data System (ADS)

    Díaz-Durán, Adelaida; Serrano, Encarna; Ayarzagüena, Blanca; Abalos, Marta; de la Cámara, Alvaro

    2017-11-01

    The dynamical variability of the boreal stratospheric polar vortex has been usually analysed considering the extended winter as a whole or only focusing on December, January and February. Yet recent studies have found intra-seasonal differences in the boreal stratospheric dynamics. In this study, the intra-seasonal variability of anomalous wave activity preceding polar vortex extremes in the Northern Hemisphere is examined using ERA-Interim reanalysis data. Weak (WPV) and strong (SPV) polar vortex events are grouped into early, mid- or late winter sub-periods depending on the onset date. Overall, the strongest (weakest) wave-activity anomalies preceding polar vortex extremes are found in mid- (early) winter. Most of WPV (SPV) events in early winter occur under the influence of east (west) phase of the Quasi-Biennial Oscillation (QBO) and an enhancement (inhibition) of wavenumber-1 wave activity (WN1). Mid- and late winter WPV events are preceded by a strong vortex and an enhancement of WN1 and WN2, but the spatial structure of the anomalous wave activity and the phase of the QBO are different. Prior to mid-winter WPVs the enhancement of WN2 is related to the predominance of La Niña and linked to blockings over Siberia. Mid-winter SPV events show a negative phase of the Pacific-North America pattern that inhibits WN1 injected into the stratosphere. This study suggests that dynamical features preceding extreme polar vortex events in mid-winter should not be generalized to other winter sub-periods.

  1. Ultra-broadband tunable (0.67-2.57 µm) optical vortex parametric oscillator

    NASA Astrophysics Data System (ADS)

    Araki, Shungo; Suzuki, Kensuke; Nishida, Shigeki; Mamuti, Roukuya; Miyamoto, Katsuhiko; Omatsu, Takashige

    2017-10-01

    We demonstrate an ultra-broadband (>2-octave band) tunable optical vortex laser comprising an optical-vortex-pumped optical parametric oscillator by employing a nanosecond pulse (˜10 ns) green laser and cascaded non-critical phase-matching LiB3O5 crystals (45 mm long each). With this system, an optical vortex output was produced over an extremely wide wavelength range of 0.67-2.57 µm.

  2. Symposium on Naval Hydrodynamics (9th). Volume 2. Frontier Problems. Held at Paris (France) on August 20-25, 1972

    DTIC Science & Technology

    1972-01-01

    DISCUSSION 1283 John P. Breslin, Stevens Institute of Techno- logy, Hoboken, New Jersey R^PLY TO DISCUSSION 1284 Roger Brard, Bassin...Ship Research and Development Center, Bethesda, Maryland DISCUSSION L. Landweber, University of Iowa, Iowa City DISCUSSION John V. Wehausen...source and vortex distribution. liHt Vortex Theory for podie8 Moving in Water DISCUSSION John P, Breslin Stevens Institute of Technology

  3. Broadband and high efficiency all-dielectric metasurfaces for wavefront steering with easily obtained phase shift

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Deng, Yan

    2017-12-01

    All-dielectric metasurfaces for wavefront deflecting and optical vortex generating with broadband and high efficiency are demonstrated. The unit cell of the metasurfaces is optimized to function as a half wave-plate with high polarization conversion efficiency (94%) and transmittance (94.5%) at the telecommunication wavelength. Under such a condition, we can get rid of the complicated parameter sweep process for phase shift selecting. Hence, a phase coverage ranges from 0 to 2 π can be easily obtained by introducing the Pancharatnam-Berry phase. Metasurfaces composed of the two pre-designed super cells are demonstrated for optical beam deflecting and vortex beam generating. It is found that the metasurfaces with more phase shift sampling points (small phase shift increment) exhibit better performance. Moreover, optical vortex beams can be generated by the designed metasurfaces within a wavelength range of 200 nm. These results will provide a viable route for designing broadband and high efficiency devices related to phase modulation.

  4. Generating broadband vortex modes in ring-core fiber by using a plasmonic q-plate.

    PubMed

    Ye, Jingfu; Li, Yan; Han, Yanhua; Deng, Duo; Su, Xiaoya; Song, He; Gao, Jianmin; Qu, Shiliang

    2017-08-15

    A mode convertor was proposed and investigated for generating vortex modes in a ring-core fiber based on a plasmonic q-plate (PQP), which is composed of specially organized L-shaped resonator (LSR) arrays. A multicore fiber was used to transmit fundamental modes, and the LSR arrays were used to modulate phases of these fundamental modes. Behind the PQP, the transmitted fundamental modes with gradient phase distribution can be considered as the incident lights for generating broadband vortex modes in the ring-core fiber filter. The topological charges of generated vortex modes can be various by using an optical PQP with different q, and the chirality of the generated vortex mode can be controlled by the sign of q and handedness of the incident circularly polarized light. The operation bandwidth is 800 nm in the range of 1200-2000 nm, which covers six communication bands from the O band to the U band. The separation of vortex modes also was addressed by using a dual ring-core fiber. The mode convertor is of potential interest for connecting a traditional network and vortex communication network.

  5. Spatially resolved resistivity near the vortex lattice phase transition in Bi 2Sr 2CaCu 2O 8+δ single crystals

    NASA Astrophysics Data System (ADS)

    Berseth, V.; Indenbom, M. V.; van der Beek, C. J.; D'Anna, G.; Benoit, W.

    1997-08-01

    Using a multiterminal contact configuration, we investigate the local variations of the resistivity drop near the vortex lattice first order phase transition in a very homogeneous Bi2Sr2CaCu2O8+δ (BSCCO) single crystal.

  6. The Other Side of the Vortex

    NASA Image and Video Library

    2018-03-19

    When the polar vortex dips south it often makes headlines. Frigid air, usually confined to the arctic, spills into lower parts of the continent making it a chilly challenge for people going about their day. But there's a warm part to the story as well. While the eastern and southern United States were shivering in January the arctic was experiencing above average temperatures. In maps created with data by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite, warmer-than-normal temperatures are colored in red and below average temperatures are colored in blue. Provided in geographic and polar projections, the maps show regions of unusually cold air hovering over the eastern and southern U.S., eastern Canada and Greenland in January. February shows colder-than-normal air blanketing the northwest U.S., Canada, Western Europe, northwest Africa and East Asia. In both cases, the arctic remains exceptionally warm. During most winters the polar vortex is like a giant counterclockwise whirlpool spinning around the north pole with cold air at its center. Occasionally the vortex splits and its parts move south, usually over the continents. At the same time, warm air from the south moves in to fill the gap, and that northward movement usually occurs over the oceans. The cold air movement gets the most attention because it typically affects many millions of people. However, that cooling is very often accompanied by warming somewhere over the Arctic -- an equally important part of the polar vortex story that usually goes unnoticed but is very apparent in the images shown here. More images are available at https://photojournal.jpl.nasa.gov/catalog/PIA22344

  7. Laboratory demonstration of an optical vortex mask coronagraph using photonic crystal

    NASA Astrophysics Data System (ADS)

    Murakami, N.; Baba, N.; Ise, A.; Sakamoto, M.; Oka, K.

    2010-10-01

    Photonic crystal, artificial periodic nanostructure, is an attractive device for constructing focal-plane phase-mask coronagraphs such as segmented phase masks (four-quadrant, eight-octant, and 4N-segmented ones) and an optical vortex mask (OVM), because of its extremely small manufacturing defect. Recently, speckle-noise limited contrast has been demonstrated for two monochromatic lasers by using the eight-octant phase-mask made of the photonic crystal (Murakami et al. 2010, ApJ, 714, 772). We applied the photonic-crystal device to the OVM coronagraph. The OVM is more advantageous over the segmented phase masks because it does not have discontinuities other than a central singular point and provides a full on-sky field of view. For generating an achromatic optical vortex, we manufactured an axially-symmetric half-wave plate (ASHWP). It is expected that a size of the manufacturing defect due to the central singularity is an order of several hundreds nanometers. The ASHWP is placed between two circular polarizers for modulating a Pancharatnam phase. A continuous spiral phase modulation is then implemented achromatically. We carried out preliminary laboratory demonstration of the OVM coronagraph using two monochromatic lasers as a model star (wavelengths of 532 nm and 633 nm). We report a principle of the achromatic optical-vortex generation, and results of the laboratory demonstration of the OVM coronagraph.

  8. DETECTION OF VORTEX TUBES IN SOLAR GRANULATION FROM OBSERVATIONS WITH SUNRISE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, O.; Franz, M.; Bello Gonzalez, N.

    2010-11-10

    We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computationalmore » domain of the simulation, we conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.« less

  9. Optical vortex beams: Generation, propagation and applications

    NASA Astrophysics Data System (ADS)

    Cheng, Wen

    An optical vortex (also known as a screw dislocation or phase singularity) is one type of optical singularity that has a spiral phase wave front around a singularity point where the phase is undefined. Optical vortex beams have a lot of applications in areas such as optical communications, LADAR (laser detection and ranging) system, optical tweezers, optical trapping and laser beam shaping. The concepts of optical vortex beams and methods of generation are briefly discussed. The properties of optical vortex beams propagating through atmospheric turbulence have been studied. A numerical modeling is developed and validated which has been applied to study the high order properties of optical vortex beams propagating though a turbulent atmosphere. The simulation results demonstrate the advantage that vectorial vortex beams may be more stable and maintain beam integrity better when they propagate through turbulent atmosphere. As one important application of optical vortex beams, the laser beam shaping is introduced and studied. We propose and demonstrate a method to generate a 2D flat-top beam profile using the second order full Poincare beams. Its applications in two-dimensional flat-top beam shaping with spatially variant polarization under low numerical aperture focusing have been studied both theoretically and experimentally. A novel compact flat-top beam shaper based on the proposed method has been designed, fabricated and tested. Experimental results show that high quality flat-top profile can be obtained with steep edge roll-off. The tolerance to different input beam sizes of the beam shaper is also verified in the experimental demonstration. The proposed and experimentally verified LC beam shaper has the potential to become a promising candidate for compact and low-cost flat-top beam shaping in areas such as laser processing/machining, lithography and medical treatment.

  10. Direct observation of the flux-line vortex glass phase in a type II superconductor.

    PubMed

    Divakar, U; Drew, A J; Lee, S L; Gilardi, R; Mesot, J; Ogrin, F Y; Charalambous, D; Forgan, E M; Menon, G I; Momono, N; Oda, M; Dewhurst, C D; Baines, C

    2004-06-11

    The order of the vortex state in La1.9Sr0.1CuO4 is probed using muon-spin rotation and small-angle neutron scattering. A transition from a Bragg glass to a vortex glass is observed, where the latter is composed of disordered vortex lines. In the vicinity of the transition the microscopic behavior reflects a delicate interplay of thermally induced and pinning-induced disorder.

  11. Birth and evolution of an optical vortex.

    PubMed

    Vallone, Giuseppe; Sponselli, Anna; D'Ambrosio, Vincenzo; Marrucci, Lorenzo; Sciarrino, Fabio; Villoresi, Paolo

    2016-07-25

    When a phase singularity is suddenly imprinted on the axis of an ordinary Gaussian beam, an optical vortex appears and starts to grow radially, by effect of diffraction. This radial growth and the subsequent evolution of the optical vortex under focusing or imaging can be well described in general within the recently introduced theory of circular beams, which generalize the hypergeometric-Gaussian beams and which obey novel kinds of ABCD rules. Here, we investigate experimentally these vortex propagation phenomena and test the validity of circular-beam theory. Moreover, we analyze the difference in radial structure between the newly generated optical vortex and the vortex obtained in the image plane, where perfect imaging would lead to complete closure of the vortex core.

  12. Mars Reconnaissance Orbiter: Aerobraking Science Analysis

    NASA Astrophysics Data System (ADS)

    Bougher, Stephen W.; Keating, G. M.

    2006-09-01

    The Mars Reconnaissance Orbiter (MRO) spacecraft was launched from the Kennedy Space Center in Florida on August 12, 2005, and arrived at Mars on March 10, 2006. Aerobraking in the martian thermosphere was conducted for nearly 5-months after arrival, enabling the desired MRO mapping orbit to be achieved. The MRO aerobraking phase began in early martian northern Spring (Ls = 36) and continued through early northern Summer (Ls 110), spanning approximately 500 orbits. The MRO periapsis latitude migrated slowly poleward/southward from 70ºS latitude upon aerobraking initiation, passed over the South pole (near Ls = 77), and moved rapidly northward to equatorial latitudes at aerobraking conclusion. Upper atmosphere sampling ( 100-200 km) was achieved on the dayside (LT 1900-2000) before polar crossing, and on the nightside (LT = 0200-0300) thereafter. These seasonal and latitude conditions are similar to a subset of those experienced by MGS during its post hiatus aerobraking Phase 2. Derived mass densities, scale heights, and estimated temperatures are the primary data products generated from each aeropass. The most important discovery of MRO aerobraking concerns the sampling of the thermosphere up to 200 km, far higher than previous MGS and Odyssey Accelerometers have achieved. This sampling contributes to the characterization of the Mars exobase region, which is required to predict and interpret atmospheric escape rates. In addition, thermospheric densities at a constant altitude were observed to decrease toward the southern (winter) pole, as expected from previous MGS experience. No winter polar warming was typically observed near the South pole. Thereafter, densities were measured to increase on the nightside as periapsis moved toward the equator. In general, thermospheric variability was observed to increase in the vicinity of the polar vortex boundary ( 70-80ºS), and decreased again inside the vortex (high southern latitudes). Finally, longitude wave features displayed wave#1 and 2 components.

  13. Mars Reconnaissance Orbiter: Aerobraking Science Discoveries using the Accelerometer

    NASA Astrophysics Data System (ADS)

    Keating, Gerald M.; Bougher, S. W.

    2006-09-01

    The Mars Reconnaissance Orbiter (MRO) spacecraft was launched from the Kennedy Space Center in Florida on August 12, 2005, and arrived at Mars on March 10, 2006. Aerobraking in the martian thermosphere was conducted for nearly 5-months after arrival, enabling the desired MRO mapping orbit to be achieved. The MRO aerobraking phase began in early martian northern Spring (Ls = 36) and continued through early northern Summer (Ls 110), spanning approximately 500 orbits. The MRO periapsis latitude migrated slowly poleward/southward from 70ºS latitude upon aerobraking initiation, passed over the South pole (near Ls = 77), and moved rapidly northward to equatorial latitudes at aerobraking conclusion. Upper atmosphere sampling ( 100-200 km) was achieved on the dayside (LT 1900-2000) before polar crossing, and on the nightside (LT = 0200-0300) thereafter. These seasonal and latitude conditions are similar to a subset of those experienced by MGS during its post hiatus aerobraking Phase 2. Derived mass densities, scale heights, and estimated temperatures are the primary data products generated from each aeropass. The most important discovery of MRO aerobraking concerns the sampling of the thermosphere up to 200 km, far higher than previous MGS and Odyssey Accelerometers have achieved. This sampling contributes to the characterization of the Mars exobase region, which is required to predict and interpret atmospheric escape rates. In addition, thermospheric densities at a constant altitude were observed to decrease toward the southern (winter) pole, as expected from previous MGS experience. No winter polar warming was typically observed near the South pole. Thereafter, densities were measured to increase on the nightside as periapsis moved toward the equator. In general, thermospheric variability was observed to increase in the vicinity of the polar vortex boundary ( 70-80ºS), and decreased again inside the vortex (high southern latitudes). Finally, longitude wave features displayed wave#1 and 2 components.

  14. Acoustic relaxation of the hydro-mechanical system under critical expiration of swirl flow

    NASA Astrophysics Data System (ADS)

    Pozdeeva, I. G.; Mitrofanova, O. V.

    2018-03-01

    The mechanism of generation of acoustic oscillations associated with the formation of stable vortex structures in the moving fluid was considered for the impact swirl flow. Experimental studies were carried out to determine the relationship between large-scale vortex motion and acoustic effects in hydro-mechanical systems. It was shown that a sharp change of the amplitude-frequency characteristic of the acoustic oscillations of hydro-mechanical system corresponds to the maximal flow rate of the swirl flow. The established connection between the generation of sound waves and geometrical and regime parameters of the hydro-mechanical system formed the basis for the developed method of diagnostics of the processes of vortex formation.

  15. Scattering of a vortex pair by a single quantum vortex in a Bose–Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, L. A., E-mail: smirnov-lev@allp.sci-nnov.ru; Smirnov, A. I., E-mail: smirnov@appl.sci-nnov.ru; Mironov, V. A.

    We analyze the scattering of vortex pairs (the particular case of 2D dark solitons) by a single quantum vortex in a Bose–Einstein condensate with repulsive interaction between atoms. For this purpose, an asymptotic theory describing the dynamics of such 2D soliton-like formations in an arbitrary smoothly nonuniform flow of a ultracold Bose gas is developed. Disregarding the radiation loss associated with acoustic wave emission, we demonstrate that vortex–antivortex pairs can be put in correspondence with quasiparticles, and their behavior can be described by canonical Hamilton equations. For these equations, we determine the integrals of motion that can be used tomore » classify various regimes of scattering of vortex pairs by a single quantum vortex. Theoretical constructions are confirmed by numerical calculations performed directly in terms of the Gross–Pitaevskii equation. We propose a method for estimating the radiation loss in a collision of a soliton-like formation with a phase singularity. It is shown by direct numerical simulation that under certain conditions, the interaction of vortex pairs with a core of a single quantum vortex is accompanied by quite intense acoustic wave emission; as a result, the conditions for applicability of the asymptotic theory developed here are violated. In particular, it is visually demonstrated by a specific example how radiation losses lead to a transformation of a vortex–antivortex pair into a vortex-free 2D dark soliton (i.e., to the annihilation of phase singularities).« less

  16. Entanglement of solid vortex matter: a boomerang-shaped reduction forced by disorder in interlayer phase coherence in Bi2Sr2CaCu2O8+y.

    PubMed

    Kato, T; Shibauchi, T; Matsuda, Y; Thompson, J R; Krusin-Elbaum, L

    2008-07-11

    We present evidence for entangled solid vortex matter in a glassy state in a layered superconductor Bi2Sr2CaCu2O8+y containing randomly splayed linear defects. The interlayer phase coherence--probed by the Josephson plasma resonance--is enhanced at high temperatures, reflecting the recoupling of vortex liquid by the defects. At low temperatures in the vortex solid state, the interlayer coherence follows a boomerang-shaped reentrant temperature path with an unusual low-field decrease in coherence, indicative of meandering vortices. We uncover a distinct temperature scaling between in-plane and out-of-plane critical currents with opposing dependencies on field and time, consistent with the theoretically proposed "splayed-glass" state.

  17. Self-induced pinning of vortices in the presence of ac driving force in magnetic superconductors

    NASA Astrophysics Data System (ADS)

    Bulaevskii, Lev N.; Lin, Shi-Zeng

    2012-12-01

    We derive the response of the magnetic superconductors in the vortex state to the ac Lorentz force, FL(t)=Facsin(ωt), taking into account the interaction of vortices with the magnetic moments described by the relaxation dynamics (polaronic effect). At low amplitudes of the driving force Fac the dissipation in the system is suppressed due to the enhancement of the effective viscosity at low frequencies and due to formation of the magnetic pinning at high frequencies ω. In the adiabatic limit with low frequencies ω and high amplitude of the driving force Fac, the vortex and magnetic polarization form a vortex polaron when FL(t) is small. When FL increases, the vortex polaron accelerates and at a threshold driving force, the vortex polaron dissociates and the motion of vortex and the relaxation of magnetization are decoupled. When FL decreases, the vortex is retrapped by the background of remnant magnetization and they again form vortex polaron. This process repeats when FL(t) increases in the opposite direction. Remarkably, after dissociation, decoupled vortices move in the periodic potential induced by magnetization which remains for some periods of time due to retardation after the decoupling. At this stage vortices oscillate with high frequencies determined by the Lorentz force at the moment of dissociation. We derive also the creep rate of vortices and show that magnetic moments suppress creep rate.

  18. Numerical investigations of two-degree-of-freedom vortex-induced vibration in shear flow

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Liu, Mengke; Han, Yang; Li, Jian; Gui, Mingyue; Chen, Zhihua

    2017-06-01

    Exponential-polar coordinates attached to a moving cylinder are used to deduce the stream function-vorticity equations for two-degree-of-freedom vortex-induced vibration, the initial and boundary conditions, and the distribution of the hydrodynamic force, which consists of the vortex-induced force, inertial force, and viscous damping force. The fluid-structure interactions occurring from the motionless cylinder to the steady vibration are investigated numerically, and the variations of the flow field, pressure, lift/drag, and cylinder displacement are discussed. Both the dominant vortex and the cylinder shift, whose effects are opposite, affect the shear layer along the transverse direction and the secondary vortex along the streamwise direction. However, the effect of the cylinder shift is larger than that of the dominant vortices. Therefore, the former dominates the total effects of the flow field. Moreover, the symmetry of the flow field is broken with the increasing shear rate. With the effect of the background vortex, the upper vortices are strengthened, and the lower vortices are weakened; thus, the shear layer and the secondary vortices induced by the upper shedding vortices are strengthened, while the shear layer and the secondary vortices induced by the lower shedding vortices are weakened. Therefore, the amplitudes of the displacement and drag/lift dominated by the upper vortex are larger than those of the displacement and drag/lift dominated by the lower vortex.

  19. The Vortex Lattice Method for the Rotor-Vortex Interaction Problem

    NASA Technical Reports Server (NTRS)

    Padakannaya, R.

    1974-01-01

    The rotor blade-vortex interaction problem and the resulting impulsive airloads which generate undesirable noise levels are discussed. A numerical lifting surface method to predict unsteady aerodynamic forces induced on a finite aspect ratio rectangular wing by a straight, free vortex placed at an arbitrary angle in a subsonic incompressible free stream is developed first. Using a rigid wake assumption, the wake vortices are assumed to move downsteam with the free steam velocity. Unsteady load distributions are obtained which compare favorably with the results of planar lifting surface theory. The vortex lattice method has been extended to a single bladed rotor operating at high advance ratios and encountering a free vortex from a fixed wing upstream of the rotor. The predicted unsteady load distributions on the model rotor blade are generally in agreement with the experimental results. This method has also been extended to full scale rotor flight cases in which vortex induced loads near the tip of a rotor blade were indicated. In both the model and the full scale rotor blade airload calculations a flat planar wake was assumed which is a good approximation at large advance ratios because the downwash is small in comparison to the free stream at large advance ratios. The large fluctuations in the measured airloads near the tip of the rotor blade on the advance side is predicted closely by the vortex lattice method.

  20. New techniques for experimental generation of two-dimensional blade-vortex interaction at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Booth, E., Jr.; Yu, J. C.

    1986-01-01

    An experimental investigation of two dimensional blade vortex interaction was held at NASA Langley Research Center. The first phase was a flow visualization study to document the approach process of a two dimensional vortex as it encountered a loaded blade model. To accomplish the flow visualization study, a method for generating two dimensional vortex filaments was required. The numerical study used to define a new vortex generation process and the use of this process in the flow visualization study were documented. Additionally, photographic techniques and data analysis methods used in the flow visualization study are examined.

  1. Three-wave electron vortex lattices for measuring nanofields.

    PubMed

    Dwyer, C; Boothroyd, C B; Chang, S L Y; Dunin-Borkowski, R E

    2015-01-01

    It is demonstrated how an electron-optical arrangement consisting of two electron biprisms can be used to generate three-wave vortex lattices with effective lattice spacings between 0.1 and 1 nm. The presence of vortices in these lattices was verified by using a third biprism to perform direct phase measurements via off-axis electron holography. The use of three-wave lattices for nanoscale electromagnetic field measurements via vortex interferometry is discussed, including the accuracy of vortex position measurements and the interpretation of three-wave vortex lattices in the presence of partial spatial coherence. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Topological dynamics of vortex-line networks in hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Xue, Fei; Wang, Nan; Wang, Xueyun; Ji, Yanzhou; Cheong, Sang-Wook; Chen, Long-Qing

    2018-01-01

    The two-dimensional X Y model is the first well-studied system with topological point defects. On the other hand, although topological line defects are common in three-dimensional systems, the evolution mechanism of line defects is not fully understood. The six domains in hexagonal manganites converge to vortex lines in three dimensions. Using phase-field simulations, we predicted that during the domain coarsening process, the vortex-line network undergoes three types of basic topological changes, i.e., vortex-line loop shrinking, coalescence, and splitting. It is shown that the vortex-antivortex annihilation controls the scaling dynamics.

  3. Design and evaluation of a Dean vortex-based micromixer.

    PubMed

    Howell, Peter B; Mott, David R; Golden, Joel P; Ligler, Frances S

    2004-12-01

    A mixer, based on the Dean vortex, is fabricated and tested in an on-chip format. When fluid is directed around a curve under pressure driven flow, the high velocity streams in the center of the channel experience a greater centripetal force and so are deflected outward. This creates a pair of counter-rotating vortices moving fluid toward the inner wall at the top and bottom of the channel and toward the outer wall in the center. For the geometries studied, the vortices were first seen at Reynolds numbers between 1 and 10 and became stronger as the flow velocity is increased. Vortex formation was monitored in channels with depth/width ratios of 0.5, 1.0, and 2.0. The lowest aspect ratio strongly suppressed vortex formation. Increasing the aspect ratio above 1 appeared to provide improved mixing. This design has the advantages of easy fabrication and low surface area.

  4. Vortex-slip transitions in superconducting a-NbGe mesoscopic channels

    NASA Astrophysics Data System (ADS)

    Kokubo, N.; Sorop, T. G.; Besseling, R.; Kes, P. H.

    2006-06-01

    Intriguing and novel physical aspects related to the vortex flow dynamics have been recently observed in mesoscopic channel devices of a-NbGe with NbN channel edges. In this work we have systematically studied the flow properties of vortices confined in such mesoscopic channels as a function of the magnetic field history, using dc-transport and mode-locking (ML) measurements. As opposed to the field-down situation, in the field-up case a kink anomaly in the dc I-V curves is detected. The mode-locking measurements reveal that this anomaly is, in fact, a flow induced vortex slip transition: by increasing the external drive (either dc or ac) a sudden change occurs from n to n+2 moving vortex rows in the channel. The observed features can be explained in terms of an interplay between field focusing due to screening currents and a change in the predominant pinning mechanism.

  5. Phase coexistence and electric-field control of toroidal order in oxide superlattices

    DOE PAGES

    Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; ...

    2017-08-07

    Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3/SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1/a 2 phase. At room temperature, the coexisting vortexmore » and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Here, our findings suggest new cross-coupled functionalities.« less

  6. Vortex dynamics during blade-vortex interactions

    NASA Astrophysics Data System (ADS)

    Peng, Di; Gregory, James W.

    2015-05-01

    Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.

  7. Aircraft Wake Vortex Measurements at Denver International Airport

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Wang, Frank Y.; Booth, Earl R.; Watts, Michael E.; Fenichel, Neil; D'Errico, Robert E.

    2004-01-01

    Airport capacity is constrained, in part, by spacing requirements associated with the wake vortex hazard. NASA's Wake Vortex Avoidance Project has a goal to establish the feasibility of reducing this spacing while maintaining safety. Passive acoustic phased array sensors, if shown to have operational potential, may aid in this effort by detecting and tracking the vortices. During August/September 2003, NASA and the USDOT sponsored a wake acoustics test at the Denver International Airport. The central instrument of the test was a large microphone phased array. This paper describes the test in general terms and gives an overview of the array hardware. It outlines one of the analysis techniques that is being applied to the data and gives sample results. The technique is able to clearly resolve the wake vortices of landing aircraft and measure their separation, height, and sinking rate. These observations permit an indirect estimate of the vortex circulation. The array also provides visualization of the vortex evolution, including the Crow instability.

  8. Relationship between lunar tidal enhancements in the equatorial electrojet and tropospheric eddy heat flux during stratospheric sudden warmings

    NASA Astrophysics Data System (ADS)

    Siddiqui, T. A.; Yamazaki, Y.; Stolle, C.; Lühr, H.; Matzka, J.

    2017-12-01

    A number of studies in recent years have reported about the lunar tidal enhancements in the equatorial electrojet (EEJ) from ground- and space-based magnetometer measurements during stratospheric sudden warming (SSW) events. In this study, we make use of the ground magnetometer recordings at Huancayo observatory in Peru for the years 1978 - 2013 to derive a relationship between the lunar tidal enhancements in the EEJ and tropospheric eddy heat fluxes at 100 hPa during the SSW events. Tropospheric eddy heat fluxes are used to quantify the amount of wave activity entering the stratosphere. Anomalously large upward wave activity is known to precede the polar vortex breakdown during SSWs. We make use of the superposed epoch analysis method to determine the temporal relations between lunar tidal enhancements and eddy heat flux anomalies during SSWs, in order to demonstrate the causal relationship between these two phenomena. We also compare the lunar tidal enhancements and eddy heat flux anomalies for vortex split and for vortex displaced SSWs. It is found that larger lunar tidal enhancements are recorded for vortex split events, as compared to vortex displaced events. This confirms earlier observation; larger heat flux anomalies are recorded during vortex split SSW events than the heat flux anomalies during vortex displaced SSW events. Further, the temporal relations of lunar tidal enhancements in the EEJ have been compared separately for both the QBO phases and with the phases of the moon with respect to the central epoch of SSWs by means of the superposed epoch analysis approach. The EEJ lunar tidal enhancements in the east phase of QBO are found to be larger than the lunar tidal enhancements in the west phase of QBO. The phase of moon relative to the central SSW epoch also affects the lunar tidal enhancement in the EEJ. It is found that the lunar tidal enhancements are significantly larger when the day of new or full moon lies near the central SSW epoch, as compared to cases when new or full moon occur further away from the central SSW epoch.

  9. Vortex via process: analysis and mask fabrication for contact CDs <80 nm

    NASA Astrophysics Data System (ADS)

    Levenson, Marc D.; Tan, Sze M.; Dai, Grace; Morikawa, Yasutaka; Hayashi, Naoya; Ebihara, Takeaki

    2003-06-01

    In an optical vortex, the wavefront spirals like a corkscrew, rather than forming planes or spheres. Since any nonzero optical amplitude must have a well-defined phase, the axis of a vortex is always dark. Printed in negative resist at 248nm and NA=0.63, 250nm pitch vortex arrays would produce contact holes with 80nm0.6 can be patterned using a chromeless phase-edge mask composed of rectangles with nominal phases of 0°, 90°, 180° and 270°. Analytic and numerical calculations have been performed to characterize the aerial images projected from such vortex masks using the Kirchhoff-approximation and rigorous EMF methods. Combined with resist simulations, these analyses predict process windows with ~10%Elat and >200nm DOF for 80nm CDs on pitches greater than or equal to 250nm at σ greater than or equal to 0.15. Smaller CDs and pitches are possible with shorter wavelength and larger NA while larger pitches give rise to larger CDs. At pitch >0.8μm, the vortices begin to print independently for σ greater than or equal to 0.3. Such "independent" vortices have a quasi-isofocal dose that gives rise to 100nm contacts with Elat>9% and DOF>500nm at σ=0.3. The extra darkness of the nominal 270° phase step can be accommodated by fine-tuning the etch depth. A reticle fabrication process that achieves the required alignment and vertical wall profiles has been exercised and test masks analyzed. In an actual chip design, unwanted vortices and phase step images would be erased from the resist pattern by exposing the wafer with a second, more conventional trim mask. Vortex via placement is consistent with the coarse-gridded grating design paradigms which would - if widely exercised - lower the cost of the required reticles. Compared to other ways of producing deep sub-wavelength contacts, the vortex via process requires fewer masks and reduces the overlay and process control challenges. A high resolution negative-working resist process is essential, however.

  10. Quench dynamics of the three-dimensional U(1) complex field theory: Geometric and scaling characterizations of the vortex tangle.

    PubMed

    Kobayashi, Michikazu; Cugliandolo, Leticia F

    2016-12-01

    We present a detailed study of the equilibrium properties and stochastic dynamic evolution of the U(1)-invariant relativistic complex field theory in three dimensions. This model has been used to describe, in various limits, properties of relativistic bosons at finite chemical potential, type II superconductors, magnetic materials, and aspects of cosmology. We characterize the thermodynamic second-order phase transition in different ways. We study the equilibrium vortex configurations and their statistical and geometrical properties in equilibrium at all temperatures. We show that at very high temperature the statistics of the filaments is the one of fully packed loop models. We identify the temperature, within the ordered phase, at which the number density of vortex lengths falls off algebraically and we associate it to a geometric percolation transition that we characterize in various ways. We measure the fractal properties of the vortex tangle at this threshold. Next, we perform infinite rate quenches from equilibrium in the disordered phase, across the thermodynamic critical point, and deep into the ordered phase. We show that three time regimes can be distinguished: a first approach toward a state that, within numerical accuracy, shares many features with the one at the percolation threshold; a later coarsening process that does not alter, at sufficiently low temperature, the fractal properties of the long vortex loops; and a final approach to equilibrium. These features are independent of the reconnection rule used to build the vortex lines. In each of these regimes we identify the various length scales of the vortices in the system. We also study the scaling properties of the ordering process and the progressive annihilation of topological defects and we prove that the time-dependence of the time-evolving vortex tangle can be described within the dynamic scaling framework.

  11. Synchronized vortex shedding and sound radiation from two side-by-side rectangular cylinders of different cross-sectional aspect ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Octavianty, Ressa, E-mail: ressa-octavianty@ed.tmu.ac.jp; Asai, Masahito, E-mail: masai@tmu.ac.jp

    Synchronized vortex shedding from two side-by-side cylinders and the associated sound radiation were examined experimentally at Reynolds numbers of the order of 10{sup 4} in low-Mach-number flows. In addition to a pair of square cylinders, a pair of rectangular cylinders, one with a square cross section (d × d) and the other with a rectangular cross section (d × c) having a cross-sectional aspect ratio (c/d) of 1.2–1.5, was considered. The center-to-center distance between the two cylinders L/d was 3.6, 4.5, and 6.0; these settings were within the non-biased flow regime for side-by-side square cylinders. In case of a squaremore » cylinder pair, anti-phase synchronized vortex shedding occurring for L/d = 3.6 and 4.5 generated a quadrupole-like sound source which radiated in-phase, planar-symmetric sound in the far field. Synchronized vortex shedding from the two rectangular cylinders with different c/d also occurred with almost the same frequency as the characteristic frequency of the square-cylinder wake in the case of the small center-to-center distance, L/d = 3.6, for all the cylinder pairs examined. The synchronized sound field was anti-phase and asymmetric in amplitude, unlike the case of a square cylinder pair. For larger spacing L/d = 4.5, synchronized vortex shedding and anti-phase sound still occurred, but only for close cross-sectional aspect ratios (c/d = 1.0 and 1.2), and highly modulated sound was radiated with two different frequencies due to non-synchronized vortex shedding from the two cylinders for larger differences in c/d. It was also found that when synchronized vortex shedding occurred, near-wake velocity fluctuations exhibited high spanwise-coherency, with a very sharp spectral peak compared with the single-cylinder case.« less

  12. Vortex circulation and polarity patterns in closely packed cap arrays

    DOE PAGES

    Streubel, Robert; Kronast, Florian; Reiche, Christopher F.; ...

    2016-01-25

    For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetrymore » axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.« less

  13. Microwave Limb Sounder Measurements Depicting the Relationship Between Nitrous Oxide Levels and

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Aura's Microwave Limb Sounder measures nitrous oxide, which is unaffected by stratospheric chemical processes. By studying changes in its levels, scientists can better understand how air is moving around and how ozone is affected by that air motion, allowing them to differentiate those changes from the ones caused by chemical ozone destruction. In these cross-sections of nitrous oxide (top) and ozone (bottom) data from Aura, changes in the levels of these two chemicals at various temperatures and latitudes are depicted over time. The white contour shows the approximate location of the polar vortex boundary.

    The left panel data were collected on January 23, 2005, near the beginning of chemical ozone destruction this winter. Virtually all chemical loss occurred before March 10 (center panel). Ozone destruction extended throughout the polar vortex from about 15-20 kilometers (9-13 miles), but occurred only in the outer part of the vortex from 20-25 kilometers (13-16 miles). The differences between the two days are depicted in the right panel. The largest observed difference is about a 1.2 parts per million by volume decrease in ozone. Plots of nitrous oxide show a decrease in the region in the outer part of the vortex where most ozone loss occurs, indicating that air from above (where nitrous oxide is lower) has moved into this region. This downward motion brings higher ozone into the region where chemical loss is occurring, thus partially masking the effects of chemical loss. Calculations using Microwave Limb Sounder data to separate dynamical and chemical effects indicate maximum chemical ozone loss of approximately 2 parts per million by volume (approximately 60 percent) in the outer part of the vortex near 18-21 kilometers (11-13 miles), and approximately 1.5 parts per million by volume when averaged throughout the whole vortex region.

  14. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    NASA Astrophysics Data System (ADS)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    2007-11-01

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode ( φ = -75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1-H1 and S2-H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two anti-symmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  15. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    NASA Astrophysics Data System (ADS)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode (φ = - 75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1 - H1 and S2 - H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two antisymmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  16. Hover and Wind-Tunnel Testing of Shrouded Rotors for Improved Micro Air Vehicle Design

    DTIC Science & Technology

    2008-01-01

    and the shroud surface pressure distributions. The uniformity of the wake was improved by the presence of the shrouds and by decreasing the blade tip...213 3.35 Effect of blade tip clearance on shrouded-rotor exit-plane wake profiles215 3.36 Effects of changing blade tip clearance on induced...Wright [139] developed a vortex wake model for heavily loaded ducted fans, in which the “inner vortex sheets [shed from the blades ] move at a different

  17. Low flow vortex shedding flowmeter

    NASA Technical Reports Server (NTRS)

    Waugaman, Charles J.

    1989-01-01

    The purpose was to continue a development project on a no moving parts vortex shedding flowmeter used for flow measurement of hypergols. The project involved the design and construction of a test loop to evaluate the meter for flow of Freon which simulates the hypergol fluids. Results were obtained on the output frequency characteristics of the flow meter as a function of flow rate. A family of flow meters for larger size lines and ranges of flow was sized based on the results of the tested meter.

  18. Phase-Field Simulations of Topological Structures and Topological Phase Transitions in Ferroelectric Oxide Heterostructures

    NASA Astrophysics Data System (ADS)

    Zijian Hong

    Ferroelectrics are materials that exhibit spontaneous electric polarization which can be switched between energy-degenerated states by external stimuli (e.g., mechanical force and electric field) that exceeds a critical value. They have wide potential applications in memories, capacitors, piezoelectric and pyroelectric sensors, and nanomechanical systems. Topological structures and topological phase transitions have been introduced to the condensed matter physics in the past few decades and have attracted broad attentions in various disciplines due to the rich physical insights and broad potential applications. Ferromagnetic topological structures such as vortex and skyrmion are known to be stabilized by the antisymmetric chiral interaction (e.g., Dzyaloshinskii-Moriya interaction). Without such interaction, ferroelectric topological structures (i.e., vortex, flux-closure, skyrmions, and merons) have been studied only recently with other designing strategies, such as reducing the dimension of the ferroelectrics. The overarching goal of this dissertation is to investigate the topological structures in ferroelectric oxide perovskites as well as the topological phase transitions under external applied forces. Pb(Zr,Ti)O3 (PZT) with morphotropic phase boundary is widely explored for high piezoelectric and dielectric properties. The domain structure of PZT tetragonal/rhombohedral (T/R) bilayer is investigated. Strong interfacial coupling is shown, with large polarization rotation to a lower symmetry phase near the T/R interface. Interlayer domain growth can also be captured, with T-domains in the R layer and R-domains in the T layer. For thin PZT bilayer with 5nm of T-layer and 20 nm of R-layer, the a1/a 2 twin domain structure is formed in the top T layer, which could be fully switched to R domains under applied bias. While a unique flux-closure pattern is observed both theoretically and experimentally in the thick bilayer film with 50 nm of thickness for both T and R layers. It is revealed that the bilayer system could facilitate the motion of the ferroelastic adomain in the top T-layer since the a-domain is not directly embedded in the substrate with high density of defects which can pin the domain wall. Excellent dielectric and piezoelectric responses are demonstrated due to the large polarization rotation and the highly mobile domain walls in both the thick and thin bilayer systems. density of defects which can pin the domain wall. Excellent dielectric and piezoelectric responses are demonstrated due to the large polarization rotation and the highly mobile domain walls in both the thick and thin bilayer systems. The long-range ordered polar vortex array is observed in the (PbTiO 3)n/(SrTiO3)n (PTOn/STOn with n=10˜20) superlattices with combined experimental and theoretical studies. Phase-field simulations reveal the three-dimensional textures of the polar vortex arrays. The neighboring vortices rotate in the opposite directions, which extended into tube-like vortex lines perpendicular to the vortex plane. The thickness-dependent phase diagram is predicted and verified by experimental observations. The energetics (the contributions from elastic, electrostatic, gradient and Landau chemical energies) accompanying the phase transitions are analyzed in details. The dominating depolarization energy at short periodicity (n<10) favors a1/ a2 twin domain, while the large elastic relaxation and Landau energy reduction at large periodicity (n>20) leads to the formation of flux-closure domain with both 90° a/c domain walls and 180° c+/c - domain walls, counterbalancing of the individual energies at intermediate periodicities (n=10˜20) gives rise to the formation of exotic vortex structure with continuous polarization rotation surrounding a singularity-like vortex core. Analytical calculations are performed, showing that the stability of the polar vortex structure is directly related to the length of Pi times bulk domain wall width, where vortex structure can be expected when the geometric length scale of the ferroelectrics is close to this value. The role of insulating STO is further revealed, which shows that a rich phase diagram can be formed by simply tuning the thickness of this layer. Wave-like polar spiral phase is simulated by substituting part of the PTO with BiFeO3 (BFO) in the PTO/STO superlattice (i.e., in a (PTO) 4/(BFO)4/(PTO)4/(STO)12 tricolor system) which has demonstrate ordered polar vortex lattice. This spiral phase is made up of semi-vortex cores that are floating up-down in the ferroelectric PTO layers, giving rise to a net in-plane polarization. An increase of Curie temperature and topological to regular domain transition temperature (over 200 K) is observed, due to the higher Curie temperature and larger spontaneous polarization in BFO layers. This unidirectional spiral state can be reversibly switched by experimentally feasible in-plane field, which evolves into a metastable vortex structure in-between two spiral phases with opposite in-plane directions. (Abstract shortened by ProQuest.).

  19. Correlation matching method for high-precision position detection of optical vortex using Shack-Hartmann wavefront sensor.

    PubMed

    Huang, Chenxi; Huang, Hongxin; Toyoda, Haruyoshi; Inoue, Takashi; Liu, Huafeng

    2012-11-19

    We propose a new method for realizing high-spatial-resolution detection of singularity points in optical vortex beams. The method uses a Shack-Hartmann wavefront sensor (SHWS) to record a Hartmanngram. A map of evaluation values related to phase slope is then calculated from the Hartmanngram. The position of an optical vortex is determined by comparing the map with reference maps that are calculated from numerically created spiral phases having various positions. Optical experiments were carried out to verify the method. We displayed various spiral phase distribution patterns on a phase-only spatial light modulator and measured the resulting singularity point using the proposed method. The results showed good linearity in detecting the position of singularity points. The RMS error of the measured position of the singularity point was approximately 0.056, in units normalized to the lens size of the lenslet array used in the SHWS.

  20. Berry phase from vortex dynamics in BCS superconductors revisited

    NASA Astrophysics Data System (ADS)

    Tanaka, Akihiro; Machida, Masahiko

    1999-02-01

    Motivated by a recent series of papers by Ao et al., we reconsider the Berry phase produced by an adiabatic motion of a vortex in an s-wave BCS superconductor. Avoiding the use of the gradient expansion approach which may give rise to ambiguity in the presence of vortices, we make certain assumptions which enable us to extend the methods of Goff, Gaitan and Stone, originally used in the context of superfluid dynamics of 3He, to our vortex problem. Using the pseudo-spin representation of the BCS Hamiltonian, contributions to the Berry phase coming from each quasiparticle state constituting the ground state are added together to give a total phase proportional to n- C0, where n≡ {1}/{2}∑ pσ(1-ɛ/ ɛ 2+|Δ| 2) and C 0≡∑ pσΘ(-ɛ)=p 3F/3π 2 are the superconducting and normal electron densities, respectively. We consider this to be a clear counterexample to Ao's claim that the only possible hydrodynamic transverse force exerted on a vortex is a Magnus force proportional to n. Relations to the spectral-flow phenomenology of Volovik, and a brief discussion on possible extension to the cuprate superconductors, are suggested.

  1. Investigation on filter method for smoothing spiral phase plate

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanhang; Wen, Shenglin; Luo, Zijian; Tang, Caixue; Yan, Hao; Yang, Chunlin; Liu, Mincai; Zhang, Qinghua; Wang, Jian

    2018-03-01

    Spiral phase plate (SPP) for generating vortex hollow beams has high efficiency in various applications. However, it is difficult to obtain an ideal spiral phase plate because of its continuous-varying helical phase and discontinued phase step. This paper describes the demonstration of continuous spiral phase plate using filter methods. The numerical simulations indicate that different filter method including spatial domain filter, frequency domain filter has unique impact on surface topography of SPP and optical vortex characteristics. The experimental results reveal that the spatial Gaussian filter method for smoothing SPP is suitable for Computer Controlled Optical Surfacing (CCOS) technique and obtains good optical properties.

  2. A technique for simultaneous detection of individual vortex states of Laguerre-Gaussian beams transmitted through an aqueous suspension of microparticles

    NASA Astrophysics Data System (ADS)

    Khonina, S. N.; Karpeev, S. V.; Paranin, V. D.

    2018-06-01

    A technique for simultaneous detection of individual vortex states of the beams propagating in a randomly inhomogeneous medium is proposed. The developed optical system relies on the correlation method that is invariant to the beam wandering. The intensity distribution formed at the optical system output does not require digital processing. The proposed technique based on a multi-order phase diffractive optical element (DOE) is studied numerically and experimentally. The developed detection technique is used for the analysis of Laguerre-Gaussian vortex beams propagating under conditions of intense absorption, reflection, and scattering in transparent and opaque microparticles in aqueous suspensions. The performed experimental studies confirm the relevance of the vortex phase dependence of a laser beam under conditions of significant absorption, reflection, and scattering of the light.

  3. Theory of the vortex matter transformations in high-Tc superconductor YBCO.

    PubMed

    Li, Dingping; Rosenstein, Baruch

    2003-04-25

    Flux line lattice in type II superconductors undergoes a transition into a "disordered" phase such as vortex liquid or vortex glass, due to thermal fluctuations and random quenched disorder. We quantitatively describe the competition between the thermal fluctuations and the disorder using the Ginzburg-Landau approach. The following T-H phase diagram of YBCO emerges. There are just two distinct thermodynamical phases, the homogeneous and the crystalline one, separated by a single first order transition line. The line, however, makes a wiggle near the experimentally claimed critical point at 12 T. The "critical point" is reinterpreted as a (noncritical) Kauzmann point in which the latent heat vanishes and the line is parallel to the T axis. The magnetization, the entropy, and the specific heat discontinuities at melting compare well with experiments.

  4. Elliptical vortex and oblique vortex lattice in the FeSe superconductor based on the nematicity and mixed superconducting orders

    NASA Astrophysics Data System (ADS)

    Lu, Da-Chuan; Lv, Yang-Yang; Li, Jun; Zhu, Bei-Yi; Wang, Qiang-Hua; Wang, Hua-Bing; Wu, Pei-Heng

    2018-03-01

    The electronic nematic phase is characterized as an ordered state of matter with rotational symmetry breaking, and has been well studied in the quantum Hall system and the high-Tc superconductors, regardless of cuprate or pnictide family. The nematic state in high-Tc systems often relates to the structural transition or electronic instability in the normal phase. Nevertheless, the electronic states below the superconducting transition temperature is still an open question. With high-resolution scanning tunneling microscope measurements, direct observation of vortex core in FeSe thin films revealed the nematic superconducting state by Song et al. Here, motivated by the experiment, we construct the extended Ginzburg-Landau free energy to describe the elliptical vortex, where a mixed s-wave and d-wave superconducting order is coupled to the nematic order. The nematic order induces the mixture of two superconducting orders and enhances the anisotropic interaction between the two superconducting orders, resulting in a symmetry breaking from C4 to C2. Consequently, the vortex cores are stretched into an elliptical shape. In the equilibrium state, the elliptical vortices assemble a lozenge-like vortex lattice, being well consistent with experimental results.

  5. Dynamic stall - The case of the vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Laneville, A.; Vittecoq, P.

    1986-05-01

    This paper presents the results of an experimental investigation on a driven Darrieus turbine rotating at different tip speed ratios. For a Reynolds number of 3.8 x 10 to the 4th, the results indicate the presence of dynamic stall at tip speed ratio less than 4, and that helicopter blade aerodynamics can be used in order to explain some aspects of the phenomenon. It was observed that in deep stall conditions, a vortex is formed at the leading edge; this vortex moves over the airfoil surface with 1/3 of the airfoil speed and then is shed at the trailing edge. After its shedding, the vortex can interact with the airfoil surface as the blade passes downstream.

  6. Vortex Formation in the Wake of Dark Matter Propulsion

    NASA Astrophysics Data System (ADS)

    Robertson, G. A.; Pinheiro, M. J.

    Future spaceflight will require a new theory of propulsion; specifically one that does not require mass ejection. A new theory is proposed that uses the general view that closed currents pervade the entire universe and, in particular, there is a cosmic mechanism to expel matter to large astronomical distances involving vortex currents as seen with blazars and blackholes. At the terrestrial level, force producing vortices have been related to the motion of wings (e.g., birds, duck paddles, fish's tail). In this paper, vortex structures are shown to exist in the streamlines aft of a spaceship moving at high velocity in the vacuum. This is accomplished using the density excitation method per a modified Chameleon Cosmology model. This vortex structure is then shown to have similarities to spacetime models as Warp-Drive and wormholes, giving rise to the natural extension of Hawking and Unruh radiation, which provides the propulsive method for space travel where virtual electron-positron pairs, absorbed by the gravitational expansion forward of the spaceship emerge from an annular vortex field aft of the spaceship as real particles, in-like to propellant mass ejection in conventional rocket theory.

  7. Two regimes of vortex penetration into platelet-shaped type-II superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, E. H.; Mikitik, G. P., E-mail: mikitik@ilt.kharkov.ua; Zeldov, E.

    Vortex penetration into a thin superconducting strip of a rectangular cross section is considered at an increasing applied magnetic field H{sub a}, taking an interplay between the Bean-Livingston and the geometric barriers in the sample into account. We calculate the magnetic field H{sub p} at which the penetration begins and show that two regimes of vortex penetration are possible. In the first regime, vortices appearing at the corners of the strip at H{sub a} = H{sub p} immediately move to its center, where a vortex dome starts to develop. In the second regime, the penetration occurs in two stages. Inmore » the first stage, at H{sub a} < H{sub p}, tilted vortices penetrate into the edge regions of the strip, where novel domes are shown to be formed at the top, bottom, and lateral surfaces. In the second stage, at H{sub a} = H{sub p}, the vortex propagation to the center becomes possible. The difference between the regimes manifests itself in slightly different dependences of the magnetic moment of the strip on H{sub a}.« less

  8. Characterization of intraventricular flow patterns in healthy neonates from conventional color-Doppler ultrasound

    NASA Astrophysics Data System (ADS)

    Tejman-Yarden, Shai; Rzasa, Callie; Benito, Yolanda; Alhama, Marta; Leone, Tina; Yotti, Raquel; Bermejo, Javier; Printz, Beth; Del Alamo, Juan C.

    2012-11-01

    Left ventricular vortices have been difficult to visualize in the clinical setting due to the lack of quantitative non-invasive modalities, and this limitation is especially important in pediatrics. We have developed and validated a new technique to reconstruct two-dimensional time-resolved velocity fields in the LV from conventional transthoracic color-Doppler images. This non-invasive modality was used to image LV flow in 10 healthy full-term neonates, ages 24-48 hours. Our results show that, in neonates, a diastolic vortex developed during LV filling, was maintained during isovolumic contraction, and decayed during the ejection period. The vortex was created near the base of the ventricle, moved toward the apex, and then back toward the base and LVOT during ejection. In conclusion, we have characterized for the first time the properties of the LV filling vortex in normal neonates, demonstrating that this vortex channels blood from the inflow to the outflow tract of the LV. Together with existing data from adults, our results confirm that the LV vortex is conserved through adulthood. Funded by NIH Grant R21HL108268.

  9. The effect of butterfly-scale inspired patterning on leading-edge vortex growth

    NASA Astrophysics Data System (ADS)

    Wilroy, Jacob; Lang, Amy; Wahidi, Redha

    2014-11-01

    Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, we designed an experiment to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically we are interested in the secondary vorticity generated by the LEV interacting at the patterned surface and how this can affect the growth rate of the circulation in the LEV. For this experiment we used rapid-prototyped longitudinal and transverse square grooves attached to a flat plate and compared the vortex formation as the plate moved vertically. The plate is impulsively started in quiescent water and flow fields at Re = 1500, 3000, and 6000 are examined using Digital Particle Image Velocimetry (DPIV). The vortex formation time is 0.6 and is based on the flat plate travel length and chord length. Support for this research came from NSF REU Grant 1358991 and CBET 1335848.

  10. The effect of butterfly-scale inspired patterning on leading-edge vortex growth

    NASA Astrophysics Data System (ADS)

    Wilroy, Jacob; Lang, Amy

    2015-11-01

    Leading edge vortices (LEVs) are important for generating thrust and lift in flapping flight, and the surface patterning (scales) on butterfly wings is hypothesized to play a role in the vortex formation of the LEV. To simplify this complex flow problem, an experiment was designed to focus on the alteration of 2-D vortex development with a variation in surface patterning. Specifically, the secondary vorticity generated by the LEV interacting at the patterned surface was studied and the subsequent affect on the growth rate of the circulation in the LEV. For this experiment we used butterfly inspired grooves attached to a flat plate and compared the vortex formation to a smooth plate case as the plate moved vertically. The plate is impulsively started in quiescent water and flow fields at Re = 1500, 3000, and 6000 are examined using Digital Particle Image Velocimetry (DPIV). The vortex formation time is 3.0 and is based on the flat plate travel length and chord length. We would like to thank the National Science Foundation REU Site Award 1358991 for funding this research.

  11. Simulator study of vortex encounters by a twin-engine, commercial, jet transport airplane

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.; Keyser, G. L., Jr.

    1982-01-01

    A simulator study of vortex encounters was conducted for a twin-engine, commercial, jet transport airplane encountering the vortex flow field of a heavy, four-engine, commercial, jet transport airplane in the final-approach configuration. The encounters were conducted with fixed controls and with a pilot using a state-of-the-art, manual-control system. Piloted encounters with the base-line vortex flow field out of ground effect (unattenuated) resulted in initial bank-angle excursions greater than 40 deg, coupled with initial sideslip-angle excursions greater than 10 deg. The severity of these initial upsets was significantly reduced when the vortex center was moved laterally or vertically away from the flight path of the encountering airplane. Smaller reductions occurred when the flow field was attenuated by the flight spoilers on the generating airplane. The largest reduction in the severity of the initial upsets, however, was from aging in ground effect. The severity of the initial upsets of the following airplane was relatively unaffected by the approach speed. Increasing the lift coefficient of the generating airplane resulted in an increase in the severity of the initial upsets.

  12. Mesoscopic Vortex–Meissner currents in ring ladders

    NASA Astrophysics Data System (ADS)

    Haug, Tobias; Amico, Luigi; Dumke, Rainer; Kwek, Leong-Chuan

    2018-07-01

    Recent experimental progress have revealed Meissner and Vortex phases in low-dimensional ultracold atoms systems. Atomtronic setups can realize ring ladders, while explicitly taking the finite size of the system into account. This enables the engineering of quantized chiral currents and phase slips in between them. We find that the mesoscopic scale modifies the current. Full control of the lattice configuration reveals a reentrant behavior of Vortex and Meissner phases. Our approach allows a feasible diagnostic of the currents’ configuration through time-of-flight measurements.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streubel, Robert; Kronast, Florian; Reiche, Christopher F.

    For this work, we studied curvature-driven modifications to the magnetostatic coupling of vortex circulation and polarity in soft-magnetic closely packed cap arrays. A phase diagram for the magnetic remanent/transition states at room temperature as a function of diameter and thickness was assembled. For specimens with vortex remanent state (40 nm-thick Permalloy on 330 nm spherical nanoparticles), both vortex circulation and polarity were visualized. Intercap coupling upon vortex nucleation leads to the formation of vortex circulation patterns in closely packed arrays. The remanent circulation pattern can be tailored choosing the direction of the applied magnetic field with respect to the symmetrymore » axis of the hexagonal array. An even and random distribution of vortex polarity indicates the absence of any circulation-polarity coupling.« less

  14. On the Scattering of Sound by a Rectilinear Vortex

    NASA Astrophysics Data System (ADS)

    HOWE, M. S.

    1999-11-01

    A re-examination is made of the two-dimensional interaction of a plane, time-harmonic sound wave with a rectilinear vortex of small core diameter at low Mach number. Sakov [1] and Ford and Smith [2] have independently resolved the “infinite forward scatter” paradox encountered in earlier applications of the Born approximation to this problem. The first order scattered field (Born approximation) has nulls in the forward and back scattering directions, but the interaction of the wave with non-acoustically compact components of the vortex velocity field causes wavefront distortion, and the phase of the incident wave to undergo a significant variation across a parabolic domain whose axis extends along the direction of forward scatter from the vortex core. The transmitted wave crests of the incident wave become concave and convex, respectively, on opposite sides of the axis of the parabola, and focusing and defocusing of wave energy produces corresponding increases and decreases in wave amplitude. Wave front curvature decreases with increasing distance from the vortex core, with the result that the wave amplitude and phase are asymptotically equal to the respective values they would have attained in the absence of the vortex. The transverse acoustic dipole generated by translational motion of the vortex at the incident wave acoustic particle velocity, and the interaction of the incident wave with acoustically compact components of the vortex velocity field, are responsible for a system of cylindrically spreading, scattered waves outside the parabolic domain.

  15. Vortex Airy beams directly generated via liquid crystal q-Airy-plates

    NASA Astrophysics Data System (ADS)

    Wei, Bing-Yan; Liu, Sheng; Chen, Peng; Qi, Shu-Xia; Zhang, Yi; Hu, Wei; Lu, Yan-Qing; Zhao, Jian-Lin

    2018-03-01

    Liquid crystal q-Airy-plates with director distributions integrated by q-plates and polarization Airy masks are proposed and demonstrated via the photoalignment technique. Single/dual vortex Airy beams of opposite topological charges and orthogonal circular polarizations are directly generated with polarization-controllable characteristic. The singular phase of the vortex part is verified by both astigmatic transformation and digital holography. The trajectory of vortex Airy beams is investigated, manifesting separate propagation dynamics of optical vortices and Airy beams. Meanwhile, Airy beams still keep their intrinsic transverse acceleration, self-healing, and nondiffraction features. This work provides a versatile candidate for generating high-quality vortex Airy beams.

  16. Anomalous Josephson effect controlled by an Abrikosov vortex

    NASA Astrophysics Data System (ADS)

    Mironov, S.; Goldobin, E.; Koelle, D.; Kleiner, R.; Tamarat, Ph.; Lounis, B.; Buzdin, A.

    2017-12-01

    The possibility of a fast and precise Abrikosov vortex manipulation by a focused laser beam opens the way to create laser-driven Josephson junctions. We theoretically demonstrate that a vortex pinned in the vicinity of the Josephson junction generates an arbitrary ground state phase which can be equal not only to 0 or π but to any desired φ0 value in between. Such φ0 junctions have many peculiar properties and may be effectively controlled by the optically driven Abrikosov vortex. Also we theoretically show that the Josephson junction with the embedded vortex can serve as an ultrafast memory cell operating at sub THz frequencies.

  17. Feasibility of wake vortex monitoring systems for air terminals

    NASA Technical Reports Server (NTRS)

    Wilson, D. J.; Shrider, K. R.; Lawrence, T. R.

    1972-01-01

    Wake vortex monitoring systems, especially those using laser Doppler sensors, were investigated. The initial phases of the effort involved talking with potential users (air traffic controllers, pilots, etc.) of a wake vortex monitoring system to determine system requirements from the user's viewpoint. These discussions involved the volumes of airspace to be monitored for vortices, and potential methods of using the monitored vortex data once the data are available. A subsequent task led to determining a suitable mathematical model of the vortex phenomena and developing a mathematical model of the laser Doppler sensor for monitoring the vortex flow field. The mathematical models were used in combination to help evaluate the capability of laser Doppler instrumentation in monitoring vortex flow fields both in the near vicinity of the sensor (within 1 kilometer and at long ranges(10 kilometers).

  18. Universality of the Berezinskii-Kosterlitz-Thouless type of phase transition in the dipolar XY-model

    NASA Astrophysics Data System (ADS)

    Vasiliev, A. Yu; Tarkhov, A. E.; Menshikov, L. I.; Fedichev, P. O.; Fischer, Uwe R.

    2014-05-01

    We investigate the nature of the phase transition occurring in a planar XY-model spin system with dipole-dipole interactions. It is demonstrated that a Berezinskii-Kosterlitz-Thouless (BKT) type of phase transition always takes place at a finite temperature separating the ordered (ferro) and the disordered (para) phases. The low-temperature phase corresponds to an ordered state with thermal fluctuations, composed of a ‘gas’ of bound vortex-antivortex pairs, which would, when considered isolated, be characterized by a constant vortex-antivortex attraction force which is due to the dipolar interaction term in the Hamiltonian. Using a topological charge model, we show that small bound pairs are easily polarized, and screen the vortex-antivortex interaction in sufficiently large pairs. Screening changes the linear attraction potential of vortices to a logarithmic one, and leads to the familiar pair dissociation mechanism of the BKT type phase transition. The topological charge model is confirmed by numerical simulations, in which we demonstrate that the transition temperature slightly increases when compared with the BKT result for short-range interactions.

  19. Universality in the Self Organized Critical behavior of a cellular model of superconducting vortex dynamics

    NASA Astrophysics Data System (ADS)

    Sun, Yudong; Vadakkan, Tegy; Bassler, Kevin

    2007-03-01

    We study the universality and robustness of variants of the simple model of superconducting vortex dynamics first introduced by Bassler and Paczuski in Phys. Rev. Lett. 81, 3761 (1998). The model is a coarse-grained model that captures the essential features of the plastic vortex motion. It accounts for the repulsive interaction between vortices, the pining of vortices at quenched disordered locations in the material, and the over-damped dynamics of the vortices that leads to tearing of the flux line lattice. We report the results of extensive simulations of the critical ``Bean state" dynamics of the model. We find a phase diagram containing four distinct phases of dynamical behavior, including two phases with distinct Self Organized Critical (SOC) behavior. Exponents describing the avalanche scaling behavior in the two SOC phases are determined using finite-size scaling. The exponents are found to be robust within each phase and for different variants of the model. The difference of the scaling behavior in the two phases is also observed in the morphology of the avalanches.

  20. Quantum vortex melting and phase diagram in the layered organic superconductor κ -(BEDT-TTF)2Cu(NCS ) 2

    NASA Astrophysics Data System (ADS)

    Uji, S.; Fujii, Y.; Sugiura, S.; Terashima, T.; Isono, T.; Yamada, J.

    2018-01-01

    Resistance and magnetic torque measurements have been performed to investigate vortex phases for a layered organic superconductor κ -(BEDT-TTF) 2Cu (NCS) 2 [BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene], which is modeled as stacks of Josephson junctions. At 25 mK, the out-of-plane resistivity increases at 0.6 T, has a step feature up to 4 T, and then increases again, whereas the in-plane resistivity monotonically increases above 4 T. The results show that both pancake vortices (PVs) and Josephson vortices (JVs) are in solid phases for μ0H <0.6 T, but only JVs are in a liquid phase for 0.6 <μ0H <4 T. For μ0H >4 T, both PVs and JVs are in liquid phases. These melting transitions are predominantly induced by quantum fluctuations (not by thermal fluctuations). In the magnetic torque curves, the irreversibility transition is clearly observed, roughly corresponding to the melting transition of the PVs but no anomaly is found at the JV melting transition. The detailed vortex phase diagram is determined in a wide temperature region.

  1. Reconstructing a plasmonic metasurface for a broadband high-efficiency optical vortex in the visible frequency.

    PubMed

    Lu, Bing-Rui; Deng, Jianan; Li, Qi; Zhang, Sichao; Zhou, Jing; Zhou, Lei; Chen, Yifang

    2018-06-14

    Metasurfaces consisting of a two-dimensional metallic nano-antenna array are capable of transferring a Gaussian beam into an optical vortex with a helical phase front and a phase singularity by manipulating the polarization/phase status of light. This miniaturizes a laboratory scaled optical system into a wafer scale component, opening up a new area for broad applications in optics. However, the low conversion efficiency to generate a vortex beam from circularly polarized light hinders further development. This paper reports our recent success in improving the efficiency over a broad waveband at the visible frequency compared with the existing work. The choice of material, the geometry and the spatial organization of meta-atoms, and the fabrication fidelity are theoretically investigated by the Jones matrix method. The theoretical conversion efficiency over 40% in the visible wavelength range is worked out by systematic calculation using the finite difference time domain (FDTD) method. The fabricated metasurface based on the parameters by theoretical optimization demonstrates a high quality vortex in optical frequencies with a significantly enhanced efficiency of over 20% in a broad waveband.

  2. Vortex algebra by multiply cascaded four-wave mixing of femtosecond optical beams.

    PubMed

    Hansinger, Peter; Maleshkov, Georgi; Garanovich, Ivan L; Skryabin, Dmitry V; Neshev, Dragomir N; Dreischuh, Alexander; Paulus, Gerhard G

    2014-05-05

    Experiments performed with different vortex pump beams show for the first time the algebra of the vortex topological charge cascade, that evolves in the process of nonlinear wave mixing of optical vortex beams in Kerr media due to competition of four-wave mixing with self-and cross-phase modulation. This leads to the coherent generation of complex singular beams within a spectral bandwidth larger than 200nm. Our experimental results are in good agreement with frequency-domain numerical calculations that describe the newly generated spectral satellites.

  3. Mesoscale cyclogenesis dynamics over the southwestern Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Carrasco, Jorge F.; Bromwich, David H.

    1993-07-01

    Previous work has shown that frequent mesoscale cyclogenesis adjacent to Franklin Island is linked to the strong and persistent katabatic winds from East Antarctica which funnel into Terra Nova Bay and then blow out over the southwestern Ross Sea. Four mesoscale cyclones that formed near Terra Nova Bay between February 16 and 20, 1988 are examined to more clearly define the governing mechanisms. These events are investigated using all available observations, including automatic weather station data, high-resolution satellite images, satellite soundings, and hemispheric synoptic analyses. The first two cyclones formed on low-level baroclinic zones established by the synoptic scale advection of warm moist air toward the cold continental air blowing gently from East Antarctica. In the second case, baroclinic instability of this small-scale cold front was apparently triggered by the enhanced upward vertical motion associated with the approach of a midtropospheric trough. The third mesocyclone formed shortly after on a baroclinic zone over the polar plateau; the second vortex completely disrupted the usual katabatic drainage over the plateau and forced warm moist air over the coastal slopes. All three cyclones moved to the north in the prevailing cyclonic flow, but the plateau vortex lasted for only 6 hours. The fourth mesoscale low formed in conjunction with an abrupt and intense surge of katabatic air from Terra Nova Bay which resharpened the coastal baroclinic zone. At the same time a transiting midtropospheric trough probably associated with lower tropospheric upward vertical motion apparently accelerated the katabatic winds and triggered the vortex formation. A similar katabatic wind-forced mesocyclone formed near Byrd Glacier. The two vortices moved to the east-southeast and northeast, respectively, apparently being steered by the generating katabatic airstreams, and merged just to the north of the Ross Ice Shelf. The combined vortex reintensified as another trough passed overhead and moved eastward to West Antarctica where it dissipated two days later.

  4. Direct emission of chirality controllable femtosecond LG01 vortex beam

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, S.; Yang, H.; Xie, J.; Jiang, S.; Feng, G.; Zhou, S.

    2018-05-01

    Direct emission of a chirality controllable ultrafast LG01 mode vortex optical beam from a conventional z-type cavity design SESAM (SEmiconductor Saturable Absorber Mirror) mode locked LD pumped Yb:Phosphate laser has been demonstrated. A clean 360 fs vortex beam of ˜45.7 mW output power has been achieved. A radial shear interferometer has been built to determine the phase singularity and the wavefront helicity of the ultrafast output laser. Theoretically, it is found that the LG01 vortex beam is obtained via the combination effect of diagonal HG10 mode generation by off-axis pumping and the controllable Gouy phase difference between HG10 and HG01 modes in the sagittal and tangential planes. The chirality of the LG01 mode can be manipulated by the pump position to the original point of the laser cavity optical axis.

  5. Interactions and scattering of quantum vortices in a polariton fluid.

    PubMed

    Dominici, Lorenzo; Carretero-González, Ricardo; Gianfrate, Antonio; Cuevas-Maraver, Jesús; Rodrigues, Augusto S; Frantzeskakis, Dimitri J; Lerario, Giovanni; Ballarini, Dario; De Giorgi, Milena; Gigli, Giuseppe; Kevrekidis, Panayotis G; Sanvitto, Daniele

    2018-04-13

    Quantum vortices, the quantized version of classical vortices, play a prominent role in superfluid and superconductor phase transitions. However, their exploration at a particle level in open quantum systems has gained considerable attention only recently. Here we study vortex pair interactions in a resonant polariton fluid created in a solid-state microcavity. By tracking the vortices on picosecond time scales, we reveal the role of nonlinearity, as well as of density and phase gradients, in driving their rotational dynamics. Such effects are also responsible for the split of composite spin-vortex molecules into elementary half-vortices, when seeding opposite vorticity between the two spinorial components. Remarkably, we also observe that vortices placed in close proximity experience a pull-push scenario leading to unusual scattering-like events that can be described by a tunable effective potential. Understanding vortex interactions can be useful in quantum hydrodynamics and in the development of vortex-based lattices, gyroscopes, and logic devices.

  6. Vortex Domain Structure in Ferroelectric Nanoplatelets and Control of its Transformation by Mechanical Load

    PubMed Central

    Chen, W. J.; Zheng, Yue; Wang, Biao

    2012-01-01

    Vortex domain patterns in low-dimensional ferroelectrics and multiferroics have been extensively studied with the aim of developing nanoscale functional devices. However, control of the vortex domain structure has not been investigated systematically. Taking into account effects of inhomogeneous electromechanical fields, ambient temperature, surface and size, we demonstrate significant influence of mechanical load on the vortex domain structure in ferroelectric nanoplatelets. Our analysis shows that the size and number of dipole vortices can be controlled by mechanical load, and yields rich temperature-stress (T-S) phase diagrams. Simulations also reveal that transformations between “vortex states” induced by the mechanical load are possible, which is totally different from the conventional way controlled on the vortex domain by the electric field. These results are relevant to application of vortex domain structures in ferroelectric nanodevices, and suggest a novel route to applications including memories, mechanical sensors and transducers. PMID:23150769

  7. The Effect of Pitching Phase on the Vortex Circulation for a Flapping Wing During Stroke Reversal

    NASA Astrophysics Data System (ADS)

    Burge, Matthew; Ringuette, Matthew

    2017-11-01

    We study the effect of pitching-phase on the circulation behavior for the 3D flow structures produced during stroke reversal for a 2-degree-of-freedom flapping wing executing hovering kinematics. Previous research has related the choice in pitching-phase with respect to the wing rotation during stroke reversal (advanced vs. symmetric pitch-timing) to a lift peak preceding stroke reversal. However, results from experiments on the time-varying circulation contributions from the 3D vortex structures across the span produced by both rotation and pitching are lacking. The objective of this research is to quantitatively examine how the spanwise circulation of these structures is affected by the pitching-phase for several reduced pitching frequencies. We employ a scaled wing model in a glycerin-water mixture and measure the time-varying velocity using multiple planes of stereo digital particle image velocimetry. Data-plane positions along the wing span are informed by the unsteady behavior of the 3D vortex structures found in our prior flow visualization movies. Individual vortices are identified to calculate their circulation. This work is aimed at understanding how the behavior of the vortex structures created during stroke reversal vary with key motion parameters. This work is supported by the National Science Foundation, Award Number 1336548, supervised by Dr. Ronald Joslin.

  8. Hollow vortex Gaussian beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Cai, YangJian; Dai, ChaoQing

    2013-05-01

    A kind of hollow vortex Gaussian beam is introduced. Based on the Collins integral, an analytical propagation formula of a hollow vortex Gaussian beam through a paraxial ABCD optical system is derived. Due to the special distribution of the optical field, which is caused by the initial vortex phase, the dark region of a hollow vortex Gaussian beam will not disappear upon propagation. The analytical expressions for the beam propagation factor, the kurtosis parameter, and the orbital angular momentum density of a hollow vortex Gaussian beam passing through a paraxial ABCD optical system are also derived, respectively. The beam propagation factor is determined by the beam order and the topological charge. The kurtosis parameter and the orbital angular momentum density depend on beam order n, topological charge m, parameter γ, and transfer matrix elements A and D. As a numerical example, the propagation properties of a hollow vortex Gaussian beam in free space are demonstrated. The hollow vortex Gaussian beam has eminent propagation stability and has crucial application prospects in optical micromanipulation.

  9. Excitation of high density surface plasmon polariton vortex array

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  10. Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain

    NASA Astrophysics Data System (ADS)

    Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Zhou, Xiaoxiao; Shi, Yan

    2016-03-01

    In this paper, a reflective metasurface is designed, fabricated, and experimentally demonstrated to generate an orbital angular momentum (OAM) vortex wave in radio frequency domain. Theoretical formula of phase-shift distribution is deduced and used to design the metasurface producing vortex radio waves. The prototype of a practical configuration is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that the vortex waves with different OAM mode numbers can be flexibly generated by using sub-wavelength reflective metasurfaces. The proposed method and metasurface pave a way to generate the OAM vortex waves for radio and microwave wireless communication applications.

  11. Forced pitch motion of wind turbines

    NASA Astrophysics Data System (ADS)

    Leble, V.; Barakos, G.

    2016-09-01

    The possibility of a wind turbine entering vortex ring state during pitching oscillations is explored in this paper. The aerodynamic performance of the rotor was computed using the Helicopter Multi-Block flow solver. This code solves the Navier-Stokes equations in integral form using the arbitrary Lagrangian-Eulerian formulation for time-dependent domains with moving boundaries. A 10-MW wind turbine was put to perform yawing and pitching oscillations suggesting the partial vortex ring state during pitching motion. The results also show the strong effect of the frequency and amplitude of oscillations on the wind turbine performance.

  12. Unfolding of Vortices into Topological Stripes in a Multiferroic Material

    NASA Astrophysics Data System (ADS)

    Wang, X.; Mostovoy, M.; Han, M. G.; Horibe, Y.; Aoki, T.; Zhu, Y.; Cheong, S.-W.

    2014-06-01

    Multiferroic hexagonal RMnO3 (R =rare earths) crystals exhibit dense networks of vortex lines at which six domain walls merge. While the domain walls can be readily moved with an applied electric field, the vortex cores so far have been impossible to control. Our experiments demonstrate that shear strain induces a Magnus-type force pulling vortices and antivortices in opposite directions and unfolding them into a topological stripe domain state. We discuss the analogy between this effect and the current-driven dynamics of vortices in superconductors and superfluids.

  13. Glassiness versus Order in Densely Frustrated Josephson Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, P.; Teitel, S.; Gingras, M.J.

    1998-01-01

    We carry out extensive Monte Carlo simulations of the Coulomb gas dual to the uniformly frustrated two-dimensional XY model, for a sequence of frustrations f converging to the irrational (3{minus}{radical}(5))/ 2. We find in these systems a sharp first order equilibrium phase transition to an ordered vortex structure at a T{sub c} which varies only slightly with f . This ordered vortex structure remains, in general, phase incoherent until a lower vortex pinning transition T{sub p}(f) that varies with f. We argue that the glassy behaviors reported for this model in earlier simulations are dynamic effects. {copyright} {ital 1997} {italmore » The American Physical Society}« less

  14. A polyphonic acoustic vortex and its complementary chords

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Padgett, M. J.

    2010-02-01

    Using an annular phased array of eight loudspeakers, we generate sound beams that simultaneously contain phase singularities at a number of different frequencies. These frequencies correspond to different musical notes and the singularities can be set to overlap along the beam axis, creating a polyphonic acoustic vortex. Perturbing the drive amplitudes of the speakers means that the singularities no longer overlap, each note being nulled at a slightly different lateral position, where the volume of the other notes is now nonzero. The remaining notes form a tri-note chord. We contrast this acoustic phenomenon to the optical case where the perturbation of a white light vortex leads to a spectral spatial distribution.

  15. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field.

    PubMed

    Karpov, D; Liu, Z; Rolo, T Dos Santos; Harder, R; Balachandran, P V; Xue, D; Lookman, T; Fohtung, E

    2017-08-17

    Topological defects of spontaneous polarization are extensively studied as templates for unique physical phenomena and in the design of reconfigurable electronic devices. Experimental investigations of the complex topologies of polarization have been limited to surface phenomena, which has restricted the probing of the dynamic volumetric domain morphology in operando. Here, we utilize Bragg coherent diffractive imaging of a single BaTiO 3 nanoparticle in a composite polymer/ferroelectric capacitor to study the behavior of a three-dimensional vortex formed due to competing interactions involving ferroelectric domains. Our investigation of the structural phase transitions under the influence of an external electric field shows a mobile vortex core exhibiting a reversible hysteretic transformation path. We also study the toroidal moment of the vortex under the action of the field. Our results open avenues for the study of the structure and evolution of polar vortices and other topological structures in operando in functional materials under cross field configurations.Imaging of topological states of matter such as vortex configurations has generally been limited to 2D surface effects. Here Karpov et al. study the volumetric structure and dynamics of a vortex core mediated by electric-field induced structural phase transition in a ferroelectric BaTiO 3 nanoparticle.

  16. High fidelity phase locked PIV measurements analysing the flow fields surrounding an oscillating piezoelectric fan

    NASA Astrophysics Data System (ADS)

    Jeffers, Nicholas; Nolan, Kevin; Stafford, Jason; Donnelly, Brian

    2014-07-01

    Piezoelectric fans have been studied extensively and are seen as a promising technology for thermal management due to their ability to provide quiet, reliable cooling with low power consumption. The fluid mechanics of an unconfined piezoelectric fan are complex which is why the majority of the literature to date confines the fan in an attempt to simplify the flow field. This paper investigates the fluid mechanics of an unconfined fan operating in its first vibration frequency mode. The piezoelectric fan used in this study measures 12.7mm × 70mm and resonates at 92.5Hz in air. A custom built experimental facility was developed to capture the fan's flow field using phase locked Particle Image Velocimetry (PIV). The phase locked PIV results are presented in terms of vorticity and show the formation of a horse shoe vortex. A three dimensional A2 criterion constructed from interpolated PIV measurements was used to identify the vortex core in the vicinity of the fan. This analysis was used to clearly identify the formation of a horse shoe vortex that turns into a hairpin vortex before it breaks up due to a combination of vortex shedding and flow along the fan blade. The results presented in this paper contribute to both the fluid dynamics and heat transfer literature concerning first mode fan oscillation.

  17. Effects of large-scale wind driven turbulence on sound propagation

    NASA Technical Reports Server (NTRS)

    Noble, John M.; Bass, Henry E.; Raspet, Richard

    1990-01-01

    Acoustic measurements made in the atmosphere have shown significant fluctuations in amplitude and phase resulting from the interaction with time varying meteorological conditions. The observed variations appear to have short term and long term (1 to 5 minutes) variations at least in the phase of the acoustic signal. One possible way to account for this long term variation is the use of a large scale wind driven turbulence model. From a Fourier analysis of the phase variations, the outer scales for the large scale turbulence is 200 meters and greater, which corresponds to turbulence in the energy-containing subrange. The large scale turbulence is assumed to be elongated longitudinal vortex pairs roughly aligned with the mean wind. Due to the size of the vortex pair compared to the scale of the present experiment, the effect of the vortex pair on the acoustic field can be modeled as the sound speed of the atmosphere varying with time. The model provides results with the same trends and variations in phase observed experimentally.

  18. Current-induced vortex motion and the vortex-glass transition in YBa{sub 2}Cu{sub 3}O{sub y} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nojima, T.; Kakinuma, A.; Kuwasawa, Y.

    1997-12-01

    Measurements of current-voltage characteristics have been performed on YBa{sub 2}Cu{sub 3}O{sub y} films for two components of electric fields in the ab plane, E{sub x} and E{sub y}, in magnetic fields of the form (H{sub 0},H{sub 0},{delta}H{sub 0}), where x {parallel} the current density J, z {parallel} the c axis, and {delta}{lt}1. The simultaneous measurements of E{sub x} and E{sub y} under these conditions make it possible to analyze the situation of the vortex motion due to the Lorentz force. Our results indicate that vortices move as long-range correlated lines only below the glass transition temperature in a low-current limit.more » We also show that applying high-current density destroys line motion and induces a structural change of vortex lines in the glass state. {copyright} {ital 1997} {ital The American Physical Society}« less

  19. Study on the Regulating Performance of Sliding Regulation-Valve

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Peng, Xiaoyong; Zhang, Yuan; Zheng, Yulan; Zhu, Fangyao

    2018-01-01

    Using a proven reliable method of CFD to study the regulating performance of a sliding regulation valve with a conical spool and rugby body. The numerical simulation results indicate that no matter where the spool is located, the flow field always has a vortex at the center of the valve body; When the spool is at the origin, the vortex and resistance coefficient of the valve are the minimum; When the spool moves from the origin to the right (the opening of the valve becomes smaller) to reach a certain position later, vortex currents also begin to appear around the tube wall behind the orifice. In addition, the vortex increases as the throttling port decreases whereas the resistance coefficient of the valve ascends slowly with the increase of the deviation of the spool and the rise in series; This type of regulating valve has S type (slow at both ends, sensitive at the center) flow characteristics at the stroke, and is not affected by the size of Re.

  20. Vortex distribution in small star-shaped Mo80Ge20 plate

    NASA Astrophysics Data System (ADS)

    Vu, The Dang; Matsumoto, Hitoshi; Miyoshi, Hiroki; Huy, Ho Thanh; Shishido, Hiroaki; Kato, Masaru; Ishida, Takekazu

    2017-02-01

    We investigated vortex states in small star-shaped Mo80Ge20 plates both theoretically and experimentally. The numerical calculations of the Ginzburg-Landau equation have been carried out with the aid of the finite element method, which is convenient to treat an arbitrarily shaped superconductor. The experimental results were observed by using a scanning SQUID microscope. Through systematic measurements, we figured out how vortices form symmetric configuration with increasing the magnetic field. The vortex distribution tends to adapt to one of five mirror symmetric lines when vortices were located at the five triangular horns of a star-shaped plate. The crystalline homogeneity of a sample was confirmed by the X-ray diffraction and the superconducting properties so that vortices are easily able to move for accommodating vortices in the geometric symmetry of the star-shaped plate. The experimental vortex configurations obtained for a star-shaped plate are in good agreement with theoretical predictions from the nonlinear Ginzburg-Landau equation.

  1. Peculiarities of field penetration in the presence of cross-flux interaction

    NASA Astrophysics Data System (ADS)

    Berseth, V.; Buzdin, A. I.; Indenbom, M. V.; Benoit, W.

    1996-02-01

    The attractive core interaction between two orthogonal vortex lattices in alayered superconductor is calculated. When one of these lattices is moving, this interaction gives rise to a drag force acting on the other one. Considering a moving in-plane flux lattice, the effect of the drag force on the perpendicular flux is modelled through a modification of the bulk critical current for this field component. The new critical current depends on the direction of motion of both parallel and perpendicular vortices. The results are derived within the critical-state model for the infinite slab and for the thin strip. For this latter geometry, computations are made with the help of a new numerical method simulating flux penetration in the critical state. The new predicted qualitative phenomena (like the formation of a vortex-free region between two zones of opposite flux in the flat geometry) can be directly verified by the magneto-optic technique.

  2. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.

    PubMed

    Free, Brian A; Paley, Derek A

    2018-03-14

    Obstacles and swimming fish in flow create a wake with an alternating left/right vortex pattern known as a Kármán vortex street and reverse Kármán vortex street, respectively. An energy-efficient fish behavior resembling slaloming through the vortex street is called Kármán gaiting. This paper describes the use of a bioinspired array of pressure sensors on a Joukowski foil to estimate and control flow-relative position in a Kármán vortex street using potential flow theory, recursive Bayesian filtering, and trajectory-tracking feedback control. The Joukowski foil is fixed in downstream position in a flowing water channel and free to move on air bearings in the cross-stream direction by controlling its angle of attack to generate lift. Inspired by the lateral-line neuromasts found in fish, the sensing and control scheme is validated using off-the-shelf pressure sensors in an experimental testbed that includes a flapping device to create vortices. We derive a potential flow model that describes the flow over a Joukowski foil in a Kármán vortex street and identify an optimal path through a Kármán vortex street using empirical observability. The optimally observable trajectory is one that passes through each vortex in the street. The estimated vorticity and location of the Kármán vortex street are used in a closed-loop control to track either the optimally observable path or the energetically efficient gait exhibited by fish. Results from the closed-loop control experiments in the flow tank show that the artificial lateral line in conjunction with a potential flow model and Bayesian estimator allow the robot to perform fish-like slaloming behavior in a Kármán vortex street. This work is a precursor to an autonomous robotic fish sensing the wake of another fish and/or performing pursuit and schooling behavior.

  3. A planetary-scale disturbance in a long living three vortex coupled system in Saturn's atmosphere

    NASA Astrophysics Data System (ADS)

    del Río-Gaztelurrutia, T.; Sánchez-Lavega, A.; Antuñano, A.; Legarreta, J.; García-Melendo, E.; Sayanagi, K. M.; Hueso, R.; Wong, M. H.; Pérez-Hoyos, S.; Rojas, J. F.; Simon, A. A.; de Pater, I.; Blalock, J.; Barry, T.

    2018-03-01

    The zonal wind profile of Saturn has a unique structure at 60°N with a double-peaked jet that reaches maximum zonal velocities close to 100 ms-1. In this region, a singular group of vortices consisting of a cyclone surrounded by two anticyclones was active since 2012 until the time of this report. Our observation demonstrates that vortices in Saturn can be long-lived. The three-vortex system drifts at u = 69.0 ± 1.6 ms-1, similar to the speed of the local wind. Local motions reveal that the relative vorticity of the vortices comprising the system is ∼2-3 times the ambient zonal vorticity. In May 2015, a disturbance developed at the location of the triple vortex system, and expanded eastwards covering in two months a third of the latitudinal circle, but leaving the vortices essentially unchanged. At the time of the onset of the disturbance, a fourth vortex was present at 55°N, south of the three vortices and the evolution of the disturbance proved to be linked to the motion of this vortex. Measurements of local motions of the disturbed region show that cloud features moved essentially at the local wind speeds, suggesting that the disturbance consisted of passively advecting clouds generated by the interaction of the triple vortex system with the fourth vortex to the south. Nonlinear simulations are able to reproduce the stability and longevity of the triple vortex system under low vertical wind shear and high static stability in the upper troposphere of Saturn.

  4. Fractional Fourier transform of Lorentz-Gauss vortex beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Wang, XiaoGang; Chu, XiuXiang

    2013-08-01

    An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.

  5. Measurement of the topological charge and index of vortex vector optical fields with a space-variant half-wave plate.

    PubMed

    Liu, Gui-Geng; Wang, Ke; Lee, Yun-Han; Wang, Dan; Li, Ping-Ping; Gou, Fangwang; Li, Yongnan; Tu, Chenghou; Wu, Shin-Tson; Wang, Hui-Tian

    2018-02-15

    Vortex vector optical fields (VVOFs) refer to a kind of vector optical field with an azimuth-variant polarization and a helical phase, simultaneously. Such a VVOF is defined by the topological index of the polarization singularity and the topological charge of the phase vortex. We present a simple method to measure the topological charge and index of VVOFs by using a space-variant half-wave plate (SV-HWP). The geometric phase grating of the SV-HWP diffracts a VVOF into ±1 orders with orthogonally left- and right-handed circular polarizations. By inserting a polarizer behind the SV-HWP, the two circular polarization states project into the linear polarization and then interfere with each other to form the interference pattern, which enables the direct measurement of the topological charge and index of VVOFs.

  6. Beam shaping with vortex beam generated by liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Gao, Yue; Liu, Ke; Sun, Zeng-yu; Guo, Lei; Gan, Yu

    2015-02-01

    An optical vortex is a beam of light with phase varying in a corkscrew-like manner along its direction of propagation and so has a helical wavefront. When such a vectorial vortex beam and the Gaussian beam with orthogonal polarization are focused by low NA lens, the Gaussian component causes a focal intensity distribution with a solid center and the vortex component causes a donut distribution with hollow dark center. The shape of the focus can be continuously varied by continuously adjusting the relative weight of the two components. Flat top focusing can be obtained under appropriate conditions. It is demonstrated through experiments with a liquid crystal spatial light modulator in such a beam, that flattop focus can be obtained by vectorial vortex beams with topological charge of +1 to achieve beam shaping vortex.

  7. Current induced vortex wall dynamics in helical magnetic systems

    NASA Astrophysics Data System (ADS)

    Roostaei, Bahman

    2015-03-01

    Nontrivial topology of interfaces separating phases with opposite chirality in helical magnetic metals result in new effects as they interact with spin polarized current. These interfaces or vortex walls consist of a one dimensional array of vortex lines. We predict that adiabatic transfer of angular momentum between vortex array and spin polarized current will result in topological Hall effect in multi-domain samples. Also we predict that the motion of the vortex array will result in a new damping mechanism for magnetic moments based on Lenz's law. We study the dynamics of these walls interacting with electric current and use fundamental electromagnetic laws to quantify those predictions. On the other hand discrete nature of vortex walls affects their pinning and results in low depinning current density. We predict the value of this current using collective pinning theory.

  8. Improved Swimming Performance in Hydrodynamically- coupled Airfoils

    NASA Astrophysics Data System (ADS)

    Heydari, Sina; Shelley, Michael J.; Kanso, Eva

    2017-11-01

    Collective motion is a widespread phenomenon in the animal kingdom from fish schools to bird flocks. Half of the known fish species are thought to exhibit schooling behavior during some phase of their life cycle. Schooling likely occurs to serve multiple purposes, including foraging for resources and protection from predators. Growing experimental and theoretical evidence supports the hypothesis that fish can benefit from the hydrodynamic interactions with their neighbors, but it is unclear whether this requires particular configurations or regulations. Here, we propose a physics-based approach that account for hydrodynamic interactions among swimmers based on the vortex sheet model. The benefit of this model is that it is scalable to a large number of swimmers. We start by examining the case of two swimmers, heaving plates, moving in parallel and in tandem. We find that for the same heaving amplitude and frequency, the coupled-swimmers move faster and more efficiently. This increase in velocity depends strongly on the configuration and separation distance between the swimmers. Our results are consistent with recent experimental findings on heaving airfoils and underline the role of fluid dynamic interactions in the collective behavior of swimmers.

  9. Water tunnel flow visualization study of a 4.4 percent scale X-31 forebody

    NASA Technical Reports Server (NTRS)

    Cobleigh, Brent R.; Delfrate, John

    1994-01-01

    A water-tunnel test of a 4.4 percent-scale, forebody-only model of the X-31 aircraft with different forebody strakes and nosebooms has been performed in the Flow Visualization Facility at the NASA Dryden Flight Research Center. The focus of the study was to determine the relative effects of the different configurations on the stability and symmetry of the high-angle-of-attack forebody vortex flow field. The clean, noseboom-off configuration resisted the development of asymmetries in the primary vortices through 70 deg angle of attack. The wake of the X-31 flight test noseboom configuration significantly degraded the steadiness of the primary vortex cores and promoted asymmetries. An alternate L-shaped noseboom mounted underneath the forebody had results similar to those seen with the configuration, enabling stable, symmetrical vortices up to 70 deg angle of attack. The addition of strakes near the radome tip along the waterline increased the primary vortex strength while it simultaneously caused the vortex breakdown location co move forward. Forebody strakes did not appear to significantly reduce the asymmetries in the forebody vortex field in the presence of the flight test noseboom.

  10. Symmetrical collision of multiple vortex rings

    NASA Astrophysics Data System (ADS)

    Hernández, R. H.; Reyes, T.

    2017-10-01

    In this work, we investigate the motion, interaction, and simultaneous collision between many initially stable vortex rings arranged symmetrically in two initial configurations, three and six rings making an angle of 60 and 120° between their straight path lines, respectively. We report results for laminar vortex rings in air obtained through numerical simulations of the ring velocity, pressure, and vorticity fields, both in free flight and during the entire collision. Each collision was studied for small Reynolds numbers R e <1 03 based on both the self-induced velocity and diameter of the ring. The case of three rings produces secondary vortical structures formed by laterally expanding dipolar arms with top and bottom secondary vortex rings. The case of six colliding rings produces, as secondary structures, two big rings moving in opposite directions, a process that reminds us of the head-on collision of two rings [T. T. Lim and T. B. Nickels, "Instability and reconnection in the head-on collision of two vortex rings," Nature 357, 225-227 (1992)] under a hypothetical time reversal transformation. Both collisions display a characteristic kinetic energy evolution where mean collision stages can be identified within the range of Reynolds numbers investigated here.

  11. Numerical Investigation of an Oscillating Flat Plate Airfoil

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Fazlolah; Janechek, Matthew; Buchholz, James; Udaykumar, Hs

    2017-11-01

    This research investigates the vortex dynamics of a plunging flat plate airfoil by analyzing the vorticity transport in 2D simulations. A horizontal airfoil is subject to a freestream flow at Re =10000. A prescribed vertical sinusoidal motion is applied to the airfoil. Smoothed Profile Method (SPM) models the fluid-structure interaction. SPM as a diffuse interface model considers a thickness for the interface and applies a smooth transition from solid to fluid. As the forces on the airfoil are highly affected by the interaction of the generated vortices from the surface, it is very important to find out whether a diffuse interface solver can model a flow dominated by vorticities. The results show that variation of lift coefficient with time agrees well with the experiment. Study of vortex evolution shows that similar to experiments, when the plate starts moving downward from top, the boundary layer is attached to the surface and the leading-edge vortex (LEV) is very small. By time, LEV grows and rolls up and a secondary vortex emerges. Meanwhile, the boundary layer starts to separate and finally LEV detaches from the surface. In overall, SPM as a diffuse interface model can predict the lift force and vortex pattern accurately.

  12. Sudden stratospheric warmings: statistical characteristics and influence on NO2 and O3 total contents

    NASA Astrophysics Data System (ADS)

    Ageyeva, V. Yu.; Gruzdev, A. N.; Elokhov, A. S.; Mokhov, I. I.; Zueva, N. E.

    2017-09-01

    Statistical characteristics of major and minor sudden stratospheric warmings (SSWs) in the Northern Hemisphere (NH) for 1958-2015 are analyzed using data of NCEP-NCAR, ERA 40, and ERA-Interim reanalyses. Dependencies of the number of major SSWs with the displacement of the circumpolar stratospheric vortex and the number of minor SSWs on the phase of the quasi-biennial oscillation (QBO) of the equatorial stratospheric wind and on the level of solar activity (SA) in the 11-year solar cycle have been revealed. Major SSWs accompanied by a displacement of the polar vortex occur more often at a high level of SA and at the easterly phase of the QBO in the 50-40 hPa layer, while minor SSWs occur more often at a low SA level and at the westerly phase of the QBO. An analysis of spatiotemporal dynamics of the stratospheric polar vortex at major SSWs is performed. The most probable directions of vortex displacement caused by SSWs have been revealed. Influences of the major SSWs on the total contents of NO2 and ozone, as well as on stratosphere temperature, are analyzed.

  13. Abrikosov fluxonics in washboard nanolandscapes

    NASA Astrophysics Data System (ADS)

    Dobrovolskiy, Oleksandr V.

    2017-02-01

    Abrikosov fluxonics, a domain of science and engineering at the interface of superconductivity research and nanotechnology, is concerned with the study of the properties and dynamics of Abrikosov vortices in nanopatterned superconductors, with particular focus on their confinement, manipulation, and exploitation for emerging functionalities. Vortex pinning, guided vortex motion, and the ratchet effect are three main fluxonic ;tools; which allow for the dynamical (pinned or moving), the directional (angle-dependent), and the orientational (current polarity-sensitive) control of the fluxons, respectively. Thanks to the periodicity of the vortex lattice, several groups of effects emerge when the vortices move in a periodic pinning landscape: Spatial commensurability of the location of vortices with the underlying pinning nanolandscape leads to a reduction of the dc resistance and the microwave loss at the so-called matching fields. Temporal synchronization of the displacement of vortices with the number of pinning sites visited during one half ac cycle manifests itself as Shapiro steps in the current-voltage curves. Delocalization of vortices oscillating under the action of a high-frequency ac drive can be tuned by a superimposed dc bias. In this short review a set of experimental results on the vortex dynamics in the presence of periodic pinning potentials in Nb thin films is presented. The consideration is limited to one particular type of artificial pinning structures - directly written nanolandscapes of the washboard type, which are fabricated by focused ion beam milling and focused electron beam induced deposition. The reported results are relevant for the development of fluxonic devices and the reduction of microwave losses in superconducting planar transmission lines.

  14. Frequency lock-in and phase synchronization of vortex shedding behind circular cylinder due to surface waves

    NASA Astrophysics Data System (ADS)

    Gunnoo, Hans; Abcha, Nizar; Ezersky, Alexander

    2016-02-01

    The influence of harmonic surface wave on non-regular Karman Vortex Street is investigated. In our experiments, Karman Street arises behind a vertical circular cylinder in a water flow and harmonic surface waves propagating upstream. It is found that surface waves can modify regimes of shedding in Karman Street: frequency lock-in and synchronization of vortex shedding can arise. Intensive surface waves can excite symmetric vortex street instead of chess-like street, and completely suppress shedding behind the cylinder. It is shown experimentally that such effects occur if frequency of harmonic surface wave is approximately twice higher than the frequency of vortex shedding. Region of frequency lock-in is found on the plane amplitude-frequency of surface wave.

  15. Understanding dynamics of Martian winter polar vortex with “improved” moist-convective shallow water model

    NASA Astrophysics Data System (ADS)

    Rostami, M.; Zeitlin, V.

    2017-12-01

    We show how the properties of the Mars polar vortex can be understood in the framework of a simple shallow-water type model obtained by vertical averaging of the adiabatic “primitive” equations, and “improved” by inclusion of thermal relaxation and convective fluxes due to the phase transitions of CO 2, the major constituent of the Martian atmosphere. We perform stability analysis of the vortex, show that corresponding mean zonal flow is unstable, and simulate numerically non-linear saturation of the instability. We show in this way that, while non-linear adiabatic saturation of the instability tends to reorganize the vortex, the diabatic effects prevent this, and thus provide an explanation of the vortex form and longevity.

  16. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain

    NASA Astrophysics Data System (ADS)

    Yu, Shixing; Li, Long; Shi, Guangming; Zhu, Cheng; Shi, Yan

    2016-06-01

    In this paper, an electromagnetic metasurface is designed, fabricated, and experimentally demonstrated to generate multiple orbital angular momentum (OAM) vortex beams in radio frequency domain. Theoretical formula of compensated phase-shift distribution is deduced and used to design the metasurface to produce multiple vortex radio waves in different directions with different OAM modes. The prototype of a practical configuration of square-patch metasurface is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that multiple OAM vortex waves can be simultaneously generated by using a single electromagnetic metasurface. The proposed method paves an effective way to generate multiple OAM vortex waves in radio and microwave wireless communication applications.

  17. Generation of dark solitons and their instability dynamics in two-dimensional condensates

    NASA Astrophysics Data System (ADS)

    Verma, Gunjan; Rapol, Umakant D.; Nath, Rejish

    2017-04-01

    We analyze numerically the formation and the subsequent dynamics of two-dimensional matter wave dark solitons in a Thomas-Fermi rubidium condensate using various techniques. An initially imprinted sharp phase gradient leads to the dynamical formation of a stationary soliton as well as very shallow gray solitons, whereas a smooth gradient only creates gray solitons. The depth and hence, the velocity of the soliton is provided by the spatial width of the phase gradient, and it also strongly influences the snake-instability dynamics of the two-dimensional solitons. The vortex dipoles stemming from the unstable soliton exhibit rich dynamics. Notably, the annihilation of a vortex dipole via a transient dark lump or a vortexonium state, the exchange of vortices between either a pair of vortex dipoles or a vortex dipole and a single vortex, and so on. For sufficiently large width of the initial phase gradient, the solitons may decay directly into vortexoniums instead of vortex pairs, and also the decay rate is augmented. Later, we discuss alternative techniques to generate dark solitons, which involve a Gaussian potential barrier and time-dependent interactions, both linear and periodic. The properties of the solitons can be controlled by tuning the amplitude or the width of the potential barrier. In the linear case, the number of solitons and their depths are determined by the quench time of the interactions. For the periodic modulation, a transient soliton lattice emerges with its periodicity depending on the modulation frequency, through a wave number selection governed by the local Bogoliubov spectrum. Interestingly, for sufficiently low barrier potential, both Faraday pattern and soliton lattice coexist. The snake instability dynamics of the soliton lattice is characteristically modified if the Faraday pattern is present.

  18. Vortex lattices and defect-mediated viscosity reduction in active liquids

    NASA Astrophysics Data System (ADS)

    Slomka, Jonasz; Dunkel, Jorn

    2016-11-01

    Generic pattern-formation and viscosity-reduction mechanisms in active fluids are investigated using a generalized Navier-Stokes model that captures the experimentally observed bulk vortex dynamics in microbial suspensions. We present exact analytical solutions including stress-free vortex lattices and introduce a computational framework that allows the efficient treatment of previously intractable higher-order shear boundary conditions. Large-scale parameter scans identify the conditions for spontaneous flow symmetry breaking, defect-mediated low-viscosity phases and negative-viscosity states amenable to energy harvesting in confined suspensions. The theory uses only generic assumptions about the symmetries and long-wavelength structure of active stress tensors, suggesting that inviscid phases may be achievable in a broad class of non-equilibrium fluids by tuning confinement geometry and pattern scale selection.

  19. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes.

    PubMed

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-11

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  20. Spiral Transformation for High-Resolution and Efficient Sorting of Optical Vortex Modes

    NASA Astrophysics Data System (ADS)

    Wen, Yuanhui; Chremmos, Ioannis; Chen, Yujie; Zhu, Jiangbo; Zhang, Yanfeng; Yu, Siyuan

    2018-05-01

    Mode sorting is an essential function for optical multiplexing systems that exploit the orthogonality of the orbital angular momentum mode space. The familiar log-polar optical transformation provides a simple yet efficient approach whose resolution is, however, restricted by a considerable overlap between adjacent modes resulting from the limited excursion of the phase along a complete circle around the optical vortex axis. We propose and experimentally verify a new optical transformation that maps spirals (instead of concentric circles) to parallel lines. As the phase excursion along a spiral in the wave front of an optical vortex is theoretically unlimited, this new optical transformation can separate orbital angular momentum modes with superior resolution while maintaining unity efficiency.

  1. Vortex dynamics of in-line twin synthetic jets in a laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Wen, Xin; Tang, Hui; Duan, Fei

    2015-08-01

    An experimental investigation is conducted on the vortices induced by twin synthetic jets (SJs) in line with a laminar boundary layer flow over a flat plate. The twin SJs operating at four different phase differences, i.e., Δϕ = 0°, 90°, 180°, and 270°, are visualized using a stereoscopic color dye visualization system and measured using a two-dimensional particle image velocimetry (PIV) system. It is found that depending on the phase difference of twin SJs, three types of vortex structures are produced. At Δϕ = 90°, the two hairpin vortices interact in a very constructive way in terms of the vortex size, strength, and celerity, forming one combined vortex. At Δϕ = 270°, the two individual hairpin vortices do not have much interaction, forming two completely separated hairpin vortices that behave like doubling the frequency of the single SJ case. At Δϕ = 0° and 180°, the two hairpin vortices produced by the twin SJ actuators are close enough, with the head of one hairpin vortex coupled with the legs of the other, forming partially interacting vortex structures. Quantitative analysis of the twin SJs is conducted, including the time histories of vortex circulation in the mid-span plane as well as a selected spanwise-wall-normal plane, and the influence of the twin SJs on the boundary layer flow filed. In addition, dynamic mode decomposition analysis of the PIV data is conducted to extract representative coherent structures. Through this study, a better understanding in the vortex dynamics associated with the interaction of in-line twin SJs in laminar boundary layers is achieved, which provides useful information for future SJ-array applications.

  2. Interaction of a trailing vortex with an oscillating wing

    NASA Astrophysics Data System (ADS)

    McKenna, C.; Fishman, G.; Rockwell, D.

    2018-01-01

    A technique of particle image velocimetry is employed to characterize the flow structure of a trailing vortex incident upon the tip region of an oscillating wing (plate). The amplitude and velocity of the wing are nearly two orders of magnitude smaller than the wing chord and free stream velocity, respectively. Depending upon the outboard displacement of the incident vortex relative to the wing tip, distinctive patterns of upwash, downwash, and shed vorticity are observed. These patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash attains minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. The magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase and then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. All of the foregoing features are interpreted in conjunction with the flow topology in the form of streamlines and critical points, superposed on patterns of vorticity. It is shown that despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the velocity of the wing tip, that is, they are not symmetric.

  3. Magnetic vortex nucleation modes in static magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanatka, Marek; Urbanek, Michal; Jira, Roman

    The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less

  4. Magnetic vortex nucleation modes in static magnetic fields

    DOE PAGES

    Vanatka, Marek; Urbanek, Michal; Jira, Roman; ...

    2017-10-03

    The magnetic vortex nucleation process in nanometer- and micrometer-sized magnetic disks undergoes several phases with distinct spin configurations called the nucleation states. Before formation of the final vortex state, small submicron disks typically proceed through the so-called C-state while the larger micron-sized disks proceed through the more complicated vortex-pair state or the buckling state. This work classifies the nucleation states using micromagnetic simulations and provides evidence for the stability of vortex-pair and buckling states in static magnetic fields using magnetic imaging techniques and electrical transport measurements. Lorentz Transmission Electron Microscopy and Magnetic Transmission X-ray Microscopy are employed to reveal themore » details of spin configuration in each of the nucleation states. We further show that it is possible to unambiguously identify these states by electrical measurements via the anisotropic magnetoresistance effect. Combination of the electrical transport and magnetic imaging techniques confirms stability of a vortex-antivortex-vortex spin configuration which emerges from the buckling state in static magnetic fields.« less

  5. Quasiclassical analysis of vortex lattice states in Rashba noncentrosymmetric superconductors

    NASA Astrophysics Data System (ADS)

    Dan, Yuichiro; Ikeda, Ryusuke

    2015-10-01

    Vortex lattice states occurring in noncentrosymmetric superconductors with a spin-orbit coupling of Rashba type under a magnetic field parallel to the symmetry plane are examined by assuming the s -wave pairing case and in an approach combining the quasiclassical theory with the Landau level expansion of the superconducting order parameter. The resulting field-temperature phase diagrams include not only a discontinuous transition but a continuous crossover between different vortex lattice structures, and, further, a critical end point of a structural transition line is found at an intermediate field and a low temperature in the present approach. It is pointed out that the strange field dependence of the vortex lattice structure is a consequence of that of its anisotropy stemming from the Rashba spin-orbit coupling, and that the critical end point is related to the helical phase modulation peculiar to these materials in the ideal Pauli-limited case. Furthermore, calculation results on the local density of states detectable in STM experiments are also presented.

  6. Characterizing the wake vortex signature for an active line of sight remote sensor. M.S. Thesis Technical Report No. 19

    NASA Technical Reports Server (NTRS)

    Heil, Robert Milton

    1994-01-01

    A recurring phenomenon, described as a wake vortex, develops as an aircraft approaches the runway to land. As the aircraft moves along the runway, each of the wing tips generates a spiraling and expanding cone of air. During the lifetime of this turbulent event, conditions exist over the runway which can be hazardous to following aircraft, particularly when a small aircraft is following a large aircraft. Left to themselves, these twin vortex patterns will converge toward each other near the center of the runway, harmlessly dissipating through interaction with each other or by contact with the ground. Unfortunately, the time necessary to disperse the vortex is often not predictable, and at busy airports can severely impact terminal area productivity. Rudimentary methods of avoidance are in place. Generally, time delays between landing aircraft are based on what is required to protect a small aircraft. Existing ambient wind conditions can complicate the situation. Reliable detection and tracking of a wake vortex hazard is a major technical problem which can significantly impact runway productivity. Landing minimums could be determined on the basis of the actual hazard rather than imposed on the basis of a worst case scenario. This work focuses on using a windfield description of a wake vortex to generate line-of-sight Doppler velocity truth data appropriate to an arbitrarily located active sensor such as a high resolution radar or lidar. The goal is to isolate a range Doppler signature of the vortex phenomenon that can be used to improve detection. Results are presented based on use of a simplified model of a wake vortex pattern. However, it is important to note that the method of analysis can easily be applied to any vortex model used to generate a windfield snapshot. Results involving several scan strategies are shown for a point sensor with a range resolution of 1 to 4 meters. Vortex signatures presented appear to offer potential for detection and tracking.

  7. Commissioning and first light results of an L'-band vortex coronagraph with the Keck II adaptive optics NIRC2 science instrument

    NASA Astrophysics Data System (ADS)

    Femenía Castellá, Bruno; Serabyn, Eugene; Mawet, Dimitri; Absil, Olivier; Wizinowich, Peter; Matthews, Keith; Huby, Elsa; Bottom, Michael; Campbell, Randy; Chan, Dwight; Carlomagno, Brunella; Cetre, Sylvain; Defrère, Denis; Delacroix, Christian; Gomez Gonzalez, Carlos; Jolivet, Aïssa; Karlsson, Mikael; Lanclos, Kyle; Lilley, Scott; Milner, Steven; Ngo, Henry; Reggiani, Maddalena; Simmons, Julia; Tran, Hien; Vargas Catalan, Ernesto; Wertz, Olivier

    2016-07-01

    On March 2015 an L'-band vortex coronagraph based on an Annular Groove Phase Mask made up of a diamond sub-wavelength grating was installed on NIRC2 as a demonstration project. This vortex coronagraph operates in the L' band not only in order to take advantage from the favorable star/planet contrast ratio when observing beyond the K band, but also to exploit the fact that the Keck II Adaptive Optics (AO) system delivers nearly extreme adaptive optics image quality (Strehl ratios values near 90%) at 3.7μm. We describe the hardware installation of the vortex phase mask during a routine NIRC2 service mission. The success of the project depends on extensive software development which has allowed the achievement of exquisite real-time pointing control as well as further contrast improvements by using speckle nulling to mitigate the effect of static speckles. First light of the new coronagraphic mode was on June 2015 with already very good initial results. Subsequent commissioning nights were interlaced with science nights by members of the VORTEX team with their respective scientific programs. The new capability and excellent results so far have motivated the VORTEX team and the Keck Science Steering Committee (KSSC) to offer the new mode in shared risk mode for 2016B.

  8. Detection of Vortex Tubes in Solar Granulation from Observations SUNRISE

    NASA Astrophysics Data System (ADS)

    Steiner, O.; Franz, M.; González, N. B.; Nutto, C.; Rezaei, R.; Pillet, V. M.; Bonet, J. A.; Iniesta, J. C. d. T.; Domingo, V.; Solanki, S. K.; Knölker, M.; Schmidt, W.; Barthol, P.; Gandorfer, A.

    2012-05-01

    We investigated a time series of continuum intensity maps and Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. We conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. This paper is a summary and update of the results previously presented in Steiner et al. (2010).

  9. Emergent Vortex Patterns in Systems of Self-Propelled, Chiral Particles

    NASA Astrophysics Data System (ADS)

    Huber, Lorenz; Denk, Jonas; Reithmann, Emanuel; Frey, Erwin

    Self-organization of FtsZ polymers is vital for Z-ring assembly during bacterial cell division, and has been studied using reconstituted in vitro model systems. Employing Brownian dynamics simulations and a Boltzmann approach, we model FtsZ polymers as active particles moving along chiral circular paths. With both theoretical approaches we find self-organization into vortex structures and characterize different states in parameter states. Our work demonstrates that these patterns are robust and are generic for active chiral matter. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.

  10. Post-coronagraphic tip-tilt sensing for vortex phase masks: The QACITS technique

    NASA Astrophysics Data System (ADS)

    Huby, E.; Baudoz, P.; Mawet, D.; Absil, O.

    2015-12-01

    Context. Small inner working angle coronagraphs, such as the vortex phase mask, are essential to exploit the full potential of ground-based telescopes in the context of exoplanet detection and characterization. However, the drawback of this attractive feature is a high sensitivity to pointing errors, which degrades the performance of the coronagraph. Aims: We propose a tip-tilt retrieval technique based on the analysis of the final coronagraphic image, hereafter called Quadrant Analysis of Coronagraphic Images for Tip-tilt Sensing (QACITS). Methods: Under the assumption of small phase aberrations, we show that the behavior of the vortex phase mask can be simply described from the entrance pupil to the Lyot stop plane with Zernike polynomials. This convenient formalism is used to establish the theoretical basis of the QACITS technique. We performed simulations to demonstrate the validity and limits of the technique, including the case of a centrally obstructed pupil. Results: The QACITS technique principle is validated with experimental results in the case of an unobstructed circular aperture, as well as simulations in presence of a central obstruction. The typical configuration of the Keck telescope (24% central obstruction) has been simulated with additional high order aberrations. In these conditions, our simulations show that the QACITS technique is still adapted to centrally obstructed pupils and performs tip-tilt retrieval with a precision of 5 × 10-2λ/D when wavefront errors amount to λ/ 14 rms and 10-2λ/D for λ/ 70 rms errors (with λ the wavelength and D the pupil diameter). Conclusions: We have developed and demonstrated a tip-tilt sensing technique for vortex coronagraphs. The implementation of the QACITS technique is based on the analysis of the scientific image and does not require any modification of the original setup. Current facilities equipped with a vortex phase mask can thus directly benefit from this technique to improve the contrast performance close to the axis.

  11. Phase-resolved and time-averaged puff motions of an excited stack-issued transverse jet

    NASA Astrophysics Data System (ADS)

    Hsu, C. M.; Huang, R. F.

    2013-07-01

    The dynamics of puff motions in an excited stack-issued transverse jet were studied experimentally in a wind tunnel. The temporal and spatial evolution processes of the puffs induced by acoustic excitation were examined using the smoke flow visualization method and high-speed particle image velocimetry. The temporal and spatial evolutions of the puffs were examined using phase-resolved ensemble-averaged velocity fields and the velocity, length scales, and vorticity characteristics of the puffs were studied. The time-averaged velocity fields were calculated to analyze the velocity distributions and vorticity contours. The results show that a puff consists of a pair of counter-rotating vortex rings. An initial vortex ring was formed due to a concentration of vorticity at the lee side of the issuing jet at the instant of the mid-oscillation cycle. A vortex ring rotating in the opposite direction to that of the initial vortex ring was subsequently formed at the upwind side of the issuing jet. These two counter-rotating vortex rings formed a "mushroom" vortex pair, which was deflected by the crossflow and traveled downstream along a time-averaged trajectory of zero vorticity. The trajectory was situated far above the time-averaged streamline evolving from the leading edge of the tube. The velocity magnitudes of the vortex rings at the upwind and the lee side decreased with time evolution as the puffs traveled downstream due to momentum dissipation and entrainment effects. The puffs traveling along the trajectory of zero vorticity caused large velocities to appear above the leading-edge streamline.

  12. The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Sippel, Jason A.; Nolan, David S.

    2012-01-01

    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.

  13. Modulation of the Polar Vortex by Energetic Particle Precipitation and Quasi-Biennial Oscillation via Ozone Loss

    NASA Astrophysics Data System (ADS)

    Asikainen, T.; Salminen, A.; Maliniemi, V.; Mursula, K.

    2017-12-01

    Energetic particle precipitation (EPP) has been shown to cause ozone loss in the stratosphere during polar winter. This has been suggested to enhance polar vortex with the effect propagating even to ground level, where it is observed as a more positive phase of the Northern Annular Mode (NAM), the dominant ground circulation pattern in the winter time at high latitudes. Recent research has also shown that the quasi-biennial oscillation (QBO) modulates the relationship between the ground NAM and EPP so that the positive correlation between the two is more clearly seen in the easterly phase of QBO measured at 30 hPa height especially during the late winter season. Here we elaborate the QBO modulated connection between EPP and NAM by studying how the EPP affects the stratospheric polar vortex in the two phases of the QBO. Since the EPP presumably affects the polar stratosphere via indirect ozone loss we will study how the EPP modulates the amount of ozone, the stratospheric temperatures and zonal winds in the two QBO phases.

  14. Modulation of the polar vortex by energetic particle precipitation and Quasi-Biennial Oscillation via ozone loss

    NASA Astrophysics Data System (ADS)

    Salminen, Antti; Asikainen, Timo; Maliniemi, Ville; Mursula, Kalevi

    2017-04-01

    Energetic particle precipitation (EPP) has been shown to cause ozone loss in the stratosphere during polar winter. This has been suggested to enhance polar vortex with the effect propagating even to ground level, where it is observed as a more positive phase of the Northern Annular Mode (NAM), the dominant ground circulation pattern in the winter time at high latitudes. Recent research has also shown that the quasi-biennial oscillation (QBO) modulates the relationship between the ground NAM and EPP so that the positive correlation between the two is more clearly seen in the easterly phase of QBO measured at 30 hPa height especially during the late winter season. Here we elaborate the QBO modulated connection between EPP and NAM by studying how the EPP affects the stratospheric polar vortex in the two phases of the QBO. Since the EPP presumably affects the polar stratosphere via indirect ozone loss we will study how the EPP modulates the amount of ozone, the stratospheric temperatures and zonal winds in the two QBO phases.

  15. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shixing; Li, Long, E-mail: lilong@mail.xidian.edu.cn, E-mail: gmshi@xidian.edu.cn; Shi, Guangming, E-mail: lilong@mail.xidian.edu.cn, E-mail: gmshi@xidian.edu.cn

    In this paper, an electromagnetic metasurface is designed, fabricated, and experimentally demonstrated to generate multiple orbital angular momentum (OAM) vortex beams in radio frequency domain. Theoretical formula of compensated phase-shift distribution is deduced and used to design the metasurface to produce multiple vortex radio waves in different directions with different OAM modes. The prototype of a practical configuration of square-patch metasurface is designed, fabricated, and measured to validate the theoretical analysis at 5.8 GHz. The simulated and experimental results verify that multiple OAM vortex waves can be simultaneously generated by using a single electromagnetic metasurface. The proposed method paves an effectivemore » way to generate multiple OAM vortex waves in radio and microwave wireless communication applications.« less

  16. Tropical Cyclogenesis in a Tropical Wave Critical Layer: Easterly Waves

    NASA Technical Reports Server (NTRS)

    Dunkerton, T. J.; Montgomery, M. T.; Wang, Z.

    2009-01-01

    The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside.

  17. Split in phase singularities of an optical vortex by off-axis diffraction through a simple circular aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taira, Yoshitaka; Zhang, Shukui

    Here, diffraction patterns of an optical vortex through several shaped apertures reveal its topological charge. In this letter, we theoretically and experimentally show that diffraction of a Laguerre Gaussian beam through a circular aperture at an off-axis position can be used to determine the magnitude and sign of the topological charge. To our knowledge, this is the first time that a simple circular aperture has been used to detect orbital angular momentum of an incident optical vortex.

  18. Split in phase singularities of an optical vortex by off-axis diffraction through a simple circular aperture.

    PubMed

    Taira, Yoshitaka; Zhang, Shukui

    2017-04-01

    Diffraction patterns of an optical vortex through several shaped apertures reveal its topological charge. In this Letter, we theoretically and experimentally show that diffraction of a Laguerre Gaussian beam through a circular aperture at an off-axis position can be used to determine the magnitude and sign of the topological charge. To our knowledge, this is the first time that a simple circular aperture has been used to detect orbital angular momentum of an incident optical vortex.

  19. Split in phase singularities of an optical vortex by off-axis diffraction through a simple circular aperture

    DOE PAGES

    Taira, Yoshitaka; Zhang, Shukui

    2017-03-29

    Here, diffraction patterns of an optical vortex through several shaped apertures reveal its topological charge. In this letter, we theoretically and experimentally show that diffraction of a Laguerre Gaussian beam through a circular aperture at an off-axis position can be used to determine the magnitude and sign of the topological charge. To our knowledge, this is the first time that a simple circular aperture has been used to detect orbital angular momentum of an incident optical vortex.

  20. Micromagnetic study of equilibrium states in nano hemispheroidal shells

    NASA Astrophysics Data System (ADS)

    Schultz, Keren; Schultz, Moty

    2017-11-01

    We present results of micromagnetic simulations of thin ferromagnetic nano hemispheroidal shells with sizes ranging from 5 to 50 nm (inside dimensions). Depending on the geometrical and magnetic parameters of the hemispheroidal shell, there exist three different magnetic phases: easy axis, onion and vortex. The profile for the vortex magnetization distribution is analyzed and the limitations and applicability of different vortex ansatzes are discussed. In addition, we investigate the total energy density for each of the magnetic distributions as a function of the hemispheroidal shell dimensions.

  1. Quasi-Porous Plug With Vortex Chamber

    NASA Technical Reports Server (NTRS)

    Walsh, J. V.

    1985-01-01

    Pressure-letdown valve combines quasi-porous-plug and vortex-chamber in one controllable unit. Valve useful in fossil-energy plants for reducing pressures in such erosive two-phase process streams as steam/water, coal slurries, or combustion gases with entrained particles. Quasi-Porous Plug consists of plenums separated by perforated plates. Number or size of perforations increases with each succeeding stage to compensate for expansion. In Vortex Chamber, control flow varies to control swirl and therefore difference between inlet and outlet pressures.

  2. Interaction of in-phase and out-of-phase flexible filament in fish schooling

    NASA Astrophysics Data System (ADS)

    Ud Din, Emad; Sung, Hyung

    2011-11-01

    Fish schooling is not merely a social behavior; schooling improves the efficiency of movement within the fluid environment. Inspired by the schooling from a hydrodynamic perspective, a group of aquatic animals is modeled as a collection of individuals arranged in a combination of tandem and side-by-side (diamond) formation. The downstream bodies are strongly influenced by the vortices shed by the upstream body shown by vortex-vortex and vortex-body interactions. Trailing fish takes advantage of this flow pattern for energy economy. To investigate the interactions between flexible bodies and vortices, in the present study three flexible flags in viscous flow are solved by numerical simulation using an improved version of the immersed boundary method for in-phase and out-of-phase filaments. The drag coefficient of the downstream filaments drops even below the value of a single flag. Such drag variations are influenced by the interactions between vortices shed by the upstream flexible body and vortices surrounding the downstream filaments. Interaction of the flexible flags is investigated as a function of the gap distance between flags and different bending coefficients, for in-phase and out-of-phase cases at intermediate Reynolds numbers. This study was supported by the Creative Research Initiatives of NRF/MEST (No. 2011-0000423) of Korea.

  3. Computational investigation of large-scale vortex interaction with flexible bodies

    NASA Astrophysics Data System (ADS)

    Connell, Benjamin; Yue, Dick K. P.

    2003-11-01

    The interaction of large-scale vortices with flexible bodies is examined with particular interest paid to the energy and momentum budgets of the system. Finite difference direct numerical simulation of the Navier-Stokes equations on a moving curvilinear grid is coupled with a finite difference structural solver of both a linear membrane under tension and linear Euler-Bernoulli beam. The hydrodynamics and structural dynamics are solved simultaneously using an iterative procedure with the external structural forcing calculated from the hydrodynamics at the surface and the flow-field velocity boundary condition given by the structural motion. We focus on an investigation into the canonical problem of a vortex-dipole impinging on a flexible membrane. It is discovered that the structural properties of the membrane direct the interaction in terms of the flow evolution and the energy budget. Pressure gradients associated with resonant membrane response are shown to sustain the oscillatory motion of the vortex pair. Understanding how the key mechanisms in vortex-body interactions are guided by the structural properties of the body is a prerequisite to exploiting these mechanisms.

  4. A fish-like robot: Mechanics of swimming due to constraints

    NASA Astrophysics Data System (ADS)

    Tallapragada, Phanindra; Malla, Rijan

    2014-11-01

    It is well known that due to reasons of symmetry, a body with one degree of actuation cannot swim in an ideal fluid. However certain velocity constraints arising in fluid-body interactions, such as the Kutta condition classically applied at the trailing cusp of a Joukowski hydrofoil break this symmetry through vortex shedding. Thus Joukowski foils that vary shape periodically can be shown to be able to swim through vortex shedding. In general it can be shown that vortex shedding due to the Kutta condition is equivalent to nonintegrable constraints arising in the mechanics of finite-dimensional mechanical systems. This equivalence allows hydrodynamic problems involving vortex shedding, especially those pertaining to swimming and related phenomena to be framed in the context of geometric mechanics on manifolds. This formal equivalence also allows the design of bio inspired robots that swim not due to shape change but due to internal moving masses and rotors. Such robots lacking articulated joints are easy to design, build and control. We present such a fish-like robot that swims due to the rotation of internal rotors.

  5. Intracardiac Vortex Dynamics by High-Frame-Rate Doppler Vortography-In Vivo Comparison With Vector Flow Mapping and 4-D Flow MRI.

    PubMed

    Faurie, Julia; Baudet, Mathilde; Assi, Kondo Claude; Auger, Dominique; Gilbert, Guillaume; Tournoux, Francois; Garcia, Damien

    2017-02-01

    Recent studies have suggested that intracardiac vortex flow imaging could be of clinical interest to early diagnose the diastolic heart function. Doppler vortography has been introduced as a simple color Doppler method to detect and quantify intraventricular vortices. This method is able to locate a vortex core based on the recognition of an antisymmetric pattern in the Doppler velocity field. Because the heart is a fast-moving organ, high frame rates are needed to decipher the whole blood vortex dynamics during diastole. In this paper, we adapted the vortography method to high-frame-rate echocardiography using circular waves. Time-resolved Doppler vortography was first validated in vitro in an ideal forced vortex. We observed a strong correlation between the core vorticity determined by high-frame-rate vortography and the ground-truth vorticity. Vortography was also tested in vivo in ten healthy volunteers using high-frame-rate duplex ultrasonography. The main vortex that forms during left ventricular filling was tracked during two-three successive cardiac cycles, and its core vorticity was determined at a sampling rate up to 80 duplex images per heartbeat. Three echocardiographic apical views were evaluated. Vortography-derived vorticities were compared with those returned by the 2-D vector flow mapping approach. Comparison with 4-D flow magnetic resonance imaging was also performed in four of the ten volunteers. Strong intermethod agreements were observed when determining the peak vorticity during early filling. It is concluded that high-frame-rate Doppler vortography can accurately investigate the diastolic vortex dynamics.

  6. Second-sound studies of coflow and counterflow of superfluid {sup 4}He in channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varga, Emil; Skrbek, L.; Babuin, Simone, E-mail: babuin@fzu.cz

    2015-06-15

    We report a comprehensive study of turbulent superfluid {sup 4}He flow through a channel of square cross section. We study for the first time two distinct flow configurations with the same apparatus: coflow (normal and superfluid components move in the same direction), and counterflow (normal and superfluid components move in opposite directions). We realise also a variation of counterflow with the same relative velocity, but where the superfluid component moves while there is no net flow of the normal component through the channel, i.e., pure superflow. We use the second-sound attenuation technique to measure the density of quantised vortex linesmore » in the temperature range 1.2 K ≲ T ≲ T{sub λ} ≈ 2.18 K and for flow velocities from about 1 mm/s up to almost 1 m/s in fully developed turbulence. We find that both the steady-state and temporal decay of the turbulence significantly differ in the three flow configurations, yielding an interesting insight into two-fluid hydrodynamics. In both pure superflow and counterflow, the same scaling of vortex line density with counterflow velocity is observed, L∝V{sub cf}{sup 2}, with a pronounced temperature dependence; in coflow instead, the vortex line density scales with velocity as L ∝ V{sup 3/2} and is temperature independent; we provide theoretical explanations for these observations. Further, we develop a new promising technique to use different second-sound resonant modes to probe the spatial distribution of quantised vortices in the direction perpendicular to the flow. Preliminary measurements indicate that coflow is less homogeneous than counterflow/superflow, with a denser concentration of vortices between the centre of the channel and its walls.« less

  7. Wake Vortex Detection: Phased Microphone vs. Linear Infrasonic Array

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Zuckerwar, Allan J.; Sullivan, Nicholas T.; Knight, Howard K.

    2014-01-01

    Sensor technologies can make a significant impact on the detection of aircraft-generated vortices in an air space of interest, typically in the approach or departure corridor. Current state-of-the art sensor technologies do not provide three-dimensional measurements needed for an operational system or even for wake vortex modeling to advance the understanding of vortex behavior. Most wake vortex sensor systems used today have been developed only for research applications and lack the reliability needed for continuous operation. The main challenges for the development of an operational sensor system are reliability, all-weather operation, and spatial coverage. Such a sensor has been sought for a period of last forty years. Acoustic sensors were first proposed and tested by National Oceanic and Atmospheric Administration (NOAA) early in 1970s for tracking wake vortices but these acoustic sensors suffered from high levels of ambient noise. Over a period of the last fifteen years, there has been renewed interest in studying noise generated by aircraft wake vortices, both numerically and experimentally. The German Aerospace Center (DLR) was the first to propose the application of a phased microphone array for the investigation of the noise sources of wake vortices. The concept was first demonstrated at Berlins Airport Schoenefeld in 2000. A second test was conducted in Tarbes, France, in 2002, where phased microphone arrays were applied to study the wake vortex noise of an Airbus 340. Similarly, microphone phased arrays and other opto-acoustic microphones were evaluated in a field test at the Denver International Airport in 2003. For the Tarbes and Denver tests, the wake trajectories of phased microphone arrays and lidar were compared as these were installed side by side. Due to a built-in pressure equalization vent these microphones were not suitable for capturing acoustic noise below 20 Hz. Our group at NASA Langley Research Center developed and installed an infrasonic array at the Newport News-Williamsburg International Airport early in the year 2013. A pattern of pressure burst, high-coherence intervals, and diminishing-coherence intervals was observed for all takeoff and landing events without exception. The results of a phased microphone vs. linear infrasonic array comparison will be presented.

  8. Studies of perturbed three vortex dynamics

    NASA Astrophysics Data System (ADS)

    Blackmore, Denis; Ting, Lu; Knio, Omar

    2007-06-01

    It is well known that the dynamics of three point vortices moving in an ideal fluid in the plane can be expressed in Hamiltonian form, where the resulting equations of motion are completely integrable in the sense of Liouville and Arnold. The focus of this investigation is on the persistence of regular behavior (especially periodic motion) associated with completely integrable systems for certain (admissible) kinds of Hamiltonian perturbations of the three vortex system in a plane. After a brief survey of the dynamics of the integrable planar three vortex system, it is shown that the admissible class of perturbed systems is broad enough to include three vortices in a half plane, three coaxial slender vortex rings in three space, and "restricted" four vortex dynamics in a plane. Included are two basic categories of results for admissible perturbations: (i) general theorems for the persistence of invariant tori and periodic orbits using Kolmogorov-Arnold-Moser- and Poincaré-Birkhoff-type arguments and (ii) more specific and quantitative conclusions of a classical perturbation theory nature guaranteeing the existence of periodic orbits of the perturbed system close to cycles of the unperturbed system, which occur in abundance near centers. In addition, several numerical simulations are provided to illustrate the validity of the theorems as well as indicating their limitations as manifested by transitions to chaotic dynamics.

  9. Duality-mediated critical amplitude ratios for the (2 + 1)-dimensional S = 1XY model

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yoshihiro

    2017-09-01

    The phase transition for the (2 + 1)-dimensional spin-S = 1XY model was investigated numerically. Because of the boson-vortex duality, the spin stiffness ρs in the ordered phase and the vortex-condensate stiffness ρv in the disordered phase should have a close relationship. We employed the exact diagonalization method, which yields the excitation gap directly. As a result, we estimate the amplitude ratios ρs,v/Δ (Δ: Mott insulator gap) by means of the scaling analyses for the finite-size cluster with N ≤ 22 spins. The ratio ρs/ρv admits a quantitative measure of deviation from selfduality.

  10. Direct generation of abruptly focusing vortex beams using a 3/2 radial phase-only pattern.

    PubMed

    Davis, Jeffrey A; Cottrell, Don M; Zinn, Jonathan M

    2013-03-20

    Abruptly focusing Airy beams have previously been generated using a radial cubic phase pattern that represents the Fourier transform of the Airy beam. The Fourier transform of this pattern is formed using a system length of 2f, where f is the focal length of the Fourier transform lens. In this work, we directly generate these abruptly focusing Airy beams using a 3/2 radial phase pattern encoded onto a liquid crystal display. The resulting optical system is much shorter. In addition, we can easily produce vortex patterns at the focal point of these beams. Experimental results match theoretical predictions.

  11. Daphnia swarms: from single agent dynamics to collective vortex formation

    NASA Astrophysics Data System (ADS)

    Ordemann, Anke; Balazsi, Gabor; Caspari, Elizabeth; Moss, Frank

    2003-05-01

    Swarm theories have become fashionable in theoretical physics over the last decade. They span the range of interactions from individual agents moving in a mean field to coherent collective motions of large agent populations, such as vortex-swarming. But controlled laboratory tests of these theories using real biological agents have been problematic due primarily to poorly known agent-agent interactions (in the case of e.g. bacteria and slime molds) or the large swarm size (e.g. for flocks of birds and schools of fish). Moreover, the entire range of behaviors from single agent interactions to collective vortex motions of the swarm have here-to-fore not been observed with a single animal. We present the results of well defined experiments with the zooplankton Daphnia in light fields showing this range of behaviors. We interpret our results with a theory of the motions of self-propelled agents in a field.

  12. QBO Influence on Polar Stratospheric Variability in the GEOS Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Oman, L. D.; Li, F.; Slong, I.-S.; Newman, P. A.; Nielsen, J. E.

    2010-01-01

    The quasi-biennial oscillation modulates the strength of both the Arctic and Antarctic stratospheric vortices. Model and observational studies have found that the phase and characteristics of the quasi-biennial oscillation (QBO) contribute to the high degree of variability in the Arctic stratosphere in winter. While the Antarctic stratosphere is less variable, recent work has shown that Southern Hemisphere planetary wave driving increases in response to "warm pool" El Nino events that are coincident with the easterly phase of the QBO. These events hasten the breakup of the Antarctic polar vortex. The Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) is now capable of generating a realistic QBO, due a new parameterization of gravity wave drag. In this presentation, we will use this new model capability to assess the influence of the QBO on polar stratospheric variability. Using simulations of the recent past, we will compare the modeled relationship between QBO phase and mid-winter vortex strength with the observed Holton-Tan relation, in both hemispheres. We will use simulations of the 21 St century to estimate future trends in the relationship between QBO phase and vortex strength. In addition, we will evaluate the combined influence of the QBO and El Nino/Southern Oscillation (ENSO) on the timing of the breakup of the polar stratospheric vortices in the GEOS CCM. We will compare the influence of these two natural phenomena with trends in the vortex breakup associated with ozone recovery and increasing greenhouse gas concentrations.

  13. Defect dependence of the irreversibility line in Bi2Sr2CaCu2O8 single crystals

    NASA Astrophysics Data System (ADS)

    Lombardo, L. W.; Mitzi, D. B.; Kapitulnik, A.; Leone, A.

    1992-09-01

    The c-axis irreversibility line (IL) of pristine single-crystal Bi2Sr2CaCu2O8 is shown to exhibit three regimes: For fields less than 0.1 T, it obeys a power law, Hirr=H0(1-Tirr/Tc)μ, where μ and H0 vary with Tc. For fields greater than 2 T, the IL becomes linear with a slope of 0.7 T/K. For intermediate fields, there is a crossover region, which corresponds to the onset of collective vortex behavior. Defects produced by proton irradiation shift the IL in all three regimes: The high-field regime moves to higher temperatures, the low-field regime moves to lower temperatures, and the crossover to collective behavior becomes obscured. A maximal increase in the irreversibility temperature in the high-field regime is found to occur at a defect density of nearly one defect per vortex core disk.

  14. Radiofrequency generation by coherently moving fluxons

    NASA Astrophysics Data System (ADS)

    Dobrovolskiy, O. V.; Sachser, R.; Huth, M.; Shklovskij, V. A.; Vovk, R. V.; Bevz, V. M.; Tsindlekht, M. I.

    2018-04-01

    A lattice of Abrikosov vortices in type II superconductors is characterized by a periodic modulation of the magnetic induction perpendicular to the applied magnetic field. For a coherent vortex motion under the action of a transport current, the magnetic induction at a given point of the sample varies in time with a washboard frequency fWB = v/d, where v is the vortex velocity and d is the distance between the vortices in the direction of motion. Here, by using a spectrum analyzer connected to a 50 nm-wide Au nanowire meander near the surface of a superconducting Nb film, we detect an ac voltage induced by coherently moving fluxons. The voltage is peaked at the washboard frequency, fWB, and its subharmonics, fTOF = fWB/5, determined by the antenna width. By sweeping the dc current value, we reveal that fWB can be tuned from 100 MHz to 1.5 GHz, thereby demonstrating that patterned normal metal/superconductor nanostructures can be used as dc-tunable generators operating in the radiofrequency range.

  15. Post-stenotic plug-like jet with a vortex ring demonstrated by 4D flow MRI.

    PubMed

    Kim, Guk Bae; Ha, Hojin; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Yang, Dong Hyun; Kim, Namkug

    2016-05-01

    To investigate the details of the flow structure of a plug-like jet that had a vortex ring in pulsatile stenotic phantoms using 4D flow MRI. Pulsatile Newtonian flows in two stenotic phantoms with 50% and 75% reductions in area were scanned by 4D flow MRI. Blood analog working fluid was circulated via the stenotic phantom using a pulsatile pump at a constant pulsating frequency of 1Hz. The velocity and vorticity fields of the plug-like jet with a vortex ring were quantitatively analyzed in the spatial and temporal domains. Pulsatile stenotic flow showed a plug-like jet at the specific stenotic degree of 50% in our pulsatile waveform design. This plug-like jet was found at the decelerating period in the post-stenotic region of 26.4mm (1.2 D). It revealed a vortex ring structure with vorticity strength in the range of ±100s(-1). We observed a plug-like jet with a vortex ring in pulsatile stenotic flow by in vitro visualization using 4D flow MRI. In this plug-like jet, the local fastest flow region occurred at the post-systole phase in the post-stenotic region, which was distinguishable from a typical stenotic jet flow at systole phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Comparison of the mechanical properties of rotary instruments made of conventional nickel-titanium wire, M-wire, or nickel-titanium alloy in R-phase.

    PubMed

    Lopes, Hélio P; Gambarra-Soares, Thaiane; Elias, Carlos N; Siqueira, José F; Inojosa, Inês F J; Lopes, Weber S P; Vieira, Victor T L

    2013-04-01

    This study compared the mechanical properties of endodontic instruments made of conventional nickel-titanium (NiTi) wire (K(3) and Revo-S SU), M-Wire (ProFile Vortex), or NiTi alloy in R-phase (K(3)XF). The test instruments were subjected to mechanical tests to evaluate resistance to bending (flexibility), cyclic fatigue, and torsional load in clockwise rotation. Data were statistically evaluated by the analysis of variance test and the Student-Newman-Keuls test for multiple comparisons. In the bending resistance test, flexibility decreased in the following order: K(3)XF > Revo-S SU > ProFile Vortex > K(3). The ranking in the fatigue resistance test was the following: K(3)XF > K(3) > ProFile Vortex > Revo-S SU. In the torsional assay, the angular deflection at failure decreased in the following order: K(3)XF > Revo-S SU > K(3) > ProFile Vortex. For the maximum torque values, the ranking was K(3) > K(3)XF > ProFile Vortex > Revo-S SU. The results showed that the K(3)XF instrument, which is made of NiTi alloy in R-phase, had the overall best performance in terms of flexibility, angular deflection at failure, and cyclic fatigue resistance. In addition to the alloy from which the instrument is manufactured, the design and dimensions are important determinants of the mechanical performance of endodontic instruments. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. A planar chiral meta-surface for optical vortex generation and focusing

    PubMed Central

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Wang, Yanqin; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Wang, Changtao; Zhao, ZeYu; Luo, Xiangang

    2015-01-01

    Data capacity is rapidly reaching its limit in modern optical communications. Optical vortex has been explored to enhance the data capacity for its extra degree of freedom of angular momentum. In traditional means, optical vortices are generated using space light modulators or spiral phase plates, which would sharply decrease the integration of optical communication systems. Here we experimentally demonstrate a planar chiral antenna array to produce optical vortex from a circularly polarized light. Furthermore, the antenna array has the ability to focus the incident light into point, which greatly increases the power intensity of the generated optical vortex. This chiral antenna array may have potential application in highly integrated optical communication systems. PMID:25988213

  18. Large Hysteresis effect in Synchronization of Nanocontact Vortex Oscillators by Microwave Fields

    PubMed Central

    Perna, S.; Lopez-Diaz, L.; d’Aquino, M.; Serpico, C.

    2016-01-01

    Current-induced vortex oscillations in an extended thin-film with point-contact geometry are considered. The synchronization of these oscillations with a microwave external magnetic field is investigated by a reduced order model that takes into account the dynamical effects associated with the significant deformation of the vortex structure produced by the current, which cannot be taken care of by using the standard rigid vortex theory. The complete phase diagram of the vortex oscillation dynamics is derived and it is shown that strong hysteretic behavior occurs in the synchronization with the external field. The complex nonlinear nature of the synchronization manifests itself also through the appearance of asymmetry in the locking frequency bands for moderate microwave field amplitudes. Predictions from the reduced order model are confirmed by full micromagnetic simulations. PMID:27538476

  19. Aircraft Spacings that Produce a Vortex-Free Region Below Flight Formation

    NASA Technical Reports Server (NTRS)

    Rossow, Vernon J.

    2000-01-01

    Theoretical estimates are presented for the motion of vortex wakes shed by multiple aircraft flying in close formation. The purpose of the theoretical study was to determine whether the spacings between adjacent aircraft in close formations could be designed so that the lift-generated vortices being trailed would move upward rather than downward. In this way, a region below the formation is produced that is free of vortices. It was found that aircraft can be arranged in formations so that the inboard wake vortices all move upward rather than downward. The two outboard vortices travel downward at a greatly reduced velocity that depends on the number of aircraft in the formation. If the desired motions are to be produced, the lateral spacings between adjacent aircraft centerlines must be between 1.1 and 1.5 wingspans, and the vertical spacings between -0.025 and -0.15 wingspans. Since the range of acceptable spacings is small, it is recommended that the position accuracy between aircraft in the formation be kept within about + or - 0.01 wingspan of the center of acceptable spacings so that aircraft meandering do not cause unwanted vortex excursions. It was also found that, if the in-trail spacings between adjacent aircraft are more than 4 wingspans, the foregoing vertical spacings must be adjusted to allow for the additional downward travel of the vortices shed by leading aircraft.

  20. Unsteady loading on an airfoil of arbitrary thickness

    NASA Astrophysics Data System (ADS)

    Glegg, Stewart A. L.; Devenport, William

    2009-01-01

    The unsteady loading on an airfoil of arbitrary thickness is evaluated by using the generalized form of Blasius theorem and a conformal mapping that maps the airfoil surface onto a circle. For a blade vortex interaction the results show that the time history of the unsteady loading is determined by the passage of the vortex relative to the leading edge singularity in the circle plane. The singularity lies inside the circle and moves to a smaller radius as the thickness is increased, causing the unsteady loading pulse to be smoothed. The effect of angle of attack is to move the stagnation point relative to the leading edge singularity and this significantly increases the unsteady lift if the vortex passes on the suction side of the airfoil. These characteristics are different for a step upwash gust, which is considered as a simplified model of a large scale turbulent gust. It is shown that the time history of the magnitude of the unsteady loading is almost completely unaltered by angle of attack for the step gust, but it's direction of action rotates forward by an angle equal to the angle of attack, extending an earlier result by Howe for a flat plate in a turbulent flow to airfoils of arbitrary thickness. However spectral analysis of the gust shows that the high frequency blade response is reduced as the thickness of the airfoil is increased.

  1. Separation of cucurbitane triterpenoids from bitter melon drinks and determination of partition coefficients using vortex-assisted dispersive liquid-phase microextraction followed by UHPLC analysis

    USDA-ARS?s Scientific Manuscript database

    A rapid, effective technique applying vortex-assisted liquid–liquid microextraction (VALLME) prior to ultra high performance liquid chromatography-evaporating light scattering detectection/ mass spectroscopy (UHPLC-ELSD/MS) determination was developed for the analysis of four cucurbitane triterpenoi...

  2. Topological phase transition of decoupling quasi-two-dimensional vortex pairs in La1- y Sm y MnO3 + δ ( y = 0.85, 1.0)

    NASA Astrophysics Data System (ADS)

    Bukhanko, F. N.; Bukhanko, A. F.

    2016-10-01

    Characteristic signs of the universal Nelson-Kosterlitz jump of the superconducting liquid density in the temperature dependences of the magnetization of La1- y Sm y MnO3 + δ samples with samarium concentrations y = 0.85 and 1.0, which are measured in magnetic fields 100 Oe ≤ H ≤ 3.5 kOe, are detected. As the temperature increases, the sample with y = 0.85 exhibits a crescent-shaped singularity in the dc magnetization curve near the critical temperature of decoupling vortex-antivortex pairs ( T KT ≡ T c ≈ 43 K), which is independent of measuring magnetic field H and is characteristic of the dissociation of 2D vortex pairs. A similar singularity is also detected in the sample with a samarium concentration y = 1.0 at a significantly lower temperature ( T KT ≈ 12 K). The obtained experimental results are explained in terms of the topological Kosterlitz-Thouless phase transition of dissociation of 2D vortex pairs in a quasi-two-dimensional weak Josephson coupling network.

  3. Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams

    NASA Astrophysics Data System (ADS)

    Li, Manman; Cai, Yanan; Yan, Shaohui; Liang, Yansheng; Zhang, Peng; Yao, Baoli

    2018-05-01

    Light beams may carry optical spin or orbital angular momentum, or both. The spin and orbital parts manifest themselves by the ellipticity of the state of polarization and the vortex structure of phase of light beams, separately. Optical spin and orbit interaction, arising from the interaction between the polarization and the spatial structure of light beams, has attracted enormous interest recently. The optical spin-to-orbital angular momentum conversion under strong focusing is well known, while the converse process, orbital-to-spin conversion, has not been reported so far. In this paper, we predict in theory that the orbital angular momentum can induce a localized spin angular momentum in strong focusing of a spin-free azimuthal polarization vortex beam. This localized longitudinal spin of the focused field can drive the trapped particle to spin around its own axis. This investigation provides a new degree of freedom for spinning particles by using a vortex phase, which may have considerable potentials in optical spin and orbit interaction, light-beam shaping, or optical manipulation.

  4. Vector spherical quasi-Gaussian vortex beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2014-02-01

    Model equations for describing and efficiently computing the radiation profiles of tightly spherically focused higher-order electromagnetic beams of vortex nature are derived stemming from a vectorial analysis with the complex-source-point method. This solution, termed as a high-order quasi-Gaussian (qG) vortex beam, exactly satisfies the vector Helmholtz and Maxwell's equations. It is characterized by a nonzero integer degree and order (n,m), respectively, an arbitrary waist w0, a diffraction convergence length known as the Rayleigh range zR, and an azimuthal phase dependency in the form of a complex exponential corresponding to a vortex beam. An attractive feature of the high-order solution is the rigorous description of strongly focused (or strongly divergent) vortex wave fields without the need of either the higher-order corrections or the numerically intensive methods. Closed-form expressions and computational results illustrate the analysis and some properties of the high-order qG vortex beams based on the axial and transverse polarization schemes of the vector potentials with emphasis on the beam waist.

  5. Controlling abruptly autofocusing vortex beams to mitigate crosstalk and vortex splitting in free-space optical communication.

    PubMed

    Yan, Xu; Guo, Lixin; Cheng, Mingjian; Li, Jiangting

    2018-05-14

    Orbital angular momentum (OAM) mode crosstalk induced by atmospheric turbulence is a challenging phenomenon commonly occurring in OAM-based free-space optical (FSO) communication. Recent advances have facilitated new practicable methods using abruptly autofocusing light beams for weakening the turbulence effect on the FSO link. In this work, we show that a circular phase-locked Airy vortex beam array (AVBA) with sufficient elements has the inherent ability to form an abruptly autofocusing light beam carrying OAM, and its focusing properties can be controlled on demand by adjusting the topological charge values and locations of these vortices embedded in the array elements. The performance of a tailored Airy vortex beam array (TAVBA) through atmospheric turbulence is numerically studied. In a comparison with the ring Airy vortex beam (RAVB), the results indicate that TAVBA can be a superior light source for effectively reducing the intermodal crosstalk and vortex splitting, thus leading to improvement in the FSO system performance.

  6. Inside out: Speed-dependent barriers to reactive mixing

    NASA Astrophysics Data System (ADS)

    Kelley, Douglas; Nevins, Thomas

    2015-11-01

    Reactive mixing occurs wherever fluid flow and chemical or biological growth interact over time and space. Those interactions often lead to steep gradients in reactant and product concentration, arranged in complex spatial structures that can cause wide variation in the global reaction rate and concentrations. By simultaneously measuring fluid velocity and reaction front locations in laboratory experiments with the Belousov-Zhabotinsky reaction, we find that the barriers defining those structures vary dramatically with speed. In particular, we find that increasing flow speed causes reacted regions to move from vortex edges to vortex cores, thus turning the barriers ``inside out''. This observation has implications for reactive mixing of phytoplankton in global oceans.

  7. Induction of optical vortex in the crystals subjected to bending stresses.

    PubMed

    Skab, Ihor; Vasylkiv, Yurij; Vlokh, Rostyslav

    2012-08-20

    We describe a method for generation of optical vortices that relies on bending of transparent parallelepiped-shaped samples fabricated from either glass or crystalline solid materials. It is shown that the induced singularity of optical indicatrix rotation leads in general to appearance of a mixed screw-edge dislocation of the phase front of outgoing optical beam. At the same time, some specified geometrical parameters of the sample can ensure generation of a purely screw dislocation of the phase front and, as a result, a singly charged canonical optical vortex.

  8. Experimental study of cleaning aircraft GTE fuel injectors using a vortex ejector

    NASA Astrophysics Data System (ADS)

    Evdokimov, O. A.; Piralishvili, Sh A.; Veretennikov, S. V.; Elkes, A. A.

    2017-11-01

    The main ways of cleaning the fuel injectors and the circuits of jet and vortex ejectors used for pumping gas, liquid and two-phase media, as well as for evacuation of enclosed spaces are analyzed. The possibility of organizing the process of pumping the liquid out of the fuel injection manifold secondary circuit using a vortex ejector is shown experimentally. The regimes of manifold evacuation at various inlet liquid pressure values are studied. The technology of carbon cleaning fuel injectors using a washing liquid at various working process parameters is tested.

  9. Realization of arbitrarily long focus-depth optical vortices with spiral area-varying zone plates

    NASA Astrophysics Data System (ADS)

    Zheng, Chenglong; Zang, Huaping; Du, Yanli; Tian, Yongzhi; Ji, Ziwen; Zhang, Jing; Fan, Quanping; Wang, Chuanke; Cao, Leifeng; Liang, Erjun

    2018-05-01

    We provide a methodology to realize an optical vortex with arbitrarily long focus-depth. With a technique of varying each zone area of a phase spiral zone plate one can obtain optics capable of generating ultra-long focus-depth optical vortex from a plane wave. The focal property of such optics was analysed using the Fresnel diffraction theory, and an experimental demonstration was performed to verify its effectiveness. Such optics may bring new opportunity and benefits for optical vortex application such as optical manipulation and lithography.

  10. Multiple-Star System Adaptive Vortex Coronagraphy Using a Liquid Crystal Light Valve

    NASA Astrophysics Data System (ADS)

    Aleksanyan, Artur; Kravets, Nina; Brasselet, Etienne

    2017-05-01

    We propose the development of a high-contrast imaging technique enabling the simultaneous and selective nulling of several light sources. This is done by realizing a reconfigurable multiple-vortex phase mask made of a liquid crystal thin film on which local topological features can be addressed electro-optically. The method is illustrated by reporting on a triple-star optical vortex coronagraphy laboratory demonstration, which can be easily extended to higher multiplicity. These results allow considering the direct observation and analysis of worlds with multiple suns and more complex extrasolar planetary systems.

  11. A dual-polarized and reconfigurable reflectarray for generation of vortex radio waves

    NASA Astrophysics Data System (ADS)

    Li, Chen-Chen; Wu, Lin-Sheng; Yin, Wen-Yan

    2018-05-01

    Electromagnetic (EM) waves with orbital angular momentum (OAM) provide a new degree of freedom for channel multiplexing to improve the capacity of wireless communication. For OAM-based systems, it is important to design specific configurations to generate vortex radios. In this paper, a reconfigurable reflectarray antenna is proposed with independent control of dual polarizations. A reflective cell is proposed by properly assigning the variable capacitances of four varactors, which are placed between metal square rings of each unit. The varactors of each unit are divided into two groups and the capacitance value of each group controls the reflection phase for a single linear polarization. By using the equivalent circuit model, the reflective units and array can be designed efficiently. Smooth phase variation and good reflection efficiency are achieved. Then, the reflectarray is set into sectors and a simple phase-shifting surface model is used to generate vortex beam. Each sector is realized with reflective units satisfying desired reflection phases for different modes. This kind of OAM-generating method can reduce the required variation range of reflection phase and provide more choices for a specific OAM mode combination with dual polarization, which is helpful to reduce mutual coupling between the two linear polarizations. Finally, full-wave simulations show that the 0, ±1, ±2 modes of vortex beam are successfully generated at 3.5 GHz with arbitrary combination in dual-polarization, which is also supported by OAM modes purity and reflection efficiency analysis. Therefore, in our design, the reconfigurable OAM and spin angular momentum (SAM), related with polarization, can be utilized simultaneously and independently for high-capacity wireless communication.

  12. Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi).

    PubMed

    Wu, Guanhao; Yang, Yan; Zeng, Lijiang

    2007-06-01

    Koi carps frequently swim in burst-and-coast style, which consists of a burst phase and a coast phase. We quantify the swimming kinematics and the flow patterns generated by the carps in burst-and-coast swimming. In the burst phase, the carps burst in two modes: in the first, the tail beats for at least one cycle (multiple tail-beat mode); in the second, the tail beats for only a half-cycle (half tail-beat mode). The carp generates a vortex ring in each half-cycle beat. The vortex rings generated during bursting in multiple tail-beat mode form a linked chain, but only one vortex ring is generated in half tail-beat mode. The wake morphologies, such as momentum angle and jet angle, also show much difference between the two modes. In the burst phase, the kinematic data and the impulse obtained from the wake are linked to obtain the drag coefficient (C(d,burst) approximately 0.242). In the coast phase, drag coefficient (C(d,coast) approximately 0.060) is estimated from swimming speed deceleration. Our estimation suggests that nearly 45% of energy is saved when burst-and-coast swimming is used by the koi carps compared with steady swimming at the same mean speed.

  13. On the Transition from Potential Flow to Turbulence Around a Microsphere Oscillating in Superfluid ^4{He}

    NASA Astrophysics Data System (ADS)

    Niemetz, M.; Hänninen, R.; Schoepe, W.

    2017-05-01

    The flow of superfluid ^4{He} around a translationally oscillating sphere, levitating without mechanical support, can either be laminar or turbulent, depending on the velocity amplitude. Below a critical velocity v_c that scales as ω ^{1/2} and is temperature independent below 1 K, the flow is laminar (potential flow). Below 0.5 K, the linear drag force is caused by ballistic phonon scattering that vanishes as T^4 until background damping, measured in the empty cell, becomes dominant for T < 0.1 K. Increasing the velocity amplitude above v_c leads to a transition from potential flow to turbulence, where the large turbulent drag force varies as (v^2 - v_c^2). In a small velocity interval Δ v {/} v_c ≤ 3% above v_c, the flow is unstable below 0.5 K, switching intermittently between both patterns. From time series recorded at constant temperature and driving force, the lifetimes of both phases are analyzed statistically. We observe metastable states of potential flow which, after a mean lifetime of 25 min, ultimately break down due to vorticity created by natural background radioactivity. The lifetimes of the turbulent phases have an exponential distribution, and the mean increases exponentially with Δ v^2. We investigate the frequency at which the vortex rings are shed from the sphere. Our results are compared with recent data of other authors on vortex shedding by moving a laser beam through a Bose-Einstein condensate. Finally, we show that our observed transition to turbulence belongs to the class of "supertransient chaos" where lifetimes of the turbulent states increase faster than exponentially.

  14. Navier-Stokes solutions of unsteady separation induced by a vortex: Comparison with theory and influence of a moving wall

    NASA Astrophysics Data System (ADS)

    Obabko, Aleksandr Vladimirovich

    Numerical solutions of the unsteady Navier-Stokes equations are considered for the flow induced by a thick-core vortex convecting along an infinite surface in a two-dimensional incompressible flow. The formulation is considered as a model problem of the dynamic-stall vortex and is relevant to other unsteady separation phenomena including vorticity ejections in juncture flows and the vorticity production mechanism in turbulent boundary-layers. Induced by an adverse streamwise pressure gradient due to the presence of the vortex above the wall, a primary recirculation region forms and evolves toward a singular solution of the unsteady non-interacting boundary-layer equations. The resulting eruptive spike provokes a small-scale viscous-inviscid interaction in the high-Reynolds-number regime. In the moderate-Reynolds-numbers regime, the growing recirculation region initiates a large-scale interaction in the form of local changes in the streamwise pressure gradient accelerating the spike formation and resulting small-scale interaction through development of a region of streamwise compression. It also was found to induce regions of streamwise expansion and "child" recirculation regions that contribute to ejections of near-wall vorticity and splitting of the "parent" region into multiple co-rotating eddies. These eddies later merge into a single amalgamated eddy that is observed to pair with the detaching vortex similar to the low-Reynolds-number regime where the large-scale interaction occurs, but there is no spike or subsequent small-scale interaction. It is also found that increasing the wall speed or vortex convection velocity toward a critical value results in solutions that are indicative of flows at lower Reynolds numbers eventually leading to suppression of unsteady separation and vortex detachment processes.

  15. Rapid and selective brain cooling method using vortex tube: A feasibility study.

    PubMed

    Bakhsheshi, Mohammad Fazel; Keenliside, Lynn; Lee, Ting-Yim

    2016-05-01

    Vortex tubes are simple mechanical devices to produce cold air from a stream of compressed air without any moving parts. The primary focus of the current study is to investigate the feasibility and efficiency of nasopharyngeal brain cooling method using a vortex tube. Experiments were conducted on 5 juvenile pigs. Nasopharygeal brain cooling was achieved by directing cooled air via a catheter in each nostril into the nasal cavities. A vortex tube was used to generate cold air using various sources of compressed air: (I) hospital medical air outlet (n = 1); (II) medical air cylinders (n = 3); and (III) scuba (diving) cylinders (n = 1). By using compressed air from a hospital medical air outlet at fixed inlet pressure of 50 PSI, maximum brain-rectal temperature gradient of -2°C was reached about 45-60 minutes by setting the flow rate of 25 L/min and temperature of -7°C at the cold air outlet. Similarly, by using medical air cylinders at fill-pressure of 2265 PSI and down regulate the inlet pressure to the vortex tube to 50 PSI, brain temperature could be reduced more rapidly by blowing -22°C ± 2°C air at a flow rate of 50 L/min; brain-body temperature gradient of -8°C was obtained about 30 minutes. Furthermore, we examined scuba cylinders as a portable source of compressed gas supply to the vortex tube. Likewise, by setting up the vortex tube to have an inlet pressure of 25 PSI and 50 L/min and -3°C at the cold air outlet, brain temperature decreased 4.5°C within 10-20 min. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Characteristics of Air Core and Surface Velocity for Water Flow in a Vortex Sediment-Extraction Chamber Measured by Using Photo Images and PTV Technique.

    NASA Astrophysics Data System (ADS)

    Yao, Hou Chang; Chyan Deng, Jan; Chao, Hsu Yu; Chih Yuan, Yang

    2017-04-01

    A vortex sediment-extraction chamber, consisted of cylindrical chamber, inflow system, bottom orifice and overflow weir, is used to separate sediment from sediment-laden water flow. A tangential inflow is introduced into a cylindrical chamber with a bottom orifice; thus, a strong vortex flow is produced there. Under actions of gravity and centrifugal force, heavier sediment particles are forced to move towards the bottom orifice, and relatively clear water flows over through the top overflow weir. The flow field in the cylindrical chamber consists of forced vortex and free vortex. When the bottom orifice is opened during the sediment-extraction process, an air core appears and changes with different settings. In this study, the air core and water surface velocity in the cylindrical chamber were measured by using a photo image process and particle tracking velocimetry (PTV), as well as numerically simulated by using a commercial software, Flow-3D.Laboratory experiments were conducted in a vortex chamber, having height of 130 cm and diameter of 48 cm. Five kinds of bottom orifice size from 1.0 cm to 3.0 cm and four kinds of inflow water discharge from 1,300cm3/s to 1,700 cm3/s were used while the inflow pipe of 3 cm in diameter was kept the same for all experiments. The characteristics of the air core and water surface velocity, and the inflow and outflow ratios under different experimental arrangements were observed and discussed so as to provide a better design and application for a vortex sediment-extraction chamber in the future.

  17. Vortex Mask: Making 80nm contacts with a twist!

    NASA Astrophysics Data System (ADS)

    Levenson, Marc D.; Dai, Grace; Ebihara, Takeaki

    2002-12-01

    An optical vortex has a phase that spirals like a corkscrew. Since any nonzero optical amplitude must have a well-defined phase, the axis of a vortex (where the phase is undefined) is always dark. Printed in negative resist, lowest order vortices would produce contact holes with 0.20.6 can be produced using a chromeless phase-edge mask composed of rectangles with phases of 0°, 90°, 180° and 270°. EMF and Kirchhoff-approximation simulations reveal that the image quality of the dark spots is excellent, and predict a process window with 15% exposure latitude and 400nm DOF for 80nm diameter spots on pitches >=250nm at σ=0.15. EMF simulations predict that the 0-270° phase step will not be excessively dark if the quartz wall is vertical. Chrome spots at the centers can control the diameters which otherwise are set by the parameters of the imaging system and exposure dose. Unwanted vortices can be erased from the image by exposing with a second, more conventional, trim mask. This method would be superior to the other ways of producing sub-wavelength vias, but successful implementation requires the development of appropriate negative-tone resist processes.

  18. Anisotropic superconductivity and elongated vortices with unusual bound states in quasi-one-dimensional nickel-bismuth compounds

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Lin; Zhang, Yi-Min; Lv, Yan-Feng; Ding, Hao; Wang, Lili; Li, Wei; He, Ke; Song, Can-Li; Ma, Xu-Cun; Xue, Qi-Kun

    2018-04-01

    We report low-temperature scanning tunneling microscopy and spectroscopy studies of Ni-Bi films grown by molecular beam epitaxy. Highly anisotropic and twofold symmetric superconducting gaps are revealed in two distinct composites, Bi-rich NiBi3 and near-equimolar NixBi , both sharing quasi-one-dimensional crystal structure. We further reveal axially elongated vortices in both phases, but Caroli-de Gennes-Matricon states solely within the vortex cores of NiBi3. Intriguingly, although the localized bound state splits energetically off at a finite distance ˜10 nm away from a vortex center along the minor axis of elliptic vortex, no splitting is found along the major axis. We attribute the elongated vortices and unusual vortex behaviors to the combined effects of twofold superconducting gap and Fermi velocity. The findings provide a comprehensive understanding of the electron pairing and vortex matter in quasi-one-dimensional superconductors.

  19. Vortex states in a submicron Bi2212 crystal probed by intrinsic Josephson junctions

    NASA Astrophysics Data System (ADS)

    Ooi, S.; Tachiki, M.; Mochiku, T.; Wang, H. B.; Komori, K.; Hirata, K.; Arisawa, S.

    2018-03-01

    To study the pancake-vortex states confined in a submicron Bi2Sr2CaCu2O8+y (Bi2212) crystal, we have measured the c-axis resistance and I-V characteristics of a stack of intrinsic Josephson junctions with a lateral dimension less than 1 µm. Although the stack was accidentally shunted by a parallel resistance of 7.5 kΩ, the I-V characteristics show homogeneous multiple branches after the subtraction of the component. The penetrations of single vortices into the submicron stack were clearly observed in the resistance measurements. A vortex phase diagram was constructed by mapping the c-axis resistance on an H-T plane. Temperature dependence of the first-vortex penetration field is consistent with the theoretical estimation on the formation of a pancake-vortex stack in the center of a superconducting strip.

  20. Vortex flow during early and late left ventricular filling in normal subjects: quantitative characterization using retrospectively-gated 4D flow cardiovascular magnetic resonance and three-dimensional vortex core analysis.

    PubMed

    Elbaz, Mohammed S M; Calkoen, Emmeline E; Westenberg, Jos J M; Lelieveldt, Boudewijn P F; Roest, Arno A W; van der Geest, Rob J

    2014-09-27

    LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects. With full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman's correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested. Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle's long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; <0.001) compared to E-vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and mitral inflow shape through both the annulus (r=0.66) and leaflet tips (r=0.83). Quantitative characterization and comparison of 3D vortex rings in LV inflow during both early and late diastolic phases is feasible in normal subjects using retrospectively-gated 4D Flow CMR, with distinct differences between early and late diastolic vortex rings.

  1. Ancrage des vortex dans les supraconducteurs Description phénoménologique de la réponse linéaire d'un de vortex ancré

    NASA Astrophysics Data System (ADS)

    Lütke-Entrup, N.; Plaçais, B.; Mathieu, P.; Simon, Y.

    Vortices pinning in supraconductors In this article we report on the investigation of the dynamics of vortices based on the high frequency linear response. We present a serie of measurements of the complex penetration depth in the mixed state in a variety of samples, including conventional materials (Nb, V, PbIn), the non-conventional heavy fermion UPt3, and the high-T_c cuprate YBaCuO. We have explored a large frequency range (1 kHz 10 MHz) so as to cover the cross-over from the quasi-static response, which is dominated by elastic interactions between vortices and sample defects, to the high-frequency regime, which is governed by viscous damping due to vortex friction against the host crystal. For a quantitative description of the frequency spectrum we start from a phenomenological theory which makes a rigorous distinction between vortex lines, along a vortex field omega, and magnetic field lines B. It predicts a second electrodynamical mode, which is linked to the vortex line tension and has a rather short range. We show that, in the limit of small vortex oscillations, amplitude and phase of the linear response are governed by an additional boundary condition for the vortex lattice at the sample surface ; it takes the form of a slipping condition with a characteristic length that depends on the surface roughness. The frequency spectrum deduced from this mechanism is clearly different from the Campbell spectrum, which is the common signature of all bulk pinning mechanisms. Our results on samples of PbIn, Nb, V, and YBaCuO entirely confirm our model, including some non-intuitive size effects which appear at low frequency when the sample becomes transparent to the flux flow mode. However, our measurements in the B and C phases of UPt3 reveal and important contribution of the bulk to the vortex pinning. Ce travail porte sur l'étude de l'ancrage des vortex par la réponse linéaire haute fréquence. Nous présentons une série de mesures de la profondeur de pénétration complexe dans l'état mixte sur une variété d'échantillons qui va des supraconducteurs classiques (Nb, V, PbIn), aux composés de fermions lourds non-conventionnels (UPt3), en passant par les cuprates à haute température critique (YBaCuO). La large gamme des fréquences explorées (1 kHz 10 MHz) permet de couvrir le changement de régime entre la réponse quasistatique dominée par l'interaction élastique des vortex avec les défauts, et la réponse haute fréquence amortie par la friction visqueuse du réseau de vortex au cristal ionique. Pour décrire quantitativement le spectre de fréquence, nous nous appuyons sur une théorie phénoménologique qui fait une distinction explicite et rigoureuse entre lignes de vortex, décrites par un champ omega, et lignes de champ magnétique B. On prédit ainsi l'existence d'un second mode électrodynamique, évanescent et de courte portée, lié à la tension de ligne des vortex. On montre que la réponse aux petits mouvements, amplitude et phase, est réglée par une condition limite supplémentaire sur le réseau de vortex à la surface ; elle prend la forme d'une condition de glissement avec une longueur phénoménologique contrôlée par la rugosité de l'échantillon. Le spectre de fréquence associé à ce mécanisme se distingue nettement du spectre de Campbell, générique des modèles d'ancrage en volume. Nos mesures sur des échantillons PbIn, Nb, V et YBaCuO confirment entièrement notre modèle, y compris des effets de taille peu intuitifs qui se produisent à basse fréquence quand l'échantillon devient transparent au mode flux flow. En revanche, l'étude des vortex dans les phases B et C d'UPt3 montre une contribution importante du volume à l'ancrage des vortex.

  2. Mathematical modelling of convective processes in a weld pool under electric arc surfacing

    NASA Astrophysics Data System (ADS)

    Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.

    2017-01-01

    The authors develop the mathematical model of convective processes in a molten pool under electric arc surfacing with flux-cored wire. The model is based on the ideas of how convective flows appear due to temperature gradient and action of electromagnetic forces. Influence of alloying elements in the molten metal was modeled as a non-linear dependence of surface tension upon temperature. Surface tension and its temperature coefficient were calculated according to the electron density functional method with consideration to asymmetric electron distribution at the interface “molten metal / shielding gas”. Simultaneous solution of Navier-Stokes and Maxwell equations according to finite elements method with consideration to the moving heat source at the interface showed that there is a multi-vortex structure in the molten metal. This structure gives rise to a downward heat flux which, at the stage of heating, moves from the centre of the pool and stirs it full width. At the cooling stage this flux moves towards the centre of the pool and a single vortex is formed near the symmetry centre. This flux penetration is ∼ 10 mm. Formation of the downward heat flux is determined by sign reversal of the temperature coefficient of surface tension due to the presence of alloying elements.

  3. Non-Abelian vortex lattices

    NASA Astrophysics Data System (ADS)

    Tallarita, Gianni; Peterson, Adam

    2018-04-01

    We perform a numerical study of the phase diagram of the model proposed in [M. Shifman, Phys. Rev. D 87, 025025 (2013)., 10.1103/PhysRevD.87.025025], which is a simple model containing non-Abelian vortices. As per the case of Abrikosov vortices, we map out a region of parameter space in which the system prefers the formation of vortices in ordered lattice structures. These are generalizations of Abrikosov vortex lattices with extra orientational moduli in the vortex cores. At sufficiently large lattice spacing the low energy theory is described by a sum of C P (1 ) theories, each located on a vortex site. As the lattice spacing becomes smaller, when the self-interaction of the orientational field becomes relevant, only an overall rotation in internal space survives.

  4. Ignition and structure of a laminar diffusion flame in the field of a vortex

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Jackson, T. L.; Hussaini, M. Y.

    1991-01-01

    The distortion of flames in flows with vortical motion is examined via asymptotic analysis and numerical simulation. The model consists of a constant density, one step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are then allowed to mix and react in the presence of a vortex. The evolution in time of the temperature and mass fraction fields is followed. Emphasis is placed on the ignition time and location as a function of vortex Reynolds number and initial temperature differences of the reacting species. The study brings out the influence of the vortex on the chemical reaction. In all phases, good agreement is observed between asymptotic analysis and the full numerical solution of the model equations.

  5. RAPID COMMUNICATION Time-resolved measurements with a vortex flowmeter in a pulsating turbulent flow using wavelet analysis

    NASA Astrophysics Data System (ADS)

    Laurantzon, F.; Örlü, R.; Segalini, A.; Alfredsson, P. H.

    2010-12-01

    Vortex flowmeters are commonly employed in technical applications and are obtainable in a variety of commercially available types. However their robustness and accuracy can easily be impaired by environmental conditions, such as inflow disturbances and/or pulsating conditions. Various post-processing techniques of the vortex signal have been used, but all of these methods are so far targeted on obtaining an improved estimate of the time-averaged bulk velocity. Here, on the other hand, we propose, based on wavelet analysis, a straightforward way to utilize the signal from a vortex shedder to extract the time-resolved and thereby the phase-averaged velocity under pulsatile flow conditions. The method was verified with hot-wire and laser Doppler velocimetry measurements.

  6. Generation of cylindrically polarized vector vortex beams with digital micromirror device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Lei; Liu, Weiwei; Wang, Meng

    We propose a novel technique to directly transform a linearly polarized Gaussian beam into vector-vortex beams with various spatial patterns. Full high-quality control of amplitude and phase is implemented via a Digital Micro-mirror Device (DMD) binary holography for generating Laguerre-Gaussian, Bessel-Gaussian, and helical Mathieu–Gaussian modes, while a radial polarization converter (S-waveplate) is employed to effectively convert the optical vortices into cylindrically polarized vortex beams. Additionally, the generated vector-vortex beams maintain their polarization symmetry after arbitrary polarization manipulation. Due to the high frame rates of DMD, rapid switching among a series of vector modes carrying different orbital angular momenta paves themore » way for optical microscopy, trapping, and communication.« less

  7. On the formation of vortex rings in coaxial tubes

    NASA Astrophysics Data System (ADS)

    Gan, Lian

    2011-11-01

    The formation of vortex rings within coaxial tubes of different diameter is investigated experimentally and numerically. PIV measurements were carried out in a water tank equipped with a piston-cylinder apparatus used to generate vortex rings inside a series of coaxial tubes with tube to piston diameter ratios, DT / D , ranging from 4 to 1.5. In order to distinguish between the effect confinement has on the formation of isolated vortex rings from those formed with a trailing jet flow, non- dimensional stroke ratios below and above the formation number were investigated, L / D = 2 . 5 and 10 respectively. For DT / D > 2 and L / D s below the formation number the kinematics of the vortex rings follow classical inviscid theory in so much as their self-induced velocity decreases linearly with decreasing tube diameter in accordance with the image theorem. For DT / D <= 2 boundary layer separation along the tube wall begins to interfere with the vortex during its roll-up phase. For vortex rings below the formation number, the vortex core is briefly arrested upon completion of the piston stroke. On the other hand, long L / D s give rise to even more complex dynamics. When DT / D = 2 the interaction between boundary layer and the starting jet acts to suppress vortex ring formation altogether. However, as confinement is increased further to DT / D = 1 . 5 the formation of a lead vortex ring re-appears but with a circulation lower than the formation number before rapidly decaying.

  8. Vortices in a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; Du, Zhi-Jing; Tan, Ren-Bing

    We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic)more » harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.« less

  9. Nonlinear ion acoustic waves scattered by vortexes

    NASA Astrophysics Data System (ADS)

    Ohno, Yuji; Yoshida, Zensho

    2016-09-01

    The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.

  10. Comment on ``Symmetry and structure of quantized vortices in superfluid 3'

    NASA Astrophysics Data System (ADS)

    Sauls, J. A.; Serene, J. W.

    1985-10-01

    Recent theoretical attempts to explain the observed vortex-core phase transition in superfluid 3B yield conflicting results. Variational calculations by Fetter and Theodrakis, based on realistic strong-coupling parameters, yield a phase transition in the Ginzburg-Landau region that is in qualitative agreement with the phase diagram. Numerically precise calculations by Salomaa and Volivil (SV), based on the Brinkman-Serene-Anderson (BSA) parameters, do not yield a phase transition between axially symmetric vortices. The ambiguity of these results is in part due to the large differences between the β parameters, which are inputs to the vortex free-energy functional. We comment on the relative merits of the β parameters based on recent improvements in the quasiparticle scattering amplitude and the BSA parameters used by SV.

  11. Modeling the Frozen-In Anticyclone in the 2005 Arctic Summer Stratosphere

    NASA Technical Reports Server (NTRS)

    Allen, D. R.; Douglass, A. R.; Manney, G. L.; Strahan, S. E.; Krosschell, J. C.; Trueblood, J.

    2010-01-01

    Immediately following the breakup of the 2005 Arctic spring stratospheric vortex, a tropical air mass, characterized by low potential vorticity (PV) and high nitrous oxide (N2O), was advected poleward and became trapped in the easterly summer polar vortex. This feature, known as a "Frozen-In Anticyclone (FrIAC)", was observed in Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) data to span the potential temperature range from approximately 580 to 1100 K (approximately 25 to 40 km altitude) and to persist from late March to late August 2005. This study compares MLS N2O observations with simulations from the Global Modeling Initiative (GMI) chemistry and transport model, the GEOS-5/MERRA Replay model, and the VanLeer Icosahedral Triangular Advection isentropic transport model to elucidate the processes involved in the lifecycle of the FrIAC which is here divided into three distinct phases. During the "spin-up phase" (March to early April), strong poleward flow resulted in a tight isolated anticyclonic vortex at approximately 70-90 deg N, marked with elevated N2O. GMI, Replay, and VITA all reliably simulted the spin-up of the FrIAC, although the GMI and Replay peak N2O values were too low. The FrIAC became trapped in the developing summer easterly flow and circulated around the polar region during the "anticyclonic phase" (early April to the end of May). During this phase, the FrIAC crossed directly over the pole between the 7th and 14th of April. The VITA and Replay simulations transported the N2O anomaly intact during this crossing, in agreement with MLS, but unrealistic dispersion of the anomaly occurred in the GMI simulation due to excessive numerical mixing of the polar cap. The vortex associated with the FrIAC was apparently resistant to the weak vertical hear during the anticyclonic phase, and it thereby protected the embedded N20 anomaly from stretching. The vortex decayed in late May due to diabatic processes, leaving the N2O anomaly exposed to horizontal and vertical wind shears during the "shearing phase" (June to August). The observed lifetime of the FrIAC during this phase is consistent with time-scales calculated from the ambient horizontal and vertical wind shear. Replay maintained the horizontal structure of the N2O anomaly similar to NILS well into August. The VITA simulation also captured the horizontal structure of the FrIAC during this phase, but VITA eventually developed fine-scale N2O structure not observed in MLS data.

  12. Electrical and thermal transport properties of the electron-doped cuprate Sm2-x Ce x CuO4-y system

    NASA Astrophysics Data System (ADS)

    Scanderbeg, D. J.; Taylor, B. J.; Baumbach, R. E.; Paglione, J.; Maple, M. B.

    2016-12-01

    Electrical and thermal transport measurements were performed on thin films of the electron-doped superconductor Sm2-x Ce x CuO4-y (x  =  0.13  -  0.19) in order to study the evolving nature of the charge carriers from the under-doped to over-doped regime. A temperature versus cerium content (T  -  x) phase diagram has been constructed from the electrical transport measurements, yielding a superconducting region similar to that found for other electron-doped superconductors. Thermopower measurements show a dramatic change from the underdoped region (x  <  0.15) to the overdoped region (x  >  0.15). Application of the Fisher-Fisher-Huse (FFH) vortex glass scaling model to the magnetoresistance data was found to be insufficient to describe the data in the region of the vortex-solid to vortex-liquid transition. It was found instead that the modified vortex glass scaling model of Rydh, Rapp, and Anderson provided a good description of the data, indicating the importance of the applied field on the pinning landscape. A magnetic field versus temperature (H  -  T) phase diagram has also been constructed for the films with x≥slant 0.14 , displaying the evolution of the vortex glass melting lines H g (T) across the superconducting regime.

  13. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates.

    PubMed

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-07-28

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the "recombination" and "exchange" regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the "annihilation" regime. We find that the mechanism of the charge flipping in the "exchange" regime and the disappearance of the quadrupole structure in the "annihilation" regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution.

  14. On the electron vortex beam wavefunction within a crystal.

    PubMed

    Mendis, B G

    2015-10-01

    Electron vortex beams are distorted by scattering within a crystal, so that the wavefunction can effectively be decomposed into many vortex components. Using a Bloch wave approach equations are derived for vortex beam decomposition at any given depth and with respect to any frame of reference. In the kinematic limit (small specimen thickness) scattering largely takes place at the neighbouring atom columns with a local phase change of π/2rad. When viewed along the beam propagation direction only one vortex component is present at the specimen entrance surface (i.e. the 'free space' vortex in vacuum), but at larger depths the probe is in a mixed state due to Bragg scattering. Simulations show that there is no direct correlation between vortex components and the 〈Lz〉 pendellösung, i.e. at a given depth probes with relatively constant 〈Lz〉 can be in a more mixed state compared to those with more rapidly varying 〈Lz〉. This suggests that minimising oscillations in the 〈Lz〉 pendellösung by probe channelling is not the only criterion for generating a strong electron energy loss magnetic circular dichroism (EMCD) signal. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Crystallized and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates

    PubMed Central

    Liu, Chao-Fei; Fan, Heng; Gou, Shih-Chuan; Liu, Wu-Ming

    2014-01-01

    Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction. PMID:24573303

  16. Vortex Loops at the Superfluid Lambda Transition: An Exact Theory?

    NASA Technical Reports Server (NTRS)

    Williams, Gary A.

    2003-01-01

    A vortex-loop theory of the superfluid lambda transition has been developed over the last decade, with many results in agreement with experiments. It is a very simple theory, consisting of just three basic equations. When it was first proposed the main uncertainty in the theory was the use Flory scaling to find the fractal dimension of the random-walking vortex loops. Recent developments in high-resolution Monte Carlo simulations have now made it possible to verify the accuracy of this Flory-scaling assumption. Although the loop theory is not yet rigorously proven to be exact, the Monte Carlo results show at the least that it is an extremely good approximation. Recent loop calculations of the critical Casimir effect in helium films in the superfluid phase T < Tc will be compared with similar perturbative RG calculations in the normal phase T > Tc; the two calculations are found to match very nicely right at Tc.

  17. The Three-D Flow Structures of Gas and Liquid Generated by a Spreading Flame Over Liquid Fuel

    NASA Technical Reports Server (NTRS)

    Tashtoush, G.; Ito, A.; Konishi, T.; Narumi, A.; Saito, K.; Cremers, C. J.

    1999-01-01

    We developed a new experimental technique called: Combined laser sheet particle tracking (LSPT) and laser holographic interferometry (HI), which is capable of measuring the transient behavior of three dimensional structures of temperature and flow both in liquid and gas phases. We applied this technique to a pulsating flame spread over n-butanol. We found a twin vortex flow both on the liquid surface and deep in the liquid a few mm below the surface and a twin vortex flow in the gas phase. The first twin vortex flow at the liquid surface was observed previously by NASA Lewis researchers, while the last two observations are new. These observations revealed that the convective flow structure ahead of the flame leading edge is three dimensional in nature and the pulsating spread is controlled by the convective flow of both liquid and gas.

  18. Direct Adaptive Rejection of Vortex-Induced Disturbances for a Powered SPAR Platform

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.; Balas, Mark J.; VanZwieten, James H.; Driscoll, Frederick R.

    2009-01-01

    The Rapidly Deployable Stable Platform (RDSP) is a novel vessel designed to be a reconfigurable, stable at-sea platform. It consists of a detachable catamaran and spar, performing missions with the spar extending vertically below the catamaran and hoisting it completely out of the water. Multiple thrusters located along the spar allow it to be actively controlled in this configuration. A controller is presented in this work that uses an adaptive feedback algorithm in conjunction with Direct Adaptive Disturbance Rejection (DADR) to mitigate persistent, vortex-induced disturbances. Given the frequency of a disturbance, the nominal DADR scheme adaptively compensates for its unknown amplitude and phase. This algorithm is extended to adapt to a disturbance frequency that is only coarsely known by including a Phase Locked Loop (PLL). The PLL improves the frequency estimate on-line, allowing the modified controller to reduce vortex-induced motions by more than 95% using achievable thrust inputs.

  19. Magnetic phase diagram of underdoped YBa 2 Cu 3 O y inferred from torque magnetization and thermal conductivity

    DOE PAGES

    Yu, Fan; Hirschberger, Max; Loew, Toshinao; ...

    2016-10-24

    We obtain the magnetic phase diagram in the underdoped cuprate YBa2Cu3Oy using torque magnetometry at temperatures 0.3–70 K and magnetic fields up to 45 T. At low fields, vortices (quantized flux tubes) form a vortex solid that is strongly pinned to the lattice. At large fields, melting of the solid to a vortex liquid produces nonzero dissipation. However, the vortex liquid persists to fields above 41 T. We have also mapped out the “transition” fields at which the charge-density–wave state (observed in X-ray diffraction experiments) becomes stable. Our results show that, in intense fields, superconductivity adjusts to coexist with themore » charge-density wave, but the Cooper pairs, which define the superconducting fluid, survive to fields well above 41 T.« less

  20. Formation of high-order acoustic Bessel beams by spiral diffraction gratings

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Picó, R.; Sánchez-Morcillo, V.; Romero-García, V.; García-Raffi, L. M.; Staliunas, K.

    2016-11-01

    The formation of high-order Bessel beams by a passive acoustic device consisting of an Archimedes' spiral diffraction grating is theoretically, numerically, and experimentally reported in this paper. These beams are propagation-invariant solutions of the Helmholtz equation and are characterized by an azimuthal variation of the phase along its annular spectrum producing an acoustic vortex in the near field. In our system, the scattering of plane acoustic waves by the spiral grating leads to the formation of the acoustic vortex with zero pressure on axis and the angular phase dislocations characterized by the spiral geometry. The order of the generated Bessel beam and, as a consequence, the size of the generated vortex can be fixed by the number of arms in the spiral diffraction grating. The obtained results allow for obtaining Bessel beams with controllable vorticity by a passive device, which has potential applications in low-cost acoustic tweezers and acoustic radiation force devices.

  1. Effect of Quenched Disorder in the Entropy-Jump at the First-Order Vortex Phase Transition of Bi $_{2} 2 Sr _{2} 2 CaCu _{2} 2 O _{8 + delta }$ 8 + δ

    NASA Astrophysics Data System (ADS)

    Dolz, M. I.; Pedrazzini, P.; Pastoriza, H.; Konczykowski, M.; Fasano, Y.

    2015-04-01

    We study the effect of quenched disorder in the thermodynamic magnitudes entailed in the first-order vortex phase transition of the extremely layered BiSrCaCuO compound. We track the temperature-evolution of the enthalpy and the entropy jump at the vortex solidification transition by means of AC local magnetic measurements. Quenched disorder is introduced to the pristine samples by means of heavy-ion irradiation with Pb and Xe producing a random columnar-track pins distribution with different densities (matching field ). In contrast with previous magneto-optical reports, we find that the first-order phase transition persists for samples with up to 100 Gauss. For very low densities of quenched disorder (pristine samples), the evolution of the thermodynamic properties can be satisfactorily explained considering a negligible effect of pinning and only electromagnetic coupling between pancake vortices lying in adjacent CuO planes. This description is not satisfactory on increasing magnitude of quenched disorder.

  2. How robust is the Holton-Tan relationship?

    NASA Astrophysics Data System (ADS)

    Braesicke, Peter; Kerzenmacher, Tobias

    2017-04-01

    The Holton-Tan relationship explains a possible link between tropical and extratropical variability (foremost in the northern hemisphere). The idea can be rationalised using simple linear wave theory. The quasi-biennial oscillation in the tropical lower stratosphere can be regarded as a kind of switch that influences the propagation of planetary waves. In a westerly phase of the QBO planetary waves in the stratosphere can propagate more equatorward and the polar vortex remains strong and undisturbed. In an easterly phase of the QBO the propagation is more poleward and the polar vortex is weaker and more disturbed. However, the robustness of this relationship depends on the precise definition of the QBO phase and the criteria used to define the polar vortex strength. Here, we will revisit the basic Holton-Tan relationship and will explore how other factors (including the state of the El Nino-Southern Oscillation) modify the relationship. Using reanalysis data and idealised model experiments a possible range for robust manifestations of the Holton-Tan relationship is determined, thus providing an improved framework for a better understanding of teleconnections between tropical and polar latitudes.

  3. The behavior of a macroscopic granular material in vortex flow

    NASA Astrophysics Data System (ADS)

    Nishikawa, Asami

    A granular material is defined as a collection of discrete particles such as powder and grain. Granular materials display a large number of complex behaviors. In this project, the behavior of macroscopic granular materials under tornado-like vortex airflow, with varying airflow velocity, was observed and studied. The experimental system was composed of a 9.20-cm inner diameter acrylic pipe with a metal mesh bottom holding the particles, a PVC duct, and an airflow source controlled by a variable auto-transformer, and a power-meter. A fixed fan blade was attached to the duct's inner wall to create a tornado-like vortex airflow from straight flow. As the airflow velocity was increased gradually, the behavior of a set of same-diameter granular materials was observed. The observed behaviors were classified into six phases based on the macroscopic mechanical dynamics. Through this project, we gained insights on the significant parameters for a computer simulation of a similar system by Heath Rice [5]. Comparing computationally and experimentally observed phase diagrams, we can see similar structure. The experimental observations showed the effect of initial arrangement of particles on the phase transitions.

  4. An Analysis of the Pressures, Forces and Moments Induced by the Ground Vortex Generated by a Single Impinging Jet

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.

    1997-01-01

    When a jet STOVL aircraft is in STOL operation the jets impinge on the ground and generate wall jets flowing radially outward from the points at which the jets impinge. When the forward flowing part of a wall jet meets the free stream flow it is rolled back on itself forming a parabolic shaped ground vortex. Positive pressures are induced on the lower surface of the configuration ahead of the ground vortex and suction pressures are induced over the ground vortex itself. In addition, the suction pressures induced aft of the jet out of ground effect are reduced and lifting pressures are induced on the upper surface. This study analyzes available pressure and force data and develops a method for estimating the forces and moments induced in ground effect. The method includes the effects of configuration variables, height and operating conditions, as well as the effects of the location, deflection and shape of the jet. However, it is limited to single jets at subcritical nozzle pressure ratios. An analysis of the effects of moving over the ground vs. tests over a fixed ground plane is included.

  5. Measurements of the Early Development of Trailing Vorticity from a Rotor

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.; Heineck, James T.

    2002-01-01

    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the "void" region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44% and 12% of the rotor tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10% of the rotor-blade chord, but more than doubled its size after one revolution of the rotor.

  6. Numerical study of delta wing leading edge blowing

    NASA Technical Reports Server (NTRS)

    Yeh, David; Tavella, Domingo; Roberts, Leonard

    1988-01-01

    Spanwise and tangential leading edge blowing as a means of controlling the position and strength of the leading edge vortices are studied by numerical solution of the three-dimensional Navier-Stokes equations. The leading edge jet is simulated by defining a permeable boundary, corresponding to the jet slot, where suitable boundary conditions are implemented. Numerical results are shown to compare favorably with experimental measurements. It is found that the use of spanwise leading edge blowing at moderate angle of attack magnifies the size and strength of the leading edge vortices, and moves the vortex cores outboard and upward. The increase in lift primarily comes from the greater nonlinear vortex lift. However, spanwise blowing causes earlier vortex breakdown, thus decreasing the stall angle. The effects of tangential blowing at low to moderate angles of attack tend to reduce the pressure peaks associated with leading edge vortices and to increase the suction peak around the leading edge, so that the integrated value of the surface pressure remains about the same. Tangential leading edge blowing in post-stall conditions is shown to re-establish vortical flow and delay vortex bursting, thus increasing C sub L sub max and stall angle.

  7. Cascade conical refraction for annular pumping of a vortex Nd:YAG laser and selective excitation of low- and high-order Laguerre–Gaussian modes

    NASA Astrophysics Data System (ADS)

    Wu, Yongxiao; Wang, Zhongyang; Chen, Sanbin; Shirakwa, Akira; Ueda, Ken-ichi; Li, Jianlang

    2018-05-01

    We proposed an efficient and vortex Nd:YAG laser for selective lasing of low- and high-order vortex modes, in which multiple-ring pump light was originated from cascaded conical refraction of multiple biaxial crystals. In our proof of concept demonstration, we used two-crystal cascade conical refraction to generate two-ring pump light; the mutual intensity ratio and relative separation of the inner ring and outer ring were controlled by rotating the second biaxial crystal and by moving the imaging lens, respectively. As a result, we obtained selective excitation of Laguerre–Gaussian (LG01 and LG03) vortex modes in the end-pump Nd:YAG laser. For LG01-mode output, the laser power reached 439 mW with 52.5% slope efficiency; for LG03-mode output, the laser power reached 160 mW with 41.3% slope efficiency. Our results revealed that the multiple-ring pumping technique based on cascaded conical refraction would pave the way for realization of the efficient and switchable excitation of low- and high-order LG modes in an end-pumped solid-state laser.

  8. Measurements of stratospheric odd nitrogen at Arrival Heights, Antarctica, in 1991

    NASA Technical Reports Server (NTRS)

    Keys, J. Gordon; Johnston, Paul V.; Blatherwick, R. D.; Murcray, Frank J.

    1994-01-01

    An FTIR spectrometer was installed at Arrival Heights, Antarctica (78 deg S, 167 deg E) in February 1991 to measure the evolution of stratospheric HNO3 during the year. In particular, it was the intention to make the first observations of HNO3 trends during autumn, concurrently with ongoing measurements of column NO2 made with a grating spectrometer. The time-series of NO2 in the Antarctic shows a rapid decline in the column amount during autumn, and a slow recovery in spring, as the photochemical conditions move the species to and from higher storage reservoirs. The new nitric acid data show for the first time that during autumn the vertical column increases from approximately 1.9 x 10(exp 16) molecule cm(exp -2) at day 30 to approximately 3.1 x 10(exp 16) molecule cm(exp -2) by day 100. When the sun returns in spring, it is found that the column amount has fallen to about half the value at the end of autumn. Spring amounts are variable, but as found in the data from previous years remain low inside the vortex. The autumn increase is attributed to the heterogeneous conversion of N2O5 to gas-phase HNO3 on background aerosols. Low nitric acid column amounts at the start of spring suggest that the HNO3 has moved from the gas to the condensed phase on polar stratospheric clouds with the advent of low temperatures during the polar night.

  9. Drogue detection for vision-based autonomous aerial refueling via low rank and sparse decomposition with multiple features

    NASA Astrophysics Data System (ADS)

    Gao, Shibo; Cheng, Yongmei; Song, Chunhua

    2013-09-01

    The technology of vision-based probe-and-drogue autonomous aerial refueling is an amazing task in modern aviation for both manned and unmanned aircraft. A key issue is to determine the relative orientation and position of the drogue and the probe accurately for relative navigation system during the approach phase, which requires locating the drogue precisely. Drogue detection is a challenging task due to disorderly motion of drogue caused by both the tanker wake vortex and atmospheric turbulence. In this paper, the problem of drogue detection is considered as a problem of moving object detection. A drogue detection algorithm based on low rank and sparse decomposition with local multiple features is proposed. The global and local information of drogue is introduced into the detection model in a unified way. The experimental results on real autonomous aerial refueling videos show that the proposed drogue detection algorithm is effective.

  10. Investigation of Unsteady Tip Clearance Flow in a Low-Speed One and Half Stage Axial Compressor with LES And PIV

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Hathaway, Michael; Katz, Joseph; Tan, David

    2015-01-01

    The primary focus of this paper is to investigate how a rotor's unsteady tip clearance flow structure changes in a low speed one and half stage axial compressor when the rotor tip gap size is increased from 0.5 mm (0.49% of rotor tip blade chord, 2% of blade span) to 2.4 mm (2.34% chord, 4% span) at the design condition are investigated. The changes in unsteady tip clearance flow with the 0.62 % tip gap as the flow rate is reduced to near stall condition are also investigated. A Large Eddy Simulation (LES) is applied to calculate the unsteady flow field at these three flow conditions. Detailed Stereoscopic PIV (SPIV) measurements of the current flow fields were also performed at the Johns Hopkins University in a refractive index-matched test facility which renders the compressor blades and casing optically transparent. With this setup, the unsteady velocity field in the entire flow domain, including the flow inside the tip gap, can be measured. Unsteady tip clearance flow fields from LES are compared with the PIV measurements and both LES and PIV results are used to study changes in tip clearance flow structures. The current study shows that the tip clearance vortex is not a single structure as traditionally perceived. The tip clearance vortex is formed by multiple interlaced vorticities. Therefore, the tip clearance vortex is inherently unsteady. The multiple interlaced vortices never roll up to form a single structure. When phased-averaged, the tip clearance vortex appears as a single structure. When flow rate is reduced with the same tip gap, the tip clearance vortex rolls further upstream and the tip clearance vortex moves further radially inward and away from the suction side of the blade. When the tip gap size is increased at the design flow condition, the overall tip clearance vortex becomes stronger and it stays closer to the blade suction side and the vortex core extends all the way to the exit of the blade passage. Measured and calculated unsteady flow fields inside the tip gap agree fairly well. Instantaneous velocity vectors inside the tip gap from both the PIV and LES do show flow separation and reattachment at the entrance of tip gap as some earlier studies suggested. This area at the entrance of tip gap flow (the pressure side of the blade) is confined very close to the rotor tip section. With a small tip gap (0.5mm), the gap flow looks like a simple two-dimensional channel flow with larger velocity near the casing for both flow rates. A small area with a sharp velocity gradient is observed just above the rotor tip. This strong shear layer is turned radially inward when it collides with the incoming flow and forms the core structure of the tip clearance vortex. When tip gap size is increased to 2.4 mm at the design operation, the radial profile of the tip gap flow changes drastically. With the large tip gap, the gap flow looks like a two-dimensional channel flow only near the casing. Near the rotor top section, a bigger region with very large shear and reversed flow is observed.

  11. Rotor Wake Development During the First Revolution

    NASA Technical Reports Server (NTRS)

    McAlister, Kenneth W.

    2003-01-01

    The wake behind a two-bladed model rotor in light climb was measured using particle image velocimetry, with particular emphasis on the development of the trailing vortex during the first revolution of the rotor. The distribution of vorticity was distinguished from the slightly elliptical swirl pattern. Peculiar dynamics within the void region may explain why the peak vorticity appeared to shift away from the center as the vortex aged, suggesting the onset of instability. The swirl and axial velocities (which reached 44 and 12 percent of the rotor-tip speed, respectively) were found to be asymmetric relative to the vortex center. In particular, the axial flow was composed of two concentrated zones moving in opposite directions. The radial distribution of the circulation rapidly increased in magnitude until reaching a point just beyond the core radius, after which the rate of growth decreased significantly. The core-radius circulation increased slightly with wake age, but the large-radius circulation appeared to remain relatively constant. The radial distributions of swirl velocity and vorticity exhibit self-similar behaviors, especially within the core. The diameter of the vortex core was initially about 10 percent of the rotor-blade chord, but more than doubled its size after one revolution of the rotor. According to vortex models that approximate the measured data, the core-radius circulation was about 79 percent of the large-radius circulation, and the large-radius circulation was about 67 percent of the maximum bound circulation on the rotor blade. On average, about 53 percent of the maximum bound circulation resides within the vortex core during the first revolution of the rotor.

  12. Portable tomographic PIV measurements of swimming shelled Antarctic pteropods

    NASA Astrophysics Data System (ADS)

    Adhikari, Deepak; Webster, Donald R.; Yen, Jeannette

    2016-12-01

    A portable tomographic particle image velocimetry (tomographic PIV) system is described. The system was successfully deployed in Antarctica to study shelled Antarctic pteropods ( Limacina helicina antarctica)—a delicate organism with an unusual propulsion mechanism. The experimental setup consists of a free-standing frame assembled with optical rails, thus avoiding the need for heavy and bulky equipment (e.g. an optical table). The cameras, lasers, optics, and tanks are all rigidly supported within the frame assembly. The results indicate that the pteropods flap their parapodia (or "wings") downward during both power and recovery strokes, which is facilitated by the pitching of their shell. Shell pitching significantly alters the flapping trajectory, allowing the pteropod to move vertically and/or horizontally. The pronation and supination of the parapodia, together with the figure-eight motion during flapping, suggest similarities with insect flight. The volumetric velocity field surrounding the freely swimming pteropod reveals the generation of an attached vortex ring connecting the leading-edge vortex to the trailing-edge vortex during power stroke and a presence of a leading-edge vortex during recovery stroke. These vortex structures play a major role in accelerating the organism vertically and indicate that forces generated on the parapodia during flapping constitute both lift and drag. After completing each stroke, two vortex rings are shed into the wake of the pteropod. The complex combination of body kinematics (parapodia flapping, shell pitch, sawtooth trajectory), flow structures, and resulting force balance may be significantly altered by thinning of the pteropod shell, thus making pteropods an indicator of the detrimental effects of ocean acidification.

  13. Effect of cavitation on flow structure of a tip vortex

    NASA Astrophysics Data System (ADS)

    Matthieu, Dreyer; Reclari, Martino; Farhat, Mohamed

    2013-11-01

    Tip vortices, which may develop in axial turbines and marine propellers, are often associated with the occurrence of cavitation because of the low pressure in their core. Although this issue has received a great deal of attention, it is still unclear how the phase transition affects the flow structure of such a vortex. In the present work, we investigate the change of the vortex structure due to cavitation incipience. The measurement of the velocity field is performed in the case of a tip vortex generated by an elliptical hydrofoil placed in the test section of EPFL high speed cavitation tunnel. To this end, a 3D stereo PIV is used with fluorescent seeding particles. A cost effective method is developed to produce in-house fluorescent seeding material, based on polyamide particles and Rhodamine-B dye. The amount of cavitation in the vortex core is controlled by the inlet pressure in the test section, starting with the non-cavitating case. We present an extensive analysis of the vorticity distribution, the vortex intensity and core size for various cavitation developments. This research is supported by CCEM and swisselectric research.

  14. Bright-type and dark-type vector solitons of the (2 + 1)-dimensional spatially modulated quintic nonlinear Schrödinger equation in nonlinear optics and Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Yu; Jiang, Li-Hong

    2018-03-01

    We study a (2 + 1) -dimensional N -coupled quintic nonlinear Schrödinger equation with spatially modulated nonlinearity and transverse modulation in nonlinear optics and Bose-Einstein condensate, and obtain bright-type and dark-type vector multipole as well as vortex soliton solutions. When the modulation depth q is fixed as 0 and 1, we can construct vector multipole and vortex solitons, respectively. Based on these solutions, we investigate the form and phase characteristics of vector multipole and vortex solitons.

  15. Measurements of the scattering of sound by a line vortex

    NASA Technical Reports Server (NTRS)

    Horne, W. C.

    1983-01-01

    This paper presents measurements of the phase and magnitude of the scattered field arising from the incidence of a monochromatic plane sound field as a steady vortex. The amplitude of the scattered field was found to vary linearly with the vortex strength, and with the incident wave amplitude and frequency as predicted by solutions based on the Born approximation. The scattered field was observed to be nonsingular in the incidence direction, and this was similar to predictions by the Parabolic Equation Method (PEM) rather than the Born approximation, which predicts singular behavior in the incidence direction.

  16. Comparison and validation of wake vortex characteristics collected at different airports by different scanning lidar sensors

    NASA Astrophysics Data System (ADS)

    Thobois, Ludovic; Cariou, Jean-Pierre; Cappellazzo, Valerio; Musson, Christian; Treve, Vincent

    2018-04-01

    Today, the demand for increasing airport capacity is high, in particular for increasing runway throughput from an ATM perspective. Runway capacity is often directly linked with the minima longitudinal separation between aircraft on approach phase or between aircraft on departure. The separation minima are based on surveillance capabilities and on wake turbulence (WT) in order to mitigate respectively collision risk and WT-induced accidents, therefore WT hazard becomes a major concern for ATM. For ten years, many research LIDAR systems have been used for better understanding wake vortices behaviors in the operational environment within large range of wind and turbulence conditions. All these studies[1][2] helped to design new concepts of wake separations between aircrafts thanks to the proven capabilities of LIDAR systems to assess the risks of wake vortex (WV) encounters through the circulation retrievals. The re-categorization project, called RECAT [8], has been launched by a joint EUROCONTROL - FAA initiative in order to renew and optimize the out-of-date currently applied ICAO regulations on distance separation. Nowadays, the first phase of regional RECAT projects, which consists in defining new distance separation matrices composed of six/seven static aircraft categories instead of three, entered the operational phase and is deployed in several airports in United States and Europe. In addition, other concepts like Time-Based Separation have also been studied and deployed in London Heathrow. The airports where these solutions have been deployed obtained significant benefits as increased runway throughput and improved resilience to disruptions. For implementing such new WT solutions at an airport, a local safety assessment before the implementation and a risk monitoring after are usually needed. Before implementation, it may be required to determine for the targeted airport the relative variations of risk of wake vortex encounters, given the local ATM rules, the traffic mix, the weather conditions and their impact on the wake vortex decay. After implementation, the risk monitoring might perform in-depth analysis of wake vortex encounter reported by pilots. For all the mentioned steps, the use of scanning Doppler LIDARs is the only experimental sensor capable of measuring the localization and the circulation of the wake vortices and to provide ground truth wake vortex measurements. Next generation operational LIDARs need to be developed to address in a cost effective way these operational needs. Furthermore, a specific configuration and methodology need to be developed to ensure the accuracy of the wake vortex data. Such a LIDAR based wake vortex solution has been tested at Paris Charles De Gaulle which implemented the RECAT-EU wake separation scheme. The wake vortex circulation, initial spacing and decay measured have been compared to the data collected in London Heathrow by a different LIDAR sensor. The results indicated that the initial circulation, the time to demise, the decay curve evolution and the vortex spacing are very coherent between the two databases.

  17. Contrail Formation in Aircraft Wakes Using Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Paoli, R.; Helie, J.; Poinsot, T. J.; Ghosal, S.

    2002-01-01

    In this work we analyze the issue of the formation of condensation trails ("contrails") in the near-field of an aircraft wake. The basic configuration consists in an exhaust engine jet interacting with a wing-tip training vortex. The procedure adopted relies on a mixed Eulerian/Lagrangian two-phase flow approach; a simple micro-physics model for ice growth has been used to couple ice and vapor phases. Large eddy simulations have carried out at a realistic flight Reynolds number to evaluate the effects of turbulent mixing and wake vortex dynamics on ice-growth characteristics and vapor thermodynamic properties.

  18. Quasi-Biennial Oscillation and Solar Cycle Influences over the Winter Arctic Simulated by the WACCM4 Model

    NASA Astrophysics Data System (ADS)

    Li, K. F.; Limpasuvan, T. L.; Limpasuvan, V.; Tung, K. K.; Yung, Y. L.

    2017-12-01

    Observations show that the quasi-biennial oscillation (QBO) and the 11-year solar cycle perturb the polar vortex via planetary wave convergence at high latitudes, a mechanism first proposed by Holton and Tan in 1980. Their perturbations lead to increases of stratospheric sudden warming events, and hence observable increases in temperature and ozone abundance in the polar vortex, during the easterly phase of QBO and the solar maximum. Here we simulate the changes in the polar atmosphere using the Whole Atmosphere Community Climate Model 4 (WACCM4) with the prescribed QBO and 11-year solar cycle forcing. The simulation is diagnosed in four groups: westerly QBO phase and solar minimum, westerly QBO phase and solar maximum, easterly QBO phase and solar minimum, and easterly QBO phase and solar maximum. The simulated changes in temperature and ozone are compared with satellite observations.

  19. Force-motion phase relations and aerodynamic performance of a plunging plate

    NASA Astrophysics Data System (ADS)

    Son, Onur; Cetiner, Oksan

    2018-02-01

    Due to the unsteady motion of a plunging plate, forces acting on the body experience a phase difference with respect to the motion. These phase relations are investigated experimentally for a harmonically plunging plate within an amplitude range of 0.05≤ {a/c}≤ 0.6, reduced frequency range of 0.78<{k}<7.06, and at a constant Reynolds number of 10,000. Both streamwise and cross-stream force components are found to have a phase lag following the motion; however, their variations are different. The phase lag of the force on the cross-stream direction increases as the amplitude increases. Drag-thrust transition has an influence on the streamwise force phase lags, which starts to increase when the thrust starts to be produced. Particle image velocimetry measurements are also performed to reveal the relations between vortex structures and force measurements. Leading edge vortex shedding characteristics are observed to be changing from drag occurring cases to thrust producing cases in parallel with the increment in phase lags.

  20. Vortex-Assisted Dispersive Micro-Solid Phase Extraction Using CTAB-Modified Zeolite NaY Sorbent Coupled with HPLC for the Determination of Carbamate Insecticides.

    PubMed

    Salisaeng, Pawina; Arnnok, Prapha; Patdhanagul, Nopbhasinthu; Burakham, Rodjana

    2016-03-16

    A vortex-assisted dispersive micro-solid phase extraction (VA-D-μ-SPE) based on cetyltrimethylammonium bromide (CTAB)-modified zeolite NaY was developed for preconcentration of carbamate pesticides in fruits, vegetables, and natural surface water prior to analysis by high performance liquid chromatography with photodiode array detection. The small amounts of solid sorbent were dispersed in a sample solution, and extraction occurred by adsorption in a short time, which was accelerated by vortex agitation. Finally, the sorbents were filtered from the solution, and the analytes were subsequently desorbed using an appropriate solvent. Parameters affecting the VA-D-μ-SPE performance including sorbent amount, sample volume, desorption solvent ,and vortex time were optimized. Under the optimum condition, linear dynamic ranges were achieved between 0.004-24.000 mg kg(-1) (R(2) > 0.9946). The limits of detection (LODs) ranged from 0.004-4.000 mg kg(-1). The applicability of the developed procedure was successfully evaluated by the determination of the carbamate residues in fruits (dragon fruit, rambutan, and watermelon), vegetables (cabbage, cauliflower, and cucumber), and natural surface water.

  1. Route to non-Abelian quantum turbulence in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Mawson, Thomas; Ruben, Gary; Simula, Tapio

    2015-06-01

    We have studied computationally the collision dynamics of spin-2 Bose-Einstein condensates initially confined in a triple-well trap. Depending on the phase structure of the initial-state spinor wave function, the collision of the three condensate fragments produces one of many possible vortex-antivortex lattices, after which the system transitions to quantum turbulence. We find that the emerging vortex lattice structures can be described in terms of multiwave interference. We show that the three-fragment collisions can be used to systematically produce staggered vortex-antivortex honeycomb lattices of fractional-charge vortices, whose collision dynamics are known to be non-Abelian. Such condensate collider experiments could potentially be used as a controllable pathway to generating non-Abelian superfluid turbulence with networks of vortex rungs.

  2. Cascade of Solitonic Excitations in a Superfluid Fermi Gas: From Solitons and Vortex Rings to Solitonic Vortices

    NASA Astrophysics Data System (ADS)

    Ku, Mark; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin

    2015-05-01

    We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions.

  3. Hub vortex instability within wind turbine wakes: Effects of wind turbulence, loading conditions, and blade aerodynamics

    NASA Astrophysics Data System (ADS)

    Ashton, Ryan; Viola, Francesco; Camarri, Simone; Gallaire, Francois; Iungo, Giacomo Valerio

    2016-11-01

    The near wake of wind turbines is characterized by the presence of the hub vortex, which is a coherent vorticity structure generated from the interaction between the root vortices and the boundary layer evolving over the turbine nacelle. By moving downstream, the hub vortex undergoes an instability with growth rate, azimuthal and axial wavenumbers determined by the characteristics of the incoming wind and turbine aerodynamics. Thus, a large variability of the hub vortex instability is expected for wind energy applications with consequent effects on wake downstream evolution, wake interactions within a wind farm, power production, and fatigue loads on turbines invested by wakes generated upstream. In order to predict characteristics of the hub vortex instability for different operating conditions, linear stability analysis is carried out by considering different statistics of the incoming wind turbulence, thrust coefficient, tip speed ratio, and blade lift distribution of a wind turbine. Axial and azimuthal wake velocity fields are modeled through Carton-McWilliams velocity profiles by mimicking the presence of the hub vortex, helicoidal tip vortices, and matching the wind turbine thrust coefficient predicted through the actuator disk model. The linear stability analysis shows that hub vortex instability is strongly affected by the wind turbine loading conditions, and specifically it is promoted by a larger thrust coefficient. A higher load of the wind turbines produces an enhanced axial velocity deficit and, in turn, higher shear in the radial direction of the streamwise velocity. The axial velocity shear within the turbine wake is also the main physical mechanism promoting the hub vortex instability when varying the lift distribution over the blade span for a specific loading condition. Cases with a larger velocity deficit in proximity of the wake center and less aerodynamic load towards the blade tip result to be more unstable. Moreover, wake swirl promotes hub vortex instability, and it can also affect the azimuthal wave number of the most unstable mode. Finally, higher Reynolds stresses and turbulent eddy viscosity decrease both growth rate and azimuthal wave number of the most unstable mode.

  4. Interesting properties of ferroelectric Pb(Zr0.5Ti0.5)O3 nanotube array embedded in matrix medium

    NASA Astrophysics Data System (ADS)

    Adhikari, Rajendra; Fu, Huaxiang

    2013-07-01

    Finite-temperature first-principles based simulations are used to determine the structural and polarization properties of ferroelectric Pb(Zr0.5Ti0.5)O3 (PZT) nanotube array embedded in matrix medium of different ferroelectric strengths. Various interesting properties are found, including (i) that the system can behave either 3D-like, or 2D-like, or 1D-like; and (ii) the existence of an unusual structural phase in which 180° stripe domain coexists with vortex. Furthermore, we show in PZT tube array that a vortex phase can spontaneously transform into a ferroelectric phase of polarization by temperature alone, without applying external electric fields. Microscopic insights for understanding these properties are provided.

  5. Engineering of many-body Majorana states in a topological insulator/s-wave superconductor heterostructure.

    PubMed

    Hung, Hsiang-Hsuan; Wu, Jiansheng; Sun, Kuei; Chiu, Ching-Kai

    2017-06-14

    We study a vortex chain in a thin film of a topological insulator with proximity-induced superconductivity-a promising platform to realize Majorana zero modes (MZMs)-by modeling it as a two-leg Majorana ladder. While each pair of MZMs hybridizes through vortex tunneling, we hereby show that MZMs can be stabilized on the ends of the ladder with the presence of tilted external magnetic field and four-Majorana interaction. Furthermore, a fruitful phase diagram is obtained by controlling the direction of magnetic field and the thickness of the sample. We reveal many-body Majorana states and interaction-induced topological phase transitions and also identify trivial-superconducting and commensurate/incommensurate charge-density-wave states in the phase diagram.

  6. Atomic Ferris wheel beams

    NASA Astrophysics Data System (ADS)

    Lembessis, Vasileios E.

    2017-07-01

    We study the generation of atom vortex beams in the case where a Bose-Einstein condensate, released from a trap and moving in free space, is diffracted from a properly tailored light mask with a spiral transverse profile. We show how such a diffraction scheme could lead to the production of an atomic Ferris wheel beam.

  7. Model of vortex dynamics in superconducting films in two-coil measurements of the coherence length

    NASA Astrophysics Data System (ADS)

    Lemberger, Thomas; Loh, Yen Lee

    In two-coil measurements on superconducting films, a magnetic field from a small coil is applied to the center of the film. When the amplitude of the ac field is increased, the film undergoes a transition from the ``Meissner'' state to a state with vortices and antivortices. Ultimately, the vortex density matches the applied magnetic field and field screening is negligible. Experimentally, the field at the transition is related to the superconducting coherence length, although a full theory of the relationship is lacking. We show that the mutual inductance between drive and pickup coils, on opposite sides of the film, as a function of ac field amplitude is well-described by a phenomenological model in which vortices and antivortices appear together in the film at the radius where the induced supercurrent is strongest, and then they move through a landscape of moderately strong vortex pinning sites. Work at OSU supported by DOE-Basic Energy Sciences through Grant No. FG02-08ER46533.

  8. Guiding thermomagnetic avalanches with soft magnetic stripes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.

    We demonstrate the potential for manipulating the ultrafast dynamics of thermomagnetic flux avalanches (TMA) in superconducting films with soft magnetic stripes deposited on the film. By tuning the in-plane magnetization of the stripes, we induce lines of strong magnetic potentials for Abrikosov vortices, resulting in guided slow motion of vortices along the stripe edges and preferential bursts of TMA along the stripes. Furthermore, we show that transversely polarized stripes can reduce the TMA size by diverting magnetic flux away from the major trunk of the TMA into interstripe gaps. Our data indicate that TMAs are launched from locations with enhancedmore » vortex entry barrier, where flux accumulation followed by accelerated vortex discharge significantly reduces the threshold of the applied field ramping speed required for the creation of TMAs. Finally, vortex-antivortex annihilation at the moving front of an expanding TMA can account for the enhanced TMA activity in the receding branches of the sample's magnetization cycle and the preferred propagation of TMAs into maximum trapped flux regions.« less

  9. Guiding thermomagnetic avalanches with soft magnetic stripes

    NASA Astrophysics Data System (ADS)

    Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.; Rosenmann, D.; Kwok, W.-K.

    2017-12-01

    We demonstrate the potential for manipulating the ultrafast dynamics of thermomagnetic flux avalanches (TMA) in superconducting films with soft magnetic stripes deposited on the film. By tuning the in-plane magnetization of the stripes, we induce lines of strong magnetic potentials for Abrikosov vortices, resulting in guided slow motion of vortices along the stripe edges and preferential bursts of TMA along the stripes. Furthermore, we show that transversely polarized stripes can reduce the TMA size by diverting magnetic flux away from the major trunk of the TMA into interstripe gaps. Our data indicate that TMAs are launched from locations with enhanced vortex entry barrier, where flux accumulation followed by accelerated vortex discharge significantly reduces the threshold of the applied field ramping speed required for the creation of TMAs. Finally, vortex-antivortex annihilation at the moving front of an expanding TMA can account for the enhanced TMA activity in the receding branches of the sample's magnetization cycle and the preferred propagation of TMAs into maximum trapped flux regions.

  10. Compound hydraulic shear-modulated vortex amplifiers

    NASA Technical Reports Server (NTRS)

    Goldschmied, F. R.

    1977-01-01

    A novel two-stage shear-modulated hydraulic vortex amplifier (U.S. patent 3,520,317) has been fabricated and put through preliminary steady-state testing at the 1000 psi supply pressure level with flows up to 15 gpm. The invention comprises a conventional fluidic vortex power stage and a shear-modulated pilot stage. In the absence of any mechanical moving parts, water may be used as the hydraulic medium thus opening the way to many underseas applications. At blocked load, a control input from 0 to 150 psi was required to achieve an output from 0 to 900 psi; at wide-open load, a control input of 0 to 120 psi was needed to achieve an output from 0 to 15 gpm. The power stage has been found unsuitable for the proportional control mode because of its nonlinear performance in the intermediate load range and because of strong pressure fluctuations (plus or minus 150 psi) in the intermediate control range. The addition of the shear-modulated pilot stage improves intermediate load linearity.

  11. Unsteady flows in rotor-stator cascades

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Tai; Bein, Thomas W.; Feng, Jin Z.; Merkle, Charles L.

    1991-03-01

    A time-accurate potential-flow calculation method has been developed for unsteady incompressible flows through two-dimensional multi-blade-row linear cascades. The method represents the boundary surfaces by distributing piecewise linear-vortex and constant-source singularities on discrete panels. A local coordinate is assigned to each independently moving object. Blade-shed vorticity is traced at each time step. The unsteady Kutta condition applied is nonlinear and requires zero blade trailing-edge loading at each time. Its influence on the solutions depends on the blade trailing-edge shapes. Steady biplane and cascade solutions are presented and compared to exact solutions and experimental data. Unsteady solutions are validated with the Wagner function for an airfoil moving impulsively from rest and the Theodorsen function for an oscillating airfoil. The shed vortex motion and its interaction with blades are calculated and compared to an analytic solution. For multi-blade-row cascade, the potential effect between blade rows is predicted using steady and quasi unsteady calculations. The accuracy of the predictions is demonstrated using experimental results for a one-stage turbine stator-rotor.

  12. Observations of ionospheric convection vortices - Signatures of momentum transfer

    NASA Technical Reports Server (NTRS)

    Mchenry, M. A.; Clauer, C. R.; Friis-Christensen, E.; Kelly, J. D.

    1988-01-01

    Several classes of traveling vortices in the dayside ionospheric flow have been detected and tracked using the Greenland magnetometer chain. One class observed during quiet times consists of a continuous series of vortices moving generally antisunward for several hours at a time. Assuming each vortex to be the convection pattern produced by a small field aligned current moving across the ionosphere, the amount of field aligned current was found by fitting a modeled ground magnetic signature to measurements from the chain of magnetometers. The calculated field aligned current is seen to be steady for each vortex and neighboring vortices have currents of opposite sign. Low altitude DMSP observations indicate the vortices are on field lines which map to the inner edge of the low latitude boundary layer. Because the vortices are conjugate to the boundary layer, repeat in a regular fashion and travel antisunward, it is argued that this class of vortices is caused by surface waves at the magnetopause. No strong correlations between field aligned current strength and solar wind density, velocity, or Bz is found.

  13. Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio

    NASA Astrophysics Data System (ADS)

    Carr, Z. R.; Chen, C.; Ringuette, M. J.

    2013-02-01

    We investigate experimentally the effect of aspect ratio ( [InlineMediaObject not available: see fulltext.] ) on the time-varying, three-dimensional flow structure of flat-plate wings rotating from rest at 45° angle of attack. Plates of [InlineMediaObject not available: see fulltext.] = 2 and 4 are tested in a 50 % by mass glycerin-water mixture, with a total rotation of ϕ = 120° and a matched tip Reynolds number of 5,000. The time-varying, three-component volumetric velocity field is reconstructed using phase-locked, phase-averaged stereoscopic digital particle image velocimetry in multiple, closely-spaced chordwise planes. The vortex structure is analyzed using the {Q}-criterion, helicity density, and spanwise quantities. For both [InlineMediaObject not available: see fulltext.] s, the flow initially consists of a connected and coherent leading-edge vortex (LEV), tip vortex (TV), and trailing-edge vortex (TEV) loop; the LEV increases in size with span and tilts aft. Smaller, discrete vortices are present in the separated shear layers at the trailing and tip edges, which wrap around the primary TEV and TV. After about ϕ = 20°, the outboard-span LEV lifts off the plate and becomes arch-like. A second, smaller LEV and the formation of corner vortex structures follow. For [InlineMediaObject not available: see fulltext.] = 4, the outboard LEV moves farther aft, multiple LEVs form ahead of it, and after about ϕ = 50° a breakdown of the lifted-off LEV and the TV occurs. However, for [InlineMediaObject not available: see fulltext.] = 2, the outboard LEV lift-off is not progressive, and the overall LEV-TV flow remains more coherent and closer to the plate, with evidence of breakdown late in the motion. Inboard of about 50 % span, the [InlineMediaObject not available: see fulltext.] = 4 LEV is stable for the motion duration. Up to approximately 60 % span, the [InlineMediaObject not available: see fulltext.] = 2 LEV is distinct from the TV and is similarly stable. The [InlineMediaObject not available: see fulltext.] = 2 LEV exhibits substantially higher spanwise vorticity and velocity. The latter possesses a "four-lobed" distribution at the periphery of the LEV core having adjacent positive (outboard) and negative (inboard) components, corresponding to a helical streamline structure. Both [InlineMediaObject not available: see fulltext.] s show substantial root-to-tip velocity aft of the stable LEV, which drives outboard spanwise vorticity flux; flux toward the root is also present in the front portion of the LEV. For [InlineMediaObject not available: see fulltext.] = 2, there is a strong flux of spanwise vorticity from the outboard LEV to the tip, which may mitigate LEV lift-off and is not found for [InlineMediaObject not available: see fulltext.] = 4. The TV circulation for each [InlineMediaObject not available: see fulltext.] is similar in magnitude and growth when plotted versus the chord lengths travelled by the tip, prior to breakdown. Streamwise vorticity due to the TV induces high spanwise velocity, and for [InlineMediaObject not available: see fulltext.] = 2, the tilted LEV creates further streamwise vorticity which corresponds well to spanwise-elongated regions of spanwise velocity. For [InlineMediaObject not available: see fulltext.] = 2, the TV influences a relatively greater portion of the span and is more coherent at later times, which coupled with the tilted LEV strongly contributes to the higher overall spanwise velocity and vorticity flux.

  14. Interaction of N-vortex structures in a continuum, including atmosphere, hydrosphere and plasma

    NASA Astrophysics Data System (ADS)

    Belashov, Vasily Yu.

    2017-10-01

    The results of analysis and numerical simulation of evolution and interaction of the N-vortex structures of various configuration and different vorticities in the continuum including atmosphere, hydrosphere and plasma are presented. It is found that in dependence on initial conditions the regimes of weak interaction with quasi-stationary evolution and active interaction with the "phase intermixing", when the evolution can lead to formation of complex forms of vorticity regions, are realized in the N-vortex systems. For the 2-vortex interaction the generalized critical parameter determining qualitative character of interaction of vortices is introduced. It is shown that for given initial conditions its value divides modes of active interaction and quasi-stationary evolution. The results of simulation of evolution and interaction of the two-dimensional and three-dimensional vortex structures, including such phenomena as dynamics of the atmospheric synoptic vortices of cyclonic types and tornado, hydrodynamic 4-vortex interaction and also interaction in the systems of a type of "hydrodynamic vortex - dust particles" are presented. The applications of undertaken approach to the problems of such plasma systems as streams of charged particles in a uniform magnetic field B and plasma clouds in the ionosphere are considered. It is shown that the results obtained have obvious applications in studies of the dynamics of the vortex structures dynamics in atmosphere, hydrosphere and plasma.

  15. Radiative effects of ozone waves on the Northern Hemisphere polar vortex and its modulation by the QBO

    NASA Astrophysics Data System (ADS)

    Silverman, Vered; Harnik, Nili; Matthes, Katja; Lubis, Sandro W.; Wahl, Sebastian

    2018-05-01

    The radiative effects induced by the zonally asymmetric part of the ozone field have been shown to significantly change the temperature of the NH winter polar cap, and correspondingly the strength of the polar vortex. In this paper, we aim to understand the physical processes behind these effects using the National Center for Atmospheric Research (NCAR)'s Whole Atmosphere Community Climate Model, run with 1960s ozone-depleting substances and greenhouse gases. We find a mid-winter polar vortex influence only when considering the quasi-biennial oscillation (QBO) phases separately, since ozone waves affect the vortex in an opposite manner. Specifically, the emergence of a midlatitude QBO signal is delayed by 1-2 months when radiative ozone-wave effects are removed. The influence of ozone waves on the winter polar vortex, via their modulation of shortwave heating, is not obvious, given that shortwave heating is largest during fall, when planetary stratospheric waves are weakest. Using a novel diagnostic of wave 1 temperature amplitude tendencies and a synoptic analysis of upward planetary wave pulses, we are able to show the chain of events that lead from a direct radiative effect on weak early fall upward-propagating planetary waves to a winter polar vortex modulation. We show that an important stage of this amplification is the modulation of individual wave life cycles, which accumulate during fall and early winter, before being amplified by wave-mean flow feedbacks. We find that the evolution of these early winter upward planetary wave pulses and their induced stratospheric zonal mean flow deceleration is qualitatively different between QBO phases, providing a new mechanistic view of the extratropical QBO signal. We further show how these differences result in opposite radiative ozone-wave effects between east and west QBOs.

  16. Flow structure of vortex-wing interaction

    NASA Astrophysics Data System (ADS)

    McKenna, Christopher K.

    Impingement of a streamwise-oriented vortex upon a fin, tail, blade or wing represents a fundamental class of flow-structure interaction that extends across a range of applications. This interaction can give rise to time-averaged loading, as well as unsteady loading known as buffeting. The loading is sensitive to parameters of the incident vortex as well as the location of vortex impingement on the downstream aerodynamic surface, generically designated as a wing. Particle image velocimetry is employed to determine patterns of velocity, vorticity, swirl ratio, and streamlines on successive cross-flow planes upstream of and along the wing, which lead to volume representations and thereby characterization of the interaction. At locations upstream of the leading edge of the wing, the evolution of the incident vortex is affected by the presence of the wing, and is highly dependent on the spanwise location of vortex impingement. Even at spanwise locations of impingement well outboard of the wing tip, a substantial influence on the structure of the incident vortex at locations significantly upstream of the leading edge of the wing was observed. For spanwise locations close to or intersecting the vortex core, the effects of upstream influence of the wing on the vortex are to: decrease the swirl ratio; increase the streamwise velocity deficit; decrease the streamwise vorticity; increase the azimuthal vorticity; increase the upwash; decrease the downwash; and increase the root-mean-square fluctuations of both streamwise velocity and vorticity. The interrelationship between these effects is addressed, including the rapid attenuation of axial vorticity in presence of an enhanced defect of axial velocity in the central region of the vortex. Moreover, when the incident vortex is aligned with, or inboard of, the tip of the wing, the swirl ratio decreases to values associated with instability of the vortex, giving rise to enhanced values of azimuthal vorticity relative to the streamwise (axial) vorticity, as well as relatively large root-mean-square values of streamwise velocity and vorticity. Along the chord of the wing, the vortex interaction gives rise to distinct modes, which may involve either enhancement or suppression of the vortex generated at the tip of the wing. These modes are classified and interpreted in conjunction with computed modes at the Air Force Research Laboratory. Occurrence of a given mode of interaction is predominantly determined by the dimensionless location of the incident vortex relative to the tip of the wing and is generally insensitive to the Reynolds number and dimensionless circulation of the incident vortex. The genesis of the basic modes of interaction is clarified using streamline topology with associated critical points. Whereas formation of an enhanced tip vortex involves a region of large upwash in conjunction with localized flow separation, complete suppression of the tip vortex is associated with a small-scale separation-attachment bubble bounded by downwash at the wing tip. Oscillation of the wing at an amplitude and velocity nearly two orders of magnitude smaller than the wing chord and free stream velocity respectively can give rise to distinctive patterns of upwash, downwash, and shed vorticity, which are dependent on the outboard displacement of the incident vortex relative to the wing tip. Moreover, these patterns are a strong function of the phase of the wing motion during its oscillation cycle. At a given value of phase, the wing oscillation induces upwash that is reinforced by the upwash of the incident vortex, giving a maximum value of net upwash. Conversely, when these two origins of upwash counteract, rather than reinforce, one another during the oscillation cycle, the net upwash has its minimum value. Analogous interpretations hold for regions of maximum and minimum net downwash located outboard of the regions of upwash. During the oscillation cycle of the wing, the magnitude and scale of the vorticity shed from the tip of the wing are directly correlated with the net upwash, which takes different forms related to the outboard displacement of the incident vortex. As the location of the incident vortex is displaced towards the wing tip, both the maximum upwash and the maximum vorticity of the tip vortex initially increase, then decrease. For the limiting case where the incident vortex impinges directly upon the tip of the wing, there is no tip vortex or induced region of upwash. Furthermore, at small values of vortex displacement from the wing tip, the position of the incident vortex varies significantly from its nominal position during the oscillation cycle. For all locations of the incident vortex, it is shown that, despite the small amplitude of the wing motion, the flow topology is fundamentally different at maximum positive and negative values of the wing velocity, that is, they are not symmetric.

  17. Doppler radar detection of vortex hazard indicators

    NASA Technical Reports Server (NTRS)

    Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.

    1994-01-01

    Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.

  18. Aerodynamics and vortical structures in hovering fruitflies

    NASA Astrophysics Data System (ADS)

    Meng, Xue Guang; Sun, Mao

    2015-03-01

    We measure the wing kinematics and morphological parameters of seven freely hovering fruitflies and numerically compute the flows of the flapping wings. The computed mean lift approximately equals to the measured weight and the mean horizontal force is approximately zero, validating the computational model. Because of the very small relative velocity of the wing, the mean lift coefficient required to support the weight is rather large, around 1.8, and the Reynolds number of the wing is low, around 100. How such a large lift is produced at such a low Reynolds number is explained by combining the wing motion data, the computed vortical structures, and the theory of vorticity dynamics. It has been shown that two unsteady mechanisms are responsible for the high lift. One is referred as to "fast pitching-up rotation": at the start of an up- or downstroke when the wing has very small speed, it fast pitches down to a small angle of attack, and then, when its speed is higher, it fast pitches up to the angle it normally uses. When the wing pitches up while moving forward, large vorticity is produced and sheds at the trailing edge, and vorticity of opposite sign is produced near the leading edge and on the upper surface, resulting in a large time rate of change of the first moment of vorticity (or fluid impulse), hence a large aerodynamic force. The other is the well known "delayed stall" mechanism: in the mid-portion of the up- or downstroke the wing moves at large angle of attack (about 45 deg) and the leading-edge-vortex (LEV) moves with the wing; thus, the vortex ring, formed by the LEV, the tip vortices, and the starting vortex, expands in size continuously, producing a large time rate of change of fluid impulse or a large aerodynamic force.

  19. Combining New Satellite Tools and Models to Examine Role of Mesoscale Interactions in Formation and Intensification of Tropical Cyclones

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Pierce, H.; Ritchie, L.; Liu, T.; Brueske, K.; Velden, C.; Halverson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The objective of this research is to start filling the mesoscale gap to improve understanding and probability forecasts of formation and intensity variations of tropical cyclones. Sampling by aircraft equipped to measure mesoscale processes is expensive, thus confined in place and time. Hence we turn to satellite products. This paper reports preliminary results of a tropical cyclone genesis and early intensification study. We explore the role of mesoscale processes using a combination of products from TRMM, QuikSCAT, AMSU, also SSM/I, geosynchronous and model output. Major emphasis is on the role of merging mesoscale vortices. These initially form in midlevel stratiform cloud. When they form in regions of lowered Rossby radius of deformation (strong background vorticity) the mesoscale vortices can last long enough to interact and merge, with the weaker vortex losing vorticity to the stronger, which can then extend down to the surface. In an earlier cyclongenesis case (Oliver 1993) off Australia, intense deep convection occurred when the stronger vortex reached the surface; this vortex became the storm center while the weaker vortex was sheared out as the major rainband. In our study of Atlantic tropical cyclones originating from African waves, we use QuikSCAT to examine surface winds in the African monsoon trough and in the vortices which move westward off the coast, which may or may not undergo genesis (defined by NHC as reaching TD, or tropical depression, with a west wind to the south of the surface low). We use AMSU mainly to examine development of warm cores. TRMM passive microwave TMI is used with SSM/I to look at the rain structure, which often indicates eye formation, and to look at the ice scattering signatures of deep convection. The TRMM precipitation radar, PR, when available, gives precipitation cross sections. So far we have detailed studies of two African-origin cyclones, one which became severe hurricane Floyd 1999, and the other reached TD2 in June 2000 and then died out. The atmosphere off West African is dry and stable. It becomes less so between June and September, as the SST and convection heat up. QuikSCAT shows the African monsoon trough and shear zone extend westward over the ocean to nearly 30 degrees West. The evidence is strong that the two cyclones had in common multiple midlevel mergers, which extended to the surface keeping the surface vortex strong. These continued until both systems were designated TD's by NHC. In the June 2000 case, the main reason for failure was the lower SST and dry, stable atmosphere. This is shown by the comparison of the equivalent potential temperature maps and profiles with those from pre-Floyd. In the vortex which became Floyd, QuikSCAT shows continuous importation of high theta e (warm, moist) air from the south. From September 2-8, this air flowed around the vortex center, building up a high theta-e pool to the north. Then late on September 9, a 100-km wide jet of high theta-e air penetrated the vortex core, a major convective burst' was observed, and an intensifying, more elevated warm core was seen on AMSU. Rapid pressure fall and wind intensification were underway by 0000 UTC on September 10. Floyd became a Hurricane at 1200 UTC on Sept 10, 1999, with successive convective bursts running the hurricane thermodynamic engine by intensifying the warm core. TD2 was a strong African vortex, sustained by moderate convection (up to about 12.5 km) offshore of Africa. It peaked on June 23, showing an apparent "eye" on passive microwave composites. However, it could not assemble the ingredients for a convective burst. Thus it failed to get the thermodynamic hurricane engine going before it moved too far west of the region of lowered Rossby radius. By June 26, cloud systems were dying out. On June 25, a surface vortex was no longer seen on QuikSCAT, although one continued above the surface on model profiles until June 27. One of our main findings so far is showing the role of the mesoscale vortex interactions in sustaining some African vortices far out in to the mid Atlantic, where under adequate thermal/moisture conditions the hurricane heat engine can sometimes be started. We are working on similar studies of Cindy and Irene 1999. Cindy illustrates a case of wind shear working against an early-stage hurricane heat engine, while Irene formed from a Caribbean wave. An enormous value of combinations of satellite tools is that tropical cyclones can be studied in all parts of the global oceans where they occur. Detailed studies like ours are labor intensive but many statistical studies can be based on physical postulates developed. There are other new tools such as MODIS on TERRA of the Earth Observing System (EOS) which can be used to study the microphysics of tropical cyclones world wide, in particular to investigate the presence of mixed phase and the impact of atmospheric aerosols on the hydrometeor structure and rainfall from tropical cyclones.

  20. Flow-separation patterns on symmetric forebodies

    NASA Technical Reports Server (NTRS)

    Keener, Earl R.

    1986-01-01

    Flow-visualization studies of ogival, parabolic, and conical forebodies were made in a comprehensive investigation of the various types of flow patterns. Schlieren, vapor-screen, oil-flow, and sublimation flow-visualization tests were conducted over an angle-of-attack range from 0 deg. to 88 deg., over a Reynolds-number range from 0.3X10(6) to 2.0X10(6) (based on base diameter), and over a Mach number range from 0.1 to 2. The principal effects of angle of attack, Reynolds number, and Mach number on the occurrence of vortices, the position of vortex shedding, the principal surface-flow-separation patterns, the magnitude of surface-flow angles, and the extent of laminar and turbulent flow for symmetric, asymmetric, and wake-like flow-separation regimes are presented. It was found that the two-dimensional cylinder analogy was helpful in a qualitative sense in analyzing both the surface-flow patterns and the external flow field. The oil-flow studies showed three types of primary separation patterns at the higher Reynolds numbers owing to the influence of boundary-layer transition. The effect of angle of attack and Reynolds number is to change the axial location of the onset and extent of the primary transitional and turbulent separation regions. Crossflow inflectional-instability vortices were observed on the windward surface at angles of attack from 5 deg. to 55 deg. Their effect is to promote early transition. At low angles of attack, near 10 deg., an unexpected laminar-separation bubble occurs over the forward half of the forebody. At high angles of attack, at which vortex asymmetry occurs, the results support the proposition that the principal cause of vortex asymmetry is the hydrodynamic instability of the inviscid flow field. On the other hand, boundary-layer asymmetries also occur, especially at transitional Reynolds numbers. The position of asymmetric vortex shedding moves forward with increasing angle of attack and with increasing Reynolds number, and moves rearward with increasing Mach number.

  1. Theory and applications of free-electron vortex states

    NASA Astrophysics Data System (ADS)

    Bliokh, K. Y.; Ivanov, I. P.; Guzzinati, G.; Clark, L.; Van Boxem, R.; Béché, A.; Juchtmans, R.; Alonso, M. A.; Schattschneider, P.; Nori, F.; Verbeeck, J.

    2017-05-01

    Both classical and quantum waves can form vortices : entities with helical phase fronts and circulating current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translating theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.

  2. Induced Moment Effects of Formation Flight Using Two F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Hansen, Jennifer L.; Cobleigh, Brent R.

    2002-01-01

    Previous investigations into formation flight have shown the possibility for significant fuel savings through drag reduction. Using two F/A-18 aircraft, NASA Dryden Flight Research Center has investigated flying aircraft in autonomous formation. Positioning the trailing airplane for best drag reduction requires investigation of the wingtip vortex effects induced by the leading airplane. A full accounting of the vortex effect on the trailing airplane is desired to validate vortex-effect prediction methods and provide a database for the design of a formation flight autopilot. A recent flight phase has mapped the complete wingtip vortex effects at two flight conditions with the trailing airplane at varying distances behind the leading one. Force and moment data at Mach 0.56 and an altitude of 25,000 ft and Mach 0.86 and an altitude of 36,000 ft have been obtained with 20, 55, 110, and 190 ft of longitudinal distance between the aircraft. The moments induced by the vortex on the trailing airplane were well within the pilot's ability to control. This report discusses the data analysis methods and vortex-induced effects on moments and side force. An assessment of the impact of the nonlinear vortex effects on the design of a formation autopilot is offered.

  3. Dynamics of vortex quadrupoles in nonrotating trapped Bose-Einstein condensates

    PubMed Central

    Yang, Tao; Hu, Zhi-Qiang; Zou, Shan; Liu, Wu-Ming

    2016-01-01

    Dynamics of vortex clusters is essential for understanding diverse superfluid phenomena. In this paper, we examine the dynamics of vortex quadrupoles in a trapped two-dimensional (2D) Bose-Einstein condensate. We find that the movement of these vortex-clusters fall into three distinct regimes which are fully described by the radial positions of the vortices in a 2D isotropic harmonic trap, or by the major radius (minor radius) of the elliptical equipotential lines decided by the vortex positions in a 2D anisotropic harmonic trap. In the “recombination” and “exchange” regimes the quadrupole structure maintains, while the vortices annihilate each other permanently in the “annihilation” regime. We find that the mechanism of the charge flipping in the “exchange” regime and the disappearance of the quadrupole structure in the “annihilation” regime are both through an intermediate state where two vortex dipoles connected through a soliton ring. We give the parameter ranges for these three regimes in coordinate space for a specific initial configuration and phase diagram of the vortex positions with respect to the Thomas-Fermi radius of the condensate. We show that the results are also applicable to systems with quantum fluctuations for the short-time evolution. PMID:27464981

  4. Vortex Flows in the Liquid Layer and Droplets on a Vibrating Flexible Plate

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Vladimir; Kopysov, Sergey; Tonkov, Leonid

    2018-02-01

    In certain conditions, in the layers and droplets of a liquid on a vibrating rectangular flexible plate, vortex flows are formed simultaneously with the excitation of capillary oscillations on the free surface of the liquid layers and droplets. Capillary oscillations in the form of two-dimensional standing waves form Faraday ripples on the free surface of the liquid layer. On the surface of the vibrating droplets, at the excitation of capillary oscillations a light spot reflected from a spotlight source moves along a trajectory in the form of a Lissajous figure observed with a microscope. When vortex flows visualized with graphite microparticles appear in the layer and droplets of a transparent liquid, the trajectory of the light spot on the layer and droplet surface is a two-dimensional trajectory in the form of an ellipse or a saddle. This indicates that the generation of the vortex flows in a liquid at vibrations is due to capillary oscillations in the orthogonally related directions. In the liquid layer and droplets on the surface of the flexible plate, the vibrations of which are generated by bending vibrations, the vortex flows appear due to the plate vibrations and the capillary oscillations of the surface of a layer or a droplet of the liquid. On the free surface of the liquid, the capillary waves, which are parametrically excited by the plate bending vibrations, are additionally modulated by the same bending vibrations in the transverse direction.

  5. Topological transformation of fractional optical vortex beams using computer generated holograms

    NASA Astrophysics Data System (ADS)

    Maji, Satyajit; Brundavanam, Maruthi M.

    2018-04-01

    Optical vortex beams with fractional topological charges (TCs) are generated by the diffraction of a Gaussian beam using computer generated holograms embedded with mixed screw-edge dislocations. When the input Gaussian beam has a finite wave-front curvature, the generated fractional vortex beams show distinct topological transformations in comparison to the integer charge optical vortices. The topological transformations at different fractional TCs are investigated through the birth and evolution of the points of phase singularity, the azimuthal momentum transformation, occurrence of critical points in the transverse momentum and the vorticity around the singular points. This study is helpful to achieve better control in optical micro-manipulation applications.

  6. Electroelastic fields in artificially created vortex cores in epitaxial BiFeO 3 thin films

    DOE PAGES

    Winchester, Ben; Wisinger, Nina Balke; Cheng, X. X.; ...

    2015-08-03

    Here we employ phase-field modeling to explore the elastic properties of artificially created 1-D domain walls in (001) p-oriented BiFeO 3 thin films, composed of a junction of the four polarization variants, all with the same out-of-plane polarization. It was found that these junctions exhibit peculiarly high electroelastic fields induced by the neighboring ferroelastic/ferroelectric domains. The vortex core exhibits a volume expansion, while the anti-vortex core is more compressive. We also discuss possible ways to control the electroelastic field, such as varying material constant and applying transverse electric field.

  7. Dynamic mode decomposition of separated flow over a finite blunt plate: time-resolved particle image velocimetry measurements

    NASA Astrophysics Data System (ADS)

    Liu, Yingzheng; Zhang, Qingshan

    2015-07-01

    Dynamic mode decomposition (DMD) analysis was performed on a large number of realizations of the separated flow around a finite blunt plate, which were determined by using planar time-resolved particle image velocimetry (TR-PIV). Three plates with different chord-to-thickness ratios corresponding to globally different flow patterns were particularly selected for comparison: L/D = 3.0, 6.0 and 9.0. The main attention was placed on dynamic variations in the dominant events and their interactive influences on the global fluid flow in terms of the DMD analysis. Toward this end, a real-time data transfer from the high-speed camera to the arrayed disks was built to enable continuous sampling of the spatiotemporally varying flows at the frequency of 250 Hz for a long run. The spectra of the wall-normal velocity fluctuation, the energy spectra of the DMD modes, and their spatial patterns convincingly determined the energetic unsteady events, i.e., St = 0.051 (Karman vortex street), 0.109 (harmonic event of Karman vortex street) and 0.197 (leading-edge vortex) in the shortest system L/D = 3.0, St = 0.159 (Karman vortex street) and 0.242 (leading-edge vortex) in the system L/D = 6.0, and St = 0.156 (Karman vortex street) and 0.241 (leading-edge vortex) in the longest system L/D = 9.0. In the shortest system L/D = 3.0, the first DMD mode pattern demonstrated intensified entrainment of the massive fluid above and below the whole plate by the Karman vortex street. The phase-dependent variation in the low-order flow field elucidated that this motion was sustained by the consecutive mechanisms of the convective leading-edge vortices near the upper and lower trailing edges, and the large-scale vortical structures occurring immediately behind the trailing edge, whereas the leading-edge vortices were entrained and decayed into the near wake. For the system L/D = 6.0, the closely approximated energy spectra at St = 0.159 and 0.242 indicated the balanced dominance of dual unsteady events in the measurement region. The Karman vortex street was found to induce considerable localized movement of the fluid near the trailing edges of the plate. However, the leading-edge vortices near the trailing edge were found to detach away from the plate and fully decay around 0.5 D behind the trailing edge, where a well-ordered origination of the downstream large-scale vortical structures (the Karman vortex street) was established and might be locally energized by the decayed leading-edge vortex. In the longest system L/D = 9.0, the phase-dependent variations in the low-order flow disclosed a rapid decay of the leading-edge vortices beyond the reattachment zone, reaching the fully diffused state near the trailing edges. Accordingly, no clear signature of the interaction between the Karman vortex street and the leading-edge vortex could be found in the dynamic process of the leading-edge vortex.

  8. Optical Rogue Waves in Vortex Turbulence.

    PubMed

    Gibson, Christopher J; Yao, Alison M; Oppo, Gian-Luca

    2016-01-29

    We present a spatiotemporal mechanism for producing 2D optical rogue waves in the presence of a turbulent state with creation, interaction, and annihilation of optical vortices. Spatially periodic structures with bound phase lose stability to phase unbound turbulent states in complex Ginzburg-Landau and Swift-Hohenberg models with external driving. When the pumping is high and the external driving is low, synchronized oscillations are unstable and lead to spatiotemporal vortex-mediated turbulence with high excursions in amplitude. Nonlinear amplification leads to rogue waves close to turbulent optical vortices, where the amplitude tends to zero, and to probability density functions (PDFs) with long tails typical of extreme optical events.

  9. Force Generation by Flapping Foils

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, P. R.; Donnelly, M.

    1996-11-01

    Aquatic animals like fish use flapping caudal fins to produce axial and cross-stream forces. During WW2, German scientists had built and tested an underwater vehicle powered by similar flapping foils. We have examined the forces produced by a pair of flapping foils. We have examined the forced produced by a pair of flapping foils attached to the tail end of a small axisymmetric cylinder. The foils operate in-phase (called waving), or in anti-phase (called clapping). In a low-speed water tunnel, we have undertaken time-dependent measurements of axial and cross-stream forces and moments that are exerted by the vortex shedding process over the entire body. Phase-matched LDV measurements of vorticity-velocity vectors, as well as limited flow visualization of the periodic vortex shedding process have also been carried out. The direction of the induced velocity within a pair of shed vortices determines the nature of the forces produced, viz., thrust or drag or cross-stream forces. The clapping mode produces a widely dispersed symmetric array of vortices which results in axial forces only (thrust and rag). On the other hand, the vortex array is staggered in the waving mode and cross-stream (maneuvering) forces are then generated.

  10. Characterizing cycle-to-cycle variations of the shedding cycle in the turbulent wake of a normal flat plate using generalized phase averages

    NASA Astrophysics Data System (ADS)

    Martinuzzi, Robert

    2016-11-01

    Quasi-periodic vortex shedding in the turbulent wake of a thin-flat plate placed normal to a uniform stream at Reynolds number of 6700 is investigated based on Particle Image Velocimetry experiments. The wake structure and vortex formation are characterized using a generalized phase average (GPA), a refinement of the triple decomposition of Reynolds and Hussain (1970) incorporating elements of mean-field theory (Stuart, 1958). The resulting analysis highlights the importance of cycle-to-cycle variations in characterizing vortex formation, wake topology and the residual turbulent Reynolds Stresses. For example, it is shown that during high-amplitude cycles vorticity is strongly concentrated within the well-organized shed vortices, whereas during low-amplitude cycles the shed vortices are highly distorted resulting in significant modulation of the shedding frequency. It is found that high-amplitude cycles contribute more to the coherent Reynolds stress field while the low-amplitude cycles contribute to the residual stress field. It is further shown that traditional phase-averaging techniques lead to an over-estimation of the residual stress field. Natural Sciences and Engineering Research Council of Canada.

  11. Vortex dynamics in the wake of a pivoted cylinder undergoing vortex-induced vibrations with elliptic trajectories

    NASA Astrophysics Data System (ADS)

    Marble, Erik; Morton, Christopher; Yarusevych, Serhiy

    2018-05-01

    Vortex-induced vibrations of a pivoted cylinder are investigated experimentally at a fixed Reynolds number of 3100, a mass ratio of 10.8, and a range of reduced velocities, 4.42 ≤ U^* ≤ 9.05. For these conditions, the cylinder traces elliptic trajectories, with the experimental conditions producing three out of four possible combinations of orbiting direction and primary axis alignment relative to the incoming flow. The study focuses on the quantitative analysis of wake topology and its relation to this type of structural response. Velocity fields were measured using time-resolved, two-component particle image velocimetry (TR-PIV). These results show that phase-averaged wake topology generally agrees with the Morse and Williamson (J Fluids Struct 25(4):697-712, 2009) shedding map for one-degree-of-freedom vortex-induced vibrations, with 2S, 2{P}o, and 2P shedding patterns observed within the range of reduced velocities studied here. Vortex tracking and vortex strength quantification are used to analyze the vortex shedding process and how it relates to cylinder response. In the case of 2S vortex shedding, vortices are shed when the cylinder is approaching the maximum transverse displacement and reaches the streamwise equilibrium. 2P vortices are shed approximately half a period earlier in the cylinder's elliptic trajectory. Leading vortices shed immediately after the peak in transverse oscillation and trailing vortices shed near the equilibrium of transverse oscillation. The orientation and direction of the cylinder's elliptic trajectory are shown to influence the timing of vortex shedding, inducing changes in the 2P wake topology.

  12. Transitions in the vortex wake behind the plunging profile

    NASA Astrophysics Data System (ADS)

    Kozłowski, Tomasz; Kudela, Henryk

    2014-12-01

    In this study we investigate numerically the vortex wake formation behind the profile performing simple harmonic motion known in the literature as plunging. This research was inspired by the flapping motion which is appropriate for birds, insects and fishes. We assume the two dimensional model of flow. Depending on the parameters such as plunging amplitude, frequency and the Reynolds number, we demonstrate many different types of vortex street behind the profile. It is well known that the type of vortex wake determines the hydrodynamic forces acting on the profile. Dependences of the plunging amplitude, the Strouhal number and various topology vortices are established by constructing the phase transition diagram. The areas in the diagram related to the drag, thrust, and lift force generation are captured. We notice also the areas where the vorticity field is disordered. The disordered vorticity field does not allow maintenance of the periodic forces on the profile. An increase in the Reynolds number leads to the transition of the vortex wake behind the profile. The transition is caused by the phenomenon of boundary layer eruption. Further increase of the Reynolds number causes the vortex street related to the generation of the lift force to vanish.

  13. Effect of AFT Rotor on the Inter-Rotor Flow of an Open Rotor Propulsion System

    NASA Technical Reports Server (NTRS)

    Slaboch, Paul E.; Stephens, David B.; Van Zante, Dale E.

    2016-01-01

    The effects of the aft rotor on the inter-rotor flow field of an open rotor propulsion rig were examined. A Particle Image Velocimetry (PIV) dataset that was acquired phase locked to the front rotor position has been phase averaged based on the relative phase angle between the forward and aft rotors. The aft rotor phase was determined by feature tracking in raw PIV images through an image processing algorithm. The effect of the aft rotor potential field on the inter-rotor flow were analyzed and shown to be in good agreement with Computational Fluid Dynamics (CFD) simulations. It was shown that the aft rotor had no substantial effect on the position of the forward rotor tip vortex but did have a small effect on the circulation strength of the vortex when the rotors were highly loaded.

  14. Effect of vortical structures on velocity and turbulent fields in the near region of an impinging turbulent jet

    NASA Astrophysics Data System (ADS)

    Yadav, Harekrishna; Agrawal, Amit

    2018-03-01

    This experimental study pertains to the formation of a secondary peak in heat transfer distribution for an axisymmetric turbulent impinging submerged jet. The analysis of instantaneous fields is undertaken at various Reynolds numbers based upon the bulk velocity and nozzle diameter (Re = 1300-10 000) and surface spacings (L/D = 0.25-6). Our analysis shows that flow separation and reattachment correspond to decrease/increase in local pressure and are caused by primary vortices; these are further linked to the location of maxima in streamwise and cross-stream velocities. It is further observed that the locations of maxima and minima in velocities are linked to fluctuations in rms velocities and thickening/thinning of the boundary layer. The vortices transported along the surface either coalesce among themselves or combine with other eddies to form a primary vortex. The primary vortex while getting convected downstream makes multiple interactions with the inner shear layer and causes waviness in instantaneous flow fields. In their later stage, the primary vortex moves away from the wall and accelerates, while the flow decelerates in the inner shear layer. The accelerated fluid in the outer shear layer pulls the downstream fluid from the inner shear layer and leads to the formation of a secondary vortex. After a certain distance downstream, the secondary vortex rolling between the primary vortex and the wall eventually breaks down, while the flow reattaches to the wall. The behavior of time average and instantaneous velocity fields suggests that unsteadiness in the heat transfer is linked to the location of maximum streamwise velocity, location of flow attachment, location of rms velocity, and thickness of the boundary layer. The instantaneous velocity fields show that for a given surface spacing, the chances for the appearance of the secondary vortex reduce with an increase in Reynolds number because of the reduction in space available for the secondary vortex to develop. It is further deduced that the strength of the secondary vortex is primarily dependent upon the strength of the primary vortex. However, the velocity field estimated using the linear stochastic estimation technique shows a tendency for the formation of the secondary vortex at higher Reynolds number, suggesting that most measurements do not resolve them well. Our analysis explains the reason for the appearance of the secondary peak in heat transfer distribution and helps resolve the contradictions in the literature regarding this phenomenon.

  15. The effect of single-horn glaze ice on the vortex structures in the wake of a horizontal axis wind turbine

    NASA Astrophysics Data System (ADS)

    Jin, Zhe-Yan; Dong, Qiao-Tian; Yang, Zhi-Gang

    2015-02-01

    The present study experimentally investigated the effect of a simulated single-horn glaze ice accreted on rotor blades on the vortex structures in the wake of a horizontal axis wind turbine by using the stereoscopic particle image velocimetry (Stereo-PIV) technique. During the experiments, four horizontal axis wind turbine models were tested, and both "free-run" and "phase-locked" Stereo-PIV measurements were carried out. Based on the "free-run" measurements, it was found that because of the simulated single-horn glaze ice, the shape, vorticity, and trajectory of tip vortices were changed significantly, and less kinetic energy of the airflow could be harvested by the wind turbine. In addition, the "phase-locked" results indicated that the presence of simulated single-horn glaze ice resulted in a dramatic reduction of the vorticity peak of the tip vortices. Moreover, as the length of the glaze ice increased, both root and tip vortex gaps were found to increase accordingly.

  16. Rapid determination of octanol-water partition coefficient using vortex-assisted liquid-liquid microextraction.

    PubMed

    Román, Iván P; Mastromichali, Anna; Tyrovola, Konstantina; Canals, Antonio; Psillakis, Elefteria

    2014-02-21

    Vortex-assisted liquid-liquid microextraction (VALLME) coupled with high-performance liquid chromatography (HPLC) is proposed here for the rapid determination of octanol-water partitioning coefficients (Kow). VALLME uses vortex agitation, a mild emulsification procedure, to disperse microvolumes of octanol in the aqueous phase thus increasing the interfacial contact area and ensuring faster partitioning rates. With VALLME, 2min were enough to achieve equilibrium conditions between the octanolic and aqueous phases. Upon equilibration, separation was achieved using centrifugation and the octanolic microdrop was collected and analyzed in a HPLC system. Six model compounds with logKow values ranging between ∼0.5 and 3.5 were used during the present investigations. The proposed method produced logKow values that were consistent with previously published values and the recorded uncertainty was well within the acceptable log unit range. Overall, the key features of the proposed Kow determination procedure comprised speed, reliability, simplicity, low cost and minimal solvent consumption. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Pattern formation and three-dimensional instability in rotating flows

    NASA Astrophysics Data System (ADS)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  18. Annular vortex merging processes in non-neutral electron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaga, Chikato, E-mail: d146073@hiroshima-u.ac.jp; Ito, Kiyokazu; Higaki, Hiroyuki

    2015-06-29

    Non-neutral electron plasmas in a uniform magnetic field are investigated experimentally as a two dimensional (2D) fluid. Previously, it was reported that 2D phase space volume increases during a vortex merging process with viscosity. However, the measurement was restricted to a plasma with a high density. Here, an alternative method is introduced to evaluate a similar process for a plasma with a low density.

  19. Focusing properties of arbitrary optical fields combining spiral phase and cylindrically symmetric state of polarization.

    PubMed

    Man, Zhongsheng; Bai, Zhidong; Zhang, Shuoshuo; Li, Jinjian; Li, Xiaoyu; Ge, Xiaolu; Zhang, Yuquan; Fu, Shenggui

    2018-06-01

    The tight focusing properties of optical fields combining a spiral phase and cylindrically symmetric state of polarization are presented. First, we theoretically analyze the mathematical characterization, Stokes parameters, and Poincaré sphere representations of arbitrary cylindrical vector (CV) vortex beams. Then, based on the vector diffraction theory, we derive and build an integrated analytical model to calculate the electromagnetic field and Poynting vector distributions of the input CV vortex beams. The calculations reveal that a generalized CV vortex beam can generate a sharper focal spot than that of a radially polarized (RP) plane beam in the focal plane. Besides, the focal size decrease accompanies its elongation along the optical axis. Hence, it seems that there is a trade-off between the transverse and axial resolutions. In addition, under the precondition that the absolute values between polarization order and topological charge are equal, a higher-order CV vortex can also achieve a smaller focal size than an RP plane beam. Further, the intensity for the sidelobe admits a significant suppression. To give a deep understanding of the peculiar focusing properties, the magnetic field and Poynting vector distributions are also demonstrated in detail. These properties may be helpful in applications such as optical trapping and manipulation of particles and superresolution microscopy imaging.

  20. Vortex pinning landscape in MOD-TFA YBCO nanostroctured films

    NASA Astrophysics Data System (ADS)

    Gutierrez, J.; Puig, T.; Pomar, A.; Obradors, X.

    2008-03-01

    A methodology of general validity to study vortex pinning in YBCO based on Jc transport measurements is described. It permits to identify, separate and quantify three basic vortex pinning contributions associated to anisotropic-strong, isotropic-strong and isotropic-weak pinning centers. Thereof, the corresponding vortex pinning phase diagrams are built up. This methodology is applied to the new solution-derived YBCO nanostructured films, including controlled interfacial pinning by the growth of nanostructured templates by means of self-assembled processes [1] and YBCO-BaZrO3 nanocomposites prepared by modified solution precursors. The application of the methodology and comparison with a standard solution-derived YBCO film [2], enables us to identify the nature and the effect of the additional pinning centers induced. The nanostructured templates films show c-axis pinning strongly increased, controlling most of the pinning phase diagram. On the other hand, the nanocomposites have achieved so far, the highest pinning properties in HTc-superconductors [3], being the isotropic-strong defects contribution the origin of their unique properties. [1] M. Gibert et al, Adv. Mat. vol 19, p. 3937 (2007) [2] Puig.T et al, SuST EUCAS 2007 (to be published) [3] J. Gutierrez et al, Nat. Mat. vol. 6, p. 367 (2007) * Work supported by HIPERCHEM, NANOARTIS and MAT2005-02047

  1. Critical current density, vortex dynamics, and phase diagram of single-crystal FeSe

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Pyon, Sunseng; Tamegai, Tsuyoshi; Kobayashi, Ryo; Watashige, Tatsuya; Kasahara, Shigeru; Matsuda, Yuji; Shibauchi, Takasada

    2015-10-01

    We present a comprehensive study of the vortex pinning and dynamics in a high-quality FeSe single crystal which is free from doping-introduced inhomogeneities and charged quasiparticle scattering because of its innate superconductivity. The critical current density Jc is found to be almost isotropic and reaches a value of ˜3 ×104 A /cm2 at 2 K (self-field) for both H ∥c and a b . The normalized magnetic relaxation rate S (=∣d ln M /d ln t ∣ ) shows a temperature-insensitive plateau behavior in the intermediate temperature range with a relatively high creep rate (S ˜ 0.02 under zero field), which is interpreted in the framework of the collective creep theory. A crossover from the elastic to plastic creep is observed, while the fishtail effect is absent for both H ∥c and a b . Based on this observation, the origin of the fishtail effect is also discussed. Combining the results of Jc and S , the vortex motion in the FeSe single crystal is found to be dominated by sparse, strong pointlike pinning from nanometer-sized defects or imperfections. The weak collective pinning is also observed and proved in the form of large bundles. Besides, the vortex phase diagram of FeSe is also constructed and discussed.

  2. Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition

    DOE PAGES

    Miura, Masashi; Maiorov, Boris; Balakirev, Fedor F.; ...

    2016-02-08

    Here, we show a simple and effective way to improve the vortex irreversibility line up to very high magnetic fields (60T) by increasing the density of second phase BaZrO 3 nanoparticles. (Y 0.77,Gd 0.23)Ba 2Cu 3O y films were grown on metal substrates with different concentration of BaZrO 3 nanoparticles by the metal organic deposition method. We find that upon increase of the BaZrO 3 concentration, the nanoparticle size remains constant but the twin-boundary density increases. Up to the highest nanoparticle concentration (n ~ 1.3 × 10 22/m 3), the irreversibility field (H irr) continues to increase with no signmore » of saturation up to 60 T, although the vortices vastly outnumber pinning centers. We find extremely high H irr, namely H irr = 30 T (H||45°) and 24 T (H||c) at 65 K and 58 T (H||45°) and 45 T (H||c) at 50K. The difference in pinning landscape shifts the vortex solid-liquid transition upwards, increasing the vortex region useful for power applications, while keeping the upper critical field, critical temperature and electronic mass anisotropy unchanged.« less

  3. Smart vortex generator transformed by change in ambient temperature and aerodynamic force

    NASA Astrophysics Data System (ADS)

    Ikeda, Tadashige; Masuda, Shinya; Ueda, Tetsuhiko

    2007-04-01

    A Smart Vortex Generator (SVG) concept has been proposed, where the SVG is autonomously transformed between an upright vortex-generating position in take-off and landing and a flat drag-reducing position in a cruise. This SVG is made of a Shape Memory Alloy (SMA), which is in the austenite phase and memorizes the upright position at high temperatures of the take-off and landing. At low temperatures during ascent the SVG is transformed into a martensite phase, and it lies flat against a base structure due to external or/and internal forces. In this paper, we examine whether the SVG can be transformed into the drag-reducing position by an aerodynamic force. To this end, numerical simulations are carried out with a simple line element model. The aerodynamic force applied on the SVG is calculated by a commercial CFD program. Result reveals that this SVG can be transformed from the upright vortex-generating position into the drag-reducing position by just an airplane climbing, and vice versa, if the SMA applied to the SVG has the two-way shape memory effect. If the SMA has the one-way shape memory effect, it is necessary to reduce the stiffness of the SVG or/and use a counter spring.

  4. Climate model diversity in the Northern Hemisphere Polar vortex response to climate change.

    NASA Astrophysics Data System (ADS)

    Simpson, I.; Seager, R.; Hitchcock, P.; Cohen, N.

    2017-12-01

    Global climate models vary widely in their predictions of the future of the Northern Hemisphere stratospheric polar vortex, with some showing a significant strengthening of the vortex, some showing a significant weakening and others displaying a response that is not outside of the range expected from internal variability alone. This inter-model spread in stratospheric predictions may account for some inter-model spread in tropospheric predictions with important implications for the storm tracks and regional climate change, particularly for the North Atlantic sector. Here, our current state of understanding of this model spread and its tropospheric impacts will be reviewed. Previous studies have proposed relationships between a models polar vortex response to climate change and its present day vortex climatology while others have demonstrated links between a models polar vortex response and changing wave activity coming up from the troposphere below under a warming climate. The extent to which these mechanisms can account for the spread in polar vortex changes exhibited by the Coupled Model Intercomparison Project, phase 5 models will be assessed. In addition, preliminary results from a series of idealized experiments with the Community Atmosphere Model will be presented. In these experiments, nudging of the stratospheric zonal mean state has been imposed to mimic the inter-model spread in the polar vortex response to climate change so that the downward influence of the spread in zonal mean stratospheric responses on the tropospheric circulation can be assessed within one model.

  5. Numerical Studies of Flow Past Two Side-by-Side Circular Cylinders

    NASA Astrophysics Data System (ADS)

    Shao, J.; Zhang, C.

    Multiple circular cylindrical configurations are widely used in engineering applications. The fluid dynamics of the flow around two identical circular cylinders in side-by-side arrangement has been investigated by both experiments and numerical simulations. The center-to-center transverse pitch ratio T/D plays an important role in determining the flow features. It is observed that for 1 < T/D < 1.1 to 1.2, a single vortex street is formed; for 1.2< T/D < 2 to 2.2, bi-stable narrow and wide wakes are formed; for 2.7< T/D < 4 or 5, anti-phase or in-phase vortex streets are formed. In the current study, the vortex structures of turbulent flows past two slightly heated side-by-side circular cylinders are investigated employing the large eddy simulation (LES). Simulations are performed using a commercial CFD software, FLUENT. The Smagorinsky-Lilly subgrid-scale model is employed for the large eddy simulation. The Reynolds number based on free-stream velocity and cylinder diameter is 5 800, which is in the subcritical regime. The transverse pitch ratio T/D = 3 is investigated. Laminar boundary layer, transition in shear layer, flow separation, large vortex structures and flow interference in the wake are all involved in the flow. Such complex flow features make the current study a challenging task. Both flow field and temperature field are investigated. The calculated results are analyzed and compared with experimental data. The simulation results are qualitatively in accordance with experimental observations. Two anti-phase vortex streets are obtained by the large-eddy simulation, which agrees with the experimental observation. At this transverse pitch ratio, these two cylinders behave as independent, isolated single cylinder in cross flow. The time-averaged streamwise velocity and temperature at x/D=10 are in good agreement with the experimental data. Figure1 displays the instantaneous spanwise vorticity at the center plane.

  6. Connecting Dissipation and Phase Slips in a Josephson Junction between Fermionic Superfluids.

    PubMed

    Burchianti, A; Scazza, F; Amico, A; Valtolina, G; Seman, J A; Fort, C; Zaccanti, M; Inguscio, M; Roati, G

    2018-01-12

    We study the emergence of dissipation in an atomic Josephson junction between weakly coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the Bose-Einstein condensate-Bardeen-Cooper-Schrieffer crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equilibrium quantum systems.

  7. Vortex spin-torque oscillator stabilized by phase locked loop using integrated circuits

    NASA Astrophysics Data System (ADS)

    Kreissig, Martin; Lebrun, R.; Protze, F.; Merazzo-Jaimes, K.; Hem, J.; Vila, L.; Ferreira, R.; Cyrille, M.-C.; Ellinger, F.; Cros, V.; Ebels, U.; Bortolotti, P.

    2017-05-01

    Spin-torque nano-oscillators (STO) are candidates for the next technological implementation of spintronic devices in commercial electronic systems. For use in microwave applications, improving the noise figures by efficient control of their phase dynamics is a mandatory requirement. In order to achieve this, we developed a compact phase locked loop (PLL) based on custom integrated circuits (ICs) and demonstrate that it represents an efficient way to reduce the phase noise level of a vortex based STO. The advantage of our approach to phase stabilize STOs is that our compact system is highly reconfigurable e.g. in terms of the frequency divider ratio N, RF gain and loop gain. This makes it robust against device to device variations and at the same time compatible with a large range of STOs. Moreover, by taking advantage of the natural highly non-isochronous nature of the STO, the STO frequency can be easily controlled by e.g. changing the divider ratio N.

  8. Connecting Dissipation and Phase Slips in a Josephson Junction between Fermionic Superfluids

    NASA Astrophysics Data System (ADS)

    Burchianti, A.; Scazza, F.; Amico, A.; Valtolina, G.; Seman, J. A.; Fort, C.; Zaccanti, M.; Inguscio, M.; Roati, G.

    2018-01-01

    We study the emergence of dissipation in an atomic Josephson junction between weakly coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the Bose-Einstein condensate-Bardeen-Cooper-Schrieffer crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equilibrium quantum systems.

  9. Numerical Study of Steady and Unsteady Canard-Wing-Body Aerodynamics

    NASA Technical Reports Server (NTRS)

    Eugene, L. Tu

    1996-01-01

    The use of canards in advanced aircraft for control and improved aerodynamic performance is a topic of continued interest and research. In addition to providing maneuver control and trim, the influence of canards on wing aerodynamics can often result in increased maximum lift and decreased trim drag. In many canard-configured aircraft, the main benefits of canards are realized during maneuver or other dynamic conditions. Therefore, the detailed study and understanding of canards requires the accurate prediction of the non-linear unsteady aerodynamics of such configurations. For close-coupled canards, the unsteady aerodynamic performance associated with the canard-wing interaction is of particular interest. The presence of a canard in close proximity to the wing results in a highly coupled canard-wing aerodynamic flowfield which can include downwash/upwash effects, vortex-vortex interactions and vortex-surface interactions. For unsteady conditions, these complexities of the canard-wing flowfield are further increased. The development and integration of advanced computational technologies provide for the time-accurate Navier-Stokes simulations of the steady and unsteady canard-wing-body flox,fields. Simulation, are performed for non-linear flight regimes at transonic Mach numbers and for a wide range of angles of attack. For the static configurations, the effects of canard positioning and fixed deflection angles on aerodynamic performance and canard-wing vortex interaction are considered. For non-static configurations, the analyses of the canard-wing body flowfield includes the unsteady aerodynamics associated with pitch-up ramp and pitch oscillatory motions of the entire geometry. The unsteady flowfield associated with moving canards which are typically used as primary control surfaces are considered as well. The steady and unsteady effects of the canard on surface pressure integrated forces and moments, and canard-wing vortex interaction are presented in detail including the effects of the canard on the static and dynamic stability characteristics. The current study provides an understanding of the steady and unsteady canard-wing-body flowfield. Emphasis is placed on the effects of the canard on aerodynamic performance as well as the detailed flow physics of the canard-wing flowfield interactions. The computational tools developed to accurately predict the time-accurate flowfield of moving canards provides for the capability of coupled fluids-controls simulations desired in the detailed design and analysis of advanced aircraft.

  10. Interhemispheric differences in polar stratospheric HNO3, H2O, ClO, and O3

    NASA Technical Reports Server (NTRS)

    Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.

    1995-01-01

    Simultaneous global measurements of nitric acid (HNO3), water (H2O), chlorine monoxide (ClO), and ozone (O3) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO3 was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H2O after mid-July. By mid-August, near the time of peak ClO, abundances of gas-phase HNO3 and H2O were extremely low. The concentrations of HNO3 and H2O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO3 or H2O were observed in the 1992-1993 Arctic winter vortex. Although ClO was enhanced over the Arctic as it was over the Antarctic, Arctic O3 depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone 'hole' is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.

  11. Reactive nitrogen, ozone, and nitrate aerosols observed in the Arctic stratosphere in January 1990

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Aimedieu, P.; Koike, M.; Iwasaka, Y.; Newman, P. A.; Schmidt, U.; Matthews, W. A.; Hayashi, M.; Sheldon, W. R.

    1992-01-01

    Ozone mixing ratios in the vicinity of the 525-K potential temperature surface in January and early February of 1990 were observed to decrease sharply across the edge of the vortex boundary, where the vortex position was estimated from Ertel's potential vorticity. The changes in NO(y) mixing ratio with respect to altitude measured on January 18 and 31 were quite well correlated with those of ozone between 15 and 24 km, indicating that NO(y) also had a large gradient across the edge of the vortex. This is interpreted as being mainly due to the significant denitrification that occurred inside the vortex. The total amount of gas and particulate phase HNO3 was close to the NO(y) amount at the altitude of the 22- to 23-km region, suggesting that the conversion of non-HNO3 reactive nitrogen to HNO3 had occurred with a PSC.

  12. Unsteady hydraulic simulation of the cavitating part load vortex rope in Francis turbines

    NASA Astrophysics Data System (ADS)

    Brammer, J.; Segoufin, C.; Duparchy, F.; Lowys, P. Y.; Favrel, A.; Avellan, F.

    2017-04-01

    For Francis turbines at part load operation a helical vortex rope is formed due to the swirling nature of the flow exiting the runner. This vortex creates pressure fluctuations which can lead to power swings, and the unsteady loading can lead to fatigue damage of the runner. In the case that the vortex rope cavitates there is the additional risk that hydro-acoustic resonance can occur. It is therefore important to be able to accurately simulate this phenomenon to address these issues. In this paper an unsteady, multi-phase CFD model was used to simulate two part-load operating points, for two different cavitation conditions. The simulation results were validated with test-rig data, and showed very good agreement. These results also served as an input for FEA calculations and fatigue analysis, which are presented in a separate study.

  13. Generation of topologically diverse acoustic vortex beams using a compact metamaterial aperture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naify, Christina J., E-mail: christina.naify@nrl.navy.mil; Rohde, Charles A.; Martin, Theodore P.

    2016-05-30

    Here, we present a class of metamaterial-based acoustic vortex generators which are both geometrically simple and broadly tunable. The aperture overcomes the significant limitations of both active phasing systems and existing passive coded apertures. The metamaterial approach generates topologically diverse acoustic vortex waves motivated by recent advances in leaky wave antennas by wrapping the antenna back upon itself to produce an acoustic vortex wave antenna. We demonstrate both experimentally and analytically that this single analog structure is capable of creating multiple orthogonal orbital angular momentum modes using only a single transducer. The metamaterial design makes the aperture compact, with amore » diameter nearly equal to the excitation wavelength and can thus be easily integrated into high-density systems. Applications range from acoustic communications for high bit-rate multiplexing to biomedical devices such as microfluidic mixers.« less

  14. Vortex knots in tangled quantum eigenfunctions

    PubMed Central

    Taylor, Alexander J.; Dennis, Mark R.

    2016-01-01

    Tangles of string typically become knotted, from macroscopic twine down to long-chain macromolecules such as DNA. Here, we demonstrate that knotting also occurs in quantum wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The probability that a vortex loop is knotted is found to increase with its length, and a wide gamut of knots from standard tabulations occur. The results follow from computer simulations of random superpositions of degenerate eigenstates of three simple quantum systems: a cube with periodic boundaries, the isotropic three-dimensional harmonic oscillator and the 3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunctions at relatively low energy, and are constrained by the spatial symmetries of the modes. The results suggest that knotted vortex structures are generic in complex three-dimensional wave systems, establishing a topological commonality between wave chaos, polymers and turbulent Bose–Einstein condensates. PMID:27468801

  15. Structuring Stokes correlation functions using vector-vortex beam

    NASA Astrophysics Data System (ADS)

    Kumar, Vijay; Anwar, Ali; Singh, R. P.

    2018-01-01

    Higher order statistical correlations of the optical vector speckle field, formed due to scattering of a vector-vortex beam, are explored. Here, we report on the experimental construction of the Stokes parameters covariance matrix, consisting of all possible spatial Stokes parameters correlation functions. We also propose and experimentally realize a new Stokes correlation functions called Stokes field auto correlation functions. It is observed that the Stokes correlation functions of the vector-vortex beam will be reflected in the respective Stokes correlation functions of the corresponding vector speckle field. The major advantage of proposing Stokes correlation functions is that the Stokes correlation function can be easily tuned by manipulating the polarization of vector-vortex beam used to generate vector speckle field and to get the phase information directly from the intensity measurements. Moreover, this approach leads to a complete experimental Stokes characterization of a broad range of random fields.

  16. A Critical Review of the Transport and Decay of Wake Vortices in Ground Effect

    NASA Technical Reports Server (NTRS)

    Sarpkaya, T.

    2004-01-01

    This slide presentation reviews the transport and decay of wake vortices in ground effect and cites a need for a physics-based parametric model. The encounter of a vortex with a solid body is always a complex event involving turbulence enhancement, unsteadiness, and very large gradients of velocity and pressure. Wake counter in ground effect is the most dangerous of them all. The interaction of diverging, area-varying, and decaying aircraft wake vortices with the ground is very complex because both the vortices and the flow field generated by them are altered to accommodate the presence of the ground (where there is very little room to maneuver) and the background turbulent flow. Previous research regarding vortex models, wake vortex decay mechanisms, time evolution within in ground effect of a wake vortex pair, laminar flow in ground effect, and the interaction of the existing boundary layer with a convected vortex are reviewed. Additionally, numerical simulations, 3-dimensional large-eddy simulations, a probabilistic 2-phase wake vortex decay and transport model and a vortex element method are discussed. The devising of physics-based, parametric models for the prediction of (operational) real-time response, mindful of the highly three-dimensional and unsteady structure of vortices, boundary layers, atmospheric thermodynamics, and weather convective phenomena is required. In creating a model, LES and field data will be the most powerful tools.

  17. Periodic vortex pinning by regular structures in Nb thin films: magnetic vs. structural effects

    NASA Astrophysics Data System (ADS)

    Montero, Maria Isabel; Jonsson-Akerman, B. Johan; Schuller, Ivan K.

    2001-03-01

    The defects present in a superconducting material can lead to a great variety of static and dynamic vortex phases. In particular, the interaction of the vortex lattice with regular arrays of pinning centers such as holes or magnetic dots gives rise to commensurability effects. These commensurability effects can be observed in the magnetoresistance and in the critical current dependence with the applied field. In recent years, experimental results have shown that there is a dependence of the periodic pinning effect on the properties of the vortex lattice (i.e. vortex-vortex interactions, elastic energy and vortex velocity) and also on the dots characteristics (i.e. dot size, distance between dots, magnetic character of the dot material, etc). However, there is not still a good understanding of the nature of the main pinning mechanisms by the magnetic dots. To clarify this important issue, we have studied and compared the periodic pinning effects in Nb films with rectangular arrays of Ni, Co and Fe dots, as well as the pinning effects in a Nb film deposited on a hole patterned substrate without any magnetic material. We will discuss the differences on pinning energies arising from magnetic effects as compared to structural effects of the superconducting film. This work was supported by NSF and DOE. M.I. Montero acknowledges postdoctoral fellowship by the Secretaria de Estado de Educacion y Universidades (Spain).

  18. Non-ionic detergent Triton X-114 Based vortex- synchronized matrix solid-phase dispersion method for the simultaneous determination of six compounds with various polarities from Forsythiae Fructus by ultra high-performance liquid chromatography.

    PubMed

    Du, Kunze; Li, Jin; Tian, Fei; Chang, Yan-Xu

    2018-02-20

    A simple nonionic detergent - based vortex- synchronized matrix solid-phase dispersion (ND-VSMSPD) method was developed to extract bioactive compounds in Forsythiae Fructus coupled with ultra high-performance liquid chromatography (UHPLC). Nonionic detergent Triton 114 was firstly used as a green elution reagent in vortex- synchronized MSPD procedure. The optimum parameters were investigated to attain the best results, including Florisil as sorbent, 2mL 10% (v/v) nonionic detergent Triton X-114 as the elution reagent, 1:1 of sample/sorbent ratio, grinding for 3min, and whirling for 2min. The recoveries of the six compounds in Forsythiae Fructus were in the range of 95-104% (RSD <4.6%) and the method displayed a good linearity within the range of 0.08-20μgmL -1 for caffeic acid, 0.6-150μgmL -1 for forsythoside A, 0.4-100μgmL -1 phillyrin, 0.2-50μgmL -1 for quercetin, isorhamnetin and arctigenin (r≥0.999). It was proved that the extraction yields of almost all compounds attained by the established vortex- synchronized MSPD, which required lower sample, reagent and time, were higher than the normal MSPD and the traditional ultrasonic-assisted extraction. Consequently, this developed vortex- synchronized MSPD coupled with simple UHPLC method could be efficiently applies to extract and analyze the target compounds in real Forsythiae Fructus samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Pinning time statistics for vortex lines in disordered environments.

    PubMed

    Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe C

    2014-12-01

    We study the pinning dynamics of magnetic flux (vortex) lines in a disordered type-II superconductor. Using numerical simulations of a directed elastic line model, we extract the pinning time distributions of vortex line segments. We compare different model implementations for the disorder in the surrounding medium: discrete, localized pinning potential wells that are either attractive and repulsive or purely attractive, and whose strengths are drawn from a Gaussian distribution; as well as continuous Gaussian random potential landscapes. We find that both schemes yield power-law distributions in the pinned phase as predicted by extreme-event statistics, yet they differ significantly in their effective scaling exponents and their short-time behavior.

  20. Magnetotransport study of topological superconductor Cu0.10Bi2Se3 single crystal

    NASA Astrophysics Data System (ADS)

    Li, M. T.; Fang, Y. F.; Zhang, J. C.; Yi, H. M.; Zhou, X. J.; Lin, C. T.

    2018-03-01

    We report a magnetotransport study of vortex-pinning in Cu0.10Bi2Se3 single crystal. The sample is demonstrated to be in clean limit and absent of Pauli spin-limiting effect. Interestingly, the resistivity versus magnetic field shows an anomalously pronounced increase when approaching the superconducting-normal state boundary for both {{B}app}\\parallel ab and {{B}app}\\parallel c configurations. We have investigated the flux-flowing behavior under various magnetic fields and temperatures, enabling us to establish its anisotropic vortex phase diagram. Our results suggest the Cu0.10Bi2Se3 can be served as one unique material for exploring exotic surface vortex states in topological superconductors.

  1. Critical current and electric transport properties of superconducting epitaxial Nb(Ti)N submicron structures

    NASA Astrophysics Data System (ADS)

    Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Wegrzecki, M.; Bar, J.; Marchewka, M.; Seredyński, B.

    2016-12-01

    Critical current and current-voltage characteristics of epitaxial Nb(Ti)N submicron ultrathin structures were measured as function of temperature. For 700-nm-wide bridge we found current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature, as the limiting factors for the critical current density. For 100-nm-wide meander we observed combination of phase-slip activation and vortex-anti-vortex pair (VAP) thermal excitation. Our Nb(Ti)N meander structure demonstrates high de-pairing critical current densities 107 A/cm2 at low temperatures, but the critical currents are much smaller due to presence of the local constrictions.

  2. Investigation of the Vortex States of Sr2RuO4-Ru Eutectic Microplates Using DC-SQUIDs

    NASA Astrophysics Data System (ADS)

    Sakuma, Daisuke; Nago, Yusuke; Ishiguro, Ryosuke; Kashiwaya, Satoshi; Nomura, Shintaro; Kono, Kimitoshi; Maeno, Yoshiteru; Takayanagi, Hideaki

    2017-11-01

    We investigated the magnetic properties of a Sr2RuO4-Ru eutectic microplate containing a single Ru-inclusion using micrometer-sized DC-SQUIDs (direct-current superconducting quantum interference devices). A phase frustration at the interface between chiral p-wave superconducting Sr2RuO4 and s-wave superconducting Ru is expected to cause novel magnetic vortex states such as the spontaneous Ru-center vortex under zero magnetic field [as reported by H. Kaneyasu and M. Sigrist, J. Phys. Soc. Jpn. 79, 053706 (2010)]. Our experimental results show no positive evidence for such a spontaneous vortex state. However, in an applied field, an abrupt change in the magnetic flux distribution was observed at a superconducting transition of Ru. The flux distribution is clarified by comparing our experimental results with electromagnetic field simulations in our sample geometry. We discuss the transition of the vortex states and the superconducting coupling at the Sr2RuO4/Ru interface.

  3. Vectorial structures of linear-polarized Butterfly-Gauss vortex beams in the far zone

    NASA Astrophysics Data System (ADS)

    Cheng, Ke; Zhou, Yan; Lu, Gang; Yao, Na; Zhong, Xianqiong

    2018-05-01

    By introducing the Butterfly catastrophe to optics, the far-zone vectorial structures of Butterfly-Gauss beam with vortex and non-vortex are studied using the angular spectrum representation and stationary phase method. The influence of topological charge, linear-polarized angle, off-axis distance and scaling length on the far-zone vectorial structures, especially in the Poynting vector and angular momentum density of the corresponding beam is emphasized. The results show that the embedded optical vortex at source plane lead to special dark zones in the far zone, where the number of dark zone equals the absolute value of topological charge of optical vortex. Furthermore, the symmetry and direction of the special dark zones can be controlled by off-axis distance and scaling length, respectively. The linear-polarized angle adjusts only the Poynting vectors of TE and TM terms, but it does not affect those of whole beam. Finally, the vectorial expressions also indicate that the total angular momentum density is certainly zero owing to the far-zone stable structures rather than rotation behaviors.

  4. High helicity vortex conversion in a rubidium vapor

    NASA Astrophysics Data System (ADS)

    Chopinaud, Aurélien; Jacquey, Marion; Viaris de Lesegno, Bruno; Pruvost, Laurence

    2018-06-01

    The orbital angular momentum (OAM) of light is a quantity explored for communication and quantum technology, its key strength being a wide set of values offering a large basis for quantum working. In this context we have studied the vortex conversion from a red optical vortex to a blue one, for OAMs ranging -30 to +30 . The conversion is realized in a rubidium vapor, via the 5 S1 /2-5 D5 /285Rb two-photon transition done with a Gaussian beam at 780 nm plus a Laguerre-Gaussian beam at 776 nm with the OAM ℓ , producing a radiation at 420 nm . With copropagating input beams, we demonstrate a conversion from red to blue for high-ℓ input vortices. We show that the output blue vortex respects the azimuthal phase matching, has a size determined by the product of the input beams, and a power decreasing with ℓ , in agreement with their overlap. Its propagation indicates that the generated blue wave is a nearly pure Laguerre-Gaussian mode. The vortex converter thus permits a correct OAM transmission.

  5. Spatiotemporal characterization of ultrashort optical vortex pulses

    NASA Astrophysics Data System (ADS)

    Miranda, Miguel; Kotur, Marija; Rudawski, Piotr; Guo, Chen; Harth, Anne; L'Huillier, Anne; Arnold, Cord L.

    2017-12-01

    We use a spiral phase plate to generate few-cycle optical vortices from an ultrafast titanium:sapphire oscillator and characterize them in the spatiotemporal domain with a recently introduced technique based on spatially resolved Fourier transform spectrometry. The performance of this simple approach to the generation of optical vortices is analysed from a wavelength-dependent perspective as well as in the spatiotemporal domain, allowing us to characterize ultrashort vortex pulses in space, frequency and time.

  6. White-light optical vortex coronagraph

    NASA Astrophysics Data System (ADS)

    Kanburapa, Prachyathit

    An optical vortex is characterized by a dark core of destructive interference in a light beam. One of the methods commonly employed to create an optical vortex is by using a computer-generated hologram. A vortex hologram pattern is computed from the interference pattern between a reference plane wave and a vortex wave, resulting in a forked grating pattern. In astronomy, an optical vortex coronagraph is one of the most promising high contrast imaging techniques for the direct imaging of extra-solar planets. Direct imaging of extra-solar planets is a challenging task since the brightness of the parent star is extremely high compared to its orbiting planets. The on-axis light from the parent star gets diffracted in the coronagraph, forming a "ring of fire" pattern, whereas the slightly off-axis light from the planet remains intact. Lyot stop can then be used to block the ring of fire pattern, thus allowing only the planetary light to get through to the imaging camera. Contrast enhancements of 106 or more are possible, provided the vortex lens (spiral phase plate) has exceptional optical quality. By using a vortex hologram with a 4 microm pitch, and an f/300 focusing lens, we were able to demonstrate the creation of a "ring of fire" using a white light emitting diode as a source. A dispersion compensating linear diffraction grating of 4 microm pitch was used to bring the rings together to form a single white light ring of fire. To our knowledge, this is the first time a vortex hologram based OVC has been demonstrated, resulting in a well-formed white light ring of fire. Experimental results show measured power contrast of 1/515 when HeNe laser source was used as a light source and 1/77 when using a white light emitting diode.

  7. Nonlinear Analysis of Two-phase Circumferential Motion in the Ablation Circumstance

    NASA Astrophysics Data System (ADS)

    Xiao-liang, Xu; Hai-ming, Huang; Zi-mao, Zhang

    2010-05-01

    In aerospace craft reentry and solid rocket propellant nozzle, thermal chemistry ablation is a complex process coupling with convection, heat transfer, mass transfer and chemical reaction. Based on discrete vortex method (DVM), thermal chemical ablation model and particle kinetic model, a computational module dealing with the two-phase circumferential motion in ablation circumstance is designed, the ablation velocity and circumferential field can be thus calculated. The calculated nonlinear time series are analyzed in chaotic identification method: relative chaotic characters such as correlation dimension and the maximum Lyapunov exponent are calculated, fractal dimension of vortex bulbs and particles distributions are also obtained, thus the nonlinear ablation process can be judged as a spatiotemporal chaotic process.

  8. Quantum oscillations in a biaxial pair density wave state.

    PubMed

    Norman, M R; Davis, J C Séamus

    2018-05-22

    There has been growing speculation that a pair density wave state is a key component of the phenomenology of the pseudogap phase in the cuprates. Recently, direct evidence for such a state has emerged from an analysis of scanning tunneling microscopy data in halos around the vortex cores. By extrapolation, these vortex halos would then overlap at a magnetic-field scale where quantum oscillations have been observed. Here, we show that a biaxial pair density wave state gives a unique description of the quantum oscillation data, bolstering the case that the pseudogap phase in the cuprates may be a pair density wave state. Copyright © 2018 the Author(s). Published by PNAS.

  9. Formation of vortex line around the glass transition in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nojima, T.; Kakinuma, A.; Kuwasawa, Y.

    1996-12-01

    Two components of current-induced electric fields in ab plane, E{sub x} and E{sub y}, have been measured simultaneously on YBCO(123) films around the glass transition temperature T{sub g} in magnetic fields H with components (H{sub 0}, H{sub 0}, 0.1H{sub 0}), where x and y axes are parallel to the direction of the current density and c axis, respectively. In this condition, a finite transverse field E{sub y} almost equal to E{sub x} can be observed if the vortex lines form and move along the Lorentz force. In each H, the ratio {vert_bar}E{sub y}/E{sub x}{vert_bar} at a low current limit, whichmore » is zero far above T{sub g}, increases in the critical region and transfers to unity below T{sub g}. The authors results indicate that the vortices become lines with long range correlation along H direction at the vortex glass transition without receiving the effect of the intrinsic pinning.« less

  10. Advection within side-by-side liquid micro-cylinders in a cross-flow

    NASA Astrophysics Data System (ADS)

    Dong, Qingming; Sau, Amalendu

    2017-11-01

    The gaseous SO2 entrainment from outer air stream and dispersion in binary and ternary liquid micro-cylinders appearing side-by-side are examined hereby. The separation/attachment regulated non-uniform interfacial momentum exchange creates main stream driven "primary" and shear reversed "secondary" vortices in the liquid cylinders. At separation points, the sense of rotation of the generated "primary-secondary" vortex pair remains inward directed. We define such a vortex pair as the "inflow" type. However, at stagnation or attachment points, the sense of rotation of a "primary-primary" or "secondary-secondary" vortex pair remains outward directed, and such a vortex pair is defined as the "outflow" type. For the coupled water cylinders facing an oncoming stream contaminated by gaseous SO2, its absorption and internal transport are effectively controlled by dominant "inflow" and "outflow" natured dynamics of the said vortex pairs, besides by diffusion. The evolving "inflow" natured "primary-secondary" vortex pairs at separation points actively entrain the outer SO2, whereas the "outflow" natured vortex-pairs oppose SO2 entry through the stagnation regions. Moreover, the blockage induced steady-symmetric, steady-deflected, and flip-flopping air-jets through gaps, for varied gap-ratio (1 ≤ G/R ≤ 4) and Reynolds number (30 ≤ Re ≤ 160), create distinctive impact both on quantitative SO2 absorption (mso2 ') and convective nature of the SO2 transport in upper, lower, and middle cylinders, by virtue of modified strength and size of the inflow and outflow paired vortices. The present study shows that the tiny "secondary vortices" play important roles in SO2 entrainment and in effectively controlling the local absorption rate Rs o2. The sudden acceleration and upward/downward deflection of gap-flows enhanced near-neck advective SO2 entrainment by suitably strengthening the "inflow" natured local vortex dynamics. Conversely, for the reduced size of secondary vortices, the saturation becomes delayed. In addition, for decreased vertical spacing of micro-cylinders (R = 40 μm) falling below the diameter-length "2R," the SO2 absorption (mso2 ') only gets slower. We provide extensive analysis of two-phase transport phenomena in terms of interactive shear-stress, pressure, and characteristic time-ratio "Tr" of advection-diffusion processes, for varied G/R, Re, and liquid phase Peclet number "Pel" (96 ≤ Pel ≤ 1333), to present a better insight into the governing physics.

  11. Analysis of nulling phase functions suitable to image plane coronagraphy

    NASA Astrophysics Data System (ADS)

    Hénault, François; Carlotti, Alexis; Vérinaud, Christophe

    2016-07-01

    Coronagraphy is a very efficient technique for identifying and characterizing extra-solar planets orbiting in the habitable zone of their parent star, especially in a space environment. An important family of coronagraphs is actually based on phase plates located at an intermediate image plane of the optical system, and spreading the starlight outside the "Lyot" exit pupil plane of the instrument. In this commutation we present a set of candidate phase functions generating a central null at the Lyot plane, and study how it propagates to the image plane of the coronagraph. These functions include linear azimuthal phase ramps (the well-known optical vortex), azimuthally cosine-modulated phase profiles, and circular phase gratings. Nnumerical simulations of the expected null depth, inner working angle, sensitivity to pointing errors, effect of central obscuration located at the pupil or image planes, and effective throughput including image mask and Lyot stop transmissions are presented and discussed. The preliminary conclusion is that azimuthal cosine functions appear as an interesting alternative to the classical optical vortex of integer topological charge.

  12. Electronic properties of high-temperature superconductors and novel carbon-based conductors and superconductors

    NASA Astrophysics Data System (ADS)

    Fuhrer, Michael Sears

    This thesis is divided into three sections. The first section discusses the electrical transport properties of a highly anisotropic high temperature superconductor, Bi2Sr2CaCu2O8, in magnetic fields. High temperature superconductivity has greatly expanded the study of vortex matter: the state of the quantized magnetic field excitations, or vortices, in a superconductor. The effects of tilted fields and fields parallel to the planes are studied: striking deviations from the expectations of a simple anisotropic superconductivity model are found, indicating that the layered structure of high temperature superconductors plays a significant role in determining the dynamics and phases of vortex matter. For the case of parallel magnetic fields, the Josephson vortex state, a new phase transition is identified, the melting of the Josephson vortex lattice. A mechanism for Josephson vortex lattice melting is proposed to explain the differences in the phase diagrams from the usual case of Abrikosov vortex lattice melting. The second section discusses experiments on C60-containing solids. A method for growing high quality single crystals of C60 is described. Isotopically pure single crystal samples of the fulleride superconductor Rb3C60 were synthesized in order to measure the carbon isotope effect on superconductivity. By measuring the superconducting transitions in the resistance of single crystals of Rb3C60, the carbon isotope effect was determined with unprecedented accuracy. Measurement of the isotope effect gives essential information for determination of the superconducting parameters, necessary for a complete theoretical picture of superconductivity in this material. New intercalated graphite compounds containing C60, and their electronic properties, are also discussed. The third section discusses the electrical transport and magnetotransport properties of mats of single-walled carbon nanotubes. Single-walled nanotubes are an intriguing new physical system: nanowires of pure carbon with nanometerscale diameters and lengths of microns. The previously unexplained low-temperature properties are shown to be due to localization. The radius of the localized states is determined, and the hopping conduction is found to be three-dimensional in nature. The magnetotransport also agrees with models of variable range hopping in two or greater dimensions, indicating that mats of single-walled nanotubes are well-connected metallic networks.

  13. Superconducting properties and vortex dynamics of bismuth strontium calcium copper oxide nanoribbons with and without periodic array of nanoscale holes

    NASA Astrophysics Data System (ADS)

    Avci, Sevda

    The distinguishing features of high-temperature superconducting materials are the dynamics of vortex matter in the mixed state which are greatly affected by the high anisotropy and the Josephson coupling between layers. Experiments have focused on investigating melting and dynamic phases of vortex matter with random pinning. However, the advancements in sample preparation techniques have made it possible to investigate the vortex matter with periodic pinnings, since it can serve as a model system to study periodic elastic media such as electron crystals driven on substrates with arrays of defects. It also offers the possibility to increase the critical current of a superconductor through a matching effect which represents itself as peaks (dips) in the field dependences of the critical current (magnetoresisance). This effect is due to the enhanced pinning strength at matching fields where the density of the flux quanta is equal to or multiple times that of the pins. This dissertation reports investigation on the dynamics of vortex matter with periodic pinning array by utilizing BSCCO-2212 crystalline nanoribbons containing periodic arrays of nanoscale holes. Systematic transport measurements reveal the existence of possible intermediate phases of a soft solid and/or a mixture of solid and liquid during melting for the melting transition from solid to a pure liquid. The results of this research demonstrate that the matching effect can be an effective tool in revealing the nature of various vortex phases during melting transition. In addition, anomalous resistive peaks below Tc and the effect of magnetic field orientation on superconductivity of BSCCO-2212 nanoribbons with array of nanoscale holes are also investigated. Angle-dependent magnetoresistances are scaled as H=Hthetacostheta. Therefore, only the perpendicular component of the magnetic field affects the superconductivity. Moreover, layers in BSCCO nanoribbons are lying in the a-b plane parallel to each other. Moreover, at large currents and fields, the resistance shows a non-monotonic dependence on temperature, even showing values that are higher than the normal state resistance for certain ranges of parameters. Observed behavior is attributed to the brick-wall morphology of the nanoribbons leading to a competition between normal and superconductive tunneling that is known to take place in granular superconductive systems.

  14. Vorticity dynamics in an intracranial aneurysm

    NASA Astrophysics Data System (ADS)

    Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Direct Numerical Simulation is carried out to investigate the vortex dynamics of physiologic pulsatile flow in an intracranial aneurysm. The numerical solver is based on the CURVIB (curvilinear grid/immersed boundary method) approach developed by Ge and Sotiropoulos, J. Comp. Physics, 225 (2007) and is applied to simulate the blood flow in a grid with 8 million grid nodes. The aneurysm geometry is extracted from MRI images from common carotid artery (CCA) of a rabbit (courtesy Dr.Kallmes, Mayo Clinic). The simulation reveals the formation of a strong vortex ring at the proximal end during accelerated flow phase. The vortical structure advances toward the aneurysm dome forming a distinct inclined circular ring that connects with the proximal wall via two long streamwise vortical structures. During the reverse flow phase, the back flow results to the formation of another ring at the distal end that advances in the opposite direction toward the proximal end and interacts with the vortical structures that were created during the accelerated phase. The basic vortex formation mechanism is similar to that observed by Webster and Longmire (1998) for pulsed flow through inclined nozzles. The similarities between the two flows will be discussed and the vorticity dynamics of an aneurysm and inclined nozzle flows will be analyzed.This work was supported in part by the University of Minnesota Supercomputing Institute.

  15. Vortex assisted solid-phase extraction of lead(II) using orthorhombic nanosized Bi2WO6 as a sorbent.

    PubMed

    Baghban, Neda; Yilmaz, Erkan; Soylak, Mustafa

    2017-12-07

    Nanosized single crystal orthorhombic Bi 2 WO 6 was synthesized by a hydrothermal method and used as a sorbent for vortex assisted solid phase extraction of lead(II). The crystal and molecular structure of the sorbent was examined using XRD, Raman, SEM and SEM-EDX analysis. Various parameters affecting extraction efficiency were optimized by using multivariate design. The effect of diverse ions on the extraction also was studied. Lead was quantified by flame atomic absorption spectrometry (FAAS). The recoveries of lead(II) from spiked samples (at a typical spiking level of 200-400 ng·mL -1 ) are >95%. Other figures of merit includes (a) a detection limit of 6 ng·mL -1 , (b) a preconcentration factor of 50, (c) a relative standard deviation of 1.6%, and (d) and adsorption capacity of 6.6 mg·g -1 . The procedure was successfully applied to accurate determination of lead in (spiked) pomegranate and water samples. Graphical abstract Nanosized single crystal orthorhombic Bi 2 WO 6 was synthesized and characterized by a hydrothermal method and used as a sorbent for vortex assisted solid phase extraction of lead(II). The procedure was successfully applied to accurate determination of lead in (spiked) pomegranate and water samples.

  16. A fail safe laser activated switch used as an emergency control link at the Langley Vortex Research Facility

    NASA Technical Reports Server (NTRS)

    Kassel, P. C., Jr.

    1978-01-01

    A fail safe light activated switch was used as an emergency control link at the Langley Vortex Research Facility. In this facility aircraft models were towed through a still air test chamber by a gasoline powered vehicle which was launched from one end of a 427-meter track and attained velocities to 31 m/sec in the test chamber. A 5 mW HeNe laser with a mechanical copper provided a connecting link with the moving tow vehicle on which a silicon photodiode receiver with a specially designed amplifier provided a fail safe switching action. This system provided an emergency means of stopping the vehicle by turning off the laser to interrupt the power to the vehicle ignition and brake release systems.

  17. Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing

    NASA Technical Reports Server (NTRS)

    Oberleithner, Kilian; Lueck, Martin; Paschereit, Christian Oliver; Wygnanski, Israel

    2010-01-01

    We finally go back to the four swirl cases and see how the flow responds to either forcing m = -1 or m = -2. On the left we see the flow forced at m = -1 We see that the PVC locks onto the applied forcing also for lower swirl number causing this high TKE at the jet center. The amplification of this instability causes VB to occur at a lower swirl number. The opposite can be seen when forcing the flow at m=-2 which is basically growing in the outer shear layer causing VB to move downstream . There is no energy at the center of the vortex showing that the precessing has been damped. The mean flow is most altered at the swirl numbers were VB is unstable.

  18. Local parametric instability near elliptic points in vortex flows under shear deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru; Institute of Applied Mathematics, FEB RAS, 7, Radio Street, Vladivostok 690022; Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950

    The dynamics of two point vortices embedded in an oscillatory external flow consisted of shear and rotational components is addressed. The region associated with steady-state elliptic points of the vortex motion is established to experience local parametric instability. The instability forces the point vortices with initial positions corresponding to the steady-state elliptic points to move in spiral-like divergent trajectories. This divergent motion continues until the nonlinear effects suppress their motion near the region associated with the steady-state separatrices. The local parametric instability is then demonstrated not to contribute considerably to enhancing the size of the chaotic motion regions. Instead, themore » size of the chaotic motion region mostly depends on overlaps of the nonlinear resonances emerging in the perturbed system.« less

  19. A technique for individual atom delivery into a crossed vortex bottle beam trap using a dynamic 1D optical lattice.

    PubMed

    Dinardo, Brad A; Anderson, Dana Z

    2016-12-01

    We describe a system for loading a single atom from a reservoir into a blue-detuned crossed vortex bottle beam trap using a dynamic 1D optical lattice. The lattice beams are frequency chirped using acousto-optic modulators, which causes the lattice to move along its axial direction and behave like an optical conveyor belt. A stationary lattice is initially loaded with approximately 6000 atoms from a reservoir, and the conveyor belt transports them 1.1 mm from the reservoir to a bottle beam trap, where a single atom is loaded via light-assisted collisions. Photon counting data confirm that an atom can be delivered and loaded into the bottle beam trap 13.1% of the time.

  20. Liquid Fuels: Pyrolytic Degradation and Fire Spread Behavior as Influenced by Buoyancy

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Technical Monitor); Yeboah, Yaw D.

    2003-01-01

    This project was conducted by the Combustion and Emission Control Lab in the Engineering Department at Clark Atlanta University under NASA Grant No. NCC3-707. The work aimed at providing data to supplement the ongoing NASA research activities on flame spread across liquid pools by providing flow visualization and velocity measurements especially in the gas phase and gas-liquid interface. During this investigation, the detailed physics of flame spread across liquid pools was revealed using particle image velocimetry (PIV), 3-dimensional Laser Doppler velocimetry (LDV) and high-speed video imaging system (HSVS). Flow fields (front and side views) of both the liquid and gas phases were visually investigated for the three subflash regimes of flame spread behavior. Some interesting findings obtained from the front and side views on flame spread across butanol pools are presented. PIV results showed the size of the transient vortex in the liquid phase near the flame front varied with the initial pool temperature. The transient vortex ahead of the flame front in the gas phase was, for the first time, clearly observed located just within 0-3 mm above the liquid surface and its size was dependent on the initial pool temperature. We calculated the flow velocity at 1 mm below the liquid surface near the flame front and inferred the generation mechanism of the vortex in the gas phase. Finally, after comparison of the flow velocity of the liquid surface and the flame spread rate, a reasonable explanation to the formation mechanism of the pulsating characteristic was proposed. This explanation is compatible with the previous numerical calculations and deductions.

  1. Vortex-glass state in the isovalent optimally doped pnictide superconductor BaFe2(As0.68P0.32)2

    NASA Astrophysics Data System (ADS)

    Salem-Sugui, S., Jr.; Mosqueira, J.; Alvarenga, A. D.; Sóñora, D.; Crisan, A.; Ionescu, A. M.; Sundar, S.; Hu, D.; Li, S.-L.; Luo, H.-Q.

    2017-05-01

    We report on isochamp magneto-resistivity and ac susceptibility curves obtained in a high-quality single crystal of the isovalent optimally doped pnictide BaFe2(As{}0.68P{}0.32)2 with superconducting temperature T c = 27.8 K for H∥c-axis. Plots of the logarithmic derivative of the resistivity curves allowed the identification of a vortex-glass (VG) phase and to obtain the values of the critical glass temperature T g, the temperature T * marking the transition to the liquid phase and of the critical exponent s. The presence of the VG phase is confirmed by detailed measurements of the third harmonic signal of the ac magnetic susceptibility. The modified VG model was successfully applied to the data allowing the obtention of the temperature independent VG activation energy U b . The activation energy U 0 obtained from the Arrhenius plots in the flux-flow region are compared with U b and with U 0 obtained from flux-creep measurements on a M(H) isothermal in the same sample. A phase diagram of the studied sample is constructed showing the T g glass line, the T * line representing a transition (melting) to the liquid phase, the mean field temperature T c(H) line and the H p line obtained from the peaks in isothermal critical current, J c(H) curves, which are explained in terms of a softening of the vortex lattice. The glass line was fitted by a theory presented in the literature which considers the effect of disorder.

  2. Theory of the vortex-clustering transition in a confined two-dimensional quantum fluid

    NASA Astrophysics Data System (ADS)

    Yu, Xiaoquan; Billam, Thomas P.; Nian, Jun; Reeves, Matthew T.; Bradley, Ashton S.

    2016-08-01

    Clustering of like-sign vortices in a planar bounded domain is known to occur at negative temperature, a phenomenon that Onsager demonstrated to be a consequence of bounded phase space. In a confined superfluid, quantized vortices can support such an ordered phase, provided they evolve as an almost isolated subsystem containing sufficient energy. A detailed theoretical understanding of the statistical mechanics of such states thus requires a microcanonical approach. Here we develop an analytical theory of the vortex clustering transition in a neutral system of quantum vortices confined to a two-dimensional disk geometry, within the microcanonical ensemble. The choice of ensemble is essential for identifying the correct thermodynamic limit of the system, enabling a rigorous description of clustering in the language of critical phenomena. As the system energy increases above a critical value, the system develops global order via the emergence of a macroscopic dipole structure from the homogeneous phase of vortices, spontaneously breaking the Z2 symmetry associated with invariance under vortex circulation exchange, and the rotational SO (2 ) symmetry due to the disk geometry. The dipole structure emerges characterized by the continuous growth of the macroscopic dipole moment which serves as a global order parameter, resembling a continuous phase transition. The critical temperature of the transition, and the critical exponent associated with the dipole moment, are obtained exactly within mean-field theory. The clustering transition is shown to be distinct from the final state reached at high energy, known as supercondensation. The dipole moment develops via two macroscopic vortex clusters and the cluster locations are found analytically, both near the clustering transition and in the supercondensation limit. The microcanonical theory shows excellent agreement with Monte Carlo simulations, and signatures of the transition are apparent even for a modest system of 100 vortices, accessible in current Bose-Einstein condensate experiments.

  3. 3D laser printing by ultra-short laser pulses for micro-optical applications: towards telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Ryu, Meguya; Mizeikis, Vygantas; Morikawa, Junko; Magallanes, Hernando; Brasselet, Etienne; Varapnickas, Simonas; Malinauskas, Mangirdas; Juodkazis, Saulius

    2017-08-01

    Three dimensional (3D) fast (< 0.5 hour) printing of micro-optical elements down to sub-wavelength resolution over 100 μm footprint areas using femtosecond (fs-)laser oscillator is presented. Using sub-1 nJ pulse energies, optical vortex generators made of polymerised grating segments with an azimuthally changing orientation have been fabricated in SZ2080 resist; width of polymerised rods was 150 nm and period 0.6-1 μm. Detailed phase retardance analysis was carried out manually with Berek compensator (under a white light illumination) and using an equivalent principle by an automated Abrio implementation at 546 nm. Direct experimental measurements of retardance was required since the period of the grating was comparable (or larger) than the wavelength of visible light. By gold sputtering, transmissive optical vortex generators were turned into reflective ones with augmented retardance, Δn × h defined by the form birefringence, Δn, and the height h = 2d where d is the thickness of the polymerised structure. Retardance reached 315 nm as measured with Berek compensator at visible wavelengths. Birefringent phase delays of π (or λ/2 in wavelength) required for high purity vortex generators can be made based on the proposed approach. Optical vortex generators for telecom wavelengths with sub-wavelength patterns of azimuthally oriented gratings are amenable by direct laser polymerisation.

  4. Active vortex generator deployed on demand by size independent actuation of shape memory alloy wires integrated in fiber reinforced polymers

    NASA Astrophysics Data System (ADS)

    Hübler, M.; Nissle, S.; Gurka, M.; Wassenaar, J.

    2016-04-01

    Static vortex generators (VGs) are installed on different aircraft types. They generate vortices and interfuse the slow boundary layer with the fast moving air above. Due to this energizing, a flow separation of the boundary layer can be suppressed at high angles of attack. However the VGs cause a permanently increased drag over the whole flight cycle reducing the cruise efficiency. This drawback is currently limiting the use of VGs. New active VGs, deployed only on demand at low speed, can help to overcome this contradiction. Active hybrid structures, combining the actuation of shape memory alloys (SMA) with fiber reinforced polymers (FRP) on the materials level, provide an actuation principle with high lightweight potential and minimum space requirements. Being one of the first applications of active hybrid structures from SMA and FRP, these active vortex generators help to demonstrate the advantages of this new technology. A new design approach and experimental results of active VGs are presented based on the application of unique design tools and advanced manufacturing approaches for these active hybrid structures. The experimental investigation of the actuation focuses on the deflection potential and the dynamic response. Benchmark performance data such as a weight of 1.5g and a maximum thickness of only 1.8mm per vortex generator finally ensure a simple integration in the wing structure.

  5. Unsteady hydrodynamic forces acting on a robotic arm and its flow field: application to the crawl stroke.

    PubMed

    Takagi, Hideki; Nakashima, Motomu; Ozaki, Takashi; Matsuuchi, Kazuo

    2014-04-11

    This study aims to clarify the mechanisms by which unsteady hydrodynamic forces act on the hand of a swimmer during a crawl stroke. Measurements were performed for a hand attached to a robotic arm with five degrees of freedom independently controlled by a computer. The computer was programmed so the hand and arm mimicked a human performing the stroke. We directly measured forces on the hand and pressure distributions around it at 200 Hz; flow fields underwater near the hand were obtained via 2D particle image velocimetry (PIV). The data revealed two mechanisms that generate unsteady forces during a crawl stroke. One is the unsteady lift force generated when hand movement changes direction during the stroke, leading to vortex shedding and bound vortex created around it. This bound vortex circulation results in a lift that contributes to the thrust. The other occurs when the hand moves linearly with a large angle of attack, creating a Kármán vortex street. This street alternatively sheds clockwise and counterclockwise vortices, resulting in a quasi-steady drag contributing to the thrust. We presume that professional swimmers benefit from both mechanisms. Further studies are necessary in which 3D flow fields are measured using a 3D PIV system and a human swimmer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. TASS Model Application for Testing the TDWAP Model

    NASA Technical Reports Server (NTRS)

    Switzer, George F.

    2009-01-01

    One of the operational modes of the Terminal Area Simulation System (TASS) model simulates the three-dimensional interaction of wake vortices within turbulent domains in the presence of thermal stratification. The model allows the investigation of turbulence and stratification on vortex transport and decay. The model simulations for this work all assumed fully-periodic boundary conditions to remove the effects from any surface interaction. During the Base Period of this contract, NWRA completed generation of these datasets but only presented analysis for the neutral stratification runs of that set (Task 3.4.1). Phase 1 work began with the analysis of the remaining stratification datasets, and in the analysis we discovered discrepancies with the vortex time to link predictions. This finding necessitated investigating the source of the anomaly, and we found a problem with the background turbulence. Using the most up to date version TASS with some important defect fixes, we regenerated a larger turbulence domain, and verified the vortex time to link with a few cases before proceeding to regenerate the entire 25 case set (Task 3.4.2). The effort of Phase 2 (Task 3.4.3) concentrated on analysis of several scenarios investigating the effects of closely spaced aircraft. The objective was to quantify the minimum aircraft separations necessary to avoid vortex interactions between neighboring aircraft. The results consist of spreadsheets of wake data and presentation figures prepared for NASA technical exchanges. For these formation cases, NASA carried out the actual TASS simulations and NWRA performed the analysis of the results by making animations, line plots, and other presentation figures. This report contains the description of the work performed during this final phase of the contract, the analysis procedures adopted, and sample plots of the results from the analysis performed.

  7. Experimental Study of Tip Vortex Flow from a Periodically Pitched Airfoil Section

    NASA Technical Reports Server (NTRS)

    Zaman, KBMQ; Fagan, A. F.; Mankbadi, M. R.

    2016-01-01

    An experimental investigation of a tip vortex from a NACA0012 airfoil is conducted in a low-speed wind tunnel at a chord Reynolds number of 4x10(exp 4). Initially, data for a stationary airfoil held at various angles-of-attack (alpha) are gathered. Detailed surveys are done for two cases: alpha=10 deg with attached flow and alpha=25 deg with massive flow separation on the upper surface. Distributions of various properties are obtained using hot-wire anemometry. Data include mean velocity, streamwise vorticity and turbulent stresses at various streamwise locations. For all cases, the vortex core is seen to involve a mean velocity deficit. The deficit apparently traces to the airfoil wake, part of which gets wrapped by the tip vortex. At small alpha, the vortex is laminar within the measurement domain. The strength of the vortex increases with increasing alpha but undergoes a sudden drop around alpha (is) greater than 16 deg. The drop in peak vorticity level is accompanied by transition and a sharp rise in turbulence within the core. Data are also acquired with the airfoil pitched sinusoidally. All oscillation cases pertain to a mean alpha=15 deg while the amplitude and frequency are varied. An example of phase-averaged data for an amplitude of +/-10 deg and a reduced frequency of k=0.2 is discussed. All results are compared with available data from the literature shedding further light on the complex dynamics of the tip vortex.

  8. Topological vortex formation in a Bose-Einstein condensate under gravitational field

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Yuki; Nakahara, Mikio; Ohmi, Tetsuo

    2004-10-01

    Topological phase imprinting is a unique technique for vortex formation in a Bose-Einstein condensate (BEC) of an alkali-metal gas, in that it does not involve rotation: the BEC is trapped in a quadrupole field with a uniform bias field which is reversed adiabatically leading to vortex formation at the center of the magnetic trap. The scenario has been experimentally verified by Leanhardt employing Na23 atoms. Recently similar experiments have been conducted by Hirotani in which a BEC of Rb87 atoms was used. In the latter experiments the authors found that fine-tuning of the field reverse time Trev is required to achieve stable vortex formation. Otherwise, they often observed vortex fragmentation or a condensate without a vortex. It is shown in this paper that this behavior can be attributed to the heavy mass of the Rb atom. The confining potential, which depends on the eigenvalue mB of the hyperfine spin F along the magnetic field, is now shifted by the gravitational field perpendicular to the vortex line. Then the positions of two weak-field-seeking states with mB=1 and 2 deviate from each other. This effect is more prominent for BECs with a heavy atomic mass, for which the deviation is greater and, moreover, the Thomas-Fermi radius is smaller. We found, by solving the Gross-Pitaevskii equation numerically, that two condensates interact in a very complicated way leading to fragmentation of vortices, unless Trev is properly tuned.

  9. Helicopter Blade-Vortex Interaction Noise with Comparisons to CFD Calculations

    NASA Technical Reports Server (NTRS)

    McCluer, Megan S.

    1996-01-01

    A comparison of experimental acoustics data and computational predictions was performed for a helicopter rotor blade interacting with a parallel vortex. The experiment was designed to examine the aerodynamics and acoustics of parallel Blade-Vortex Interaction (BVI) and was performed in the Ames Research Center (ARC) 80- by 120-Foot Subsonic Wind Tunnel. An independently generated vortex interacted with a small-scale, nonlifting helicopter rotor at the 180 deg azimuth angle to create the interaction in a controlled environment. Computational Fluid Dynamics (CFD) was used to calculate near-field pressure time histories. The CFD code, called Transonic Unsteady Rotor Navier-Stokes (TURNS), was used to make comparisons with the acoustic pressure measurement at two microphone locations and several test conditions. The test conditions examined included hover tip Mach numbers of 0.6 and 0.7, advance ratio of 0.2, positive and negative vortex rotation, and the vortex passing above and below the rotor blade by 0.25 rotor chords. The results show that the CFD qualitatively predicts the acoustic characteristics very well, but quantitatively overpredicts the peak-to-peak sound pressure level by 15 percent in most cases. There also exists a discrepancy in the phasing (about 4 deg) of the BVI event in some cases. Additional calculations were performed to examine the effects of vortex strength, thickness, time accuracy, and directionality. This study validates the TURNS code for prediction of near-field acoustic pressures of controlled parallel BVI.

  10. Fluid-Structure Interactions as Flow Propagates Tangentially Over a Flexible Plate with Application to Voiced Speech Production

    NASA Astrophysics Data System (ADS)

    Westervelt, Andrea; Erath, Byron

    2013-11-01

    Voiced speech is produced by fluid-structure interactions that drive vocal fold motion. Viscous flow features influence the pressure in the gap between the vocal folds (i.e. glottis), thereby altering vocal fold dynamics and the sound that is produced. During the closing phases of the phonatory cycle, vortices form as a result of flow separation as air passes through the divergent glottis. It is hypothesized that the reduced pressure within a vortex core will alter the pressure distribution along the vocal fold surface, thereby aiding in vocal fold closure. The objective of this study is to determine the impact of intraglottal vortices on the fluid-structure interactions of voiced speech by investigating how the dynamics of a flexible plate are influenced by a vortex ring passing tangentially over it. A flexible plate, which models the medial vocal fold surface, is placed in a water-filled tank and positioned parallel to the exit of a vortex generator. The physical parameters of plate stiffness and vortex circulation are scaled with physiological values. As vortices propagate over the plate, particle image velocimetry measurements are captured to analyze the energy exchange between the fluid and flexible plate. The investigations are performed over a range of vortex formation numbers, and lateral displacements of the plate from the centerline of the vortex trajectory. Observations show plate oscillations with displacements directly correlated with the vortex core location.

  11. Jet Interactions in a Feedback-Free Fluidic Oscillator in the Transition Region

    NASA Astrophysics Data System (ADS)

    Tomac, Mehmet; Gregory, James

    2013-11-01

    The details of the jet interactions and oscillation mechanism of a feedback-free type fluidic oscillator are studied in this work. Flow rate-frequency measurements indicate the existence of three distinct operating regimes: low flow rate, transition, and high flow rate regions. This study presents results from the transition regime, extracted by using refractive index-matched particle image velocimetry (PIV). A newly-developed sensor configuration for frequency measurements in the refractive index-matched fluid and a phase-averaging method that minimizes jitter will be discussed. Experimental results indicate that the interactions of the two jets create three main vortices in the mixing chamber. One vortex vanishes and forms depending on the oscillation phase and plays a key role in the oscillation mechanism. The other two vortices sustain their existence throughout the oscillation cycle; however, both continuously change their size and strength. The resulting complex flow field with self-sustained oscillations is a result of the combination of many interesting phenomena such as jet interactions and bifurcations, viscous effects, vortex-shear layer interactions, vortex-wall interactions, instabilities, and saddle point creations.

  12. Dynamics of vortices in polariton quantum fluids : From full vortices, to half vortices and vortex pairs

    NASA Astrophysics Data System (ADS)

    Deveaud-Plédran, Benoit

    2012-02-01

    Polariton quantum fluids may be created both spontaneously through a standard phase transition towards a Bose Einstein condensate, or may be resonantly driven with a well-defined speed. Thanks to the photonic component of polaritons, the properties of the quantum fluid may be accessed rather directly with in particular the possibility of detained interferometric studies. Here, I will detail the dynamics of vortices, obtained with a picosecond time resolution, in different configurations, with in particular their phase dynamics. I will show in particular the dynamics the dynamics of spontaneous creation of a vortex, the dissociation of a full vortex into two half vortices as well as the dynamics of the dissociation of a dark soliton line into a street of pairs of vortices. Work done at EPFL by a dream team of Postdocs PhD students and collaborators: K. Lagoudakis, G. Nardin, T. Paraiso, G. Grosso, F. Manni, Y L'eger, M. Portella Oberli, F. Morier-Genoud and the help of our friend theorists V, Savona, M. Vouters and T. Liew.

  13. Transverse angular momentum in topological photonic crystals

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  14. Separated Flow Control with Actuated Membrane Wings

    NASA Astrophysics Data System (ADS)

    Bohnker, Jillian; Breuer, Kenneth

    2017-11-01

    By perturbing shear layer instabilities, some level of control over highly separated flows can be established, as has been demonstrated on rigid wings using synthetic jet actuators or acoustic excitation. Here, we demonstrate similar phenomena using sinusoidal actuation of a dielectric membrane wing. The effect of actuation on lift is examined as a function of freestream velocity (5-25 m/s), angle of attack (10°-40°), and actuation frequency (0.1

  15. Application of multiphase modelling for vortex occurrence in vertical pump intake - a review

    NASA Astrophysics Data System (ADS)

    Samsudin, M. L.; Munisamy, K. M.; Thangaraju, S. K.

    2015-09-01

    Vortex formation within pump intake is one of common problems faced for power plant cooling water system. This phenomenon, categorised as surface and sub-surface vortices, can lead to several operational problems and increased maintenance costs. Physical model study was recommended from published guidelines but proved to be time and resource consuming. Hence, the use of Computational Fluid Dynamics (CFD) is an attractive alternative in managing the problem. At the early stage, flow analysis was conducted using single phase simulation and found to find good agreement with the observation from physical model study. With the development of computers, multiphase simulation found further enhancement in obtaining accurate results for representing air entrainment and sub-surface vortices which were earlier not well predicted from the single phase simulation. The purpose of this paper is to describe the application of multiphase modelling with CFD analysis for investigating vortex formation for a vertically inverted pump intake. In applying multiphase modelling, there ought to be a balance between the acceptable usage for computational time and resources and the degree of accuracy and realism in the results as expected from the analysis.

  16. Probing metamaterials with structured light

    DOE PAGES

    Xu, Yun; Sun, Jingbo; Walasik, Wiktor; ...

    2016-11-03

    Photonic metamaterials and metasurfaces are nanostructured optical materials engineered to enable properties that have not been found in nature. Optical characterization of these structures is a challenging task. We report a reliable technique that is particularly useful for characterization of phase properties introduced by small and spatially inhomogeneous samples of metamaterials and metasurfaces. The proposed structured light, or vortex based interferometric method is used to directly visualize phase changes introduced by subwavelength-thick nanostructures. In order to demonstrate the efficiency of the proposed technique, we designed and fabricated several metasurface samples consisting of metal nano-antennas introducing different phase shifts and experimentallymore » measured phase shifts of the transmitted light. The experimental results are in good agreement with numerical simulations and with the designed properties of the antenna arrays. Finally, due to the presence of the singularity in the vortex beam, one of the potential applications of the proposed approach based on structured light is step-by-step probing of small fractions of the micro-scale samples or images.« less

  17. Cavity-induced artificial gauge field in a Bose-Hubbard ladder

    NASA Astrophysics Data System (ADS)

    Halati, Catalin-Mihai; Sheikhan, Ameneh; Kollath, Corinna

    2017-12-01

    We consider theoretically ultracold interacting bosonic atoms confined to quasi-one-dimensional ladder structures formed by optical lattices and coupled to the field of an optical cavity. The atoms can collect a spatial phase imprint during a cavity-assisted tunneling along a rung via Raman transitions employing a cavity mode and a transverse running wave pump beam. By adiabatic elimination of the cavity field we obtain an effective Hamiltonian for the bosonic atoms, with a self-consistency condition. Using the numerical density-matrix renormalization-group method, we obtain a rich steady-state diagram of self-organized steady states. Transitions between superfluid to Mott-insulating states occur, on top of which we can have Meissner, vortex liquid, and vortex lattice phases. Also a state that explicitly breaks the symmetry between the two legs of the ladder, namely, the biased-ladder phase, is dynamically stabilized. We investigate the influence that a trapping potential has on the stability of the self-organized phases.

  18. Stability of skyrmion lattices and symmetries of quasi-two-dimensional chiral magnets

    DOE PAGES

    Gungordu, Utkan; Nepal, Rabindra; Tretiakov, Oleg A.; ...

    2016-02-24

    Recently there has been substantial interest in realizations of skyrmions, in particular in quasi-two-dimensional (2D) systems due to increased stability resulting from reduced dimensionality. A stable skyrmion, representing the smallest realizable magnetic texture, could be an ideal element for ultradense magnetic memories. Here we use the most general form of the quasi-2D free energy with Dzyaloshinskii-Moriya interactions constructed from general symmetry considerations reflecting the underlying system. We predict that the skyrmion phase is robust and it is present even when the system lacks the in-plane rotational symmetry. In fact, the lowered symmetry leads to increased stability of vortex-antivortex lattices withmore » fourfold symmetry and in-plane spirals, in some instances even in the absence of an external magnetic field. Our results relate different hexagonal and square cell phases to the symmetries of materials used for realizations of skyrmions. This will give clear directions for experimental realizations of hexagonal and square cell phases, and will allow engineering of skyrmions with unusual properties. We also predict striking differences in gyrodynamics induced by spin currents for isolated skyrmions and for crystals where spin currents can be induced by charge carriers or by thermal magnons. As a result, we find that under certain conditions, isolated skyrmions can move along the current without a side motion which can have implications for realizations of magnetic memories.« less

  19. Ozone decrease outside Arctic polar vortex due to polar vortex processing in 1997

    NASA Astrophysics Data System (ADS)

    Akiyoshi, H.; Sugata, S.; Yoshiki, M.; Sugita, T.

    2006-11-01

    We examine the effect of polar vortex processing on ozone concentrations outside the 1997 Arctic polar vortex. The Arctic vortex in this year was well isolated, cold, and circumpolar, and it broke up unusually late. However, time threshold diagnostics (TTD) analysis using a middle vortex boundary defined by the first derivative of the equivalent latitude gradient of potential vorticity and calculations using the nudging chemical transport model (CTM) of the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) show that there were intermittently several relatively large transport events from the vortex to the outside region in the lower stratosphere, with timescales and spatial scales that can be resolved at T42 CTM horizontal resolution (2.8° by 2.8° grid). These intermittent outflow events of polar air are also identified in TTD analysis using an outer vortex boundary defined by the second derivative of potential vorticity and a boundary defined by the N2O concentration. These intermittent events had a significant effect on the ozone concentration outside the vortex near the boundary in this year. A CTM calculation with a polar chemical ozone tracer shows that the effect on the ozone concentration outside the polar vortex near the vortex boundary in the equivalent latitude band of 55°-65°N and 450 K is 0.3 ppmv (15-20% of the ozone concentration at this height) and that on the total ozone is 12-15 Dobson units (1 DU = 0.001 atm cm) (3-4% of the total ozone) by the end of April just before the final vortex breakup. The effect in the equivalent latitude band of 30°-60°N is much smaller, with a reduction of 2 DU at the end of March and 4 DU by the end of April (less than 1% of the total ozone). The effect is about the half if we use the inner boundary or a boundary of 73°N equivalent latitude for the polar tracer calculations. The CTM calculations also show that these polar vortex processing effects might be masked at midlatitudes by the local gas phase chemical ozone production/loss reactions after mid-April at 450 K and earlier than those at 500 K.

  20. Vortex lattice prediction of subsonic aerodynamics of hypersonic vehicle concepts

    NASA Technical Reports Server (NTRS)

    Pittman, J. L.; Dillon, J. L.

    1977-01-01

    The vortex lattice method introduced by Lamar and Gloss (1975) was applied to the prediction of subsonic aerodynamic characteristics of hypersonic body-wing configurations. The reliability of the method was assessed through comparison of the calculated and observed aerodynamic performances of two National Hypersonic Flight Research Facility craft at Mach 0.2. The investigation indicated that a vortex lattice model involving 120 or more panel elements can give good results for the lift and induced drag coefficients of the craft, as well as for the pitching moment at angles of attack below 10 to 15 deg. Automated processes for calculating the local slopes of mean-camber surfaces may also render the method suitable for use in preliminary design phases.

  1. Polar Vortex Conditions During the 1995-96 Arctic Winter: MLS CL0 and HNO(sub 3)

    NASA Technical Reports Server (NTRS)

    Santee, M. L.; Manney, G. L.; Read, W. G.; Froidevaux, L.; Waters, J. W.

    1996-01-01

    Microwave Limb Sounder (MLS) measurements of lower stratospheric CLO and HNO(sub 3) during the 1995-96 Arctic winter are presented. The 1995-96 Arctic winter was both colder and more persistently cold than usual, leading to an enhancement in lower stratospheric CLO of greater magnitude, vertical extent, and duration than has been previously observed in the Arctic. Vortex concentrations of HNO(sub 3) in mid-December were large due to diabetic decent. Trajectory calculations indicate that localized severe depletions of gas-phase HNO(sub 3) in mid-February and early March did not arise from intrainment of midlatitude air into the vortex and were therefore probably related to polar stratospheric cloud (PSC) formation.

  2. Analysis of record-breaking low ozone values during the 1997 winter over NDSC Station Lauder, New Zealand

    NASA Technical Reports Server (NTRS)

    Brinksma, E. J.; Meijer, Y. J.; Connor, B. J.; Manney, G. L.; Bergwerff, J. B.; Bodeker, G. E.; Boyd, I. S.; Liley, J. B.; Hogervorst, W.; Hovenier, J. W.; hide

    1998-01-01

    During early August 1997, the ozone column density measured over Lauder was unusually low, with a minimum value of 222 Dobson Units (DU) at August 10. These observations are striking since in August, during the Austral winter, the ozone column density should be heading towards its yearly maximum; The August mean ozone column density measured over Lauder between 1987 and 1996 was 348(+/-28) DU, the lowest monthly average in these ten years was 255 DU. Regular altitude profile measurements of ozone, performed at Network for the Detection of Stratospheric Change (NDSC) station Lauder, make it possible to do a detailed, altitude-resolved, study of the low ozone observations. The measurements show ozone poor air in two altitude regions of the stratosphere: A 'high region', extending from the 600 K to the 1050 K isentrope (25 to 34 km), and a 'low region', below about 550 K (22 km). High resolution reverse trajectory maps of potential vorticity (PV) and ozone mixing ratio, based on the assumption of passive advection by the large-scale three-dimensional winds, show that in the 'high region' the ozone poor air was part of the polar vortex, which was centered off the pole and extended over Lauder for several days, while in the 'low region' the ozone poor air was mixed in from low latitudes. A rapid recovery of the ozone column density, by more than 110 DU within 24 hours, was observed when in the low region an ozone rich filament of the polar vortex moved over Lauder, while in the high region the (ozone poor) high part of the vortex moved away.

  3. Nonlinear Mixing of Optical Vortices with Fractional Topological Charges in Raman Sideband Generation.

    NASA Astrophysics Data System (ADS)

    Strohaber, James; Boran, Yakup; Sayrac, Muhammed; Johnson, Lewis; Zhu, Feng; Kolomenskii, Alexandre; Schuessler, Hans

    We studied the nonlinear parametric interaction of femtosecond fractionally-charged optical vortices in a Raman-active medium. Propagation of such beams is described using the Kirchhoff-Fresnel integrals by embedding a non-integer 2pi phase step in a Gaussian beam profile. When using fractionally-charged pump or Stokes beams, we observed the production of new topological charge and phase discontinuities in the Raman field. These newly generated fractionally-charged Raman vortex beams were found to follow the same orbital angular momentum algebra derived by for integer vortex beams. This work was funded by the Robert A. Welch Foundation, Grant No. A1546 and the Qatar Foundation under Grants No. NPRP 6-465-1-091.

  4. High-order optical vortex position detection using a Shack-Hartmann wavefront sensor.

    PubMed

    Luo, Jia; Huang, Hongxin; Matsui, Yoshinori; Toyoda, Haruyoshi; Inoue, Takashi; Bai, Jian

    2015-04-06

    Optical vortex (OV) beams have null-intensity singular points, and the intensities in the region surrounding the singular point are quite low. This low intensity region influences the position detection accuracy of phase singular point, especially for high-order OV beam. In this paper, we propose a new method for solving this problem, called the phase-slope-combining correlation matching method. A Shack-Hartmann wavefront sensor (SH-WFS) is used to measure phase slope vectors at lenslet positions of the SH-WFS. Several phase slope vectors are combined into one to reduce the influence of low-intensity regions around the singular point, and the combined phase slope vectors are used to determine the OV position with the aid of correlation matching with a pre-calculated database. Experimental results showed that the proposed method works with high accuracy, even when detecting an OV beam with a topological charge larger than six. The estimated precision was about 0.15 in units of lenslet size when detecting an OV beam with a topological charge of up to 20.

  5. The Good, the Bad, and the Ugly: Numerical Prediction for Hurricane Juan (2003)

    NASA Astrophysics Data System (ADS)

    Gyakum, J.; McTaggart-Cowan, R.

    2004-05-01

    The range of accuracy of the numerical weather prediction (NWP) guidance for the landfall of Hurricane Juan (2003), from nearly perfect to nearly useless, motivates a study of the NWP forecast errors on 28-29 September 2003 in the eastern North Atlantic. Although the forecasts issued over the period were of very high quality, this is primarily because of the diligence of the forecasters, and not related to the reliability of the numerical predictions provided to them by the North American operational centers and the research community. A bifurcation in the forecast fields from various centers and institutes occurred beginning with the 0000 UTC run of 28 September, and continuing until landfall just after 0000 UTC on 29 September. The GFS (NCEP), Eta (NCEP), GEM (Canadian Meteorological Centre; CMC), and MC2 (McGill) forecast models all showed an extremely weak (minimum SLP above 1000 hPa) remnant vortex moving north-northwestward into the Gulf of Maine and merging with a diabatically-developed surface low offshore. The GFS uses a vortex-relocation scheme, the Eta a vortex bogus, and the GEM and MC2 are run on CMC analyses that contain no enhanced vortex. The UK Met Office operational, the GFDL, and the NOGAPS (US Navy) forecast models all ran a small-scale hurricane-like vortex directly into Nova Scotia and verified very well for this case. The UKMO model uses synthetic observations to enhance structures in poorly-forecasted areas during the analysis cycle and both the GFDL and NOGAPS model use advanced idealized vortex bogusing in their initial conditions. The quality of the McGill MC2 forecast is found to be significantly enhanced using a bogusing technique similar to that used in the initialization of the successful forecast models. A verification of the improved forecast is presented along with a discussion of the need for operational quality control of the background fields in the analysis cycle and for proper representation of strong, small-scale tropical vortices.

  6. Intraventricular vortex properties in nonischemic dilated cardiomyopathy

    PubMed Central

    Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Martínez-Legazpi, Pablo; del Villar, Candelas Pérez; Pérez-David, Esther; González-Mansilla, Ana; Santa-Marta, Cristina; Barrio, Alicia; Fernández-Avilés, Francisco; del Álamo, Juan C.

    2014-01-01

    Vortices may have a role in optimizing the mechanical efficiency and blood mixing of the left ventricle (LV). We aimed to characterize the size, position, circulation, and kinetic energy (KE) of LV main vortex cores in patients with nonischemic dilated cardiomyopathy (NIDCM) and analyze their physiological correlates. We used digital processing of color-Doppler images to study flow evolution in 61 patients with NIDCM and 61 age-matched control subjects. Vortex features showed a characteristic biphasic temporal course during diastole. Because late filling contributed significantly to flow entrainment, vortex KE reached its maximum at the time of the peak A wave, storing 26 ± 20% of total KE delivered by inflow (range: 1–74%). Patients with NIDCM showed larger and stronger vortices than control subjects (circulation: 0.008 ± 0.007 vs. 0.006 ± 0.005 m2/s, respectively, P = 0.02; KE: 7 ± 8 vs. 5 ± 5 mJ/m, P = 0.04), even when corrected for LV size. This helped confining the filling jet in the dilated ventricle. The vortex Reynolds number was also higher in the NIDCM group. By multivariate analysis, vortex KE was related to the KE generated by inflow and to chamber short-axis diameter. In 21 patients studied head to head, Doppler measurements of circulation and KE closely correlated with phase-contract magnetic resonance values (intraclass correlation coefficient = 0.82 and 0.76, respectively). Thus, the biphasic nature of filling determines normal vortex physiology. Vortex formation is exaggerated in patients with NIDCM due to chamber remodeling, and enlarged vortices are helpful for ameliorating convective pressure losses and facilitating transport. These findings can be accurately studied using ultrasound. PMID:24414062

  7. These two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project o

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Two NASA F/A-18 aircraft are flying a test point for the Autonomous Formation Flight project over California's Mojave Desert. This second flight phase is mapping the wingtip vortex of the lead aircraft, the Systems Research Aircraft (tail number 847), on the trailing F/A-18 tail number 847. Wingtip vortex is a spiraling wind flowing from the wing during flight. The project is studying the drag and fuel reduction of precision formation flying.

  8. Experimental formation of a fractional vortex in a superconducting bi-layer

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Yamamori, H.; Yanagisawa, T.; Nishio, T.; Arisawa, S.

    2018-05-01

    We report the experimental formation of a fractional vortex generated by using a thin superconducting bi-layer in the form of a niobium bi-layer, observed as a magnetic flux distribution image taken by a scanning superconducting quantum interference device (SQUID) microscope. Thus, we demonstrated that multi-component superconductivity can be realized by an s-wave conventional superconductor, because, in these superconductors, the magnetic flux is no longer quantized as it is destroyed by the existence of an inter-component phase soliton (i-soliton).

  9. Formation of ring-shaped light fields with orbital angular momentum using a modal type liquid crystal spatial modulator

    NASA Astrophysics Data System (ADS)

    Kotova, S. P.; Mayorova, A. M.; Samagin, S. A.

    2018-05-01

    Techniques for forming vortex light fields using a modal type liquid crystal spatial modulator were proposed. An orbital angular momentum of light passing through the modulator or reflecting from it appears as a result of the jump in the profile of phase delay by means of using special configurations of contact electrodes and predetermined values of applying voltages. The features of the generated vortex beams and capabilities for their control were simulated.

  10. Wind Tunnel Analysis And Flight Test of A Wing Fence On A T-38

    DTIC Science & Technology

    2009-03-26

    winglets are used on numerous aircraft and are often added after the final phase of design. Aircraft have been employing devices such as vortex... winglets have been used since the 1970s. They are used primarily to take advantage of the resulting increased fuel-efficiency. Lear jets were the...AFB). The driving force for choosing a wing fence over vortex generators or winglets was the seam located 26.5 inches inboard of the wingtip. This

  11. Bell’s measure and implementing quantum Fourier transform with orbital angular momentum of classical light

    PubMed Central

    Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong

    2015-01-01

    We perform Bell’s measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell’s inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally. PMID:26369424

  12. Particle-vortex symmetric liquid

    NASA Astrophysics Data System (ADS)

    Mulligan, Michael

    2017-01-01

    We introduce an effective theory with manifest particle-vortex symmetry for disordered thin films undergoing a magnetic field-tuned superconductor-insulator transition. The theory may enable one to access both the critical properties of the strong-disorder limit, which has recently been confirmed by Breznay et al. [Proc. Natl. Acad. Sci. USA 113, 280 (2016), 10.1073/pnas.1522435113] to exhibit particle-vortex symmetric electrical response, and the nearby metallic phase discovered earlier by Mason and Kapitulnik [Phys. Rev. Lett. 82, 5341 (1999), 10.1103/PhysRevLett.82.5341] in less disordered samples. Within the effective theory, the Cooper-pair and field-induced vortex degrees of freedom are simultaneously incorporated into an electrically neutral Dirac fermion minimally coupled to a (emergent) Chern-Simons gauge field. A derivation of the theory follows upon mapping the superconductor-insulator transition to the integer quantum Hall plateau transition and the subsequent use of Son's particle-hole symmetric composite Fermi liquid. Remarkably, particle-vortex symmetric response does not require the introduction of disorder; rather, it results when the Dirac fermions exhibit vanishing Hall effect. The theory predicts approximately equal (diagonal) thermopower and Nernst signal with a deviation parameterized by the measured electrical Hall response at the symmetric point.

  13. Determination of the polarization states of an arbitrary polarized terahertz beam: Vectorial vortex analysis

    PubMed Central

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J. Scott; Otani, Yukitoshi

    2015-01-01

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1–1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of Δ = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36 THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams. PMID:25799965

  14. Determination of the polarization states of an arbitrary polarized terahertz beam: vectorial vortex analysis.

    PubMed

    Wakayama, Toshitaka; Higashiguchi, Takeshi; Oikawa, Hiroki; Sakaue, Kazuyuki; Washio, Masakazu; Yonemura, Motoki; Yoshizawa, Toru; Tyo, J Scott; Otani, Yukitoshi

    2015-03-24

    Vectorial vortex analysis is used to determine the polarization states of an arbitrarily polarized terahertz (0.1-1.6 THz) beam using THz achromatic axially symmetric wave (TAS) plates, which have a phase retardance of Δ = 163° and are made of polytetrafluorethylene. Polarized THz beams are converted into THz vectorial vortex beams with no spatial or wavelength dispersion, and the unknown polarization states of the incident THz beams are reconstructed. The polarization determination is also demonstrated at frequencies of 0.16 and 0.36 THz. The results obtained by solving the inverse source problem agree with the values used in the experiments. This vectorial vortex analysis enables a determination of the polarization states of the incident THz beam from the THz image. The polarization states of the beams are estimated after they pass through the TAS plates. The results validate this new approach to polarization detection for intense THz sources. It could find application in such cutting edge areas of physics as nonlinear THz photonics and plasmon excitation, because TAS plates not only instantaneously elucidate the polarization of an enclosed THz beam but can also passively control THz vectorial vortex beams.

  15. Subsonic Aerodynamic Assessment of Vortex Flow Management Devices on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.

    1999-01-01

    An experimental investigation of the effects of leading-edge vortex management devices on the subsonic performance of a high-speed civil transport (HSCT) configuration was conducted in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.14 to 0.27, with corresponding chord Reynolds numbers of 3.08 x 10 (sup 6) to 5.47 x 10 (sup 6). The test model was designed for a cruise Mach number of 2.7. During the subsonic high-lift phase of flight, vortical flow dominates the upper surface flow structure, and during vortex breakdown, this flow causes adverse pitch-up and a reduction of usable lift. The experimental results showed that the beneficial effects of small leading-edge vortex management devices located near the model reference center were insufficient to substantially affect the resulting aerodynamic forces and moments. However, devices located at or near the wiring apex region demonstrated potential for pitch control with little effect on overall lift.

  16. A random wave model for the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Houston, Alexander J. H.; Gradhand, Martin; Dennis, Mark R.

    2017-05-01

    We study an ensemble of random waves subject to the Aharonov-Bohm effect. The introduction of a point with a magnetic flux of arbitrary strength into a random wave ensemble gives a family of wavefunctions whose distribution of vortices (complex zeros) is responsible for the topological phase associated with the Aharonov-Bohm effect. Analytical expressions are found for the vortex number and topological charge densities as functions of distance from the flux point. Comparison is made with the distribution of vortices in the isotropic random wave model. The results indicate that as the flux approaches half-integer values, a vortex with the same sign as the fractional part of the flux is attracted to the flux point, merging with it in the limit of half-integer flux. We construct a statistical model of the neighbourhood of the flux point to study how this vortex-flux merger occurs in more detail. Other features of the Aharonov-Bohm vortex distribution are also explored.

  17. Propagation of a Pearcey-Gaussian-vortex beam in free space and Kerr media

    NASA Astrophysics Data System (ADS)

    Peng, Yulian; Chen, Chidao; Chen, Bo; Peng, Xi; Zhou, Meiling; Zhang, Liping; Li, Dongdong; Deng, Dongmei

    2016-12-01

    The propagation of a Pearcey-Gaussian-vortex beam (PGVB) has been investigated numerically in free space and Kerr media. In addition, we have done a numerical experiment for the beam in free space. A PGVB maintains the characteristics of auto-focusing, self-healing and form-invariance which are possessed by a Pearcey beam and a Pearcey-Gaussian beam. Due to the influence of the optical vortex, a bright speck occurs in front of the main lobe. Compared with a Pearcey beam and a Pearcey-Gaussian beam, a PGVB has the most remarkable intensity singularity and the phase singularity. It is worth noting that the impact of the vortex at the coordinate origins means that a PGVB in the vicinity carries no angular momentum or transverse energy flow. We have investigated and numerically simulated the transverse intensity of a PGVB in Kerr media. We find that the auto-focusing of a PGVB in a Kerr medium becomes stronger with increasing power.

  18. Remote recoil: a new wave mean interaction effect

    NASA Astrophysics Data System (ADS)

    Bühler, Oliver; McIntyre, Michael E.

    2003-10-01

    We present a theoretical study of a fundamentally new wave mean or wave vortex interaction effect able to force persistent, cumulative change in mean flows in the absence of wave breaking or other kinds of wave dissipation. It is associated with the refraction of non-dissipating waves by inhomogeneous mean (vortical) flows. The effect is studied in detail in the simplest relevant model, the two-dimensional compressible flow equations with a generic polytropic equation of state. This includes the usual shallow-water equations as a special case. The refraction of a narrow, slowly varying wavetrain of small-amplitude gravity or sound waves obliquely incident on a single weak (low Froude or Mach number) vortex is studied in detail. It is shown that, concomitant with the changes in the waves' pseudomomentum due to the refraction, there is an equal and opposite recoil force that is felt, in effect, by the vortex core. This effective force is called a ‘remote recoil’ to stress that there is no need for the vortex core and wavetrain to overlap in physical space. There is an accompanying ‘far-field recoil’ that is still more remote, as in classical vortex-impulse problems. The remote-recoil effects are studied perturbatively using the wave amplitude and vortex weakness as small parameters. The nature of the remote recoil is demonstrated in various set-ups with wavetrains of finite or infinite length. The effective recoil force {bm R}_V on the vortex core is given by an expression resembling the classical Magnus force felt by moving cylinders with circulation. In the case of wavetrains of infinite length, an explicit formula for the scattering angle theta_* of waves passing a vortex at a distance is derived correct to second order in Froude or Mach number. To this order {bm R}_V {~} theta_*. The formula is cross-checked against numerical integrations of the ray-tracing equations. This work is part of an ongoing study of internal-gravity-wave dynamics in the atmosphere and may be important for the development of future gravity-wave parametrization schemes in numerical models of the global atmospheric circulation. At present, all such schemes neglect remote-recoil effects caused by horizontally inhomogeneous mean flows. Taking these effects into account should make the parametrization schemes significantly more accurate.

  19. A seasonal forecast scheme for the Inner Mongolia spring drought - Part-I: dynamic characteristics of the atmospheric circulation and forecast signals

    NASA Astrophysics Data System (ADS)

    Gao, Tao; Si, Yaobing; Yu, Xiao; Wulan; Yang, Peng; Gao, Jing

    2018-02-01

    This study analyzed the atmospheric evolutionary characteristics of insufficient rainfall that leads to spring drought in Inner Mongolia, China. The results revealed that a weakened western Pacific subtropical high and an enlarged North Polar vortex with a western position of the East Asian trough generally result in unfavorable moisture transportation for spring precipitation in IM. It was found that an abnormal sea surface temperature in several crucial ocean areas triggers an irregular atmospheric circulation over the Eurasian continent and the Pacific region. Lower sea surface temperature (SST) during the previous autumn over tropical regions of the central-eastern Pacific and Indian oceans induce a strong Walker circulation, corresponding to a weak and southeastward-retreating subtropical high over the western Pacific during the following winter and spring. Another crucial area is the central region of the North Atlantic Ocean. Abnormally low SST of the ocean area during the preceding autumn causes the Scandinavian teleconnection pattern (the index of which is issued on the website of the Climate Prediction Center, USA) changes to a positive phase, which leads to a weak westerly over the Eurasian continent. In this case, the easterly over the North Pole becomes stronger than normal, resulting in an extended North Polar vortex during the following spring. In addition, SST differences during the previous December between the middle-eastern tropical and the northwestern regions of the Pacific Ocean reflect variations of the Pacific Decadal Oscillation, causing the East Asian trough to move to a western position during the following spring.

  20. Water-contained surfactant-based vortex-assisted microextraction method combined with liquid chromatography for determination of synthetic antioxidants from edible oil.

    PubMed

    Amlashi, Nadiya Ekbatani; Hadjmohammadi, Mohammad Reza; Nazari, Seyed Saman Seyed Jafar

    2014-09-26

    For the first time, a novel water-contained surfactant-based vortex-assisted microextraction method (WSVAME) was developed for the extraction of two synthetic antioxidants (t-butyl hydroquinone (TBHQ) and butylated hydroxyanisole (BHA)) from edible oil samples. The novel microextraction method is based on the injection of an aqueous solution of non-ionic surfactant, Brij-35, into the oil sample in a conical bottom glass tube to form a cloudy solution. Vortex mixing was applied to accelerate the dispersion process. After extraction and phase separation by centrifugation, the lower sediment phase was directly analyzed by HPLC. The effects of the four experimental parameters including volume and concentration of extraction solvent (aqueous solution of Brij-35), percentage of acetic acid added to the oil sample and vortex time on the extraction efficiency were studied with a full factorial design. The central composite design and multiple linear regression method were applied for the construction of the best polynomial model based on experimental recoveries. The proposed method showed good linearity within the range of 0.200-200 μg mL(-1), the square of correlation coefficient higher than 0.999 and appropriate limit of detection (0.026 and 0.020 μg mL(-1) for TBHQ and BHA, respectively), while the precision for inner-day was ≤ 3.0 (n=5) and it was ≤ 3.80 (n=5) for inter-day assay. Under the optimal condition (30 μL of 0.10 mol L(-1) Brij-35 solution as extraction solvent and vortex time 1 min), the method was successfully applied for determination of TBHQ and BHA in different commercial edible oil samples. The recoveries in all cases were above 95%, with relative standard deviations below 5%. This approach is considered as a simple, sensitive and environmentally friendly method because of biodegradability of the extraction phase and no use of organic solvent in the extraction procedure. Copyright © 2014 Elsevier B.V. All rights reserved.

Top